aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/a-chtgop.adb
blob: d7402d2500b5de4cade1f03bcb526397e01c82ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT LIBRARY COMPONENTS                          --
--                                                                          --
--              ADA.CONTAINERS.HASH_TABLES.GENERIC_OPERATIONS               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2004-2024, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- This unit was originally developed by Matthew J Heaney.                  --
------------------------------------------------------------------------------

with Ada.Containers.Prime_Numbers;
with Ada.Unchecked_Deallocation;

with System; use type System.Address;

package body Ada.Containers.Hash_Tables.Generic_Operations is

   pragma Warnings (Off, "variable ""Busy*"" is not referenced");
   pragma Warnings (Off, "variable ""Lock*"" is not referenced");
   --  See comment in Ada.Containers.Helpers

   type Buckets_Allocation is access all Buckets_Type;
   --  Used for allocation and deallocation (see New_Buckets and Free_Buckets).
   --  This is necessary because Buckets_Access has an empty storage pool.

   ------------
   -- Adjust --
   ------------

   procedure Adjust (HT : in out Hash_Table_Type) is
      Src_Buckets : constant Buckets_Access := HT.Buckets;
      N           : constant Count_Type := HT.Length;
      Src_Node    : Node_Access;
      Dst_Prev    : Node_Access;

   begin
      --  If the counts are nonzero, execution is technically erroneous, but
      --  it seems friendly to allow things like concurrent "=" on shared
      --  constants.

      Zero_Counts (HT.TC);

      HT.Buckets := null;
      HT.Length := 0;

      if N = 0 then
         return;
      end if;

      --  Technically it isn't necessary to allocate the exact same length
      --  buckets array, because our only requirement is that following
      --  assignment the source and target containers compare equal (that is,
      --  operator "=" returns True). We can satisfy this requirement with any
      --  hash table length, but we decide here to match the length of the
      --  source table. This has the benefit that when iterating, elements of
      --  the target are delivered in the exact same order as for the source.

      HT.Buckets := New_Buckets (Length => Src_Buckets'Length);

      for Src_Index in Src_Buckets'Range loop
         Src_Node := Src_Buckets (Src_Index);

         if Src_Node /= null then
            declare
               Dst_Node : constant Node_Access := Copy_Node (Src_Node);

               --  See note above

               pragma Assert (Checked_Index (HT, Dst_Node) = Src_Index);

            begin
               HT.Buckets (Src_Index) := Dst_Node;
               HT.Length := HT.Length + 1;

               Dst_Prev := Dst_Node;
            end;

            Src_Node := Next (Src_Node);
            while Src_Node /= null loop
               declare
                  Dst_Node : constant Node_Access := Copy_Node (Src_Node);

                  --  See note above

                  pragma Assert (Checked_Index (HT, Dst_Node) = Src_Index);

               begin
                  Set_Next (Node => Dst_Prev, Next => Dst_Node);
                  HT.Length := HT.Length + 1;

                  Dst_Prev := Dst_Node;
               end;

               Src_Node := Next (Src_Node);
            end loop;
         end if;
      end loop;

      pragma Assert (HT.Length = N);
   end Adjust;

   --------------
   -- Capacity --
   --------------

   function Capacity (HT : Hash_Table_Type) return Count_Type is
   begin
      if HT.Buckets = null then
         return 0;
      end if;

      return HT.Buckets'Length;
   end Capacity;

   -------------------
   -- Checked_Index --
   -------------------

   function Checked_Index
     (Hash_Table : aliased in out Hash_Table_Type;
      Buckets    : Buckets_Type;
      Node       : Node_Access) return Hash_Type
   is
      Lock : With_Lock (Hash_Table.TC'Unrestricted_Access);
   begin
      return Index (Buckets, Node);
   end Checked_Index;

   function Checked_Index
     (Hash_Table : aliased in out Hash_Table_Type;
      Node       : Node_Access) return Hash_Type
   is
   begin
      return Checked_Index (Hash_Table, Hash_Table.Buckets.all, Node);
   end Checked_Index;

   -----------
   -- Clear --
   -----------

   procedure Clear (HT : in out Hash_Table_Type) is
      Index : Hash_Type := 0;
      Node  : Node_Access;

   begin
      TC_Check (HT.TC);

      while HT.Length > 0 loop
         while HT.Buckets (Index) = null loop
            Index := Index + 1;
         end loop;

         declare
            Bucket : Node_Access renames HT.Buckets (Index);
         begin
            loop
               Node := Bucket;
               Bucket := Next (Bucket);
               HT.Length := HT.Length - 1;
               Free (Node);
               exit when Bucket = null;
            end loop;
         end;
      end loop;
   end Clear;

   --------------------------
   -- Delete_Node_At_Index --
   --------------------------

   procedure Delete_Node_At_Index
     (HT   : in out Hash_Table_Type;
      Indx : Hash_Type;
      X    : in out Node_Access)
   is
      Prev : Node_Access;
      Curr : Node_Access;

   begin
      Prev := HT.Buckets (Indx);

      if Prev = X then
         HT.Buckets (Indx) := Next (Prev);
         HT.Length := HT.Length - 1;
         Free (X);
         return;
      end if;

      if Checks and then HT.Length = 1 then
         raise Program_Error with
           "attempt to delete node not in its proper hash bucket";
      end if;

      loop
         Curr := Next (Prev);

         if Checks and then Curr = null then
            raise Program_Error with
              "attempt to delete node not in its proper hash bucket";
         end if;

         if Curr = X then
            Set_Next (Node => Prev, Next => Next (Curr));
            HT.Length := HT.Length - 1;
            Free (X);
            return;
         end if;

         Prev := Curr;
      end loop;
   end Delete_Node_At_Index;

   ---------------------------
   -- Delete_Node_Sans_Free --
   ---------------------------

   procedure Delete_Node_Sans_Free
     (HT : in out Hash_Table_Type;
      X  : Node_Access)
   is
      pragma Assert (X /= null);

      Indx : Hash_Type;
      Prev : Node_Access;
      Curr : Node_Access;

   begin
      if Checks and then HT.Length = 0 then
         raise Program_Error with
           "attempt to delete node from empty hashed container";
      end if;

      Indx := Checked_Index (HT, X);
      Prev := HT.Buckets (Indx);

      if Checks and then Prev = null then
         raise Program_Error with
           "attempt to delete node from empty hash bucket";
      end if;

      if Prev = X then
         HT.Buckets (Indx) := Next (Prev);
         HT.Length := HT.Length - 1;
         return;
      end if;

      if Checks and then HT.Length = 1 then
         raise Program_Error with
           "attempt to delete node not in its proper hash bucket";
      end if;

      loop
         Curr := Next (Prev);

         if Checks and then Curr = null then
            raise Program_Error with
              "attempt to delete node not in its proper hash bucket";
         end if;

         if Curr = X then
            Set_Next (Node => Prev, Next => Next (Curr));
            HT.Length := HT.Length - 1;
            return;
         end if;

         Prev := Curr;
      end loop;
   end Delete_Node_Sans_Free;

   --------------
   -- Finalize --
   --------------

   procedure Finalize (HT : in out Hash_Table_Type) is
   begin
      Clear (HT);
      Free_Buckets (HT.Buckets);
   end Finalize;

   -----------
   -- First --
   -----------

   function First
     (HT       : Hash_Table_Type) return Node_Access
   is
      Dummy : Hash_Type;
   begin
      return First (HT, Dummy);
   end First;

   function First
     (HT       : Hash_Table_Type;
      Position : out Hash_Type) return Node_Access is
   begin
      if HT.Length = 0 then
         Position := Hash_Type'Last;
         return null;
      end if;

      Position := HT.Buckets'First;
      loop
         if HT.Buckets (Position) /= null then
            return HT.Buckets (Position);
         end if;

         Position := Position + 1;
      end loop;
   end First;

   ------------------
   -- Free_Buckets --
   ------------------

   procedure Free_Buckets (Buckets : in out Buckets_Access) is
      procedure Free is
        new Ada.Unchecked_Deallocation (Buckets_Type, Buckets_Allocation);

   begin
      --  Buckets must have been created by New_Buckets. Here, we convert back
      --  to the Buckets_Allocation type, and do the free on that.

      Free (Buckets_Allocation (Buckets));
   end Free_Buckets;

   ---------------------
   -- Free_Hash_Table --
   ---------------------

   procedure Free_Hash_Table (Buckets : in out Buckets_Access) is
      Node : Node_Access;

   begin
      if Buckets = null then
         return;
      end if;

      for J in Buckets'Range loop
         while Buckets (J) /= null loop
            Node := Buckets (J);
            Buckets (J) := Next (Node);
            Free (Node);
         end loop;
      end loop;

      Free_Buckets (Buckets);
   end Free_Hash_Table;

   -------------------
   -- Generic_Equal --
   -------------------

   function Generic_Equal
     (L, R : Hash_Table_Type) return Boolean
   is
   begin
      if L.Length /= R.Length then
         return False;
      end if;

      if L.Length = 0 then
         return True;
      end if;

      declare
         --  Per AI05-0022, the container implementation is required to detect
         --  element tampering by a generic actual subprogram.

         Lock_L : With_Lock (L.TC'Unrestricted_Access);
         Lock_R : With_Lock (R.TC'Unrestricted_Access);

         L_Index : Hash_Type;
         L_Node  : Node_Access;

         N : Count_Type;
      begin
         --  Find the first node of hash table L

         L_Index := 0;
         loop
            L_Node := L.Buckets (L_Index);
            exit when L_Node /= null;
            L_Index := L_Index + 1;
         end loop;

         --  For each node of hash table L, search for an equivalent node in
         --  hash table R.

         N := L.Length;
         loop
            if not Find (HT => R, Key => L_Node) then
               return False;
            end if;

            N := N - 1;

            L_Node := Next (L_Node);

            if L_Node = null then
               --  We have exhausted the nodes in this bucket

               if N = 0 then
                  return True;
               end if;

               --  Find the next bucket

               loop
                  L_Index := L_Index + 1;
                  L_Node := L.Buckets (L_Index);
                  exit when L_Node /= null;
               end loop;
            end if;
         end loop;
      end;
   end Generic_Equal;

   -----------------------
   -- Generic_Iteration --
   -----------------------

   procedure Generic_Iteration (HT : Hash_Table_Type) is
      procedure Wrapper (Node : Node_Access; Dummy_Pos : Hash_Type);

      -------------
      -- Wrapper --
      -------------

      procedure Wrapper (Node : Node_Access; Dummy_Pos : Hash_Type) is
      begin
         Process (Node);
      end Wrapper;

      procedure Internal_With_Pos is
        new Generic_Iteration_With_Position (Wrapper);

   --  Start of processing for Generic_Iteration

   begin
      Internal_With_Pos (HT);
   end Generic_Iteration;

   -------------------------------------
   -- Generic_Iteration_With_Position --
   -------------------------------------

   procedure Generic_Iteration_With_Position
     (HT : Hash_Table_Type)
   is
      Node : Node_Access;

   begin
      if HT.Length = 0 then
         return;
      end if;

      for Indx in HT.Buckets'Range loop
         Node := HT.Buckets (Indx);
         while Node /= null loop
            Process (Node, Indx);
            Node := Next (Node);
         end loop;
      end loop;
   end Generic_Iteration_With_Position;

   ------------------
   -- Generic_Read --
   ------------------

   procedure Generic_Read
     (Stream : not null access Root_Stream_Type'Class;
      HT     : out Hash_Table_Type)
   is
      N  : Count_Type'Base;
      NN : Hash_Type;

   begin
      Clear (HT);

      Count_Type'Base'Read (Stream, N);

      if Checks and then N < 0 then
         raise Program_Error with "stream appears to be corrupt";
      end if;

      if N = 0 then
         return;
      end if;

      --  The RM does not specify whether or how the capacity changes when a
      --  hash table is streamed in. Therefore we decide here to allocate a new
      --  buckets array only when it's necessary to preserve representation
      --  invariants.

      if HT.Buckets = null
        or else HT.Buckets'Length < N
      then
         Free_Buckets (HT.Buckets);
         NN := Prime_Numbers.To_Prime (N);
         HT.Buckets := New_Buckets (Length => NN);
      end if;

      for J in 1 .. N loop
         declare
            Node : constant Node_Access := New_Node (Stream);
            Indx : constant Hash_Type := Checked_Index (HT, Node);
            B    : Node_Access renames HT.Buckets (Indx);
         begin
            Set_Next (Node => Node, Next => B);
            B := Node;
         end;

         HT.Length := HT.Length + 1;
      end loop;
   end Generic_Read;

   -------------------
   -- Generic_Write --
   -------------------

   procedure Generic_Write
     (Stream : not null access Root_Stream_Type'Class;
      HT     : Hash_Table_Type)
   is
      procedure Write (Node : Node_Access);
      pragma Inline (Write);

      procedure Write is new Generic_Iteration (Write);

      -----------
      -- Write --
      -----------

      procedure Write (Node : Node_Access) is
      begin
         Write (Stream, Node);
      end Write;

   begin
      --  See Generic_Read for an explanation of why we do not stream out the
      --  buckets array length too.

      Count_Type'Base'Write (Stream, HT.Length);
      Write (HT);
   end Generic_Write;

   -----------
   -- Index --
   -----------

   function Index
     (Buckets : Buckets_Type;
      Node    : Node_Access) return Hash_Type is
   begin
      return Hash_Node (Node) mod Buckets'Length;
   end Index;

   function Index
     (Hash_Table : Hash_Table_Type;
      Node       : Node_Access) return Hash_Type is
   begin
      return Index (Hash_Table.Buckets.all, Node);
   end Index;

   ----------
   -- Move --
   ----------

   procedure Move (Target, Source : in out Hash_Table_Type) is
   begin
      if Target'Address = Source'Address then
         return;
      end if;

      TC_Check (Source.TC);

      Clear (Target);

      declare
         Buckets : constant Buckets_Access := Target.Buckets;
      begin
         Target.Buckets := Source.Buckets;
         Source.Buckets := Buckets;
      end;

      Target.Length := Source.Length;
      Source.Length := 0;
   end Move;

   -----------------
   -- New_Buckets --
   -----------------

   function New_Buckets (Length : Hash_Type) return Buckets_Access is
      subtype Rng is Hash_Type range 0 .. Length - 1;

   begin
      --  Allocate in Buckets_Allocation'Storage_Pool, then convert to
      --  Buckets_Access.

      return Buckets_Access (Buckets_Allocation'(new Buckets_Type (Rng)));
   end New_Buckets;

   ----------
   -- Next --
   ----------

   function Next
     (HT            : aliased in out Hash_Table_Type;
      Node          : Node_Access;
      Position : in out Hash_Type) return Node_Access
   is
      Result : Node_Access;
      First  : Hash_Type;

   begin
      --  First, check if the node has other nodes chained to it
      Result := Next (Node);

      if Result /= null then
         return Result;
      end if;

      --  Check if we were supplied a position for Node, from which we
      --  can start iteration on the buckets.

      if Position /= Hash_Type'Last then
         First := Position + 1;
      else
         First := Checked_Index (HT, Node) + 1;
      end if;

      for Indx in First .. HT.Buckets'Last loop
         Result := HT.Buckets (Indx);

         if Result /= null then
            Position := Indx;
            return Result;
         end if;
      end loop;

      return null;
   end Next;

   function Next
     (HT            : aliased in out Hash_Table_Type;
      Node          : Node_Access) return Node_Access
   is
      Pos : Hash_Type := Hash_Type'Last;
   begin
      return Next (HT, Node, Pos);
   end Next;

   ----------------------
   -- Reserve_Capacity --
   ----------------------

   procedure Reserve_Capacity
     (HT : in out Hash_Table_Type;
      N  : Count_Type)
   is
      NN : Hash_Type;

   begin
      if HT.Buckets = null then
         if N > 0 then
            NN := Prime_Numbers.To_Prime (N);
            HT.Buckets := New_Buckets (Length => NN);
         end if;

         return;
      end if;

      if HT.Length = 0 then

         --  This is the easy case. There are no nodes, so no rehashing is
         --  necessary. All we need to do is allocate a new buckets array
         --  having a length implied by the specified capacity. (We say
         --  "implied by" because bucket arrays are always allocated with a
         --  length that corresponds to a prime number.)

         if N = 0 then
            Free_Buckets (HT.Buckets);
            return;
         end if;

         if N = HT.Buckets'Length then
            return;
         end if;

         NN := Prime_Numbers.To_Prime (N);

         if NN = HT.Buckets'Length then
            return;
         end if;

         declare
            X : Buckets_Access := HT.Buckets;
            pragma Warnings (Off, X);
         begin
            HT.Buckets := New_Buckets (Length => NN);
            Free_Buckets (X);
         end;

         return;
      end if;

      if N = HT.Buckets'Length then
         return;
      end if;

      if N < HT.Buckets'Length then

         --  This is a request to contract the buckets array. The amount of
         --  contraction is bounded in order to preserve the invariant that the
         --  buckets array length is never smaller than the number of elements
         --  (the load factor is 1).

         if HT.Length >= HT.Buckets'Length then
            return;
         end if;

         NN := Prime_Numbers.To_Prime (HT.Length);

         if NN >= HT.Buckets'Length then
            return;
         end if;

      else
         NN := Prime_Numbers.To_Prime (Count_Type'Max (N, HT.Length));

         if NN = HT.Buckets'Length then -- can't expand any more
            return;
         end if;
      end if;

      TC_Check (HT.TC);

      Rehash : declare
         Dst_Buckets : Buckets_Access := New_Buckets (Length => NN);
         Src_Buckets : Buckets_Access := HT.Buckets;
         pragma Warnings (Off, Src_Buckets);

         L : Count_Type renames HT.Length;
         LL : constant Count_Type := L;

         Src_Index : Hash_Type := Src_Buckets'First;

      begin
         while L > 0 loop
            declare
               Src_Bucket : Node_Access renames Src_Buckets (Src_Index);

            begin
               while Src_Bucket /= null loop
                  declare
                     Src_Node : constant Node_Access := Src_Bucket;

                     Dst_Index : constant Hash_Type :=
                       Checked_Index (HT, Dst_Buckets.all, Src_Node);

                     Dst_Bucket : Node_Access renames Dst_Buckets (Dst_Index);

                  begin
                     Src_Bucket := Next (Src_Node);

                     Set_Next (Src_Node, Dst_Bucket);

                     Dst_Bucket := Src_Node;
                  end;

                  pragma Assert (L > 0);
                  L := L - 1;
               end loop;

            exception
               when others =>

                  --  If there's an error computing a hash value during a
                  --  rehash, then AI-302 says the nodes "become lost." The
                  --  issue is whether to actually deallocate these lost nodes,
                  --  since they might be designated by extant cursors. Here
                  --  we decide to deallocate the nodes, since it's better to
                  --  solve real problems (storage consumption) rather than
                  --  imaginary ones (the user might, or might not, dereference
                  --  a cursor designating a node that has been deallocated),
                  --  and because we have a way to vet a dangling cursor
                  --  reference anyway, and hence can actually detect the
                  --  problem.

                  for Dst_Index in Dst_Buckets'Range loop
                     declare
                        B : Node_Access renames Dst_Buckets (Dst_Index);
                        X : Node_Access;
                     begin
                        while B /= null loop
                           X := B;
                           B := Next (X);
                           Free (X);
                        end loop;
                     end;
                  end loop;

                  Free_Buckets (Dst_Buckets);
                  raise Program_Error with
                    "hash function raised exception during rehash";
            end;

            Src_Index := Src_Index + 1;
         end loop;

         HT.Buckets := Dst_Buckets;
         HT.Length := LL;

         Free_Buckets (Src_Buckets);
      end Rehash;
   end Reserve_Capacity;

end Ada.Containers.Hash_Tables.Generic_Operations;