aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/layout.adb
blob: 684fae67152b6b6ea977d3eb9c847ab4d68af34e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                               L A Y O U T                                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2001-2020, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Atree;    use Atree;
with Debug;    use Debug;
with Einfo;    use Einfo;
with Errout;   use Errout;
with Opt;      use Opt;
with Sem_Aux;  use Sem_Aux;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Util; use Sem_Util;
with Sinfo;    use Sinfo;
with Snames;   use Snames;
with Ttypes;   use Ttypes;
with Uintp;    use Uintp;

package body Layout is

   ------------------------
   -- Local Declarations --
   ------------------------

   SSU : constant Int := Ttypes.System_Storage_Unit;
   --  Short hand for System_Storage_Unit

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Compute_Size_Depends_On_Discriminant (E : Entity_Id);
   --  Given an array type or an array subtype E, compute whether its size
   --  depends on the value of one or more discriminants and set the flag
   --  Size_Depends_On_Discriminant accordingly. This need not be called
   --  in front end layout mode since it does the computation on its own.

   procedure Set_Composite_Alignment (E : Entity_Id);
   --  This procedure is called for record types and subtypes, and also for
   --  atomic array types and subtypes. If no alignment is set, and the size
   --  is 2 or 4 (or 8 if the word size is 8), then the alignment is set to
   --  match the size.

   ----------------------------
   -- Adjust_Esize_Alignment --
   ----------------------------

   procedure Adjust_Esize_Alignment (E : Entity_Id) is
      Abits     : Int;
      Esize_Set : Boolean;

   begin
      --  Nothing to do if size unknown

      if Unknown_Esize (E) then
         return;
      end if;

      --  Determine if size is constrained by an attribute definition clause
      --  which must be obeyed. If so, we cannot increase the size in this
      --  routine.

      --  For a type, the issue is whether an object size clause has been set.
      --  A normal size clause constrains only the value size (RM_Size)

      if Is_Type (E) then
         Esize_Set := Has_Object_Size_Clause (E);

      --  For an object, the issue is whether a size clause is present

      else
         Esize_Set := Has_Size_Clause (E);
      end if;

      --  If size is known it must be a multiple of the storage unit size

      if Esize (E) mod SSU /= 0 then

         --  If not, and size specified, then give error

         if Esize_Set then
            Error_Msg_NE
              ("size for& not a multiple of storage unit size",
               Size_Clause (E), E);
            return;

         --  Otherwise bump up size to a storage unit boundary

         else
            Set_Esize (E, (Esize (E) + SSU - 1) / SSU * SSU);
         end if;
      end if;

      --  Now we have the size set, it must be a multiple of the alignment
      --  nothing more we can do here if the alignment is unknown here.

      if Unknown_Alignment (E) then
         return;
      end if;

      --  At this point both the Esize and Alignment are known, so we need
      --  to make sure they are consistent.

      Abits := UI_To_Int (Alignment (E)) * SSU;

      if Esize (E) mod Abits = 0 then
         return;
      end if;

      --  Here we have a situation where the Esize is not a multiple of the
      --  alignment. We must either increase Esize or reduce the alignment to
      --  correct this situation.

      --  The case in which we can decrease the alignment is where the
      --  alignment was not set by an alignment clause, and the type in
      --  question is a discrete type, where it is definitely safe to reduce
      --  the alignment. For example:

      --    t : integer range 1 .. 2;
      --    for t'size use 8;

      --  In this situation, the initial alignment of t is 4, copied from
      --  the Integer base type, but it is safe to reduce it to 1 at this
      --  stage, since we will only be loading a single storage unit.

      if Is_Discrete_Type (Etype (E)) and then not Has_Alignment_Clause (E)
      then
         loop
            Abits := Abits / 2;
            exit when Esize (E) mod Abits = 0;
         end loop;

         Init_Alignment (E, Abits / SSU);
         return;
      end if;

      --  Now the only possible approach left is to increase the Esize but we
      --  can't do that if the size was set by a specific clause.

      if Esize_Set then
         Error_Msg_NE
           ("size for& is not a multiple of alignment",
            Size_Clause (E), E);

      --  Otherwise we can indeed increase the size to a multiple of alignment

      else
         Set_Esize (E, ((Esize (E) + (Abits - 1)) / Abits) * Abits);
      end if;
   end Adjust_Esize_Alignment;

   ------------------------------------------
   -- Compute_Size_Depends_On_Discriminant --
   ------------------------------------------

   procedure Compute_Size_Depends_On_Discriminant (E : Entity_Id) is
      Indx : Node_Id;
      Ityp : Entity_Id;
      Lo   : Node_Id;
      Hi   : Node_Id;
      Res  : Boolean := False;

   begin
      --  Loop to process array indexes

      Indx := First_Index (E);
      while Present (Indx) loop
         Ityp := Etype (Indx);

         --  If an index of the array is a generic formal type then there is
         --  no point in determining a size for the array type.

         if Is_Generic_Type (Ityp) then
            return;
         end if;

         Lo := Type_Low_Bound (Ityp);
         Hi := Type_High_Bound (Ityp);

         if (Nkind (Lo) = N_Identifier
              and then Ekind (Entity (Lo)) = E_Discriminant)
           or else
            (Nkind (Hi) = N_Identifier
              and then Ekind (Entity (Hi)) = E_Discriminant)
         then
            Res := True;
         end if;

         Next_Index (Indx);
      end loop;

      if Res then
         Set_Size_Depends_On_Discriminant (E);
      end if;
   end Compute_Size_Depends_On_Discriminant;

   -------------------
   -- Layout_Object --
   -------------------

   procedure Layout_Object (E : Entity_Id) is
      pragma Unreferenced (E);
   begin
      --  Nothing to do for now, assume backend does the layout

      return;
   end Layout_Object;

   -----------------
   -- Layout_Type --
   -----------------

   procedure Layout_Type (E : Entity_Id) is
      Desig_Type : Entity_Id;

   begin
      --  For string literal types, for now, kill the size always, this is
      --  because gigi does not like or need the size to be set ???

      if Ekind (E) = E_String_Literal_Subtype then
         Set_Esize (E, Uint_0);
         Set_RM_Size (E, Uint_0);
         return;
      end if;

      --  For access types, set size/alignment. This is system address size,
      --  except for fat pointers (unconstrained array access types), where the
      --  size is two times the address size, to accommodate the two pointers
      --  that are required for a fat pointer (data and template). Note that
      --  E_Access_Protected_Subprogram_Type is not an access type for this
      --  purpose since it is not a pointer but is equivalent to a record. For
      --  access subtypes, copy the size from the base type since Gigi
      --  represents them the same way.

      if Is_Access_Type (E) then
         Desig_Type := Underlying_Type (Designated_Type (E));

         --  If we only have a limited view of the type, see whether the
         --  non-limited view is available.

         if From_Limited_With (Designated_Type (E))
           and then Ekind (Designated_Type (E)) = E_Incomplete_Type
           and then Present (Non_Limited_View (Designated_Type (E)))
         then
            Desig_Type := Non_Limited_View (Designated_Type (E));
         end if;

         --  If Esize already set (e.g. by a size clause), then nothing further
         --  to be done here.

         if Known_Esize (E) then
            null;

         --  Access to subprogram is a strange beast, and we let the backend
         --  figure out what is needed (it may be some kind of fat pointer,
         --  including the static link for example.

         elsif Is_Access_Protected_Subprogram_Type (E) then
            null;

         --  For access subtypes, copy the size information from base type

         elsif Ekind (E) = E_Access_Subtype then
            Set_Size_Info (E, Base_Type (E));
            Set_RM_Size   (E, RM_Size (Base_Type (E)));

         --  For other access types, we use either address size, or, if a fat
         --  pointer is used (pointer-to-unconstrained array case), twice the
         --  address size to accommodate a fat pointer.

         elsif Present (Desig_Type)
           and then Is_Array_Type (Desig_Type)
           and then not Is_Constrained (Desig_Type)
           and then not Has_Completion_In_Body (Desig_Type)

           --  Debug Flag -gnatd6 says make all pointers to unconstrained thin

           and then not Debug_Flag_6
         then
            Init_Size (E, 2 * System_Address_Size);

            --  Check for bad convention set

            if Warn_On_Export_Import
              and then
                (Convention (E) = Convention_C
                   or else
                 Convention (E) = Convention_CPP)
            then
               Error_Msg_N
                 ("?x?this access type does not correspond to C pointer", E);
            end if;

         --  If the designated type is a limited view it is unanalyzed. We can
         --  examine the declaration itself to determine whether it will need a
         --  fat pointer.

         elsif Present (Desig_Type)
           and then Present (Parent (Desig_Type))
           and then Nkind (Parent (Desig_Type)) = N_Full_Type_Declaration
           and then Nkind (Type_Definition (Parent (Desig_Type))) =
                                             N_Unconstrained_Array_Definition
           and then not Debug_Flag_6
         then
            Init_Size (E, 2 * System_Address_Size);

         --  If unnesting subprograms, subprogram access types contain the
         --  address of both the subprogram and an activation record. But if we
         --  set that, we'll get a warning on different unchecked conversion
         --  sizes in the RTS. So leave unset in that case.

         elsif Unnest_Subprogram_Mode
           and then Is_Access_Subprogram_Type (E)
         then
            null;

         --  Normal case of thin pointer

         else
            Init_Size (E, System_Address_Size);
         end if;

         Set_Elem_Alignment (E);

      --  Scalar types: set size and alignment

      elsif Is_Scalar_Type (E) then

         --  For discrete types, the RM_Size and Esize must be set already,
         --  since this is part of the earlier processing and the front end is
         --  always required to lay out the sizes of such types (since they are
         --  available as static attributes). All we do is to check that this
         --  rule is indeed obeyed.

         if Is_Discrete_Type (E) then

            --  If the RM_Size is not set, then here is where we set it

            --  Note: an RM_Size of zero looks like not set here, but this
            --  is a rare case, and we can simply reset it without any harm.

            if not Known_RM_Size (E) then
               Set_Discrete_RM_Size (E);
            end if;

            --  If Esize for a discrete type is not set then set it

            if not Known_Esize (E) then
               declare
                  S : Int := 8;

               begin
                  loop
                     --  If size is big enough, set it and exit

                     if S >= RM_Size (E) then
                        Init_Esize (E, S);
                        exit;

                     --  If the RM_Size is greater than System_Max_Integer_Size
                     --  (happens only when strange values are specified by the
                     --  user), then Esize is simply a copy of RM_Size, it will
                     --  be further refined later on).

                     elsif S = System_Max_Integer_Size then
                        Set_Esize (E, RM_Size (E));
                        exit;

                     --  Otherwise double possible size and keep trying

                     else
                        S := S * 2;
                     end if;
                  end loop;
               end;
            end if;

         --  For non-discrete scalar types, if the RM_Size is not set, then set
         --  it now to a copy of the Esize if the Esize is set.

         else
            if Known_Esize (E) and then Unknown_RM_Size (E) then
               Set_RM_Size (E, Esize (E));
            end if;
         end if;

         Set_Elem_Alignment (E);

      --  Non-elementary (composite) types

      else
         --  For packed arrays, take size and alignment values from the packed
         --  array type if a packed array type has been created and the fields
         --  are not currently set.

         if Is_Array_Type (E)
           and then Present (Packed_Array_Impl_Type (E))
         then
            declare
               PAT : constant Entity_Id := Packed_Array_Impl_Type (E);

            begin
               if Unknown_Esize (E) then
                  Set_Esize     (E, Esize     (PAT));
               end if;

               if Unknown_RM_Size (E) then
                  Set_RM_Size   (E, RM_Size   (PAT));
               end if;

               if Unknown_Alignment (E) then
                  Set_Alignment (E, Alignment (PAT));
               end if;
            end;
         end if;

         --  For array base types, set the component size if object size of the
         --  component type is known and is a small power of 2 (8, 16, 32, 64),
         --  since this is what will always be used, except if a very large
         --  alignment was specified and so Adjust_Esize_For_Alignment gave up
         --  because, in this case, the object size is not a multiple of the
         --  alignment and, therefore, cannot be the component size.

         if Ekind (E) = E_Array_Type and then Unknown_Component_Size (E) then
            declare
               CT : constant Entity_Id := Component_Type (E);

            begin
               --  For some reason, access types can cause trouble, So let's
               --  just do this for scalar types ???

               if Present (CT)
                 and then Is_Scalar_Type (CT)
                 and then Known_Static_Esize (CT)
                 and then not (Known_Alignment (CT)
                                and then Alignment_In_Bits (CT) >
                                           Standard_Long_Long_Integer_Size)
               then
                  declare
                     S : constant Uint := Esize (CT);
                  begin
                     if Addressable (S) then
                        Set_Component_Size (E, S);
                     end if;
                  end;
               end if;
            end;
         end if;

         --  For non-packed arrays set the alignment of the array to the
         --  alignment of the component type if it is unknown. Skip this
         --  in atomic/VFA case since a larger alignment may be needed.

         if Is_Array_Type (E)
           and then not Is_Packed (E)
           and then Unknown_Alignment (E)
           and then Known_Alignment (Component_Type (E))
           and then Known_Static_Component_Size (E)
           and then Known_Static_Esize (Component_Type (E))
           and then Component_Size (E) = Esize (Component_Type (E))
           and then not Is_Atomic_Or_VFA (E)
         then
            Set_Alignment (E, Alignment (Component_Type (E)));
         end if;
      end if;

      --  Even if the backend performs the layout, we still do a little in
      --  the front end

      --  Processing for record types

      if Is_Record_Type (E) then

         --  Special remaining processing for record types with a known
         --  size of 16, 32, or 64 bits whose alignment is not yet set.
         --  For these types, we set a corresponding alignment matching
         --  the size if possible, or as large as possible if not.

         if Convention (E) = Convention_Ada and then not Debug_Flag_Q then
            Set_Composite_Alignment (E);
         end if;

      --  Processing for array types

      elsif Is_Array_Type (E) then

         --  For arrays that are required to be atomic/VFA, we do the same
         --  processing as described above for short records, since we
         --  really need to have the alignment set for the whole array.

         if Is_Atomic_Or_VFA (E) and then not Debug_Flag_Q then
            Set_Composite_Alignment (E);
         end if;

         --  For unpacked array types, set an alignment of 1 if we know
         --  that the component alignment is not greater than 1. The reason
         --  we do this is to avoid unnecessary copying of slices of such
         --  arrays when passed to subprogram parameters (see special test
         --  in Exp_Ch6.Expand_Actuals).

         if not Is_Packed (E) and then Unknown_Alignment (E) then
            if Known_Static_Component_Size (E)
              and then Component_Size (E) = 1
            then
               Set_Alignment (E, Uint_1);
            end if;
         end if;

         --  We need to know whether the size depends on the value of one
         --  or more discriminants to select the return mechanism. Skip if
         --  errors are present, to prevent cascaded messages.

         if Serious_Errors_Detected = 0 then
            Compute_Size_Depends_On_Discriminant (E);
         end if;
      end if;

      --  Final step is to check that Esize and RM_Size are compatible

      if Known_Static_Esize (E) and then Known_Static_RM_Size (E) then
         if Esize (E) < RM_Size (E) then

            --  Esize is less than RM_Size. That's not good. First we test
            --  whether this was set deliberately with an Object_Size clause
            --  and if so, object to the clause.

            if Has_Object_Size_Clause (E) then
               Error_Msg_Uint_1 := RM_Size (E);
               Error_Msg_F
                 ("object size is too small, minimum allowed is ^",
                  Expression (Get_Attribute_Definition_Clause
                                             (E, Attribute_Object_Size)));
            end if;

            --  Adjust Esize up to RM_Size value

            declare
               Size : constant Uint := RM_Size (E);

            begin
               Set_Esize (E, RM_Size (E));

               --  For scalar types, increase Object_Size to power of 2, but
               --  not less than a storage unit in any case (i.e., normally
               --  this means it will be storage-unit addressable).

               if Is_Scalar_Type (E) then
                  if Size <= SSU then
                     Init_Esize (E, SSU);
                  elsif Size <= 16 then
                     Init_Esize (E, 16);
                  elsif Size <= 32 then
                     Init_Esize (E, 32);
                  else
                     Set_Esize  (E, (Size + 63) / 64 * 64);
                  end if;

                  --  Finally, make sure that alignment is consistent with
                  --  the newly assigned size.

                  while Alignment (E) * SSU < Esize (E)
                    and then Alignment (E) < Maximum_Alignment
                  loop
                     Set_Alignment (E, 2 * Alignment (E));
                  end loop;
               end if;
            end;
         end if;
      end if;
   end Layout_Type;

   -----------------------------
   -- Set_Composite_Alignment --
   -----------------------------

   procedure Set_Composite_Alignment (E : Entity_Id) is
      Siz   : Uint;
      Align : Nat;

   begin
      --  If alignment is already set, then nothing to do

      if Known_Alignment (E) then
         return;
      end if;

      --  Alignment is not known, see if we can set it, taking into account
      --  the setting of the Optimize_Alignment mode.

      --  If Optimize_Alignment is set to Space, then we try to give packed
      --  records an aligmment of 1, unless there is some reason we can't.

      if Optimize_Alignment_Space (E)
        and then Is_Record_Type (E)
        and then Is_Packed (E)
      then
         --  No effect for record with atomic/VFA components

         if Is_Atomic_Or_VFA (E) then
            Error_Msg_N ("Optimize_Alignment has no effect for &??", E);

            if Is_Atomic (E) then
               Error_Msg_N
                 ("\pragma ignored for atomic record??", E);
            else
               Error_Msg_N
                 ("\pragma ignored for bolatile full access record??", E);
            end if;

            return;
         end if;

         --  No effect if independent components

         if Has_Independent_Components (E) then
            Error_Msg_N ("Optimize_Alignment has no effect for &??", E);
            Error_Msg_N
              ("\pragma ignored for record with independent components??", E);
            return;
         end if;

         --  No effect if any component is atomic/VFA or is a by-reference type

         declare
            Ent : Entity_Id;

         begin
            Ent := First_Component_Or_Discriminant (E);
            while Present (Ent) loop
               if Is_By_Reference_Type (Etype (Ent))
                 or else Is_Atomic_Or_VFA (Etype (Ent))
                 or else Is_Atomic_Or_VFA (Ent)
               then
                  Error_Msg_N ("Optimize_Alignment has no effect for &??", E);

                  if Is_Atomic (Etype (Ent)) or else Is_Atomic (Ent) then
                     Error_Msg_N
                       ("\pragma is ignored if atomic "
                        & "components present??", E);
                  else
                     Error_Msg_N
                       ("\pragma is ignored if bolatile full access "
                        & "components present??", E);
                  end if;

                  return;
               else
                  Next_Component_Or_Discriminant (Ent);
               end if;
            end loop;
         end;

         --  Optimize_Alignment has no effect on variable length record

         if not Size_Known_At_Compile_Time (E) then
            Error_Msg_N ("Optimize_Alignment has no effect for &??", E);
            Error_Msg_N ("\pragma is ignored for variable length record??", E);
            return;
         end if;

         --  All tests passed, we can set alignment to 1

         Align := 1;

      --  Not a record, or not packed

      else
         --  The only other cases we worry about here are where the size is
         --  statically known at compile time.

         if Known_Static_Esize (E) then
            Siz := Esize (E);
         elsif Unknown_Esize (E) and then Known_Static_RM_Size (E) then
            Siz := RM_Size (E);
         else
            return;
         end if;

         --  Size is known, alignment is not set

         --  Reset alignment to match size if the known size is exactly 2, 4,
         --  or 8 storage units.

         if Siz = 2 * SSU then
            Align := 2;
         elsif Siz = 4 * SSU then
            Align := 4;
         elsif Siz = 8 * SSU then
            Align := 8;

            --  If Optimize_Alignment is set to Space, then make sure the
            --  alignment matches the size, for example, if the size is 17
            --  bytes then we want an alignment of 1 for the type.

         elsif Optimize_Alignment_Space (E) then
            if Siz mod (8 * SSU) = 0 then
               Align := 8;
            elsif Siz mod (4 * SSU) = 0 then
               Align := 4;
            elsif Siz mod (2 * SSU) = 0 then
               Align := 2;
            else
               Align := 1;
            end if;

            --  If Optimize_Alignment is set to Time, then we reset for odd
            --  "in between sizes", for example a 17 bit record is given an
            --  alignment of 4.

         elsif Optimize_Alignment_Time (E)
           and then Siz > SSU
           and then Siz <= 8 * SSU
         then
            if Siz <= 2 * SSU then
               Align := 2;
            elsif Siz <= 4 * SSU then
               Align := 4;
            else -- Siz <= 8 * SSU then
               Align := 8;
            end if;

            --  No special alignment fiddling needed

         else
            return;
         end if;
      end if;

      --  Here we have Set Align to the proposed improved value. Make sure the
      --  value set does not exceed Maximum_Alignment for the target.

      if Align > Maximum_Alignment then
         Align := Maximum_Alignment;
      end if;

      --  Further processing for record types only to reduce the alignment
      --  set by the above processing in some specific cases. We do not
      --  do this for atomic/VFA records, since we need max alignment there,

      if Is_Record_Type (E) and then not Is_Atomic_Or_VFA (E) then

         --  For records, there is generally no point in setting alignment
         --  higher than word size since we cannot do better than move by
         --  words in any case. Omit this if we are optimizing for time,
         --  since conceivably we may be able to do better.

         if Align > System_Word_Size / SSU
           and then not Optimize_Alignment_Time (E)
         then
            Align := System_Word_Size / SSU;
         end if;

         --  Check components. If any component requires a higher alignment,
         --  then we set that higher alignment in any case. Don't do this if we
         --  have Optimize_Alignment set to Space. Note that covers the case of
         --  packed records, where we already set alignment to 1.

         if not Optimize_Alignment_Space (E) then
            declare
               Comp : Entity_Id;

            begin
               Comp := First_Component (E);
               while Present (Comp) loop
                  if Known_Alignment (Etype (Comp)) then
                     declare
                        Calign : constant Uint := Alignment (Etype (Comp));

                     begin
                        --  The cases to process are when the alignment of the
                        --  component type is larger than the alignment we have
                        --  so far, and either there is no component clause for
                        --  the component, or the length set by the component
                        --  clause matches the length of the component type.

                        if Calign > Align
                          and then
                            (Unknown_Esize (Comp)
                              or else (Known_Static_Esize (Comp)
                                        and then
                                       Esize (Comp) = Calign * SSU))
                        then
                           Align := UI_To_Int (Calign);
                        end if;
                     end;
                  end if;

                  Next_Component (Comp);
               end loop;
            end;
         end if;
      end if;

      --  Set chosen alignment, and increase Esize if necessary to match the
      --  chosen alignment.

      Set_Alignment (E, UI_From_Int (Align));

      if Known_Static_Esize (E)
        and then Esize (E) < Align * SSU
      then
         Set_Esize (E, UI_From_Int (Align * SSU));
      end if;
   end Set_Composite_Alignment;

   --------------------------
   -- Set_Discrete_RM_Size --
   --------------------------

   procedure Set_Discrete_RM_Size (Def_Id : Entity_Id) is
      FST : constant Entity_Id := First_Subtype (Def_Id);

   begin
      --  All discrete types except for the base types in standard are
      --  constrained, so indicate this by setting Is_Constrained.

      Set_Is_Constrained (Def_Id);

      --  Set generic types to have an unknown size, since the representation
      --  of a generic type is irrelevant, in view of the fact that they have
      --  nothing to do with code.

      if Is_Generic_Type (Root_Type (FST)) then
         Set_RM_Size (Def_Id, Uint_0);

      --  If the subtype statically matches the first subtype, then it is
      --  required to have exactly the same layout. This is required by
      --  aliasing considerations.

      elsif Def_Id /= FST and then
        Subtypes_Statically_Match (Def_Id, FST)
      then
         Set_RM_Size   (Def_Id, RM_Size (FST));
         Set_Size_Info (Def_Id, FST);

      --  In all other cases the RM_Size is set to the minimum size. Note that
      --  this routine is never called for subtypes for which the RM_Size is
      --  set explicitly by an attribute clause.

      else
         Set_RM_Size (Def_Id, UI_From_Int (Minimum_Size (Def_Id)));
      end if;
   end Set_Discrete_RM_Size;

   ------------------------
   -- Set_Elem_Alignment --
   ------------------------

   procedure Set_Elem_Alignment (E : Entity_Id; Align : Nat := 0) is
   begin
      --  Do not set alignment for packed array types, this is handled in the
      --  backend.

      if Is_Packed_Array_Impl_Type (E) then
         return;

      --  If there is an alignment clause, then we respect it

      elsif Has_Alignment_Clause (E) then
         return;

      --  If the size is not set, then don't attempt to set the alignment. This
      --  happens in the backend layout case for access-to-subprogram types.

      elsif not Known_Static_Esize (E) then
         return;

      --  For access types, do not set the alignment if the size is less than
      --  the allowed minimum size. This avoids cascaded error messages.

      elsif Is_Access_Type (E) and then Esize (E) < System_Address_Size then
         return;
      end if;

      --  We attempt to set the alignment in all the other cases

      declare
         S : Int;
         A : Nat;
         M : Nat;

      begin
         --  The given Esize may be larger that int'last because of a previous
         --  error, and the call to UI_To_Int will fail, so use default.

         if Esize (E) / SSU > Ttypes.Maximum_Alignment then
            S := Ttypes.Maximum_Alignment;

         --  If this is an access type and the target doesn't have strict
         --  alignment, then cap the alignment to that of a regular access
         --  type. This will avoid giving fat pointers twice the usual
         --  alignment for no practical benefit since the misalignment doesn't
         --  really matter.

         elsif Is_Access_Type (E)
           and then not Target_Strict_Alignment
         then
            S := System_Address_Size / SSU;

         else
            S := UI_To_Int (Esize (E)) / SSU;
         end if;

         --  If the default alignment of "double" floating-point types is
         --  specifically capped, enforce the cap.

         if Ttypes.Target_Double_Float_Alignment > 0
           and then S = 8
           and then Is_Floating_Point_Type (E)
         then
            M := Ttypes.Target_Double_Float_Alignment;

         --  If the default alignment of "double" or larger scalar types is
         --  specifically capped, enforce the cap.

         elsif Ttypes.Target_Double_Scalar_Alignment > 0
           and then S >= 8
           and then Is_Scalar_Type (E)
         then
            M := Ttypes.Target_Double_Scalar_Alignment;

         --  Otherwise enforce the overall alignment cap

         else
            M := Ttypes.Maximum_Alignment;
         end if;

         --  We calculate the alignment as the largest power-of-two multiple
         --  of System.Storage_Unit that does not exceed the object size of
         --  the type and the maximum allowed alignment, if none was specified.
         --  Otherwise we only cap it to the maximum allowed alignment.

         if Align = 0 then
            A := 1;
            while 2 * A <= S and then 2 * A <= M loop
               A := 2 * A;
            end loop;
         else
            A := Nat'Min (Align, M);
         end if;

         --  If alignment is currently not set, then we can safely set it to
         --  this new calculated value.

         if Unknown_Alignment (E) then
            Init_Alignment (E, A);

         --  Cases where we have inherited an alignment

         --  For constructed types, always reset the alignment, these are
         --  generally invisible to the user anyway, and that way we are
         --  sure that no constructed types have weird alignments.

         elsif not Comes_From_Source (E) then
            Init_Alignment (E, A);

         --  If this inherited alignment is the same as the one we computed,
         --  then obviously everything is fine, and we do not need to reset it.

         elsif Alignment (E) = A then
            null;

         else
            --  Now we come to the difficult cases of subtypes for which we
            --  have inherited an alignment different from the computed one.
            --  We resort to the presence of alignment and size clauses to
            --  guide our choices. Note that they can generally be present
            --  only on the first subtype (except for Object_Size) and that
            --  we need to look at the Rep_Item chain to correctly handle
            --  derived types.

            declare
               FST : constant Entity_Id := First_Subtype (E);

               function Has_Attribute_Clause
                 (E  : Entity_Id;
                  Id : Attribute_Id) return Boolean;
               --  Wrapper around Get_Attribute_Definition_Clause which tests
               --  for the presence of the specified attribute clause.

               --------------------------
               -- Has_Attribute_Clause --
               --------------------------

               function Has_Attribute_Clause
                 (E  : Entity_Id;
                  Id : Attribute_Id) return Boolean is
               begin
                  return Present (Get_Attribute_Definition_Clause (E, Id));
               end Has_Attribute_Clause;

            begin
               --  If the alignment comes from a clause, then we respect it.
               --  Consider for example:

               --    type R is new Character;
               --    for R'Alignment use 1;
               --    for R'Size use 16;
               --    subtype S is R;

               --  Here R has a specified size of 16 and a specified alignment
               --  of 1, and it seems right for S to inherit both values.

               if Has_Attribute_Clause (FST, Attribute_Alignment) then
                  null;

               --  Now we come to the cases where we have inherited alignment
               --  and size, and overridden the size but not the alignment.

               elsif Has_Attribute_Clause (FST, Attribute_Size)
                 or else Has_Attribute_Clause (FST, Attribute_Object_Size)
                 or else Has_Attribute_Clause (E, Attribute_Object_Size)
               then
                  --  This is tricky, it might be thought that we should try to
                  --  inherit the alignment, since that's what the RM implies,
                  --  but that leads to complex rules and oddities. Consider
                  --  for example:

                  --    type R is new Character;
                  --    for R'Size use 16;

                  --  It seems quite bogus in this case to inherit an alignment
                  --  of 1 from the parent type Character. Furthermore, if that
                  --  is what the programmer really wanted for some odd reason,
                  --  then he could specify the alignment directly.

                  --  Moreover we really don't want to inherit the alignment in
                  --  the case of a specified Object_Size for a subtype, since
                  --  there would be no way of overriding to give a reasonable
                  --  value (as we don't have an Object_Alignment attribute).
                  --  Consider for example:

                  --    subtype R is Character;
                  --    for R'Object_Size use 16;

                  --  If we inherit the alignment of 1, then it will be very
                  --  inefficient for the subtype and this cannot be fixed.

                  --  So we make the decision that if Size (or Object_Size) is
                  --  given and the alignment is not specified with a clause,
                  --  we reset the alignment to the appropriate value for the
                  --  specified size. This is a nice simple rule to implement
                  --  and document.

                  --  There is a theoretical glitch, which is that a confirming
                  --  size clause could now change the alignment, which, if we
                  --  really think that confirming rep clauses should have no
                  --  effect, could be seen as a no-no. However that's already
                  --  implemented by Alignment_Check_For_Size_Change so we do
                  --  not change the philosophy here.

                  --  Historical note: in versions prior to Nov 6th, 2011, an
                  --  odd distinction was made between inherited alignments
                  --  larger than the computed alignment (where the larger
                  --  alignment was inherited) and inherited alignments smaller
                  --  than the computed alignment (where the smaller alignment
                  --  was overridden). This was a dubious fix to get around an
                  --  ACATS problem which seems to have disappeared anyway, and
                  --  in any case, this peculiarity was never documented.

                  Init_Alignment (E, A);

               --  If no Size (or Object_Size) was specified, then we have
               --  inherited the object size, so we should also inherit the
               --  alignment and not modify it.

               else
                  null;
               end if;
            end;
         end if;
      end;
   end Set_Elem_Alignment;

end Layout;