1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- I N T E R F A C E S . F O R T R A N . L A P A C K --
-- --
-- S p e c --
-- --
-- Copyright (C) 2006-2009, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Package comment required if non-RM package ???
with Interfaces.Fortran.BLAS;
package Interfaces.Fortran.LAPACK is
pragma Pure;
type Integer_Vector is array (Integer range <>) of Integer;
Upper : aliased constant Character := 'U';
Lower : aliased constant Character := 'L';
subtype Real_Vector is BLAS.Real_Vector;
subtype Real_Matrix is BLAS.Real_Matrix;
subtype Double_Precision_Vector is BLAS.Double_Precision_Vector;
subtype Double_Precision_Matrix is BLAS.Double_Precision_Matrix;
subtype Complex_Vector is BLAS.Complex_Vector;
subtype Complex_Matrix is BLAS.Complex_Matrix;
subtype Double_Complex_Vector is BLAS.Double_Complex_Vector;
subtype Double_Complex_Matrix is BLAS.Double_Complex_Matrix;
-- LAPACK Computational Routines
-- gerfs Refines the solution of a system of linear equations with
-- a general matrix and estimates its error
-- getrf Computes LU factorization of a general m-by-n matrix
-- getri Computes inverse of an LU-factored general matrix
-- square matrix, with multiple right-hand sides
-- getrs Solves a system of linear equations with an LU-factored
-- square matrix, with multiple right-hand sides
-- hetrd Reduces a complex Hermitian matrix to tridiagonal form
-- heevr Computes selected eigenvalues and, optionally, eigenvectors of
-- a Hermitian matrix using the Relatively Robust Representations
-- orgtr Generates the real orthogonal matrix Q determined by sytrd
-- steqr Computes all eigenvalues and eigenvectors of a symmetric or
-- Hermitian matrix reduced to tridiagonal form (QR algorithm)
-- sterf Computes all eigenvalues of a real symmetric
-- tridiagonal matrix using QR algorithm
-- sytrd Reduces a real symmetric matrix to tridiagonal form
procedure sgetrf
(M : Natural;
N : Natural;
A : in out Real_Matrix;
Ld_A : Positive;
I_Piv : out Integer_Vector;
Info : access Integer);
procedure dgetrf
(M : Natural;
N : Natural;
A : in out Double_Precision_Matrix;
Ld_A : Positive;
I_Piv : out Integer_Vector;
Info : access Integer);
procedure cgetrf
(M : Natural;
N : Natural;
A : in out Complex_Matrix;
Ld_A : Positive;
I_Piv : out Integer_Vector;
Info : access Integer);
procedure zgetrf
(M : Natural;
N : Natural;
A : in out Double_Complex_Matrix;
Ld_A : Positive;
I_Piv : out Integer_Vector;
Info : access Integer);
procedure sgetri
(N : Natural;
A : in out Real_Matrix;
Ld_A : Positive;
I_Piv : Integer_Vector;
Work : in out Real_Vector;
L_Work : Integer;
Info : access Integer);
procedure dgetri
(N : Natural;
A : in out Double_Precision_Matrix;
Ld_A : Positive;
I_Piv : Integer_Vector;
Work : in out Double_Precision_Vector;
L_Work : Integer;
Info : access Integer);
procedure cgetri
(N : Natural;
A : in out Complex_Matrix;
Ld_A : Positive;
I_Piv : Integer_Vector;
Work : in out Complex_Vector;
L_Work : Integer;
Info : access Integer);
procedure zgetri
(N : Natural;
A : in out Double_Complex_Matrix;
Ld_A : Positive;
I_Piv : Integer_Vector;
Work : in out Double_Complex_Vector;
L_Work : Integer;
Info : access Integer);
procedure sgetrs
(Trans : access constant Character;
N : Natural;
N_Rhs : Natural;
A : Real_Matrix;
Ld_A : Positive;
I_Piv : Integer_Vector;
B : in out Real_Matrix;
Ld_B : Positive;
Info : access Integer);
procedure dgetrs
(Trans : access constant Character;
N : Natural;
N_Rhs : Natural;
A : Double_Precision_Matrix;
Ld_A : Positive;
I_Piv : Integer_Vector;
B : in out Double_Precision_Matrix;
Ld_B : Positive;
Info : access Integer);
procedure cgetrs
(Trans : access constant Character;
N : Natural;
N_Rhs : Natural;
A : Complex_Matrix;
Ld_A : Positive;
I_Piv : Integer_Vector;
B : in out Complex_Matrix;
Ld_B : Positive;
Info : access Integer);
procedure zgetrs
(Trans : access constant Character;
N : Natural;
N_Rhs : Natural;
A : Double_Complex_Matrix;
Ld_A : Positive;
I_Piv : Integer_Vector;
B : in out Double_Complex_Matrix;
Ld_B : Positive;
Info : access Integer);
procedure cheevr
(Job_Z : access constant Character;
Rng : access constant Character;
Uplo : access constant Character;
N : Natural;
A : in out Complex_Matrix;
Ld_A : Positive;
Vl, Vu : Real := 0.0;
Il, Iu : Integer := 1;
Abs_Tol : Real := 0.0;
M : out Integer;
W : out Real_Vector;
Z : out Complex_Matrix;
Ld_Z : Positive;
I_Supp_Z : out Integer_Vector;
Work : out Complex_Vector;
L_Work : Integer;
R_Work : out Real_Vector;
LR_Work : Integer;
I_Work : out Integer_Vector;
LI_Work : Integer;
Info : access Integer);
procedure zheevr
(Job_Z : access constant Character;
Rng : access constant Character;
Uplo : access constant Character;
N : Natural;
A : in out Double_Complex_Matrix;
Ld_A : Positive;
Vl, Vu : Double_Precision := 0.0;
Il, Iu : Integer := 1;
Abs_Tol : Double_Precision := 0.0;
M : out Integer;
W : out Double_Precision_Vector;
Z : out Double_Complex_Matrix;
Ld_Z : Positive;
I_Supp_Z : out Integer_Vector;
Work : out Double_Complex_Vector;
L_Work : Integer;
R_Work : out Double_Precision_Vector;
LR_Work : Integer;
I_Work : out Integer_Vector;
LI_Work : Integer;
Info : access Integer);
procedure chetrd
(Uplo : access constant Character;
N : Natural;
A : in out Complex_Matrix;
Ld_A : Positive;
D : out Real_Vector;
E : out Real_Vector;
Tau : out Complex_Vector;
Work : out Complex_Vector;
L_Work : Integer;
Info : access Integer);
procedure zhetrd
(Uplo : access constant Character;
N : Natural;
A : in out Double_Complex_Matrix;
Ld_A : Positive;
D : out Double_Precision_Vector;
E : out Double_Precision_Vector;
Tau : out Double_Complex_Vector;
Work : out Double_Complex_Vector;
L_Work : Integer;
Info : access Integer);
procedure ssytrd
(Uplo : access constant Character;
N : Natural;
A : in out Real_Matrix;
Ld_A : Positive;
D : out Real_Vector;
E : out Real_Vector;
Tau : out Real_Vector;
Work : out Real_Vector;
L_Work : Integer;
Info : access Integer);
procedure dsytrd
(Uplo : access constant Character;
N : Natural;
A : in out Double_Precision_Matrix;
Ld_A : Positive;
D : out Double_Precision_Vector;
E : out Double_Precision_Vector;
Tau : out Double_Precision_Vector;
Work : out Double_Precision_Vector;
L_Work : Integer;
Info : access Integer);
procedure ssterf
(N : Natural;
D : in out Real_Vector;
E : in out Real_Vector;
Info : access Integer);
procedure dsterf
(N : Natural;
D : in out Double_Precision_Vector;
E : in out Double_Precision_Vector;
Info : access Integer);
procedure sorgtr
(Uplo : access constant Character;
N : Natural;
A : in out Real_Matrix;
Ld_A : Positive;
Tau : Real_Vector;
Work : out Real_Vector;
L_Work : Integer;
Info : access Integer);
procedure dorgtr
(Uplo : access constant Character;
N : Natural;
A : in out Double_Precision_Matrix;
Ld_A : Positive;
Tau : Double_Precision_Vector;
Work : out Double_Precision_Vector;
L_Work : Integer;
Info : access Integer);
procedure sstebz
(Rng : access constant Character;
Order : access constant Character;
N : Natural;
Vl, Vu : Real := 0.0;
Il, Iu : Integer := 1;
Abs_Tol : Real := 0.0;
D : Real_Vector;
E : Real_Vector;
M : out Natural;
N_Split : out Natural;
W : out Real_Vector;
I_Block : out Integer_Vector;
I_Split : out Integer_Vector;
Work : out Real_Vector;
I_Work : out Integer_Vector;
Info : access Integer);
procedure dstebz
(Rng : access constant Character;
Order : access constant Character;
N : Natural;
Vl, Vu : Double_Precision := 0.0;
Il, Iu : Integer := 1;
Abs_Tol : Double_Precision := 0.0;
D : Double_Precision_Vector;
E : Double_Precision_Vector;
M : out Natural;
N_Split : out Natural;
W : out Double_Precision_Vector;
I_Block : out Integer_Vector;
I_Split : out Integer_Vector;
Work : out Double_Precision_Vector;
I_Work : out Integer_Vector;
Info : access Integer);
procedure ssteqr
(Comp_Z : access constant Character;
N : Natural;
D : in out Real_Vector;
E : in out Real_Vector;
Z : in out Real_Matrix;
Ld_Z : Positive;
Work : out Real_Vector;
Info : access Integer);
procedure dsteqr
(Comp_Z : access constant Character;
N : Natural;
D : in out Double_Precision_Vector;
E : in out Double_Precision_Vector;
Z : in out Double_Precision_Matrix;
Ld_Z : Positive;
Work : out Double_Precision_Vector;
Info : access Integer);
procedure csteqr
(Comp_Z : access constant Character;
N : Natural;
D : in out Real_Vector;
E : in out Real_Vector;
Z : in out Complex_Matrix;
Ld_Z : Positive;
Work : out Real_Vector;
Info : access Integer);
procedure zsteqr
(Comp_Z : access constant Character;
N : Natural;
D : in out Double_Precision_Vector;
E : in out Double_Precision_Vector;
Z : in out Double_Complex_Matrix;
Ld_Z : Positive;
Work : out Double_Precision_Vector;
Info : access Integer);
private
pragma Import (Fortran, csteqr, "csteqr_");
pragma Import (Fortran, cgetrf, "cgetrf_");
pragma Import (Fortran, cgetri, "cgetri_");
pragma Import (Fortran, cgetrs, "cgetrs_");
pragma Import (Fortran, cheevr, "cheevr_");
pragma Import (Fortran, chetrd, "chetrd_");
pragma Import (Fortran, dgetrf, "dgetrf_");
pragma Import (Fortran, dgetri, "dgetri_");
pragma Import (Fortran, dgetrs, "dgetrs_");
pragma Import (Fortran, dsytrd, "dsytrd_");
pragma Import (Fortran, dstebz, "dstebz_");
pragma Import (Fortran, dsterf, "dsterf_");
pragma Import (Fortran, dorgtr, "dorgtr_");
pragma Import (Fortran, dsteqr, "dsteqr_");
pragma Import (Fortran, sgetrf, "sgetrf_");
pragma Import (Fortran, sgetri, "sgetri_");
pragma Import (Fortran, sgetrs, "sgetrs_");
pragma Import (Fortran, sorgtr, "sorgtr_");
pragma Import (Fortran, sstebz, "sstebz_");
pragma Import (Fortran, ssterf, "ssterf_");
pragma Import (Fortran, ssteqr, "ssteqr_");
pragma Import (Fortran, ssytrd, "ssytrd_");
pragma Import (Fortran, zgetrf, "zgetrf_");
pragma Import (Fortran, zgetri, "zgetri_");
pragma Import (Fortran, zgetrs, "zgetrs_");
pragma Import (Fortran, zheevr, "zheevr_");
pragma Import (Fortran, zhetrd, "zhetrd_");
pragma Import (Fortran, zsteqr, "zsteqr_");
end Interfaces.Fortran.LAPACK;
|