1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
|
\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename gnat_rm.info
@documentencoding UTF-8
@ifinfo
@*Generated by Sphinx 5.3.0.@*
@end ifinfo
@settitle GNAT Reference Manual
@defindex ge
@paragraphindent 0
@exampleindent 4
@finalout
@dircategory GNU Ada Tools
@direntry
* gnat_rm: (gnat_rm.info). gnat_rm
@end direntry
@c %**end of header
@copying
@quotation
GNAT Reference Manual , Jul 29, 2024
AdaCore
Copyright @copyright{} 2008-2024, Free Software Foundation
@end quotation
@end copying
@titlepage
@title GNAT Reference Manual
@insertcopying
@end titlepage
@contents
@c %** start of user preamble
@c %** end of user preamble
@ifnottex
@node Top
@top GNAT Reference Manual
@insertcopying
@end ifnottex
@c %**start of body
@anchor{gnat_rm doc}@anchor{0}
`GNAT, The GNU Ada Development Environment'
@include gcc-common.texi
GCC version @value{version-GCC}@*
AdaCore
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, with the Front-Cover Texts being “GNAT Reference
Manual”, and with no Back-Cover Texts. A copy of the license is
included in the section entitled @ref{1,,GNU Free Documentation License}.
@menu
* About This Guide::
* Implementation Defined Pragmas::
* Implementation Defined Aspects::
* Implementation Defined Attributes::
* Standard and Implementation Defined Restrictions::
* Implementation Advice::
* Implementation Defined Characteristics::
* Intrinsic Subprograms::
* Representation Clauses and Pragmas::
* Standard Library Routines::
* The Implementation of Standard I/O::
* The GNAT Library::
* Interfacing to Other Languages::
* Specialized Needs Annexes::
* Implementation of Specific Ada Features::
* Implementation of Ada 2012 Features::
* GNAT language extensions::
* Security Hardening Features::
* Obsolescent Features::
* Compatibility and Porting Guide::
* GNU Free Documentation License::
* Index::
@detailmenu
--- The Detailed Node Listing ---
About This Guide
* What This Reference Manual Contains::
* Conventions::
* Related Information::
Implementation Defined Pragmas
* Pragma Abort_Defer::
* Pragma Abstract_State::
* Pragma Ada_83::
* Pragma Ada_95::
* Pragma Ada_05::
* Pragma Ada_2005::
* Pragma Ada_12::
* Pragma Ada_2012::
* Pragma Ada_2022::
* Pragma Aggregate_Individually_Assign::
* Pragma Allow_Integer_Address::
* Pragma Always_Terminates::
* Pragma Annotate::
* Pragma Assert::
* Pragma Assert_And_Cut::
* Pragma Assertion_Policy::
* Pragma Assume::
* Pragma Assume_No_Invalid_Values::
* Pragma Async_Readers::
* Pragma Async_Writers::
* Pragma Attribute_Definition::
* Pragma C_Pass_By_Copy::
* Pragma Check::
* Pragma Check_Float_Overflow::
* Pragma Check_Name::
* Pragma Check_Policy::
* Pragma Comment::
* Pragma Common_Object::
* Pragma Compile_Time_Error::
* Pragma Compile_Time_Warning::
* Pragma Complete_Representation::
* Pragma Complex_Representation::
* Pragma Component_Alignment::
* Pragma Constant_After_Elaboration::
* Pragma Contract_Cases::
* Pragma Convention_Identifier::
* Pragma CPP_Class::
* Pragma CPP_Constructor::
* Pragma CPP_Virtual::
* Pragma CPP_Vtable::
* Pragma CPU::
* Pragma Deadline_Floor::
* Pragma Debug::
* Pragma Debug_Policy::
* Pragma Default_Initial_Condition::
* Pragma Default_Scalar_Storage_Order::
* Pragma Default_Storage_Pool::
* Pragma Depends::
* Pragma Detect_Blocking::
* Pragma Disable_Atomic_Synchronization::
* Pragma Dispatching_Domain::
* Pragma Effective_Reads::
* Pragma Effective_Writes::
* Pragma Elaboration_Checks::
* Pragma Eliminate::
* Pragma Enable_Atomic_Synchronization::
* Pragma Exceptional_Cases::
* Pragma Export_Function::
* Pragma Export_Object::
* Pragma Export_Procedure::
* Pragma Export_Valued_Procedure::
* Pragma Extend_System::
* Pragma Extensions_Allowed::
* Pragma Extensions_Visible::
* Pragma External::
* Pragma External_Name_Casing::
* Pragma Fast_Math::
* Pragma Favor_Top_Level::
* Pragma Finalize_Storage_Only::
* Pragma Float_Representation::
* Pragma Ghost::
* Pragma Global::
* Pragma Ident::
* Pragma Ignore_Pragma::
* Pragma Implementation_Defined::
* Pragma Implemented::
* Pragma Implicit_Packing::
* Pragma Import_Function::
* Pragma Import_Object::
* Pragma Import_Procedure::
* Pragma Import_Valued_Procedure::
* Pragma Independent::
* Pragma Independent_Components::
* Pragma Initial_Condition::
* Pragma Initialize_Scalars::
* Pragma Initializes::
* Pragma Inline_Always::
* Pragma Inline_Generic::
* Pragma Interface::
* Pragma Interface_Name::
* Pragma Interrupt_Handler::
* Pragma Interrupt_State::
* Pragma Interrupts_System_By_Default::
* Pragma Invariant::
* Pragma Keep_Names::
* Pragma License::
* Pragma Link_With::
* Pragma Linker_Alias::
* Pragma Linker_Constructor::
* Pragma Linker_Destructor::
* Pragma Linker_Section::
* Pragma Lock_Free::
* Pragma Loop_Invariant::
* Pragma Loop_Optimize::
* Pragma Loop_Variant::
* Pragma Machine_Attribute::
* Pragma Main::
* Pragma Main_Storage::
* Pragma Max_Queue_Length::
* Pragma No_Body::
* Pragma No_Caching::
* Pragma No_Component_Reordering::
* Pragma No_Elaboration_Code_All::
* Pragma No_Heap_Finalization::
* Pragma No_Inline::
* Pragma No_Return::
* Pragma No_Strict_Aliasing::
* Pragma No_Tagged_Streams::
* Pragma Normalize_Scalars::
* Pragma Obsolescent::
* Pragma Optimize_Alignment::
* Pragma Ordered::
* Pragma Overflow_Mode::
* Pragma Overriding_Renamings::
* Pragma Part_Of::
* Pragma Partition_Elaboration_Policy::
* Pragma Passive::
* Pragma Persistent_BSS::
* Pragma Post::
* Pragma Postcondition::
* Pragma Post_Class::
* Pragma Pre::
* Pragma Precondition::
* Pragma Predicate::
* Pragma Predicate_Failure::
* Pragma Preelaborable_Initialization::
* Pragma Prefix_Exception_Messages::
* Pragma Pre_Class::
* Pragma Priority_Specific_Dispatching::
* Pragma Profile::
* Pragma Profile_Warnings::
* Pragma Propagate_Exceptions::
* Pragma Provide_Shift_Operators::
* Pragma Psect_Object::
* Pragma Pure_Function::
* Pragma Rational::
* Pragma Ravenscar::
* Pragma Refined_Depends::
* Pragma Refined_Global::
* Pragma Refined_Post::
* Pragma Refined_State::
* Pragma Relative_Deadline::
* Pragma Remote_Access_Type::
* Pragma Rename_Pragma::
* Pragma Restricted_Run_Time::
* Pragma Restriction_Warnings::
* Pragma Reviewable::
* Pragma Secondary_Stack_Size::
* Pragma Share_Generic::
* Pragma Shared::
* Pragma Short_Circuit_And_Or::
* Pragma Short_Descriptors::
* Pragma Side_Effects::
* Pragma Simple_Storage_Pool_Type::
* Pragma Source_File_Name::
* Pragma Source_File_Name_Project::
* Pragma Source_Reference::
* Pragma SPARK_Mode::
* Pragma Static_Elaboration_Desired::
* Pragma Stream_Convert::
* Pragma Style_Checks::
* Pragma Subprogram_Variant::
* Pragma Subtitle::
* Pragma Suppress::
* Pragma Suppress_All::
* Pragma Suppress_Debug_Info::
* Pragma Suppress_Exception_Locations::
* Pragma Suppress_Initialization::
* Pragma Task_Name::
* Pragma Task_Storage::
* Pragma Test_Case::
* Pragma Thread_Local_Storage::
* Pragma Time_Slice::
* Pragma Title::
* Pragma Type_Invariant::
* Pragma Type_Invariant_Class::
* Pragma Unchecked_Union::
* Pragma Unevaluated_Use_Of_Old::
* Pragma User_Aspect_Definition::
* Pragma Unimplemented_Unit::
* Pragma Universal_Aliasing::
* Pragma Unmodified::
* Pragma Unreferenced::
* Pragma Unreferenced_Objects::
* Pragma Unreserve_All_Interrupts::
* Pragma Unsuppress::
* Pragma Unused::
* Pragma Use_VADS_Size::
* Pragma Validity_Checks::
* Pragma Volatile::
* Pragma Volatile_Full_Access::
* Pragma Volatile_Function::
* Pragma Warning_As_Error::
* Pragma Warnings::
* Pragma Weak_External::
* Pragma Wide_Character_Encoding::
Implementation Defined Aspects
* Aspect Abstract_State::
* Aspect Always_Terminates::
* Aspect Annotate::
* Aspect Async_Readers::
* Aspect Async_Writers::
* Aspect Constant_After_Elaboration::
* Aspect Contract_Cases::
* Aspect Depends::
* Aspect Default_Initial_Condition::
* Aspect Dimension::
* Aspect Dimension_System::
* Aspect Disable_Controlled::
* Aspect Effective_Reads::
* Aspect Effective_Writes::
* Aspect Exceptional_Cases::
* Aspect Extensions_Visible::
* Aspect Favor_Top_Level::
* Aspect Ghost::
* Aspect Ghost_Predicate::
* Aspect Global::
* Aspect Initial_Condition::
* Aspect Initializes::
* Aspect Inline_Always::
* Aspect Invariant::
* Aspect Invariant’Class::
* Aspect Iterable::
* Aspect Linker_Section::
* Aspect Local_Restrictions::
* Aspect Lock_Free::
* Aspect Max_Queue_Length::
* Aspect No_Caching::
* Aspect No_Elaboration_Code_All::
* Aspect No_Inline::
* Aspect No_Tagged_Streams::
* Aspect No_Task_Parts::
* Aspect Object_Size::
* Aspect Obsolescent::
* Aspect Part_Of::
* Aspect Persistent_BSS::
* Aspect Predicate::
* Aspect Pure_Function::
* Aspect Refined_Depends::
* Aspect Refined_Global::
* Aspect Refined_Post::
* Aspect Refined_State::
* Aspect Relaxed_Initialization::
* Aspect Remote_Access_Type::
* Aspect Scalar_Storage_Order::
* Aspect Secondary_Stack_Size::
* Aspect Shared::
* Aspect Side_Effects::
* Aspect Simple_Storage_Pool::
* Aspect Simple_Storage_Pool_Type::
* Aspect SPARK_Mode::
* Aspect Subprogram_Variant::
* Aspect Suppress_Debug_Info::
* Aspect Suppress_Initialization::
* Aspect Test_Case::
* Aspect Thread_Local_Storage::
* Aspect Universal_Aliasing::
* Aspect Unmodified::
* Aspect Unreferenced::
* Aspect Unreferenced_Objects::
* Aspect User_Aspect::
* Aspect Value_Size::
* Aspect Volatile_Full_Access::
* Aspect Volatile_Function::
* Aspect Warnings::
Implementation Defined Attributes
* Attribute Abort_Signal::
* Attribute Address_Size::
* Attribute Asm_Input::
* Attribute Asm_Output::
* Attribute Atomic_Always_Lock_Free::
* Attribute Bit::
* Attribute Bit_Position::
* Attribute Code_Address::
* Attribute Compiler_Version::
* Attribute Constrained::
* Attribute Default_Bit_Order::
* Attribute Default_Scalar_Storage_Order::
* Attribute Deref::
* Attribute Descriptor_Size::
* Attribute Elaborated::
* Attribute Elab_Body::
* Attribute Elab_Spec::
* Attribute Elab_Subp_Body::
* Attribute Emax::
* Attribute Enabled::
* Attribute Enum_Rep::
* Attribute Enum_Val::
* Attribute Epsilon::
* Attribute Fast_Math::
* Attribute Finalization_Size::
* Attribute Fixed_Value::
* Attribute From_Any::
* Attribute Has_Access_Values::
* Attribute Has_Discriminants::
* Attribute Has_Tagged_Values::
* Attribute Img::
* Attribute Initialized::
* Attribute Integer_Value::
* Attribute Invalid_Value::
* Attribute Large::
* Attribute Library_Level::
* Attribute Loop_Entry::
* Attribute Machine_Size::
* Attribute Mantissa::
* Attribute Maximum_Alignment::
* Attribute Max_Integer_Size::
* Attribute Mechanism_Code::
* Attribute Null_Parameter::
* Attribute Object_Size::
* Attribute Old::
* Attribute Passed_By_Reference::
* Attribute Pool_Address::
* Attribute Range_Length::
* Attribute Restriction_Set::
* Attribute Result::
* Attribute Round::
* Attribute Safe_Emax::
* Attribute Safe_Large::
* Attribute Safe_Small::
* Attribute Scalar_Storage_Order::
* Attribute Simple_Storage_Pool::
* Attribute Small::
* Attribute Small_Denominator::
* Attribute Small_Numerator::
* Attribute Storage_Unit::
* Attribute Stub_Type::
* Attribute System_Allocator_Alignment::
* Attribute Target_Name::
* Attribute To_Address::
* Attribute To_Any::
* Attribute Type_Class::
* Attribute Type_Key::
* Attribute TypeCode::
* Attribute Unconstrained_Array::
* Attribute Universal_Literal_String::
* Attribute Unrestricted_Access::
* Attribute Update::
* Attribute Valid_Value::
* Attribute Valid_Scalars::
* Attribute VADS_Size::
* Attribute Value_Size::
* Attribute Wchar_T_Size::
* Attribute Word_Size::
Standard and Implementation Defined Restrictions
* Partition-Wide Restrictions::
* Program Unit Level Restrictions::
Partition-Wide Restrictions
* Immediate_Reclamation::
* Max_Asynchronous_Select_Nesting::
* Max_Entry_Queue_Length::
* Max_Protected_Entries::
* Max_Select_Alternatives::
* Max_Storage_At_Blocking::
* Max_Task_Entries::
* Max_Tasks::
* No_Abort_Statements::
* No_Access_Parameter_Allocators::
* No_Access_Subprograms::
* No_Allocators::
* No_Anonymous_Allocators::
* No_Asynchronous_Control::
* No_Calendar::
* No_Coextensions::
* No_Default_Initialization::
* No_Delay::
* No_Dependence::
* No_Direct_Boolean_Operators::
* No_Dispatch::
* No_Dispatching_Calls::
* No_Dynamic_Attachment::
* No_Dynamic_Priorities::
* No_Entry_Calls_In_Elaboration_Code::
* No_Enumeration_Maps::
* No_Exception_Handlers::
* No_Exception_Propagation::
* No_Exception_Registration::
* No_Exceptions::
* No_Finalization::
* No_Fixed_Point::
* No_Floating_Point::
* No_Implicit_Conditionals::
* No_Implicit_Dynamic_Code::
* No_Implicit_Heap_Allocations::
* No_Implicit_Protected_Object_Allocations::
* No_Implicit_Task_Allocations::
* No_Initialize_Scalars::
* No_IO::
* No_Local_Allocators::
* No_Local_Protected_Objects::
* No_Local_Tagged_Types::
* No_Local_Timing_Events::
* No_Long_Long_Integers::
* No_Multiple_Elaboration::
* No_Nested_Finalization::
* No_Protected_Type_Allocators::
* No_Protected_Types::
* No_Recursion::
* No_Reentrancy::
* No_Relative_Delay::
* No_Requeue_Statements::
* No_Secondary_Stack::
* No_Select_Statements::
* No_Specific_Termination_Handlers::
* No_Specification_of_Aspect::
* No_Standard_Allocators_After_Elaboration::
* No_Standard_Storage_Pools::
* No_Stream_Optimizations::
* No_Streams::
* No_Tagged_Type_Registration::
* No_Task_Allocators::
* No_Task_At_Interrupt_Priority::
* No_Task_Attributes_Package::
* No_Task_Hierarchy::
* No_Task_Termination::
* No_Tasking::
* No_Terminate_Alternatives::
* No_Unchecked_Access::
* No_Unchecked_Conversion::
* No_Unchecked_Deallocation::
* No_Use_Of_Attribute::
* No_Use_Of_Entity::
* No_Use_Of_Pragma::
* Pure_Barriers::
* Simple_Barriers::
* Static_Priorities::
* Static_Storage_Size::
Program Unit Level Restrictions
* No_Elaboration_Code::
* No_Dynamic_Accessibility_Checks::
* No_Dynamic_Sized_Objects::
* No_Entry_Queue::
* No_Implementation_Aspect_Specifications::
* No_Implementation_Attributes::
* No_Implementation_Identifiers::
* No_Implementation_Pragmas::
* No_Implementation_Restrictions::
* No_Implementation_Units::
* No_Implicit_Aliasing::
* No_Implicit_Loops::
* No_Obsolescent_Features::
* No_Wide_Characters::
* Static_Dispatch_Tables::
* SPARK_05::
Implementation Advice
* RM 1.1.3(20); Error Detection: RM 1 1 3 20 Error Detection.
* RM 1.1.3(31); Child Units: RM 1 1 3 31 Child Units.
* RM 1.1.5(12); Bounded Errors: RM 1 1 5 12 Bounded Errors.
* RM 2.8(16); Pragmas: RM 2 8 16 Pragmas.
* RM 2.8(17-19); Pragmas: RM 2 8 17-19 Pragmas.
* RM 3.5.2(5); Alternative Character Sets: RM 3 5 2 5 Alternative Character Sets.
* RM 3.5.4(28); Integer Types: RM 3 5 4 28 Integer Types.
* RM 3.5.4(29); Integer Types: RM 3 5 4 29 Integer Types.
* RM 3.5.5(8); Enumeration Values: RM 3 5 5 8 Enumeration Values.
* RM 3.5.7(17); Float Types: RM 3 5 7 17 Float Types.
* RM 3.6.2(11); Multidimensional Arrays: RM 3 6 2 11 Multidimensional Arrays.
* RM 9.6(30-31); Duration’Small: RM 9 6 30-31 Duration’Small.
* RM 10.2.1(12); Consistent Representation: RM 10 2 1 12 Consistent Representation.
* RM 11.4.1(19); Exception Information: RM 11 4 1 19 Exception Information.
* RM 11.5(28); Suppression of Checks: RM 11 5 28 Suppression of Checks.
* RM 13.1 (21-24); Representation Clauses: RM 13 1 21-24 Representation Clauses.
* RM 13.2(6-8); Packed Types: RM 13 2 6-8 Packed Types.
* RM 13.3(14-19); Address Clauses: RM 13 3 14-19 Address Clauses.
* RM 13.3(29-35); Alignment Clauses: RM 13 3 29-35 Alignment Clauses.
* RM 13.3(42-43); Size Clauses: RM 13 3 42-43 Size Clauses.
* RM 13.3(50-56); Size Clauses: RM 13 3 50-56 Size Clauses.
* RM 13.3(71-73); Component Size Clauses: RM 13 3 71-73 Component Size Clauses.
* RM 13.4(9-10); Enumeration Representation Clauses: RM 13 4 9-10 Enumeration Representation Clauses.
* RM 13.5.1(17-22); Record Representation Clauses: RM 13 5 1 17-22 Record Representation Clauses.
* RM 13.5.2(5); Storage Place Attributes: RM 13 5 2 5 Storage Place Attributes.
* RM 13.5.3(7-8); Bit Ordering: RM 13 5 3 7-8 Bit Ordering.
* RM 13.7(37); Address as Private: RM 13 7 37 Address as Private.
* RM 13.7.1(16); Address Operations: RM 13 7 1 16 Address Operations.
* RM 13.9(14-17); Unchecked Conversion: RM 13 9 14-17 Unchecked Conversion.
* RM 13.11(23-25); Implicit Heap Usage: RM 13 11 23-25 Implicit Heap Usage.
* RM 13.11.2(17); Unchecked Deallocation: RM 13 11 2 17 Unchecked Deallocation.
* RM 13.13.2(1.6); Stream Oriented Attributes: RM 13 13 2 1 6 Stream Oriented Attributes.
* RM A.1(52); Names of Predefined Numeric Types: RM A 1 52 Names of Predefined Numeric Types.
* RM A.3.2(49); Ada.Characters.Handling: RM A 3 2 49 Ada Characters Handling.
* RM A.4.4(106); Bounded-Length String Handling: RM A 4 4 106 Bounded-Length String Handling.
* RM A.5.2(46-47); Random Number Generation: RM A 5 2 46-47 Random Number Generation.
* RM A.10.7(23); Get_Immediate: RM A 10 7 23 Get_Immediate.
* RM A.18; Containers: RM A 18 Containers.
* RM B.1(39-41); Pragma Export: RM B 1 39-41 Pragma Export.
* RM B.2(12-13); Package Interfaces: RM B 2 12-13 Package Interfaces.
* RM B.3(63-71); Interfacing with C: RM B 3 63-71 Interfacing with C.
* RM B.4(95-98); Interfacing with COBOL: RM B 4 95-98 Interfacing with COBOL.
* RM B.5(22-26); Interfacing with Fortran: RM B 5 22-26 Interfacing with Fortran.
* RM C.1(3-5); Access to Machine Operations: RM C 1 3-5 Access to Machine Operations.
* RM C.1(10-16); Access to Machine Operations: RM C 1 10-16 Access to Machine Operations.
* RM C.3(28); Interrupt Support: RM C 3 28 Interrupt Support.
* RM C.3.1(20-21); Protected Procedure Handlers: RM C 3 1 20-21 Protected Procedure Handlers.
* RM C.3.2(25); Package Interrupts: RM C 3 2 25 Package Interrupts.
* RM C.4(14); Pre-elaboration Requirements: RM C 4 14 Pre-elaboration Requirements.
* RM C.5(8); Pragma Discard_Names: RM C 5 8 Pragma Discard_Names.
* RM C.7.2(30); The Package Task_Attributes: RM C 7 2 30 The Package Task_Attributes.
* RM D.3(17); Locking Policies: RM D 3 17 Locking Policies.
* RM D.4(16); Entry Queuing Policies: RM D 4 16 Entry Queuing Policies.
* RM D.6(9-10); Preemptive Abort: RM D 6 9-10 Preemptive Abort.
* RM D.7(21); Tasking Restrictions: RM D 7 21 Tasking Restrictions.
* RM D.8(47-49); Monotonic Time: RM D 8 47-49 Monotonic Time.
* RM E.5(28-29); Partition Communication Subsystem: RM E 5 28-29 Partition Communication Subsystem.
* RM F(7); COBOL Support: RM F 7 COBOL Support.
* RM F.1(2); Decimal Radix Support: RM F 1 2 Decimal Radix Support.
* RM G; Numerics: RM G Numerics.
* RM G.1.1(56-58); Complex Types: RM G 1 1 56-58 Complex Types.
* RM G.1.2(49); Complex Elementary Functions: RM G 1 2 49 Complex Elementary Functions.
* RM G.2.4(19); Accuracy Requirements: RM G 2 4 19 Accuracy Requirements.
* RM G.2.6(15); Complex Arithmetic Accuracy: RM G 2 6 15 Complex Arithmetic Accuracy.
* RM H.6(15/2); Pragma Partition_Elaboration_Policy: RM H 6 15/2 Pragma Partition_Elaboration_Policy.
Intrinsic Subprograms
* Intrinsic Operators::
* Compilation_ISO_Date::
* Compilation_Date::
* Compilation_Time::
* Enclosing_Entity::
* Exception_Information::
* Exception_Message::
* Exception_Name::
* File::
* Line::
* Shifts and Rotates::
* Source_Location::
Representation Clauses and Pragmas
* Alignment Clauses::
* Size Clauses::
* Storage_Size Clauses::
* Size of Variant Record Objects::
* Biased Representation::
* Value_Size and Object_Size Clauses::
* Component_Size Clauses::
* Bit_Order Clauses::
* Effect of Bit_Order on Byte Ordering::
* Pragma Pack for Arrays::
* Pragma Pack for Records::
* Record Representation Clauses::
* Handling of Records with Holes::
* Enumeration Clauses::
* Address Clauses::
* Use of Address Clauses for Memory-Mapped I/O::
* Effect of Convention on Representation::
* Conventions and Anonymous Access Types::
* Determining the Representations chosen by GNAT::
The Implementation of Standard I/O
* Standard I/O Packages::
* FORM Strings::
* Direct_IO::
* Sequential_IO::
* Text_IO::
* Wide_Text_IO::
* Wide_Wide_Text_IO::
* Stream_IO::
* Text Translation::
* Shared Files::
* Filenames encoding::
* File content encoding::
* Open Modes::
* Operations on C Streams::
* Interfacing to C Streams::
Text_IO
* Stream Pointer Positioning::
* Reading and Writing Non-Regular Files::
* Get_Immediate::
* Treating Text_IO Files as Streams::
* Text_IO Extensions::
* Text_IO Facilities for Unbounded Strings::
Wide_Text_IO
* Stream Pointer Positioning: Stream Pointer Positioning<2>.
* Reading and Writing Non-Regular Files: Reading and Writing Non-Regular Files<2>.
Wide_Wide_Text_IO
* Stream Pointer Positioning: Stream Pointer Positioning<3>.
* Reading and Writing Non-Regular Files: Reading and Writing Non-Regular Files<3>.
The GNAT Library
* Ada.Characters.Latin_9 (a-chlat9.ads): Ada Characters Latin_9 a-chlat9 ads.
* Ada.Characters.Wide_Latin_1 (a-cwila1.ads): Ada Characters Wide_Latin_1 a-cwila1 ads.
* Ada.Characters.Wide_Latin_9 (a-cwila9.ads): Ada Characters Wide_Latin_9 a-cwila9 ads.
* Ada.Characters.Wide_Wide_Latin_1 (a-chzla1.ads): Ada Characters Wide_Wide_Latin_1 a-chzla1 ads.
* Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads): Ada Characters Wide_Wide_Latin_9 a-chzla9 ads.
* Ada.Containers.Bounded_Holders (a-coboho.ads): Ada Containers Bounded_Holders a-coboho ads.
* Ada.Command_Line.Environment (a-colien.ads): Ada Command_Line Environment a-colien ads.
* Ada.Command_Line.Remove (a-colire.ads): Ada Command_Line Remove a-colire ads.
* Ada.Command_Line.Response_File (a-clrefi.ads): Ada Command_Line Response_File a-clrefi ads.
* Ada.Direct_IO.C_Streams (a-diocst.ads): Ada Direct_IO C_Streams a-diocst ads.
* Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads): Ada Exceptions Is_Null_Occurrence a-einuoc ads.
* Ada.Exceptions.Last_Chance_Handler (a-elchha.ads): Ada Exceptions Last_Chance_Handler a-elchha ads.
* Ada.Exceptions.Traceback (a-exctra.ads): Ada Exceptions Traceback a-exctra ads.
* Ada.Sequential_IO.C_Streams (a-siocst.ads): Ada Sequential_IO C_Streams a-siocst ads.
* Ada.Streams.Stream_IO.C_Streams (a-ssicst.ads): Ada Streams Stream_IO C_Streams a-ssicst ads.
* Ada.Strings.Unbounded.Text_IO (a-suteio.ads): Ada Strings Unbounded Text_IO a-suteio ads.
* Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads): Ada Strings Wide_Unbounded Wide_Text_IO a-swuwti ads.
* Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO (a-szuzti.ads): Ada Strings Wide_Wide_Unbounded Wide_Wide_Text_IO a-szuzti ads.
* Ada.Task_Initialization (a-tasini.ads): Ada Task_Initialization a-tasini ads.
* Ada.Text_IO.C_Streams (a-tiocst.ads): Ada Text_IO C_Streams a-tiocst ads.
* Ada.Text_IO.Reset_Standard_Files (a-tirsfi.ads): Ada Text_IO Reset_Standard_Files a-tirsfi ads.
* Ada.Wide_Characters.Unicode (a-wichun.ads): Ada Wide_Characters Unicode a-wichun ads.
* Ada.Wide_Text_IO.C_Streams (a-wtcstr.ads): Ada Wide_Text_IO C_Streams a-wtcstr ads.
* Ada.Wide_Text_IO.Reset_Standard_Files (a-wrstfi.ads): Ada Wide_Text_IO Reset_Standard_Files a-wrstfi ads.
* Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads): Ada Wide_Wide_Characters Unicode a-zchuni ads.
* Ada.Wide_Wide_Text_IO.C_Streams (a-ztcstr.ads): Ada Wide_Wide_Text_IO C_Streams a-ztcstr ads.
* Ada.Wide_Wide_Text_IO.Reset_Standard_Files (a-zrstfi.ads): Ada Wide_Wide_Text_IO Reset_Standard_Files a-zrstfi ads.
* GNAT.Altivec (g-altive.ads): GNAT Altivec g-altive ads.
* GNAT.Altivec.Conversions (g-altcon.ads): GNAT Altivec Conversions g-altcon ads.
* GNAT.Altivec.Vector_Operations (g-alveop.ads): GNAT Altivec Vector_Operations g-alveop ads.
* GNAT.Altivec.Vector_Types (g-alvety.ads): GNAT Altivec Vector_Types g-alvety ads.
* GNAT.Altivec.Vector_Views (g-alvevi.ads): GNAT Altivec Vector_Views g-alvevi ads.
* GNAT.Array_Split (g-arrspl.ads): GNAT Array_Split g-arrspl ads.
* GNAT.AWK (g-awk.ads): GNAT AWK g-awk ads.
* GNAT.Binary_Search (g-binsea.ads): GNAT Binary_Search g-binsea ads.
* GNAT.Bind_Environment (g-binenv.ads): GNAT Bind_Environment g-binenv ads.
* GNAT.Branch_Prediction (g-brapre.ads): GNAT Branch_Prediction g-brapre ads.
* GNAT.Bounded_Buffers (g-boubuf.ads): GNAT Bounded_Buffers g-boubuf ads.
* GNAT.Bounded_Mailboxes (g-boumai.ads): GNAT Bounded_Mailboxes g-boumai ads.
* GNAT.Bubble_Sort (g-bubsor.ads): GNAT Bubble_Sort g-bubsor ads.
* GNAT.Bubble_Sort_A (g-busora.ads): GNAT Bubble_Sort_A g-busora ads.
* GNAT.Bubble_Sort_G (g-busorg.ads): GNAT Bubble_Sort_G g-busorg ads.
* GNAT.Byte_Order_Mark (g-byorma.ads): GNAT Byte_Order_Mark g-byorma ads.
* GNAT.Byte_Swapping (g-bytswa.ads): GNAT Byte_Swapping g-bytswa ads.
* GNAT.Calendar (g-calend.ads): GNAT Calendar g-calend ads.
* GNAT.Calendar.Time_IO (g-catiio.ads): GNAT Calendar Time_IO g-catiio ads.
* GNAT.CRC32 (g-crc32.ads): GNAT CRC32 g-crc32 ads.
* GNAT.Case_Util (g-casuti.ads): GNAT Case_Util g-casuti ads.
* GNAT.CGI (g-cgi.ads): GNAT CGI g-cgi ads.
* GNAT.CGI.Cookie (g-cgicoo.ads): GNAT CGI Cookie g-cgicoo ads.
* GNAT.CGI.Debug (g-cgideb.ads): GNAT CGI Debug g-cgideb ads.
* GNAT.Command_Line (g-comlin.ads): GNAT Command_Line g-comlin ads.
* GNAT.Compiler_Version (g-comver.ads): GNAT Compiler_Version g-comver ads.
* GNAT.Ctrl_C (g-ctrl_c.ads): GNAT Ctrl_C g-ctrl_c ads.
* GNAT.Current_Exception (g-curexc.ads): GNAT Current_Exception g-curexc ads.
* GNAT.Debug_Pools (g-debpoo.ads): GNAT Debug_Pools g-debpoo ads.
* GNAT.Debug_Utilities (g-debuti.ads): GNAT Debug_Utilities g-debuti ads.
* GNAT.Decode_String (g-decstr.ads): GNAT Decode_String g-decstr ads.
* GNAT.Decode_UTF8_String (g-deutst.ads): GNAT Decode_UTF8_String g-deutst ads.
* GNAT.Directory_Operations (g-dirope.ads): GNAT Directory_Operations g-dirope ads.
* GNAT.Directory_Operations.Iteration (g-diopit.ads): GNAT Directory_Operations Iteration g-diopit ads.
* GNAT.Dynamic_HTables (g-dynhta.ads): GNAT Dynamic_HTables g-dynhta ads.
* GNAT.Dynamic_Tables (g-dyntab.ads): GNAT Dynamic_Tables g-dyntab ads.
* GNAT.Encode_String (g-encstr.ads): GNAT Encode_String g-encstr ads.
* GNAT.Encode_UTF8_String (g-enutst.ads): GNAT Encode_UTF8_String g-enutst ads.
* GNAT.Exception_Actions (g-excact.ads): GNAT Exception_Actions g-excact ads.
* GNAT.Exception_Traces (g-exctra.ads): GNAT Exception_Traces g-exctra ads.
* GNAT.Exceptions (g-except.ads): GNAT Exceptions g-except ads.
* GNAT.Expect (g-expect.ads): GNAT Expect g-expect ads.
* GNAT.Expect.TTY (g-exptty.ads): GNAT Expect TTY g-exptty ads.
* GNAT.Float_Control (g-flocon.ads): GNAT Float_Control g-flocon ads.
* GNAT.Formatted_String (g-forstr.ads): GNAT Formatted_String g-forstr ads.
* GNAT.Generic_Fast_Math_Functions (g-gfmafu.ads): GNAT Generic_Fast_Math_Functions g-gfmafu ads.
* GNAT.Heap_Sort (g-heasor.ads): GNAT Heap_Sort g-heasor ads.
* GNAT.Heap_Sort_A (g-hesora.ads): GNAT Heap_Sort_A g-hesora ads.
* GNAT.Heap_Sort_G (g-hesorg.ads): GNAT Heap_Sort_G g-hesorg ads.
* GNAT.HTable (g-htable.ads): GNAT HTable g-htable ads.
* GNAT.IO (g-io.ads): GNAT IO g-io ads.
* GNAT.IO_Aux (g-io_aux.ads): GNAT IO_Aux g-io_aux ads.
* GNAT.Lock_Files (g-locfil.ads): GNAT Lock_Files g-locfil ads.
* GNAT.MBBS_Discrete_Random (g-mbdira.ads): GNAT MBBS_Discrete_Random g-mbdira ads.
* GNAT.MBBS_Float_Random (g-mbflra.ads): GNAT MBBS_Float_Random g-mbflra ads.
* GNAT.MD5 (g-md5.ads): GNAT MD5 g-md5 ads.
* GNAT.Memory_Dump (g-memdum.ads): GNAT Memory_Dump g-memdum ads.
* GNAT.Most_Recent_Exception (g-moreex.ads): GNAT Most_Recent_Exception g-moreex ads.
* GNAT.OS_Lib (g-os_lib.ads): GNAT OS_Lib g-os_lib ads.
* GNAT.Perfect_Hash_Generators (g-pehage.ads): GNAT Perfect_Hash_Generators g-pehage ads.
* GNAT.Random_Numbers (g-rannum.ads): GNAT Random_Numbers g-rannum ads.
* GNAT.Regexp (g-regexp.ads): GNAT Regexp g-regexp ads.
* GNAT.Registry (g-regist.ads): GNAT Registry g-regist ads.
* GNAT.Regpat (g-regpat.ads): GNAT Regpat g-regpat ads.
* GNAT.Rewrite_Data (g-rewdat.ads): GNAT Rewrite_Data g-rewdat ads.
* GNAT.Secondary_Stack_Info (g-sestin.ads): GNAT Secondary_Stack_Info g-sestin ads.
* GNAT.Semaphores (g-semaph.ads): GNAT Semaphores g-semaph ads.
* GNAT.Serial_Communications (g-sercom.ads): GNAT Serial_Communications g-sercom ads.
* GNAT.SHA1 (g-sha1.ads): GNAT SHA1 g-sha1 ads.
* GNAT.SHA224 (g-sha224.ads): GNAT SHA224 g-sha224 ads.
* GNAT.SHA256 (g-sha256.ads): GNAT SHA256 g-sha256 ads.
* GNAT.SHA384 (g-sha384.ads): GNAT SHA384 g-sha384 ads.
* GNAT.SHA512 (g-sha512.ads): GNAT SHA512 g-sha512 ads.
* GNAT.Signals (g-signal.ads): GNAT Signals g-signal ads.
* GNAT.Sockets (g-socket.ads): GNAT Sockets g-socket ads.
* GNAT.Source_Info (g-souinf.ads): GNAT Source_Info g-souinf ads.
* GNAT.Spelling_Checker (g-speche.ads): GNAT Spelling_Checker g-speche ads.
* GNAT.Spelling_Checker_Generic (g-spchge.ads): GNAT Spelling_Checker_Generic g-spchge ads.
* GNAT.Spitbol.Patterns (g-spipat.ads): GNAT Spitbol Patterns g-spipat ads.
* GNAT.Spitbol (g-spitbo.ads): GNAT Spitbol g-spitbo ads.
* GNAT.Spitbol.Table_Boolean (g-sptabo.ads): GNAT Spitbol Table_Boolean g-sptabo ads.
* GNAT.Spitbol.Table_Integer (g-sptain.ads): GNAT Spitbol Table_Integer g-sptain ads.
* GNAT.Spitbol.Table_VString (g-sptavs.ads): GNAT Spitbol Table_VString g-sptavs ads.
* GNAT.SSE (g-sse.ads): GNAT SSE g-sse ads.
* GNAT.SSE.Vector_Types (g-ssvety.ads): GNAT SSE Vector_Types g-ssvety ads.
* GNAT.String_Hash (g-strhas.ads): GNAT String_Hash g-strhas ads.
* GNAT.Strings (g-string.ads): GNAT Strings g-string ads.
* GNAT.String_Split (g-strspl.ads): GNAT String_Split g-strspl ads.
* GNAT.Table (g-table.ads): GNAT Table g-table ads.
* GNAT.Task_Lock (g-tasloc.ads): GNAT Task_Lock g-tasloc ads.
* GNAT.Time_Stamp (g-timsta.ads): GNAT Time_Stamp g-timsta ads.
* GNAT.Threads (g-thread.ads): GNAT Threads g-thread ads.
* GNAT.Traceback (g-traceb.ads): GNAT Traceback g-traceb ads.
* GNAT.Traceback.Symbolic (g-trasym.ads): GNAT Traceback Symbolic g-trasym ads.
* GNAT.UTF_32 (g-utf_32.ads): GNAT UTF_32 g-utf_32 ads.
* GNAT.UTF_32_Spelling_Checker (g-u3spch.ads): GNAT UTF_32_Spelling_Checker g-u3spch ads.
* GNAT.Wide_Spelling_Checker (g-wispch.ads): GNAT Wide_Spelling_Checker g-wispch ads.
* GNAT.Wide_String_Split (g-wistsp.ads): GNAT Wide_String_Split g-wistsp ads.
* GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads): GNAT Wide_Wide_Spelling_Checker g-zspche ads.
* GNAT.Wide_Wide_String_Split (g-zistsp.ads): GNAT Wide_Wide_String_Split g-zistsp ads.
* Interfaces.C.Extensions (i-cexten.ads): Interfaces C Extensions i-cexten ads.
* Interfaces.C.Streams (i-cstrea.ads): Interfaces C Streams i-cstrea ads.
* Interfaces.Packed_Decimal (i-pacdec.ads): Interfaces Packed_Decimal i-pacdec ads.
* Interfaces.VxWorks (i-vxwork.ads): Interfaces VxWorks i-vxwork ads.
* Interfaces.VxWorks.IO (i-vxwoio.ads): Interfaces VxWorks IO i-vxwoio ads.
* System.Address_Image (s-addima.ads): System Address_Image s-addima ads.
* System.Assertions (s-assert.ads): System Assertions s-assert ads.
* System.Atomic_Counters (s-atocou.ads): System Atomic_Counters s-atocou ads.
* System.Memory (s-memory.ads): System Memory s-memory ads.
* System.Multiprocessors (s-multip.ads): System Multiprocessors s-multip ads.
* System.Multiprocessors.Dispatching_Domains (s-mudido.ads): System Multiprocessors Dispatching_Domains s-mudido ads.
* System.Partition_Interface (s-parint.ads): System Partition_Interface s-parint ads.
* System.Pool_Global (s-pooglo.ads): System Pool_Global s-pooglo ads.
* System.Pool_Local (s-pooloc.ads): System Pool_Local s-pooloc ads.
* System.Restrictions (s-restri.ads): System Restrictions s-restri ads.
* System.Rident (s-rident.ads): System Rident s-rident ads.
* System.Strings.Stream_Ops (s-ststop.ads): System Strings Stream_Ops s-ststop ads.
* System.Unsigned_Types (s-unstyp.ads): System Unsigned_Types s-unstyp ads.
* System.Wch_Cnv (s-wchcnv.ads): System Wch_Cnv s-wchcnv ads.
* System.Wch_Con (s-wchcon.ads): System Wch_Con s-wchcon ads.
Interfacing to Other Languages
* Interfacing to C::
* Interfacing to C++::
* Interfacing to COBOL::
* Interfacing to Fortran::
* Interfacing to non-GNAT Ada code::
Implementation of Specific Ada Features
* Machine Code Insertions::
* GNAT Implementation of Tasking::
* GNAT Implementation of Shared Passive Packages::
* Code Generation for Array Aggregates::
* The Size of Discriminated Records with Default Discriminants::
* Image Values For Nonscalar Types::
* Strict Conformance to the Ada Reference Manual::
GNAT Implementation of Tasking
* Mapping Ada Tasks onto the Underlying Kernel Threads::
* Ensuring Compliance with the Real-Time Annex::
* Support for Locking Policies::
Code Generation for Array Aggregates
* Static constant aggregates with static bounds::
* Constant aggregates with unconstrained nominal types::
* Aggregates with static bounds::
* Aggregates with nonstatic bounds::
* Aggregates in assignment statements::
GNAT language extensions
* How to activate the extended GNAT Ada superset::
* Curated Extensions::
* Experimental Language Extensions::
Curated Extensions
* Local Declarations Without Block::
* Conditional when constructs::
* Fixed lower bounds for array types and subtypes::
* Prefixed-view notation for calls to primitive subprograms of untagged types::
* Expression defaults for generic formal functions::
* String interpolation::
* Constrained attribute for generic objects::
* Static aspect on intrinsic functions::
Experimental Language Extensions
* Storage Model::
* Attribute Super::
* Simpler accessibility model::
* Case pattern matching::
* Mutably Tagged Types with Size’Class Aspect::
* Generalized Finalization::
Security Hardening Features
* Register Scrubbing::
* Stack Scrubbing::
* Hardened Conditionals::
* Hardened Booleans::
* Control Flow Redundancy::
Obsolescent Features
* pragma No_Run_Time::
* pragma Ravenscar::
* pragma Restricted_Run_Time::
* pragma Task_Info::
* package System.Task_Info (s-tasinf.ads): package System Task_Info s-tasinf ads.
Compatibility and Porting Guide
* Writing Portable Fixed-Point Declarations::
* Compatibility with Ada 83::
* Compatibility between Ada 95 and Ada 2005::
* Implementation-dependent characteristics::
* Compatibility with Other Ada Systems::
* Representation Clauses::
* Compatibility with HP Ada 83::
Compatibility with Ada 83
* Legal Ada 83 programs that are illegal in Ada 95::
* More deterministic semantics::
* Changed semantics::
* Other language compatibility issues::
Implementation-dependent characteristics
* Implementation-defined pragmas::
* Implementation-defined attributes::
* Libraries::
* Elaboration order::
* Target-specific aspects::
@end detailmenu
@end menu
@node About This Guide,Implementation Defined Pragmas,Top,Top
@anchor{gnat_rm/about_this_guide doc}@anchor{2}@anchor{gnat_rm/about_this_guide about-this-guide}@anchor{3}@anchor{gnat_rm/about_this_guide gnat-reference-manual}@anchor{4}@anchor{gnat_rm/about_this_guide id1}@anchor{5}
@chapter About This Guide
This manual contains useful information in writing programs using the
GNAT compiler. It includes information on implementation dependent
characteristics of GNAT, including all the information required by
Annex M of the Ada language standard.
GNAT implements Ada 95, Ada 2005 and Ada 2012, and it may also be
invoked in Ada 83 compatibility mode.
By default, GNAT assumes Ada 2012,
but you can override with a compiler switch
to explicitly specify the language version.
(Please refer to the `GNAT User’s Guide' for details on these switches.)
Throughout this manual, references to ‘Ada’ without a year suffix
apply to all the Ada versions of the language.
Ada is designed to be highly portable.
In general, a program will have the same effect even when compiled by
different compilers on different platforms.
However, since Ada is designed to be used in a
wide variety of applications, it also contains a number of system
dependent features to be used in interfacing to the external world.
@geindex Implementation-dependent features
@geindex Portability
Note: Any program that makes use of implementation-dependent features
may be non-portable. You should follow good programming practice and
isolate and clearly document any sections of your program that make use
of these features in a non-portable manner.
@menu
* What This Reference Manual Contains::
* Conventions::
* Related Information::
@end menu
@node What This Reference Manual Contains,Conventions,,About This Guide
@anchor{gnat_rm/about_this_guide what-this-reference-manual-contains}@anchor{6}
@section What This Reference Manual Contains
This reference manual contains the following chapters:
@itemize *
@item
@ref{7,,Implementation Defined Pragmas}, lists GNAT implementation-dependent
pragmas, which can be used to extend and enhance the functionality of the
compiler.
@item
@ref{8,,Implementation Defined Attributes}, lists GNAT
implementation-dependent attributes, which can be used to extend and
enhance the functionality of the compiler.
@item
@ref{9,,Standard and Implementation Defined Restrictions}, lists GNAT
implementation-dependent restrictions, which can be used to extend and
enhance the functionality of the compiler.
@item
@ref{a,,Implementation Advice}, provides information on generally
desirable behavior which are not requirements that all compilers must
follow since it cannot be provided on all systems, or which may be
undesirable on some systems.
@item
@ref{b,,Implementation Defined Characteristics}, provides a guide to
minimizing implementation dependent features.
@item
@ref{c,,Intrinsic Subprograms}, describes the intrinsic subprograms
implemented by GNAT, and how they can be imported into user
application programs.
@item
@ref{d,,Representation Clauses and Pragmas}, describes in detail the
way that GNAT represents data, and in particular the exact set
of representation clauses and pragmas that is accepted.
@item
@ref{e,,Standard Library Routines}, provides a listing of packages and a
brief description of the functionality that is provided by Ada’s
extensive set of standard library routines as implemented by GNAT.
@item
@ref{f,,The Implementation of Standard I/O}, details how the GNAT
implementation of the input-output facilities.
@item
@ref{10,,The GNAT Library}, is a catalog of packages that complement
the Ada predefined library.
@item
@ref{11,,Interfacing to Other Languages}, describes how programs
written in Ada using GNAT can be interfaced to other programming
languages.
@item
@ref{12,,Specialized Needs Annexes}, describes the GNAT implementation of all
of the specialized needs annexes.
@item
@ref{13,,Implementation of Specific Ada Features}, discusses issues related
to GNAT’s implementation of machine code insertions, tasking, and several
other features.
@item
@ref{14,,Implementation of Ada 2012 Features}, describes the status of the
GNAT implementation of the Ada 2012 language standard.
@item
@ref{15,,Security Hardening Features} documents GNAT extensions aimed
at security hardening.
@item
@ref{16,,Obsolescent Features} documents implementation dependent features,
including pragmas and attributes, which are considered obsolescent, since
there are other preferred ways of achieving the same results. These
obsolescent forms are retained for backwards compatibility.
@item
@ref{17,,Compatibility and Porting Guide} presents some guidelines for
developing portable Ada code, describes the compatibility issues that
may arise between GNAT and other Ada compilation systems (including those
for Ada 83), and shows how GNAT can expedite porting applications
developed in other Ada environments.
@item
@ref{1,,GNU Free Documentation License} contains the license for this document.
@end itemize
@geindex Ada 95 Language Reference Manual
@geindex Ada 2005 Language Reference Manual
This reference manual assumes a basic familiarity with the Ada 95 language, as
described in the
@cite{International Standard ANSI/ISO/IEC-8652:1995}.
It does not require knowledge of the new features introduced by Ada 2005 or
Ada 2012.
All three reference manuals are included in the GNAT documentation
package.
@node Conventions,Related Information,What This Reference Manual Contains,About This Guide
@anchor{gnat_rm/about_this_guide conventions}@anchor{18}
@section Conventions
@geindex Conventions
@geindex typographical
@geindex Typographical conventions
Following are examples of the typographical and graphic conventions used
in this guide:
@itemize *
@item
@code{Functions}, @code{utility program names}, @code{standard names},
and @code{classes}.
@item
@code{Option flags}
@item
@code{File names}
@item
@code{Variables}
@item
`Emphasis'
@item
[optional information or parameters]
@item
Examples are described by text
@example
and then shown this way.
@end example
@item
Commands that are entered by the user are shown as preceded by a prompt string
comprising the @code{$} character followed by a space.
@end itemize
@node Related Information,,Conventions,About This Guide
@anchor{gnat_rm/about_this_guide related-information}@anchor{19}
@section Related Information
See the following documents for further information on GNAT:
@itemize *
@item
@cite{GNAT User’s Guide for Native Platforms},
which provides information on how to use the
GNAT development environment.
@item
@cite{Ada 95 Reference Manual}, the Ada 95 programming language standard.
@item
@cite{Ada 95 Annotated Reference Manual}, which is an annotated version
of the Ada 95 standard. The annotations describe
detailed aspects of the design decision, and in particular contain useful
sections on Ada 83 compatibility.
@item
@cite{Ada 2005 Reference Manual}, the Ada 2005 programming language standard.
@item
@cite{Ada 2005 Annotated Reference Manual}, which is an annotated version
of the Ada 2005 standard. The annotations describe
detailed aspects of the design decision.
@item
@cite{Ada 2012 Reference Manual}, the Ada 2012 programming language standard.
@item
@cite{DEC Ada@comma{} Technical Overview and Comparison on DIGITAL Platforms},
which contains specific information on compatibility between GNAT and
DEC Ada 83 systems.
@item
@cite{DEC Ada@comma{} Language Reference Manual}, part number AA-PYZAB-TK, which
describes in detail the pragmas and attributes provided by the DEC Ada 83
compiler system.
@end itemize
@node Implementation Defined Pragmas,Implementation Defined Aspects,About This Guide,Top
@anchor{gnat_rm/implementation_defined_pragmas doc}@anchor{1a}@anchor{gnat_rm/implementation_defined_pragmas id1}@anchor{1b}@anchor{gnat_rm/implementation_defined_pragmas implementation-defined-pragmas}@anchor{7}
@chapter Implementation Defined Pragmas
Ada defines a set of pragmas that can be used to supply additional
information to the compiler. These language defined pragmas are
implemented in GNAT and work as described in the Ada Reference Manual.
In addition, Ada allows implementations to define additional pragmas
whose meaning is defined by the implementation. GNAT provides a number
of these implementation-defined pragmas, which can be used to extend
and enhance the functionality of the compiler. This section of the GNAT
Reference Manual describes these additional pragmas.
Note that any program using these pragmas might not be portable to other
compilers (although GNAT implements this set of pragmas on all
platforms). Therefore if portability to other compilers is an important
consideration, the use of these pragmas should be minimized.
@menu
* Pragma Abort_Defer::
* Pragma Abstract_State::
* Pragma Ada_83::
* Pragma Ada_95::
* Pragma Ada_05::
* Pragma Ada_2005::
* Pragma Ada_12::
* Pragma Ada_2012::
* Pragma Ada_2022::
* Pragma Aggregate_Individually_Assign::
* Pragma Allow_Integer_Address::
* Pragma Always_Terminates::
* Pragma Annotate::
* Pragma Assert::
* Pragma Assert_And_Cut::
* Pragma Assertion_Policy::
* Pragma Assume::
* Pragma Assume_No_Invalid_Values::
* Pragma Async_Readers::
* Pragma Async_Writers::
* Pragma Attribute_Definition::
* Pragma C_Pass_By_Copy::
* Pragma Check::
* Pragma Check_Float_Overflow::
* Pragma Check_Name::
* Pragma Check_Policy::
* Pragma Comment::
* Pragma Common_Object::
* Pragma Compile_Time_Error::
* Pragma Compile_Time_Warning::
* Pragma Complete_Representation::
* Pragma Complex_Representation::
* Pragma Component_Alignment::
* Pragma Constant_After_Elaboration::
* Pragma Contract_Cases::
* Pragma Convention_Identifier::
* Pragma CPP_Class::
* Pragma CPP_Constructor::
* Pragma CPP_Virtual::
* Pragma CPP_Vtable::
* Pragma CPU::
* Pragma Deadline_Floor::
* Pragma Debug::
* Pragma Debug_Policy::
* Pragma Default_Initial_Condition::
* Pragma Default_Scalar_Storage_Order::
* Pragma Default_Storage_Pool::
* Pragma Depends::
* Pragma Detect_Blocking::
* Pragma Disable_Atomic_Synchronization::
* Pragma Dispatching_Domain::
* Pragma Effective_Reads::
* Pragma Effective_Writes::
* Pragma Elaboration_Checks::
* Pragma Eliminate::
* Pragma Enable_Atomic_Synchronization::
* Pragma Exceptional_Cases::
* Pragma Export_Function::
* Pragma Export_Object::
* Pragma Export_Procedure::
* Pragma Export_Valued_Procedure::
* Pragma Extend_System::
* Pragma Extensions_Allowed::
* Pragma Extensions_Visible::
* Pragma External::
* Pragma External_Name_Casing::
* Pragma Fast_Math::
* Pragma Favor_Top_Level::
* Pragma Finalize_Storage_Only::
* Pragma Float_Representation::
* Pragma Ghost::
* Pragma Global::
* Pragma Ident::
* Pragma Ignore_Pragma::
* Pragma Implementation_Defined::
* Pragma Implemented::
* Pragma Implicit_Packing::
* Pragma Import_Function::
* Pragma Import_Object::
* Pragma Import_Procedure::
* Pragma Import_Valued_Procedure::
* Pragma Independent::
* Pragma Independent_Components::
* Pragma Initial_Condition::
* Pragma Initialize_Scalars::
* Pragma Initializes::
* Pragma Inline_Always::
* Pragma Inline_Generic::
* Pragma Interface::
* Pragma Interface_Name::
* Pragma Interrupt_Handler::
* Pragma Interrupt_State::
* Pragma Interrupts_System_By_Default::
* Pragma Invariant::
* Pragma Keep_Names::
* Pragma License::
* Pragma Link_With::
* Pragma Linker_Alias::
* Pragma Linker_Constructor::
* Pragma Linker_Destructor::
* Pragma Linker_Section::
* Pragma Lock_Free::
* Pragma Loop_Invariant::
* Pragma Loop_Optimize::
* Pragma Loop_Variant::
* Pragma Machine_Attribute::
* Pragma Main::
* Pragma Main_Storage::
* Pragma Max_Queue_Length::
* Pragma No_Body::
* Pragma No_Caching::
* Pragma No_Component_Reordering::
* Pragma No_Elaboration_Code_All::
* Pragma No_Heap_Finalization::
* Pragma No_Inline::
* Pragma No_Return::
* Pragma No_Strict_Aliasing::
* Pragma No_Tagged_Streams::
* Pragma Normalize_Scalars::
* Pragma Obsolescent::
* Pragma Optimize_Alignment::
* Pragma Ordered::
* Pragma Overflow_Mode::
* Pragma Overriding_Renamings::
* Pragma Part_Of::
* Pragma Partition_Elaboration_Policy::
* Pragma Passive::
* Pragma Persistent_BSS::
* Pragma Post::
* Pragma Postcondition::
* Pragma Post_Class::
* Pragma Pre::
* Pragma Precondition::
* Pragma Predicate::
* Pragma Predicate_Failure::
* Pragma Preelaborable_Initialization::
* Pragma Prefix_Exception_Messages::
* Pragma Pre_Class::
* Pragma Priority_Specific_Dispatching::
* Pragma Profile::
* Pragma Profile_Warnings::
* Pragma Propagate_Exceptions::
* Pragma Provide_Shift_Operators::
* Pragma Psect_Object::
* Pragma Pure_Function::
* Pragma Rational::
* Pragma Ravenscar::
* Pragma Refined_Depends::
* Pragma Refined_Global::
* Pragma Refined_Post::
* Pragma Refined_State::
* Pragma Relative_Deadline::
* Pragma Remote_Access_Type::
* Pragma Rename_Pragma::
* Pragma Restricted_Run_Time::
* Pragma Restriction_Warnings::
* Pragma Reviewable::
* Pragma Secondary_Stack_Size::
* Pragma Share_Generic::
* Pragma Shared::
* Pragma Short_Circuit_And_Or::
* Pragma Short_Descriptors::
* Pragma Side_Effects::
* Pragma Simple_Storage_Pool_Type::
* Pragma Source_File_Name::
* Pragma Source_File_Name_Project::
* Pragma Source_Reference::
* Pragma SPARK_Mode::
* Pragma Static_Elaboration_Desired::
* Pragma Stream_Convert::
* Pragma Style_Checks::
* Pragma Subprogram_Variant::
* Pragma Subtitle::
* Pragma Suppress::
* Pragma Suppress_All::
* Pragma Suppress_Debug_Info::
* Pragma Suppress_Exception_Locations::
* Pragma Suppress_Initialization::
* Pragma Task_Name::
* Pragma Task_Storage::
* Pragma Test_Case::
* Pragma Thread_Local_Storage::
* Pragma Time_Slice::
* Pragma Title::
* Pragma Type_Invariant::
* Pragma Type_Invariant_Class::
* Pragma Unchecked_Union::
* Pragma Unevaluated_Use_Of_Old::
* Pragma User_Aspect_Definition::
* Pragma Unimplemented_Unit::
* Pragma Universal_Aliasing::
* Pragma Unmodified::
* Pragma Unreferenced::
* Pragma Unreferenced_Objects::
* Pragma Unreserve_All_Interrupts::
* Pragma Unsuppress::
* Pragma Unused::
* Pragma Use_VADS_Size::
* Pragma Validity_Checks::
* Pragma Volatile::
* Pragma Volatile_Full_Access::
* Pragma Volatile_Function::
* Pragma Warning_As_Error::
* Pragma Warnings::
* Pragma Weak_External::
* Pragma Wide_Character_Encoding::
@end menu
@node Pragma Abort_Defer,Pragma Abstract_State,,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-abort-defer}@anchor{1c}
@section Pragma Abort_Defer
@geindex Deferring aborts
Syntax:
@example
pragma Abort_Defer;
@end example
This pragma must appear at the start of the statement sequence of a
handled sequence of statements (right after the @code{begin}). It has
the effect of deferring aborts for the sequence of statements (but not
for the declarations or handlers, if any, associated with this statement
sequence). This can also be useful for adding a polling point in Ada code,
where asynchronous abort of tasks is checked when leaving the statement
sequence, and is lighter than, for example, using @code{delay 0.0;}, since with
zero-cost exception handling, propagating exceptions (implicitly used to
implement task abort) cannot be done reliably in an asynchronous way.
An example of usage would be:
@example
-- Add a polling point to check for task aborts
begin
pragma Abort_Defer;
end;
@end example
@node Pragma Abstract_State,Pragma Ada_83,Pragma Abort_Defer,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id2}@anchor{1d}@anchor{gnat_rm/implementation_defined_pragmas pragma-abstract-state}@anchor{1e}
@section Pragma Abstract_State
Syntax:
@example
pragma Abstract_State (ABSTRACT_STATE_LIST);
ABSTRACT_STATE_LIST ::=
null
| STATE_NAME_WITH_OPTIONS
| (STATE_NAME_WITH_OPTIONS @{, STATE_NAME_WITH_OPTIONS@} )
STATE_NAME_WITH_OPTIONS ::=
STATE_NAME
| (STATE_NAME with OPTION_LIST)
OPTION_LIST ::= OPTION @{, OPTION@}
OPTION ::=
SIMPLE_OPTION
| NAME_VALUE_OPTION
SIMPLE_OPTION ::= Ghost | Synchronous
NAME_VALUE_OPTION ::=
Part_Of => ABSTRACT_STATE
| External [=> EXTERNAL_PROPERTY_LIST]
EXTERNAL_PROPERTY_LIST ::=
EXTERNAL_PROPERTY
| (EXTERNAL_PROPERTY @{, EXTERNAL_PROPERTY@} )
EXTERNAL_PROPERTY ::=
Async_Readers [=> static_boolean_EXPRESSION]
| Async_Writers [=> static_boolean_EXPRESSION]
| Effective_Reads [=> static_boolean_EXPRESSION]
| Effective_Writes [=> static_boolean_EXPRESSION]
others => static_boolean_EXPRESSION
STATE_NAME ::= defining_identifier
ABSTRACT_STATE ::= name
@end example
For the semantics of this pragma, see the entry for aspect @code{Abstract_State} in
the SPARK 2014 Reference Manual, section 7.1.4.
@node Pragma Ada_83,Pragma Ada_95,Pragma Abstract_State,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-ada-83}@anchor{1f}
@section Pragma Ada_83
Syntax:
@example
pragma Ada_83;
@end example
A configuration pragma that establishes Ada 83 mode for the unit to
which it applies, regardless of the mode set by the command line
switches. In Ada 83 mode, GNAT attempts to be as compatible with
the syntax and semantics of Ada 83, as defined in the original Ada
83 Reference Manual as possible. In particular, the keywords added by Ada 95
and Ada 2005 are not recognized, optional package bodies are allowed,
and generics may name types with unknown discriminants without using
the @code{(<>)} notation. In addition, some but not all of the additional
restrictions of Ada 83 are enforced.
Ada 83 mode is intended for two purposes. Firstly, it allows existing
Ada 83 code to be compiled and adapted to GNAT with less effort.
Secondly, it aids in keeping code backwards compatible with Ada 83.
However, there is no guarantee that code that is processed correctly
by GNAT in Ada 83 mode will in fact compile and execute with an Ada
83 compiler, since GNAT does not enforce all the additional checks
required by Ada 83.
@node Pragma Ada_95,Pragma Ada_05,Pragma Ada_83,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-ada-95}@anchor{20}
@section Pragma Ada_95
Syntax:
@example
pragma Ada_95;
@end example
A configuration pragma that establishes Ada 95 mode for the unit to which
it applies, regardless of the mode set by the command line switches.
This mode is set automatically for the @code{Ada} and @code{System}
packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component that
itself uses Ada 95 features, but which is intended to be usable from
either Ada 83 or Ada 95 programs.
@node Pragma Ada_05,Pragma Ada_2005,Pragma Ada_95,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-ada-05}@anchor{21}
@section Pragma Ada_05
Syntax:
@example
pragma Ada_05;
pragma Ada_05 (local_NAME);
@end example
A configuration pragma that establishes Ada 2005 mode for the unit to which
it applies, regardless of the mode set by the command line switches.
This pragma is useful when writing a reusable component that
itself uses Ada 2005 features, but which is intended to be usable from
either Ada 83 or Ada 95 programs.
The one argument form (which is not a configuration pragma)
is used for managing the transition from
Ada 95 to Ada 2005 in the run-time library. If an entity is marked
as Ada_2005 only, then referencing the entity in Ada_83 or Ada_95
mode will generate a warning. In addition, in Ada_83 or Ada_95
mode, a preference rule is established which does not choose
such an entity unless it is unambiguously specified. This avoids
extra subprograms marked this way from generating ambiguities in
otherwise legal pre-Ada_2005 programs. The one argument form is
intended for exclusive use in the GNAT run-time library.
@node Pragma Ada_2005,Pragma Ada_12,Pragma Ada_05,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-ada-2005}@anchor{22}
@section Pragma Ada_2005
Syntax:
@example
pragma Ada_2005;
@end example
This configuration pragma is a synonym for pragma Ada_05 and has the
same syntax and effect.
@node Pragma Ada_12,Pragma Ada_2012,Pragma Ada_2005,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-ada-12}@anchor{23}
@section Pragma Ada_12
Syntax:
@example
pragma Ada_12;
pragma Ada_12 (local_NAME);
@end example
A configuration pragma that establishes Ada 2012 mode for the unit to which
it applies, regardless of the mode set by the command line switches.
This mode is set automatically for the @code{Ada} and @code{System}
packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component that
itself uses Ada 2012 features, but which is intended to be usable from
Ada 83, Ada 95, or Ada 2005 programs.
The one argument form, which is not a configuration pragma,
is used for managing the transition from Ada
2005 to Ada 2012 in the run-time library. If an entity is marked
as Ada_2012 only, then referencing the entity in any pre-Ada_2012
mode will generate a warning. In addition, in any pre-Ada_2012
mode, a preference rule is established which does not choose
such an entity unless it is unambiguously specified. This avoids
extra subprograms marked this way from generating ambiguities in
otherwise legal pre-Ada_2012 programs. The one argument form is
intended for exclusive use in the GNAT run-time library.
@node Pragma Ada_2012,Pragma Ada_2022,Pragma Ada_12,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-ada-2012}@anchor{24}
@section Pragma Ada_2012
Syntax:
@example
pragma Ada_2012;
@end example
This configuration pragma is a synonym for pragma Ada_12 and has the
same syntax and effect.
@node Pragma Ada_2022,Pragma Aggregate_Individually_Assign,Pragma Ada_2012,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-ada-2022}@anchor{25}
@section Pragma Ada_2022
Syntax:
@example
pragma Ada_2022;
pragma Ada_2022 (local_NAME);
@end example
A configuration pragma that establishes Ada 2022 mode for the unit to which
it applies, regardless of the mode set by the command line switches.
This mode is set automatically for the @code{Ada} and @code{System}
packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component that
itself uses Ada 2022 features, but which is intended to be usable from
Ada 83, Ada 95, Ada 2005 or Ada 2012 programs.
The one argument form, which is not a configuration pragma,
is used for managing the transition from Ada
2012 to Ada 2022 in the run-time library. If an entity is marked
as Ada_2022 only, then referencing the entity in any pre-Ada_2022
mode will generate a warning. In addition, in any pre-Ada_2012
mode, a preference rule is established which does not choose
such an entity unless it is unambiguously specified. This avoids
extra subprograms marked this way from generating ambiguities in
otherwise legal pre-Ada_2022 programs. The one argument form is
intended for exclusive use in the GNAT run-time library.
@node Pragma Aggregate_Individually_Assign,Pragma Allow_Integer_Address,Pragma Ada_2022,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-aggregate-individually-assign}@anchor{26}
@section Pragma Aggregate_Individually_Assign
Syntax:
@example
pragma Aggregate_Individually_Assign;
@end example
Where possible, GNAT will store the binary representation of a record aggregate
in memory for space and performance reasons. This configuration pragma changes
this behavior so that record aggregates are instead always converted into
individual assignment statements.
@node Pragma Allow_Integer_Address,Pragma Always_Terminates,Pragma Aggregate_Individually_Assign,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-allow-integer-address}@anchor{27}
@section Pragma Allow_Integer_Address
Syntax:
@example
pragma Allow_Integer_Address;
@end example
In almost all versions of GNAT, @code{System.Address} is a private
type in accordance with the implementation advice in the RM. This
means that integer values,
in particular integer literals, are not allowed as address values.
If the configuration pragma
@code{Allow_Integer_Address} is given, then integer expressions may
be used anywhere a value of type @code{System.Address} is required.
The effect is to introduce an implicit unchecked conversion from the
integer value to type @code{System.Address}. The reverse case of using
an address where an integer type is required is handled analogously.
The following example compiles without errors:
@example
pragma Allow_Integer_Address;
with System; use System;
package AddrAsInt is
X : Integer;
Y : Integer;
for X'Address use 16#1240#;
for Y use at 16#3230#;
m : Address := 16#4000#;
n : constant Address := 4000;
p : constant Address := Address (X + Y);
v : Integer := y'Address;
w : constant Integer := Integer (Y'Address);
type R is new integer;
RR : R := 1000;
Z : Integer;
for Z'Address use RR;
end AddrAsInt;
@end example
Note that pragma @code{Allow_Integer_Address} is ignored if @code{System.Address}
is not a private type. In implementations of @code{GNAT} where
System.Address is a visible integer type,
this pragma serves no purpose but is ignored
rather than rejected to allow common sets of sources to be used
in the two situations.
@node Pragma Always_Terminates,Pragma Annotate,Pragma Allow_Integer_Address,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id3}@anchor{28}@anchor{gnat_rm/implementation_defined_pragmas pragma-always-terminates}@anchor{29}
@section Pragma Always_Terminates
Syntax:
@example
pragma Always_Terminates [ (boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect @code{Always_Terminates}
in the SPARK 2014 Reference Manual, section 6.1.10.
@node Pragma Annotate,Pragma Assert,Pragma Always_Terminates,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id4}@anchor{2a}@anchor{gnat_rm/implementation_defined_pragmas pragma-annotate}@anchor{2b}
@section Pragma Annotate
Syntax:
@example
pragma Annotate (IDENTIFIER [, IDENTIFIER @{, ARG@}] [, entity => local_NAME]);
ARG ::= NAME | EXPRESSION
@end example
This pragma is used to annotate programs. IDENTIFIER identifies
the type of annotation. GNAT verifies that it is an identifier, but does
not otherwise analyze it. The second optional identifier is also left
unanalyzed, and by convention is used to control the action of the tool to
which the annotation is addressed. The remaining ARG arguments
can be either string literals or more generally expressions.
String literals (and concatenations of string literals) are assumed to be
either of type
@code{Standard.String} or else @code{Wide_String} or @code{Wide_Wide_String}
depending on the character literals they contain.
All other kinds of arguments are analyzed as expressions, and must be
unambiguous. The last argument if present must have the identifier
@code{Entity} and GNAT verifies that a local name is given.
The analyzed pragma is retained in the tree, but not otherwise processed
by any part of the GNAT compiler, except to generate corresponding note
lines in the generated ALI file. For the format of these note lines, see
the compiler source file lib-writ.ads. This pragma is intended for use by
external tools, including ASIS. The use of pragma Annotate does not
affect the compilation process in any way. This pragma may be used as
a configuration pragma.
@node Pragma Assert,Pragma Assert_And_Cut,Pragma Annotate,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-assert}@anchor{2c}
@section Pragma Assert
Syntax:
@example
pragma Assert (
boolean_EXPRESSION
[, string_EXPRESSION]);
@end example
The effect of this pragma depends on whether the corresponding command
line switch is set to activate assertions. The pragma expands into code
equivalent to the following:
@example
if assertions-enabled then
if not boolean_EXPRESSION then
System.Assertions.Raise_Assert_Failure
(string_EXPRESSION);
end if;
end if;
@end example
The string argument, if given, is the message that will be associated
with the exception occurrence if the exception is raised. If no second
argument is given, the default message is @code{file}:@code{nnn},
where @code{file} is the name of the source file containing the assert,
and @code{nnn} is the line number of the assert.
Note that, as with the @code{if} statement to which it is equivalent, the
type of the expression is either @code{Standard.Boolean}, or any type derived
from this standard type.
Assert checks can be either checked or ignored. By default they are ignored.
They will be checked if either the command line switch `-gnata' is
used, or if an @code{Assertion_Policy} or @code{Check_Policy} pragma is used
to enable @code{Assert_Checks}.
If assertions are ignored, then there
is no run-time effect (and in particular, any side effects from the
expression will not occur at run time). (The expression is still
analyzed at compile time, and may cause types to be frozen if they are
mentioned here for the first time).
If assertions are checked, then the given expression is tested, and if
it is @code{False} then @code{System.Assertions.Raise_Assert_Failure} is called
which results in the raising of @code{Assert_Failure} with the given message.
You should generally avoid side effects in the expression arguments of
this pragma, because these side effects will turn on and off with the
setting of the assertions mode, resulting in assertions that have an
effect on the program. However, the expressions are analyzed for
semantic correctness whether or not assertions are enabled, so turning
assertions on and off cannot affect the legality of a program.
Note that the implementation defined policy @code{DISABLE}, given in a
pragma @code{Assertion_Policy}, can be used to suppress this semantic analysis.
Note: this is a standard language-defined pragma in versions
of Ada from 2005 on. In GNAT, it is implemented in all versions
of Ada, and the DISABLE policy is an implementation-defined
addition.
@node Pragma Assert_And_Cut,Pragma Assertion_Policy,Pragma Assert,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-assert-and-cut}@anchor{2d}
@section Pragma Assert_And_Cut
Syntax:
@example
pragma Assert_And_Cut (
boolean_EXPRESSION
[, string_EXPRESSION]);
@end example
The effect of this pragma is identical to that of pragma @code{Assert},
except that in an @code{Assertion_Policy} pragma, the identifier
@code{Assert_And_Cut} is used to control whether it is ignored or checked
(or disabled).
The intention is that this be used within a subprogram when the
given test expresion sums up all the work done so far in the
subprogram, so that the rest of the subprogram can be verified
(informally or formally) using only the entry preconditions,
and the expression in this pragma. This allows dividing up
a subprogram into sections for the purposes of testing or
formal verification. The pragma also serves as useful
documentation.
@node Pragma Assertion_Policy,Pragma Assume,Pragma Assert_And_Cut,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-assertion-policy}@anchor{2e}
@section Pragma Assertion_Policy
Syntax:
@example
pragma Assertion_Policy (CHECK | DISABLE | IGNORE | SUPPRESSIBLE);
pragma Assertion_Policy (
ASSERTION_KIND => POLICY_IDENTIFIER
@{, ASSERTION_KIND => POLICY_IDENTIFIER@});
ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND
RM_ASSERTION_KIND ::= Assert |
Static_Predicate |
Dynamic_Predicate |
Pre |
Pre'Class |
Post |
Post'Class |
Type_Invariant |
Type_Invariant'Class |
Default_Initial_Condition
ID_ASSERTION_KIND ::= Assertions |
Assert_And_Cut |
Assume |
Contract_Cases |
Debug |
Ghost |
Initial_Condition |
Invariant |
Invariant'Class |
Loop_Invariant |
Loop_Variant |
Postcondition |
Precondition |
Predicate |
Refined_Post |
Statement_Assertions |
Subprogram_Variant
POLICY_IDENTIFIER ::= Check | Disable | Ignore | Suppressible
@end example
This is a standard Ada 2012 pragma that is available as an
implementation-defined pragma in earlier versions of Ada.
The assertion kinds @code{RM_ASSERTION_KIND} are those defined in
the Ada standard. The assertion kinds @code{ID_ASSERTION_KIND}
are implementation defined additions recognized by the GNAT compiler.
The pragma applies in both cases to pragmas and aspects with matching
names, e.g. @code{Pre} applies to the Pre aspect, and @code{Precondition}
applies to both the @code{Precondition} pragma
and the aspect @code{Precondition}. Note that the identifiers for
pragmas Pre_Class and Post_Class are Pre’Class and Post’Class (not
Pre_Class and Post_Class), since these pragmas are intended to be
identical to the corresponding aspects.
If the policy is @code{CHECK}, then assertions are enabled, i.e.
the corresponding pragma or aspect is activated.
If the policy is @code{IGNORE}, then assertions are ignored, i.e.
the corresponding pragma or aspect is deactivated.
This pragma overrides the effect of the `-gnata' switch on the
command line.
If the policy is @code{SUPPRESSIBLE}, then assertions are enabled by default,
however, if the `-gnatp' switch is specified all assertions are ignored.
The implementation defined policy @code{DISABLE} is like
@code{IGNORE} except that it completely disables semantic
checking of the corresponding pragma or aspect. This is
useful when the pragma or aspect argument references subprograms
in a with’ed package which is replaced by a dummy package
for the final build.
The implementation defined assertion kind @code{Assertions} applies to all
assertion kinds. The form with no assertion kind given implies this
choice, so it applies to all assertion kinds (RM defined, and
implementation defined).
The implementation defined assertion kind @code{Statement_Assertions}
applies to @code{Assert}, @code{Assert_And_Cut},
@code{Assume}, @code{Loop_Invariant}, and @code{Loop_Variant}.
@node Pragma Assume,Pragma Assume_No_Invalid_Values,Pragma Assertion_Policy,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-assume}@anchor{2f}
@section Pragma Assume
Syntax:
@example
pragma Assume (
boolean_EXPRESSION
[, string_EXPRESSION]);
@end example
The effect of this pragma is identical to that of pragma @code{Assert},
except that in an @code{Assertion_Policy} pragma, the identifier
@code{Assume} is used to control whether it is ignored or checked
(or disabled).
The intention is that this be used for assumptions about the
external environment. So you cannot expect to verify formally
or informally that the condition is met, this must be
established by examining things outside the program itself.
For example, we may have code that depends on the size of
@code{Long_Long_Integer} being at least 64. So we could write:
@example
pragma Assume (Long_Long_Integer'Size >= 64);
@end example
This assumption cannot be proved from the program itself,
but it acts as a useful run-time check that the assumption
is met, and documents the need to ensure that it is met by
reference to information outside the program.
@node Pragma Assume_No_Invalid_Values,Pragma Async_Readers,Pragma Assume,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-assume-no-invalid-values}@anchor{30}
@section Pragma Assume_No_Invalid_Values
@geindex Invalid representations
@geindex Invalid values
Syntax:
@example
pragma Assume_No_Invalid_Values (On | Off);
@end example
This is a configuration pragma that controls the assumptions made by the
compiler about the occurrence of invalid representations (invalid values)
in the code.
The default behavior (corresponding to an Off argument for this pragma), is
to assume that values may in general be invalid unless the compiler can
prove they are valid. Consider the following example:
@example
V1 : Integer range 1 .. 10;
V2 : Integer range 11 .. 20;
...
for J in V2 .. V1 loop
...
end loop;
@end example
if V1 and V2 have valid values, then the loop is known at compile
time not to execute since the lower bound must be greater than the
upper bound. However in default mode, no such assumption is made,
and the loop may execute. If @code{Assume_No_Invalid_Values (On)}
is given, the compiler will assume that any occurrence of a variable
other than in an explicit @code{'Valid} test always has a valid
value, and the loop above will be optimized away.
The use of @code{Assume_No_Invalid_Values (On)} is appropriate if
you know your code is free of uninitialized variables and other
possible sources of invalid representations, and may result in
more efficient code. A program that accesses an invalid representation
with this pragma in effect is erroneous, so no guarantees can be made
about its behavior.
It is peculiar though permissible to use this pragma in conjunction
with validity checking (-gnatVa). In such cases, accessing invalid
values will generally give an exception, though formally the program
is erroneous so there are no guarantees that this will always be the
case, and it is recommended that these two options not be used together.
@node Pragma Async_Readers,Pragma Async_Writers,Pragma Assume_No_Invalid_Values,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id5}@anchor{31}@anchor{gnat_rm/implementation_defined_pragmas pragma-async-readers}@anchor{32}
@section Pragma Async_Readers
Syntax:
@example
pragma Async_Readers [ (static_boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect @code{Async_Readers} in
the SPARK 2014 Reference Manual, section 7.1.2.
@node Pragma Async_Writers,Pragma Attribute_Definition,Pragma Async_Readers,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id6}@anchor{33}@anchor{gnat_rm/implementation_defined_pragmas pragma-async-writers}@anchor{34}
@section Pragma Async_Writers
Syntax:
@example
pragma Async_Writers [ (static_boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect @code{Async_Writers} in
the SPARK 2014 Reference Manual, section 7.1.2.
@node Pragma Attribute_Definition,Pragma C_Pass_By_Copy,Pragma Async_Writers,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-attribute-definition}@anchor{35}
@section Pragma Attribute_Definition
Syntax:
@example
pragma Attribute_Definition
([Attribute =>] ATTRIBUTE_DESIGNATOR,
[Entity =>] LOCAL_NAME,
[Expression =>] EXPRESSION | NAME);
@end example
If @code{Attribute} is a known attribute name, this pragma is equivalent to
the attribute definition clause:
@example
for Entity'Attribute use Expression;
@end example
If @code{Attribute} is not a recognized attribute name, the pragma is
ignored, and a warning is emitted. This allows source
code to be written that takes advantage of some new attribute, while remaining
compilable with earlier compilers.
@node Pragma C_Pass_By_Copy,Pragma Check,Pragma Attribute_Definition,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-c-pass-by-copy}@anchor{36}
@section Pragma C_Pass_By_Copy
@geindex Passing by copy
Syntax:
@example
pragma C_Pass_By_Copy
([Max_Size =>] static_integer_EXPRESSION);
@end example
Normally the default mechanism for passing C convention records to C
convention subprograms is to pass them by reference, as suggested by RM
B.3(69). Use the configuration pragma @code{C_Pass_By_Copy} to change
this default, by requiring that record formal parameters be passed by
copy if all of the following conditions are met:
@itemize *
@item
The size of the record type does not exceed the value specified for
@code{Max_Size}.
@item
The record type has @code{Convention C}.
@item
The formal parameter has this record type, and the subprogram has a
foreign (non-Ada) convention.
@end itemize
If these conditions are met the argument is passed by copy; i.e., in a
manner consistent with what C expects if the corresponding formal in the
C prototype is a struct (rather than a pointer to a struct).
You can also pass records by copy by specifying the convention
@code{C_Pass_By_Copy} for the record type, or by using the extended
@code{Import} and @code{Export} pragmas, which allow specification of
passing mechanisms on a parameter by parameter basis.
@node Pragma Check,Pragma Check_Float_Overflow,Pragma C_Pass_By_Copy,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-check}@anchor{37}
@section Pragma Check
@geindex Assertions
@geindex Named assertions
Syntax:
@example
pragma Check (
[Name =>] CHECK_KIND,
[Check =>] Boolean_EXPRESSION
[, [Message =>] string_EXPRESSION] );
CHECK_KIND ::= IDENTIFIER |
Pre'Class |
Post'Class |
Type_Invariant'Class |
Invariant'Class
@end example
This pragma is similar to the predefined pragma @code{Assert} except that an
extra identifier argument is present. In conjunction with pragma
@code{Check_Policy}, this can be used to define groups of assertions that can
be independently controlled. The identifier @code{Assertion} is special, it
refers to the normal set of pragma @code{Assert} statements.
Checks introduced by this pragma are normally deactivated by default. They can
be activated either by the command line option `-gnata', which turns on
all checks, or individually controlled using pragma @code{Check_Policy}.
The identifiers @code{Assertions} and @code{Statement_Assertions} are not
permitted as check kinds, since this would cause confusion with the use
of these identifiers in @code{Assertion_Policy} and @code{Check_Policy}
pragmas, where they are used to refer to sets of assertions.
@node Pragma Check_Float_Overflow,Pragma Check_Name,Pragma Check,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-check-float-overflow}@anchor{38}
@section Pragma Check_Float_Overflow
@geindex Floating-point overflow
Syntax:
@example
pragma Check_Float_Overflow;
@end example
In Ada, the predefined floating-point types (@code{Short_Float},
@code{Float}, @code{Long_Float}, @code{Long_Long_Float}) are
defined to be `unconstrained'. This means that even though each
has a well-defined base range, an operation that delivers a result
outside this base range is not required to raise an exception.
This implementation permission accommodates the notion
of infinities in IEEE floating-point, and corresponds to the
efficient execution mode on most machines. GNAT will not raise
overflow exceptions on these machines; instead it will generate
infinities and NaN’s as defined in the IEEE standard.
Generating infinities, although efficient, is not always desirable.
Often the preferable approach is to check for overflow, even at the
(perhaps considerable) expense of run-time performance.
This can be accomplished by defining your own constrained floating-point subtypes – i.e., by supplying explicit
range constraints – and indeed such a subtype
can have the same base range as its base type. For example:
@example
subtype My_Float is Float range Float'Range;
@end example
Here @code{My_Float} has the same range as
@code{Float} but is constrained, so operations on
@code{My_Float} values will be checked for overflow
against this range.
This style will achieve the desired goal, but
it is often more convenient to be able to simply use
the standard predefined floating-point types as long
as overflow checking could be guaranteed.
The @code{Check_Float_Overflow}
configuration pragma achieves this effect. If a unit is compiled
subject to this configuration pragma, then all operations
on predefined floating-point types including operations on
base types of these floating-point types will be treated as
though those types were constrained, and overflow checks
will be generated. The @code{Constraint_Error}
exception is raised if the result is out of range.
This mode can also be set by use of the compiler
switch `-gnateF'.
@node Pragma Check_Name,Pragma Check_Policy,Pragma Check_Float_Overflow,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-check-name}@anchor{39}
@section Pragma Check_Name
@geindex Defining check names
@geindex Check names
@geindex defining
Syntax:
@example
pragma Check_Name (check_name_IDENTIFIER);
@end example
This is a configuration pragma that defines a new implementation
defined check name (unless IDENTIFIER matches one of the predefined
check names, in which case the pragma has no effect). Check names
are global to a partition, so if two or more configuration pragmas
are present in a partition mentioning the same name, only one new
check name is introduced.
An implementation defined check name introduced with this pragma may
be used in only three contexts: @code{pragma Suppress},
@code{pragma Unsuppress},
and as the prefix of a @code{Check_Name'Enabled} attribute reference. For
any of these three cases, the check name must be visible. A check
name is visible if it is in the configuration pragmas applying to
the current unit, or if it appears at the start of any unit that
is part of the dependency set of the current unit (e.g., units that
are mentioned in @code{with} clauses).
Check names introduced by this pragma are subject to control by compiler
switches (in particular -gnatp) in the usual manner.
@node Pragma Check_Policy,Pragma Comment,Pragma Check_Name,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-check-policy}@anchor{3a}
@section Pragma Check_Policy
@geindex Controlling assertions
@geindex Assertions
@geindex control
@geindex Check pragma control
@geindex Named assertions
Syntax:
@example
pragma Check_Policy
([Name =>] CHECK_KIND,
[Policy =>] POLICY_IDENTIFIER);
pragma Check_Policy (
CHECK_KIND => POLICY_IDENTIFIER
@{, CHECK_KIND => POLICY_IDENTIFIER@});
ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND
CHECK_KIND ::= IDENTIFIER |
Pre'Class |
Post'Class |
Type_Invariant'Class |
Invariant'Class
The identifiers Name and Policy are not allowed as CHECK_KIND values. This
avoids confusion between the two possible syntax forms for this pragma.
POLICY_IDENTIFIER ::= ON | OFF | CHECK | DISABLE | IGNORE
@end example
This pragma is used to set the checking policy for assertions (specified
by aspects or pragmas), the @code{Debug} pragma, or additional checks
to be checked using the @code{Check} pragma. It may appear either as
a configuration pragma, or within a declarative part of package. In the
latter case, it applies from the point where it appears to the end of
the declarative region (like pragma @code{Suppress}).
The @code{Check_Policy} pragma is similar to the
predefined @code{Assertion_Policy} pragma,
and if the check kind corresponds to one of the assertion kinds that
are allowed by @code{Assertion_Policy}, then the effect is identical.
If the first argument is Debug, then the policy applies to Debug pragmas,
disabling their effect if the policy is @code{OFF}, @code{DISABLE}, or
@code{IGNORE}, and allowing them to execute with normal semantics if
the policy is @code{ON} or @code{CHECK}. In addition if the policy is
@code{DISABLE}, then the procedure call in @code{Debug} pragmas will
be totally ignored and not analyzed semantically.
Finally the first argument may be some other identifier than the above
possibilities, in which case it controls a set of named assertions
that can be checked using pragma @code{Check}. For example, if the pragma:
@example
pragma Check_Policy (Critical_Error, OFF);
@end example
is given, then subsequent @code{Check} pragmas whose first argument is also
@code{Critical_Error} will be disabled.
The check policy is @code{OFF} to turn off corresponding checks, and @code{ON}
to turn on corresponding checks. The default for a set of checks for which no
@code{Check_Policy} is given is @code{OFF} unless the compiler switch
`-gnata' is given, which turns on all checks by default.
The check policy settings @code{CHECK} and @code{IGNORE} are recognized
as synonyms for @code{ON} and @code{OFF}. These synonyms are provided for
compatibility with the standard @code{Assertion_Policy} pragma. The check
policy setting @code{DISABLE} causes the second argument of a corresponding
@code{Check} pragma to be completely ignored and not analyzed.
@node Pragma Comment,Pragma Common_Object,Pragma Check_Policy,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-comment}@anchor{3b}
@section Pragma Comment
Syntax:
@example
pragma Comment (static_string_EXPRESSION);
@end example
This is almost identical in effect to pragma @code{Ident}. It allows the
placement of a comment into the object file and hence into the
executable file if the operating system permits such usage. The
difference is that @code{Comment}, unlike @code{Ident}, has
no limitations on placement of the pragma (it can be placed
anywhere in the main source unit), and if more than one pragma
is used, all comments are retained.
@node Pragma Common_Object,Pragma Compile_Time_Error,Pragma Comment,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-common-object}@anchor{3c}
@section Pragma Common_Object
Syntax:
@example
pragma Common_Object (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL] );
EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION
@end example
This pragma enables the shared use of variables stored in overlaid
linker areas corresponding to the use of @code{COMMON}
in Fortran. The single
object @code{LOCAL_NAME} is assigned to the area designated by
the @code{External} argument.
You may define a record to correspond to a series
of fields. The @code{Size} argument
is syntax checked in GNAT, but otherwise ignored.
@code{Common_Object} is not supported on all platforms. If no
support is available, then the code generator will issue a message
indicating that the necessary attribute for implementation of this
pragma is not available.
@node Pragma Compile_Time_Error,Pragma Compile_Time_Warning,Pragma Common_Object,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas compile-time-error}@anchor{3d}@anchor{gnat_rm/implementation_defined_pragmas pragma-compile-time-error}@anchor{3e}
@section Pragma Compile_Time_Error
Syntax:
@example
pragma Compile_Time_Error
(boolean_EXPRESSION, static_string_EXPRESSION);
@end example
This pragma can be used to generate additional compile time
error messages. It
is particularly useful in generics, where errors can be issued for
specific problematic instantiations. The first parameter is a boolean
expression. The pragma ensures that the value of an expression
is known at compile time, and has the value False. The set of expressions
whose values are known at compile time includes all static boolean
expressions, and also other values which the compiler can determine
at compile time (e.g., the size of a record type set by an explicit
size representation clause, or the value of a variable which was
initialized to a constant and is known not to have been modified).
If these conditions are not met, an error message is generated using
the value given as the second argument. This string value may contain
embedded ASCII.LF characters to break the message into multiple lines.
@node Pragma Compile_Time_Warning,Pragma Complete_Representation,Pragma Compile_Time_Error,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-compile-time-warning}@anchor{3f}
@section Pragma Compile_Time_Warning
Syntax:
@example
pragma Compile_Time_Warning
(boolean_EXPRESSION, static_string_EXPRESSION);
@end example
Same as pragma Compile_Time_Error, except a warning is issued instead
of an error message. If switch `-gnatw_C' is used, a warning is only issued
if the value of the expression is known to be True at compile time, not when
the value of the expression is not known at compile time.
Note that if this pragma is used in a package that
is with’ed by a client, the client will get the warning even though it
is issued by a with’ed package (normally warnings in with’ed units are
suppressed, but this is a special exception to that rule).
One typical use is within a generic where compile time known characteristics
of formal parameters are tested, and warnings given appropriately. Another use
with a first parameter of True is to warn a client about use of a package,
for example that it is not fully implemented.
In previous versions of the compiler, combining `-gnatwe' with
Compile_Time_Warning resulted in a fatal error. Now the compiler always emits
a warning. You can use @ref{3d,,Pragma Compile_Time_Error} to force the generation of
an error.
@node Pragma Complete_Representation,Pragma Complex_Representation,Pragma Compile_Time_Warning,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-complete-representation}@anchor{40}
@section Pragma Complete_Representation
Syntax:
@example
pragma Complete_Representation;
@end example
This pragma must appear immediately within a record representation
clause. Typical placements are before the first component clause
or after the last component clause. The effect is to give an error
message if any component is missing a component clause. This pragma
may be used to ensure that a record representation clause is
complete, and that this invariant is maintained if fields are
added to the record in the future.
@node Pragma Complex_Representation,Pragma Component_Alignment,Pragma Complete_Representation,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-complex-representation}@anchor{41}
@section Pragma Complex_Representation
Syntax:
@example
pragma Complex_Representation
([Entity =>] LOCAL_NAME);
@end example
The @code{Entity} argument must be the name of a record type which has
two fields of the same floating-point type. The effect of this pragma is
to force gcc to use the special internal complex representation form for
this record, which may be more efficient. Note that this may result in
the code for this type not conforming to standard ABI (application
binary interface) requirements for the handling of record types. For
example, in some environments, there is a requirement for passing
records by pointer, and the use of this pragma may result in passing
this type in floating-point registers.
@node Pragma Component_Alignment,Pragma Constant_After_Elaboration,Pragma Complex_Representation,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-component-alignment}@anchor{42}
@section Pragma Component_Alignment
@geindex Alignments of components
@geindex Pragma Component_Alignment
Syntax:
@example
pragma Component_Alignment (
[Form =>] ALIGNMENT_CHOICE
[, [Name =>] type_LOCAL_NAME]);
ALIGNMENT_CHOICE ::=
Component_Size
| Component_Size_4
| Storage_Unit
| Default
@end example
Specifies the alignment of components in array or record types.
The meaning of the @code{Form} argument is as follows:
@quotation
@geindex Component_Size (in pragma Component_Alignment)
@end quotation
@table @asis
@item `Component_Size'
Aligns scalar components and subcomponents of the array or record type
on boundaries appropriate to their inherent size (naturally
aligned). For example, 1-byte components are aligned on byte boundaries,
2-byte integer components are aligned on 2-byte boundaries, 4-byte
integer components are aligned on 4-byte boundaries and so on. These
alignment rules correspond to the normal rules for C compilers on all
machines except the VAX.
@geindex Component_Size_4 (in pragma Component_Alignment)
@item `Component_Size_4'
Naturally aligns components with a size of four or fewer
bytes. Components that are larger than 4 bytes are placed on the next
4-byte boundary.
@geindex Storage_Unit (in pragma Component_Alignment)
@item `Storage_Unit'
Specifies that array or record components are byte aligned, i.e.,
aligned on boundaries determined by the value of the constant
@code{System.Storage_Unit}.
@geindex Default (in pragma Component_Alignment)
@item `Default'
Specifies that array or record components are aligned on default
boundaries, appropriate to the underlying hardware or operating system or
both. The @code{Default} choice is the same as @code{Component_Size} (natural
alignment).
@end table
If the @code{Name} parameter is present, @code{type_LOCAL_NAME} must
refer to a local record or array type, and the specified alignment
choice applies to the specified type. The use of
@code{Component_Alignment} together with a pragma @code{Pack} causes the
@code{Component_Alignment} pragma to be ignored. The use of
@code{Component_Alignment} together with a record representation clause
is only effective for fields not specified by the representation clause.
If the @code{Name} parameter is absent, the pragma can be used as either
a configuration pragma, in which case it applies to one or more units in
accordance with the normal rules for configuration pragmas, or it can be
used within a declarative part, in which case it applies to types that
are declared within this declarative part, or within any nested scope
within this declarative part. In either case it specifies the alignment
to be applied to any record or array type which has otherwise standard
representation.
If the alignment for a record or array type is not specified (using
pragma @code{Pack}, pragma @code{Component_Alignment}, or a record rep
clause), the GNAT uses the default alignment as described previously.
@node Pragma Constant_After_Elaboration,Pragma Contract_Cases,Pragma Component_Alignment,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id7}@anchor{43}@anchor{gnat_rm/implementation_defined_pragmas pragma-constant-after-elaboration}@anchor{44}
@section Pragma Constant_After_Elaboration
Syntax:
@example
pragma Constant_After_Elaboration [ (static_boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect
@code{Constant_After_Elaboration} in the SPARK 2014 Reference Manual, section 3.3.1.
@node Pragma Contract_Cases,Pragma Convention_Identifier,Pragma Constant_After_Elaboration,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id8}@anchor{45}@anchor{gnat_rm/implementation_defined_pragmas pragma-contract-cases}@anchor{46}
@section Pragma Contract_Cases
@geindex Contract cases
Syntax:
@example
pragma Contract_Cases (CONTRACT_CASE @{, CONTRACT_CASE@});
CONTRACT_CASE ::= CASE_GUARD => CONSEQUENCE
CASE_GUARD ::= boolean_EXPRESSION | others
CONSEQUENCE ::= boolean_EXPRESSION
@end example
The @code{Contract_Cases} pragma allows defining fine-grain specifications
that can complement or replace the contract given by a precondition and a
postcondition. Additionally, the @code{Contract_Cases} pragma can be used
by testing and formal verification tools. The compiler checks its validity and,
depending on the assertion policy at the point of declaration of the pragma,
it may insert a check in the executable. For code generation, the contract
cases
@example
pragma Contract_Cases (
Cond1 => Pred1,
Cond2 => Pred2);
@end example
are equivalent to
@example
C1 : constant Boolean := Cond1; -- evaluated at subprogram entry
C2 : constant Boolean := Cond2; -- evaluated at subprogram entry
pragma Precondition ((C1 and not C2) or (C2 and not C1));
pragma Postcondition (if C1 then Pred1);
pragma Postcondition (if C2 then Pred2);
@end example
The precondition ensures that one and only one of the case guards is
satisfied on entry to the subprogram.
The postcondition ensures that for the case guard that was True on entry,
the corresponding consequence is True on exit. Other consequence expressions
are not evaluated.
A precondition @code{P} and postcondition @code{Q} can also be
expressed as contract cases:
@example
pragma Contract_Cases (P => Q);
@end example
The placement and visibility rules for @code{Contract_Cases} pragmas are
identical to those described for preconditions and postconditions.
The compiler checks that boolean expressions given in case guards and
consequences are valid, where the rules for case guards are the same as
the rule for an expression in @code{Precondition} and the rules for
consequences are the same as the rule for an expression in
@code{Postcondition}. In particular, attributes @code{'Old} and
@code{'Result} can only be used within consequence expressions.
The case guard for the last contract case may be @code{others}, to denote
any case not captured by the previous cases. The
following is an example of use within a package spec:
@example
package Math_Functions is
...
function Sqrt (Arg : Float) return Float;
pragma Contract_Cases (((Arg in 0.0 .. 99.0) => Sqrt'Result < 10.0,
Arg >= 100.0 => Sqrt'Result >= 10.0,
others => Sqrt'Result = 0.0));
...
end Math_Functions;
@end example
The meaning of contract cases is that only one case should apply at each
call, as determined by the corresponding case guard evaluating to True,
and that the consequence for this case should hold when the subprogram
returns.
@node Pragma Convention_Identifier,Pragma CPP_Class,Pragma Contract_Cases,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-convention-identifier}@anchor{47}
@section Pragma Convention_Identifier
@geindex Conventions
@geindex synonyms
Syntax:
@example
pragma Convention_Identifier (
[Name =>] IDENTIFIER,
[Convention =>] convention_IDENTIFIER);
@end example
This pragma provides a mechanism for supplying synonyms for existing
convention identifiers. The @code{Name} identifier can subsequently
be used as a synonym for the given convention in other pragmas (including
for example pragma @code{Import} or another @code{Convention_Identifier}
pragma). As an example of the use of this, suppose you had legacy code
which used Fortran77 as the identifier for Fortran. Then the pragma:
@example
pragma Convention_Identifier (Fortran77, Fortran);
@end example
would allow the use of the convention identifier @code{Fortran77} in
subsequent code, avoiding the need to modify the sources. As another
example, you could use this to parameterize convention requirements
according to systems. Suppose you needed to use @code{Stdcall} on
windows systems, and @code{C} on some other system, then you could
define a convention identifier @code{Library} and use a single
@code{Convention_Identifier} pragma to specify which convention
would be used system-wide.
@node Pragma CPP_Class,Pragma CPP_Constructor,Pragma Convention_Identifier,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-cpp-class}@anchor{48}
@section Pragma CPP_Class
@geindex Interfacing with C++
Syntax:
@example
pragma CPP_Class ([Entity =>] LOCAL_NAME);
@end example
The argument denotes an entity in the current declarative region that is
declared as a record type. It indicates that the type corresponds to an
externally declared C++ class type, and is to be laid out the same way
that C++ would lay out the type. If the C++ class has virtual primitives
then the record must be declared as a tagged record type.
Types for which @code{CPP_Class} is specified do not have assignment or
equality operators defined (such operations can be imported or declared
as subprograms as required). Initialization is allowed only by constructor
functions (see pragma @code{CPP_Constructor}). Such types are implicitly
limited if not explicitly declared as limited or derived from a limited
type, and an error is issued in that case.
See @ref{49,,Interfacing to C++} for related information.
Note: Pragma @code{CPP_Class} is currently obsolete. It is supported
for backward compatibility but its functionality is available
using pragma @code{Import} with @code{Convention} = @code{CPP}.
@node Pragma CPP_Constructor,Pragma CPP_Virtual,Pragma CPP_Class,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-cpp-constructor}@anchor{4a}
@section Pragma CPP_Constructor
@geindex Interfacing with C++
Syntax:
@example
pragma CPP_Constructor ([Entity =>] LOCAL_NAME
[, [External_Name =>] static_string_EXPRESSION ]
[, [Link_Name =>] static_string_EXPRESSION ]);
@end example
This pragma identifies an imported function (imported in the usual way
with pragma @code{Import}) as corresponding to a C++ constructor. If
@code{External_Name} and @code{Link_Name} are not specified then the
@code{Entity} argument is a name that must have been previously mentioned
in a pragma @code{Import} with @code{Convention} = @code{CPP}. Such name
must be of one of the following forms:
@itemize *
@item
`function' @code{Fname} `return' T`
@item
`function' @code{Fname} `return' T’Class
@item
`function' @code{Fname} (…) `return' T`
@item
`function' @code{Fname} (…) `return' T’Class
@end itemize
where @code{T} is a limited record type imported from C++ with pragma
@code{Import} and @code{Convention} = @code{CPP}.
The first two forms import the default constructor, used when an object
of type @code{T} is created on the Ada side with no explicit constructor.
The latter two forms cover all the non-default constructors of the type.
See the GNAT User’s Guide for details.
If no constructors are imported, it is impossible to create any objects
on the Ada side and the type is implicitly declared abstract.
Pragma @code{CPP_Constructor} is intended primarily for automatic generation
using an automatic binding generator tool (such as the @code{-fdump-ada-spec}
GCC switch).
See @ref{49,,Interfacing to C++} for more related information.
Note: The use of functions returning class-wide types for constructors is
currently obsolete. They are supported for backward compatibility. The
use of functions returning the type T leave the Ada sources more clear
because the imported C++ constructors always return an object of type T;
that is, they never return an object whose type is a descendant of type T.
@node Pragma CPP_Virtual,Pragma CPP_Vtable,Pragma CPP_Constructor,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-cpp-virtual}@anchor{4b}
@section Pragma CPP_Virtual
@geindex Interfacing to C++
This pragma is now obsolete and, other than generating a warning if warnings
on obsolescent features are enabled, is completely ignored.
It is retained for compatibility
purposes. It used to be required to ensure compatibility with C++, but
is no longer required for that purpose because GNAT generates
the same object layout as the G++ compiler by default.
See @ref{49,,Interfacing to C++} for related information.
@node Pragma CPP_Vtable,Pragma CPU,Pragma CPP_Virtual,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-cpp-vtable}@anchor{4c}
@section Pragma CPP_Vtable
@geindex Interfacing with C++
This pragma is now obsolete and, other than generating a warning if warnings
on obsolescent features are enabled, is completely ignored.
It used to be required to ensure compatibility with C++, but
is no longer required for that purpose because GNAT generates
the same object layout as the G++ compiler by default.
See @ref{49,,Interfacing to C++} for related information.
@node Pragma CPU,Pragma Deadline_Floor,Pragma CPP_Vtable,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-cpu}@anchor{4d}
@section Pragma CPU
Syntax:
@example
pragma CPU (EXPRESSION);
@end example
This pragma is standard in Ada 2012, but is available in all earlier
versions of Ada as an implementation-defined pragma.
See Ada 2012 Reference Manual for details.
@node Pragma Deadline_Floor,Pragma Debug,Pragma CPU,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-deadline-floor}@anchor{4e}
@section Pragma Deadline_Floor
Syntax:
@example
pragma Deadline_Floor (time_span_EXPRESSION);
@end example
This pragma applies only to protected types and specifies the floor
deadline inherited by a task when the task enters a protected object.
It is effective only when the EDF scheduling policy is used.
@node Pragma Debug,Pragma Debug_Policy,Pragma Deadline_Floor,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-debug}@anchor{4f}
@section Pragma Debug
Syntax:
@example
pragma Debug ([CONDITION, ]PROCEDURE_CALL_WITHOUT_SEMICOLON);
PROCEDURE_CALL_WITHOUT_SEMICOLON ::=
PROCEDURE_NAME
| PROCEDURE_PREFIX ACTUAL_PARAMETER_PART
@end example
The procedure call argument has the syntactic form of an expression, meeting
the syntactic requirements for pragmas.
If debug pragmas are not enabled or if the condition is present and evaluates
to False, this pragma has no effect. If debug pragmas are enabled, the
semantics of the pragma is exactly equivalent to the procedure call statement
corresponding to the argument with a terminating semicolon. Pragmas are
permitted in sequences of declarations, so you can use pragma @code{Debug} to
intersperse calls to debug procedures in the middle of declarations. Debug
pragmas can be enabled either by use of the command line switch `-gnata'
or by use of the pragma @code{Check_Policy} with a first argument of
@code{Debug}.
@node Pragma Debug_Policy,Pragma Default_Initial_Condition,Pragma Debug,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-debug-policy}@anchor{50}
@section Pragma Debug_Policy
Syntax:
@example
pragma Debug_Policy (CHECK | DISABLE | IGNORE | ON | OFF);
@end example
This pragma is equivalent to a corresponding @code{Check_Policy} pragma
with a first argument of @code{Debug}. It is retained for historical
compatibility reasons.
@node Pragma Default_Initial_Condition,Pragma Default_Scalar_Storage_Order,Pragma Debug_Policy,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id9}@anchor{51}@anchor{gnat_rm/implementation_defined_pragmas pragma-default-initial-condition}@anchor{52}
@section Pragma Default_Initial_Condition
Syntax:
@example
pragma Default_Initial_Condition [ (null | boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect
@code{Default_Initial_Condition} in the SPARK 2014 Reference Manual, section 7.3.3.
@node Pragma Default_Scalar_Storage_Order,Pragma Default_Storage_Pool,Pragma Default_Initial_Condition,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-default-scalar-storage-order}@anchor{53}
@section Pragma Default_Scalar_Storage_Order
@geindex Default_Scalar_Storage_Order
@geindex Scalar_Storage_Order
Syntax:
@example
pragma Default_Scalar_Storage_Order (High_Order_First | Low_Order_First);
@end example
Normally if no explicit @code{Scalar_Storage_Order} is given for a record
type or array type, then the scalar storage order defaults to the ordinary
default for the target. But this default may be overridden using this pragma.
The pragma may appear as a configuration pragma, or locally within a package
spec or declarative part. In the latter case, it applies to all subsequent
types declared within that package spec or declarative part.
The following example shows the use of this pragma:
@example
pragma Default_Scalar_Storage_Order (High_Order_First);
with System; use System;
package DSSO1 is
type H1 is record
a : Integer;
end record;
type L2 is record
a : Integer;
end record;
for L2'Scalar_Storage_Order use Low_Order_First;
type L2a is new L2;
package Inner is
type H3 is record
a : Integer;
end record;
pragma Default_Scalar_Storage_Order (Low_Order_First);
type L4 is record
a : Integer;
end record;
end Inner;
type H4a is new Inner.L4;
type H5 is record
a : Integer;
end record;
end DSSO1;
@end example
In this example record types with names starting with `L' have @cite{Low_Order_First} scalar
storage order, and record types with names starting with `H' have @code{High_Order_First}.
Note that in the case of @code{H4a}, the order is not inherited
from the parent type. Only an explicitly set @code{Scalar_Storage_Order}
gets inherited on type derivation.
If this pragma is used as a configuration pragma which appears within a
configuration pragma file (as opposed to appearing explicitly at the start
of a single unit), then the binder will require that all units in a partition
be compiled in a similar manner, other than run-time units, which are not
affected by this pragma. Note that the use of this form is discouraged because
it may significantly degrade the run-time performance of the software, instead
the default scalar storage order ought to be changed only on a local basis.
@node Pragma Default_Storage_Pool,Pragma Depends,Pragma Default_Scalar_Storage_Order,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-default-storage-pool}@anchor{54}
@section Pragma Default_Storage_Pool
@geindex Default_Storage_Pool
Syntax:
@example
pragma Default_Storage_Pool (storage_pool_NAME | null);
@end example
This pragma is standard in Ada 2012, but is available in all earlier
versions of Ada as an implementation-defined pragma.
See Ada 2012 Reference Manual for details.
@node Pragma Depends,Pragma Detect_Blocking,Pragma Default_Storage_Pool,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id10}@anchor{55}@anchor{gnat_rm/implementation_defined_pragmas pragma-depends}@anchor{56}
@section Pragma Depends
Syntax:
@example
pragma Depends (DEPENDENCY_RELATION);
DEPENDENCY_RELATION ::=
null
| (DEPENDENCY_CLAUSE @{, DEPENDENCY_CLAUSE@})
DEPENDENCY_CLAUSE ::=
OUTPUT_LIST =>[+] INPUT_LIST
| NULL_DEPENDENCY_CLAUSE
NULL_DEPENDENCY_CLAUSE ::= null => INPUT_LIST
OUTPUT_LIST ::= OUTPUT | (OUTPUT @{, OUTPUT@})
INPUT_LIST ::= null | INPUT | (INPUT @{, INPUT@})
OUTPUT ::= NAME | FUNCTION_RESULT
INPUT ::= NAME
where FUNCTION_RESULT is a function Result attribute_reference
@end example
For the semantics of this pragma, see the entry for aspect @code{Depends} in the
SPARK 2014 Reference Manual, section 6.1.5.
@node Pragma Detect_Blocking,Pragma Disable_Atomic_Synchronization,Pragma Depends,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-detect-blocking}@anchor{57}
@section Pragma Detect_Blocking
Syntax:
@example
pragma Detect_Blocking;
@end example
This is a standard pragma in Ada 2005, that is available in all earlier
versions of Ada as an implementation-defined pragma.
This is a configuration pragma that forces the detection of potentially
blocking operations within a protected operation, and to raise Program_Error
if that happens.
@node Pragma Disable_Atomic_Synchronization,Pragma Dispatching_Domain,Pragma Detect_Blocking,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-disable-atomic-synchronization}@anchor{58}
@section Pragma Disable_Atomic_Synchronization
@geindex Atomic Synchronization
Syntax:
@example
pragma Disable_Atomic_Synchronization [(Entity)];
@end example
Ada requires that accesses (reads or writes) of an atomic variable be
regarded as synchronization points in the case of multiple tasks.
Particularly in the case of multi-processors this may require special
handling, e.g. the generation of memory barriers. This capability may
be turned off using this pragma in cases where it is known not to be
required.
The placement and scope rules for this pragma are the same as those
for @code{pragma Suppress}. In particular it can be used as a
configuration pragma, or in a declaration sequence where it applies
till the end of the scope. If an @code{Entity} argument is present,
the action applies only to that entity.
@node Pragma Dispatching_Domain,Pragma Effective_Reads,Pragma Disable_Atomic_Synchronization,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-dispatching-domain}@anchor{59}
@section Pragma Dispatching_Domain
Syntax:
@example
pragma Dispatching_Domain (EXPRESSION);
@end example
This pragma is standard in Ada 2012, but is available in all earlier
versions of Ada as an implementation-defined pragma.
See Ada 2012 Reference Manual for details.
@node Pragma Effective_Reads,Pragma Effective_Writes,Pragma Dispatching_Domain,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id11}@anchor{5a}@anchor{gnat_rm/implementation_defined_pragmas pragma-effective-reads}@anchor{5b}
@section Pragma Effective_Reads
Syntax:
@example
pragma Effective_Reads [ (static_boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect @code{Effective_Reads} in
the SPARK 2014 Reference Manual, section 7.1.2.
@node Pragma Effective_Writes,Pragma Elaboration_Checks,Pragma Effective_Reads,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id12}@anchor{5c}@anchor{gnat_rm/implementation_defined_pragmas pragma-effective-writes}@anchor{5d}
@section Pragma Effective_Writes
Syntax:
@example
pragma Effective_Writes [ (static_boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect @code{Effective_Writes}
in the SPARK 2014 Reference Manual, section 7.1.2.
@node Pragma Elaboration_Checks,Pragma Eliminate,Pragma Effective_Writes,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-elaboration-checks}@anchor{5e}
@section Pragma Elaboration_Checks
@geindex Elaboration control
Syntax:
@example
pragma Elaboration_Checks (Dynamic | Static);
@end example
This is a configuration pragma which specifies the elaboration model to be
used during compilation. For more information on the elaboration models of
GNAT, consult the chapter on elaboration order handling in the `GNAT User’s
Guide'.
The pragma may appear in the following contexts:
@itemize *
@item
Configuration pragmas file
@item
Prior to the context clauses of a compilation unit’s initial declaration
@end itemize
Any other placement of the pragma will result in a warning and the effects of
the offending pragma will be ignored.
If the pragma argument is @code{Dynamic}, then the dynamic elaboration model is in
effect. If the pragma argument is @code{Static}, then the static elaboration model
is in effect.
@node Pragma Eliminate,Pragma Enable_Atomic_Synchronization,Pragma Elaboration_Checks,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-eliminate}@anchor{5f}
@section Pragma Eliminate
@geindex Elimination of unused subprograms
Syntax:
@example
pragma Eliminate (
[ Unit_Name => ] IDENTIFIER | SELECTED_COMPONENT ,
[ Entity => ] IDENTIFIER |
SELECTED_COMPONENT |
STRING_LITERAL
[, Source_Location => SOURCE_TRACE ] );
SOURCE_TRACE ::= STRING_LITERAL
@end example
This pragma indicates that the given entity is not used in the program to be
compiled and built, thus allowing the compiler to
eliminate the code or data associated with the named entity. Any reference to
an eliminated entity causes a compile-time or link-time error.
The pragma has the following semantics, where @code{U} is the unit specified by
the @code{Unit_Name} argument and @code{E} is the entity specified by the @code{Entity}
argument:
@itemize *
@item
@code{E} must be a subprogram that is explicitly declared either:
@itemize *
@item
Within @code{U}, or
@item
Within a generic package that is instantiated in @code{U}, or
@item
As an instance of generic subprogram instantiated in @code{U}.
@end itemize
Otherwise the pragma is ignored.
@item
If @code{E} is overloaded within @code{U} then, in the absence of a
@code{Source_Location} argument, all overloadings are eliminated.
@item
If @code{E} is overloaded within @code{U} and only some overloadings
are to be eliminated, then each overloading to be eliminated
must be specified in a corresponding pragma @code{Eliminate}
with a @code{Source_Location} argument identifying the line where the
declaration appears, as described below.
@item
If @code{E} is declared as the result of a generic instantiation, then
a @code{Source_Location} argument is needed, as described below.
@end itemize
Pragma @code{Eliminate} allows a program to be compiled in a system-independent
manner, so that unused entities are eliminated but without
needing to modify the source text. Normally the required set of
@code{Eliminate} pragmas is constructed automatically using the @code{gnatelim} tool.
Any source file change that removes, splits, or
adds lines may make the set of @code{Eliminate} pragmas invalid because their
@code{Source_Location} argument values may get out of date.
Pragma @code{Eliminate} may be used where the referenced entity is a dispatching
operation. In this case all the subprograms to which the given operation can
dispatch are considered to be unused (are never called as a result of a direct
or a dispatching call).
The string literal given for the source location specifies the line number
of the declaration of the entity, using the following syntax for @code{SOURCE_TRACE}:
@example
SOURCE_TRACE ::= SOURCE_REFERENCE [ LBRACKET SOURCE_TRACE RBRACKET ]
LBRACKET ::= '['
RBRACKET ::= ']'
SOURCE_REFERENCE ::= FILE_NAME : LINE_NUMBER
LINE_NUMBER ::= DIGIT @{DIGIT@}
@end example
Spaces around the colon in a @code{SOURCE_REFERENCE} are optional.
The source trace that is given as the @code{Source_Location} must obey the
following rules (or else the pragma is ignored), where @code{U} is
the unit @code{U} specified by the @code{Unit_Name} argument and @code{E} is the
subprogram specified by the @code{Entity} argument:
@itemize *
@item
@code{FILE_NAME} is the short name (with no directory
information) of the Ada source file for @code{U}, using the required syntax
for the underlying file system (e.g. case is significant if the underlying
operating system is case sensitive).
If @code{U} is a package and @code{E} is a subprogram declared in the package
specification and its full declaration appears in the package body,
then the relevant source file is the one for the package specification;
analogously if @code{U} is a generic package.
@item
If @code{E} is not declared in a generic instantiation (this includes
generic subprogram instances), the source trace includes only one source
line reference. @code{LINE_NUMBER} gives the line number of the occurrence
of the declaration of @code{E} within the source file (as a decimal literal
without an exponent or point).
@item
If @code{E} is declared by a generic instantiation, its source trace
(from left to right) starts with the source location of the
declaration of @code{E} in the generic unit and ends with the source
location of the instantiation, given in square brackets. This approach is
applied recursively with nested instantiations: the rightmost (nested
most deeply in square brackets) element of the source trace is the location
of the outermost instantiation, and the leftmost element (that is, outside
of any square brackets) is the location of the declaration of @code{E} in
the generic unit.
@end itemize
Examples:
@quotation
@example
pragma Eliminate (Pkg0, Proc);
-- Eliminate (all overloadings of) Proc in Pkg0
pragma Eliminate (Pkg1, Proc,
Source_Location => "pkg1.ads:8");
-- Eliminate overloading of Proc at line 8 in pkg1.ads
-- Assume the following file contents:
-- gen_pkg.ads
-- 1: generic
-- 2: type T is private;
-- 3: package Gen_Pkg is
-- 4: procedure Proc(N : T);
-- ... ...
-- ... end Gen_Pkg;
--
-- q.adb
-- 1: with Gen_Pkg;
-- 2: procedure Q is
-- 3: package Inst_Pkg is new Gen_Pkg(Integer);
-- ... -- No calls on Inst_Pkg.Proc
-- ... end Q;
-- The following pragma eliminates Inst_Pkg.Proc from Q
pragma Eliminate (Q, Proc,
Source_Location => "gen_pkg.ads:4[q.adb:3]");
@end example
@end quotation
@node Pragma Enable_Atomic_Synchronization,Pragma Exceptional_Cases,Pragma Eliminate,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-enable-atomic-synchronization}@anchor{60}
@section Pragma Enable_Atomic_Synchronization
@geindex Atomic Synchronization
Syntax:
@example
pragma Enable_Atomic_Synchronization [(Entity)];
@end example
Ada requires that accesses (reads or writes) of an atomic variable be
regarded as synchronization points in the case of multiple tasks.
Particularly in the case of multi-processors this may require special
handling, e.g. the generation of memory barriers. This synchronization
is performed by default, but can be turned off using
@code{pragma Disable_Atomic_Synchronization}. The
@code{Enable_Atomic_Synchronization} pragma can be used to turn
it back on.
The placement and scope rules for this pragma are the same as those
for @code{pragma Unsuppress}. In particular it can be used as a
configuration pragma, or in a declaration sequence where it applies
till the end of the scope. If an @code{Entity} argument is present,
the action applies only to that entity.
@node Pragma Exceptional_Cases,Pragma Export_Function,Pragma Enable_Atomic_Synchronization,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-exceptional-cases}@anchor{61}
@section Pragma Exceptional_Cases
@geindex Exceptional_Cases
Syntax:
@example
pragma Exceptional_Cases (EXCEPTIONAL_CASE_LIST);
EXCEPTIONAL_CASE_LIST ::= EXCEPTIONAL_CASE @{, EXCEPTIONAL_CASE@}
EXCEPTIONAL_CASE ::= exception_choice @{'|' exception_choice@} => CONSEQUENCE
CONSEQUENCE ::= Boolean_expression
@end example
For the semantics of this aspect, see the SPARK 2014 Reference Manual, section
6.1.9.
@node Pragma Export_Function,Pragma Export_Object,Pragma Exceptional_Cases,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-export-function}@anchor{62}
@section Pragma Export_Function
@geindex Argument passing mechanisms
Syntax:
@example
pragma Export_Function (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] result_SUBTYPE_MARK]
[, [Mechanism =>] MECHANISM]
[, [Result_Mechanism =>] MECHANISM_NAME]);
EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION
| ""
PARAMETER_TYPES ::=
null
| TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
TYPE_DESIGNATOR ::=
subtype_NAME
| subtype_Name ' Access
MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME
MECHANISM_NAME ::= Value | Reference
@end example
Use this pragma to make a function externally callable and optionally
provide information on mechanisms to be used for passing parameter and
result values. We recommend, for the purposes of improving portability,
this pragma always be used in conjunction with a separate pragma
@code{Export}, which must precede the pragma @code{Export_Function}.
GNAT does not require a separate pragma @code{Export}, but if none is
present, @code{Convention Ada} is assumed, which is usually
not what is wanted, so it is usually appropriate to use this
pragma in conjunction with a @code{Export} or @code{Convention}
pragma that specifies the desired foreign convention.
Pragma @code{Export_Function}
(and @code{Export}, if present) must appear in the same declarative
region as the function to which they apply.
The @code{internal_name} must uniquely designate the function to which the
pragma applies. If more than one function name exists of this name in
the declarative part you must use the @code{Parameter_Types} and
@code{Result_Type} parameters to achieve the required
unique designation. The @cite{subtype_mark}s in these parameters must
exactly match the subtypes in the corresponding function specification,
using positional notation to match parameters with subtype marks.
The form with an @code{'Access} attribute can be used to match an
anonymous access parameter.
@geindex Suppressing external name
Special treatment is given if the EXTERNAL is an explicit null
string or a static string expressions that evaluates to the null
string. In this case, no external name is generated. This form
still allows the specification of parameter mechanisms.
@node Pragma Export_Object,Pragma Export_Procedure,Pragma Export_Function,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-export-object}@anchor{63}
@section Pragma Export_Object
Syntax:
@example
pragma Export_Object (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);
EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION
@end example
This pragma designates an object as exported, and apart from the
extended rules for external symbols, is identical in effect to the use of
the normal @code{Export} pragma applied to an object. You may use a
separate Export pragma (and you probably should from the point of view
of portability), but it is not required. @code{Size} is syntax checked,
but otherwise ignored by GNAT.
@node Pragma Export_Procedure,Pragma Export_Valued_Procedure,Pragma Export_Object,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-export-procedure}@anchor{64}
@section Pragma Export_Procedure
Syntax:
@example
pragma Export_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);
EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION
| ""
PARAMETER_TYPES ::=
null
| TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
TYPE_DESIGNATOR ::=
subtype_NAME
| subtype_Name ' Access
MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME
MECHANISM_NAME ::= Value | Reference
@end example
This pragma is identical to @code{Export_Function} except that it
applies to a procedure rather than a function and the parameters
@code{Result_Type} and @code{Result_Mechanism} are not permitted.
GNAT does not require a separate pragma @code{Export}, but if none is
present, @code{Convention Ada} is assumed, which is usually
not what is wanted, so it is usually appropriate to use this
pragma in conjunction with a @code{Export} or @code{Convention}
pragma that specifies the desired foreign convention.
@geindex Suppressing external name
Special treatment is given if the EXTERNAL is an explicit null
string or a static string expressions that evaluates to the null
string. In this case, no external name is generated. This form
still allows the specification of parameter mechanisms.
@node Pragma Export_Valued_Procedure,Pragma Extend_System,Pragma Export_Procedure,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-export-valued-procedure}@anchor{65}
@section Pragma Export_Valued_Procedure
Syntax:
@example
pragma Export_Valued_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);
EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION
| ""
PARAMETER_TYPES ::=
null
| TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
TYPE_DESIGNATOR ::=
subtype_NAME
| subtype_Name ' Access
MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME
MECHANISM_NAME ::= Value | Reference
@end example
This pragma is identical to @code{Export_Procedure} except that the
first parameter of @code{LOCAL_NAME}, which must be present, must be of
mode @code{out}, and externally the subprogram is treated as a function
with this parameter as the result of the function. GNAT provides for
this capability to allow the use of @code{out} and @code{in out}
parameters in interfacing to external functions (which are not permitted
in Ada functions).
GNAT does not require a separate pragma @code{Export}, but if none is
present, @code{Convention Ada} is assumed, which is almost certainly
not what is wanted since the whole point of this pragma is to interface
with foreign language functions, so it is usually appropriate to use this
pragma in conjunction with a @code{Export} or @code{Convention}
pragma that specifies the desired foreign convention.
@geindex Suppressing external name
Special treatment is given if the EXTERNAL is an explicit null
string or a static string expressions that evaluates to the null
string. In this case, no external name is generated. This form
still allows the specification of parameter mechanisms.
@node Pragma Extend_System,Pragma Extensions_Allowed,Pragma Export_Valued_Procedure,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-extend-system}@anchor{66}
@section Pragma Extend_System
@geindex System
@geindex extending
@geindex DEC Ada 83
Syntax:
@example
pragma Extend_System ([Name =>] IDENTIFIER);
@end example
This pragma is used to provide backwards compatibility with other
implementations that extend the facilities of package @code{System}. In
GNAT, @code{System} contains only the definitions that are present in
the Ada RM. However, other implementations, notably the DEC Ada 83
implementation, provide many extensions to package @code{System}.
For each such implementation accommodated by this pragma, GNAT provides a
package @code{Aux_@var{xxx}}, e.g., @code{Aux_DEC} for the DEC Ada 83
implementation, which provides the required additional definitions. You
can use this package in two ways. You can @code{with} it in the normal
way and access entities either by selection or using a @code{use}
clause. In this case no special processing is required.
However, if existing code contains references such as
@code{System.@var{xxx}} where `xxx' is an entity in the extended
definitions provided in package @code{System}, you may use this pragma
to extend visibility in @code{System} in a non-standard way that
provides greater compatibility with the existing code. Pragma
@code{Extend_System} is a configuration pragma whose single argument is
the name of the package containing the extended definition
(e.g., @code{Aux_DEC} for the DEC Ada case). A unit compiled under
control of this pragma will be processed using special visibility
processing that looks in package @code{System.Aux_@var{xxx}} where
@code{Aux_@var{xxx}} is the pragma argument for any entity referenced in
package @code{System}, but not found in package @code{System}.
You can use this pragma either to access a predefined @code{System}
extension supplied with the compiler, for example @code{Aux_DEC} or
you can construct your own extension unit following the above
definition. Note that such a package is a child of @code{System}
and thus is considered part of the implementation.
To compile it you will have to use the `-gnatg' switch
for compiling System units, as explained in the
GNAT User’s Guide.
@node Pragma Extensions_Allowed,Pragma Extensions_Visible,Pragma Extend_System,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id13}@anchor{67}@anchor{gnat_rm/implementation_defined_pragmas pragma-extensions-allowed}@anchor{68}
@section Pragma Extensions_Allowed
@geindex Ada Extensions
@geindex GNAT Extensions
Syntax:
@example
pragma Extensions_Allowed (On | Off | All_Extensions);
@end example
This configuration pragma enables (via the “On” or “All_Extensions” argument)
or disables (via the “Off” argument) the implementation extension mode; the
pragma takes precedence over the @code{-gnatX} and @code{-gnatX0} command switches.
If an argument of @code{"On"} is specified, the latest version of the Ada language
is implemented (currently Ada 2022) and, in addition, a curated set of GNAT
specific extensions are recognized. (See the list here
@ref{69,,here})
An argument of @code{"All_Extensions"} has the same effect except that some extra
experimental extensions are enabled (See the list here
@ref{6a,,here})
@node Pragma Extensions_Visible,Pragma External,Pragma Extensions_Allowed,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id14}@anchor{6b}@anchor{gnat_rm/implementation_defined_pragmas pragma-extensions-visible}@anchor{6c}
@section Pragma Extensions_Visible
Syntax:
@example
pragma Extensions_Visible [ (static_boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect @code{Extensions_Visible}
in the SPARK 2014 Reference Manual, section 6.1.7.
@node Pragma External,Pragma External_Name_Casing,Pragma Extensions_Visible,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-external}@anchor{6d}
@section Pragma External
Syntax:
@example
pragma External (
[ Convention =>] convention_IDENTIFIER,
[ Entity =>] LOCAL_NAME
[, [External_Name =>] static_string_EXPRESSION ]
[, [Link_Name =>] static_string_EXPRESSION ]);
@end example
This pragma is identical in syntax and semantics to pragma
@code{Export} as defined in the Ada Reference Manual. It is
provided for compatibility with some Ada 83 compilers that
used this pragma for exactly the same purposes as pragma
@code{Export} before the latter was standardized.
@node Pragma External_Name_Casing,Pragma Fast_Math,Pragma External,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-external-name-casing}@anchor{6e}
@section Pragma External_Name_Casing
@geindex Dec Ada 83 casing compatibility
@geindex External Names
@geindex casing
@geindex Casing of External names
Syntax:
@example
pragma External_Name_Casing (
Uppercase | Lowercase
[, Uppercase | Lowercase | As_Is]);
@end example
This pragma provides control over the casing of external names associated
with Import and Export pragmas. There are two cases to consider:
@itemize *
@item
Implicit external names
Implicit external names are derived from identifiers. The most common case
arises when a standard Ada Import or Export pragma is used with only two
arguments, as in:
@example
pragma Import (C, C_Routine);
@end example
Since Ada is a case-insensitive language, the spelling of the identifier in
the Ada source program does not provide any information on the desired
casing of the external name, and so a convention is needed. In GNAT the
default treatment is that such names are converted to all lower case
letters. This corresponds to the normal C style in many environments.
The first argument of pragma @code{External_Name_Casing} can be used to
control this treatment. If @code{Uppercase} is specified, then the name
will be forced to all uppercase letters. If @code{Lowercase} is specified,
then the normal default of all lower case letters will be used.
This same implicit treatment is also used in the case of extended DEC Ada 83
compatible Import and Export pragmas where an external name is explicitly
specified using an identifier rather than a string.
@item
Explicit external names
Explicit external names are given as string literals. The most common case
arises when a standard Ada Import or Export pragma is used with three
arguments, as in:
@example
pragma Import (C, C_Routine, "C_routine");
@end example
In this case, the string literal normally provides the exact casing required
for the external name. The second argument of pragma
@code{External_Name_Casing} may be used to modify this behavior.
If @code{Uppercase} is specified, then the name
will be forced to all uppercase letters. If @code{Lowercase} is specified,
then the name will be forced to all lowercase letters. A specification of
@code{As_Is} provides the normal default behavior in which the casing is
taken from the string provided.
@end itemize
This pragma may appear anywhere that a pragma is valid. In particular, it
can be used as a configuration pragma in the @code{gnat.adc} file, in which
case it applies to all subsequent compilations, or it can be used as a program
unit pragma, in which case it only applies to the current unit, or it can
be used more locally to control individual Import/Export pragmas.
It was primarily intended for use with OpenVMS systems, where many
compilers convert all symbols to upper case by default. For interfacing to
such compilers (e.g., the DEC C compiler), it may be convenient to use
the pragma:
@example
pragma External_Name_Casing (Uppercase, Uppercase);
@end example
to enforce the upper casing of all external symbols.
@node Pragma Fast_Math,Pragma Favor_Top_Level,Pragma External_Name_Casing,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-fast-math}@anchor{6f}
@section Pragma Fast_Math
Syntax:
@example
pragma Fast_Math;
@end example
This is a configuration pragma which activates a mode in which speed is
considered more important for floating-point operations than absolutely
accurate adherence to the requirements of the standard. Currently the
following operations are affected:
@table @asis
@item `Complex Multiplication'
The normal simple formula for complex multiplication can result in intermediate
overflows for numbers near the end of the range. The Ada standard requires that
this situation be detected and corrected by scaling, but in Fast_Math mode such
cases will simply result in overflow. Note that to take advantage of this you
must instantiate your own version of @code{Ada.Numerics.Generic_Complex_Types}
under control of the pragma, rather than use the preinstantiated versions.
@end table
@node Pragma Favor_Top_Level,Pragma Finalize_Storage_Only,Pragma Fast_Math,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id15}@anchor{70}@anchor{gnat_rm/implementation_defined_pragmas pragma-favor-top-level}@anchor{71}
@section Pragma Favor_Top_Level
Syntax:
@example
pragma Favor_Top_Level (type_LOCAL_NAME);
@end example
The argument of pragma @code{Favor_Top_Level} must be a named access-to-subprogram
type. This pragma is an efficiency hint to the compiler, regarding the use of
@code{'Access} or @code{'Unrestricted_Access} on nested (non-library-level) subprograms.
The pragma means that nested subprograms are not used with this type, or are
rare, so that the generated code should be efficient in the top-level case.
When this pragma is used, dynamically generated trampolines may be used on some
targets for nested subprograms. See restriction @code{No_Implicit_Dynamic_Code}.
@node Pragma Finalize_Storage_Only,Pragma Float_Representation,Pragma Favor_Top_Level,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-finalize-storage-only}@anchor{72}
@section Pragma Finalize_Storage_Only
Syntax:
@example
pragma Finalize_Storage_Only (first_subtype_LOCAL_NAME);
@end example
The argument of pragma @code{Finalize_Storage_Only} must denote a local type which
is derived from @code{Ada.Finalization.Controlled} or @code{Limited_Controlled}. The
pragma suppresses the call to @code{Finalize} for declared library-level objects
of the argument type. This is mostly useful for types where finalization is
only used to deal with storage reclamation since in most environments it is
not necessary to reclaim memory just before terminating execution, hence the
name. Note that this pragma does not suppress Finalize calls for library-level
heap-allocated objects (see pragma @code{No_Heap_Finalization}).
@node Pragma Float_Representation,Pragma Ghost,Pragma Finalize_Storage_Only,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-float-representation}@anchor{73}
@section Pragma Float_Representation
Syntax:
@example
pragma Float_Representation (FLOAT_REP[, float_type_LOCAL_NAME]);
FLOAT_REP ::= VAX_Float | IEEE_Float
@end example
In the one argument form, this pragma is a configuration pragma which
allows control over the internal representation chosen for the predefined
floating point types declared in the packages @code{Standard} and
@code{System}. This pragma is only provided for compatibility and has no effect.
The two argument form specifies the representation to be used for
the specified floating-point type. The argument must
be @code{IEEE_Float} to specify the use of IEEE format, as follows:
@itemize *
@item
For a digits value of 6, 32-bit IEEE short format will be used.
@item
For a digits value of 15, 64-bit IEEE long format will be used.
@item
No other value of digits is permitted.
@end itemize
@node Pragma Ghost,Pragma Global,Pragma Float_Representation,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id16}@anchor{74}@anchor{gnat_rm/implementation_defined_pragmas pragma-ghost}@anchor{75}
@section Pragma Ghost
Syntax:
@example
pragma Ghost [ (static_boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect @code{Ghost} in the SPARK
2014 Reference Manual, section 6.9.
@node Pragma Global,Pragma Ident,Pragma Ghost,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id17}@anchor{76}@anchor{gnat_rm/implementation_defined_pragmas pragma-global}@anchor{77}
@section Pragma Global
Syntax:
@example
pragma Global (GLOBAL_SPECIFICATION);
GLOBAL_SPECIFICATION ::=
null
| (GLOBAL_LIST)
| (MODED_GLOBAL_LIST @{, MODED_GLOBAL_LIST@})
MODED_GLOBAL_LIST ::= MODE_SELECTOR => GLOBAL_LIST
MODE_SELECTOR ::= In_Out | Input | Output | Proof_In
GLOBAL_LIST ::= GLOBAL_ITEM | (GLOBAL_ITEM @{, GLOBAL_ITEM@})
GLOBAL_ITEM ::= NAME
@end example
For the semantics of this pragma, see the entry for aspect @code{Global} in the
SPARK 2014 Reference Manual, section 6.1.4.
@node Pragma Ident,Pragma Ignore_Pragma,Pragma Global,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-ident}@anchor{78}
@section Pragma Ident
Syntax:
@example
pragma Ident (static_string_EXPRESSION);
@end example
This pragma is identical in effect to pragma @code{Comment}. It is provided
for compatibility with other Ada compilers providing this pragma.
@node Pragma Ignore_Pragma,Pragma Implementation_Defined,Pragma Ident,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-ignore-pragma}@anchor{79}
@section Pragma Ignore_Pragma
Syntax:
@example
pragma Ignore_Pragma (pragma_IDENTIFIER);
@end example
This is a configuration pragma
that takes a single argument that is a simple identifier. Any subsequent
use of a pragma whose pragma identifier matches this argument will be
silently ignored. Any preceding use of a pragma whose pragma identifier
matches this argument will be parsed and then ignored.
This may be useful when legacy code or code intended
for compilation with some other compiler contains pragmas that match the
name, but not the exact implementation, of a GNAT pragma. The use of this
pragma allows such pragmas to be ignored, which may be useful in CodePeer
mode, or during porting of legacy code.
@node Pragma Implementation_Defined,Pragma Implemented,Pragma Ignore_Pragma,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-implementation-defined}@anchor{7a}
@section Pragma Implementation_Defined
Syntax:
@example
pragma Implementation_Defined (local_NAME);
@end example
This pragma marks a previously declared entity as implementation-defined.
For an overloaded entity, applies to the most recent homonym.
@example
pragma Implementation_Defined;
@end example
The form with no arguments appears anywhere within a scope, most
typically a package spec, and indicates that all entities that are
defined within the package spec are Implementation_Defined.
This pragma is used within the GNAT runtime library to identify
implementation-defined entities introduced in language-defined units,
for the purpose of implementing the No_Implementation_Identifiers
restriction.
@node Pragma Implemented,Pragma Implicit_Packing,Pragma Implementation_Defined,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-implemented}@anchor{7b}
@section Pragma Implemented
Syntax:
@example
pragma Implemented (procedure_LOCAL_NAME, implementation_kind);
implementation_kind ::= By_Entry | By_Protected_Procedure | By_Any
@end example
This is an Ada 2012 representation pragma which applies to protected, task
and synchronized interface primitives. The use of pragma Implemented provides
a way to impose a static requirement on the overriding operation by adhering
to one of the three implementation kinds: entry, protected procedure or any of
the above. This pragma is available in all earlier versions of Ada as an
implementation-defined pragma.
@example
type Synch_Iface is synchronized interface;
procedure Prim_Op (Obj : in out Iface) is abstract;
pragma Implemented (Prim_Op, By_Protected_Procedure);
protected type Prot_1 is new Synch_Iface with
procedure Prim_Op; -- Legal
end Prot_1;
protected type Prot_2 is new Synch_Iface with
entry Prim_Op; -- Illegal
end Prot_2;
task type Task_Typ is new Synch_Iface with
entry Prim_Op; -- Illegal
end Task_Typ;
@end example
When applied to the procedure_or_entry_NAME of a requeue statement, pragma
Implemented determines the runtime behavior of the requeue. Implementation kind
By_Entry guarantees that the action of requeueing will proceed from an entry to
another entry. Implementation kind By_Protected_Procedure transforms the
requeue into a dispatching call, thus eliminating the chance of blocking. Kind
By_Any shares the behavior of By_Entry and By_Protected_Procedure depending on
the target’s overriding subprogram kind.
@node Pragma Implicit_Packing,Pragma Import_Function,Pragma Implemented,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-implicit-packing}@anchor{7c}
@section Pragma Implicit_Packing
@geindex Rational Profile
Syntax:
@example
pragma Implicit_Packing;
@end example
This is a configuration pragma that requests implicit packing for packed
arrays for which a size clause is given but no explicit pragma Pack or
specification of Component_Size is present. It also applies to records
where no record representation clause is present. Consider this example:
@example
type R is array (0 .. 7) of Boolean;
for R'Size use 8;
@end example
In accordance with the recommendation in the RM (RM 13.3(53)), a Size clause
does not change the layout of a composite object. So the Size clause in the
above example is normally rejected, since the default layout of the array uses
8-bit components, and thus the array requires a minimum of 64 bits.
If this declaration is compiled in a region of code covered by an occurrence
of the configuration pragma Implicit_Packing, then the Size clause in this
and similar examples will cause implicit packing and thus be accepted. For
this implicit packing to occur, the type in question must be an array of small
components whose size is known at compile time, and the Size clause must
specify the exact size that corresponds to the number of elements in the array
multiplied by the size in bits of the component type (both single and
multi-dimensioned arrays can be controlled with this pragma).
@geindex Array packing
Similarly, the following example shows the use in the record case
@example
type r is record
a, b, c, d, e, f, g, h : boolean;
chr : character;
end record;
for r'size use 16;
@end example
Without a pragma Pack, each Boolean field requires 8 bits, so the
minimum size is 72 bits, but with a pragma Pack, 16 bits would be
sufficient. The use of pragma Implicit_Packing allows this record
declaration to compile without an explicit pragma Pack.
@node Pragma Import_Function,Pragma Import_Object,Pragma Implicit_Packing,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-import-function}@anchor{7d}
@section Pragma Import_Function
Syntax:
@example
pragma Import_Function (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] SUBTYPE_MARK]
[, [Mechanism =>] MECHANISM]
[, [Result_Mechanism =>] MECHANISM_NAME]);
EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION
PARAMETER_TYPES ::=
null
| TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
TYPE_DESIGNATOR ::=
subtype_NAME
| subtype_Name ' Access
MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME
MECHANISM_NAME ::=
Value
| Reference
@end example
This pragma is used in conjunction with a pragma @code{Import} to
specify additional information for an imported function. The pragma
@code{Import} (or equivalent pragma @code{Interface}) must precede the
@code{Import_Function} pragma and both must appear in the same
declarative part as the function specification.
The @code{Internal} argument must uniquely designate
the function to which the
pragma applies. If more than one function name exists of this name in
the declarative part you must use the @code{Parameter_Types} and
@code{Result_Type} parameters to achieve the required unique
designation. Subtype marks in these parameters must exactly match the
subtypes in the corresponding function specification, using positional
notation to match parameters with subtype marks.
The form with an @code{'Access} attribute can be used to match an
anonymous access parameter.
You may optionally use the @code{Mechanism} and @code{Result_Mechanism}
parameters to specify passing mechanisms for the
parameters and result. If you specify a single mechanism name, it
applies to all parameters. Otherwise you may specify a mechanism on a
parameter by parameter basis using either positional or named
notation. If the mechanism is not specified, the default mechanism
is used.
@node Pragma Import_Object,Pragma Import_Procedure,Pragma Import_Function,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-import-object}@anchor{7e}
@section Pragma Import_Object
Syntax:
@example
pragma Import_Object (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);
EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION
@end example
This pragma designates an object as imported, and apart from the
extended rules for external symbols, is identical in effect to the use of
the normal @code{Import} pragma applied to an object. Unlike the
subprogram case, you need not use a separate @code{Import} pragma,
although you may do so (and probably should do so from a portability
point of view). @code{size} is syntax checked, but otherwise ignored by
GNAT.
@node Pragma Import_Procedure,Pragma Import_Valued_Procedure,Pragma Import_Object,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-import-procedure}@anchor{7f}
@section Pragma Import_Procedure
Syntax:
@example
pragma Import_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);
EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION
PARAMETER_TYPES ::=
null
| TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
TYPE_DESIGNATOR ::=
subtype_NAME
| subtype_Name ' Access
MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME
MECHANISM_NAME ::= Value | Reference
@end example
This pragma is identical to @code{Import_Function} except that it
applies to a procedure rather than a function and the parameters
@code{Result_Type} and @code{Result_Mechanism} are not permitted.
@node Pragma Import_Valued_Procedure,Pragma Independent,Pragma Import_Procedure,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-import-valued-procedure}@anchor{80}
@section Pragma Import_Valued_Procedure
Syntax:
@example
pragma Import_Valued_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);
EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION
PARAMETER_TYPES ::=
null
| TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
TYPE_DESIGNATOR ::=
subtype_NAME
| subtype_Name ' Access
MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME
MECHANISM_NAME ::= Value | Reference
@end example
This pragma is identical to @code{Import_Procedure} except that the
first parameter of @code{LOCAL_NAME}, which must be present, must be of
mode @code{out}, and externally the subprogram is treated as a function
with this parameter as the result of the function. The purpose of this
capability is to allow the use of @code{out} and @code{in out}
parameters in interfacing to external functions (which are not permitted
in Ada functions). You may optionally use the @code{Mechanism}
parameters to specify passing mechanisms for the parameters.
If you specify a single mechanism name, it applies to all parameters.
Otherwise you may specify a mechanism on a parameter by parameter
basis using either positional or named notation. If the mechanism is not
specified, the default mechanism is used.
Note that it is important to use this pragma in conjunction with a separate
pragma Import that specifies the desired convention, since otherwise the
default convention is Ada, which is almost certainly not what is required.
@node Pragma Independent,Pragma Independent_Components,Pragma Import_Valued_Procedure,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-independent}@anchor{81}
@section Pragma Independent
Syntax:
@example
pragma Independent (component_LOCAL_NAME);
@end example
This pragma is standard in Ada 2012 mode (which also provides an aspect
of the same name). It is also available as an implementation-defined
pragma in all earlier versions. It specifies that the
designated object or all objects of the designated type must be
independently addressable. This means that separate tasks can safely
manipulate such objects. For example, if two components of a record are
independent, then two separate tasks may access these two components.
This may place
constraints on the representation of the object (for instance prohibiting
tight packing).
@node Pragma Independent_Components,Pragma Initial_Condition,Pragma Independent,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-independent-components}@anchor{82}
@section Pragma Independent_Components
Syntax:
@example
pragma Independent_Components (Local_NAME);
@end example
This pragma is standard in Ada 2012 mode (which also provides an aspect
of the same name). It is also available as an implementation-defined
pragma in all earlier versions. It specifies that the components of the
designated object, or the components of each object of the designated
type, must be
independently addressable. This means that separate tasks can safely
manipulate separate components in the composite object. This may place
constraints on the representation of the object (for instance prohibiting
tight packing).
@node Pragma Initial_Condition,Pragma Initialize_Scalars,Pragma Independent_Components,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id18}@anchor{83}@anchor{gnat_rm/implementation_defined_pragmas pragma-initial-condition}@anchor{84}
@section Pragma Initial_Condition
Syntax:
@example
pragma Initial_Condition (boolean_EXPRESSION);
@end example
For the semantics of this pragma, see the entry for aspect @code{Initial_Condition}
in the SPARK 2014 Reference Manual, section 7.1.6.
@node Pragma Initialize_Scalars,Pragma Initializes,Pragma Initial_Condition,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-initialize-scalars}@anchor{85}
@section Pragma Initialize_Scalars
@geindex debugging with Initialize_Scalars
Syntax:
@example
pragma Initialize_Scalars
[ ( TYPE_VALUE_PAIR @{, TYPE_VALUE_PAIR@} ) ];
TYPE_VALUE_PAIR ::=
SCALAR_TYPE => static_EXPRESSION
SCALAR_TYPE :=
Short_Float
| Float
| Long_Float
| Long_Long_Flat
| Signed_8
| Signed_16
| Signed_32
| Signed_64
| Unsigned_8
| Unsigned_16
| Unsigned_32
| Unsigned_64
@end example
This pragma is similar to @code{Normalize_Scalars} conceptually but has two
important differences.
First, there is no requirement for the pragma to be used uniformly in all units
of a partition. In particular, it is fine to use this just for some or all of
the application units of a partition, without needing to recompile the run-time
library. In the case where some units are compiled with the pragma, and some
without, then a declaration of a variable where the type is defined in package
Standard or is locally declared will always be subject to initialization, as
will any declaration of a scalar variable. For composite variables, whether the
variable is initialized may also depend on whether the package in which the
type of the variable is declared is compiled with the pragma.
The other important difference is that the programmer can control the value
used for initializing scalar objects. This effect can be achieved in several
different ways:
@itemize *
@item
At compile time, the programmer can specify the invalid value for a
particular family of scalar types using the optional arguments of the pragma.
The compile-time approach is intended to optimize the generated code for the
pragma, by possibly using fast operations such as @code{memset}. Note that such
optimizations require using values where the bytes all have the same binary
representation.
@item
At bind time, the programmer has several options:
@itemize *
@item
Initialization with invalid values (similar to Normalize_Scalars, though
for Initialize_Scalars it is not always possible to determine the invalid
values in complex cases like signed component fields with nonstandard
sizes).
@item
Initialization with high values.
@item
Initialization with low values.
@item
Initialization with a specific bit pattern.
@end itemize
See the GNAT User’s Guide for binder options for specifying these cases.
The bind-time approach is intended to provide fast turnaround for testing
with different values, without having to recompile the program.
@item
At execution time, the programmer can specify the invalid values using an
environment variable. See the GNAT User’s Guide for details.
The execution-time approach is intended to provide fast turnaround for
testing with different values, without having to recompile and rebind the
program.
@end itemize
Note that pragma @code{Initialize_Scalars} is particularly useful in conjunction
with the enhanced validity checking that is now provided in GNAT, which checks
for invalid values under more conditions. Using this feature (see description
of the `-gnatV' flag in the GNAT User’s Guide) in conjunction with pragma
@code{Initialize_Scalars} provides a powerful new tool to assist in the detection
of problems caused by uninitialized variables.
Note: the use of @code{Initialize_Scalars} has a fairly extensive effect on the
generated code. This may cause your code to be substantially larger. It may
also cause an increase in the amount of stack required, so it is probably a
good idea to turn on stack checking (see description of stack checking in the
GNAT User’s Guide) when using this pragma.
@node Pragma Initializes,Pragma Inline_Always,Pragma Initialize_Scalars,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id19}@anchor{86}@anchor{gnat_rm/implementation_defined_pragmas pragma-initializes}@anchor{87}
@section Pragma Initializes
Syntax:
@example
pragma Initializes (INITIALIZATION_LIST);
INITIALIZATION_LIST ::=
null
| (INITIALIZATION_ITEM @{, INITIALIZATION_ITEM@})
INITIALIZATION_ITEM ::= name [=> INPUT_LIST]
INPUT_LIST ::=
null
| INPUT
| (INPUT @{, INPUT@})
INPUT ::= name
@end example
For the semantics of this pragma, see the entry for aspect @code{Initializes} in the
SPARK 2014 Reference Manual, section 7.1.5.
@node Pragma Inline_Always,Pragma Inline_Generic,Pragma Initializes,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id20}@anchor{88}@anchor{gnat_rm/implementation_defined_pragmas pragma-inline-always}@anchor{89}
@section Pragma Inline_Always
Syntax:
@example
pragma Inline_Always (NAME [, NAME]);
@end example
Similar to pragma @code{Inline} except that inlining is unconditional.
Inline_Always instructs the compiler to inline every direct call to the
subprogram or else to emit a compilation error, independently of any
option, in particular `-gnatn' or `-gnatN' or the optimization level.
It is an error to take the address or access of @code{NAME}. It is also an error to
apply this pragma to a primitive operation of a tagged type. Thanks to such
restrictions, the compiler is allowed to remove the out-of-line body of @code{NAME}.
@node Pragma Inline_Generic,Pragma Interface,Pragma Inline_Always,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-inline-generic}@anchor{8a}
@section Pragma Inline_Generic
Syntax:
@example
pragma Inline_Generic (GNAME @{, GNAME@});
GNAME ::= generic_unit_NAME | generic_instance_NAME
@end example
This pragma is provided for compatibility with Dec Ada 83. It has
no effect in GNAT (which always inlines generics), other
than to check that the given names are all names of generic units or
generic instances.
@node Pragma Interface,Pragma Interface_Name,Pragma Inline_Generic,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-interface}@anchor{8b}
@section Pragma Interface
Syntax:
@example
pragma Interface (
[Convention =>] convention_identifier,
[Entity =>] local_NAME
[, [External_Name =>] static_string_expression]
[, [Link_Name =>] static_string_expression]);
@end example
This pragma is identical in syntax and semantics to
the standard Ada pragma @code{Import}. It is provided for compatibility
with Ada 83. The definition is upwards compatible both with pragma
@code{Interface} as defined in the Ada 83 Reference Manual, and also
with some extended implementations of this pragma in certain Ada 83
implementations. The only difference between pragma @code{Interface}
and pragma @code{Import} is that there is special circuitry to allow
both pragmas to appear for the same subprogram entity (normally it
is illegal to have multiple @code{Import} pragmas). This is useful in
maintaining Ada 83/Ada 95 compatibility and is compatible with other
Ada 83 compilers.
@node Pragma Interface_Name,Pragma Interrupt_Handler,Pragma Interface,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-interface-name}@anchor{8c}
@section Pragma Interface_Name
Syntax:
@example
pragma Interface_Name (
[Entity =>] LOCAL_NAME
[, [External_Name =>] static_string_EXPRESSION]
[, [Link_Name =>] static_string_EXPRESSION]);
@end example
This pragma provides an alternative way of specifying the interface name
for an interfaced subprogram, and is provided for compatibility with Ada
83 compilers that use the pragma for this purpose. You must provide at
least one of @code{External_Name} or @code{Link_Name}.
@node Pragma Interrupt_Handler,Pragma Interrupt_State,Pragma Interface_Name,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-interrupt-handler}@anchor{8d}
@section Pragma Interrupt_Handler
Syntax:
@example
pragma Interrupt_Handler (procedure_LOCAL_NAME);
@end example
This program unit pragma is supported for parameterless protected procedures
as described in Annex C of the Ada Reference Manual.
@node Pragma Interrupt_State,Pragma Interrupts_System_By_Default,Pragma Interrupt_Handler,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-interrupt-state}@anchor{8e}
@section Pragma Interrupt_State
Syntax:
@example
pragma Interrupt_State
([Name =>] value,
[State =>] SYSTEM | RUNTIME | USER);
@end example
Normally certain interrupts are reserved to the implementation. Any attempt
to attach an interrupt causes Program_Error to be raised, as described in
RM C.3.2(22). A typical example is the @code{SIGINT} interrupt used in
many systems for an @code{Ctrl-C} interrupt. Normally this interrupt is
reserved to the implementation, so that @code{Ctrl-C} can be used to
interrupt execution. Additionally, signals such as @code{SIGSEGV},
@code{SIGABRT}, @code{SIGFPE} and @code{SIGILL} are often mapped to specific
Ada exceptions, or used to implement run-time functions such as the
@code{abort} statement and stack overflow checking.
Pragma @code{Interrupt_State} provides a general mechanism for overriding
such uses of interrupts. It subsumes the functionality of pragma
@code{Unreserve_All_Interrupts}. Pragma @code{Interrupt_State} is not
available on Windows. On all other platforms than VxWorks,
it applies to signals; on VxWorks, it applies to vectored hardware interrupts
and may be used to mark interrupts required by the board support package
as reserved.
Interrupts can be in one of three states:
@itemize *
@item
System
The interrupt is reserved (no Ada handler can be installed), and the
Ada run-time may not install a handler. As a result you are guaranteed
standard system default action if this interrupt is raised. This also allows
installing a low level handler via C APIs such as sigaction(), outside
of Ada control.
@item
Runtime
The interrupt is reserved (no Ada handler can be installed). The run time
is allowed to install a handler for internal control purposes, but is
not required to do so.
@item
User
The interrupt is unreserved. The user may install an Ada handler via
Ada.Interrupts and pragma Interrupt_Handler or Attach_Handler to provide
some other action.
@end itemize
These states are the allowed values of the @code{State} parameter of the
pragma. The @code{Name} parameter is a value of the type
@code{Ada.Interrupts.Interrupt_ID}. Typically, it is a name declared in
@code{Ada.Interrupts.Names}.
This is a configuration pragma, and the binder will check that there
are no inconsistencies between different units in a partition in how a
given interrupt is specified. It may appear anywhere a pragma is legal.
The effect is to move the interrupt to the specified state.
By declaring interrupts to be SYSTEM, you guarantee the standard system
action, such as a core dump.
By declaring interrupts to be USER, you guarantee that you can install
a handler.
Note that certain signals on many operating systems cannot be caught and
handled by applications. In such cases, the pragma is ignored. See the
operating system documentation, or the value of the array @code{Reserved}
declared in the spec of package @code{System.OS_Interface}.
Overriding the default state of signals used by the Ada runtime may interfere
with an application’s runtime behavior in the cases of the synchronous signals,
and in the case of the signal used to implement the @code{abort} statement.
@node Pragma Interrupts_System_By_Default,Pragma Invariant,Pragma Interrupt_State,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-interrupts-system-by-default}@anchor{8f}
@section Pragma Interrupts_System_By_Default
Syntax:
@example
pragma Interrupts_System_By_Default;
@end example
Default all interrupts to the System state as defined above in pragma
@code{Interrupt_State}. This is a configuration pragma.
@node Pragma Invariant,Pragma Keep_Names,Pragma Interrupts_System_By_Default,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id21}@anchor{90}@anchor{gnat_rm/implementation_defined_pragmas pragma-invariant}@anchor{91}
@section Pragma Invariant
Syntax:
@example
pragma Invariant
([Entity =>] private_type_LOCAL_NAME,
[Check =>] EXPRESSION
[,[Message =>] String_Expression]);
@end example
This pragma provides exactly the same capabilities as the Type_Invariant aspect
defined in AI05-0146-1, and in the Ada 2012 Reference Manual. The
Type_Invariant aspect is fully implemented in Ada 2012 mode, but since it
requires the use of the aspect syntax, which is not available except in 2012
mode, it is not possible to use the Type_Invariant aspect in earlier versions
of Ada. However the Invariant pragma may be used in any version of Ada. Also
note that the aspect Invariant is a synonym in GNAT for the aspect
Type_Invariant, but there is no pragma Type_Invariant.
The pragma must appear within the visible part of the package specification,
after the type to which its Entity argument appears. As with the Invariant
aspect, the Check expression is not analyzed until the end of the visible
part of the package, so it may contain forward references. The Message
argument, if present, provides the exception message used if the invariant
is violated. If no Message parameter is provided, a default message that
identifies the line on which the pragma appears is used.
It is permissible to have multiple Invariants for the same type entity, in
which case they are and’ed together. It is permissible to use this pragma
in Ada 2012 mode, but you cannot have both an invariant aspect and an
invariant pragma for the same entity.
For further details on the use of this pragma, see the Ada 2012 documentation
of the Type_Invariant aspect.
@node Pragma Keep_Names,Pragma License,Pragma Invariant,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-keep-names}@anchor{92}
@section Pragma Keep_Names
Syntax:
@example
pragma Keep_Names ([On =>] enumeration_first_subtype_LOCAL_NAME);
@end example
The @code{LOCAL_NAME} argument
must refer to an enumeration first subtype
in the current declarative part. The effect is to retain the enumeration
literal names for use by @code{Image} and @code{Value} even if a global
@code{Discard_Names} pragma applies. This is useful when you want to
generally suppress enumeration literal names and for example you therefore
use a @code{Discard_Names} pragma in the @code{gnat.adc} file, but you
want to retain the names for specific enumeration types.
@node Pragma License,Pragma Link_With,Pragma Keep_Names,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-license}@anchor{93}
@section Pragma License
@geindex License checking
Syntax:
@example
pragma License (Unrestricted | GPL | Modified_GPL | Restricted);
@end example
This pragma is provided to allow automated checking for appropriate license
conditions with respect to the standard and modified GPL. A pragma
@code{License}, which is a configuration pragma that typically appears at
the start of a source file or in a separate @code{gnat.adc} file, specifies
the licensing conditions of a unit as follows:
@itemize *
@item
Unrestricted
This is used for a unit that can be freely used with no license restrictions.
Examples of such units are public domain units, and units from the Ada
Reference Manual.
@item
GPL
This is used for a unit that is licensed under the unmodified GPL, and which
therefore cannot be @code{with}ed by a restricted unit.
@item
Modified_GPL
This is used for a unit licensed under the GNAT modified GPL that includes
a special exception paragraph that specifically permits the inclusion of
the unit in programs without requiring the entire program to be released
under the GPL.
@item
Restricted
This is used for a unit that is restricted in that it is not permitted to
depend on units that are licensed under the GPL. Typical examples are
proprietary code that is to be released under more restrictive license
conditions. Note that restricted units are permitted to @code{with} units
which are licensed under the modified GPL (this is the whole point of the
modified GPL).
@end itemize
Normally a unit with no @code{License} pragma is considered to have an
unknown license, and no checking is done. However, standard GNAT headers
are recognized, and license information is derived from them as follows.
A GNAT license header starts with a line containing 78 hyphens. The following
comment text is searched for the appearance of any of the following strings.
If the string ‘GNU General Public License’ is found, then the unit is assumed
to have GPL license, unless the string ‘As a special exception’ follows, in
which case the license is assumed to be modified GPL.
If one of the strings
‘This specification is adapted from the Ada Semantic Interface’ or
‘This specification is derived from the Ada Reference Manual’ is found
then the unit is assumed to be unrestricted.
These default actions means that a program with a restricted license pragma
will automatically get warnings if a GPL unit is inappropriately
@code{with}ed. For example, the program:
@example
with Sem_Ch3;
with GNAT.Sockets;
procedure Secret_Stuff is
...
end Secret_Stuff
@end example
if compiled with pragma @code{License} (@code{Restricted}) in a
@code{gnat.adc} file will generate the warning:
@example
1. with Sem_Ch3;
|
>>> license of withed unit "Sem_Ch3" is incompatible
2. with GNAT.Sockets;
3. procedure Secret_Stuff is
@end example
Here we get a warning on @code{Sem_Ch3} since it is part of the GNAT
compiler and is licensed under the
GPL, but no warning for @code{GNAT.Sockets} which is part of the GNAT
run time, and is therefore licensed under the modified GPL.
@node Pragma Link_With,Pragma Linker_Alias,Pragma License,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-link-with}@anchor{94}
@section Pragma Link_With
Syntax:
@example
pragma Link_With (static_string_EXPRESSION @{,static_string_EXPRESSION@});
@end example
This pragma is provided for compatibility with certain Ada 83 compilers.
It has exactly the same effect as pragma @code{Linker_Options} except
that spaces occurring within one of the string expressions are treated
as separators. For example, in the following case:
@example
pragma Link_With ("-labc -ldef");
@end example
results in passing the strings @code{-labc} and @code{-ldef} as two
separate arguments to the linker. In addition pragma Link_With allows
multiple arguments, with the same effect as successive pragmas.
@node Pragma Linker_Alias,Pragma Linker_Constructor,Pragma Link_With,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-linker-alias}@anchor{95}
@section Pragma Linker_Alias
Syntax:
@example
pragma Linker_Alias (
[Entity =>] LOCAL_NAME,
[Target =>] static_string_EXPRESSION);
@end example
@code{LOCAL_NAME} must refer to an object that is declared at the library
level. This pragma establishes the given entity as a linker alias for the
given target. It is equivalent to @code{__attribute__((alias))} in GNU C
and causes @code{LOCAL_NAME} to be emitted as an alias for the symbol
@code{static_string_EXPRESSION} in the object file, that is to say no space
is reserved for @code{LOCAL_NAME} by the assembler and it will be resolved
to the same address as @code{static_string_EXPRESSION} by the linker.
The actual linker name for the target must be used (e.g., the fully
encoded name with qualification in Ada, or the mangled name in C++),
or it must be declared using the C convention with @code{pragma Import}
or @code{pragma Export}.
Not all target machines support this pragma. On some of them it is accepted
only if @code{pragma Weak_External} has been applied to @code{LOCAL_NAME}.
@example
-- Example of the use of pragma Linker_Alias
package p is
i : Integer := 1;
pragma Export (C, i);
new_name_for_i : Integer;
pragma Linker_Alias (new_name_for_i, "i");
end p;
@end example
@node Pragma Linker_Constructor,Pragma Linker_Destructor,Pragma Linker_Alias,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-linker-constructor}@anchor{96}
@section Pragma Linker_Constructor
Syntax:
@example
pragma Linker_Constructor (procedure_LOCAL_NAME);
@end example
@code{procedure_LOCAL_NAME} must refer to a parameterless procedure that
is declared at the library level. A procedure to which this pragma is
applied will be treated as an initialization routine by the linker.
It is equivalent to @code{__attribute__((constructor))} in GNU C and
causes @code{procedure_LOCAL_NAME} to be invoked before the entry point
of the executable is called (or immediately after the shared library is
loaded if the procedure is linked in a shared library), in particular
before the Ada run-time environment is set up.
Because of these specific contexts, the set of operations such a procedure
can perform is very limited and the type of objects it can manipulate is
essentially restricted to the elementary types. In particular, it must only
contain code to which pragma Restrictions (No_Elaboration_Code) applies.
This pragma is used by GNAT to implement auto-initialization of shared Stand
Alone Libraries, which provides a related capability without the restrictions
listed above. Where possible, the use of Stand Alone Libraries is preferable
to the use of this pragma.
@node Pragma Linker_Destructor,Pragma Linker_Section,Pragma Linker_Constructor,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-linker-destructor}@anchor{97}
@section Pragma Linker_Destructor
Syntax:
@example
pragma Linker_Destructor (procedure_LOCAL_NAME);
@end example
@code{procedure_LOCAL_NAME} must refer to a parameterless procedure that
is declared at the library level. A procedure to which this pragma is
applied will be treated as a finalization routine by the linker.
It is equivalent to @code{__attribute__((destructor))} in GNU C and
causes @code{procedure_LOCAL_NAME} to be invoked after the entry point
of the executable has exited (or immediately before the shared library
is unloaded if the procedure is linked in a shared library), in particular
after the Ada run-time environment is shut down.
See @code{pragma Linker_Constructor} for the set of restrictions that apply
because of these specific contexts.
@node Pragma Linker_Section,Pragma Lock_Free,Pragma Linker_Destructor,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id22}@anchor{98}@anchor{gnat_rm/implementation_defined_pragmas pragma-linker-section}@anchor{99}
@section Pragma Linker_Section
Syntax:
@example
pragma Linker_Section (
[Entity =>] LOCAL_NAME,
[Section =>] static_string_EXPRESSION);
@end example
@code{LOCAL_NAME} must refer to an object, type, or subprogram that is
declared at the library level. This pragma specifies the name of the
linker section for the given entity. It is equivalent to
@code{__attribute__((section))} in GNU C and causes @code{LOCAL_NAME} to
be placed in the @code{static_string_EXPRESSION} section of the
executable (assuming the linker doesn’t rename the section).
GNAT also provides an implementation defined aspect of the same name.
In the case of specifying this aspect for a type, the effect is to
specify the corresponding section for all library-level objects of
the type that do not have an explicit linker section set. Note that
this only applies to whole objects, not to components of composite objects.
In the case of a subprogram, the linker section applies to all previously
declared matching overloaded subprograms in the current declarative part
which do not already have a linker section assigned. The linker section
aspect is useful in this case for specifying different linker sections
for different elements of such an overloaded set.
Note that an empty string specifies that no linker section is specified.
This is not quite the same as omitting the pragma or aspect, since it
can be used to specify that one element of an overloaded set of subprograms
has the default linker section, or that one object of a type for which a
linker section is specified should has the default linker section.
The compiler normally places library-level entities in standard sections
depending on the class: procedures and functions generally go in the
@code{.text} section, initialized variables in the @code{.data} section
and uninitialized variables in the @code{.bss} section.
Other, special sections may exist on given target machines to map special
hardware, for example I/O ports or flash memory. This pragma is a means to
defer the final layout of the executable to the linker, thus fully working
at the symbolic level with the compiler.
Some file formats do not support arbitrary sections so not all target
machines support this pragma. The use of this pragma may cause a program
execution to be erroneous if it is used to place an entity into an
inappropriate section (e.g., a modified variable into the @code{.text}
section). See also @code{pragma Persistent_BSS}.
@example
-- Example of the use of pragma Linker_Section
package IO_Card is
Port_A : Integer;
pragma Volatile (Port_A);
pragma Linker_Section (Port_A, ".bss.port_a");
Port_B : Integer;
pragma Volatile (Port_B);
pragma Linker_Section (Port_B, ".bss.port_b");
type Port_Type is new Integer with Linker_Section => ".bss";
PA : Port_Type with Linker_Section => ".bss.PA";
PB : Port_Type; -- ends up in linker section ".bss"
procedure Q with Linker_Section => "Qsection";
end IO_Card;
@end example
@node Pragma Lock_Free,Pragma Loop_Invariant,Pragma Linker_Section,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id23}@anchor{9a}@anchor{gnat_rm/implementation_defined_pragmas pragma-lock-free}@anchor{9b}
@section Pragma Lock_Free
Syntax:
@example
pragma Lock_Free [ (static_boolean_EXPRESSION) ];
@end example
This pragma may be specified for protected types or objects. It specifies that
the implementation of protected operations must be implemented without locks.
Compilation fails if the compiler cannot generate lock-free code for the
operations.
The current conditions required to support this pragma are:
@itemize *
@item
Protected type declarations may not contain entries
@item
Protected subprogram declarations may not have nonelementary parameters
@end itemize
In addition, each protected subprogram body must satisfy:
@itemize *
@item
May reference only one protected component
@item
May not reference nonconstant entities outside the protected subprogram
scope
@item
May not contain address representation items, allocators, or quantified
expressions
@item
May not contain delay, goto, loop, or procedure-call statements
@item
May not contain exported and imported entities
@item
May not dereferenced access values
@item
Function calls and attribute references must be static
@end itemize
If the Lock_Free aspect is specified to be True for a protected unit
and the Ceiling_Locking locking policy is in effect, then the run-time
actions associated with the Ceiling_Locking locking policy (described in
Ada RM D.3) are not performed when a protected operation of the protected
unit is executed.
@node Pragma Loop_Invariant,Pragma Loop_Optimize,Pragma Lock_Free,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-loop-invariant}@anchor{9c}
@section Pragma Loop_Invariant
Syntax:
@example
pragma Loop_Invariant ( boolean_EXPRESSION );
@end example
The effect of this pragma is similar to that of pragma @code{Assert},
except that in an @code{Assertion_Policy} pragma, the identifier
@code{Loop_Invariant} is used to control whether it is ignored or checked
(or disabled).
@code{Loop_Invariant} can only appear as one of the items in the sequence
of statements of a loop body, or nested inside block statements that
appear in the sequence of statements of a loop body.
The intention is that it be used to
represent a “loop invariant” assertion, i.e. something that is true each
time through the loop, and which can be used to show that the loop is
achieving its purpose.
Multiple @code{Loop_Invariant} and @code{Loop_Variant} pragmas that
apply to the same loop should be grouped in the same sequence of
statements.
To aid in writing such invariants, the special attribute @code{Loop_Entry}
may be used to refer to the value of an expression on entry to the loop. This
attribute can only be used within the expression of a @code{Loop_Invariant}
pragma. For full details, see documentation of attribute @code{Loop_Entry}.
@node Pragma Loop_Optimize,Pragma Loop_Variant,Pragma Loop_Invariant,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-loop-optimize}@anchor{9d}
@section Pragma Loop_Optimize
Syntax:
@example
pragma Loop_Optimize (OPTIMIZATION_HINT @{, OPTIMIZATION_HINT@});
OPTIMIZATION_HINT ::= Ivdep | No_Unroll | Unroll | No_Vector | Vector
@end example
This pragma must appear immediately within a loop statement. It allows the
programmer to specify optimization hints for the enclosing loop. The hints
are not mutually exclusive and can be freely mixed, but not all combinations
will yield a sensible outcome.
There are five supported optimization hints for a loop:
@itemize *
@item
Ivdep
The programmer asserts that there are no loop-carried dependencies
which would prevent consecutive iterations of the loop from being
executed simultaneously.
@item
No_Unroll
The loop must not be unrolled. This is a strong hint: the compiler will not
unroll a loop marked with this hint.
@item
Unroll
The loop should be unrolled. This is a weak hint: the compiler will try to
apply unrolling to this loop preferably to other optimizations, notably
vectorization, but there is no guarantee that the loop will be unrolled.
@item
No_Vector
The loop must not be vectorized. This is a strong hint: the compiler will not
vectorize a loop marked with this hint.
@item
Vector
The loop should be vectorized. This is a weak hint: the compiler will try to
apply vectorization to this loop preferably to other optimizations, notably
unrolling, but there is no guarantee that the loop will be vectorized.
@end itemize
These hints do not remove the need to pass the appropriate switches to the
compiler in order to enable the relevant optimizations, that is to say
`-funroll-loops' for unrolling and `-ftree-vectorize' for
vectorization.
@node Pragma Loop_Variant,Pragma Machine_Attribute,Pragma Loop_Optimize,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-loop-variant}@anchor{9e}
@section Pragma Loop_Variant
Syntax:
@example
pragma Loop_Variant ( LOOP_VARIANT_ITEM @{, LOOP_VARIANT_ITEM @} );
LOOP_VARIANT_ITEM ::= CHANGE_DIRECTION => discrete_EXPRESSION
CHANGE_DIRECTION ::= Increases | Decreases
@end example
@code{Loop_Variant} can only appear as one of the items in the sequence
of statements of a loop body, or nested inside block statements that
appear in the sequence of statements of a loop body.
It allows the specification of quantities which must always
decrease or increase in successive iterations of the loop. In its simplest
form, just one expression is specified, whose value must increase or decrease
on each iteration of the loop.
In a more complex form, multiple arguments can be given which are interpreted
in a nesting lexicographic manner. For example:
@example
pragma Loop_Variant (Increases => X, Decreases => Y);
@end example
specifies that each time through the loop either X increases, or X stays
the same and Y decreases. A @code{Loop_Variant} pragma ensures that the
loop is making progress. It can be useful in helping to show informally
or prove formally that the loop always terminates.
@code{Loop_Variant} is an assertion whose effect can be controlled using
an @code{Assertion_Policy} with a check name of @code{Loop_Variant}. The
policy can be @code{Check} to enable the loop variant check, @code{Ignore}
to ignore the check (in which case the pragma has no effect on the program),
or @code{Disable} in which case the pragma is not even checked for correct
syntax.
Multiple @code{Loop_Invariant} and @code{Loop_Variant} pragmas that
apply to the same loop should be grouped in the same sequence of
statements.
The @code{Loop_Entry} attribute may be used within the expressions of the
@code{Loop_Variant} pragma to refer to values on entry to the loop.
@node Pragma Machine_Attribute,Pragma Main,Pragma Loop_Variant,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-machine-attribute}@anchor{9f}
@section Pragma Machine_Attribute
Syntax:
@example
pragma Machine_Attribute (
[Entity =>] LOCAL_NAME,
[Attribute_Name =>] static_string_EXPRESSION
[, [Info =>] static_EXPRESSION @{, static_EXPRESSION@}] );
@end example
Machine-dependent attributes can be specified for types and/or
declarations. This pragma is semantically equivalent to
@code{__attribute__((@var{attribute_name}))} (if @code{info} is not
specified) or @code{__attribute__((@var{attribute_name(info})))}
or @code{__attribute__((@var{attribute_name(info,...})))} in GNU C,
where `attribute_name' is recognized by the compiler middle-end
or the @code{TARGET_ATTRIBUTE_TABLE} machine specific macro. Note
that a string literal for the optional parameter @code{info} or the
following ones is transformed by default into an identifier,
which may make this pragma unusable for some attributes.
For further information see @cite{GNU Compiler Collection (GCC) Internals}.
@node Pragma Main,Pragma Main_Storage,Pragma Machine_Attribute,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-main}@anchor{a0}
@section Pragma Main
Syntax:
@example
pragma Main
(MAIN_OPTION [, MAIN_OPTION]);
MAIN_OPTION ::=
[Stack_Size =>] static_integer_EXPRESSION
| [Task_Stack_Size_Default =>] static_integer_EXPRESSION
| [Time_Slicing_Enabled =>] static_boolean_EXPRESSION
@end example
This pragma is provided for compatibility with OpenVMS VAX Systems. It has
no effect in GNAT, other than being syntax checked.
@node Pragma Main_Storage,Pragma Max_Queue_Length,Pragma Main,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-main-storage}@anchor{a1}
@section Pragma Main_Storage
Syntax:
@example
pragma Main_Storage
(MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]);
MAIN_STORAGE_OPTION ::=
[WORKING_STORAGE =>] static_SIMPLE_EXPRESSION
| [TOP_GUARD =>] static_SIMPLE_EXPRESSION
@end example
This pragma is provided for compatibility with OpenVMS VAX Systems. It has
no effect in GNAT, other than being syntax checked.
@node Pragma Max_Queue_Length,Pragma No_Body,Pragma Main_Storage,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id24}@anchor{a2}@anchor{gnat_rm/implementation_defined_pragmas pragma-max-queue-length}@anchor{a3}
@section Pragma Max_Queue_Length
Syntax:
@example
pragma Max_Queue_Length (static_integer_EXPRESSION);
@end example
This pragma is used to specify the maximum callers per entry queue for
individual protected entries and entry families. It accepts a single
integer (-1 or more) as a parameter and must appear after the declaration of an
entry.
A value of -1 represents no additional restriction on queue length.
@node Pragma No_Body,Pragma No_Caching,Pragma Max_Queue_Length,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-no-body}@anchor{a4}
@section Pragma No_Body
Syntax:
@example
pragma No_Body;
@end example
There are a number of cases in which a package spec does not require a body,
and in fact a body is not permitted. GNAT will not permit the spec to be
compiled if there is a body around. The pragma No_Body allows you to provide
a body file, even in a case where no body is allowed. The body file must
contain only comments and a single No_Body pragma. This is recognized by
the compiler as indicating that no body is logically present.
This is particularly useful during maintenance when a package is modified in
such a way that a body needed before is no longer needed. The provision of a
dummy body with a No_Body pragma ensures that there is no interference from
earlier versions of the package body.
@node Pragma No_Caching,Pragma No_Component_Reordering,Pragma No_Body,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id25}@anchor{a5}@anchor{gnat_rm/implementation_defined_pragmas pragma-no-caching}@anchor{a6}
@section Pragma No_Caching
Syntax:
@example
pragma No_Caching [ (static_boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect @code{No_Caching} in
the SPARK 2014 Reference Manual, section 7.1.2.
@node Pragma No_Component_Reordering,Pragma No_Elaboration_Code_All,Pragma No_Caching,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-no-component-reordering}@anchor{a7}
@section Pragma No_Component_Reordering
Syntax:
@example
pragma No_Component_Reordering [([Entity =>] type_LOCAL_NAME)];
@end example
@code{type_LOCAL_NAME} must refer to a record type declaration in the current
declarative part. The effect is to preclude any reordering of components
for the layout of the record, i.e. the record is laid out by the compiler
in the order in which the components are declared textually. The form with
no argument is a configuration pragma which applies to all record types
declared in units to which the pragma applies and there is a requirement
that this pragma be used consistently within a partition.
@node Pragma No_Elaboration_Code_All,Pragma No_Heap_Finalization,Pragma No_Component_Reordering,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id26}@anchor{a8}@anchor{gnat_rm/implementation_defined_pragmas pragma-no-elaboration-code-all}@anchor{a9}
@section Pragma No_Elaboration_Code_All
Syntax:
@example
pragma No_Elaboration_Code_All [(program_unit_NAME)];
@end example
This is a program unit pragma (there is also an equivalent aspect of the
same name) that establishes the restriction @code{No_Elaboration_Code} for
the current unit and any extended main source units (body and subunits).
It also has the effect of enforcing a transitive application of this
aspect, so that if any unit is implicitly or explicitly with’ed by the
current unit, it must also have the @cite{No_Elaboration_Code_All} aspect set.
It may be applied to package or subprogram specs or their generic versions.
@node Pragma No_Heap_Finalization,Pragma No_Inline,Pragma No_Elaboration_Code_All,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-no-heap-finalization}@anchor{aa}
@section Pragma No_Heap_Finalization
Syntax:
@example
pragma No_Heap_Finalization [ (first_subtype_LOCAL_NAME) ];
@end example
Pragma @code{No_Heap_Finalization} may be used as a configuration pragma or as a
type-specific pragma.
In its configuration form, the pragma must appear within a configuration file
such as gnat.adc, without an argument. The pragma suppresses the call to
@code{Finalize} for heap-allocated objects created through library-level named
access-to-object types in cases where the designated type requires finalization
actions.
In its type-specific form, the argument of the pragma must denote a
library-level named access-to-object type. The pragma suppresses the call to
@code{Finalize} for heap-allocated objects created through the specific access type
in cases where the designated type requires finalization actions.
It is still possible to finalize such heap-allocated objects by explicitly
deallocating them.
A library-level named access-to-object type declared within a generic unit will
lose its @code{No_Heap_Finalization} pragma when the corresponding instance does not
appear at the library level.
@node Pragma No_Inline,Pragma No_Return,Pragma No_Heap_Finalization,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id27}@anchor{ab}@anchor{gnat_rm/implementation_defined_pragmas pragma-no-inline}@anchor{ac}
@section Pragma No_Inline
Syntax:
@example
pragma No_Inline (NAME @{, NAME@});
@end example
This pragma suppresses inlining for the callable entity or the instances of
the generic subprogram designated by @code{NAME}, including inlining that
results from the use of pragma @code{Inline}. This pragma is always active,
in particular it is not subject to the use of option `-gnatn' or
`-gnatN'. It is illegal to specify both pragma @code{No_Inline} and
pragma @code{Inline_Always} for the same @code{NAME}.
@node Pragma No_Return,Pragma No_Strict_Aliasing,Pragma No_Inline,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-no-return}@anchor{ad}
@section Pragma No_Return
Syntax:
@example
pragma No_Return (procedure_LOCAL_NAME @{, procedure_LOCAL_NAME@});
@end example
Each @code{procedure_LOCAL_NAME} argument must refer to one or more procedure
declarations in the current declarative part. A procedure to which this
pragma is applied may not contain any explicit @code{return} statements.
In addition, if the procedure contains any implicit returns from falling
off the end of a statement sequence, then execution of that implicit
return will cause Program_Error to be raised.
One use of this pragma is to identify procedures whose only purpose is to raise
an exception. Another use of this pragma is to suppress incorrect warnings
about missing returns in functions, where the last statement of a function
statement sequence is a call to such a procedure.
Note that in Ada 2005 mode, this pragma is part of the language. It is
available in all earlier versions of Ada as an implementation-defined
pragma.
@node Pragma No_Strict_Aliasing,Pragma No_Tagged_Streams,Pragma No_Return,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-no-strict-aliasing}@anchor{ae}
@section Pragma No_Strict_Aliasing
Syntax:
@example
pragma No_Strict_Aliasing [([Entity =>] type_LOCAL_NAME)];
@end example
@code{type_LOCAL_NAME} must refer to an access type
declaration in the current declarative part. The effect is to inhibit
strict aliasing optimization for the given type. The form with no
arguments is a configuration pragma which applies to all access types
declared in units to which the pragma applies. For a detailed
description of the strict aliasing optimization, and the situations
in which it must be suppressed, see the section on Optimization and Strict Aliasing
in the @cite{GNAT User’s Guide}.
This pragma currently has no effects on access to unconstrained array types.
@node Pragma No_Tagged_Streams,Pragma Normalize_Scalars,Pragma No_Strict_Aliasing,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id28}@anchor{af}@anchor{gnat_rm/implementation_defined_pragmas pragma-no-tagged-streams}@anchor{b0}
@section Pragma No_Tagged_Streams
Syntax:
@example
pragma No_Tagged_Streams [([Entity =>] tagged_type_LOCAL_NAME)];
@end example
Normally when a tagged type is introduced using a full type declaration,
part of the processing includes generating stream access routines to be
used by stream attributes referencing the type (or one of its subtypes
or derived types). This can involve the generation of significant amounts
of code which is wasted space if stream routines are not needed for the
type in question.
The @code{No_Tagged_Streams} pragma causes the generation of these stream
routines to be skipped, and any attempt to use stream operations on
types subject to this pragma will be statically rejected as illegal.
There are two forms of the pragma. The form with no arguments must appear
in a declarative sequence or in the declarations of a package spec. This
pragma affects all subsequent root tagged types declared in the declaration
sequence, and specifies that no stream routines be generated. The form with
an argument (for which there is also a corresponding aspect) specifies a
single root tagged type for which stream routines are not to be generated.
Once the pragma has been given for a particular root tagged type, all subtypes
and derived types of this type inherit the pragma automatically, so the effect
applies to a complete hierarchy (this is necessary to deal with the class-wide
dispatching versions of the stream routines).
When pragmas @code{Discard_Names} and @code{No_Tagged_Streams} are simultaneously
applied to a tagged type its Expanded_Name and External_Tag are initialized
with empty strings. This is useful to avoid exposing entity names at binary
level but has a negative impact on the debuggability of tagged types.
@node Pragma Normalize_Scalars,Pragma Obsolescent,Pragma No_Tagged_Streams,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-normalize-scalars}@anchor{b1}
@section Pragma Normalize_Scalars
Syntax:
@example
pragma Normalize_Scalars;
@end example
This is a language defined pragma which is fully implemented in GNAT. The
effect is to cause all scalar objects that are not otherwise initialized
to be initialized. The initial values are implementation dependent and
are as follows:
@table @asis
@item `Standard.Character'
Objects whose root type is Standard.Character are initialized to
Character’Last unless the subtype range excludes NUL (in which case
NUL is used). This choice will always generate an invalid value if
one exists.
@item `Standard.Wide_Character'
Objects whose root type is Standard.Wide_Character are initialized to
Wide_Character’Last unless the subtype range excludes NUL (in which case
NUL is used). This choice will always generate an invalid value if
one exists.
@item `Standard.Wide_Wide_Character'
Objects whose root type is Standard.Wide_Wide_Character are initialized to
the invalid value 16#FFFF_FFFF# unless the subtype range excludes NUL (in
which case NUL is used). This choice will always generate an invalid value if
one exists.
@item `Integer types'
Objects of an integer type are treated differently depending on whether
negative values are present in the subtype. If no negative values are
present, then all one bits is used as the initial value except in the
special case where zero is excluded from the subtype, in which case
all zero bits are used. This choice will always generate an invalid
value if one exists.
For subtypes with negative values present, the largest negative number
is used, except in the unusual case where this largest negative number
is in the subtype, and the largest positive number is not, in which case
the largest positive value is used. This choice will always generate
an invalid value if one exists.
@item `Floating-Point Types'
Objects of all floating-point types are initialized to all 1-bits. For
standard IEEE format, this corresponds to a NaN (not a number) which is
indeed an invalid value.
@item `Fixed-Point Types'
Objects of all fixed-point types are treated as described above for integers,
with the rules applying to the underlying integer value used to represent
the fixed-point value.
@item `Modular types'
Objects of a modular type are initialized to all one bits, except in
the special case where zero is excluded from the subtype, in which
case all zero bits are used. This choice will always generate an
invalid value if one exists.
@item `Enumeration types'
Objects of an enumeration type are initialized to all one-bits, i.e., to
the value @code{2 ** typ'Size - 1} unless the subtype excludes the literal
whose Pos value is zero, in which case a code of zero is used. This choice
will always generate an invalid value if one exists.
@end table
@node Pragma Obsolescent,Pragma Optimize_Alignment,Pragma Normalize_Scalars,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id29}@anchor{b2}@anchor{gnat_rm/implementation_defined_pragmas pragma-obsolescent}@anchor{b3}
@section Pragma Obsolescent
Syntax:
@example
pragma Obsolescent;
pragma Obsolescent (
[Message =>] static_string_EXPRESSION
[,[Version =>] Ada_05]);
pragma Obsolescent (
[Entity =>] NAME
[,[Message =>] static_string_EXPRESSION
[,[Version =>] Ada_05]]);
@end example
This pragma can occur immediately following a declaration of an entity,
including the case of a record component. If no Entity argument is present,
then this declaration is the one to which the pragma applies. If an Entity
parameter is present, it must either match the name of the entity in this
declaration, or alternatively, the pragma can immediately follow an enumeration
type declaration, where the Entity argument names one of the enumeration
literals.
This pragma is used to indicate that the named entity
is considered obsolescent and should not be used. Typically this is
used when an API must be modified by eventually removing or modifying
existing subprograms or other entities. The pragma can be used at an
intermediate stage when the entity is still present, but will be
removed later.
The effect of this pragma is to output a warning message on a reference to
an entity thus marked that the subprogram is obsolescent if the appropriate
warning option in the compiler is activated. If the @code{Message} parameter is
present, then a second warning message is given containing this text. In
addition, a reference to the entity is considered to be a violation of pragma
@code{Restrictions (No_Obsolescent_Features)}.
This pragma can also be used as a program unit pragma for a package,
in which case the entity name is the name of the package, and the
pragma indicates that the entire package is considered
obsolescent. In this case a client @code{with}ing such a package
violates the restriction, and the @code{with} clause is
flagged with warnings if the warning option is set.
If the @code{Version} parameter is present (which must be exactly
the identifier @code{Ada_05}, no other argument is allowed), then the
indication of obsolescence applies only when compiling in Ada 2005
mode. This is primarily intended for dealing with the situations
in the predefined library where subprograms or packages
have become defined as obsolescent in Ada 2005
(e.g., in @code{Ada.Characters.Handling}), but may be used anywhere.
The following examples show typical uses of this pragma:
@example
package p is
pragma Obsolescent (p, Message => "use pp instead of p");
end p;
package q is
procedure q2;
pragma Obsolescent ("use q2new instead");
type R is new integer;
pragma Obsolescent
(Entity => R,
Message => "use RR in Ada 2005",
Version => Ada_05);
type M is record
F1 : Integer;
F2 : Integer;
pragma Obsolescent;
F3 : Integer;
end record;
type E is (a, bc, 'd', quack);
pragma Obsolescent (Entity => bc)
pragma Obsolescent (Entity => 'd')
function "+"
(a, b : character) return character;
pragma Obsolescent (Entity => "+");
end;
@end example
Note that, as for all pragmas, if you use a pragma argument identifier,
then all subsequent parameters must also use a pragma argument identifier.
So if you specify @code{Entity =>} for the @code{Entity} argument, and a @code{Message}
argument is present, it must be preceded by @code{Message =>}.
@node Pragma Optimize_Alignment,Pragma Ordered,Pragma Obsolescent,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-optimize-alignment}@anchor{b4}
@section Pragma Optimize_Alignment
@geindex Alignment
@geindex default settings
Syntax:
@example
pragma Optimize_Alignment (TIME | SPACE | OFF);
@end example
This is a configuration pragma which affects the choice of default alignments
for types and objects where no alignment is explicitly specified. There is a
time/space trade-off in the selection of these values. Large alignments result
in more efficient code, at the expense of larger data space, since sizes have
to be increased to match these alignments. Smaller alignments save space, but
the access code is slower. The normal choice of default alignments for types
and individual alignment promotions for objects (which is what you get if you
do not use this pragma, or if you use an argument of OFF), tries to balance
these two requirements.
Specifying SPACE causes smaller default alignments to be chosen in two cases.
First any packed record is given an alignment of 1. Second, if a size is given
for the type, then the alignment is chosen to avoid increasing this size. For
example, consider:
@example
type R is record
X : Integer;
Y : Character;
end record;
for R'Size use 5*8;
@end example
In the default mode, this type gets an alignment of 4, so that access to the
Integer field X are efficient. But this means that objects of the type end up
with a size of 8 bytes. This is a valid choice, since sizes of objects are
allowed to be bigger than the size of the type, but it can waste space if for
example fields of type R appear in an enclosing record. If the above type is
compiled in @code{Optimize_Alignment (Space)} mode, the alignment is set to 1.
However, there is one case in which SPACE is ignored. If a variable length
record (that is a discriminated record with a component which is an array
whose length depends on a discriminant), has a pragma Pack, then it is not
in general possible to set the alignment of such a record to one, so the
pragma is ignored in this case (with a warning).
Specifying SPACE also disables alignment promotions for standalone objects,
which occur when the compiler increases the alignment of a specific object
without changing the alignment of its type.
Specifying SPACE also disables component reordering in unpacked record types,
which can result in larger sizes in order to meet alignment requirements.
Specifying TIME causes larger default alignments to be chosen in the case of
small types with sizes that are not a power of 2. For example, consider:
@example
type R is record
A : Character;
B : Character;
C : Boolean;
end record;
pragma Pack (R);
for R'Size use 17;
@end example
The default alignment for this record is normally 1, but if this type is
compiled in @code{Optimize_Alignment (Time)} mode, then the alignment is set
to 4, which wastes space for objects of the type, since they are now 4 bytes
long, but results in more efficient access when the whole record is referenced.
As noted above, this is a configuration pragma, and there is a requirement
that all units in a partition be compiled with a consistent setting of the
optimization setting. This would normally be achieved by use of a configuration
pragma file containing the appropriate setting. The exception to this rule is
that units with an explicit configuration pragma in the same file as the source
unit are excluded from the consistency check, as are all predefined units. The
latter are compiled by default in pragma Optimize_Alignment (Off) mode if no
pragma appears at the start of the file.
@node Pragma Ordered,Pragma Overflow_Mode,Pragma Optimize_Alignment,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-ordered}@anchor{b5}
@section Pragma Ordered
Syntax:
@example
pragma Ordered (enumeration_first_subtype_LOCAL_NAME);
@end example
Most enumeration types are from a conceptual point of view unordered.
For example, consider:
@example
type Color is (Red, Blue, Green, Yellow);
@end example
By Ada semantics @code{Blue > Red} and @code{Green > Blue},
but really these relations make no sense; the enumeration type merely
specifies a set of possible colors, and the order is unimportant.
For unordered enumeration types, it is generally a good idea if
clients avoid comparisons (other than equality or inequality) and
explicit ranges. (A `client' is a unit where the type is referenced,
other than the unit where the type is declared, its body, and its subunits.)
For example, if code buried in some client says:
@example
if Current_Color < Yellow then ...
if Current_Color in Blue .. Green then ...
@end example
then the client code is relying on the order, which is undesirable.
It makes the code hard to read and creates maintenance difficulties if
entries have to be added to the enumeration type. Instead,
the code in the client should list the possibilities, or an
appropriate subtype should be declared in the unit that declares
the original enumeration type. E.g., the following subtype could
be declared along with the type @code{Color}:
@example
subtype RBG is Color range Red .. Green;
@end example
and then the client could write:
@example
if Current_Color in RBG then ...
if Current_Color = Blue or Current_Color = Green then ...
@end example
However, some enumeration types are legitimately ordered from a conceptual
point of view. For example, if you declare:
@example
type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
@end example
then the ordering imposed by the language is reasonable, and
clients can depend on it, writing for example:
@example
if D in Mon .. Fri then ...
if D < Wed then ...
@end example
The pragma `Ordered' is provided to mark enumeration types that
are conceptually ordered, alerting the reader that clients may depend
on the ordering. GNAT provides a pragma to mark enumerations as ordered
rather than one to mark them as unordered, since in our experience,
the great majority of enumeration types are conceptually unordered.
The types @code{Boolean}, @code{Character}, @code{Wide_Character},
and @code{Wide_Wide_Character}
are considered to be ordered types, so each is declared with a
pragma @code{Ordered} in package @code{Standard}.
Normally pragma @code{Ordered} serves only as documentation and a guide for
coding standards, but GNAT provides a warning switch `-gnatw.u' that
requests warnings for inappropriate uses (comparisons and explicit
subranges) for unordered types. If this switch is used, then any
enumeration type not marked with pragma @code{Ordered} will be considered
as unordered, and will generate warnings for inappropriate uses.
Note that generic types are not considered ordered or unordered (since the
template can be instantiated for both cases), so we never generate warnings
for the case of generic enumerated types.
For additional information please refer to the description of the
`-gnatw.u' switch in the GNAT User’s Guide.
@node Pragma Overflow_Mode,Pragma Overriding_Renamings,Pragma Ordered,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-overflow-mode}@anchor{b6}
@section Pragma Overflow_Mode
Syntax:
@example
pragma Overflow_Mode
( [General =>] MODE
[,[Assertions =>] MODE]);
MODE ::= STRICT | MINIMIZED | ELIMINATED
@end example
This pragma sets the current overflow mode to the given setting. For details
of the meaning of these modes, please refer to the
‘Overflow Check Handling in GNAT’ appendix in the
GNAT User’s Guide. If only the @code{General} parameter is present,
the given mode applies to all expressions. If both parameters are present,
the @code{General} mode applies to expressions outside assertions, and
the @code{Eliminated} mode applies to expressions within assertions.
The case of the @code{MODE} parameter is ignored,
so @code{MINIMIZED}, @code{Minimized} and
@code{minimized} all have the same effect.
The @code{Overflow_Mode} pragma has the same scoping and placement
rules as pragma @code{Suppress}, so it can occur either as a
configuration pragma, specifying a default for the whole
program, or in a declarative scope, where it applies to the
remaining declarations and statements in that scope.
The pragma @code{Suppress (Overflow_Check)} suppresses
overflow checking, but does not affect the overflow mode.
The pragma @code{Unsuppress (Overflow_Check)} unsuppresses (enables)
overflow checking, but does not affect the overflow mode.
@node Pragma Overriding_Renamings,Pragma Part_Of,Pragma Overflow_Mode,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-overriding-renamings}@anchor{b7}
@section Pragma Overriding_Renamings
@geindex Rational profile
@geindex Rational compatibility
Syntax:
@example
pragma Overriding_Renamings;
@end example
This is a GNAT configuration pragma to simplify porting
legacy code accepted by the Rational
Ada compiler. In the presence of this pragma, a renaming declaration that
renames an inherited operation declared in the same scope is legal if selected
notation is used as in:
@example
pragma Overriding_Renamings;
...
package R is
function F (..);
...
function F (..) renames R.F;
end R;
@end example
even though
RM 8.3 (15) stipulates that an overridden operation is not visible within the
declaration of the overriding operation.
@node Pragma Part_Of,Pragma Partition_Elaboration_Policy,Pragma Overriding_Renamings,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id30}@anchor{b8}@anchor{gnat_rm/implementation_defined_pragmas pragma-part-of}@anchor{b9}
@section Pragma Part_Of
Syntax:
@example
pragma Part_Of (ABSTRACT_STATE);
ABSTRACT_STATE ::= NAME
@end example
For the semantics of this pragma, see the entry for aspect @code{Part_Of} in the
SPARK 2014 Reference Manual, section 7.2.6.
@node Pragma Partition_Elaboration_Policy,Pragma Passive,Pragma Part_Of,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-partition-elaboration-policy}@anchor{ba}
@section Pragma Partition_Elaboration_Policy
Syntax:
@example
pragma Partition_Elaboration_Policy (POLICY_IDENTIFIER);
POLICY_IDENTIFIER ::= Concurrent | Sequential
@end example
This pragma is standard in Ada 2005, but is available in all earlier
versions of Ada as an implementation-defined pragma.
See Ada 2012 Reference Manual for details.
@node Pragma Passive,Pragma Persistent_BSS,Pragma Partition_Elaboration_Policy,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-passive}@anchor{bb}
@section Pragma Passive
Syntax:
@example
pragma Passive [(Semaphore | No)];
@end example
Syntax checked, but otherwise ignored by GNAT. This is recognized for
compatibility with DEC Ada 83 implementations, where it is used within a
task definition to request that a task be made passive. If the argument
@code{Semaphore} is present, or the argument is omitted, then DEC Ada 83
treats the pragma as an assertion that the containing task is passive
and that optimization of context switch with this task is permitted and
desired. If the argument @code{No} is present, the task must not be
optimized. GNAT does not attempt to optimize any tasks in this manner
(since protected objects are available in place of passive tasks).
For more information on the subject of passive tasks, see the section
‘Passive Task Optimization’ in the GNAT Users Guide.
@node Pragma Persistent_BSS,Pragma Post,Pragma Passive,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id31}@anchor{bc}@anchor{gnat_rm/implementation_defined_pragmas pragma-persistent-bss}@anchor{bd}
@section Pragma Persistent_BSS
Syntax:
@example
pragma Persistent_BSS [(object_LOCAL_NAME)]
@end example
This pragma allows selected objects to be placed in the @code{.persistent_bss}
section. On some targets the linker and loader provide for special
treatment of this section, allowing a program to be reloaded without
affecting the contents of this data (hence the name persistent).
There are two forms of usage. If an argument is given, it must be the
local name of a library-level object, with no explicit initialization
and whose type is potentially persistent. If no argument is given, then
the pragma is a configuration pragma, and applies to all library-level
objects with no explicit initialization of potentially persistent types.
A potentially persistent type is a scalar type, or an untagged,
non-discriminated record, all of whose components have no explicit
initialization and are themselves of a potentially persistent type,
or an array, all of whose constraints are static, and whose component
type is potentially persistent.
If this pragma is used on a target where this feature is not supported,
then the pragma will be ignored. See also @code{pragma Linker_Section}.
@node Pragma Post,Pragma Postcondition,Pragma Persistent_BSS,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-post}@anchor{be}
@section Pragma Post
@geindex Post
@geindex Checks
@geindex postconditions
Syntax:
@example
pragma Post (Boolean_Expression);
@end example
The @code{Post} pragma is intended to be an exact replacement for
the language-defined
@code{Post} aspect, and shares its restrictions and semantics.
It must appear either immediately following the corresponding
subprogram declaration (only other pragmas may intervene), or
if there is no separate subprogram declaration, then it can
appear at the start of the declarations in a subprogram body
(preceded only by other pragmas).
@node Pragma Postcondition,Pragma Post_Class,Pragma Post,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-postcondition}@anchor{bf}
@section Pragma Postcondition
@geindex Postcondition
@geindex Checks
@geindex postconditions
Syntax:
@example
pragma Postcondition (
[Check =>] Boolean_Expression
[,[Message =>] String_Expression]);
@end example
The @code{Postcondition} pragma allows specification of automatic
postcondition checks for subprograms. These checks are similar to
assertions, but are automatically inserted just prior to the return
statements of the subprogram with which they are associated (including
implicit returns at the end of procedure bodies and associated
exception handlers).
In addition, the boolean expression which is the condition which
must be true may contain references to function’Result in the case
of a function to refer to the returned value.
@code{Postcondition} pragmas may appear either immediately following the
(separate) declaration of a subprogram, or at the start of the
declarations of a subprogram body. Only other pragmas may intervene
(that is appear between the subprogram declaration and its
postconditions, or appear before the postcondition in the
declaration sequence in a subprogram body). In the case of a
postcondition appearing after a subprogram declaration, the
formal arguments of the subprogram are visible, and can be
referenced in the postcondition expressions.
The postconditions are collected and automatically tested just
before any return (implicit or explicit) in the subprogram body.
A postcondition is only recognized if postconditions are active
at the time the pragma is encountered. The compiler switch `gnata'
turns on all postconditions by default, and pragma @code{Check_Policy}
with an identifier of @code{Postcondition} can also be used to
control whether postconditions are active.
The general approach is that postconditions are placed in the spec
if they represent functional aspects which make sense to the client.
For example we might have:
@example
function Direction return Integer;
pragma Postcondition
(Direction'Result = +1
or else
Direction'Result = -1);
@end example
which serves to document that the result must be +1 or -1, and
will test that this is the case at run time if postcondition
checking is active.
Postconditions within the subprogram body can be used to
check that some internal aspect of the implementation,
not visible to the client, is operating as expected.
For instance if a square root routine keeps an internal
counter of the number of times it is called, then we
might have the following postcondition:
@example
Sqrt_Calls : Natural := 0;
function Sqrt (Arg : Float) return Float is
pragma Postcondition
(Sqrt_Calls = Sqrt_Calls'Old + 1);
...
end Sqrt
@end example
As this example, shows, the use of the @code{Old} attribute
is often useful in postconditions to refer to the state on
entry to the subprogram.
Note that postconditions are only checked on normal returns
from the subprogram. If an abnormal return results from
raising an exception, then the postconditions are not checked.
If a postcondition fails, then the exception
@code{System.Assertions.Assert_Failure} is raised. If
a message argument was supplied, then the given string
will be used as the exception message. If no message
argument was supplied, then the default message has
the form “Postcondition failed at file_name:line”. The
exception is raised in the context of the subprogram
body, so it is possible to catch postcondition failures
within the subprogram body itself.
Within a package spec, normal visibility rules
in Ada would prevent forward references within a
postcondition pragma to functions defined later in
the same package. This would introduce undesirable
ordering constraints. To avoid this problem, all
postcondition pragmas are analyzed at the end of
the package spec, allowing forward references.
The following example shows that this even allows
mutually recursive postconditions as in:
@example
package Parity_Functions is
function Odd (X : Natural) return Boolean;
pragma Postcondition
(Odd'Result =
(x = 1
or else
(x /= 0 and then Even (X - 1))));
function Even (X : Natural) return Boolean;
pragma Postcondition
(Even'Result =
(x = 0
or else
(x /= 1 and then Odd (X - 1))));
end Parity_Functions;
@end example
There are no restrictions on the complexity or form of
conditions used within @code{Postcondition} pragmas.
The following example shows that it is even possible
to verify performance behavior.
@example
package Sort is
Performance : constant Float;
-- Performance constant set by implementation
-- to match target architecture behavior.
procedure Treesort (Arg : String);
-- Sorts characters of argument using N*logN sort
pragma Postcondition
(Float (Clock - Clock'Old) <=
Float (Arg'Length) *
log (Float (Arg'Length)) *
Performance);
end Sort;
@end example
Note: postcondition pragmas associated with subprograms that are
marked as Inline_Always, or those marked as Inline with front-end
inlining (-gnatN option set) are accepted and legality-checked
by the compiler, but are ignored at run-time even if postcondition
checking is enabled.
Note that pragma @code{Postcondition} differs from the language-defined
@code{Post} aspect (and corresponding @code{Post} pragma) in allowing
multiple occurrences, allowing occurences in the body even if there
is a separate spec, and allowing a second string parameter, and the
use of the pragma identifier @code{Check}. Historically, pragma
@code{Postcondition} was implemented prior to the development of
Ada 2012, and has been retained in its original form for
compatibility purposes.
@node Pragma Post_Class,Pragma Pre,Pragma Postcondition,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-post-class}@anchor{c0}
@section Pragma Post_Class
@geindex Post
@geindex Checks
@geindex postconditions
Syntax:
@example
pragma Post_Class (Boolean_Expression);
@end example
The @code{Post_Class} pragma is intended to be an exact replacement for
the language-defined
@code{Post'Class} aspect, and shares its restrictions and semantics.
It must appear either immediately following the corresponding
subprogram declaration (only other pragmas may intervene), or
if there is no separate subprogram declaration, then it can
appear at the start of the declarations in a subprogram body
(preceded only by other pragmas).
Note: This pragma is called @code{Post_Class} rather than
@code{Post'Class} because the latter would not be strictly
conforming to the allowed syntax for pragmas. The motivation
for providing pragmas equivalent to the aspects is to allow a program
to be written using the pragmas, and then compiled if necessary
using an Ada compiler that does not recognize the pragmas or
aspects, but is prepared to ignore the pragmas. The assertion
policy that controls this pragma is @code{Post'Class}, not
@code{Post_Class}.
@node Pragma Pre,Pragma Precondition,Pragma Post_Class,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-pre}@anchor{c1}
@section Pragma Pre
@geindex Pre
@geindex Checks
@geindex preconditions
Syntax:
@example
pragma Pre (Boolean_Expression);
@end example
The @code{Pre} pragma is intended to be an exact replacement for
the language-defined
@code{Pre} aspect, and shares its restrictions and semantics.
It must appear either immediately following the corresponding
subprogram declaration (only other pragmas may intervene), or
if there is no separate subprogram declaration, then it can
appear at the start of the declarations in a subprogram body
(preceded only by other pragmas).
@node Pragma Precondition,Pragma Predicate,Pragma Pre,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-precondition}@anchor{c2}
@section Pragma Precondition
@geindex Preconditions
@geindex Checks
@geindex preconditions
Syntax:
@example
pragma Precondition (
[Check =>] Boolean_Expression
[,[Message =>] String_Expression]);
@end example
The @code{Precondition} pragma is similar to @code{Postcondition}
except that the corresponding checks take place immediately upon
entry to the subprogram, and if a precondition fails, the exception
is raised in the context of the caller, and the attribute ‘Result
cannot be used within the precondition expression.
Otherwise, the placement and visibility rules are identical to those
described for postconditions. The following is an example of use
within a package spec:
@example
package Math_Functions is
...
function Sqrt (Arg : Float) return Float;
pragma Precondition (Arg >= 0.0)
...
end Math_Functions;
@end example
@code{Precondition} pragmas may appear either immediately following the
(separate) declaration of a subprogram, or at the start of the
declarations of a subprogram body. Only other pragmas may intervene
(that is appear between the subprogram declaration and its
postconditions, or appear before the postcondition in the
declaration sequence in a subprogram body).
Note: precondition pragmas associated with subprograms that are
marked as Inline_Always, or those marked as Inline with front-end
inlining (-gnatN option set) are accepted and legality-checked
by the compiler, but are ignored at run-time even if precondition
checking is enabled.
Note that pragma @code{Precondition} differs from the language-defined
@code{Pre} aspect (and corresponding @code{Pre} pragma) in allowing
multiple occurrences, allowing occurences in the body even if there
is a separate spec, and allowing a second string parameter, and the
use of the pragma identifier @code{Check}. Historically, pragma
@code{Precondition} was implemented prior to the development of
Ada 2012, and has been retained in its original form for
compatibility purposes.
@node Pragma Predicate,Pragma Predicate_Failure,Pragma Precondition,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id32}@anchor{c3}@anchor{gnat_rm/implementation_defined_pragmas pragma-predicate}@anchor{c4}
@section Pragma Predicate
Syntax:
@example
pragma Predicate
([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);
@end example
This pragma (available in all versions of Ada in GNAT) encompasses both
the @code{Static_Predicate} and @code{Dynamic_Predicate} aspects in
Ada 2012. A predicate is regarded as static if it has an allowed form
for @code{Static_Predicate} and is otherwise treated as a
@code{Dynamic_Predicate}. Otherwise, predicates specified by this
pragma behave exactly as described in the Ada 2012 reference manual.
For example, if we have
@example
type R is range 1 .. 10;
subtype S is R;
pragma Predicate (Entity => S, Check => S not in 4 .. 6);
subtype Q is R
pragma Predicate (Entity => Q, Check => F(Q) or G(Q));
@end example
the effect is identical to the following Ada 2012 code:
@example
type R is range 1 .. 10;
subtype S is R with
Static_Predicate => S not in 4 .. 6;
subtype Q is R with
Dynamic_Predicate => F(Q) or G(Q);
@end example
Note that there are no pragmas @code{Dynamic_Predicate}
or @code{Static_Predicate}. That is
because these pragmas would affect legality and semantics of
the program and thus do not have a neutral effect if ignored.
The motivation behind providing pragmas equivalent to
corresponding aspects is to allow a program to be written
using the pragmas, and then compiled with a compiler that
will ignore the pragmas. That doesn’t work in the case of
static and dynamic predicates, since if the corresponding
pragmas are ignored, then the behavior of the program is
fundamentally changed (for example a membership test
@code{A in B} would not take into account a predicate
defined for subtype B). When following this approach, the
use of predicates should be avoided.
@node Pragma Predicate_Failure,Pragma Preelaborable_Initialization,Pragma Predicate,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-predicate-failure}@anchor{c5}
@section Pragma Predicate_Failure
Syntax:
@example
pragma Predicate_Failure
([Entity =>] type_LOCAL_NAME,
[Message =>] String_Expression);
@end example
The @code{Predicate_Failure} pragma is intended to be an exact replacement for
the language-defined
@code{Predicate_Failure} aspect, and shares its restrictions and semantics.
@node Pragma Preelaborable_Initialization,Pragma Prefix_Exception_Messages,Pragma Predicate_Failure,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-preelaborable-initialization}@anchor{c6}
@section Pragma Preelaborable_Initialization
Syntax:
@example
pragma Preelaborable_Initialization (DIRECT_NAME);
@end example
This pragma is standard in Ada 2005, but is available in all earlier
versions of Ada as an implementation-defined pragma.
See Ada 2012 Reference Manual for details.
@node Pragma Prefix_Exception_Messages,Pragma Pre_Class,Pragma Preelaborable_Initialization,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-prefix-exception-messages}@anchor{c7}
@section Pragma Prefix_Exception_Messages
@geindex Prefix_Exception_Messages
@geindex exception
@geindex Exception_Message
Syntax:
@example
pragma Prefix_Exception_Messages;
@end example
This is an implementation-defined configuration pragma that affects the
behavior of raise statements with a message given as a static string
constant (typically a string literal). In such cases, the string will
be automatically prefixed by the name of the enclosing entity (giving
the package and subprogram containing the raise statement). This helps
to identify where messages are coming from, and this mode is automatic
for the run-time library.
The pragma has no effect if the message is computed with an expression other
than a static string constant, since the assumption in this case is that
the program computes exactly the string it wants. If you still want the
prefixing in this case, you can always call
@code{GNAT.Source_Info.Enclosing_Entity} and prepend the string manually.
@node Pragma Pre_Class,Pragma Priority_Specific_Dispatching,Pragma Prefix_Exception_Messages,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-pre-class}@anchor{c8}
@section Pragma Pre_Class
@geindex Pre_Class
@geindex Checks
@geindex preconditions
Syntax:
@example
pragma Pre_Class (Boolean_Expression);
@end example
The @code{Pre_Class} pragma is intended to be an exact replacement for
the language-defined
@code{Pre'Class} aspect, and shares its restrictions and semantics.
It must appear either immediately following the corresponding
subprogram declaration (only other pragmas may intervene), or
if there is no separate subprogram declaration, then it can
appear at the start of the declarations in a subprogram body
(preceded only by other pragmas).
Note: This pragma is called @code{Pre_Class} rather than
@code{Pre'Class} because the latter would not be strictly
conforming to the allowed syntax for pragmas. The motivation
for providing pragmas equivalent to the aspects is to allow a program
to be written using the pragmas, and then compiled if necessary
using an Ada compiler that does not recognize the pragmas or
aspects, but is prepared to ignore the pragmas. The assertion
policy that controls this pragma is @code{Pre'Class}, not
@code{Pre_Class}.
@node Pragma Priority_Specific_Dispatching,Pragma Profile,Pragma Pre_Class,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-priority-specific-dispatching}@anchor{c9}
@section Pragma Priority_Specific_Dispatching
Syntax:
@example
pragma Priority_Specific_Dispatching (
POLICY_IDENTIFIER,
first_priority_EXPRESSION,
last_priority_EXPRESSION)
POLICY_IDENTIFIER ::=
EDF_Across_Priorities |
FIFO_Within_Priorities |
Non_Preemptive_Within_Priorities |
Round_Robin_Within_Priorities
@end example
This pragma is standard in Ada 2005, but is available in all earlier
versions of Ada as an implementation-defined pragma.
See Ada 2012 Reference Manual for details.
@node Pragma Profile,Pragma Profile_Warnings,Pragma Priority_Specific_Dispatching,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-profile}@anchor{ca}
@section Pragma Profile
Syntax:
@example
pragma Profile (Ravenscar | Restricted | Rational | Jorvik |
GNAT_Extended_Ravenscar | GNAT_Ravenscar_EDF );
@end example
This pragma is standard in Ada 2005, but is available in all earlier
versions of Ada as an implementation-defined pragma. This is a
configuration pragma that establishes a set of configuration pragmas
that depend on the argument. @code{Ravenscar} is standard in Ada 2005.
@code{Jorvik} is standard in Ada 202x.
The other possibilities (@code{Restricted}, @code{Rational},
@code{GNAT_Extended_Ravenscar}, @code{GNAT_Ravenscar_EDF})
are implementation-defined. @code{GNAT_Extended_Ravenscar} is an alias for @code{Jorvik}.
The set of configuration pragmas is defined in the following sections.
@itemize *
@item
Pragma Profile (Ravenscar)
The @code{Ravenscar} profile is standard in Ada 2005,
but is available in all earlier
versions of Ada as an implementation-defined pragma. This profile
establishes the following set of configuration pragmas:
@itemize *
@item
@code{Task_Dispatching_Policy (FIFO_Within_Priorities)}
[RM D.2.2] Tasks are dispatched following a preemptive
priority-ordered scheduling policy.
@item
@code{Locking_Policy (Ceiling_Locking)}
[RM D.3] While tasks and interrupts execute a protected action, they inherit
the ceiling priority of the corresponding protected object.
@item
@code{Detect_Blocking}
This pragma forces the detection of potentially blocking operations within a
protected operation, and to raise Program_Error if that happens.
@end itemize
plus the following set of restrictions:
@itemize *
@item
@code{Max_Entry_Queue_Length => 1}
No task can be queued on a protected entry.
@item
@code{Max_Protected_Entries => 1}
@item
@code{Max_Task_Entries => 0}
No rendezvous statements are allowed.
@item
@code{No_Abort_Statements}
@item
@code{No_Dynamic_Attachment}
@item
@code{No_Dynamic_Priorities}
@item
@code{No_Implicit_Heap_Allocations}
@item
@code{No_Local_Protected_Objects}
@item
@code{No_Local_Timing_Events}
@item
@code{No_Protected_Type_Allocators}
@item
@code{No_Relative_Delay}
@item
@code{No_Requeue_Statements}
@item
@code{No_Select_Statements}
@item
@code{No_Specific_Termination_Handlers}
@item
@code{No_Task_Allocators}
@item
@code{No_Task_Hierarchy}
@item
@code{No_Task_Termination}
@item
@code{Simple_Barriers}
@end itemize
The Ravenscar profile also includes the following restrictions that specify
that there are no semantic dependencies on the corresponding predefined
packages:
@itemize *
@item
@code{No_Dependence => Ada.Asynchronous_Task_Control}
@item
@code{No_Dependence => Ada.Calendar}
@item
@code{No_Dependence => Ada.Execution_Time.Group_Budget}
@item
@code{No_Dependence => Ada.Execution_Time.Timers}
@item
@code{No_Dependence => Ada.Task_Attributes}
@item
@code{No_Dependence => System.Multiprocessors.Dispatching_Domains}
@end itemize
This set of configuration pragmas and restrictions correspond to the
definition of the ‘Ravenscar Profile’ for limited tasking, devised and
published by the @cite{International Real-Time Ada Workshop@comma{} 1997}.
A description is also available at
@indicateurl{http://www-users.cs.york.ac.uk/~burns/ravenscar.ps}.
The original definition of the profile was revised at subsequent IRTAW
meetings. It has been included in the ISO
@cite{Guide for the Use of the Ada Programming Language in High Integrity Systems},
and was made part of the Ada 2005 standard.
The formal definition given by
the Ada Rapporteur Group (ARG) can be found in two Ada Issues (AI-249 and
AI-305) available at
@indicateurl{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00249.txt} and
@indicateurl{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00305.txt}.
The above set is a superset of the restrictions provided by pragma
@code{Profile (Restricted)}, it includes six additional restrictions
(@code{Simple_Barriers}, @code{No_Select_Statements},
@code{No_Calendar}, @code{No_Implicit_Heap_Allocations},
@code{No_Relative_Delay} and @code{No_Task_Termination}). This means
that pragma @code{Profile (Ravenscar)}, like the pragma
@code{Profile (Restricted)},
automatically causes the use of a simplified,
more efficient version of the tasking run-time library.
@item
Pragma Profile (Jorvik)
@code{Jorvik} is the new profile added to the Ada 202x draft standard,
previously implemented under the name @code{GNAT_Extended_Ravenscar}.
The @code{No_Implicit_Heap_Allocations} restriction has been replaced
by @code{No_Implicit_Task_Allocations} and
@code{No_Implicit_Protected_Object_Allocations}.
The @code{Simple_Barriers} restriction has been replaced by
@code{Pure_Barriers}.
The @code{Max_Protected_Entries}, @code{Max_Entry_Queue_Length}, and
@code{No_Relative_Delay} restrictions have been removed.
Details on the rationale for @code{Jorvik} and implications for use may be
found in @cite{A New Ravenscar-Based Profile} by P. Rogers, J. Ruiz,
T. Gingold and P. Bernardi, in @cite{Reliable Software Technologies – Ada Europe 2017}, Springer-Verlag Lecture Notes in Computer Science,
Number 10300.
@item
Pragma Profile (GNAT_Ravenscar_EDF)
This profile corresponds to the Ravenscar profile but using
EDF_Across_Priority as the Task_Scheduling_Policy.
@item
Pragma Profile (Restricted)
This profile corresponds to the GNAT restricted run time. It
establishes the following set of restrictions:
@itemize *
@item
@code{No_Abort_Statements}
@item
@code{No_Entry_Queue}
@item
@code{No_Task_Hierarchy}
@item
@code{No_Task_Allocators}
@item
@code{No_Dynamic_Priorities}
@item
@code{No_Terminate_Alternatives}
@item
@code{No_Dynamic_Attachment}
@item
@code{No_Protected_Type_Allocators}
@item
@code{No_Local_Protected_Objects}
@item
@code{No_Requeue_Statements}
@item
@code{No_Task_Attributes_Package}
@item
@code{Max_Asynchronous_Select_Nesting = 0}
@item
@code{Max_Task_Entries = 0}
@item
@code{Max_Protected_Entries = 1}
@item
@code{Max_Select_Alternatives = 0}
@end itemize
This set of restrictions causes the automatic selection of a simplified
version of the run time that provides improved performance for the
limited set of tasking functionality permitted by this set of restrictions.
@item
Pragma Profile (Rational)
The Rational profile is intended to facilitate porting legacy code that
compiles with the Rational APEX compiler, even when the code includes non-
conforming Ada constructs. The profile enables the following three pragmas:
@itemize *
@item
@code{pragma Implicit_Packing}
@item
@code{pragma Overriding_Renamings}
@item
@code{pragma Use_VADS_Size}
@end itemize
@end itemize
@node Pragma Profile_Warnings,Pragma Propagate_Exceptions,Pragma Profile,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-profile-warnings}@anchor{cb}
@section Pragma Profile_Warnings
Syntax:
@example
pragma Profile_Warnings (Ravenscar | Restricted | Rational);
@end example
This is an implementation-defined pragma that is similar in
effect to @code{pragma Profile} except that instead of
generating @code{Restrictions} pragmas, it generates
@code{Restriction_Warnings} pragmas. The result is that
violations of the profile generate warning messages instead
of error messages.
@node Pragma Propagate_Exceptions,Pragma Provide_Shift_Operators,Pragma Profile_Warnings,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-propagate-exceptions}@anchor{cc}
@section Pragma Propagate_Exceptions
@geindex Interfacing to C++
Syntax:
@example
pragma Propagate_Exceptions;
@end example
This pragma is now obsolete and, other than generating a warning if warnings
on obsolescent features are enabled, is ignored.
It is retained for compatibility
purposes. It used to be used in connection with optimization of
a now-obsolete mechanism for implementation of exceptions.
@node Pragma Provide_Shift_Operators,Pragma Psect_Object,Pragma Propagate_Exceptions,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-provide-shift-operators}@anchor{cd}
@section Pragma Provide_Shift_Operators
@geindex Shift operators
Syntax:
@example
pragma Provide_Shift_Operators (integer_first_subtype_LOCAL_NAME);
@end example
This pragma can be applied to a first subtype local name that specifies
either an unsigned or signed type. It has the effect of providing the
five shift operators (Shift_Left, Shift_Right, Shift_Right_Arithmetic,
Rotate_Left and Rotate_Right) for the given type. It is similar to
including the function declarations for these five operators, together
with the pragma Import (Intrinsic, …) statements.
@node Pragma Psect_Object,Pragma Pure_Function,Pragma Provide_Shift_Operators,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-psect-object}@anchor{ce}
@section Pragma Psect_Object
Syntax:
@example
pragma Psect_Object (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);
EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION
@end example
This pragma is identical in effect to pragma @code{Common_Object}.
@node Pragma Pure_Function,Pragma Rational,Pragma Psect_Object,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id33}@anchor{cf}@anchor{gnat_rm/implementation_defined_pragmas pragma-pure-function}@anchor{d0}
@section Pragma Pure_Function
Syntax:
@example
pragma Pure_Function ([Entity =>] function_LOCAL_NAME);
@end example
This pragma appears in the same declarative part as a function
declaration (or a set of function declarations if more than one
overloaded declaration exists, in which case the pragma applies
to all entities). It specifies that the function @code{Entity} is
to be considered pure for the purposes of code generation. This means
that the compiler can assume that there are no side effects, and
in particular that two identical calls produce the same result in
the same context. It also means that the function can be used in
an address clause.
Note that, quite deliberately, there are no static checks to try
to ensure that this promise is met, so @code{Pure_Function} can be used
with functions that are conceptually pure, even if they do modify
global variables. For example, a square root function that is
instrumented to count the number of times it is called is still
conceptually pure, and can still be optimized, even though it
modifies a global variable (the count). Memo functions are another
example (where a table of previous calls is kept and consulted to
avoid re-computation).
Note also that the normal rules excluding optimization of subprograms
in pure units (when parameter types are descended from System.Address,
or when the full view of a parameter type is limited), do not apply
for the Pure_Function case. If you explicitly specify Pure_Function,
the compiler may optimize away calls with identical arguments, and
if that results in unexpected behavior, the proper action is not to
use the pragma for subprograms that are not (conceptually) pure.
Note: Most functions in a @code{Pure} package are automatically pure, and
there is no need to use pragma @code{Pure_Function} for such functions. One
exception is any function that has at least one formal of type
@code{System.Address} or a type derived from it. Such functions are not
considered pure by default, since the compiler assumes that the
@code{Address} parameter may be functioning as a pointer and that the
referenced data may change even if the address value does not.
Similarly, imported functions are not considered to be pure by default,
since there is no way of checking that they are in fact pure. The use
of pragma @code{Pure_Function} for such a function will override these default
assumption, and cause the compiler to treat a designated subprogram as pure
in these cases.
Note: If pragma @code{Pure_Function} is applied to a renamed function, it
applies to the underlying renamed function. This can be used to
disambiguate cases of overloading where some but not all functions
in a set of overloaded functions are to be designated as pure.
If pragma @code{Pure_Function} is applied to a library-level function, the
function is also considered pure from an optimization point of view, but the
unit is not a Pure unit in the categorization sense. So for example, a function
thus marked is free to @code{with} non-pure units.
@node Pragma Rational,Pragma Ravenscar,Pragma Pure_Function,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-rational}@anchor{d1}
@section Pragma Rational
Syntax:
@example
pragma Rational;
@end example
This pragma is considered obsolescent, but is retained for
compatibility purposes. It is equivalent to:
@example
pragma Profile (Rational);
@end example
@node Pragma Ravenscar,Pragma Refined_Depends,Pragma Rational,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-ravenscar}@anchor{d2}
@section Pragma Ravenscar
Syntax:
@example
pragma Ravenscar;
@end example
This pragma is considered obsolescent, but is retained for
compatibility purposes. It is equivalent to:
@example
pragma Profile (Ravenscar);
@end example
which is the preferred method of setting the @code{Ravenscar} profile.
@node Pragma Refined_Depends,Pragma Refined_Global,Pragma Ravenscar,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id34}@anchor{d3}@anchor{gnat_rm/implementation_defined_pragmas pragma-refined-depends}@anchor{d4}
@section Pragma Refined_Depends
Syntax:
@example
pragma Refined_Depends (DEPENDENCY_RELATION);
DEPENDENCY_RELATION ::=
null
| (DEPENDENCY_CLAUSE @{, DEPENDENCY_CLAUSE@})
DEPENDENCY_CLAUSE ::=
OUTPUT_LIST =>[+] INPUT_LIST
| NULL_DEPENDENCY_CLAUSE
NULL_DEPENDENCY_CLAUSE ::= null => INPUT_LIST
OUTPUT_LIST ::= OUTPUT | (OUTPUT @{, OUTPUT@})
INPUT_LIST ::= null | INPUT | (INPUT @{, INPUT@})
OUTPUT ::= NAME | FUNCTION_RESULT
INPUT ::= NAME
where FUNCTION_RESULT is a function Result attribute_reference
@end example
For the semantics of this pragma, see the entry for aspect @code{Refined_Depends} in
the SPARK 2014 Reference Manual, section 6.1.5.
@node Pragma Refined_Global,Pragma Refined_Post,Pragma Refined_Depends,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id35}@anchor{d5}@anchor{gnat_rm/implementation_defined_pragmas pragma-refined-global}@anchor{d6}
@section Pragma Refined_Global
Syntax:
@example
pragma Refined_Global (GLOBAL_SPECIFICATION);
GLOBAL_SPECIFICATION ::=
null
| (GLOBAL_LIST)
| (MODED_GLOBAL_LIST @{, MODED_GLOBAL_LIST@})
MODED_GLOBAL_LIST ::= MODE_SELECTOR => GLOBAL_LIST
MODE_SELECTOR ::= In_Out | Input | Output | Proof_In
GLOBAL_LIST ::= GLOBAL_ITEM | (GLOBAL_ITEM @{, GLOBAL_ITEM@})
GLOBAL_ITEM ::= NAME
@end example
For the semantics of this pragma, see the entry for aspect @code{Refined_Global} in
the SPARK 2014 Reference Manual, section 6.1.4.
@node Pragma Refined_Post,Pragma Refined_State,Pragma Refined_Global,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id36}@anchor{d7}@anchor{gnat_rm/implementation_defined_pragmas pragma-refined-post}@anchor{d8}
@section Pragma Refined_Post
Syntax:
@example
pragma Refined_Post (boolean_EXPRESSION);
@end example
For the semantics of this pragma, see the entry for aspect @code{Refined_Post} in
the SPARK 2014 Reference Manual, section 7.2.7.
@node Pragma Refined_State,Pragma Relative_Deadline,Pragma Refined_Post,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id37}@anchor{d9}@anchor{gnat_rm/implementation_defined_pragmas pragma-refined-state}@anchor{da}
@section Pragma Refined_State
Syntax:
@example
pragma Refined_State (REFINEMENT_LIST);
REFINEMENT_LIST ::=
(REFINEMENT_CLAUSE @{, REFINEMENT_CLAUSE@})
REFINEMENT_CLAUSE ::= state_NAME => CONSTITUENT_LIST
CONSTITUENT_LIST ::=
null
| CONSTITUENT
| (CONSTITUENT @{, CONSTITUENT@})
CONSTITUENT ::= object_NAME | state_NAME
@end example
For the semantics of this pragma, see the entry for aspect @code{Refined_State} in
the SPARK 2014 Reference Manual, section 7.2.2.
@node Pragma Relative_Deadline,Pragma Remote_Access_Type,Pragma Refined_State,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-relative-deadline}@anchor{db}
@section Pragma Relative_Deadline
Syntax:
@example
pragma Relative_Deadline (time_span_EXPRESSION);
@end example
This pragma is standard in Ada 2005, but is available in all earlier
versions of Ada as an implementation-defined pragma.
See Ada 2012 Reference Manual for details.
@node Pragma Remote_Access_Type,Pragma Rename_Pragma,Pragma Relative_Deadline,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id38}@anchor{dc}@anchor{gnat_rm/implementation_defined_pragmas pragma-remote-access-type}@anchor{dd}
@section Pragma Remote_Access_Type
Syntax:
@example
pragma Remote_Access_Type ([Entity =>] formal_access_type_LOCAL_NAME);
@end example
This pragma appears in the formal part of a generic declaration.
It specifies an exception to the RM rule from E.2.2(17/2), which forbids
the use of a remote access to class-wide type as actual for a formal
access type.
When this pragma applies to a formal access type @code{Entity}, that
type is treated as a remote access to class-wide type in the generic.
It must be a formal general access type, and its designated type must
be the class-wide type of a formal tagged limited private type from the
same generic declaration.
In the generic unit, the formal type is subject to all restrictions
pertaining to remote access to class-wide types. At instantiation, the
actual type must be a remote access to class-wide type.
@node Pragma Rename_Pragma,Pragma Restricted_Run_Time,Pragma Remote_Access_Type,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-rename-pragma}@anchor{de}
@section Pragma Rename_Pragma
@geindex Pragmas
@geindex synonyms
Syntax:
@example
pragma Rename_Pragma (
[New_Name =>] IDENTIFIER,
[Renamed =>] pragma_IDENTIFIER);
@end example
This pragma provides a mechanism for supplying new names for existing
pragmas. The @code{New_Name} identifier can subsequently be used as a synonym for
the Renamed pragma. For example, suppose you have code that was originally
developed on a compiler that supports Inline_Only as an implementation defined
pragma. And suppose the semantics of pragma Inline_Only are identical to (or at
least very similar to) the GNAT implementation defined pragma
Inline_Always. You could globally replace Inline_Only with Inline_Always.
However, to avoid that source modification, you could instead add a
configuration pragma:
@example
pragma Rename_Pragma (
New_Name => Inline_Only,
Renamed => Inline_Always);
@end example
Then GNAT will treat “pragma Inline_Only …” as if you had written
“pragma Inline_Always …”.
Pragma Inline_Only will not necessarily mean the same thing as the other Ada
compiler; it’s up to you to make sure the semantics are close enough.
@node Pragma Restricted_Run_Time,Pragma Restriction_Warnings,Pragma Rename_Pragma,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-restricted-run-time}@anchor{df}
@section Pragma Restricted_Run_Time
Syntax:
@example
pragma Restricted_Run_Time;
@end example
This pragma is considered obsolescent, but is retained for
compatibility purposes. It is equivalent to:
@example
pragma Profile (Restricted);
@end example
which is the preferred method of setting the restricted run time
profile.
@node Pragma Restriction_Warnings,Pragma Reviewable,Pragma Restricted_Run_Time,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-restriction-warnings}@anchor{e0}
@section Pragma Restriction_Warnings
Syntax:
@example
pragma Restriction_Warnings
(restriction_IDENTIFIER @{, restriction_IDENTIFIER@});
@end example
This pragma allows a series of restriction identifiers to be
specified (the list of allowed identifiers is the same as for
pragma @code{Restrictions}). For each of these identifiers
the compiler checks for violations of the restriction, but
generates a warning message rather than an error message
if the restriction is violated.
One use of this is in situations where you want to know
about violations of a restriction, but you want to ignore some of
these violations. Consider this example, where you want to set
Ada_95 mode and enable style checks, but you want to know about
any other use of implementation pragmas:
@example
pragma Restriction_Warnings (No_Implementation_Pragmas);
pragma Warnings (Off, "violation of No_Implementation_Pragmas");
pragma Ada_95;
pragma Style_Checks ("2bfhkM160");
pragma Warnings (On, "violation of No_Implementation_Pragmas");
@end example
By including the above lines in a configuration pragmas file,
the Ada_95 and Style_Checks pragmas are accepted without
generating a warning, but any other use of implementation
defined pragmas will cause a warning to be generated.
@node Pragma Reviewable,Pragma Secondary_Stack_Size,Pragma Restriction_Warnings,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-reviewable}@anchor{e1}
@section Pragma Reviewable
Syntax:
@example
pragma Reviewable;
@end example
This pragma is an RM-defined standard pragma, but has no effect on the
program being compiled, or on the code generated for the program.
To obtain the required output specified in RM H.3.1, the compiler must be
run with various special switches as follows:
@itemize *
@item
`Where compiler-generated run-time checks remain'
The switch `-gnatGL'
may be used to list the expanded code in pseudo-Ada form.
Runtime checks show up in the listing either as explicit
checks or operators marked with @{@} to indicate a check is present.
@item
`An identification of known exceptions at compile time'
If the program is compiled with `-gnatwa',
the compiler warning messages will indicate all cases where the compiler
detects that an exception is certain to occur at run time.
@item
`Possible reads of uninitialized variables'
The compiler warns of many such cases, but its output is incomplete.
@end itemize
A supplemental static analysis tool
may be used to obtain a comprehensive list of all
possible points at which uninitialized data may be read.
@itemize *
@item
`Where run-time support routines are implicitly invoked'
In the output from `-gnatGL',
run-time calls are explicitly listed as calls to the relevant
run-time routine.
@item
`Object code listing'
This may be obtained either by using the `-S' switch,
or the objdump utility.
@item
`Constructs known to be erroneous at compile time'
These are identified by warnings issued by the compiler (use `-gnatwa').
@item
`Stack usage information'
Static stack usage data (maximum per-subprogram) can be obtained via the
`-fstack-usage' switch to the compiler.
Dynamic stack usage data (per task) can be obtained via the `-u' switch
to gnatbind
@end itemize
@itemize *
@item
`Object code listing of entire partition'
This can be obtained by compiling the partition with `-S',
or by applying objdump
to all the object files that are part of the partition.
@item
`A description of the run-time model'
The full sources of the run-time are available, and the documentation of
these routines describes how these run-time routines interface to the
underlying operating system facilities.
@item
`Control and data-flow information'
@end itemize
A supplemental static analysis tool
may be used to obtain complete control and data-flow information, as well as
comprehensive messages identifying possible problems based on this
information.
@node Pragma Secondary_Stack_Size,Pragma Share_Generic,Pragma Reviewable,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id39}@anchor{e2}@anchor{gnat_rm/implementation_defined_pragmas pragma-secondary-stack-size}@anchor{e3}
@section Pragma Secondary_Stack_Size
Syntax:
@example
pragma Secondary_Stack_Size (integer_EXPRESSION);
@end example
This pragma appears within the task definition of a single task declaration
or a task type declaration (like pragma @code{Storage_Size}) and applies to all
task objects of that type. The argument specifies the size of the secondary
stack to be used by these task objects, and must be of an integer type. The
secondary stack is used to handle functions that return a variable-sized
result, for example a function returning an unconstrained String.
Note this pragma only applies to targets using fixed secondary stacks, like
VxWorks 653 and bare board targets, where a fixed block for the
secondary stack is allocated from the primary stack of the task. By default,
these targets assign a percentage of the primary stack for the secondary stack,
as defined by @code{System.Parameter.Sec_Stack_Percentage}. With this pragma,
an @code{integer_EXPRESSION} of bytes is assigned from the primary stack instead.
For most targets, the pragma does not apply as the secondary stack grows on
demand: allocated as a chain of blocks in the heap. The default size of these
blocks can be modified via the @code{-D} binder option as described in
@cite{GNAT User’s Guide}.
Note that no check is made to see if the secondary stack can fit inside the
primary stack.
Note the pragma cannot appear when the restriction @code{No_Secondary_Stack}
is in effect.
@node Pragma Share_Generic,Pragma Shared,Pragma Secondary_Stack_Size,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-share-generic}@anchor{e4}
@section Pragma Share_Generic
Syntax:
@example
pragma Share_Generic (GNAME @{, GNAME@});
GNAME ::= generic_unit_NAME | generic_instance_NAME
@end example
This pragma is provided for compatibility with Dec Ada 83. It has
no effect in GNAT (which does not implement shared generics), other
than to check that the given names are all names of generic units or
generic instances.
@node Pragma Shared,Pragma Short_Circuit_And_Or,Pragma Share_Generic,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id40}@anchor{e5}@anchor{gnat_rm/implementation_defined_pragmas pragma-shared}@anchor{e6}
@section Pragma Shared
This pragma is provided for compatibility with Ada 83. The syntax and
semantics are identical to pragma Atomic.
@node Pragma Short_Circuit_And_Or,Pragma Short_Descriptors,Pragma Shared,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-short-circuit-and-or}@anchor{e7}
@section Pragma Short_Circuit_And_Or
Syntax:
@example
pragma Short_Circuit_And_Or;
@end example
This configuration pragma causes any occurrence of the AND operator applied to
operands of type Standard.Boolean to be short-circuited (i.e. the AND operator
is treated as if it were AND THEN). Or is similarly treated as OR ELSE. This
may be useful in the context of certification protocols requiring the use of
short-circuited logical operators. If this configuration pragma occurs locally
within the file being compiled, it applies only to the file being compiled.
There is no requirement that all units in a partition use this option.
@node Pragma Short_Descriptors,Pragma Side_Effects,Pragma Short_Circuit_And_Or,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-short-descriptors}@anchor{e8}
@section Pragma Short_Descriptors
Syntax:
@example
pragma Short_Descriptors;
@end example
This pragma is provided for compatibility with other Ada implementations. It
is recognized but ignored by all current versions of GNAT.
@node Pragma Side_Effects,Pragma Simple_Storage_Pool_Type,Pragma Short_Descriptors,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id41}@anchor{e9}@anchor{gnat_rm/implementation_defined_pragmas pragma-side-effects}@anchor{ea}
@section Pragma Side_Effects
Syntax:
@example
pragma Side_Effects [ (static_boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect
@code{Side_Effects} in the SPARK Reference Manual, section 6.1.11.
@node Pragma Simple_Storage_Pool_Type,Pragma Source_File_Name,Pragma Side_Effects,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id42}@anchor{eb}@anchor{gnat_rm/implementation_defined_pragmas pragma-simple-storage-pool-type}@anchor{ec}
@section Pragma Simple_Storage_Pool_Type
@geindex Storage pool
@geindex simple
@geindex Simple storage pool
Syntax:
@example
pragma Simple_Storage_Pool_Type (type_LOCAL_NAME);
@end example
A type can be established as a ‘simple storage pool type’ by applying
the representation pragma @code{Simple_Storage_Pool_Type} to the type.
A type named in the pragma must be a library-level immutably limited record
type or limited tagged type declared immediately within a package declaration.
The type can also be a limited private type whose full type is allowed as
a simple storage pool type.
For a simple storage pool type @code{SSP}, nonabstract primitive subprograms
@code{Allocate}, @code{Deallocate}, and @code{Storage_Size} can be declared that
are subtype conformant with the following subprogram declarations:
@example
procedure Allocate
(Pool : in out SSP;
Storage_Address : out System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count);
procedure Deallocate
(Pool : in out SSP;
Storage_Address : System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count);
function Storage_Size (Pool : SSP)
return System.Storage_Elements.Storage_Count;
@end example
Procedure @code{Allocate} must be declared, whereas @code{Deallocate} and
@code{Storage_Size} are optional. If @code{Deallocate} is not declared, then
applying an unchecked deallocation has no effect other than to set its actual
parameter to null. If @code{Storage_Size} is not declared, then the
@code{Storage_Size} attribute applied to an access type associated with
a pool object of type SSP returns zero. Additional operations can be declared
for a simple storage pool type (such as for supporting a mark/release
storage-management discipline).
An object of a simple storage pool type can be associated with an access
type by specifying the attribute
@ref{ed,,Simple_Storage_Pool}. For example:
@example
My_Pool : My_Simple_Storage_Pool_Type;
type Acc is access My_Data_Type;
for Acc'Simple_Storage_Pool use My_Pool;
@end example
See attribute @ref{ed,,Simple_Storage_Pool}
for further details.
@node Pragma Source_File_Name,Pragma Source_File_Name_Project,Pragma Simple_Storage_Pool_Type,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id43}@anchor{ee}@anchor{gnat_rm/implementation_defined_pragmas pragma-source-file-name}@anchor{ef}
@section Pragma Source_File_Name
Syntax:
@example
pragma Source_File_Name (
[Unit_Name =>] unit_NAME,
Spec_File_Name => STRING_LITERAL,
[Index => INTEGER_LITERAL]);
pragma Source_File_Name (
[Unit_Name =>] unit_NAME,
Body_File_Name => STRING_LITERAL,
[Index => INTEGER_LITERAL]);
@end example
Use this to override the normal naming convention. It is a configuration
pragma, and so has the usual applicability of configuration pragmas
(i.e., it applies to either an entire partition, or to all units in a
compilation, or to a single unit, depending on how it is used).
@code{unit_name} is mapped to @code{file_name_literal}. The identifier for
the second argument is required, and indicates whether this is the file
name for the spec or for the body.
The optional Index argument should be used when a file contains multiple
units, and when you do not want to use @code{gnatchop} to separate then
into multiple files (which is the recommended procedure to limit the
number of recompilations that are needed when some sources change).
For instance, if the source file @code{source.ada} contains
@example
package B is
...
end B;
with B;
procedure A is
begin
..
end A;
@end example
you could use the following configuration pragmas:
@example
pragma Source_File_Name
(B, Spec_File_Name => "source.ada", Index => 1);
pragma Source_File_Name
(A, Body_File_Name => "source.ada", Index => 2);
@end example
Note that the @code{gnatname} utility can also be used to generate those
configuration pragmas.
Another form of the @code{Source_File_Name} pragma allows
the specification of patterns defining alternative file naming schemes
to apply to all files.
@example
pragma Source_File_Name
( [Spec_File_Name =>] STRING_LITERAL
[,[Casing =>] CASING_SPEC]
[,[Dot_Replacement =>] STRING_LITERAL]);
pragma Source_File_Name
( [Body_File_Name =>] STRING_LITERAL
[,[Casing =>] CASING_SPEC]
[,[Dot_Replacement =>] STRING_LITERAL]);
pragma Source_File_Name
( [Subunit_File_Name =>] STRING_LITERAL
[,[Casing =>] CASING_SPEC]
[,[Dot_Replacement =>] STRING_LITERAL]);
CASING_SPEC ::= Lowercase | Uppercase | Mixedcase
@end example
The first argument is a pattern that contains a single asterisk indicating
the point at which the unit name is to be inserted in the pattern string
to form the file name. The second argument is optional. If present it
specifies the casing of the unit name in the resulting file name string.
The default is lower case. Finally the third argument allows for systematic
replacement of any dots in the unit name by the specified string literal.
Note that Source_File_Name pragmas should not be used if you are using
project files. The reason for this rule is that the project manager is not
aware of these pragmas, and so other tools that use the project file would not
be aware of the intended naming conventions. If you are using project files,
file naming is controlled by Source_File_Name_Project pragmas, which are
usually supplied automatically by the project manager. A pragma
Source_File_Name cannot appear after a @ref{f0,,Pragma Source_File_Name_Project}.
For more details on the use of the @code{Source_File_Name} pragma, see the
sections on @cite{Using Other File Names} and @cite{Alternative File Naming Schemes}
in the @cite{GNAT User’s Guide}.
@node Pragma Source_File_Name_Project,Pragma Source_Reference,Pragma Source_File_Name,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id44}@anchor{f1}@anchor{gnat_rm/implementation_defined_pragmas pragma-source-file-name-project}@anchor{f0}
@section Pragma Source_File_Name_Project
This pragma has the same syntax and semantics as pragma Source_File_Name.
It is only allowed as a stand-alone configuration pragma.
It cannot appear after a @ref{ef,,Pragma Source_File_Name}, and
most importantly, once pragma Source_File_Name_Project appears,
no further Source_File_Name pragmas are allowed.
The intention is that Source_File_Name_Project pragmas are always
generated by the Project Manager in a manner consistent with the naming
specified in a project file, and when naming is controlled in this manner,
it is not permissible to attempt to modify this naming scheme using
Source_File_Name or Source_File_Name_Project pragmas (which would not be
known to the project manager).
@node Pragma Source_Reference,Pragma SPARK_Mode,Pragma Source_File_Name_Project,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-source-reference}@anchor{f2}
@section Pragma Source_Reference
Syntax:
@example
pragma Source_Reference (INTEGER_LITERAL, STRING_LITERAL);
@end example
This pragma must appear as the first line of a source file.
@code{integer_literal} is the logical line number of the line following
the pragma line (for use in error messages and debugging
information). @code{string_literal} is a static string constant that
specifies the file name to be used in error messages and debugging
information. This is most notably used for the output of @code{gnatchop}
with the `-r' switch, to make sure that the original unchopped
source file is the one referred to.
The second argument must be a string literal, it cannot be a static
string expression other than a string literal. This is because its value
is needed for error messages issued by all phases of the compiler.
@node Pragma SPARK_Mode,Pragma Static_Elaboration_Desired,Pragma Source_Reference,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id45}@anchor{f3}@anchor{gnat_rm/implementation_defined_pragmas pragma-spark-mode}@anchor{f4}
@section Pragma SPARK_Mode
Syntax:
@example
pragma SPARK_Mode [(On | Off)] ;
@end example
In general a program can have some parts that are in SPARK 2014 (and
follow all the rules in the SPARK Reference Manual), and some parts
that are full Ada 2012.
The SPARK_Mode pragma is used to identify which parts are in SPARK
2014 (by default programs are in full Ada). The SPARK_Mode pragma can
be used in the following places:
@itemize *
@item
As a configuration pragma, in which case it sets the default mode for
all units compiled with this pragma.
@item
Immediately following a library-level subprogram spec
@item
Immediately within a library-level package body
@item
Immediately following the @code{private} keyword of a library-level
package spec
@item
Immediately following the @code{begin} keyword of a library-level
package body
@item
Immediately within a library-level subprogram body
@end itemize
Normally a subprogram or package spec/body inherits the current mode
that is active at the point it is declared. But this can be overridden
by pragma within the spec or body as above.
The basic consistency rule is that you can’t turn SPARK_Mode back
@code{On}, once you have explicitly (with a pragma) turned if
@code{Off}. So the following rules apply:
If a subprogram spec has SPARK_Mode @code{Off}, then the body must
also have SPARK_Mode @code{Off}.
For a package, we have four parts:
@itemize *
@item
the package public declarations
@item
the package private part
@item
the body of the package
@item
the elaboration code after @code{begin}
@end itemize
For a package, the rule is that if you explicitly turn SPARK_Mode
@code{Off} for any part, then all the following parts must have
SPARK_Mode @code{Off}. Note that this may require repeating a pragma
SPARK_Mode (@code{Off}) in the body. For example, if we have a
configuration pragma SPARK_Mode (@code{On}) that turns the mode on by
default everywhere, and one particular package spec has pragma
SPARK_Mode (@code{Off}), then that pragma will need to be repeated in
the package body.
@node Pragma Static_Elaboration_Desired,Pragma Stream_Convert,Pragma SPARK_Mode,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-static-elaboration-desired}@anchor{f5}
@section Pragma Static_Elaboration_Desired
Syntax:
@example
pragma Static_Elaboration_Desired;
@end example
This pragma is used to indicate that the compiler should attempt to initialize
statically the objects declared in the library unit to which the pragma applies,
when these objects are initialized (explicitly or implicitly) by an aggregate.
In the absence of this pragma, aggregates in object declarations are expanded
into assignments and loops, even when the aggregate components are static
constants. When the aggregate is present the compiler builds a static expression
that requires no run-time code, so that the initialized object can be placed in
read-only data space. If the components are not static, or the aggregate has
more that 100 components, the compiler emits a warning that the pragma cannot
be obeyed. (See also the restriction No_Implicit_Loops, which supports static
construction of larger aggregates with static components that include an others
choice.)
@node Pragma Stream_Convert,Pragma Style_Checks,Pragma Static_Elaboration_Desired,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-stream-convert}@anchor{f6}
@section Pragma Stream_Convert
Syntax:
@example
pragma Stream_Convert (
[Entity =>] type_LOCAL_NAME,
[Read =>] function_NAME,
[Write =>] function_NAME);
@end example
This pragma provides an efficient way of providing user-defined stream
attributes. Not only is it simpler to use than specifying the attributes
directly, but more importantly, it allows the specification to be made in such
a way that the predefined unit Ada.Streams is not loaded unless it is actually
needed (i.e. unless the stream attributes are actually used); the use of
the Stream_Convert pragma adds no overhead at all, unless the stream
attributes are actually used on the designated type.
The first argument specifies the type for which stream functions are
provided. The second parameter provides a function used to read values
of this type. It must name a function whose argument type may be any
subtype, and whose returned type must be the type given as the first
argument to the pragma.
The meaning of the @code{Read} parameter is that if a stream attribute directly
or indirectly specifies reading of the type given as the first parameter,
then a value of the type given as the argument to the Read function is
read from the stream, and then the Read function is used to convert this
to the required target type.
Similarly the @code{Write} parameter specifies how to treat write attributes
that directly or indirectly apply to the type given as the first parameter.
It must have an input parameter of the type specified by the first parameter,
and the return type must be the same as the input type of the Read function.
The effect is to first call the Write function to convert to the given stream
type, and then write the result type to the stream.
The Read and Write functions must not be overloaded subprograms. If necessary
renamings can be supplied to meet this requirement.
The usage of this attribute is best illustrated by a simple example, taken
from the GNAT implementation of package Ada.Strings.Unbounded:
@example
function To_Unbounded (S : String) return Unbounded_String
renames To_Unbounded_String;
pragma Stream_Convert
(Unbounded_String, To_Unbounded, To_String);
@end example
The specifications of the referenced functions, as given in the Ada
Reference Manual are:
@example
function To_Unbounded_String (Source : String)
return Unbounded_String;
function To_String (Source : Unbounded_String)
return String;
@end example
The effect is that if the value of an unbounded string is written to a stream,
then the representation of the item in the stream is in the same format that
would be used for @code{Standard.String'Output}, and this same representation
is expected when a value of this type is read from the stream. Note that the
value written always includes the bounds, even for Unbounded_String’Write,
since Unbounded_String is not an array type.
Note that the @code{Stream_Convert} pragma is not effective in the case of
a derived type of a non-limited tagged type. If such a type is specified then
the pragma is silently ignored, and the default implementation of the stream
attributes is used instead.
@node Pragma Style_Checks,Pragma Subprogram_Variant,Pragma Stream_Convert,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-style-checks}@anchor{f7}
@section Pragma Style_Checks
Syntax:
@example
pragma Style_Checks (string_LITERAL | ALL_CHECKS |
On | Off [, LOCAL_NAME]);
@end example
This pragma is used in conjunction with compiler switches to control the
built in style checking provided by GNAT. The compiler switches, if set,
provide an initial setting for the switches, and this pragma may be used
to modify these settings, or the settings may be provided entirely by
the use of the pragma. This pragma can be used anywhere that a pragma
is legal, including use as a configuration pragma (including use in
the @code{gnat.adc} file).
The form with a string literal specifies which style options are to be
activated. These are additive, so they apply in addition to any previously
set style check options. The codes for the options are the same as those
used in the `-gnaty' switch to `gcc' or `gnatmake'.
For example the following two methods can be used to enable
layout checking:
@itemize *
@item
@example
pragma Style_Checks ("l");
@end example
@item
@example
gcc -c -gnatyl ...
@end example
@end itemize
The form @code{ALL_CHECKS} activates all standard checks (its use is equivalent
to the use of the @code{gnaty} switch with no options.
See the @cite{GNAT User’s Guide} for details.)
Note: the behavior is slightly different in GNAT mode (@code{-gnatg} used).
In this case, @code{ALL_CHECKS} implies the standard set of GNAT mode style check
options (i.e. equivalent to @code{-gnatyg}).
The forms with @code{Off} and @code{On}
can be used to temporarily disable style checks
as shown in the following example:
@example
pragma Style_Checks ("k"); -- requires keywords in lower case
pragma Style_Checks (Off); -- turn off style checks
NULL; -- this will not generate an error message
pragma Style_Checks (On); -- turn style checks back on
NULL; -- this will generate an error message
@end example
Finally the two argument form is allowed only if the first argument is
@code{On} or @code{Off}. The effect is to turn of semantic style checks
for the specified entity, as shown in the following example:
@example
pragma Style_Checks ("r"); -- require consistency of identifier casing
Arg : Integer;
Rf1 : Integer := ARG; -- incorrect, wrong case
pragma Style_Checks (Off, Arg);
Rf2 : Integer := ARG; -- OK, no error
@end example
@node Pragma Subprogram_Variant,Pragma Subtitle,Pragma Style_Checks,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-subprogram-variant}@anchor{f8}
@section Pragma Subprogram_Variant
@geindex Subprogram_Variant
Syntax:
@example
pragma Subprogram_Variant (SUBPROGRAM_VARIANT_LIST);
SUBPROGRAM_VARIANT_LIST ::=
STRUCTURAL_SUBPROGRAM_VARIANT_ITEM
| NUMERIC_SUBPROGRAM_VARIANT_ITEMS
NUMERIC_SUBPROGRAM_VARIANT_ITEMS ::=
NUMERIC_SUBPROGRAM_VARIANT_ITEM @{, NUMERIC_SUBPROGRAM_VARIANT_ITEM@}
NUMERIC_SUBPROGRAM_VARIANT_ITEM ::=
CHANGE_DIRECTION => EXPRESSION
STRUCTURAL_SUBPROGRAM_VARIANT_ITEM ::=
STRUCTURAL => EXPRESSION
CHANGE_DIRECTION ::= Increases | Decreases
@end example
The @code{Subprogram_Variant} pragma is intended to be an exact replacement for
the implementation-defined @code{Subprogram_Variant} aspect, and shares its
restrictions and semantics.
@node Pragma Subtitle,Pragma Suppress,Pragma Subprogram_Variant,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-subtitle}@anchor{f9}
@section Pragma Subtitle
Syntax:
@example
pragma Subtitle ([Subtitle =>] STRING_LITERAL);
@end example
This pragma is recognized for compatibility with other Ada compilers
but is ignored by GNAT.
@node Pragma Suppress,Pragma Suppress_All,Pragma Subtitle,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-suppress}@anchor{fa}
@section Pragma Suppress
Syntax:
@example
pragma Suppress (Identifier [, [On =>] Name]);
@end example
This is a standard pragma, and supports all the check names required in
the RM. It is included here because GNAT recognizes some additional check
names that are implementation defined (as permitted by the RM):
@itemize *
@item
@code{Alignment_Check} can be used to suppress alignment checks
on addresses used in address clauses. Such checks can also be suppressed
by suppressing range checks, but the specific use of @code{Alignment_Check}
allows suppression of alignment checks without suppressing other range checks.
Note that @code{Alignment_Check} is suppressed by default on machines (such as
the x86) with non-strict alignment.
@item
@code{Atomic_Synchronization} can be used to suppress the special memory
synchronization instructions that are normally generated for access to
@code{Atomic} variables to ensure correct synchronization between tasks
that use such variables for synchronization purposes.
@item
@code{Duplicated_Tag_Check} Can be used to suppress the check that is generated
for a duplicated tag value when a tagged type is declared.
@item
@code{Container_Checks} Can be used to suppress all checks within Ada.Containers
and instances of its children, including Tampering_Check.
@item
@code{Tampering_Check} Can be used to suppress tampering check in the containers.
@item
@code{Predicate_Check} can be used to control whether predicate checks are
active. It is applicable only to predicates for which the policy is
@code{Check}. Unlike @code{Assertion_Policy}, which determines if a given
predicate is ignored or checked for the whole program, the use of
@code{Suppress} and @code{Unsuppress} with this check name allows a given
predicate to be turned on and off at specific points in the program.
@item
@code{Validity_Check} can be used specifically to control validity checks.
If @code{Suppress} is used to suppress validity checks, then no validity
checks are performed, including those specified by the appropriate compiler
switch or the @code{Validity_Checks} pragma.
@item
Additional check names previously introduced by use of the @code{Check_Name}
pragma are also allowed.
@end itemize
Note that pragma Suppress gives the compiler permission to omit
checks, but does not require the compiler to omit checks. The compiler
will generate checks if they are essentially free, even when they are
suppressed. In particular, if the compiler can prove that a certain
check will necessarily fail, it will generate code to do an
unconditional ‘raise’, even if checks are suppressed. The compiler
warns in this case.
Of course, run-time checks are omitted whenever the compiler can prove
that they will not fail, whether or not checks are suppressed.
@node Pragma Suppress_All,Pragma Suppress_Debug_Info,Pragma Suppress,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-suppress-all}@anchor{fb}
@section Pragma Suppress_All
Syntax:
@example
pragma Suppress_All;
@end example
This pragma can appear anywhere within a unit.
The effect is to apply @code{Suppress (All_Checks)} to the unit
in which it appears. This pragma is implemented for compatibility with DEC
Ada 83 usage where it appears at the end of a unit, and for compatibility
with Rational Ada, where it appears as a program unit pragma.
The use of the standard Ada pragma @code{Suppress (All_Checks)}
as a normal configuration pragma is the preferred usage in GNAT.
@node Pragma Suppress_Debug_Info,Pragma Suppress_Exception_Locations,Pragma Suppress_All,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id46}@anchor{fc}@anchor{gnat_rm/implementation_defined_pragmas pragma-suppress-debug-info}@anchor{fd}
@section Pragma Suppress_Debug_Info
Syntax:
@example
pragma Suppress_Debug_Info ([Entity =>] LOCAL_NAME);
@end example
This pragma can be used to suppress generation of debug information
for the specified entity. It is intended primarily for use in debugging
the debugger, and navigating around debugger problems.
@node Pragma Suppress_Exception_Locations,Pragma Suppress_Initialization,Pragma Suppress_Debug_Info,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-suppress-exception-locations}@anchor{fe}
@section Pragma Suppress_Exception_Locations
Syntax:
@example
pragma Suppress_Exception_Locations;
@end example
In normal mode, a raise statement for an exception by default generates
an exception message giving the file name and line number for the location
of the raise. This is useful for debugging and logging purposes, but this
entails extra space for the strings for the messages. The configuration
pragma @code{Suppress_Exception_Locations} can be used to suppress the
generation of these strings, with the result that space is saved, but the
exception message for such raises is null. This configuration pragma may
appear in a global configuration pragma file, or in a specific unit as
usual. It is not required that this pragma be used consistently within
a partition, so it is fine to have some units within a partition compiled
with this pragma and others compiled in normal mode without it.
@node Pragma Suppress_Initialization,Pragma Task_Name,Pragma Suppress_Exception_Locations,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id47}@anchor{ff}@anchor{gnat_rm/implementation_defined_pragmas pragma-suppress-initialization}@anchor{100}
@section Pragma Suppress_Initialization
@geindex Suppressing initialization
@geindex Initialization
@geindex suppression of
Syntax:
@example
pragma Suppress_Initialization ([Entity =>] variable_or_subtype_LOCAL_NAME);
@end example
Here variable_or_subtype_LOCAL_NAME is the name introduced by a type
declaration or subtype declaration or the name of a variable introduced by
an object declaration.
In the case of a type or subtype
this pragma suppresses any implicit or explicit initialization
for all variables of the given type or subtype,
including initialization resulting from the use of pragmas
Normalize_Scalars or Initialize_Scalars.
This is considered a representation item, so it cannot be given after
the type is frozen. It applies to all subsequent object declarations,
and also any allocator that creates objects of the type.
If the pragma is given for the first subtype, then it is considered
to apply to the base type and all its subtypes. If the pragma is given
for other than a first subtype, then it applies only to the given subtype.
The pragma may not be given after the type is frozen.
Note that this includes eliminating initialization of discriminants
for discriminated types, and tags for tagged types. In these cases,
you will have to use some non-portable mechanism (e.g. address
overlays or unchecked conversion) to achieve required initialization
of these fields before accessing any object of the corresponding type.
For the variable case, implicit initialization for the named variable
is suppressed, just as though its subtype had been given in a pragma
Suppress_Initialization, as described above.
@node Pragma Task_Name,Pragma Task_Storage,Pragma Suppress_Initialization,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-task-name}@anchor{101}
@section Pragma Task_Name
Syntax
@example
pragma Task_Name (string_EXPRESSION);
@end example
This pragma appears within a task definition (like pragma
@code{Priority}) and applies to the task in which it appears. The
argument must be of type String, and provides a name to be used for
the task instance when the task is created. Note that this expression
is not required to be static, and in particular, it can contain
references to task discriminants. This facility can be used to
provide different names for different tasks as they are created,
as illustrated in the example below.
The task name is recorded internally in the run-time structures
and is accessible to tools like the debugger. In addition the
routine @code{Ada.Task_Identification.Image} will return this
string, with a unique task address appended.
@example
-- Example of the use of pragma Task_Name
with Ada.Task_Identification;
use Ada.Task_Identification;
with Text_IO; use Text_IO;
procedure t3 is
type Astring is access String;
task type Task_Typ (Name : access String) is
pragma Task_Name (Name.all);
end Task_Typ;
task body Task_Typ is
Nam : constant String := Image (Current_Task);
begin
Put_Line ("-->" & Nam (1 .. 14) & "<--");
end Task_Typ;
type Ptr_Task is access Task_Typ;
Task_Var : Ptr_Task;
begin
Task_Var :=
new Task_Typ (new String'("This is task 1"));
Task_Var :=
new Task_Typ (new String'("This is task 2"));
end;
@end example
@node Pragma Task_Storage,Pragma Test_Case,Pragma Task_Name,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-task-storage}@anchor{102}
@section Pragma Task_Storage
Syntax:
@example
pragma Task_Storage (
[Task_Type =>] LOCAL_NAME,
[Top_Guard =>] static_integer_EXPRESSION);
@end example
This pragma specifies the length of the guard area for tasks. The guard
area is an additional storage area allocated to a task. A value of zero
means that either no guard area is created or a minimal guard area is
created, depending on the target. This pragma can appear anywhere a
@code{Storage_Size} attribute definition clause is allowed for a task
type.
@node Pragma Test_Case,Pragma Thread_Local_Storage,Pragma Task_Storage,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id48}@anchor{103}@anchor{gnat_rm/implementation_defined_pragmas pragma-test-case}@anchor{104}
@section Pragma Test_Case
@geindex Test cases
Syntax:
@example
pragma Test_Case (
[Name =>] static_string_Expression
,[Mode =>] (Nominal | Robustness)
[, Requires => Boolean_Expression]
[, Ensures => Boolean_Expression]);
@end example
The @code{Test_Case} pragma allows defining fine-grain specifications
for use by testing tools.
The compiler checks the validity of the @code{Test_Case} pragma, but its
presence does not lead to any modification of the code generated by the
compiler.
@code{Test_Case} pragmas may only appear immediately following the
(separate) declaration of a subprogram in a package declaration, inside
a package spec unit. Only other pragmas may intervene (that is appear
between the subprogram declaration and a test case).
The compiler checks that boolean expressions given in @code{Requires} and
@code{Ensures} are valid, where the rules for @code{Requires} are the
same as the rule for an expression in @code{Precondition} and the rules
for @code{Ensures} are the same as the rule for an expression in
@code{Postcondition}. In particular, attributes @code{'Old} and
@code{'Result} can only be used within the @code{Ensures}
expression. The following is an example of use within a package spec:
@example
package Math_Functions is
...
function Sqrt (Arg : Float) return Float;
pragma Test_Case (Name => "Test 1",
Mode => Nominal,
Requires => Arg < 10000.0,
Ensures => Sqrt'Result < 10.0);
...
end Math_Functions;
@end example
The meaning of a test case is that there is at least one context where
@code{Requires} holds such that, if the associated subprogram is executed in
that context, then @code{Ensures} holds when the subprogram returns.
Mode @code{Nominal} indicates that the input context should also satisfy the
precondition of the subprogram, and the output context should also satisfy its
postcondition. Mode @code{Robustness} indicates that the precondition and
postcondition of the subprogram should be ignored for this test case.
@node Pragma Thread_Local_Storage,Pragma Time_Slice,Pragma Test_Case,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id49}@anchor{105}@anchor{gnat_rm/implementation_defined_pragmas pragma-thread-local-storage}@anchor{106}
@section Pragma Thread_Local_Storage
@geindex Task specific storage
@geindex TLS (Thread Local Storage)
@geindex Task_Attributes
Syntax:
@example
pragma Thread_Local_Storage ([Entity =>] LOCAL_NAME);
@end example
This pragma specifies that the specified entity, which must be
a variable declared in a library-level package, is to be marked as
“Thread Local Storage” (@code{TLS}). On systems supporting this (which
include Windows, Solaris, GNU/Linux, and VxWorks), this causes each
thread (and hence each Ada task) to see a distinct copy of the variable.
The variable must not have default initialization, and if there is
an explicit initialization, it must be either @code{null} for an
access variable, a static expression for a scalar variable, or a fully
static aggregate for a composite type, that is to say, an aggregate all
of whose components are static, and which does not include packed or
discriminated components.
This provides a low-level mechanism similar to that provided by
the @code{Ada.Task_Attributes} package, but much more efficient
and is also useful in writing interface code that will interact
with foreign threads.
If this pragma is used on a system where @code{TLS} is not supported,
then an error message will be generated and the program will be rejected.
@node Pragma Time_Slice,Pragma Title,Pragma Thread_Local_Storage,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-time-slice}@anchor{107}
@section Pragma Time_Slice
Syntax:
@example
pragma Time_Slice (static_duration_EXPRESSION);
@end example
For implementations of GNAT on operating systems where it is possible
to supply a time slice value, this pragma may be used for this purpose.
It is ignored if it is used in a system that does not allow this control,
or if it appears in other than the main program unit.
@node Pragma Title,Pragma Type_Invariant,Pragma Time_Slice,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-title}@anchor{108}
@section Pragma Title
Syntax:
@example
pragma Title (TITLING_OPTION [, TITLING OPTION]);
TITLING_OPTION ::=
[Title =>] STRING_LITERAL,
| [Subtitle =>] STRING_LITERAL
@end example
Syntax checked but otherwise ignored by GNAT. This is a listing control
pragma used in DEC Ada 83 implementations to provide a title and/or
subtitle for the program listing. The program listing generated by GNAT
does not have titles or subtitles.
Unlike other pragmas, the full flexibility of named notation is allowed
for this pragma, i.e., the parameters may be given in any order if named
notation is used, and named and positional notation can be mixed
following the normal rules for procedure calls in Ada.
@node Pragma Type_Invariant,Pragma Type_Invariant_Class,Pragma Title,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-type-invariant}@anchor{109}
@section Pragma Type_Invariant
Syntax:
@example
pragma Type_Invariant
([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);
@end example
The @code{Type_Invariant} pragma is intended to be an exact
replacement for the language-defined @code{Type_Invariant}
aspect, and shares its restrictions and semantics. It differs
from the language defined @code{Invariant} pragma in that it
does not permit a string parameter, and it is
controlled by the assertion identifier @code{Type_Invariant}
rather than @code{Invariant}.
@node Pragma Type_Invariant_Class,Pragma Unchecked_Union,Pragma Type_Invariant,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id50}@anchor{10a}@anchor{gnat_rm/implementation_defined_pragmas pragma-type-invariant-class}@anchor{10b}
@section Pragma Type_Invariant_Class
Syntax:
@example
pragma Type_Invariant_Class
([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);
@end example
The @code{Type_Invariant_Class} pragma is intended to be an exact
replacement for the language-defined @code{Type_Invariant'Class}
aspect, and shares its restrictions and semantics.
Note: This pragma is called @code{Type_Invariant_Class} rather than
@code{Type_Invariant'Class} because the latter would not be strictly
conforming to the allowed syntax for pragmas. The motivation
for providing pragmas equivalent to the aspects is to allow a program
to be written using the pragmas, and then compiled if necessary
using an Ada compiler that does not recognize the pragmas or
aspects, but is prepared to ignore the pragmas. The assertion
policy that controls this pragma is @code{Type_Invariant'Class},
not @code{Type_Invariant_Class}.
@node Pragma Unchecked_Union,Pragma Unevaluated_Use_Of_Old,Pragma Type_Invariant_Class,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-unchecked-union}@anchor{10c}
@section Pragma Unchecked_Union
@geindex Unions in C
Syntax:
@example
pragma Unchecked_Union (first_subtype_LOCAL_NAME);
@end example
This pragma is used to specify a representation of a record type that is
equivalent to a C union. It was introduced as a GNAT implementation defined
pragma in the GNAT Ada 95 mode. Ada 2005 includes an extended version of this
pragma, making it language defined, and GNAT fully implements this extended
version in all language modes (Ada 83, Ada 95, and Ada 2005). For full
details, consult the Ada 2012 Reference Manual, section B.3.3.
@node Pragma Unevaluated_Use_Of_Old,Pragma User_Aspect_Definition,Pragma Unchecked_Union,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-unevaluated-use-of-old}@anchor{10d}
@section Pragma Unevaluated_Use_Of_Old
@geindex Attribute Old
@geindex Attribute Loop_Entry
@geindex Unevaluated_Use_Of_Old
Syntax:
@example
pragma Unevaluated_Use_Of_Old (Error | Warn | Allow);
@end example
This pragma controls the processing of attributes Old and Loop_Entry.
If either of these attributes is used in a potentially unevaluated
expression (e.g. the then or else parts of an if expression), then
normally this usage is considered illegal if the prefix of the attribute
is other than an entity name. The language requires this
behavior for Old, and GNAT copies the same rule for Loop_Entry.
The reason for this rule is that otherwise, we can have a situation
where we save the Old value, and this results in an exception, even
though we might not evaluate the attribute. Consider this example:
@example
package UnevalOld is
K : Character;
procedure U (A : String; C : Boolean) -- ERROR
with Post => (if C then A(1)'Old = K else True);
end;
@end example
If procedure U is called with a string with a lower bound of 2, and
C false, then an exception would be raised trying to evaluate A(1)
on entry even though the value would not be actually used.
Although the rule guarantees against this possibility, it is sometimes
too restrictive. For example if we know that the string has a lower
bound of 1, then we will never raise an exception.
The pragma @code{Unevaluated_Use_Of_Old} can be
used to modify this behavior. If the argument is @code{Error} then an
error is given (this is the default RM behavior). If the argument is
@code{Warn} then the usage is allowed as legal but with a warning
that an exception might be raised. If the argument is @code{Allow}
then the usage is allowed as legal without generating a warning.
This pragma may appear as a configuration pragma, or in a declarative
part or package specification. In the latter case it applies to
uses up to the end of the corresponding statement sequence or
sequence of package declarations.
@node Pragma User_Aspect_Definition,Pragma Unimplemented_Unit,Pragma Unevaluated_Use_Of_Old,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-user-aspect-definition}@anchor{10e}
@section Pragma User_Aspect_Definition
Syntax:
@example
pragma User_Aspect_Definition
(Identifier @{, Identifier [(Identifier @{, Identifier@})]@});
@end example
This configuration pragma defines a new aspect, making it available for
subsequent use in a @cite{User_Aspect} aspect specification. The first identifier
is the name of the new aspect. Any subsequent arguments specify the names
of other aspects. A subsequent name for which no parenthesized arguments
are given shall denote either a Boolean-valued non-representation aspect
or an aspect that has been defined by another @cite{User_Aspect_Definition}
pragma. A name for which one or more arguments are given shall be either
@cite{Annotate} or @cite{Local_Restrictions} (and the arguments shall be appropriate
for the named aspect).
This pragma, together with the @cite{User_Aspect} aspect, provides a mechanism
for avoiding textual duplication if some set of aspect specifications
is needed in multiple places. This is somewhat analogous to how profiles
allow avoiding duplication of @cite{Restrictions} pragmas.
The visibility rules for an aspect defined by a @cite{User_Aspect_Definition}
pragma are the same as for a check name introduced by a @cite{Check_Name}
pragma. If multiple definitions are visible for some aspect at some point,
then the definitions must agree. A predefined aspect cannot be redefined.
@node Pragma Unimplemented_Unit,Pragma Universal_Aliasing,Pragma User_Aspect_Definition,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-unimplemented-unit}@anchor{10f}
@section Pragma Unimplemented_Unit
Syntax:
@example
pragma Unimplemented_Unit;
@end example
If this pragma occurs in a unit that is processed by the compiler, GNAT
aborts with the message @code{xxx not implemented}, where
@code{xxx} is the name of the current compilation unit. This pragma is
intended to allow the compiler to handle unimplemented library units in
a clean manner.
The abort only happens if code is being generated. Thus you can use
specs of unimplemented packages in syntax or semantic checking mode.
@node Pragma Universal_Aliasing,Pragma Unmodified,Pragma Unimplemented_Unit,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id51}@anchor{110}@anchor{gnat_rm/implementation_defined_pragmas pragma-universal-aliasing}@anchor{111}
@section Pragma Universal_Aliasing
Syntax:
@example
pragma Universal_Aliasing [([Entity =>] type_LOCAL_NAME)];
@end example
@code{type_LOCAL_NAME} must refer to a type declaration in the current
declarative part. The effect is to inhibit strict type-based aliasing
optimizations for the given type. For a detailed description of the
strict type-based aliasing optimizations and the situations in which
they need to be suppressed, see the section on
@code{Optimization and Strict Aliasing} in the @cite{GNAT User’s Guide}.
@node Pragma Unmodified,Pragma Unreferenced,Pragma Universal_Aliasing,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id52}@anchor{112}@anchor{gnat_rm/implementation_defined_pragmas pragma-unmodified}@anchor{113}
@section Pragma Unmodified
@geindex Warnings
@geindex unmodified
Syntax:
@example
pragma Unmodified (LOCAL_NAME @{, LOCAL_NAME@});
@end example
This pragma signals that the assignable entities (variables,
@code{out} parameters, @code{in out} parameters) whose names are listed are
deliberately not assigned in the current source unit. This
suppresses warnings about the
entities being referenced but not assigned, and in addition a warning will be
generated if one of these entities is in fact assigned in the
same unit as the pragma (or in the corresponding body, or one
of its subunits).
This is particularly useful for clearly signaling that a particular
parameter is not modified, even though the spec suggests that it might
be.
For the variable case, warnings are never given for unreferenced variables
whose name contains one of the substrings
@code{DISCARD, DUMMY, IGNORE, JUNK, UNUSE, TMP, TEMP} in any casing. Such names
are typically to be used in cases where such warnings are expected.
Thus it is never necessary to use @code{pragma Unmodified} for such
variables, though it is harmless to do so.
@node Pragma Unreferenced,Pragma Unreferenced_Objects,Pragma Unmodified,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id53}@anchor{114}@anchor{gnat_rm/implementation_defined_pragmas pragma-unreferenced}@anchor{115}
@section Pragma Unreferenced
@geindex Warnings
@geindex unreferenced
Syntax:
@example
pragma Unreferenced (LOCAL_NAME @{, LOCAL_NAME@});
pragma Unreferenced (library_unit_NAME @{, library_unit_NAME@});
@end example
This pragma signals that the entities whose names are listed are
deliberately not referenced in the current source unit after the
occurrence of the pragma. This
suppresses warnings about the
entities being unreferenced, and in addition a warning will be
generated if one of these entities is in fact subsequently referenced in the
same unit as the pragma (or in the corresponding body, or one
of its subunits).
This is particularly useful for clearly signaling that a particular
parameter is not referenced in some particular subprogram implementation
and that this is deliberate. It can also be useful in the case of
objects declared only for their initialization or finalization side
effects.
If @code{LOCAL_NAME} identifies more than one matching homonym in the
current scope, then the entity most recently declared is the one to which
the pragma applies. Note that in the case of accept formals, the pragma
Unreferenced may appear immediately after the keyword @code{do} which
allows the indication of whether or not accept formals are referenced
or not to be given individually for each accept statement.
The left hand side of an assignment does not count as a reference for the
purpose of this pragma. Thus it is fine to assign to an entity for which
pragma Unreferenced is given. However, use of an entity as an actual for
an out parameter does count as a reference unless warnings for unread output
parameters are enabled via @code{-gnatw.o}.
Note that if a warning is desired for all calls to a given subprogram,
regardless of whether they occur in the same unit as the subprogram
declaration, then this pragma should not be used (calls from another
unit would not be flagged); pragma Obsolescent can be used instead
for this purpose, see @ref{b3,,Pragma Obsolescent}.
The second form of pragma @code{Unreferenced} is used within a context
clause. In this case the arguments must be unit names of units previously
mentioned in @code{with} clauses (similar to the usage of pragma
@code{Elaborate_All}). The effect is to suppress warnings about unreferenced
units and unreferenced entities within these units.
For the variable case, warnings are never given for unreferenced variables
whose name contains one of the substrings
@code{DISCARD, DUMMY, IGNORE, JUNK, UNUSED} in any casing. Such names
are typically to be used in cases where such warnings are expected.
Thus it is never necessary to use @code{pragma Unreferenced} for such
variables, though it is harmless to do so.
@node Pragma Unreferenced_Objects,Pragma Unreserve_All_Interrupts,Pragma Unreferenced,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id54}@anchor{116}@anchor{gnat_rm/implementation_defined_pragmas pragma-unreferenced-objects}@anchor{117}
@section Pragma Unreferenced_Objects
@geindex Warnings
@geindex unreferenced
Syntax:
@example
pragma Unreferenced_Objects (local_subtype_NAME @{, local_subtype_NAME@});
@end example
This pragma signals that for the types or subtypes whose names are
listed, objects which are declared with one of these types or subtypes may
not be referenced, and if no references appear, no warnings are given.
This is particularly useful for objects which are declared solely for their
initialization and finalization effect. Such variables are sometimes referred
to as RAII variables (Resource Acquisition Is Initialization). Using this
pragma on the relevant type (most typically a limited controlled type), the
compiler will automatically suppress unwanted warnings about these variables
not being referenced.
@node Pragma Unreserve_All_Interrupts,Pragma Unsuppress,Pragma Unreferenced_Objects,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-unreserve-all-interrupts}@anchor{118}
@section Pragma Unreserve_All_Interrupts
Syntax:
@example
pragma Unreserve_All_Interrupts;
@end example
Normally certain interrupts are reserved to the implementation. Any attempt
to attach an interrupt causes Program_Error to be raised, as described in
RM C.3.2(22). A typical example is the @code{SIGINT} interrupt used in
many systems for a @code{Ctrl-C} interrupt. Normally this interrupt is
reserved to the implementation, so that @code{Ctrl-C} can be used to
interrupt execution.
If the pragma @code{Unreserve_All_Interrupts} appears anywhere in any unit in
a program, then all such interrupts are unreserved. This allows the
program to handle these interrupts, but disables their standard
functions. For example, if this pragma is used, then pressing
@code{Ctrl-C} will not automatically interrupt execution. However,
a program can then handle the @code{SIGINT} interrupt as it chooses.
For a full list of the interrupts handled in a specific implementation,
see the source code for the spec of @code{Ada.Interrupts.Names} in
file @code{a-intnam.ads}. This is a target dependent file that contains the
list of interrupts recognized for a given target. The documentation in
this file also specifies what interrupts are affected by the use of
the @code{Unreserve_All_Interrupts} pragma.
For a more general facility for controlling what interrupts can be
handled, see pragma @code{Interrupt_State}, which subsumes the functionality
of the @code{Unreserve_All_Interrupts} pragma.
@node Pragma Unsuppress,Pragma Unused,Pragma Unreserve_All_Interrupts,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-unsuppress}@anchor{119}
@section Pragma Unsuppress
Syntax:
@example
pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);
@end example
This pragma undoes the effect of a previous pragma @code{Suppress}. If
there is no corresponding pragma @code{Suppress} in effect, it has no
effect. The range of the effect is the same as for pragma
@code{Suppress}. The meaning of the arguments is identical to that used
in pragma @code{Suppress}.
One important application is to ensure that checks are on in cases where
code depends on the checks for its correct functioning, so that the code
will compile correctly even if the compiler switches are set to suppress
checks. For example, in a program that depends on external names of tagged
types and wants to ensure that the duplicated tag check occurs even if all
run-time checks are suppressed by a compiler switch, the following
configuration pragma will ensure this test is not suppressed:
@example
pragma Unsuppress (Duplicated_Tag_Check);
@end example
This pragma is standard in Ada 2005. It is available in all earlier versions
of Ada as an implementation-defined pragma.
Note that in addition to the checks defined in the Ada RM, GNAT recognizes a
number of implementation-defined check names. See the description of pragma
@code{Suppress} for full details.
@node Pragma Unused,Pragma Use_VADS_Size,Pragma Unsuppress,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id55}@anchor{11a}@anchor{gnat_rm/implementation_defined_pragmas pragma-unused}@anchor{11b}
@section Pragma Unused
@geindex Warnings
@geindex unused
Syntax:
@example
pragma Unused (LOCAL_NAME @{, LOCAL_NAME@});
@end example
This pragma signals that the assignable entities (variables,
@code{out} parameters, and @code{in out} parameters) whose names are listed
deliberately do not get assigned or referenced in the current source unit
after the occurrence of the pragma in the current source unit. This
suppresses warnings about the entities that are unreferenced and/or not
assigned, and, in addition, a warning will be generated if one of these
entities gets assigned or subsequently referenced in the same unit as the
pragma (in the corresponding body or one of its subunits).
This is particularly useful for clearly signaling that a particular
parameter is not modified or referenced, even though the spec suggests
that it might be.
For the variable case, warnings are never given for unreferenced
variables whose name contains one of the substrings
@code{DISCARD, DUMMY, IGNORE, JUNK, UNUSED} in any casing. Such names
are typically to be used in cases where such warnings are expected.
Thus it is never necessary to use @code{pragma Unused} for such
variables, though it is harmless to do so.
@node Pragma Use_VADS_Size,Pragma Validity_Checks,Pragma Unused,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-use-vads-size}@anchor{11c}
@section Pragma Use_VADS_Size
@geindex Size
@geindex VADS compatibility
@geindex Rational profile
Syntax:
@example
pragma Use_VADS_Size;
@end example
This is a configuration pragma. In a unit to which it applies, any use
of the ‘Size attribute is automatically interpreted as a use of the
‘VADS_Size attribute. Note that this may result in incorrect semantic
processing of valid Ada 95 or Ada 2005 programs. This is intended to aid in
the handling of existing code which depends on the interpretation of Size
as implemented in the VADS compiler. See description of the VADS_Size
attribute for further details.
@node Pragma Validity_Checks,Pragma Volatile,Pragma Use_VADS_Size,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-validity-checks}@anchor{11d}
@section Pragma Validity_Checks
Syntax:
@example
pragma Validity_Checks (string_LITERAL | ALL_CHECKS | On | Off);
@end example
This pragma is used in conjunction with compiler switches to control the
built-in validity checking provided by GNAT. The compiler switches, if set
provide an initial setting for the switches, and this pragma may be used
to modify these settings, or the settings may be provided entirely by
the use of the pragma. This pragma can be used anywhere that a pragma
is legal, including use as a configuration pragma (including use in
the @code{gnat.adc} file).
The form with a string literal specifies which validity options are to be
activated. The validity checks are first set to include only the default
reference manual settings, and then a string of letters in the string
specifies the exact set of options required. The form of this string
is exactly as described for the `-gnatVx' compiler switch (see the
GNAT User’s Guide for details). For example the following two
methods can be used to enable validity checking for mode @code{in} and
@code{in out} subprogram parameters:
@itemize *
@item
@example
pragma Validity_Checks ("im");
@end example
@item
@example
$ gcc -c -gnatVim ...
@end example
@end itemize
The form ALL_CHECKS activates all standard checks (its use is equivalent
to the use of the @code{gnatVa} switch).
The forms with @code{Off} and @code{On} can be used to temporarily disable
validity checks as shown in the following example:
@example
pragma Validity_Checks ("c"); -- validity checks for copies
pragma Validity_Checks (Off); -- turn off validity checks
A := B; -- B will not be validity checked
pragma Validity_Checks (On); -- turn validity checks back on
A := C; -- C will be validity checked
@end example
@node Pragma Volatile,Pragma Volatile_Full_Access,Pragma Validity_Checks,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id56}@anchor{11e}@anchor{gnat_rm/implementation_defined_pragmas pragma-volatile}@anchor{11f}
@section Pragma Volatile
Syntax:
@example
pragma Volatile (LOCAL_NAME);
@end example
This pragma is defined by the Ada Reference Manual, and the GNAT
implementation is fully conformant with this definition. The reason it
is mentioned in this section is that a pragma of the same name was supplied
in some Ada 83 compilers, including DEC Ada 83. The Ada 95 / Ada 2005
implementation of pragma Volatile is upwards compatible with the
implementation in DEC Ada 83.
@node Pragma Volatile_Full_Access,Pragma Volatile_Function,Pragma Volatile,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id57}@anchor{120}@anchor{gnat_rm/implementation_defined_pragmas pragma-volatile-full-access}@anchor{121}
@section Pragma Volatile_Full_Access
Syntax:
@example
pragma Volatile_Full_Access (LOCAL_NAME);
@end example
This is similar in effect to pragma Volatile, except that any reference to the
object is guaranteed to be done only with instructions that read or write all
the bits of the object. Furthermore, if the object is of a composite type,
then any reference to a subcomponent of the object is guaranteed to read
and/or write all the bits of the object.
The intention is that this be suitable for use with memory-mapped I/O devices
on some machines. Note that there are two important respects in which this is
different from @code{pragma Atomic}. First a reference to a @code{Volatile_Full_Access}
object is not a sequential action in the RM 9.10 sense and, therefore, does
not create a synchronization point. Second, in the case of @code{pragma Atomic},
there is no guarantee that all the bits will be accessed if the reference
is not to the whole object; the compiler is allowed (and generally will)
access only part of the object in this case.
@node Pragma Volatile_Function,Pragma Warning_As_Error,Pragma Volatile_Full_Access,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id58}@anchor{122}@anchor{gnat_rm/implementation_defined_pragmas pragma-volatile-function}@anchor{123}
@section Pragma Volatile_Function
Syntax:
@example
pragma Volatile_Function [ (static_boolean_EXPRESSION) ];
@end example
For the semantics of this pragma, see the entry for aspect @code{Volatile_Function}
in the SPARK 2014 Reference Manual, section 7.1.2.
@node Pragma Warning_As_Error,Pragma Warnings,Pragma Volatile_Function,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-warning-as-error}@anchor{124}
@section Pragma Warning_As_Error
Syntax:
@example
pragma Warning_As_Error (static_string_EXPRESSION);
@end example
This configuration pragma allows the programmer to specify a set
of warnings that will be treated as errors. Any warning that
matches the pattern given by the pragma argument will be treated
as an error. This gives more precise control than -gnatwe,
which treats warnings as errors.
This pragma can apply to regular warnings (messages enabled by -gnatw)
and to style warnings (messages that start with “(style)”,
enabled by -gnaty).
The pattern may contain asterisks, which match zero or more characters
in the message. For example, you can use @code{pragma Warning_As_Error
("bits of*unused")} to treat the warning message @code{warning: 960 bits of
"a" unused} as an error. All characters other than asterisk are treated
as literal characters in the match. The match is case insensitive; for
example XYZ matches xyz.
Note that the pattern matches if it occurs anywhere within the warning
message string (it is not necessary to put an asterisk at the start and
the end of the message, since this is implied).
Another possibility for the static_string_EXPRESSION which works whether
or not error tags are enabled (`-gnatw.d') is to use a single
`-gnatw' tag string, enclosed in brackets,
as shown in the example below, to treat one category of warnings as errors.
Note that if you want to treat multiple categories of warnings as errors,
you can use multiple pragma Warning_As_Error.
The above use of patterns to match the message applies only to warning
messages generated by the front end. This pragma can also be applied to
warnings provided by the back end and mentioned in @ref{125,,Pragma Warnings}.
By using a single full `-Wxxx' switch in the pragma, such warnings
can also be treated as errors.
The pragma can appear either in a global configuration pragma file
(e.g. @code{gnat.adc}), or at the start of a file. Given a global
configuration pragma file containing:
@example
pragma Warning_As_Error ("[-gnatwj]");
@end example
which will treat all obsolescent feature warnings as errors, the
following program compiles as shown (compile options here are
`-gnatwa.d -gnatl -gnatj55').
@example
1. pragma Warning_As_Error ("*never assigned*");
2. function Warnerr return String is
3. X : Integer;
|
>>> error: variable "X" is never read and
never assigned [-gnatwv] [warning-as-error]
4. Y : Integer;
|
>>> warning: variable "Y" is assigned but
never read [-gnatwu]
5. begin
6. Y := 0;
7. return %ABC%;
|
>>> error: use of "%" is an obsolescent
feature (RM J.2(4)), use """ instead
[-gnatwj] [warning-as-error]
8. end;
8 lines: No errors, 3 warnings (2 treated as errors)
@end example
Note that this pragma does not affect the set of warnings issued in
any way, it merely changes the effect of a matching warning if one
is produced as a result of other warnings options. As shown in this
example, if the pragma results in a warning being treated as an error,
the tag is changed from “warning:” to “error:” and the string
“[warning-as-error]” is appended to the end of the message.
@node Pragma Warnings,Pragma Weak_External,Pragma Warning_As_Error,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas id59}@anchor{126}@anchor{gnat_rm/implementation_defined_pragmas pragma-warnings}@anchor{125}
@section Pragma Warnings
Syntax:
@example
pragma Warnings ([TOOL_NAME,] DETAILS [, REASON]);
DETAILS ::= On | Off
DETAILS ::= On | Off, local_NAME
DETAILS ::= static_string_EXPRESSION
DETAILS ::= On | Off, static_string_EXPRESSION
TOOL_NAME ::= GNAT | GNATprove
REASON ::= Reason => STRING_LITERAL @{& STRING_LITERAL@}
@end example
Note: in Ada 83 mode, a string literal may be used in place of a static string
expression (which does not exist in Ada 83).
Note if the second argument of @code{DETAILS} is a @code{local_NAME} then the
second form is always understood. If the intention is to use
the fourth form, then you can write @code{NAME & ""} to force the
interpretation as a `static_string_EXPRESSION'.
Note: if the first argument is a valid @code{TOOL_NAME}, it will be interpreted
that way. The use of the @code{TOOL_NAME} argument is relevant only to users
of SPARK and GNATprove, see last part of this section for details.
Normally warnings are enabled, with the output being controlled by
the command line switch. Warnings (@code{Off}) turns off generation of
warnings until a Warnings (@code{On}) is encountered or the end of the
current unit. If generation of warnings is turned off using this
pragma, then some or all of the warning messages are suppressed,
regardless of the setting of the command line switches.
The @code{Reason} parameter may optionally appear as the last argument
in any of the forms of this pragma. It is intended purely for the
purposes of documenting the reason for the @code{Warnings} pragma.
The compiler will check that the argument is a static string but
otherwise ignore this argument. Other tools may provide specialized
processing for this string.
The form with a single argument (or two arguments if Reason present),
where the first argument is @code{ON} or @code{OFF}
may be used as a configuration pragma.
If the @code{LOCAL_NAME} parameter is present, warnings are suppressed for
the specified entity. This suppression is effective from the point where
it occurs till the end of the extended scope of the variable (similar to
the scope of @code{Suppress}). This form cannot be used as a configuration
pragma.
In the case where the first argument is other than @code{ON} or
@code{OFF},
the third form with a single static_string_EXPRESSION argument (and possible
reason) provides more precise
control over which warnings are active. The string is a list of letters
specifying which warnings are to be activated and which deactivated. The
code for these letters is the same as the string used in the command
line switch controlling warnings. For a brief summary, use the gnatmake
command with no arguments, which will generate usage information containing
the list of warnings switches supported. For
full details see the section on @code{Warning Message Control} in the
@cite{GNAT User’s Guide}.
This form can also be used as a configuration pragma.
The warnings controlled by the @code{-gnatw} switch are generated by the
front end of the compiler. The GCC back end can provide additional warnings
and they are controlled by the @code{-W} switch. Such warnings can be
identified by the appearance of a string of the form @code{[-W@{xxx@}]} in the
message which designates the @code{-W`xxx'} switch that controls the message.
The form with a single `static_string_EXPRESSION' argument also works for these
warnings, but the string must be a single full @code{-W`xxx'} switch in this
case. The above reference lists a few examples of these additional warnings.
The specified warnings will be in effect until the end of the program
or another pragma @code{Warnings} is encountered. The effect of the pragma is
cumulative. Initially the set of warnings is the standard default set
as possibly modified by compiler switches. Then each pragma Warning
modifies this set of warnings as specified. This form of the pragma may
also be used as a configuration pragma.
The fourth form, with an @code{On|Off} parameter and a string, is used to
control individual messages, based on their text. The string argument
is a pattern that is used to match against the text of individual
warning messages (not including the initial “warning: ” tag).
The pattern may contain asterisks, which match zero or more characters in
the message. For example, you can use
@code{pragma Warnings (Off, "bits of*unused")} to suppress the warning
message @code{warning: 960 bits of "a" unused}. No other regular
expression notations are permitted. All characters other than asterisk in
these three specific cases are treated as literal characters in the match.
The match is case insensitive, for example XYZ matches xyz.
Note that the pattern matches if it occurs anywhere within the warning
message string (it is not necessary to put an asterisk at the start and
the end of the message, since this is implied).
The above use of patterns to match the message applies only to warning
messages generated by the front end. This form of the pragma with a string
argument can also be used to control warnings provided by the back end and
mentioned above. By using a single full @code{-W`xxx'} switch in the pragma,
such warnings can be turned on and off.
There are two ways to use the pragma in this form. The OFF form can be used
as a configuration pragma. The effect is to suppress all warnings (if any)
that match the pattern string throughout the compilation (or match the
-W switch in the back end case).
The second usage is to suppress a warning locally, and in this case, two
pragmas must appear in sequence:
@example
pragma Warnings (Off, Pattern);
... code where given warning is to be suppressed
pragma Warnings (On, Pattern);
@end example
In this usage, the pattern string must match in the Off and On
pragmas, and (if `-gnatw.w' is given) at least one matching
warning must be suppressed.
Note: if the ON form is not found, then the effect of the OFF form extends
until the end of the file (pragma Warnings is purely textual, so its effect
does not stop at the end of the enclosing scope).
Note: to write a string that will match any warning, use the string
@code{"***"}. It will not work to use a single asterisk or two
asterisks since this looks like an operator name. This form with three
asterisks is similar in effect to specifying @code{pragma Warnings (Off)} except (if @code{-gnatw.w} is given) that a matching
@code{pragma Warnings (On, "***")} will be required. This can be
helpful in avoiding forgetting to turn warnings back on.
Note: the debug flag @code{-gnatd.i} can be
used to cause the compiler to entirely ignore all WARNINGS pragmas. This can
be useful in checking whether obsolete pragmas in existing programs are hiding
real problems.
Note: pragma Warnings does not affect the processing of style messages. See
separate entry for pragma Style_Checks for control of style messages.
Users of the formal verification tool GNATprove for the SPARK subset of Ada may
use the version of the pragma with a @code{TOOL_NAME} parameter.
If present, @code{TOOL_NAME} is the name of a tool, currently either @code{GNAT} for the
compiler or @code{GNATprove} for the formal verification tool. A given tool only
takes into account pragma Warnings that do not specify a tool name, or that
specify the matching tool name. This makes it possible to disable warnings
selectively for each tool, and as a consequence to detect useless pragma
Warnings with switch @code{-gnatw.w}.
@node Pragma Weak_External,Pragma Wide_Character_Encoding,Pragma Warnings,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-weak-external}@anchor{127}
@section Pragma Weak_External
Syntax:
@example
pragma Weak_External ([Entity =>] LOCAL_NAME);
@end example
@code{LOCAL_NAME} must refer to an object that is declared at the library
level. This pragma specifies that the given entity should be marked as a
weak symbol for the linker. It is equivalent to @code{__attribute__((weak))}
in GNU C and causes @code{LOCAL_NAME} to be emitted as a weak symbol instead
of a regular symbol, that is to say a symbol that does not have to be
resolved by the linker if used in conjunction with a pragma Import.
When a weak symbol is not resolved by the linker, its address is set to
zero. This is useful in writing interfaces to external modules that may
or may not be linked in the final executable, for example depending on
configuration settings.
If a program references at run time an entity to which this pragma has been
applied, and the corresponding symbol was not resolved at link time, then
the execution of the program is erroneous. It is not erroneous to take the
Address of such an entity, for example to guard potential references,
as shown in the example below.
Some file formats do not support weak symbols so not all target machines
support this pragma.
@example
-- Example of the use of pragma Weak_External
package External_Module is
key : Integer;
pragma Import (C, key);
pragma Weak_External (key);
function Present return boolean;
end External_Module;
with System; use System;
package body External_Module is
function Present return boolean is
begin
return key'Address /= System.Null_Address;
end Present;
end External_Module;
@end example
@node Pragma Wide_Character_Encoding,,Pragma Weak_External,Implementation Defined Pragmas
@anchor{gnat_rm/implementation_defined_pragmas pragma-wide-character-encoding}@anchor{128}
@section Pragma Wide_Character_Encoding
Syntax:
@example
pragma Wide_Character_Encoding (IDENTIFIER | CHARACTER_LITERAL);
@end example
This pragma specifies the wide character encoding to be used in program
source text appearing subsequently. It is a configuration pragma, but may
also be used at any point that a pragma is allowed, and it is permissible
to have more than one such pragma in a file, allowing multiple encodings
to appear within the same file.
However, note that the pragma cannot immediately precede the relevant
wide character, because then the previous encoding will still be in
effect, causing “illegal character” errors.
The argument can be an identifier or a character literal. In the identifier
case, it is one of @code{HEX}, @code{UPPER}, @code{SHIFT_JIS},
@code{EUC}, @code{UTF8}, or @code{BRACKETS}. In the character literal
case it is correspondingly one of the characters @code{h}, @code{u},
@code{s}, @code{e}, @code{8}, or @code{b}.
Note that when the pragma is used within a file, it affects only the
encoding within that file, and does not affect withed units, specs,
or subunits.
@node Implementation Defined Aspects,Implementation Defined Attributes,Implementation Defined Pragmas,Top
@anchor{gnat_rm/implementation_defined_aspects doc}@anchor{129}@anchor{gnat_rm/implementation_defined_aspects id1}@anchor{12a}@anchor{gnat_rm/implementation_defined_aspects implementation-defined-aspects}@anchor{12b}
@chapter Implementation Defined Aspects
Ada defines (throughout the Ada 2012 reference manual, summarized
in Annex K) a set of aspects that can be specified for certain entities.
These language defined aspects are implemented in GNAT in Ada 2012 mode
and work as described in the Ada 2012 Reference Manual.
In addition, Ada 2012 allows implementations to define additional aspects
whose meaning is defined by the implementation. GNAT provides
a number of these implementation-defined aspects which can be used
to extend and enhance the functionality of the compiler. This section of
the GNAT reference manual describes these additional aspects.
Note that any program using these aspects may not be portable to
other compilers (although GNAT implements this set of aspects on all
platforms). Therefore if portability to other compilers is an important
consideration, you should minimize the use of these aspects.
Note that for many of these aspects, the effect is essentially similar
to the use of a pragma or attribute specification with the same name
applied to the entity. For example, if we write:
@example
type R is range 1 .. 100
with Value_Size => 10;
@end example
then the effect is the same as:
@example
type R is range 1 .. 100;
for R'Value_Size use 10;
@end example
and if we write:
@example
type R is new Integer
with Shared => True;
@end example
then the effect is the same as:
@example
type R is new Integer;
pragma Shared (R);
@end example
In the documentation below, such cases are simply marked
as being boolean aspects equivalent to the corresponding pragma
or attribute definition clause.
@menu
* Aspect Abstract_State::
* Aspect Always_Terminates::
* Aspect Annotate::
* Aspect Async_Readers::
* Aspect Async_Writers::
* Aspect Constant_After_Elaboration::
* Aspect Contract_Cases::
* Aspect Depends::
* Aspect Default_Initial_Condition::
* Aspect Dimension::
* Aspect Dimension_System::
* Aspect Disable_Controlled::
* Aspect Effective_Reads::
* Aspect Effective_Writes::
* Aspect Exceptional_Cases::
* Aspect Extensions_Visible::
* Aspect Favor_Top_Level::
* Aspect Ghost::
* Aspect Ghost_Predicate::
* Aspect Global::
* Aspect Initial_Condition::
* Aspect Initializes::
* Aspect Inline_Always::
* Aspect Invariant::
* Aspect Invariant’Class::
* Aspect Iterable::
* Aspect Linker_Section::
* Aspect Local_Restrictions::
* Aspect Lock_Free::
* Aspect Max_Queue_Length::
* Aspect No_Caching::
* Aspect No_Elaboration_Code_All::
* Aspect No_Inline::
* Aspect No_Tagged_Streams::
* Aspect No_Task_Parts::
* Aspect Object_Size::
* Aspect Obsolescent::
* Aspect Part_Of::
* Aspect Persistent_BSS::
* Aspect Predicate::
* Aspect Pure_Function::
* Aspect Refined_Depends::
* Aspect Refined_Global::
* Aspect Refined_Post::
* Aspect Refined_State::
* Aspect Relaxed_Initialization::
* Aspect Remote_Access_Type::
* Aspect Scalar_Storage_Order::
* Aspect Secondary_Stack_Size::
* Aspect Shared::
* Aspect Side_Effects::
* Aspect Simple_Storage_Pool::
* Aspect Simple_Storage_Pool_Type::
* Aspect SPARK_Mode::
* Aspect Subprogram_Variant::
* Aspect Suppress_Debug_Info::
* Aspect Suppress_Initialization::
* Aspect Test_Case::
* Aspect Thread_Local_Storage::
* Aspect Universal_Aliasing::
* Aspect Unmodified::
* Aspect Unreferenced::
* Aspect Unreferenced_Objects::
* Aspect User_Aspect::
* Aspect Value_Size::
* Aspect Volatile_Full_Access::
* Aspect Volatile_Function::
* Aspect Warnings::
@end menu
@node Aspect Abstract_State,Aspect Always_Terminates,,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-abstract-state}@anchor{12c}
@section Aspect Abstract_State
@geindex Abstract_State
This aspect is equivalent to @ref{1e,,pragma Abstract_State}.
@node Aspect Always_Terminates,Aspect Annotate,Aspect Abstract_State,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-always-terminates}@anchor{12d}
@section Aspect Always_Terminates
@geindex Always_Terminates
This boolean aspect is equivalent to @ref{29,,pragma Always_Terminates}.
@node Aspect Annotate,Aspect Async_Readers,Aspect Always_Terminates,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-annotate}@anchor{12e}
@section Aspect Annotate
@geindex Annotate
There are three forms of this aspect (where ID is an identifier,
and ARG is a general expression),
corresponding to @ref{2b,,pragma Annotate}.
@table @asis
@item `Annotate => ID'
Equivalent to @code{pragma Annotate (ID, Entity => Name);}
@item `Annotate => (ID)'
Equivalent to @code{pragma Annotate (ID, Entity => Name);}
@item `Annotate => (ID ,ID @{, ARG@})'
Equivalent to @code{pragma Annotate (ID, ID @{, ARG@}, Entity => Name);}
@end table
@node Aspect Async_Readers,Aspect Async_Writers,Aspect Annotate,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-async-readers}@anchor{12f}
@section Aspect Async_Readers
@geindex Async_Readers
This boolean aspect is equivalent to @ref{32,,pragma Async_Readers}.
@node Aspect Async_Writers,Aspect Constant_After_Elaboration,Aspect Async_Readers,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-async-writers}@anchor{130}
@section Aspect Async_Writers
@geindex Async_Writers
This boolean aspect is equivalent to @ref{34,,pragma Async_Writers}.
@node Aspect Constant_After_Elaboration,Aspect Contract_Cases,Aspect Async_Writers,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-constant-after-elaboration}@anchor{131}
@section Aspect Constant_After_Elaboration
@geindex Constant_After_Elaboration
This aspect is equivalent to @ref{44,,pragma Constant_After_Elaboration}.
@node Aspect Contract_Cases,Aspect Depends,Aspect Constant_After_Elaboration,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-contract-cases}@anchor{132}
@section Aspect Contract_Cases
@geindex Contract_Cases
This aspect is equivalent to @ref{46,,pragma Contract_Cases}, the sequence
of clauses being enclosed in parentheses so that syntactically it is an
aggregate.
@node Aspect Depends,Aspect Default_Initial_Condition,Aspect Contract_Cases,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-depends}@anchor{133}
@section Aspect Depends
@geindex Depends
This aspect is equivalent to @ref{56,,pragma Depends}.
@node Aspect Default_Initial_Condition,Aspect Dimension,Aspect Depends,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-default-initial-condition}@anchor{134}
@section Aspect Default_Initial_Condition
@geindex Default_Initial_Condition
This aspect is equivalent to @ref{52,,pragma Default_Initial_Condition}.
@node Aspect Dimension,Aspect Dimension_System,Aspect Default_Initial_Condition,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-dimension}@anchor{135}
@section Aspect Dimension
@geindex Dimension
The @code{Dimension} aspect is used to specify the dimensions of a given
subtype of a dimensioned numeric type. The aspect also specifies a symbol
used when doing formatted output of dimensioned quantities. The syntax is:
@example
with Dimension =>
([Symbol =>] SYMBOL, DIMENSION_VALUE @{, DIMENSION_Value@})
SYMBOL ::= STRING_LITERAL | CHARACTER_LITERAL
DIMENSION_VALUE ::=
RATIONAL
| others => RATIONAL
| DISCRETE_CHOICE_LIST => RATIONAL
RATIONAL ::= [-] NUMERIC_LITERAL [/ NUMERIC_LITERAL]
@end example
This aspect can only be applied to a subtype whose parent type has
a @code{Dimension_System} aspect. The aspect must specify values for
all dimensions of the system. The rational values are the powers of the
corresponding dimensions that are used by the compiler to verify that
physical (numeric) computations are dimensionally consistent. For example,
the computation of a force must result in dimensions (L => 1, M => 1, T => -2).
For further examples of the usage
of this aspect, see package @code{System.Dim.Mks}.
Note that when the dimensioned type is an integer type, then any
dimension value must be an integer literal.
@node Aspect Dimension_System,Aspect Disable_Controlled,Aspect Dimension,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-dimension-system}@anchor{136}
@section Aspect Dimension_System
@geindex Dimension_System
The @code{Dimension_System} aspect is used to define a system of
dimensions that will be used in subsequent subtype declarations with
@code{Dimension} aspects that reference this system. The syntax is:
@example
with Dimension_System => (DIMENSION @{, DIMENSION@});
DIMENSION ::= ([Unit_Name =>] IDENTIFIER,
[Unit_Symbol =>] SYMBOL,
[Dim_Symbol =>] SYMBOL)
SYMBOL ::= CHARACTER_LITERAL | STRING_LITERAL
@end example
This aspect is applied to a type, which must be a numeric derived type
(typically a floating-point type), that
will represent values within the dimension system. Each @code{DIMENSION}
corresponds to one particular dimension. A maximum of 7 dimensions may
be specified. @code{Unit_Name} is the name of the dimension (for example
@code{Meter}). @code{Unit_Symbol} is the shorthand used for quantities
of this dimension (for example @code{m} for @code{Meter}).
@code{Dim_Symbol} gives
the identification within the dimension system (typically this is a
single letter, e.g. @code{L} standing for length for unit name @code{Meter}).
The @code{Unit_Symbol} is used in formatted output of dimensioned quantities.
The @code{Dim_Symbol} is used in error messages when numeric operations have
inconsistent dimensions.
GNAT provides the standard definition of the International MKS system in
the run-time package @code{System.Dim.Mks}. You can easily define
similar packages for cgs units or British units, and define conversion factors
between values in different systems. The MKS system is characterized by the
following aspect:
@example
type Mks_Type is new Long_Long_Float with
Dimension_System => (
(Unit_Name => Meter, Unit_Symbol => 'm', Dim_Symbol => 'L'),
(Unit_Name => Kilogram, Unit_Symbol => "kg", Dim_Symbol => 'M'),
(Unit_Name => Second, Unit_Symbol => 's', Dim_Symbol => 'T'),
(Unit_Name => Ampere, Unit_Symbol => 'A', Dim_Symbol => 'I'),
(Unit_Name => Kelvin, Unit_Symbol => 'K', Dim_Symbol => '@@'),
(Unit_Name => Mole, Unit_Symbol => "mol", Dim_Symbol => 'N'),
(Unit_Name => Candela, Unit_Symbol => "cd", Dim_Symbol => 'J'));
@end example
Note that in the above type definition, we use the @code{at} symbol (@code{@@}) to
represent a theta character (avoiding the use of extended Latin-1
characters in this context).
See section ‘Performing Dimensionality Analysis in GNAT’ in the GNAT Users
Guide for detailed examples of use of the dimension system.
@node Aspect Disable_Controlled,Aspect Effective_Reads,Aspect Dimension_System,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-disable-controlled}@anchor{137}
@section Aspect Disable_Controlled
@geindex Disable_Controlled
The aspect @code{Disable_Controlled} is defined for controlled record types. If
active, this aspect causes suppression of all related calls to @code{Initialize},
@code{Adjust}, and @code{Finalize}. The intended use is for conditional compilation,
where for example you might want a record to be controlled or not depending on
whether some run-time check is enabled or suppressed.
@node Aspect Effective_Reads,Aspect Effective_Writes,Aspect Disable_Controlled,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-effective-reads}@anchor{138}
@section Aspect Effective_Reads
@geindex Effective_Reads
This aspect is equivalent to @ref{5b,,pragma Effective_Reads}.
@node Aspect Effective_Writes,Aspect Exceptional_Cases,Aspect Effective_Reads,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-effective-writes}@anchor{139}
@section Aspect Effective_Writes
@geindex Effective_Writes
This aspect is equivalent to @ref{5d,,pragma Effective_Writes}.
@node Aspect Exceptional_Cases,Aspect Extensions_Visible,Aspect Effective_Writes,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-exceptional-cases}@anchor{13a}
@section Aspect Exceptional_Cases
@geindex Exceptional_Cases
This aspect may be specified for procedures and functions with side effects;
it can be used to list exceptions that might be propagated by the subprogram
with side effects in the context of its precondition, and associate them
with a specific postcondition.
For the syntax and semantics of this aspect, see the SPARK 2014 Reference
Manual, section 6.1.9.
@node Aspect Extensions_Visible,Aspect Favor_Top_Level,Aspect Exceptional_Cases,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-extensions-visible}@anchor{13b}
@section Aspect Extensions_Visible
@geindex Extensions_Visible
This aspect is equivalent to @ref{6c,,pragma Extensions_Visible}.
@node Aspect Favor_Top_Level,Aspect Ghost,Aspect Extensions_Visible,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-favor-top-level}@anchor{13c}
@section Aspect Favor_Top_Level
@geindex Favor_Top_Level
This boolean aspect is equivalent to @ref{71,,pragma Favor_Top_Level}.
@node Aspect Ghost,Aspect Ghost_Predicate,Aspect Favor_Top_Level,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-ghost}@anchor{13d}
@section Aspect Ghost
@geindex Ghost
This aspect is equivalent to @ref{75,,pragma Ghost}.
@node Aspect Ghost_Predicate,Aspect Global,Aspect Ghost,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-ghost-predicate}@anchor{13e}
@section Aspect Ghost_Predicate
@geindex Ghost_Predicate
This aspect introduces a subtype predicate that can reference ghost
entities. The subtype cannot appear as a subtype_mark in a membership test.
For the detailed semantics of this aspect, see the entry for subtype predicates
in the SPARK Reference Manual, section 3.2.4.
@node Aspect Global,Aspect Initial_Condition,Aspect Ghost_Predicate,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-global}@anchor{13f}
@section Aspect Global
@geindex Global
This aspect is equivalent to @ref{77,,pragma Global}.
@node Aspect Initial_Condition,Aspect Initializes,Aspect Global,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-initial-condition}@anchor{140}
@section Aspect Initial_Condition
@geindex Initial_Condition
This aspect is equivalent to @ref{84,,pragma Initial_Condition}.
@node Aspect Initializes,Aspect Inline_Always,Aspect Initial_Condition,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-initializes}@anchor{141}
@section Aspect Initializes
@geindex Initializes
This aspect is equivalent to @ref{87,,pragma Initializes}.
@node Aspect Inline_Always,Aspect Invariant,Aspect Initializes,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-inline-always}@anchor{142}
@section Aspect Inline_Always
@geindex Inline_Always
This boolean aspect is equivalent to @ref{89,,pragma Inline_Always}.
@node Aspect Invariant,Aspect Invariant’Class,Aspect Inline_Always,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-invariant}@anchor{143}
@section Aspect Invariant
@geindex Invariant
This aspect is equivalent to @ref{91,,pragma Invariant}. It is a
synonym for the language defined aspect @code{Type_Invariant} except
that it is separately controllable using pragma @code{Assertion_Policy}.
@node Aspect Invariant’Class,Aspect Iterable,Aspect Invariant,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-invariant-class}@anchor{144}
@section Aspect Invariant’Class
@geindex Invariant'Class
This aspect is equivalent to @ref{10b,,pragma Type_Invariant_Class}. It is a
synonym for the language defined aspect @code{Type_Invariant'Class} except
that it is separately controllable using pragma @code{Assertion_Policy}.
@node Aspect Iterable,Aspect Linker_Section,Aspect Invariant’Class,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-iterable}@anchor{145}
@section Aspect Iterable
@geindex Iterable
This aspect provides a light-weight mechanism for loops and quantified
expressions over container types, without the overhead imposed by the tampering
checks of standard Ada 2012 iterators. The value of the aspect is an aggregate
with six named components, of which the last three are optional: @code{First},
@code{Next}, @code{Has_Element}, @code{Element}, @code{Last}, and @code{Previous}.
When only the first three components are specified, only the
@code{for .. in} form of iteration over cursors is available. When @code{Element}
is specified, both this form and the @code{for .. of} form of iteration over
elements are available. If the last two components are specified, reverse
iterations over the container can be specified (analogous to what can be done
over predefined containers that support the @code{Reverse_Iterator} interface).
The following is a typical example of use:
@example
type List is private with
Iterable => (First => First_Cursor,
Next => Advance,
Has_Element => Cursor_Has_Element
[,Element => Get_Element]
[,Last => Last_Cursor]
[,Previous => Retreat]);
@end example
@itemize *
@item
The values of @code{First} and @code{Last} are primitive operations of the
container type that return a @code{Cursor}, which must be a type declared in
the container package or visible from it. For example:
@end itemize
@example
function First_Cursor (Cont : Container) return Cursor;
function Last_Cursor (Cont : Container) return Cursor;
@end example
@itemize *
@item
The values of @code{Next} and @code{Previous} are primitive operations of the container type that take
both a container and a cursor and yield a cursor. For example:
@end itemize
@example
function Advance (Cont : Container; Position : Cursor) return Cursor;
function Retreat (Cont : Container; Position : Cursor) return Cursor;
@end example
@itemize *
@item
The value of @code{Has_Element} is a primitive operation of the container type
that takes both a container and a cursor and yields a boolean. For example:
@end itemize
@example
function Cursor_Has_Element (Cont : Container; Position : Cursor) return Boolean;
@end example
@itemize *
@item
The value of @code{Element} is a primitive operation of the container type that
takes both a container and a cursor and yields an @code{Element_Type}, which must
be a type declared in the container package or visible from it. For example:
@end itemize
@example
function Get_Element (Cont : Container; Position : Cursor) return Element_Type;
@end example
This aspect is used in the GNAT-defined formal container packages.
@node Aspect Linker_Section,Aspect Local_Restrictions,Aspect Iterable,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-linker-section}@anchor{146}
@section Aspect Linker_Section
@geindex Linker_Section
This aspect is equivalent to @ref{99,,pragma Linker_Section}.
@node Aspect Local_Restrictions,Aspect Lock_Free,Aspect Linker_Section,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-local-restrictions}@anchor{147}
@section Aspect Local_Restrictions
@geindex Local_Restrictions
This aspect may be specified for a subprogram (and for other declarations
as described below). It is used to specify that a particular subprogram does
not violate one or more local restrictions, nor can it call a subprogram
that is not subject to the same requirement. Positional aggregate syntax
(with parentheses, not square brackets) may be used to specify more than one
local restriction, as in
@example
procedure Do_Something
with Local_Restrictions => (Some_Restriction, Another_Restriction);
@end example
Parentheses are currently required even in the case of specifying a single
local restriction (this requirement may be relaxed in the future).
Supported local restrictions currently include (only) No_Heap_Allocations and
No_Secondary_Stack.
No_Secondary_Stack corresponds to the GNAT-defined (global) restriction
of the same name. No_Heap_Allocations corresponds to the conjunction of the
Ada-defined restrictions No_Allocators and No_Implicit_Heap_Allocations.
Additional requirements are imposed in order to ensure that restriction
violations cannot be achieved via overriding dispatching operations,
calling through an access-to-subprogram value, calling a generic formal
subprogram, or calling through a subprogram renaming.
For a dispatching operation, an overrider must be subject to (at least) the
same restrictions as the overridden inherited subprogram; similarly, the
actual subprogram corresponding to a generic formal subprogram
in an instantiation must be subject to (at least) the same restrictions
as the formal subprogram. A call through an access-to-subprogram value
is conservatively assumed to violate all local restrictions; tasking-related
constructs (notably entry calls) are treated similarly. A renaming-as-body is
treated like a subprogram body containing a call to the renamed subprogram.
The Local_Restrictions aspect can be specified for a package specification,
in which case the aspect specification also applies to all eligible entities
declared with the package. This includes types. Default initialization of an
object of a given type is treated like a call to an implicitly-declared
initialization subprogram. Such a “call” is subject to the same local
restriction checks as any other call. If a type is subject to a local
restriction, then any violations of that restriction within the default
initialization expressions (if any) of the type are rejected. This may
include “calls” to the default initialization subprograms of other types.
Local_Restrictions aspect specifications are additive (for example, in the
case of a declaration that occurs within nested packages that each have
a Local_Restrictions specification).
@node Aspect Lock_Free,Aspect Max_Queue_Length,Aspect Local_Restrictions,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-lock-free}@anchor{148}
@section Aspect Lock_Free
@geindex Lock_Free
This boolean aspect is equivalent to @ref{9b,,pragma Lock_Free}.
@node Aspect Max_Queue_Length,Aspect No_Caching,Aspect Lock_Free,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-max-queue-length}@anchor{149}
@section Aspect Max_Queue_Length
@geindex Max_Queue_Length
This aspect is equivalent to @ref{a3,,pragma Max_Queue_Length}.
@node Aspect No_Caching,Aspect No_Elaboration_Code_All,Aspect Max_Queue_Length,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-no-caching}@anchor{14a}
@section Aspect No_Caching
@geindex No_Caching
This boolean aspect is equivalent to @ref{a6,,pragma No_Caching}.
@node Aspect No_Elaboration_Code_All,Aspect No_Inline,Aspect No_Caching,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-no-elaboration-code-all}@anchor{14b}
@section Aspect No_Elaboration_Code_All
@geindex No_Elaboration_Code_All
This aspect is equivalent to @ref{a9,,pragma No_Elaboration_Code_All}
for a program unit.
@node Aspect No_Inline,Aspect No_Tagged_Streams,Aspect No_Elaboration_Code_All,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-no-inline}@anchor{14c}
@section Aspect No_Inline
@geindex No_Inline
This boolean aspect is equivalent to @ref{ac,,pragma No_Inline}.
@node Aspect No_Tagged_Streams,Aspect No_Task_Parts,Aspect No_Inline,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-no-tagged-streams}@anchor{14d}
@section Aspect No_Tagged_Streams
@geindex No_Tagged_Streams
This aspect is equivalent to @ref{b0,,pragma No_Tagged_Streams} with an
argument specifying a root tagged type (thus this aspect can only be
applied to such a type).
@node Aspect No_Task_Parts,Aspect Object_Size,Aspect No_Tagged_Streams,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-no-task-parts}@anchor{14e}
@section Aspect No_Task_Parts
@geindex No_Task_Parts
Applies to a type. If True, requires that the type and any descendants
do not have any task parts. The rules for this aspect are the same as
for the language-defined No_Controlled_Parts aspect (see RM-H.4.1),
replacing “controlled” with “task”.
If No_Task_Parts is True for a type T, then the compiler can optimize
away certain tasking-related code that would otherwise be needed
for T’Class, because descendants of T might contain tasks.
@node Aspect Object_Size,Aspect Obsolescent,Aspect No_Task_Parts,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-object-size}@anchor{14f}
@section Aspect Object_Size
@geindex Object_Size
This aspect is equivalent to @ref{150,,attribute Object_Size}.
@node Aspect Obsolescent,Aspect Part_Of,Aspect Object_Size,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-obsolescent}@anchor{151}
@section Aspect Obsolescent
@geindex Obsolescent
This aspect is equivalent to @ref{b3,,pragma Obsolescent}. Note that the
evaluation of this aspect happens at the point of occurrence, it is not
delayed until the freeze point.
@node Aspect Part_Of,Aspect Persistent_BSS,Aspect Obsolescent,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-part-of}@anchor{152}
@section Aspect Part_Of
@geindex Part_Of
This aspect is equivalent to @ref{b9,,pragma Part_Of}.
@node Aspect Persistent_BSS,Aspect Predicate,Aspect Part_Of,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-persistent-bss}@anchor{153}
@section Aspect Persistent_BSS
@geindex Persistent_BSS
This boolean aspect is equivalent to @ref{bd,,pragma Persistent_BSS}.
@node Aspect Predicate,Aspect Pure_Function,Aspect Persistent_BSS,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-predicate}@anchor{154}
@section Aspect Predicate
@geindex Predicate
This aspect is equivalent to @ref{c4,,pragma Predicate}. It is thus
similar to the language defined aspects @code{Dynamic_Predicate}
and @code{Static_Predicate} except that whether the resulting
predicate is static or dynamic is controlled by the form of the
expression. It is also separately controllable using pragma
@code{Assertion_Policy}.
@node Aspect Pure_Function,Aspect Refined_Depends,Aspect Predicate,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-pure-function}@anchor{155}
@section Aspect Pure_Function
@geindex Pure_Function
This boolean aspect is equivalent to @ref{d0,,pragma Pure_Function}.
@node Aspect Refined_Depends,Aspect Refined_Global,Aspect Pure_Function,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-refined-depends}@anchor{156}
@section Aspect Refined_Depends
@geindex Refined_Depends
This aspect is equivalent to @ref{d4,,pragma Refined_Depends}.
@node Aspect Refined_Global,Aspect Refined_Post,Aspect Refined_Depends,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-refined-global}@anchor{157}
@section Aspect Refined_Global
@geindex Refined_Global
This aspect is equivalent to @ref{d6,,pragma Refined_Global}.
@node Aspect Refined_Post,Aspect Refined_State,Aspect Refined_Global,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-refined-post}@anchor{158}
@section Aspect Refined_Post
@geindex Refined_Post
This aspect is equivalent to @ref{d8,,pragma Refined_Post}.
@node Aspect Refined_State,Aspect Relaxed_Initialization,Aspect Refined_Post,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-refined-state}@anchor{159}
@section Aspect Refined_State
@geindex Refined_State
This aspect is equivalent to @ref{da,,pragma Refined_State}.
@node Aspect Relaxed_Initialization,Aspect Remote_Access_Type,Aspect Refined_State,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-relaxed-initialization}@anchor{15a}
@section Aspect Relaxed_Initialization
@geindex Refined_Initialization
For the syntax and semantics of this aspect, see the SPARK 2014 Reference
Manual, section 6.10.
@node Aspect Remote_Access_Type,Aspect Scalar_Storage_Order,Aspect Relaxed_Initialization,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-remote-access-type}@anchor{15b}
@section Aspect Remote_Access_Type
@geindex Remote_Access_Type
This aspect is equivalent to @ref{dd,,pragma Remote_Access_Type}.
@node Aspect Scalar_Storage_Order,Aspect Secondary_Stack_Size,Aspect Remote_Access_Type,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-scalar-storage-order}@anchor{15c}
@section Aspect Scalar_Storage_Order
@geindex Scalar_Storage_Order
This aspect is equivalent to a @ref{15d,,attribute Scalar_Storage_Order}.
@node Aspect Secondary_Stack_Size,Aspect Shared,Aspect Scalar_Storage_Order,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-secondary-stack-size}@anchor{15e}
@section Aspect Secondary_Stack_Size
@geindex Secondary_Stack_Size
This aspect is equivalent to @ref{e3,,pragma Secondary_Stack_Size}.
@node Aspect Shared,Aspect Side_Effects,Aspect Secondary_Stack_Size,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-shared}@anchor{15f}
@section Aspect Shared
@geindex Shared
This boolean aspect is equivalent to @ref{e6,,pragma Shared}
and is thus a synonym for aspect @code{Atomic}.
@node Aspect Side_Effects,Aspect Simple_Storage_Pool,Aspect Shared,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-side-effects}@anchor{160}
@section Aspect Side_Effects
@geindex Side_Effects
This aspect is equivalent to @ref{ea,,pragma Side_Effects}.
@node Aspect Simple_Storage_Pool,Aspect Simple_Storage_Pool_Type,Aspect Side_Effects,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-simple-storage-pool}@anchor{161}
@section Aspect Simple_Storage_Pool
@geindex Simple_Storage_Pool
This aspect is equivalent to @ref{ed,,attribute Simple_Storage_Pool}.
@node Aspect Simple_Storage_Pool_Type,Aspect SPARK_Mode,Aspect Simple_Storage_Pool,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-simple-storage-pool-type}@anchor{162}
@section Aspect Simple_Storage_Pool_Type
@geindex Simple_Storage_Pool_Type
This boolean aspect is equivalent to @ref{ec,,pragma Simple_Storage_Pool_Type}.
@node Aspect SPARK_Mode,Aspect Subprogram_Variant,Aspect Simple_Storage_Pool_Type,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-spark-mode}@anchor{163}
@section Aspect SPARK_Mode
@geindex SPARK_Mode
This aspect is equivalent to @ref{f4,,pragma SPARK_Mode} and
may be specified for either or both of the specification and body
of a subprogram or package.
@node Aspect Subprogram_Variant,Aspect Suppress_Debug_Info,Aspect SPARK_Mode,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-subprogram-variant}@anchor{164}
@section Aspect Subprogram_Variant
@geindex Subprogram_Variant
For the syntax and semantics of this aspect, see the SPARK 2014 Reference
Manual, section 6.1.8.
@node Aspect Suppress_Debug_Info,Aspect Suppress_Initialization,Aspect Subprogram_Variant,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-suppress-debug-info}@anchor{165}
@section Aspect Suppress_Debug_Info
@geindex Suppress_Debug_Info
This boolean aspect is equivalent to @ref{fd,,pragma Suppress_Debug_Info}.
@node Aspect Suppress_Initialization,Aspect Test_Case,Aspect Suppress_Debug_Info,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-suppress-initialization}@anchor{166}
@section Aspect Suppress_Initialization
@geindex Suppress_Initialization
This boolean aspect is equivalent to @ref{100,,pragma Suppress_Initialization}.
@node Aspect Test_Case,Aspect Thread_Local_Storage,Aspect Suppress_Initialization,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-test-case}@anchor{167}
@section Aspect Test_Case
@geindex Test_Case
This aspect is equivalent to @ref{104,,pragma Test_Case}.
@node Aspect Thread_Local_Storage,Aspect Universal_Aliasing,Aspect Test_Case,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-thread-local-storage}@anchor{168}
@section Aspect Thread_Local_Storage
@geindex Thread_Local_Storage
This boolean aspect is equivalent to @ref{106,,pragma Thread_Local_Storage}.
@node Aspect Universal_Aliasing,Aspect Unmodified,Aspect Thread_Local_Storage,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-universal-aliasing}@anchor{169}
@section Aspect Universal_Aliasing
@geindex Universal_Aliasing
This boolean aspect is equivalent to @ref{111,,pragma Universal_Aliasing}.
@node Aspect Unmodified,Aspect Unreferenced,Aspect Universal_Aliasing,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-unmodified}@anchor{16a}
@section Aspect Unmodified
@geindex Unmodified
This boolean aspect is equivalent to @ref{113,,pragma Unmodified}.
@node Aspect Unreferenced,Aspect Unreferenced_Objects,Aspect Unmodified,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-unreferenced}@anchor{16b}
@section Aspect Unreferenced
@geindex Unreferenced
This boolean aspect is equivalent to @ref{115,,pragma Unreferenced}.
When using the @code{-gnat2022} switch, this aspect is also supported on formal
parameters, which is in particular the only form possible for expression
functions.
@node Aspect Unreferenced_Objects,Aspect User_Aspect,Aspect Unreferenced,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-unreferenced-objects}@anchor{16c}
@section Aspect Unreferenced_Objects
@geindex Unreferenced_Objects
This boolean aspect is equivalent to @ref{117,,pragma Unreferenced_Objects}.
@node Aspect User_Aspect,Aspect Value_Size,Aspect Unreferenced_Objects,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-user-aspect}@anchor{16d}
@section Aspect User_Aspect
@geindex User_Aspect
This aspect takes an argument that is the name of an aspect defined by a
User_Aspect_Definition configuration pragma.
A User_Aspect aspect specification is semantically equivalent to
replicating the set of aspect specifications associated with the named
pragma-defined aspect.
@node Aspect Value_Size,Aspect Volatile_Full_Access,Aspect User_Aspect,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-value-size}@anchor{16e}
@section Aspect Value_Size
@geindex Value_Size
This aspect is equivalent to @ref{16f,,attribute Value_Size}.
@node Aspect Volatile_Full_Access,Aspect Volatile_Function,Aspect Value_Size,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-volatile-full-access}@anchor{170}
@section Aspect Volatile_Full_Access
@geindex Volatile_Full_Access
This boolean aspect is equivalent to @ref{121,,pragma Volatile_Full_Access}.
@node Aspect Volatile_Function,Aspect Warnings,Aspect Volatile_Full_Access,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-volatile-function}@anchor{171}
@section Aspect Volatile_Function
@geindex Volatile_Function
This boolean aspect is equivalent to @ref{123,,pragma Volatile_Function}.
@node Aspect Warnings,,Aspect Volatile_Function,Implementation Defined Aspects
@anchor{gnat_rm/implementation_defined_aspects aspect-warnings}@anchor{172}
@section Aspect Warnings
@geindex Warnings
This aspect is equivalent to the two argument form of @ref{125,,pragma Warnings},
where the first argument is @code{ON} or @code{OFF} and the second argument
is the entity.
@node Implementation Defined Attributes,Standard and Implementation Defined Restrictions,Implementation Defined Aspects,Top
@anchor{gnat_rm/implementation_defined_attributes doc}@anchor{173}@anchor{gnat_rm/implementation_defined_attributes id1}@anchor{174}@anchor{gnat_rm/implementation_defined_attributes implementation-defined-attributes}@anchor{8}
@chapter Implementation Defined Attributes
Ada defines (throughout the Ada reference manual,
summarized in Annex K),
a set of attributes that provide useful additional functionality in all
areas of the language. These language defined attributes are implemented
in GNAT and work as described in the Ada Reference Manual.
In addition, Ada allows implementations to define additional
attributes whose meaning is defined by the implementation. GNAT provides
a number of these implementation-dependent attributes which can be used
to extend and enhance the functionality of the compiler. This section of
the GNAT reference manual describes these additional attributes. It also
describes additional implementation-dependent features of standard
language-defined attributes.
Note that any program using these attributes may not be portable to
other compilers (although GNAT implements this set of attributes on all
platforms). Therefore if portability to other compilers is an important
consideration, you should minimize the use of these attributes.
@menu
* Attribute Abort_Signal::
* Attribute Address_Size::
* Attribute Asm_Input::
* Attribute Asm_Output::
* Attribute Atomic_Always_Lock_Free::
* Attribute Bit::
* Attribute Bit_Position::
* Attribute Code_Address::
* Attribute Compiler_Version::
* Attribute Constrained::
* Attribute Default_Bit_Order::
* Attribute Default_Scalar_Storage_Order::
* Attribute Deref::
* Attribute Descriptor_Size::
* Attribute Elaborated::
* Attribute Elab_Body::
* Attribute Elab_Spec::
* Attribute Elab_Subp_Body::
* Attribute Emax::
* Attribute Enabled::
* Attribute Enum_Rep::
* Attribute Enum_Val::
* Attribute Epsilon::
* Attribute Fast_Math::
* Attribute Finalization_Size::
* Attribute Fixed_Value::
* Attribute From_Any::
* Attribute Has_Access_Values::
* Attribute Has_Discriminants::
* Attribute Has_Tagged_Values::
* Attribute Img::
* Attribute Initialized::
* Attribute Integer_Value::
* Attribute Invalid_Value::
* Attribute Large::
* Attribute Library_Level::
* Attribute Loop_Entry::
* Attribute Machine_Size::
* Attribute Mantissa::
* Attribute Maximum_Alignment::
* Attribute Max_Integer_Size::
* Attribute Mechanism_Code::
* Attribute Null_Parameter::
* Attribute Object_Size::
* Attribute Old::
* Attribute Passed_By_Reference::
* Attribute Pool_Address::
* Attribute Range_Length::
* Attribute Restriction_Set::
* Attribute Result::
* Attribute Round::
* Attribute Safe_Emax::
* Attribute Safe_Large::
* Attribute Safe_Small::
* Attribute Scalar_Storage_Order::
* Attribute Simple_Storage_Pool::
* Attribute Small::
* Attribute Small_Denominator::
* Attribute Small_Numerator::
* Attribute Storage_Unit::
* Attribute Stub_Type::
* Attribute System_Allocator_Alignment::
* Attribute Target_Name::
* Attribute To_Address::
* Attribute To_Any::
* Attribute Type_Class::
* Attribute Type_Key::
* Attribute TypeCode::
* Attribute Unconstrained_Array::
* Attribute Universal_Literal_String::
* Attribute Unrestricted_Access::
* Attribute Update::
* Attribute Valid_Value::
* Attribute Valid_Scalars::
* Attribute VADS_Size::
* Attribute Value_Size::
* Attribute Wchar_T_Size::
* Attribute Word_Size::
@end menu
@node Attribute Abort_Signal,Attribute Address_Size,,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-abort-signal}@anchor{175}
@section Attribute Abort_Signal
@geindex Abort_Signal
@code{Standard'Abort_Signal} (@code{Standard} is the only allowed
prefix) provides the entity for the special exception used to signal
task abort or asynchronous transfer of control. Normally this attribute
should only be used in the tasking runtime (it is highly peculiar, and
completely outside the normal semantics of Ada, for a user program to
intercept the abort exception).
@node Attribute Address_Size,Attribute Asm_Input,Attribute Abort_Signal,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-address-size}@anchor{176}
@section Attribute Address_Size
@geindex Size of `@w{`}Address`@w{`}
@geindex Address_Size
@code{Standard'Address_Size} (@code{Standard} is the only allowed
prefix) is a static constant giving the number of bits in an
@code{Address}. It is the same value as System.Address’Size,
but has the advantage of being static, while a direct
reference to System.Address’Size is nonstatic because Address
is a private type.
@node Attribute Asm_Input,Attribute Asm_Output,Attribute Address_Size,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-asm-input}@anchor{177}
@section Attribute Asm_Input
@geindex Asm_Input
The @code{Asm_Input} attribute denotes a function that takes two
parameters. The first is a string, the second is an expression of the
type designated by the prefix. The first (string) argument is required
to be a static expression, and is the constraint for the parameter,
(e.g., what kind of register is required). The second argument is the
value to be used as the input argument. The possible values for the
constant are the same as those used in the RTL, and are dependent on
the configuration file used to built the GCC back end.
@ref{178,,Machine Code Insertions}
@node Attribute Asm_Output,Attribute Atomic_Always_Lock_Free,Attribute Asm_Input,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-asm-output}@anchor{179}
@section Attribute Asm_Output
@geindex Asm_Output
The @code{Asm_Output} attribute denotes a function that takes two
parameters. The first is a string, the second is the name of a variable
of the type designated by the attribute prefix. The first (string)
argument is required to be a static expression and designates the
constraint for the parameter (e.g., what kind of register is
required). The second argument is the variable to be updated with the
result. The possible values for constraint are the same as those used in
the RTL, and are dependent on the configuration file used to build the
GCC back end. If there are no output operands, then this argument may
either be omitted, or explicitly given as @code{No_Output_Operands}.
@ref{178,,Machine Code Insertions}
@node Attribute Atomic_Always_Lock_Free,Attribute Bit,Attribute Asm_Output,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-atomic-always-lock-free}@anchor{17a}
@section Attribute Atomic_Always_Lock_Free
@geindex Atomic_Always_Lock_Free
The prefix of the @code{Atomic_Always_Lock_Free} attribute is a type. The
result indicates whether atomic operations are supported by the target
for the given type.
@node Attribute Bit,Attribute Bit_Position,Attribute Atomic_Always_Lock_Free,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-bit}@anchor{17b}
@section Attribute Bit
@geindex Bit
@code{obj'Bit}, where @code{obj} is any object, yields the bit
offset within the storage unit (byte) that contains the first bit of
storage allocated for the object. The value of this attribute is of the
type `universal_integer' and is always a nonnegative number smaller
than @code{System.Storage_Unit}.
For an object that is a variable or a constant allocated in a register,
the value is zero. (The use of this attribute does not force the
allocation of a variable to memory).
For an object that is a formal parameter, this attribute applies
to either the matching actual parameter or to a copy of the
matching actual parameter.
For an access object the value is zero. Note that
@code{obj.all'Bit} is subject to an @code{Access_Check} for the
designated object. Similarly for a record component
@code{X.C'Bit} is subject to a discriminant check and
@code{X(I).Bit} and @code{X(I1..I2)'Bit}
are subject to index checks.
This attribute is designed to be compatible with the DEC Ada 83 definition
and implementation of the @code{Bit} attribute.
@node Attribute Bit_Position,Attribute Code_Address,Attribute Bit,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-bit-position}@anchor{17c}
@section Attribute Bit_Position
@geindex Bit_Position
@code{R.C'Bit_Position}, where @code{R} is a record object and @code{C} is one
of the fields of the record type, yields the bit
offset within the record contains the first bit of
storage allocated for the object. The value of this attribute is of the
type `universal_integer'. The value depends only on the field
@code{C} and is independent of the alignment of
the containing record @code{R}.
@node Attribute Code_Address,Attribute Compiler_Version,Attribute Bit_Position,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-code-address}@anchor{17d}
@section Attribute Code_Address
@geindex Code_Address
@geindex Subprogram address
@geindex Address of subprogram code
The @code{'Address}
attribute may be applied to subprograms in Ada 95 and Ada 2005, but the
intended effect seems to be to provide
an address value which can be used to call the subprogram by means of
an address clause as in the following example:
@example
procedure K is ...
procedure L;
for L'Address use K'Address;
pragma Import (Ada, L);
@end example
A call to @code{L} is then expected to result in a call to @code{K}.
In Ada 83, where there were no access-to-subprogram values, this was
a common work-around for getting the effect of an indirect call.
GNAT implements the above use of @code{Address} and the technique
illustrated by the example code works correctly.
However, for some purposes, it is useful to have the address of the start
of the generated code for the subprogram. On some architectures, this is
not necessarily the same as the @code{Address} value described above.
For example, the @code{Address} value may reference a subprogram
descriptor rather than the subprogram itself.
The @code{'Code_Address} attribute, which can only be applied to
subprogram entities, always returns the address of the start of the
generated code of the specified subprogram, which may or may not be
the same value as is returned by the corresponding @code{'Address}
attribute.
@node Attribute Compiler_Version,Attribute Constrained,Attribute Code_Address,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-compiler-version}@anchor{17e}
@section Attribute Compiler_Version
@geindex Compiler_Version
@code{Standard'Compiler_Version} (@code{Standard} is the only allowed
prefix) yields a static string identifying the version of the compiler
being used to compile the unit containing the attribute reference.
@node Attribute Constrained,Attribute Default_Bit_Order,Attribute Compiler_Version,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-constrained}@anchor{17f}
@section Attribute Constrained
@geindex Constrained
In addition to the usage of this attribute in the Ada RM, GNAT
also permits the use of the @code{'Constrained} attribute
in a generic template
for any type, including types without discriminants. The value of this
attribute in the generic instance when applied to a scalar type or a
record type without discriminants is always @code{True}. This usage is
compatible with older Ada compilers, including notably DEC Ada.
@node Attribute Default_Bit_Order,Attribute Default_Scalar_Storage_Order,Attribute Constrained,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-default-bit-order}@anchor{180}
@section Attribute Default_Bit_Order
@geindex Big endian
@geindex Little endian
@geindex Default_Bit_Order
@code{Standard'Default_Bit_Order} (@code{Standard} is the only
allowed prefix), provides the value @code{System.Default_Bit_Order}
as a @code{Pos} value (0 for @code{High_Order_First}, 1 for
@code{Low_Order_First}). This is used to construct the definition of
@code{Default_Bit_Order} in package @code{System}.
@node Attribute Default_Scalar_Storage_Order,Attribute Deref,Attribute Default_Bit_Order,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-default-scalar-storage-order}@anchor{181}
@section Attribute Default_Scalar_Storage_Order
@geindex Big endian
@geindex Little endian
@geindex Default_Scalar_Storage_Order
@code{Standard'Default_Scalar_Storage_Order} (@code{Standard} is the only
allowed prefix), provides the current value of the default scalar storage
order (as specified using pragma @code{Default_Scalar_Storage_Order}, or
equal to @code{Default_Bit_Order} if unspecified) as a
@code{System.Bit_Order} value. This is a static attribute.
@node Attribute Deref,Attribute Descriptor_Size,Attribute Default_Scalar_Storage_Order,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-deref}@anchor{182}
@section Attribute Deref
@geindex Deref
The attribute @code{typ'Deref(expr)} where @code{expr} is of type @code{System.Address} yields
the variable of type @code{typ} that is located at the given address. It is similar
to @code{(totyp (expr).all)}, where @code{totyp} is an unchecked conversion from address to
a named access-to-@cite{typ} type, except that it yields a variable, so it can be
used on the left side of an assignment.
@node Attribute Descriptor_Size,Attribute Elaborated,Attribute Deref,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-descriptor-size}@anchor{183}
@section Attribute Descriptor_Size
@geindex Descriptor
@geindex Dope vector
@geindex Descriptor_Size
Nonstatic attribute @code{Descriptor_Size} returns the size in bits of the
descriptor allocated for a type. The result is non-zero only for unconstrained
array types and the returned value is of type universal integer. In GNAT, an
array descriptor contains bounds information and is located immediately before
the first element of the array.
@example
type Unconstr_Array is array (Short_Short_Integer range <>) of Positive;
Put_Line ("Descriptor size = " & Unconstr_Array'Descriptor_Size'Img);
@end example
The attribute takes into account any padding due to the alignment of the
component type. In the example above, the descriptor contains two values
of type @code{Short_Short_Integer} representing the low and high bound. But,
since @code{Positive} has an alignment of 4, the size of the descriptor is
@code{2 * Short_Short_Integer'Size} rounded up to the next multiple of 32,
which yields a size of 32 bits, i.e. including 16 bits of padding.
@node Attribute Elaborated,Attribute Elab_Body,Attribute Descriptor_Size,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-elaborated}@anchor{184}
@section Attribute Elaborated
@geindex Elaborated
The prefix of the @code{'Elaborated} attribute must be a unit name. The
value is a Boolean which indicates whether or not the given unit has been
elaborated. This attribute is primarily intended for internal use by the
generated code for dynamic elaboration checking, but it can also be used
in user programs. The value will always be True once elaboration of all
units has been completed. An exception is for units which need no
elaboration, the value is always False for such units.
@node Attribute Elab_Body,Attribute Elab_Spec,Attribute Elaborated,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-elab-body}@anchor{185}
@section Attribute Elab_Body
@geindex Elab_Body
This attribute can only be applied to a program unit name. It returns
the entity for the corresponding elaboration procedure for elaborating
the body of the referenced unit. This is used in the main generated
elaboration procedure by the binder and is not normally used in any
other context. However, there may be specialized situations in which it
is useful to be able to call this elaboration procedure from Ada code,
e.g., if it is necessary to do selective re-elaboration to fix some
error.
@node Attribute Elab_Spec,Attribute Elab_Subp_Body,Attribute Elab_Body,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-elab-spec}@anchor{186}
@section Attribute Elab_Spec
@geindex Elab_Spec
This attribute can only be applied to a program unit name. It returns
the entity for the corresponding elaboration procedure for elaborating
the spec of the referenced unit. This is used in the main
generated elaboration procedure by the binder and is not normally used
in any other context. However, there may be specialized situations in
which it is useful to be able to call this elaboration procedure from
Ada code, e.g., if it is necessary to do selective re-elaboration to fix
some error.
@node Attribute Elab_Subp_Body,Attribute Emax,Attribute Elab_Spec,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-elab-subp-body}@anchor{187}
@section Attribute Elab_Subp_Body
@geindex Elab_Subp_Body
This attribute can only be applied to a library level subprogram
name and is only allowed in CodePeer mode. It returns the entity
for the corresponding elaboration procedure for elaborating the body
of the referenced subprogram unit. This is used in the main generated
elaboration procedure by the binder in CodePeer mode only and is unrecognized
otherwise.
@node Attribute Emax,Attribute Enabled,Attribute Elab_Subp_Body,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-emax}@anchor{188}
@section Attribute Emax
@geindex Ada 83 attributes
@geindex Emax
The @code{Emax} attribute is provided for compatibility with Ada 83. See
the Ada 83 reference manual for an exact description of the semantics of
this attribute.
@node Attribute Enabled,Attribute Enum_Rep,Attribute Emax,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-enabled}@anchor{189}
@section Attribute Enabled
@geindex Enabled
The @code{Enabled} attribute allows an application program to check at compile
time to see if the designated check is currently enabled. The prefix is a
simple identifier, referencing any predefined check name (other than
@code{All_Checks}) or a check name introduced by pragma Check_Name. If
no argument is given for the attribute, the check is for the general state
of the check, if an argument is given, then it is an entity name, and the
check indicates whether an @code{Suppress} or @code{Unsuppress} has been
given naming the entity (if not, then the argument is ignored).
Note that instantiations inherit the check status at the point of the
instantiation, so a useful idiom is to have a library package that
introduces a check name with @code{pragma Check_Name}, and then contains
generic packages or subprograms which use the @code{Enabled} attribute
to see if the check is enabled. A user of this package can then issue
a @code{pragma Suppress} or @code{pragma Unsuppress} before instantiating
the package or subprogram, controlling whether the check will be present.
@node Attribute Enum_Rep,Attribute Enum_Val,Attribute Enabled,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-enum-rep}@anchor{18a}
@section Attribute Enum_Rep
@geindex Representation of enums
@geindex Enum_Rep
Note that this attribute is now standard in Ada 202x and is available
as an implementation defined attribute for earlier Ada versions.
For every enumeration subtype @code{S}, @code{S'Enum_Rep} denotes a
function with the following spec:
@example
function S'Enum_Rep (Arg : S'Base) return <Universal_Integer>;
@end example
It is also allowable to apply @code{Enum_Rep} directly to an object of an
enumeration type or to a non-overloaded enumeration
literal. In this case @code{S'Enum_Rep} is equivalent to
@code{typ'Enum_Rep(S)} where @code{typ} is the type of the
enumeration literal or object.
The function returns the representation value for the given enumeration
value. This will be equal to value of the @code{Pos} attribute in the
absence of an enumeration representation clause. This is a static
attribute (i.e., the result is static if the argument is static).
@code{S'Enum_Rep} can also be used with integer types and objects,
in which case it simply returns the integer value. The reason for this
is to allow it to be used for @code{(<>)} discrete formal arguments in
a generic unit that can be instantiated with either enumeration types
or integer types. Note that if @code{Enum_Rep} is used on a modular
type whose upper bound exceeds the upper bound of the largest signed
integer type, and the argument is a variable, so that the universal
integer calculation is done at run time, then the call to @code{Enum_Rep}
may raise @code{Constraint_Error}.
@node Attribute Enum_Val,Attribute Epsilon,Attribute Enum_Rep,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-enum-val}@anchor{18b}
@section Attribute Enum_Val
@geindex Representation of enums
@geindex Enum_Val
Note that this attribute is now standard in Ada 202x and is available
as an implementation defined attribute for earlier Ada versions.
For every enumeration subtype @code{S}, @code{S'Enum_Val} denotes a
function with the following spec:
@example
function S'Enum_Val (Arg : <Universal_Integer>) return S'Base;
@end example
The function returns the enumeration value whose representation matches the
argument, or raises Constraint_Error if no enumeration literal of the type
has the matching value.
This will be equal to value of the @code{Val} attribute in the
absence of an enumeration representation clause. This is a static
attribute (i.e., the result is static if the argument is static).
@node Attribute Epsilon,Attribute Fast_Math,Attribute Enum_Val,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-epsilon}@anchor{18c}
@section Attribute Epsilon
@geindex Ada 83 attributes
@geindex Epsilon
The @code{Epsilon} attribute is provided for compatibility with Ada 83. See
the Ada 83 reference manual for an exact description of the semantics of
this attribute.
@node Attribute Fast_Math,Attribute Finalization_Size,Attribute Epsilon,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-fast-math}@anchor{18d}
@section Attribute Fast_Math
@geindex Fast_Math
@code{Standard'Fast_Math} (@code{Standard} is the only allowed
prefix) yields a static Boolean value that is True if pragma
@code{Fast_Math} is active, and False otherwise.
@node Attribute Finalization_Size,Attribute Fixed_Value,Attribute Fast_Math,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-finalization-size}@anchor{18e}
@section Attribute Finalization_Size
@geindex Finalization_Size
The prefix of attribute @code{Finalization_Size} must be an object or
a non-class-wide type. This attribute returns the size of any hidden data
reserved by the compiler to handle finalization-related actions. The type of
the attribute is `universal_integer'.
@code{Finalization_Size} yields a value of zero for a type with no controlled
parts, an object whose type has no controlled parts, or an object of a
class-wide type whose tag denotes a type with no controlled parts.
Note that only heap-allocated objects contain finalization data.
@node Attribute Fixed_Value,Attribute From_Any,Attribute Finalization_Size,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-fixed-value}@anchor{18f}
@section Attribute Fixed_Value
@geindex Fixed_Value
For every fixed-point type @code{S}, @code{S'Fixed_Value} denotes a
function with the following specification:
@example
function S'Fixed_Value (Arg : <Universal_Integer>) return S;
@end example
The value returned is the fixed-point value @code{V} such that:
@example
V = Arg * S'Small
@end example
The effect is thus similar to first converting the argument to the
integer type used to represent @code{S}, and then doing an unchecked
conversion to the fixed-point type. The difference is
that there are full range checks, to ensure that the result is in range.
This attribute is primarily intended for use in implementation of the
input-output functions for fixed-point values.
@node Attribute From_Any,Attribute Has_Access_Values,Attribute Fixed_Value,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-from-any}@anchor{190}
@section Attribute From_Any
@geindex From_Any
This internal attribute is used for the generation of remote subprogram
stubs in the context of the Distributed Systems Annex.
@node Attribute Has_Access_Values,Attribute Has_Discriminants,Attribute From_Any,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-has-access-values}@anchor{191}
@section Attribute Has_Access_Values
@geindex Access values
@geindex testing for
@geindex Has_Access_Values
The prefix of the @code{Has_Access_Values} attribute is a type. The result
is a Boolean value which is True if the is an access type, or is a composite
type with a component (at any nesting depth) that is an access type, and is
False otherwise.
The intended use of this attribute is in conjunction with generic
definitions. If the attribute is applied to a generic private type, it
indicates whether or not the corresponding actual type has access values.
@node Attribute Has_Discriminants,Attribute Has_Tagged_Values,Attribute Has_Access_Values,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-has-discriminants}@anchor{192}
@section Attribute Has_Discriminants
@geindex Discriminants
@geindex testing for
@geindex Has_Discriminants
The prefix of the @code{Has_Discriminants} attribute is a type. The result
is a Boolean value which is True if the type has discriminants, and False
otherwise. The intended use of this attribute is in conjunction with generic
definitions. If the attribute is applied to a generic private type, it
indicates whether or not the corresponding actual type has discriminants.
@node Attribute Has_Tagged_Values,Attribute Img,Attribute Has_Discriminants,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-has-tagged-values}@anchor{193}
@section Attribute Has_Tagged_Values
@geindex Tagged values
@geindex testing for
@geindex Has_Tagged_Values
The prefix of the @code{Has_Tagged_Values} attribute is a type. The result is a
Boolean value which is True if the type is a composite type (array or record)
that is either a tagged type or has a subcomponent that is tagged, and is False
otherwise. The intended use of this attribute is in conjunction with generic
definitions. If the attribute is applied to a generic private type, it
indicates whether or not the corresponding actual type has access values.
@node Attribute Img,Attribute Initialized,Attribute Has_Tagged_Values,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-img}@anchor{194}
@section Attribute Img
@geindex Img
The @code{Img} attribute differs from @code{Image} in that, while both can be
applied directly to an object, @code{Img} cannot be applied to types.
Example usage of the attribute:
@example
Put_Line ("X = " & X'Img);
@end example
which has the same meaning as the more verbose:
@example
Put_Line ("X = " & T'Image (X));
@end example
where @code{T} is the (sub)type of the object @code{X}.
Note that technically, in analogy to @code{Image},
@code{X'Img} returns a parameterless function
that returns the appropriate string when called. This means that
@code{X'Img} can be renamed as a function-returning-string, or used
in an instantiation as a function parameter.
@node Attribute Initialized,Attribute Integer_Value,Attribute Img,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-initialized}@anchor{195}
@section Attribute Initialized
@geindex Initialized
For the syntax and semantics of this attribute, see the SPARK 2014 Reference
Manual, section 6.10.
@node Attribute Integer_Value,Attribute Invalid_Value,Attribute Initialized,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-integer-value}@anchor{196}
@section Attribute Integer_Value
@geindex Integer_Value
For every integer type @code{S}, @code{S'Integer_Value} denotes a
function with the following spec:
@example
function S'Integer_Value (Arg : <Universal_Fixed>) return S;
@end example
The value returned is the integer value @code{V}, such that:
@example
Arg = V * T'Small
@end example
where @code{T} is the type of @code{Arg}.
The effect is thus similar to first doing an unchecked conversion from
the fixed-point type to its corresponding implementation type, and then
converting the result to the target integer type. The difference is
that there are full range checks, to ensure that the result is in range.
This attribute is primarily intended for use in implementation of the
standard input-output functions for fixed-point values.
@node Attribute Invalid_Value,Attribute Large,Attribute Integer_Value,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-invalid-value}@anchor{197}
@section Attribute Invalid_Value
@geindex Invalid_Value
For every scalar type S, S’Invalid_Value returns an undefined value of the
type. If possible this value is an invalid representation for the type. The
value returned is identical to the value used to initialize an otherwise
uninitialized value of the type if pragma Initialize_Scalars is used,
including the ability to modify the value with the binder -Sxx flag and
relevant environment variables at run time.
@node Attribute Large,Attribute Library_Level,Attribute Invalid_Value,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-large}@anchor{198}
@section Attribute Large
@geindex Ada 83 attributes
@geindex Large
The @code{Large} attribute is provided for compatibility with Ada 83. See
the Ada 83 reference manual for an exact description of the semantics of
this attribute.
@node Attribute Library_Level,Attribute Loop_Entry,Attribute Large,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-library-level}@anchor{199}
@section Attribute Library_Level
@geindex Library_Level
@code{P'Library_Level}, where P is an entity name,
returns a Boolean value which is True if the entity is declared
at the library level, and False otherwise. Note that within a
generic instantiation, the name of the generic unit denotes the
instance, which means that this attribute can be used to test
if a generic is instantiated at the library level, as shown
in this example:
@example
generic
...
package Gen is
pragma Compile_Time_Error
(not Gen'Library_Level,
"Gen can only be instantiated at library level");
...
end Gen;
@end example
@node Attribute Loop_Entry,Attribute Machine_Size,Attribute Library_Level,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-loop-entry}@anchor{19a}
@section Attribute Loop_Entry
@geindex Loop_Entry
Syntax:
@example
X'Loop_Entry [(loop_name)]
@end example
The @code{Loop_Entry} attribute is used to refer to the value that an
expression had upon entry to a given loop in much the same way that the
@code{Old} attribute in a subprogram postcondition can be used to refer
to the value an expression had upon entry to the subprogram. The
relevant loop is either identified by the given loop name, or it is the
innermost enclosing loop when no loop name is given.
A @code{Loop_Entry} attribute can only occur within an @code{Assert},
@code{Assert_And_Cut}, @code{Assume}, @code{Loop_Variant} or @code{Loop_Invariant} pragma.
In addition, such a pragma must be one of the items in the sequence
of statements of a loop body, or nested inside block statements that
appear in the sequence of statements of a loop body.
A common use of @code{Loop_Entry} is to compare the current value of objects with
their initial value at loop entry, in a @code{Loop_Invariant} pragma.
The effect of using @code{X'Loop_Entry} is the same as declaring
a constant initialized with the initial value of @code{X} at loop
entry. This copy is not performed if the loop is not entered, or if the
corresponding pragmas are ignored or disabled.
@node Attribute Machine_Size,Attribute Mantissa,Attribute Loop_Entry,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-machine-size}@anchor{19b}
@section Attribute Machine_Size
@geindex Machine_Size
This attribute is identical to the @code{Object_Size} attribute. It is
provided for compatibility with the DEC Ada 83 attribute of this name.
@node Attribute Mantissa,Attribute Maximum_Alignment,Attribute Machine_Size,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-mantissa}@anchor{19c}
@section Attribute Mantissa
@geindex Ada 83 attributes
@geindex Mantissa
The @code{Mantissa} attribute is provided for compatibility with Ada 83. See
the Ada 83 reference manual for an exact description of the semantics of
this attribute.
@node Attribute Maximum_Alignment,Attribute Max_Integer_Size,Attribute Mantissa,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-maximum-alignment}@anchor{19d}@anchor{gnat_rm/implementation_defined_attributes id2}@anchor{19e}
@section Attribute Maximum_Alignment
@geindex Alignment
@geindex maximum
@geindex Maximum_Alignment
@code{Standard'Maximum_Alignment} (@code{Standard} is the only
allowed prefix) provides the maximum useful alignment value for the
target. This is a static value that can be used to specify the alignment
for an object, guaranteeing that it is properly aligned in all
cases.
@node Attribute Max_Integer_Size,Attribute Mechanism_Code,Attribute Maximum_Alignment,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-max-integer-size}@anchor{19f}
@section Attribute Max_Integer_Size
@geindex Max_Integer_Size
@code{Standard'Max_Integer_Size} (@code{Standard} is the only allowed
prefix) provides the size of the largest supported integer type for
the target. The result is a static constant.
@node Attribute Mechanism_Code,Attribute Null_Parameter,Attribute Max_Integer_Size,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-mechanism-code}@anchor{1a0}
@section Attribute Mechanism_Code
@geindex Return values
@geindex passing mechanism
@geindex Parameters
@geindex passing mechanism
@geindex Mechanism_Code
@code{func'Mechanism_Code} yields an integer code for the
mechanism used for the result of function @code{func}, and
@code{subprog'Mechanism_Code (n)} yields the mechanism
used for formal parameter number `n' (a static integer value, with 1
meaning the first parameter) of subprogram @code{subprog}. The code returned is:
@table @asis
@item `1'
by copy (value)
@item `2'
by reference
@end table
@node Attribute Null_Parameter,Attribute Object_Size,Attribute Mechanism_Code,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-null-parameter}@anchor{1a1}
@section Attribute Null_Parameter
@geindex Zero address
@geindex passing
@geindex Null_Parameter
A reference @code{T'Null_Parameter} denotes an imaginary object of
type or subtype @code{T} allocated at machine address zero. The attribute
is allowed only as the default expression of a formal parameter, or as
an actual expression of a subprogram call. In either case, the
subprogram must be imported.
The identity of the object is represented by the address zero in the
argument list, independent of the passing mechanism (explicit or
default).
This capability is needed to specify that a zero address should be
passed for a record or other composite object passed by reference.
There is no way of indicating this without the @code{Null_Parameter}
attribute.
@node Attribute Object_Size,Attribute Old,Attribute Null_Parameter,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-object-size}@anchor{150}@anchor{gnat_rm/implementation_defined_attributes id3}@anchor{1a2}
@section Attribute Object_Size
@geindex Size
@geindex used for objects
@geindex Object_Size
The size of an object is not necessarily the same as the size of the type
of an object. This is because by default object sizes are increased to be
a multiple of the alignment of the object. For example,
@code{Natural'Size} is
31, but by default objects of type @code{Natural} will have a size of 32 bits.
Similarly, a record containing an integer and a character:
@example
type Rec is record
I : Integer;
C : Character;
end record;
@end example
will have a size of 40 (that is @code{Rec'Size} will be 40). The
alignment will be 4, because of the
integer field, and so the default size of record objects for this type
will be 64 (8 bytes).
If the alignment of the above record is specified to be 1, then the
object size will be 40 (5 bytes). This is true by default, and also
an object size of 40 can be explicitly specified in this case.
A consequence of this capability is that different object sizes can be
given to subtypes that would otherwise be considered in Ada to be
statically matching. But it makes no sense to consider such subtypes
as statically matching. Consequently, GNAT adds a rule
to the static matching rules that requires object sizes to match.
Consider this example:
@example
1. procedure BadAVConvert is
2. type R is new Integer;
3. subtype R1 is R range 1 .. 10;
4. subtype R2 is R range 1 .. 10;
5. for R1'Object_Size use 8;
6. for R2'Object_Size use 16;
7. type R1P is access all R1;
8. type R2P is access all R2;
9. R1PV : R1P := new R1'(4);
10. R2PV : R2P;
11. begin
12. R2PV := R2P (R1PV);
|
>>> target designated subtype not compatible with
type "R1" defined at line 3
13. end;
@end example
In the absence of lines 5 and 6,
types @code{R1} and @code{R2} statically match and
hence the conversion on line 12 is legal. But since lines 5 and 6
cause the object sizes to differ, GNAT considers that types
@code{R1} and @code{R2} are not statically matching, and line 12
generates the diagnostic shown above.
Similar additional checks are performed in other contexts requiring
statically matching subtypes.
@node Attribute Old,Attribute Passed_By_Reference,Attribute Object_Size,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-old}@anchor{1a3}
@section Attribute Old
@geindex Old
In addition to the usage of @code{Old} defined in the Ada 2012 RM (usage
within @code{Post} aspect), GNAT also permits the use of this attribute
in implementation defined pragmas @code{Postcondition},
@code{Contract_Cases} and @code{Test_Case}. Also usages of
@code{Old} which would be illegal according to the Ada 2012 RM
definition are allowed under control of
implementation defined pragma @code{Unevaluated_Use_Of_Old}.
@node Attribute Passed_By_Reference,Attribute Pool_Address,Attribute Old,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-passed-by-reference}@anchor{1a4}
@section Attribute Passed_By_Reference
@geindex Parameters
@geindex when passed by reference
@geindex Passed_By_Reference
@code{typ'Passed_By_Reference} for any subtype @cite{typ} returns
a value of type @code{Boolean} value that is @code{True} if the type is
normally passed by reference and @code{False} if the type is normally
passed by copy in calls. For scalar types, the result is always @code{False}
and is static. For non-scalar types, the result is nonstatic.
@node Attribute Pool_Address,Attribute Range_Length,Attribute Passed_By_Reference,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-pool-address}@anchor{1a5}
@section Attribute Pool_Address
@geindex Pool_Address
@code{X'Pool_Address} for any object @code{X} returns the address
of X within its storage pool. This is the same as
@code{X'Address}, except that for an unconstrained array whose
bounds are allocated just before the first component,
@code{X'Pool_Address} returns the address of those bounds,
whereas @code{X'Address} returns the address of the first
component.
Here, we are interpreting ‘storage pool’ broadly to mean
@code{wherever the object is allocated}, which could be a
user-defined storage pool,
the global heap, on the stack, or in a static memory area.
For an object created by @code{new}, @code{Ptr.all'Pool_Address} is
what is passed to @code{Allocate} and returned from @code{Deallocate}.
@node Attribute Range_Length,Attribute Restriction_Set,Attribute Pool_Address,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-range-length}@anchor{1a6}
@section Attribute Range_Length
@geindex Range_Length
@code{typ'Range_Length} for any discrete type @cite{typ} yields
the number of values represented by the subtype (zero for a null
range). The result is static for static subtypes. @code{Range_Length}
applied to the index subtype of a one dimensional array always gives the
same result as @code{Length} applied to the array itself.
@node Attribute Restriction_Set,Attribute Result,Attribute Range_Length,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-restriction-set}@anchor{1a7}
@section Attribute Restriction_Set
@geindex Restriction_Set
@geindex Restrictions
This attribute allows compile time testing of restrictions that
are currently in effect. It is primarily intended for specializing
code in the run-time based on restrictions that are active (e.g.
don’t need to save fpt registers if restriction No_Floating_Point
is known to be in effect), but can be used anywhere.
There are two forms:
@example
System'Restriction_Set (partition_boolean_restriction_NAME)
System'Restriction_Set (No_Dependence => library_unit_NAME);
@end example
In the case of the first form, the only restriction names
allowed are parameterless restrictions that are checked
for consistency at bind time. For a complete list see the
subtype @code{System.Rident.Partition_Boolean_Restrictions}.
The result returned is True if the restriction is known to
be in effect, and False if the restriction is known not to
be in effect. An important guarantee is that the value of
a Restriction_Set attribute is known to be consistent throughout
all the code of a partition.
This is trivially achieved if the entire partition is compiled
with a consistent set of restriction pragmas. However, the
compilation model does not require this. It is possible to
compile one set of units with one set of pragmas, and another
set of units with another set of pragmas. It is even possible
to compile a spec with one set of pragmas, and then WITH the
same spec with a different set of pragmas. Inconsistencies
in the actual use of the restriction are checked at bind time.
In order to achieve the guarantee of consistency for the
Restriction_Set pragma, we consider that a use of the pragma
that yields False is equivalent to a violation of the
restriction.
So for example if you write
@example
if System'Restriction_Set (No_Floating_Point) then
...
else
...
end if;
@end example
And the result is False, so that the else branch is executed,
you can assume that this restriction is not set for any unit
in the partition. This is checked by considering this use of
the restriction pragma to be a violation of the restriction
No_Floating_Point. This means that no other unit can attempt
to set this restriction (if some unit does attempt to set it,
the binder will refuse to bind the partition).
Technical note: The restriction name and the unit name are
intepreted entirely syntactically, as in the corresponding
Restrictions pragma, they are not analyzed semantically,
so they do not have a type.
@node Attribute Result,Attribute Round,Attribute Restriction_Set,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-result}@anchor{1a8}
@section Attribute Result
@geindex Result
@code{function'Result} can only be used with in a Postcondition pragma
for a function. The prefix must be the name of the corresponding function. This
is used to refer to the result of the function in the postcondition expression.
For a further discussion of the use of this attribute and examples of its use,
see the description of pragma Postcondition.
@node Attribute Round,Attribute Safe_Emax,Attribute Result,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-round}@anchor{1a9}
@section Attribute Round
@geindex Round
In addition to the usage of this attribute in the Ada RM, GNAT
also permits the use of the @code{'Round} attribute for ordinary
fixed point types.
@node Attribute Safe_Emax,Attribute Safe_Large,Attribute Round,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-safe-emax}@anchor{1aa}
@section Attribute Safe_Emax
@geindex Ada 83 attributes
@geindex Safe_Emax
The @code{Safe_Emax} attribute is provided for compatibility with Ada 83. See
the Ada 83 reference manual for an exact description of the semantics of
this attribute.
@node Attribute Safe_Large,Attribute Safe_Small,Attribute Safe_Emax,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-safe-large}@anchor{1ab}
@section Attribute Safe_Large
@geindex Ada 83 attributes
@geindex Safe_Large
The @code{Safe_Large} attribute is provided for compatibility with Ada 83. See
the Ada 83 reference manual for an exact description of the semantics of
this attribute.
@node Attribute Safe_Small,Attribute Scalar_Storage_Order,Attribute Safe_Large,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-safe-small}@anchor{1ac}
@section Attribute Safe_Small
@geindex Ada 83 attributes
@geindex Safe_Small
The @code{Safe_Small} attribute is provided for compatibility with Ada 83. See
the Ada 83 reference manual for an exact description of the semantics of
this attribute.
@node Attribute Scalar_Storage_Order,Attribute Simple_Storage_Pool,Attribute Safe_Small,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-scalar-storage-order}@anchor{15d}@anchor{gnat_rm/implementation_defined_attributes id4}@anchor{1ad}
@section Attribute Scalar_Storage_Order
@geindex Endianness
@geindex Scalar storage order
@geindex Scalar_Storage_Order
For every array or record type @code{S}, the representation attribute
@code{Scalar_Storage_Order} denotes the order in which storage elements
that make up scalar components are ordered within S. The value given must
be a static expression of type System.Bit_Order. The following is an example
of the use of this feature:
@example
-- Component type definitions
subtype Yr_Type is Natural range 0 .. 127;
subtype Mo_Type is Natural range 1 .. 12;
subtype Da_Type is Natural range 1 .. 31;
-- Record declaration
type Date is record
Years_Since_1980 : Yr_Type;
Month : Mo_Type;
Day_Of_Month : Da_Type;
end record;
-- Record representation clause
for Date use record
Years_Since_1980 at 0 range 0 .. 6;
Month at 0 range 7 .. 10;
Day_Of_Month at 0 range 11 .. 15;
end record;
-- Attribute definition clauses
for Date'Bit_Order use System.High_Order_First;
for Date'Scalar_Storage_Order use System.High_Order_First;
-- If Scalar_Storage_Order is specified, it must be consistent with
-- Bit_Order, so it's best to always define the latter explicitly if
-- the former is used.
@end example
Other properties are as for the standard representation attribute @code{Bit_Order}
defined by Ada RM 13.5.3(4). The default is @code{System.Default_Bit_Order}.
For a record type @code{T}, if @code{T'Scalar_Storage_Order} is
specified explicitly, it shall be equal to @code{T'Bit_Order}. Note:
this means that if a @code{Scalar_Storage_Order} attribute definition
clause is not confirming, then the type’s @code{Bit_Order} shall be
specified explicitly and set to the same value.
Derived types inherit an explicitly set scalar storage order from their parent
types. This may be overridden for the derived type by giving an explicit scalar
storage order for it. However, for a record extension, the derived type must
have the same scalar storage order as the parent type.
A component of a record type that is itself a record or an array and that does
not start and end on a byte boundary must have have the same scalar storage
order as the record type. A component of a bit-packed array type that is itself
a record or an array must have the same scalar storage order as the array type.
No component of a type that has an explicit @code{Scalar_Storage_Order}
attribute definition may be aliased.
A confirming @code{Scalar_Storage_Order} attribute definition clause (i.e.
with a value equal to @code{System.Default_Bit_Order}) has no effect.
If the opposite storage order is specified, then whenever the value of
a scalar component of an object of type @code{S} is read, the storage
elements of the enclosing machine scalar are first reversed (before
retrieving the component value, possibly applying some shift and mask
operatings on the enclosing machine scalar), and the opposite operation
is done for writes.
In that case, the restrictions set forth in 13.5.1(10.3/2) for scalar components
are relaxed. Instead, the following rules apply:
@itemize *
@item
the underlying storage elements are those at positions
@code{(position + first_bit / storage_element_size) .. (position + (last_bit + storage_element_size - 1) / storage_element_size)}
@item
the sequence of underlying storage elements shall have
a size no greater than the largest machine scalar
@item
the enclosing machine scalar is defined as the smallest machine
scalar starting at a position no greater than
@code{position + first_bit / storage_element_size} and covering
storage elements at least up to @code{position + (last_bit + storage_element_size - 1) / storage_element_size}
@item
the position of the component is interpreted relative to that machine
scalar.
@end itemize
If no scalar storage order is specified for a type (either directly, or by
inheritance in the case of a derived type), then the default is normally
the native ordering of the target, but this default can be overridden using
pragma @code{Default_Scalar_Storage_Order}.
If a component of @code{T} is itself of a record or array type, the specfied
@code{Scalar_Storage_Order} does `not' apply to that nested type: an explicit
attribute definition clause must be provided for the component type as well
if desired.
Representation changes that explicitly or implicitly toggle the scalar storage
order are not supported and may result in erroneous execution of the program,
except when performed by means of an instance of @code{Ada.Unchecked_Conversion}.
In particular, overlays are not supported and a warning is given for them:
@example
type Rec_LE is record
I : Integer;
end record;
for Rec_LE use record
I at 0 range 0 .. 31;
end record;
for Rec_LE'Bit_Order use System.Low_Order_First;
for Rec_LE'Scalar_Storage_Order use System.Low_Order_First;
type Rec_BE is record
I : Integer;
end record;
for Rec_BE use record
I at 0 range 0 .. 31;
end record;
for Rec_BE'Bit_Order use System.High_Order_First;
for Rec_BE'Scalar_Storage_Order use System.High_Order_First;
R_LE : Rec_LE;
R_BE : Rec_BE;
for R_BE'Address use R_LE'Address;
@end example
@code{warning: overlay changes scalar storage order [enabled by default]}
In most cases, such representation changes ought to be replaced by an
instantiation of a function or procedure provided by @code{GNAT.Byte_Swapping}.
Note that the scalar storage order only affects the in-memory data
representation. It has no effect on the representation used by stream
attributes.
Note that debuggers may be unable to display the correct value of scalar
components of a type for which the opposite storage order is specified.
@node Attribute Simple_Storage_Pool,Attribute Small,Attribute Scalar_Storage_Order,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-simple-storage-pool}@anchor{ed}@anchor{gnat_rm/implementation_defined_attributes id5}@anchor{1ae}
@section Attribute Simple_Storage_Pool
@geindex Storage pool
@geindex simple
@geindex Simple storage pool
@geindex Simple_Storage_Pool
For every nonformal, nonderived access-to-object type @code{Acc}, the
representation attribute @code{Simple_Storage_Pool} may be specified
via an attribute_definition_clause (or by specifying the equivalent aspect):
@example
My_Pool : My_Simple_Storage_Pool_Type;
type Acc is access My_Data_Type;
for Acc'Simple_Storage_Pool use My_Pool;
@end example
The name given in an attribute_definition_clause for the
@code{Simple_Storage_Pool} attribute shall denote a variable of
a ‘simple storage pool type’ (see pragma @cite{Simple_Storage_Pool_Type}).
The use of this attribute is only allowed for a prefix denoting a type
for which it has been specified. The type of the attribute is the type
of the variable specified as the simple storage pool of the access type,
and the attribute denotes that variable.
It is illegal to specify both @code{Storage_Pool} and @code{Simple_Storage_Pool}
for the same access type.
If the @code{Simple_Storage_Pool} attribute has been specified for an access
type, then applying the @code{Storage_Pool} attribute to the type is flagged
with a warning and its evaluation raises the exception @code{Program_Error}.
If the Simple_Storage_Pool attribute has been specified for an access
type @code{S}, then the evaluation of the attribute @code{S'Storage_Size}
returns the result of calling @code{Storage_Size (S'Simple_Storage_Pool)},
which is intended to indicate the number of storage elements reserved for
the simple storage pool. If the Storage_Size function has not been defined
for the simple storage pool type, then this attribute returns zero.
If an access type @code{S} has a specified simple storage pool of type
@code{SSP}, then the evaluation of an allocator for that access type calls
the primitive @code{Allocate} procedure for type @code{SSP}, passing
@code{S'Simple_Storage_Pool} as the pool parameter. The detailed
semantics of such allocators is the same as those defined for allocators
in section 13.11 of the @cite{Ada Reference Manual}, with the term
`simple storage pool' substituted for `storage pool'.
If an access type @code{S} has a specified simple storage pool of type
@code{SSP}, then a call to an instance of the @code{Ada.Unchecked_Deallocation}
for that access type invokes the primitive @code{Deallocate} procedure
for type @code{SSP}, passing @code{S'Simple_Storage_Pool} as the pool
parameter. The detailed semantics of such unchecked deallocations is the same
as defined in section 13.11.2 of the Ada Reference Manual, except that the
term `simple storage pool' is substituted for `storage pool'.
@node Attribute Small,Attribute Small_Denominator,Attribute Simple_Storage_Pool,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-small}@anchor{1af}
@section Attribute Small
@geindex Ada 83 attributes
@geindex Small
The @code{Small} attribute is defined in Ada 95 (and Ada 2005) only for
fixed-point types.
GNAT also allows this attribute to be applied to floating-point types
for compatibility with Ada 83. See
the Ada 83 reference manual for an exact description of the semantics of
this attribute when applied to floating-point types.
@node Attribute Small_Denominator,Attribute Small_Numerator,Attribute Small,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-small-denominator}@anchor{1b0}
@section Attribute Small_Denominator
@geindex Small
@geindex Small_Denominator
@code{typ'Small_Denominator} for any fixed-point subtype @cite{typ} yields the
denominator in the representation of @code{typ'Small} as a rational number
with coprime factors (i.e. as an irreducible fraction).
@node Attribute Small_Numerator,Attribute Storage_Unit,Attribute Small_Denominator,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-small-numerator}@anchor{1b1}
@section Attribute Small_Numerator
@geindex Small
@geindex Small_Numerator
@code{typ'Small_Numerator} for any fixed-point subtype @cite{typ} yields the
numerator in the representation of @code{typ'Small} as a rational number
with coprime factors (i.e. as an irreducible fraction).
@node Attribute Storage_Unit,Attribute Stub_Type,Attribute Small_Numerator,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-storage-unit}@anchor{1b2}
@section Attribute Storage_Unit
@geindex Storage_Unit
@code{Standard'Storage_Unit} (@code{Standard} is the only allowed
prefix) provides the same value as @code{System.Storage_Unit}.
@node Attribute Stub_Type,Attribute System_Allocator_Alignment,Attribute Storage_Unit,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-stub-type}@anchor{1b3}
@section Attribute Stub_Type
@geindex Stub_Type
The GNAT implementation of remote access-to-classwide types is
organized as described in AARM section E.4 (20.t): a value of an RACW type
(designating a remote object) is represented as a normal access
value, pointing to a “stub” object which in turn contains the
necessary information to contact the designated remote object. A
call on any dispatching operation of such a stub object does the
remote call, if necessary, using the information in the stub object
to locate the target partition, etc.
For a prefix @code{T} that denotes a remote access-to-classwide type,
@code{T'Stub_Type} denotes the type of the corresponding stub objects.
By construction, the layout of @code{T'Stub_Type} is identical to that of
type @code{RACW_Stub_Type} declared in the internal implementation-defined
unit @code{System.Partition_Interface}. Use of this attribute will create
an implicit dependency on this unit.
@node Attribute System_Allocator_Alignment,Attribute Target_Name,Attribute Stub_Type,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-system-allocator-alignment}@anchor{1b4}
@section Attribute System_Allocator_Alignment
@geindex Alignment
@geindex allocator
@geindex System_Allocator_Alignment
@code{Standard'System_Allocator_Alignment} (@code{Standard} is the only
allowed prefix) provides the observable guaranteed to be honored by
the system allocator (malloc). This is a static value that can be used
in user storage pools based on malloc either to reject allocation
with alignment too large or to enable a realignment circuitry if the
alignment request is larger than this value.
@node Attribute Target_Name,Attribute To_Address,Attribute System_Allocator_Alignment,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-target-name}@anchor{1b5}
@section Attribute Target_Name
@geindex Target_Name
@code{Standard'Target_Name} (@code{Standard} is the only allowed
prefix) provides a static string value that identifies the target
for the current compilation. For GCC implementations, this is the
standard gcc target name without the terminating slash (for
example, GNAT 5.0 on windows yields “i586-pc-mingw32msv”).
@node Attribute To_Address,Attribute To_Any,Attribute Target_Name,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-to-address}@anchor{1b6}
@section Attribute To_Address
@geindex To_Address
The @code{System'To_Address}
(@code{System} is the only allowed prefix)
denotes a function identical to
@code{System.Storage_Elements.To_Address} except that
it is a static attribute. This means that if its argument is
a static expression, then the result of the attribute is a
static expression. This means that such an expression can be
used in contexts (e.g., preelaborable packages) which require a
static expression and where the function call could not be used
(since the function call is always nonstatic, even if its
argument is static). The argument must be in the range
-(2**(m-1)) .. 2**m-1, where m is the memory size
(typically 32 or 64). Negative values are intepreted in a
modular manner (e.g., -1 means the same as 16#FFFF_FFFF# on
a 32 bits machine).
@node Attribute To_Any,Attribute Type_Class,Attribute To_Address,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-to-any}@anchor{1b7}
@section Attribute To_Any
@geindex To_Any
This internal attribute is used for the generation of remote subprogram
stubs in the context of the Distributed Systems Annex.
@node Attribute Type_Class,Attribute Type_Key,Attribute To_Any,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-type-class}@anchor{1b8}
@section Attribute Type_Class
@geindex Type_Class
@code{typ'Type_Class} for any type or subtype @cite{typ} yields
the value of the type class for the full type of @cite{typ}. If
@cite{typ} is a generic formal type, the value is the value for the
corresponding actual subtype. The value of this attribute is of type
@code{System.Aux_DEC.Type_Class}, which has the following definition:
@example
type Type_Class is
(Type_Class_Enumeration,
Type_Class_Integer,
Type_Class_Fixed_Point,
Type_Class_Floating_Point,
Type_Class_Array,
Type_Class_Record,
Type_Class_Access,
Type_Class_Task,
Type_Class_Address);
@end example
Protected types yield the value @code{Type_Class_Task}, which thus
applies to all concurrent types. This attribute is designed to
be compatible with the DEC Ada 83 attribute of the same name.
@node Attribute Type_Key,Attribute TypeCode,Attribute Type_Class,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-type-key}@anchor{1b9}
@section Attribute Type_Key
@geindex Type_Key
The @code{Type_Key} attribute is applicable to a type or subtype and
yields a value of type Standard.String containing encoded information
about the type or subtype. This provides improved compatibility with
other implementations that support this attribute.
@node Attribute TypeCode,Attribute Unconstrained_Array,Attribute Type_Key,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-typecode}@anchor{1ba}
@section Attribute TypeCode
@geindex TypeCode
This internal attribute is used for the generation of remote subprogram
stubs in the context of the Distributed Systems Annex.
@node Attribute Unconstrained_Array,Attribute Universal_Literal_String,Attribute TypeCode,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-unconstrained-array}@anchor{1bb}
@section Attribute Unconstrained_Array
@geindex Unconstrained_Array
The @code{Unconstrained_Array} attribute can be used with a prefix that
denotes any type or subtype. It is a static attribute that yields
@code{True} if the prefix designates an unconstrained array,
and @code{False} otherwise. In a generic instance, the result is
still static, and yields the result of applying this test to the
generic actual.
@node Attribute Universal_Literal_String,Attribute Unrestricted_Access,Attribute Unconstrained_Array,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-universal-literal-string}@anchor{1bc}
@section Attribute Universal_Literal_String
@geindex Named numbers
@geindex representation of
@geindex Universal_Literal_String
The prefix of @code{Universal_Literal_String} must be a named
number. The static result is the string consisting of the characters of
the number as defined in the original source. This allows the user
program to access the actual text of named numbers without intermediate
conversions and without the need to enclose the strings in quotes (which
would preclude their use as numbers).
For example, the following program prints the first 50 digits of pi:
@example
with Text_IO; use Text_IO;
with Ada.Numerics;
procedure Pi is
begin
Put (Ada.Numerics.Pi'Universal_Literal_String);
end;
@end example
@node Attribute Unrestricted_Access,Attribute Update,Attribute Universal_Literal_String,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-unrestricted-access}@anchor{1bd}
@section Attribute Unrestricted_Access
@geindex Access
@geindex unrestricted
@geindex Unrestricted_Access
The @code{Unrestricted_Access} attribute is similar to @code{Access}
except that all accessibility and aliased view checks are omitted. This
is a user-beware attribute.
For objects, it is similar to @code{Address}, for which it is a
desirable replacement where the value desired is an access type.
In other words, its effect is similar to first applying the
@code{Address} attribute and then doing an unchecked conversion to a
desired access type.
For subprograms, @code{P'Unrestricted_Access} may be used where
@code{P'Access} would be illegal, to construct a value of a
less-nested named access type that designates a more-nested
subprogram. This value may be used in indirect calls, so long as the
more-nested subprogram still exists; once the subprogram containing it
has returned, such calls are erroneous. For example:
@example
package body P is
type Less_Nested is not null access procedure;
Global : Less_Nested;
procedure P1 is
begin
Global.all;
end P1;
procedure P2 is
Local_Var : Integer;
procedure More_Nested is
begin
... Local_Var ...
end More_Nested;
begin
Global := More_Nested'Unrestricted_Access;
P1;
end P2;
end P;
@end example
When P1 is called from P2, the call via Global is OK, but if P1 were
called after P2 returns, it would be an erroneous use of a dangling
pointer.
For objects, it is possible to use @code{Unrestricted_Access} for any
type. However, if the result is of an access-to-unconstrained array
subtype, then the resulting pointer has the same scope as the context
of the attribute, and must not be returned to some enclosing scope.
For instance, if a function uses @code{Unrestricted_Access} to create
an access-to-unconstrained-array and returns that value to the caller,
the result will involve dangling pointers. In addition, it is only
valid to create pointers to unconstrained arrays using this attribute
if the pointer has the normal default ‘fat’ representation where a
pointer has two components, one points to the array and one points to
the bounds. If a size clause is used to force ‘thin’ representation
for a pointer to unconstrained where there is only space for a single
pointer, then the resulting pointer is not usable.
In the simple case where a direct use of Unrestricted_Access attempts
to make a thin pointer for a non-aliased object, the compiler will
reject the use as illegal, as shown in the following example:
@example
with System; use System;
procedure SliceUA2 is
type A is access all String;
for A'Size use Standard'Address_Size;
procedure P (Arg : A) is
begin
null;
end P;
X : String := "hello world!";
X2 : aliased String := "hello world!";
AV : A := X'Unrestricted_Access; -- ERROR
|
>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object
begin
P (X'Unrestricted_Access); -- ERROR
|
>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object
P (X(7 .. 12)'Unrestricted_Access); -- ERROR
|
>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object
P (X2'Unrestricted_Access); -- OK
end;
@end example
but other cases cannot be detected by the compiler, and are
considered to be erroneous. Consider the following example:
@example
with System; use System;
with System; use System;
procedure SliceUA is
type AF is access all String;
type A is access all String;
for A'Size use Standard'Address_Size;
procedure P (Arg : A) is
begin
if Arg'Length /= 6 then
raise Program_Error;
end if;
end P;
X : String := "hello world!";
Y : AF := X (7 .. 12)'Unrestricted_Access;
begin
P (A (Y));
end;
@end example
A normal unconstrained array value
or a constrained array object marked as aliased has the bounds in memory
just before the array, so a thin pointer can retrieve both the data and
the bounds. But in this case, the non-aliased object @code{X} does not have the
bounds before the string. If the size clause for type @code{A}
were not present, then the pointer
would be a fat pointer, where one component is a pointer to the bounds,
and all would be well. But with the size clause present, the conversion from
fat pointer to thin pointer in the call loses the bounds, and so this
is erroneous, and the program likely raises a @code{Program_Error} exception.
In general, it is advisable to completely
avoid mixing the use of thin pointers and the use of
@code{Unrestricted_Access} where the designated type is an
unconstrained array. The use of thin pointers should be restricted to
cases of porting legacy code that implicitly assumes the size of pointers,
and such code should not in any case be using this attribute.
Another erroneous situation arises if the attribute is
applied to a constant. The resulting pointer can be used to access the
constant, but the effect of trying to modify a constant in this manner
is not well-defined. Consider this example:
@example
P : constant Integer := 4;
type R is access all Integer;
RV : R := P'Unrestricted_Access;
..
RV.all := 3;
@end example
Here we attempt to modify the constant P from 4 to 3, but the compiler may
or may not notice this attempt, and subsequent references to P may yield
either the value 3 or the value 4 or the assignment may blow up if the
compiler decides to put P in read-only memory. One particular case where
@code{Unrestricted_Access} can be used in this way is to modify the
value of an @code{in} parameter:
@example
procedure K (S : in String) is
type R is access all Character;
RV : R := S (3)'Unrestricted_Access;
begin
RV.all := 'a';
end;
@end example
In general this is a risky approach. It may appear to “work” but such uses of
@code{Unrestricted_Access} are potentially non-portable, even from one version
of GNAT to another, so are best avoided if possible.
@node Attribute Update,Attribute Valid_Value,Attribute Unrestricted_Access,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-update}@anchor{1be}
@section Attribute Update
@geindex Update
The @code{Update} attribute creates a copy of an array or record value
with one or more modified components. The syntax is:
@example
PREFIX'Update ( RECORD_COMPONENT_ASSOCIATION_LIST )
PREFIX'Update ( ARRAY_COMPONENT_ASSOCIATION @{, ARRAY_COMPONENT_ASSOCIATION @} )
PREFIX'Update ( MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION
@{, MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION @} )
MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION ::= INDEX_EXPRESSION_LIST_LIST => EXPRESSION
INDEX_EXPRESSION_LIST_LIST ::= INDEX_EXPRESSION_LIST @{| INDEX_EXPRESSION_LIST @}
INDEX_EXPRESSION_LIST ::= ( EXPRESSION @{, EXPRESSION @} )
@end example
where @code{PREFIX} is the name of an array or record object, the
association list in parentheses does not contain an @code{others}
choice and the box symbol @code{<>} may not appear in any
expression. The effect is to yield a copy of the array or record value
which is unchanged apart from the components mentioned in the
association list, which are changed to the indicated value. The
original value of the array or record value is not affected. For
example:
@example
type Arr is Array (1 .. 5) of Integer;
...
Avar1 : Arr := (1,2,3,4,5);
Avar2 : Arr := Avar1'Update (2 => 10, 3 .. 4 => 20);
@end example
yields a value for @code{Avar2} of 1,10,20,20,5 with @code{Avar1}
begin unmodified. Similarly:
@example
type Rec is A, B, C : Integer;
...
Rvar1 : Rec := (A => 1, B => 2, C => 3);
Rvar2 : Rec := Rvar1'Update (B => 20);
@end example
yields a value for @code{Rvar2} of (A => 1, B => 20, C => 3),
with @code{Rvar1} being unmodifed.
Note that the value of the attribute reference is computed
completely before it is used. This means that if you write:
@example
Avar1 := Avar1'Update (1 => 10, 2 => Function_Call);
@end example
then the value of @code{Avar1} is not modified if @code{Function_Call}
raises an exception, unlike the effect of a series of direct assignments
to elements of @code{Avar1}. In general this requires that
two extra complete copies of the object are required, which should be
kept in mind when considering efficiency.
The @code{Update} attribute cannot be applied to prefixes of a limited
type, and cannot reference discriminants in the case of a record type.
The accessibility level of an Update attribute result object is defined
as for an aggregate.
In the record case, no component can be mentioned more than once. In
the array case, two overlapping ranges can appear in the association list,
in which case the modifications are processed left to right.
Multi-dimensional arrays can be modified, as shown by this example:
@example
A : array (1 .. 10, 1 .. 10) of Integer;
..
A := A'Update ((1, 2) => 20, (3, 4) => 30);
@end example
which changes element (1,2) to 20 and (3,4) to 30.
@node Attribute Valid_Value,Attribute Valid_Scalars,Attribute Update,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-valid-value}@anchor{1bf}
@section Attribute Valid_Value
@geindex Valid_Value
The @code{'Valid_Value} attribute is defined for enumeration types other than
those in package Standard. This attribute is a function that takes
a String, and returns Boolean. @code{T'Valid_Value (S)} returns True
if and only if @code{T'Value (S)} would not raise Constraint_Error.
@node Attribute Valid_Scalars,Attribute VADS_Size,Attribute Valid_Value,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-valid-scalars}@anchor{1c0}
@section Attribute Valid_Scalars
@geindex Valid_Scalars
The @code{'Valid_Scalars} attribute is intended to make it easier to check the
validity of scalar subcomponents of composite objects. The attribute is defined
for any prefix @code{P} which denotes an object. Prefix @code{P} can be any type
except for tagged private or @code{Unchecked_Union} types. The value of the
attribute is of type @code{Boolean}.
@code{P'Valid_Scalars} yields @code{True} if and only if the evaluation of
@code{C'Valid} yields @code{True} for every scalar subcomponent @code{C} of @code{P}, or if
@code{P} has no scalar subcomponents. Attribute @code{'Valid_Scalars} is equivalent
to attribute @code{'Valid} for scalar types.
It is not specified in what order the subcomponents are checked, nor whether
any more are checked after any one of them is determined to be invalid. If the
prefix @code{P} is of a class-wide type @code{T'Class} (where @code{T} is the associated
specific type), or if the prefix @code{P} is of a specific tagged type @code{T}, then
only the subcomponents of @code{T} are checked; in other words, components of
extensions of @code{T} are not checked even if @code{T'Class (P)'Tag /= T'Tag}.
The compiler will issue a warning if it can be determined at compile time that
the prefix of the attribute has no scalar subcomponents.
Note: @code{Valid_Scalars} can generate a lot of code, especially in the case of
a large variant record. If the attribute is called in many places in the same
program applied to objects of the same type, it can reduce program size to
write a function with a single use of the attribute, and then call that
function from multiple places.
@node Attribute VADS_Size,Attribute Value_Size,Attribute Valid_Scalars,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-vads-size}@anchor{1c1}
@section Attribute VADS_Size
@geindex Size
@geindex VADS compatibility
@geindex VADS_Size
The @code{'VADS_Size} attribute is intended to make it easier to port
legacy code which relies on the semantics of @code{'Size} as implemented
by the VADS Ada 83 compiler. GNAT makes a best effort at duplicating the
same semantic interpretation. In particular, @code{'VADS_Size} applied
to a predefined or other primitive type with no Size clause yields the
Object_Size (for example, @code{Natural'Size} is 32 rather than 31 on
typical machines). In addition @code{'VADS_Size} applied to an object
gives the result that would be obtained by applying the attribute to
the corresponding type.
@node Attribute Value_Size,Attribute Wchar_T_Size,Attribute VADS_Size,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-value-size}@anchor{16f}@anchor{gnat_rm/implementation_defined_attributes id6}@anchor{1c2}
@section Attribute Value_Size
@geindex Size
@geindex setting for not-first subtype
@geindex Value_Size
@code{type'Value_Size} is the number of bits required to represent
a value of the given subtype. It is the same as @code{type'Size},
but, unlike @code{Size}, may be set for non-first subtypes.
@node Attribute Wchar_T_Size,Attribute Word_Size,Attribute Value_Size,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-wchar-t-size}@anchor{1c3}
@section Attribute Wchar_T_Size
@geindex Wchar_T_Size
@code{Standard'Wchar_T_Size} (@code{Standard} is the only allowed
prefix) provides the size in bits of the C @code{wchar_t} type
primarily for constructing the definition of this type in
package @code{Interfaces.C}. The result is a static constant.
@node Attribute Word_Size,,Attribute Wchar_T_Size,Implementation Defined Attributes
@anchor{gnat_rm/implementation_defined_attributes attribute-word-size}@anchor{1c4}
@section Attribute Word_Size
@geindex Word_Size
@code{Standard'Word_Size} (@code{Standard} is the only allowed
prefix) provides the value @code{System.Word_Size}. The result is
a static constant.
@node Standard and Implementation Defined Restrictions,Implementation Advice,Implementation Defined Attributes,Top
@anchor{gnat_rm/standard_and_implementation_defined_restrictions doc}@anchor{1c5}@anchor{gnat_rm/standard_and_implementation_defined_restrictions id1}@anchor{1c6}@anchor{gnat_rm/standard_and_implementation_defined_restrictions standard-and-implementation-defined-restrictions}@anchor{9}
@chapter Standard and Implementation Defined Restrictions
All Ada Reference Manual-defined Restriction identifiers are implemented:
@itemize *
@item
language-defined restrictions (see 13.12.1)
@item
tasking restrictions (see D.7)
@item
high integrity restrictions (see H.4)
@end itemize
GNAT implements additional restriction identifiers. All restrictions, whether
language defined or GNAT-specific, are listed in the following.
@menu
* Partition-Wide Restrictions::
* Program Unit Level Restrictions::
@end menu
@node Partition-Wide Restrictions,Program Unit Level Restrictions,,Standard and Implementation Defined Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions id2}@anchor{1c7}@anchor{gnat_rm/standard_and_implementation_defined_restrictions partition-wide-restrictions}@anchor{1c8}
@section Partition-Wide Restrictions
There are two separate lists of restriction identifiers. The first
set requires consistency throughout a partition (in other words, if the
restriction identifier is used for any compilation unit in the partition,
then all compilation units in the partition must obey the restriction).
@menu
* Immediate_Reclamation::
* Max_Asynchronous_Select_Nesting::
* Max_Entry_Queue_Length::
* Max_Protected_Entries::
* Max_Select_Alternatives::
* Max_Storage_At_Blocking::
* Max_Task_Entries::
* Max_Tasks::
* No_Abort_Statements::
* No_Access_Parameter_Allocators::
* No_Access_Subprograms::
* No_Allocators::
* No_Anonymous_Allocators::
* No_Asynchronous_Control::
* No_Calendar::
* No_Coextensions::
* No_Default_Initialization::
* No_Delay::
* No_Dependence::
* No_Direct_Boolean_Operators::
* No_Dispatch::
* No_Dispatching_Calls::
* No_Dynamic_Attachment::
* No_Dynamic_Priorities::
* No_Entry_Calls_In_Elaboration_Code::
* No_Enumeration_Maps::
* No_Exception_Handlers::
* No_Exception_Propagation::
* No_Exception_Registration::
* No_Exceptions::
* No_Finalization::
* No_Fixed_Point::
* No_Floating_Point::
* No_Implicit_Conditionals::
* No_Implicit_Dynamic_Code::
* No_Implicit_Heap_Allocations::
* No_Implicit_Protected_Object_Allocations::
* No_Implicit_Task_Allocations::
* No_Initialize_Scalars::
* No_IO::
* No_Local_Allocators::
* No_Local_Protected_Objects::
* No_Local_Tagged_Types::
* No_Local_Timing_Events::
* No_Long_Long_Integers::
* No_Multiple_Elaboration::
* No_Nested_Finalization::
* No_Protected_Type_Allocators::
* No_Protected_Types::
* No_Recursion::
* No_Reentrancy::
* No_Relative_Delay::
* No_Requeue_Statements::
* No_Secondary_Stack::
* No_Select_Statements::
* No_Specific_Termination_Handlers::
* No_Specification_of_Aspect::
* No_Standard_Allocators_After_Elaboration::
* No_Standard_Storage_Pools::
* No_Stream_Optimizations::
* No_Streams::
* No_Tagged_Type_Registration::
* No_Task_Allocators::
* No_Task_At_Interrupt_Priority::
* No_Task_Attributes_Package::
* No_Task_Hierarchy::
* No_Task_Termination::
* No_Tasking::
* No_Terminate_Alternatives::
* No_Unchecked_Access::
* No_Unchecked_Conversion::
* No_Unchecked_Deallocation::
* No_Use_Of_Attribute::
* No_Use_Of_Entity::
* No_Use_Of_Pragma::
* Pure_Barriers::
* Simple_Barriers::
* Static_Priorities::
* Static_Storage_Size::
@end menu
@node Immediate_Reclamation,Max_Asynchronous_Select_Nesting,,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions immediate-reclamation}@anchor{1c9}
@subsection Immediate_Reclamation
@geindex Immediate_Reclamation
[RM H.4] This restriction ensures that, except for storage occupied by
objects created by allocators and not deallocated via unchecked
deallocation, any storage reserved at run time for an object is
immediately reclaimed when the object no longer exists.
@node Max_Asynchronous_Select_Nesting,Max_Entry_Queue_Length,Immediate_Reclamation,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions max-asynchronous-select-nesting}@anchor{1ca}
@subsection Max_Asynchronous_Select_Nesting
@geindex Max_Asynchronous_Select_Nesting
[RM D.7] Specifies the maximum dynamic nesting level of asynchronous
selects. Violations of this restriction with a value of zero are
detected at compile time. Violations of this restriction with values
other than zero cause Storage_Error to be raised.
@node Max_Entry_Queue_Length,Max_Protected_Entries,Max_Asynchronous_Select_Nesting,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions max-entry-queue-length}@anchor{1cb}
@subsection Max_Entry_Queue_Length
@geindex Max_Entry_Queue_Length
[RM D.7] This restriction is a declaration that any protected entry compiled in
the scope of the restriction has at most the specified number of
tasks waiting on the entry at any one time, and so no queue is required.
Note that this restriction is checked at run time. Violation of this
restriction results in the raising of Program_Error exception at the point of
the call.
@geindex Max_Entry_Queue_Depth
The restriction @code{Max_Entry_Queue_Depth} is recognized as a
synonym for @code{Max_Entry_Queue_Length}. This is retained for historical
compatibility purposes (and a warning will be generated for its use if
warnings on obsolescent features are activated).
@node Max_Protected_Entries,Max_Select_Alternatives,Max_Entry_Queue_Length,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions max-protected-entries}@anchor{1cc}
@subsection Max_Protected_Entries
@geindex Max_Protected_Entries
[RM D.7] Specifies the maximum number of entries per protected type. The
bounds of every entry family of a protected unit shall be static, or shall be
defined by a discriminant of a subtype whose corresponding bound is static.
@node Max_Select_Alternatives,Max_Storage_At_Blocking,Max_Protected_Entries,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions max-select-alternatives}@anchor{1cd}
@subsection Max_Select_Alternatives
@geindex Max_Select_Alternatives
[RM D.7] Specifies the maximum number of alternatives in a selective accept.
@node Max_Storage_At_Blocking,Max_Task_Entries,Max_Select_Alternatives,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions max-storage-at-blocking}@anchor{1ce}
@subsection Max_Storage_At_Blocking
@geindex Max_Storage_At_Blocking
[RM D.7] Specifies the maximum portion (in storage elements) of a task’s
Storage_Size that can be retained by a blocked task. A violation of this
restriction causes Storage_Error to be raised.
@node Max_Task_Entries,Max_Tasks,Max_Storage_At_Blocking,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions max-task-entries}@anchor{1cf}
@subsection Max_Task_Entries
@geindex Max_Task_Entries
[RM D.7] Specifies the maximum number of entries
per task. The bounds of every entry family
of a task unit shall be static, or shall be
defined by a discriminant of a subtype whose
corresponding bound is static.
@node Max_Tasks,No_Abort_Statements,Max_Task_Entries,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions max-tasks}@anchor{1d0}
@subsection Max_Tasks
@geindex Max_Tasks
[RM D.7] Specifies the maximum number of task that may be created, not
counting the creation of the environment task. Violations of this
restriction with a value of zero are detected at compile
time. Violations of this restriction with values other than zero cause
Storage_Error to be raised.
@node No_Abort_Statements,No_Access_Parameter_Allocators,Max_Tasks,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-abort-statements}@anchor{1d1}
@subsection No_Abort_Statements
@geindex No_Abort_Statements
[RM D.7] There are no abort_statements, and there are
no calls to Task_Identification.Abort_Task.
@node No_Access_Parameter_Allocators,No_Access_Subprograms,No_Abort_Statements,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-access-parameter-allocators}@anchor{1d2}
@subsection No_Access_Parameter_Allocators
@geindex No_Access_Parameter_Allocators
[RM H.4] This restriction ensures at compile time that there are no
occurrences of an allocator as the actual parameter to an access
parameter.
@node No_Access_Subprograms,No_Allocators,No_Access_Parameter_Allocators,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-access-subprograms}@anchor{1d3}
@subsection No_Access_Subprograms
@geindex No_Access_Subprograms
[RM H.4] This restriction ensures at compile time that there are no
declarations of access-to-subprogram types.
@node No_Allocators,No_Anonymous_Allocators,No_Access_Subprograms,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-allocators}@anchor{1d4}
@subsection No_Allocators
@geindex No_Allocators
[RM H.4] This restriction ensures at compile time that there are no
occurrences of an allocator.
@node No_Anonymous_Allocators,No_Asynchronous_Control,No_Allocators,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-anonymous-allocators}@anchor{1d5}
@subsection No_Anonymous_Allocators
@geindex No_Anonymous_Allocators
[RM H.4] This restriction ensures at compile time that there are no
occurrences of an allocator of anonymous access type.
@node No_Asynchronous_Control,No_Calendar,No_Anonymous_Allocators,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-asynchronous-control}@anchor{1d6}
@subsection No_Asynchronous_Control
@geindex No_Asynchronous_Control
[RM J.13] This restriction ensures at compile time that there are no semantic
dependences on the predefined package Asynchronous_Task_Control.
@node No_Calendar,No_Coextensions,No_Asynchronous_Control,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-calendar}@anchor{1d7}
@subsection No_Calendar
@geindex No_Calendar
[GNAT] This restriction ensures at compile time that there are no semantic
dependences on package Calendar.
@node No_Coextensions,No_Default_Initialization,No_Calendar,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-coextensions}@anchor{1d8}
@subsection No_Coextensions
@geindex No_Coextensions
[RM H.4] This restriction ensures at compile time that there are no
coextensions. See 3.10.2.
@node No_Default_Initialization,No_Delay,No_Coextensions,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-default-initialization}@anchor{1d9}
@subsection No_Default_Initialization
@geindex No_Default_Initialization
[GNAT] This restriction prohibits any instance of default initialization
of variables or components. The binder implements a consistency check that
prevents any unit without the restriction from with’ing a unit with the
restriction (this allows the generation of initialization procedures to
be skipped, since you can be sure that no call is ever generated to an
initialization procedure in a unit with the restriction active). If used
in conjunction with Initialize_Scalars or Normalize_Scalars, the effect
is to prohibit all cases of variables declared without a specific
initializer (including the case of OUT scalar parameters).
@node No_Delay,No_Dependence,No_Default_Initialization,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-delay}@anchor{1da}
@subsection No_Delay
@geindex No_Delay
[RM H.4] This restriction ensures at compile time that there are no
delay statements and no semantic dependences on package Calendar.
@node No_Dependence,No_Direct_Boolean_Operators,No_Delay,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-dependence}@anchor{1db}
@subsection No_Dependence
@geindex No_Dependence
[RM 13.12.1] This restriction ensures at compile time that there are no
dependences on a library unit. For GNAT, this includes implicit implementation
dependences on units of the runtime library that are created by the compiler
to support specific constructs of the language. Here are some examples:
@itemize *
@item
@code{System.Arith_64}: 64-bit arithmetics for 32-bit platforms,
@item
@code{System.Arith_128}: 128-bit arithmetics for 64-bit platforms,
@item
@code{System.Memory}: heap memory allocation routines,
@item
@code{System.Memory_Compare}: memory comparison routine (aka @code{memcmp} for C),
@item
@code{System.Memory_Copy}: memory copy routine (aka @code{memcpy} for C),
@item
@code{System.Memory_Move}: memoy move routine (aka @code{memmove} for C),
@item
@code{System.Memory_Set}: memory set routine (aka @code{memset} for C),
@item
@code{System.Stack_Checking[.Operations]}: stack checking without MMU,
@item
@code{System.GCC}: support routines from the GCC library.
@end itemize
@node No_Direct_Boolean_Operators,No_Dispatch,No_Dependence,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-direct-boolean-operators}@anchor{1dc}
@subsection No_Direct_Boolean_Operators
@geindex No_Direct_Boolean_Operators
[GNAT] This restriction ensures that no logical operators (and/or/xor)
are used on operands of type Boolean (or any type derived from Boolean).
This is intended for use in safety critical programs where the certification
protocol requires the use of short-circuit (and then, or else) forms for all
composite boolean operations.
@node No_Dispatch,No_Dispatching_Calls,No_Direct_Boolean_Operators,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-dispatch}@anchor{1dd}
@subsection No_Dispatch
@geindex No_Dispatch
[RM H.4] This restriction ensures at compile time that there are no
occurrences of @code{T'Class}, for any (tagged) subtype @code{T}.
@node No_Dispatching_Calls,No_Dynamic_Attachment,No_Dispatch,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-dispatching-calls}@anchor{1de}
@subsection No_Dispatching_Calls
@geindex No_Dispatching_Calls
[GNAT] This restriction ensures at compile time that the code generated by the
compiler involves no dispatching calls. The use of this restriction allows the
safe use of record extensions, classwide membership tests and other classwide
features not involving implicit dispatching. This restriction ensures that
the code contains no indirect calls through a dispatching mechanism. Note that
this includes internally-generated calls created by the compiler, for example
in the implementation of class-wide objects assignments. The
membership test is allowed in the presence of this restriction, because its
implementation requires no dispatching.
This restriction is comparable to the official Ada restriction
@code{No_Dispatch} except that it is a bit less restrictive in that it allows
all classwide constructs that do not imply dispatching.
The following example indicates constructs that violate this restriction.
@example
package Pkg is
type T is tagged record
Data : Natural;
end record;
procedure P (X : T);
type DT is new T with record
More_Data : Natural;
end record;
procedure Q (X : DT);
end Pkg;
with Pkg; use Pkg;
procedure Example is
procedure Test (O : T'Class) is
N : Natural := O'Size; -- Error: Dispatching call
C : T'Class := O; -- Error: implicit Dispatching Call
begin
if O in DT'Class then -- OK : Membership test
Q (DT (O)); -- OK : Type conversion plus direct call
else
P (O); -- Error: Dispatching call
end if;
end Test;
Obj : DT;
begin
P (Obj); -- OK : Direct call
P (T (Obj)); -- OK : Type conversion plus direct call
P (T'Class (Obj)); -- Error: Dispatching call
Test (Obj); -- OK : Type conversion
if Obj in T'Class then -- OK : Membership test
null;
end if;
end Example;
@end example
@node No_Dynamic_Attachment,No_Dynamic_Priorities,No_Dispatching_Calls,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-dynamic-attachment}@anchor{1df}
@subsection No_Dynamic_Attachment
@geindex No_Dynamic_Attachment
[RM D.7] This restriction ensures that there is no call to any of the
operations defined in package Ada.Interrupts
(Is_Reserved, Is_Attached, Current_Handler, Attach_Handler, Exchange_Handler,
Detach_Handler, and Reference).
@geindex No_Dynamic_Interrupts
The restriction @code{No_Dynamic_Interrupts} is recognized as a
synonym for @code{No_Dynamic_Attachment}. This is retained for historical
compatibility purposes (and a warning will be generated for its use if
warnings on obsolescent features are activated).
@node No_Dynamic_Priorities,No_Entry_Calls_In_Elaboration_Code,No_Dynamic_Attachment,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-dynamic-priorities}@anchor{1e0}
@subsection No_Dynamic_Priorities
@geindex No_Dynamic_Priorities
[RM D.7] There are no semantic dependencies on the package Dynamic_Priorities.
@node No_Entry_Calls_In_Elaboration_Code,No_Enumeration_Maps,No_Dynamic_Priorities,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-entry-calls-in-elaboration-code}@anchor{1e1}
@subsection No_Entry_Calls_In_Elaboration_Code
@geindex No_Entry_Calls_In_Elaboration_Code
[GNAT] This restriction ensures at compile time that no task or protected entry
calls are made during elaboration code. As a result of the use of this
restriction, the compiler can assume that no code past an accept statement
in a task can be executed at elaboration time.
@node No_Enumeration_Maps,No_Exception_Handlers,No_Entry_Calls_In_Elaboration_Code,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-enumeration-maps}@anchor{1e2}
@subsection No_Enumeration_Maps
@geindex No_Enumeration_Maps
[GNAT] This restriction ensures at compile time that no operations requiring
enumeration maps are used (that is Image and Value attributes applied
to enumeration types).
@node No_Exception_Handlers,No_Exception_Propagation,No_Enumeration_Maps,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-exception-handlers}@anchor{1e3}
@subsection No_Exception_Handlers
@geindex No_Exception_Handlers
[GNAT] This restriction ensures at compile time that there are no explicit
exception handlers. It also indicates that no exception propagation will
be provided. In this mode, exceptions may be raised but will result in
an immediate call to the last chance handler, a routine that the user
must define with the following profile:
@example
procedure Last_Chance_Handler
(Source_Location : System.Address; Line : Integer);
pragma Export (C, Last_Chance_Handler,
"__gnat_last_chance_handler");
@end example
The parameter is a C null-terminated string representing a message to be
associated with the exception (typically the source location of the raise
statement generated by the compiler). The Line parameter when nonzero
represents the line number in the source program where the raise occurs.
@node No_Exception_Propagation,No_Exception_Registration,No_Exception_Handlers,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-exception-propagation}@anchor{1e4}
@subsection No_Exception_Propagation
@geindex No_Exception_Propagation
[GNAT] This restriction guarantees that exceptions are never propagated
to an outer subprogram scope. The only case in which an exception may
be raised is when the handler is statically in the same subprogram, so
that the effect of a raise is essentially like a goto statement. Any
other raise statement (implicit or explicit) will be considered
unhandled. Exception handlers are allowed, but may not contain an
exception occurrence identifier (exception choice). In addition, use of
the package GNAT.Current_Exception is not permitted, and reraise
statements (raise with no operand) are not permitted.
@node No_Exception_Registration,No_Exceptions,No_Exception_Propagation,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-exception-registration}@anchor{1e5}
@subsection No_Exception_Registration
@geindex No_Exception_Registration
[GNAT] This restriction ensures at compile time that no stream operations for
types Exception_Id or Exception_Occurrence are used. This also makes it
impossible to pass exceptions to or from a partition with this restriction
in a distributed environment. If this restriction is active, the generated
code is simplified by omitting the otherwise-required global registration
of exceptions when they are declared.
@node No_Exceptions,No_Finalization,No_Exception_Registration,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-exceptions}@anchor{1e6}
@subsection No_Exceptions
@geindex No_Exceptions
[RM H.4] This restriction ensures at compile time that there are no
raise statements and no exception handlers and also suppresses the
generation of language-defined run-time checks.
@node No_Finalization,No_Fixed_Point,No_Exceptions,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-finalization}@anchor{1e7}
@subsection No_Finalization
@geindex No_Finalization
[GNAT] This restriction disables the language features described in
chapter 7.6 of the Ada 2005 RM as well as all form of code generation
performed by the compiler to support these features. The following types
are no longer considered controlled when this restriction is in effect:
@itemize *
@item
@code{Ada.Finalization.Controlled}
@item
@code{Ada.Finalization.Limited_Controlled}
@item
Derivations from @code{Controlled} or @code{Limited_Controlled}
@item
Class-wide types
@item
Protected types
@item
Task types
@item
Array and record types with controlled components
@end itemize
The compiler no longer generates code to initialize, finalize or adjust an
object or a nested component, either declared on the stack or on the heap. The
deallocation of a controlled object no longer finalizes its contents.
@node No_Fixed_Point,No_Floating_Point,No_Finalization,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-fixed-point}@anchor{1e8}
@subsection No_Fixed_Point
@geindex No_Fixed_Point
[RM H.4] This restriction ensures at compile time that there are no
occurrences of fixed point types and operations.
@node No_Floating_Point,No_Implicit_Conditionals,No_Fixed_Point,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-floating-point}@anchor{1e9}
@subsection No_Floating_Point
@geindex No_Floating_Point
[RM H.4] This restriction ensures at compile time that there are no
occurrences of floating point types and operations.
@node No_Implicit_Conditionals,No_Implicit_Dynamic_Code,No_Floating_Point,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implicit-conditionals}@anchor{1ea}
@subsection No_Implicit_Conditionals
@geindex No_Implicit_Conditionals
[GNAT] This restriction ensures that the generated code does not contain any
implicit conditionals, either by modifying the generated code where possible,
or by rejecting any construct that would otherwise generate an implicit
conditional. Note that this check does not include run time constraint
checks, which on some targets may generate implicit conditionals as
well. To control the latter, constraint checks can be suppressed in the
normal manner. Constructs generating implicit conditionals include comparisons
of composite objects and the Max/Min attributes.
@node No_Implicit_Dynamic_Code,No_Implicit_Heap_Allocations,No_Implicit_Conditionals,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implicit-dynamic-code}@anchor{1eb}
@subsection No_Implicit_Dynamic_Code
@geindex No_Implicit_Dynamic_Code
@geindex trampoline
[GNAT] This restriction prevents the compiler from building ‘trampolines’.
This is a structure that is built on the stack and contains dynamic
code to be executed at run time. On some targets, a trampoline is
built for the following features: @code{Access},
@code{Unrestricted_Access}, or @code{Address} of a nested subprogram;
nested task bodies; primitive operations of nested tagged types.
Trampolines do not work on machines that prevent execution of stack
data. For example, on windows systems, enabling DEP (data execution
protection) will cause trampolines to raise an exception.
Trampolines are also quite slow at run time.
On many targets, trampolines have been largely eliminated. Look at the
version of system.ads for your target — if it has
Always_Compatible_Rep equal to False, then trampolines are largely
eliminated. In particular, a trampoline is built for the following
features: @code{Address} of a nested subprogram;
@code{Access} or @code{Unrestricted_Access} of a nested subprogram,
but only if pragma Favor_Top_Level applies, or the access type has a
foreign-language convention; primitive operations of nested tagged
types.
@node No_Implicit_Heap_Allocations,No_Implicit_Protected_Object_Allocations,No_Implicit_Dynamic_Code,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implicit-heap-allocations}@anchor{1ec}
@subsection No_Implicit_Heap_Allocations
@geindex No_Implicit_Heap_Allocations
[RM D.7] No constructs are allowed to cause implicit heap allocation.
@node No_Implicit_Protected_Object_Allocations,No_Implicit_Task_Allocations,No_Implicit_Heap_Allocations,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implicit-protected-object-allocations}@anchor{1ed}
@subsection No_Implicit_Protected_Object_Allocations
@geindex No_Implicit_Protected_Object_Allocations
[GNAT] No constructs are allowed to cause implicit heap allocation of a
protected object.
@node No_Implicit_Task_Allocations,No_Initialize_Scalars,No_Implicit_Protected_Object_Allocations,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implicit-task-allocations}@anchor{1ee}
@subsection No_Implicit_Task_Allocations
@geindex No_Implicit_Task_Allocations
[GNAT] No constructs are allowed to cause implicit heap allocation of a task.
@node No_Initialize_Scalars,No_IO,No_Implicit_Task_Allocations,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-initialize-scalars}@anchor{1ef}
@subsection No_Initialize_Scalars
@geindex No_Initialize_Scalars
[GNAT] This restriction ensures that no unit in the partition is compiled with
pragma Initialize_Scalars. This allows the generation of more efficient
code, and in particular eliminates dummy null initialization routines that
are otherwise generated for some record and array types.
@node No_IO,No_Local_Allocators,No_Initialize_Scalars,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-io}@anchor{1f0}
@subsection No_IO
@geindex No_IO
[RM H.4] This restriction ensures at compile time that there are no
dependences on any of the library units Sequential_IO, Direct_IO,
Text_IO, Wide_Text_IO, Wide_Wide_Text_IO, or Stream_IO.
@node No_Local_Allocators,No_Local_Protected_Objects,No_IO,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-local-allocators}@anchor{1f1}
@subsection No_Local_Allocators
@geindex No_Local_Allocators
[RM H.4] This restriction ensures at compile time that there are no
occurrences of an allocator in subprograms, generic subprograms, tasks,
and entry bodies.
@node No_Local_Protected_Objects,No_Local_Tagged_Types,No_Local_Allocators,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-local-protected-objects}@anchor{1f2}
@subsection No_Local_Protected_Objects
@geindex No_Local_Protected_Objects
[RM D.7] This restriction ensures at compile time that protected objects are
only declared at the library level.
@node No_Local_Tagged_Types,No_Local_Timing_Events,No_Local_Protected_Objects,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-local-tagged-types}@anchor{1f3}
@subsection No_Local_Tagged_Types
@geindex No_Local_Tagged_Types
[GNAT] This restriction ensures at compile time that tagged types are only
declared at the library level.
@node No_Local_Timing_Events,No_Long_Long_Integers,No_Local_Tagged_Types,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-local-timing-events}@anchor{1f4}
@subsection No_Local_Timing_Events
@geindex No_Local_Timing_Events
[RM D.7] All objects of type Ada.Real_Time.Timing_Events.Timing_Event are
declared at the library level.
@node No_Long_Long_Integers,No_Multiple_Elaboration,No_Local_Timing_Events,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-long-long-integers}@anchor{1f5}
@subsection No_Long_Long_Integers
@geindex No_Long_Long_Integers
[GNAT] This partition-wide restriction forbids any explicit reference to
type Standard.Long_Long_Integer, and also forbids declaring range types whose
implicit base type is Long_Long_Integer, and modular types whose size exceeds
Long_Integer’Size.
@node No_Multiple_Elaboration,No_Nested_Finalization,No_Long_Long_Integers,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-multiple-elaboration}@anchor{1f6}
@subsection No_Multiple_Elaboration
@geindex No_Multiple_Elaboration
[GNAT] When this restriction is active and the static elaboration model is
used, and -fpreserve-control-flow is not used, the compiler is allowed to
suppress the elaboration counter normally associated with the unit, even if
the unit has elaboration code. This counter is typically used to check for
access before elaboration and to control multiple elaboration attempts. If the
restriction is used, then the situations in which multiple elaboration is
possible, including non-Ada main programs and Stand Alone libraries, are not
permitted and will be diagnosed by the binder.
@node No_Nested_Finalization,No_Protected_Type_Allocators,No_Multiple_Elaboration,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-nested-finalization}@anchor{1f7}
@subsection No_Nested_Finalization
@geindex No_Nested_Finalization
[RM D.7] All objects requiring finalization are declared at the library level.
@node No_Protected_Type_Allocators,No_Protected_Types,No_Nested_Finalization,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-protected-type-allocators}@anchor{1f8}
@subsection No_Protected_Type_Allocators
@geindex No_Protected_Type_Allocators
[RM D.7] This restriction ensures at compile time that there are no allocator
expressions that attempt to allocate protected objects.
@node No_Protected_Types,No_Recursion,No_Protected_Type_Allocators,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-protected-types}@anchor{1f9}
@subsection No_Protected_Types
@geindex No_Protected_Types
[RM H.4] This restriction ensures at compile time that there are no
declarations of protected types or protected objects.
@node No_Recursion,No_Reentrancy,No_Protected_Types,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-recursion}@anchor{1fa}
@subsection No_Recursion
@geindex No_Recursion
[RM H.4] A program execution is erroneous if a subprogram is invoked as
part of its execution.
@node No_Reentrancy,No_Relative_Delay,No_Recursion,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-reentrancy}@anchor{1fb}
@subsection No_Reentrancy
@geindex No_Reentrancy
[RM H.4] A program execution is erroneous if a subprogram is executed by
two tasks at the same time.
@node No_Relative_Delay,No_Requeue_Statements,No_Reentrancy,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-relative-delay}@anchor{1fc}
@subsection No_Relative_Delay
@geindex No_Relative_Delay
[RM D.7] This restriction ensures at compile time that there are no delay
relative statements and prevents expressions such as @code{delay 1.23;} from
appearing in source code.
@node No_Requeue_Statements,No_Secondary_Stack,No_Relative_Delay,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-requeue-statements}@anchor{1fd}
@subsection No_Requeue_Statements
@geindex No_Requeue_Statements
[RM D.7] This restriction ensures at compile time that no requeue statements
are permitted and prevents keyword @code{requeue} from being used in source
code.
@geindex No_Requeue
The restriction @code{No_Requeue} is recognized as a
synonym for @code{No_Requeue_Statements}. This is retained for historical
compatibility purposes (and a warning will be generated for its use if
warnings on oNobsolescent features are activated).
@node No_Secondary_Stack,No_Select_Statements,No_Requeue_Statements,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-secondary-stack}@anchor{1fe}
@subsection No_Secondary_Stack
@geindex No_Secondary_Stack
[GNAT] This restriction ensures at compile time that the generated code
does not contain any reference to the secondary stack. The secondary
stack is used to implement functions returning unconstrained objects
(arrays or records) on some targets. Suppresses the allocation of
secondary stacks for tasks (excluding the environment task) at run time.
@node No_Select_Statements,No_Specific_Termination_Handlers,No_Secondary_Stack,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-select-statements}@anchor{1ff}
@subsection No_Select_Statements
@geindex No_Select_Statements
[RM D.7] This restriction ensures at compile time no select statements of any
kind are permitted, that is the keyword @code{select} may not appear.
@node No_Specific_Termination_Handlers,No_Specification_of_Aspect,No_Select_Statements,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-specific-termination-handlers}@anchor{200}
@subsection No_Specific_Termination_Handlers
@geindex No_Specific_Termination_Handlers
[RM D.7] There are no calls to Ada.Task_Termination.Set_Specific_Handler
or to Ada.Task_Termination.Specific_Handler.
@node No_Specification_of_Aspect,No_Standard_Allocators_After_Elaboration,No_Specific_Termination_Handlers,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-specification-of-aspect}@anchor{201}
@subsection No_Specification_of_Aspect
@geindex No_Specification_of_Aspect
[RM 13.12.1] This restriction checks at compile time that no aspect
specification, attribute definition clause, or pragma is given for a
given aspect.
@node No_Standard_Allocators_After_Elaboration,No_Standard_Storage_Pools,No_Specification_of_Aspect,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-standard-allocators-after-elaboration}@anchor{202}
@subsection No_Standard_Allocators_After_Elaboration
@geindex No_Standard_Allocators_After_Elaboration
[RM D.7] Specifies that an allocator using a standard storage pool
should never be evaluated at run time after the elaboration of the
library items of the partition has completed. Otherwise, Storage_Error
is raised.
@node No_Standard_Storage_Pools,No_Stream_Optimizations,No_Standard_Allocators_After_Elaboration,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-standard-storage-pools}@anchor{203}
@subsection No_Standard_Storage_Pools
@geindex No_Standard_Storage_Pools
[GNAT] This restriction ensures at compile time that no access types
use the standard default storage pool. Any access type declared must
have an explicit Storage_Pool attribute defined specifying a
user-defined storage pool.
@node No_Stream_Optimizations,No_Streams,No_Standard_Storage_Pools,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-stream-optimizations}@anchor{204}
@subsection No_Stream_Optimizations
@geindex No_Stream_Optimizations
[GNAT] This restriction affects the performance of stream operations on types
@code{String}, @code{Wide_String} and @code{Wide_Wide_String}. By default, the
compiler uses block reads and writes when manipulating @code{String} objects
due to their superior performance. When this restriction is in effect, the
compiler performs all IO operations on a per-character basis.
@node No_Streams,No_Tagged_Type_Registration,No_Stream_Optimizations,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-streams}@anchor{205}
@subsection No_Streams
@geindex No_Streams
[GNAT] This restriction ensures at compile/bind time that there are no
stream objects created and no use of stream attributes.
This restriction does not forbid dependences on the package
@code{Ada.Streams}. So it is permissible to with
@code{Ada.Streams} (or another package that does so itself)
as long as no actual stream objects are created and no
stream attributes are used.
Note that the use of restriction allows optimization of tagged types,
since they do not need to worry about dispatching stream operations.
To take maximum advantage of this space-saving optimization, any
unit declaring a tagged type should be compiled with the restriction,
though this is not required.
When pragmas @code{Discard_Names} and @code{Restrictions (No_Streams)} simultaneously
apply to a tagged type, its Expanded_Name and External_Tag are also initialized
with empty strings. In particular, both these pragmas can be applied as
configuration pragmas to avoid exposing entity names at binary level for the
entire partition.
@node No_Tagged_Type_Registration,No_Task_Allocators,No_Streams,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-tagged-type-registration}@anchor{206}
@subsection No_Tagged_Type_Registration
@geindex No_Tagged_Type_Registration
[GNAT] If this restriction is active, then class-wide streaming
attributes are not supported. In addition, the subprograms in
Ada.Tags are not supported.
If this restriction is active, the generated code is simplified by
omitting the otherwise-required global registration of tagged types when they
are declared. This restriction may be necessary in order to also apply
the No_Elaboration_Code restriction.
@node No_Task_Allocators,No_Task_At_Interrupt_Priority,No_Tagged_Type_Registration,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-task-allocators}@anchor{207}
@subsection No_Task_Allocators
@geindex No_Task_Allocators
[RM D.7] There are no allocators for task types
or types containing task subcomponents.
@node No_Task_At_Interrupt_Priority,No_Task_Attributes_Package,No_Task_Allocators,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-task-at-interrupt-priority}@anchor{208}
@subsection No_Task_At_Interrupt_Priority
@geindex No_Task_At_Interrupt_Priority
[GNAT] This restriction ensures at compile time that there is no
Interrupt_Priority aspect or pragma for a task or a task type. As
a consequence, the tasks are always created with a priority below
that an interrupt priority.
@node No_Task_Attributes_Package,No_Task_Hierarchy,No_Task_At_Interrupt_Priority,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-task-attributes-package}@anchor{209}
@subsection No_Task_Attributes_Package
@geindex No_Task_Attributes_Package
[GNAT] This restriction ensures at compile time that there are no implicit or
explicit dependencies on the package @code{Ada.Task_Attributes}.
@geindex No_Task_Attributes
The restriction @code{No_Task_Attributes} is recognized as a synonym
for @code{No_Task_Attributes_Package}. This is retained for historical
compatibility purposes (and a warning will be generated for its use if
warnings on obsolescent features are activated).
@node No_Task_Hierarchy,No_Task_Termination,No_Task_Attributes_Package,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-task-hierarchy}@anchor{20a}
@subsection No_Task_Hierarchy
@geindex No_Task_Hierarchy
[RM D.7] All (non-environment) tasks depend
directly on the environment task of the partition.
@node No_Task_Termination,No_Tasking,No_Task_Hierarchy,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-task-termination}@anchor{20b}
@subsection No_Task_Termination
@geindex No_Task_Termination
[RM D.7] Tasks that terminate are erroneous.
@node No_Tasking,No_Terminate_Alternatives,No_Task_Termination,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-tasking}@anchor{20c}
@subsection No_Tasking
@geindex No_Tasking
[GNAT] This restriction prevents the declaration of tasks or task types
throughout the partition. It is similar in effect to the use of
@code{Max_Tasks => 0} except that violations are caught at compile time
and cause an error message to be output either by the compiler or
binder.
@node No_Terminate_Alternatives,No_Unchecked_Access,No_Tasking,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-terminate-alternatives}@anchor{20d}
@subsection No_Terminate_Alternatives
@geindex No_Terminate_Alternatives
[RM D.7] There are no selective accepts with terminate alternatives.
@node No_Unchecked_Access,No_Unchecked_Conversion,No_Terminate_Alternatives,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-unchecked-access}@anchor{20e}
@subsection No_Unchecked_Access
@geindex No_Unchecked_Access
[RM H.4] This restriction ensures at compile time that there are no
occurrences of the Unchecked_Access attribute.
@node No_Unchecked_Conversion,No_Unchecked_Deallocation,No_Unchecked_Access,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-unchecked-conversion}@anchor{20f}
@subsection No_Unchecked_Conversion
@geindex No_Unchecked_Conversion
[RM J.13] This restriction ensures at compile time that there are no semantic
dependences on the predefined generic function Unchecked_Conversion.
@node No_Unchecked_Deallocation,No_Use_Of_Attribute,No_Unchecked_Conversion,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-unchecked-deallocation}@anchor{210}
@subsection No_Unchecked_Deallocation
@geindex No_Unchecked_Deallocation
[RM J.13] This restriction ensures at compile time that there are no semantic
dependences on the predefined generic procedure Unchecked_Deallocation.
@node No_Use_Of_Attribute,No_Use_Of_Entity,No_Unchecked_Deallocation,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-use-of-attribute}@anchor{211}
@subsection No_Use_Of_Attribute
@geindex No_Use_Of_Attribute
[RM 13.12.1] This is a standard Ada 2012 restriction that is GNAT defined in
earlier versions of Ada.
@node No_Use_Of_Entity,No_Use_Of_Pragma,No_Use_Of_Attribute,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-use-of-entity}@anchor{212}
@subsection No_Use_Of_Entity
@geindex No_Use_Of_Entity
[GNAT] This restriction ensures at compile time that there are no references
to the entity given in the form
@example
No_Use_Of_Entity => Name
@end example
where @code{Name} is the fully qualified entity, for example
@example
No_Use_Of_Entity => Ada.Text_IO.Put_Line
@end example
@node No_Use_Of_Pragma,Pure_Barriers,No_Use_Of_Entity,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-use-of-pragma}@anchor{213}
@subsection No_Use_Of_Pragma
@geindex No_Use_Of_Pragma
[RM 13.12.1] This is a standard Ada 2012 restriction that is GNAT defined in
earlier versions of Ada.
@node Pure_Barriers,Simple_Barriers,No_Use_Of_Pragma,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions pure-barriers}@anchor{214}
@subsection Pure_Barriers
@geindex Pure_Barriers
[GNAT] This restriction ensures at compile time that protected entry
barriers are restricted to:
@itemize *
@item
components of the protected object (excluding selection from dereferences),
@item
constant declarations,
@item
named numbers,
@item
enumeration literals,
@item
integer literals,
@item
real literals,
@item
character literals,
@item
implicitly defined comparison operators,
@item
uses of the Standard.”not” operator,
@item
short-circuit operator,
@item
the Count attribute
@end itemize
This restriction is a relaxation of the Simple_Barriers restriction,
but still ensures absence of side effects, exceptions, and recursion
during the evaluation of the barriers.
@node Simple_Barriers,Static_Priorities,Pure_Barriers,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions simple-barriers}@anchor{215}
@subsection Simple_Barriers
@geindex Simple_Barriers
[RM D.7] This restriction ensures at compile time that barriers in entry
declarations for protected types are restricted to either static boolean
expressions or references to simple boolean variables defined in the private
part of the protected type. No other form of entry barriers is permitted.
@geindex Boolean_Entry_Barriers
The restriction @code{Boolean_Entry_Barriers} is recognized as a
synonym for @code{Simple_Barriers}. This is retained for historical
compatibility purposes (and a warning will be generated for its use if
warnings on obsolescent features are activated).
@node Static_Priorities,Static_Storage_Size,Simple_Barriers,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions static-priorities}@anchor{216}
@subsection Static_Priorities
@geindex Static_Priorities
[GNAT] This restriction ensures at compile time that all priority expressions
are static, and that there are no dependences on the package
@code{Ada.Dynamic_Priorities}.
@node Static_Storage_Size,,Static_Priorities,Partition-Wide Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions static-storage-size}@anchor{217}
@subsection Static_Storage_Size
@geindex Static_Storage_Size
[GNAT] This restriction ensures at compile time that any expression appearing
in a Storage_Size pragma or attribute definition clause is static.
@node Program Unit Level Restrictions,,Partition-Wide Restrictions,Standard and Implementation Defined Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions id3}@anchor{218}@anchor{gnat_rm/standard_and_implementation_defined_restrictions program-unit-level-restrictions}@anchor{219}
@section Program Unit Level Restrictions
The second set of restriction identifiers
does not require partition-wide consistency.
The restriction may be enforced for a single
compilation unit without any effect on any of the
other compilation units in the partition.
@menu
* No_Elaboration_Code::
* No_Dynamic_Accessibility_Checks::
* No_Dynamic_Sized_Objects::
* No_Entry_Queue::
* No_Implementation_Aspect_Specifications::
* No_Implementation_Attributes::
* No_Implementation_Identifiers::
* No_Implementation_Pragmas::
* No_Implementation_Restrictions::
* No_Implementation_Units::
* No_Implicit_Aliasing::
* No_Implicit_Loops::
* No_Obsolescent_Features::
* No_Wide_Characters::
* Static_Dispatch_Tables::
* SPARK_05::
@end menu
@node No_Elaboration_Code,No_Dynamic_Accessibility_Checks,,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-elaboration-code}@anchor{21a}
@subsection No_Elaboration_Code
@geindex No_Elaboration_Code
[GNAT] This restriction ensures at compile time that no elaboration code is
generated. Note that this is not the same condition as is enforced
by pragma @code{Preelaborate}. There are cases in which pragma
@code{Preelaborate} still permits code to be generated (e.g., code
to initialize a large array to all zeroes), and there are cases of units
which do not meet the requirements for pragma @code{Preelaborate},
but for which no elaboration code is generated. Generally, it is
the case that preelaborable units will meet the restrictions, with
the exception of large aggregates initialized with an others_clause,
and exception declarations (which generate calls to a run-time
registry procedure). This restriction is enforced on
a unit by unit basis, it need not be obeyed consistently
throughout a partition.
In the case of aggregates with others, if the aggregate has a dynamic
size, there is no way to eliminate the elaboration code (such dynamic
bounds would be incompatible with @code{Preelaborate} in any case). If
the bounds are static, then use of this restriction actually modifies
the code choice of the compiler to avoid generating a loop, and instead
generate the aggregate statically if possible, no matter how many times
the data for the others clause must be repeatedly generated.
It is not possible to precisely document
the constructs which are compatible with this restriction, since,
unlike most other restrictions, this is not a restriction on the
source code, but a restriction on the generated object code. For
example, if the source contains a declaration:
@example
Val : constant Integer := X;
@end example
where X is not a static constant, it may be possible, depending
on complex optimization circuitry, for the compiler to figure
out the value of X at compile time, in which case this initialization
can be done by the loader, and requires no initialization code. It
is not possible to document the precise conditions under which the
optimizer can figure this out.
Note that this the implementation of this restriction requires full
code generation. If it is used in conjunction with “semantics only”
checking, then some cases of violations may be missed.
When this restriction is active, we are not requesting control-flow
preservation with -fpreserve-control-flow, and the static elaboration model is
used, the compiler is allowed to suppress the elaboration counter normally
associated with the unit. This counter is typically used to check for access
before elaboration and to control multiple elaboration attempts.
@node No_Dynamic_Accessibility_Checks,No_Dynamic_Sized_Objects,No_Elaboration_Code,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-dynamic-accessibility-checks}@anchor{21b}
@subsection No_Dynamic_Accessibility_Checks
@geindex No_Dynamic_Accessibility_Checks
[GNAT] No dynamic accessibility checks are generated when this restriction is
in effect. Instead, dangling references are prevented via more conservative
compile-time checking. More specifically, existing compile-time checks are
enforced but with more conservative assumptions about the accessibility levels
of the relevant entities. These conservative assumptions eliminate the need for
dynamic accessibility checks.
These new rules for computing (at compile-time) the accessibility level of an
anonymous access type T are as follows:
@itemize *
@item
If T is a function result type then, from the caller’s perspective, its level
is that of the innermost master enclosing the function call. From the callee’s
perspective, the level of parameters and local variables of the callee is
statically deeper than the level of T.
For any other accessibility level L such that the level of parameters and local
variables of the callee is statically deeper than L, the level of T (from the
callee’s perspective) is also statically deeper than L.
@item
If T is the type of a formal parameter then, from the caller’s perspective,
its level is at least as deep as that of the type of the corresponding actual
parameter (whatever that actual parameter might be). From the callee’s
perspective, the level of parameters and local variables of the callee is
statically deeper than the level of T.
@item
If T is the type of a discriminant then its level is that of the discriminated
type.
@item
If T is the type of a stand-alone object then its level is the level of the
object.
@item
In all other cases, the level of T is as defined by the existing rules of Ada.
@end itemize
@node No_Dynamic_Sized_Objects,No_Entry_Queue,No_Dynamic_Accessibility_Checks,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-dynamic-sized-objects}@anchor{21c}
@subsection No_Dynamic_Sized_Objects
@geindex No_Dynamic_Sized_Objects
[GNAT] This restriction disallows certain constructs that might lead to the
creation of dynamic-sized composite objects (or array or discriminated type).
An array subtype indication is illegal if the bounds are not static
or references to discriminants of an enclosing type.
A discriminated subtype indication is illegal if the type has
discriminant-dependent array components or a variant part, and the
discriminants are not static. In addition, array and record aggregates are
illegal in corresponding cases. Note that this restriction does not forbid
access discriminants. It is often a good idea to combine this restriction
with No_Secondary_Stack.
@node No_Entry_Queue,No_Implementation_Aspect_Specifications,No_Dynamic_Sized_Objects,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-entry-queue}@anchor{21d}
@subsection No_Entry_Queue
@geindex No_Entry_Queue
[GNAT] This restriction is a declaration that any protected entry compiled in
the scope of the restriction has at most one task waiting on the entry
at any one time, and so no queue is required. This restriction is not
checked at compile time. A program execution is erroneous if an attempt
is made to queue a second task on such an entry.
@node No_Implementation_Aspect_Specifications,No_Implementation_Attributes,No_Entry_Queue,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implementation-aspect-specifications}@anchor{21e}
@subsection No_Implementation_Aspect_Specifications
@geindex No_Implementation_Aspect_Specifications
[RM 13.12.1] This restriction checks at compile time that no
GNAT-defined aspects are present. With this restriction, the only
aspects that can be used are those defined in the Ada Reference Manual.
@node No_Implementation_Attributes,No_Implementation_Identifiers,No_Implementation_Aspect_Specifications,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implementation-attributes}@anchor{21f}
@subsection No_Implementation_Attributes
@geindex No_Implementation_Attributes
[RM 13.12.1] This restriction checks at compile time that no
GNAT-defined attributes are present. With this restriction, the only
attributes that can be used are those defined in the Ada Reference
Manual.
@node No_Implementation_Identifiers,No_Implementation_Pragmas,No_Implementation_Attributes,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implementation-identifiers}@anchor{220}
@subsection No_Implementation_Identifiers
@geindex No_Implementation_Identifiers
[RM 13.12.1] This restriction checks at compile time that no
implementation-defined identifiers (marked with pragma Implementation_Defined)
occur within language-defined packages.
@node No_Implementation_Pragmas,No_Implementation_Restrictions,No_Implementation_Identifiers,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implementation-pragmas}@anchor{221}
@subsection No_Implementation_Pragmas
@geindex No_Implementation_Pragmas
[RM 13.12.1] This restriction checks at compile time that no
GNAT-defined pragmas are present. With this restriction, the only
pragmas that can be used are those defined in the Ada Reference Manual.
@node No_Implementation_Restrictions,No_Implementation_Units,No_Implementation_Pragmas,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implementation-restrictions}@anchor{222}
@subsection No_Implementation_Restrictions
@geindex No_Implementation_Restrictions
[GNAT] This restriction checks at compile time that no GNAT-defined restriction
identifiers (other than @code{No_Implementation_Restrictions} itself)
are present. With this restriction, the only other restriction identifiers
that can be used are those defined in the Ada Reference Manual.
@node No_Implementation_Units,No_Implicit_Aliasing,No_Implementation_Restrictions,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implementation-units}@anchor{223}
@subsection No_Implementation_Units
@geindex No_Implementation_Units
[RM 13.12.1] This restriction checks at compile time that there is no
mention in the context clause of any implementation-defined descendants
of packages Ada, Interfaces, or System.
@node No_Implicit_Aliasing,No_Implicit_Loops,No_Implementation_Units,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implicit-aliasing}@anchor{224}
@subsection No_Implicit_Aliasing
@geindex No_Implicit_Aliasing
[GNAT] This restriction, which is not required to be partition-wide consistent,
requires an explicit aliased keyword for an object to which ‘Access,
‘Unchecked_Access, or ‘Address is applied, and forbids entirely the use of
the ‘Unrestricted_Access attribute for objects. Note: the reason that
Unrestricted_Access is forbidden is that it would require the prefix
to be aliased, and in such cases, it can always be replaced by
the standard attribute Unchecked_Access which is preferable.
@node No_Implicit_Loops,No_Obsolescent_Features,No_Implicit_Aliasing,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-implicit-loops}@anchor{225}
@subsection No_Implicit_Loops
@geindex No_Implicit_Loops
[GNAT] This restriction ensures that the generated code of the unit marked
with this restriction does not contain any implicit @code{for} loops, either by
modifying the generated code where possible, or by rejecting any construct
that would otherwise generate an implicit @code{for} loop. If this restriction is
active, it is possible to build large array aggregates with all static
components without generating an intermediate temporary, and without generating
a loop to initialize individual components. Otherwise, a loop is created for
arrays larger than about 5000 scalar components. Note that if this restriction
is set in the spec of a package, it will not apply to its body.
@node No_Obsolescent_Features,No_Wide_Characters,No_Implicit_Loops,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-obsolescent-features}@anchor{226}
@subsection No_Obsolescent_Features
@geindex No_Obsolescent_Features
[RM 13.12.1] This restriction checks at compile time that no obsolescent
features are used, as defined in Annex J of the Ada Reference Manual.
@node No_Wide_Characters,Static_Dispatch_Tables,No_Obsolescent_Features,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions no-wide-characters}@anchor{227}
@subsection No_Wide_Characters
@geindex No_Wide_Characters
[GNAT] This restriction ensures at compile time that no uses of the types
@code{Wide_Character} or @code{Wide_String} or corresponding wide
wide types
appear, and that no wide or wide wide string or character literals
appear in the program (that is literals representing characters not in
type @code{Character}).
@node Static_Dispatch_Tables,SPARK_05,No_Wide_Characters,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions static-dispatch-tables}@anchor{228}
@subsection Static_Dispatch_Tables
@geindex Static_Dispatch_Tables
[GNAT] This restriction checks at compile time that all the artifacts
associated with dispatch tables can be placed in read-only memory.
@node SPARK_05,,Static_Dispatch_Tables,Program Unit Level Restrictions
@anchor{gnat_rm/standard_and_implementation_defined_restrictions spark-05}@anchor{229}
@subsection SPARK_05
@geindex SPARK_05
[GNAT] This restriction no longer has any effect and is superseded by
SPARK 2014, whose restrictions are checked by the tool GNATprove. To check that
a codebase respects SPARK 2014 restrictions, mark the code with pragma or
aspect @code{SPARK_Mode}, and run the tool GNATprove at Stone assurance level, as
follows:
@example
gnatprove -P project.gpr --mode=stone
@end example
or equivalently:
@example
gnatprove -P project.gpr --mode=check_all
@end example
@node Implementation Advice,Implementation Defined Characteristics,Standard and Implementation Defined Restrictions,Top
@anchor{gnat_rm/implementation_advice doc}@anchor{22a}@anchor{gnat_rm/implementation_advice id1}@anchor{22b}@anchor{gnat_rm/implementation_advice implementation-advice}@anchor{a}
@chapter Implementation Advice
The main text of the Ada Reference Manual describes the required
behavior of all Ada compilers, and the GNAT compiler conforms to
these requirements.
In addition, there are sections throughout the Ada Reference Manual headed
by the phrase ‘Implementation advice’. These sections are not normative,
i.e., they do not specify requirements that all compilers must
follow. Rather they provide advice on generally desirable behavior.
They are not requirements, because they describe behavior that cannot
be provided on all systems, or may be undesirable on some systems.
As far as practical, GNAT follows the implementation advice in
the Ada Reference Manual. Each such RM section corresponds to a section
in this chapter whose title specifies the
RM section number and paragraph number and the subject of
the advice. The contents of each section consists of the RM text within
quotation marks,
followed by the GNAT interpretation of the advice. Most often, this simply says
‘followed’, which means that GNAT follows the advice. However, in a
number of cases, GNAT deliberately deviates from this advice, in which
case the text describes what GNAT does and why.
@geindex Error detection
@menu
* RM 1.1.3(20); Error Detection: RM 1 1 3 20 Error Detection.
* RM 1.1.3(31); Child Units: RM 1 1 3 31 Child Units.
* RM 1.1.5(12); Bounded Errors: RM 1 1 5 12 Bounded Errors.
* RM 2.8(16); Pragmas: RM 2 8 16 Pragmas.
* RM 2.8(17-19); Pragmas: RM 2 8 17-19 Pragmas.
* RM 3.5.2(5); Alternative Character Sets: RM 3 5 2 5 Alternative Character Sets.
* RM 3.5.4(28); Integer Types: RM 3 5 4 28 Integer Types.
* RM 3.5.4(29); Integer Types: RM 3 5 4 29 Integer Types.
* RM 3.5.5(8); Enumeration Values: RM 3 5 5 8 Enumeration Values.
* RM 3.5.7(17); Float Types: RM 3 5 7 17 Float Types.
* RM 3.6.2(11); Multidimensional Arrays: RM 3 6 2 11 Multidimensional Arrays.
* RM 9.6(30-31); Duration’Small: RM 9 6 30-31 Duration’Small.
* RM 10.2.1(12); Consistent Representation: RM 10 2 1 12 Consistent Representation.
* RM 11.4.1(19); Exception Information: RM 11 4 1 19 Exception Information.
* RM 11.5(28); Suppression of Checks: RM 11 5 28 Suppression of Checks.
* RM 13.1 (21-24); Representation Clauses: RM 13 1 21-24 Representation Clauses.
* RM 13.2(6-8); Packed Types: RM 13 2 6-8 Packed Types.
* RM 13.3(14-19); Address Clauses: RM 13 3 14-19 Address Clauses.
* RM 13.3(29-35); Alignment Clauses: RM 13 3 29-35 Alignment Clauses.
* RM 13.3(42-43); Size Clauses: RM 13 3 42-43 Size Clauses.
* RM 13.3(50-56); Size Clauses: RM 13 3 50-56 Size Clauses.
* RM 13.3(71-73); Component Size Clauses: RM 13 3 71-73 Component Size Clauses.
* RM 13.4(9-10); Enumeration Representation Clauses: RM 13 4 9-10 Enumeration Representation Clauses.
* RM 13.5.1(17-22); Record Representation Clauses: RM 13 5 1 17-22 Record Representation Clauses.
* RM 13.5.2(5); Storage Place Attributes: RM 13 5 2 5 Storage Place Attributes.
* RM 13.5.3(7-8); Bit Ordering: RM 13 5 3 7-8 Bit Ordering.
* RM 13.7(37); Address as Private: RM 13 7 37 Address as Private.
* RM 13.7.1(16); Address Operations: RM 13 7 1 16 Address Operations.
* RM 13.9(14-17); Unchecked Conversion: RM 13 9 14-17 Unchecked Conversion.
* RM 13.11(23-25); Implicit Heap Usage: RM 13 11 23-25 Implicit Heap Usage.
* RM 13.11.2(17); Unchecked Deallocation: RM 13 11 2 17 Unchecked Deallocation.
* RM 13.13.2(1.6); Stream Oriented Attributes: RM 13 13 2 1 6 Stream Oriented Attributes.
* RM A.1(52); Names of Predefined Numeric Types: RM A 1 52 Names of Predefined Numeric Types.
* RM A.3.2(49); Ada.Characters.Handling: RM A 3 2 49 Ada Characters Handling.
* RM A.4.4(106); Bounded-Length String Handling: RM A 4 4 106 Bounded-Length String Handling.
* RM A.5.2(46-47); Random Number Generation: RM A 5 2 46-47 Random Number Generation.
* RM A.10.7(23); Get_Immediate: RM A 10 7 23 Get_Immediate.
* RM A.18; Containers: RM A 18 Containers.
* RM B.1(39-41); Pragma Export: RM B 1 39-41 Pragma Export.
* RM B.2(12-13); Package Interfaces: RM B 2 12-13 Package Interfaces.
* RM B.3(63-71); Interfacing with C: RM B 3 63-71 Interfacing with C.
* RM B.4(95-98); Interfacing with COBOL: RM B 4 95-98 Interfacing with COBOL.
* RM B.5(22-26); Interfacing with Fortran: RM B 5 22-26 Interfacing with Fortran.
* RM C.1(3-5); Access to Machine Operations: RM C 1 3-5 Access to Machine Operations.
* RM C.1(10-16); Access to Machine Operations: RM C 1 10-16 Access to Machine Operations.
* RM C.3(28); Interrupt Support: RM C 3 28 Interrupt Support.
* RM C.3.1(20-21); Protected Procedure Handlers: RM C 3 1 20-21 Protected Procedure Handlers.
* RM C.3.2(25); Package Interrupts: RM C 3 2 25 Package Interrupts.
* RM C.4(14); Pre-elaboration Requirements: RM C 4 14 Pre-elaboration Requirements.
* RM C.5(8); Pragma Discard_Names: RM C 5 8 Pragma Discard_Names.
* RM C.7.2(30); The Package Task_Attributes: RM C 7 2 30 The Package Task_Attributes.
* RM D.3(17); Locking Policies: RM D 3 17 Locking Policies.
* RM D.4(16); Entry Queuing Policies: RM D 4 16 Entry Queuing Policies.
* RM D.6(9-10); Preemptive Abort: RM D 6 9-10 Preemptive Abort.
* RM D.7(21); Tasking Restrictions: RM D 7 21 Tasking Restrictions.
* RM D.8(47-49); Monotonic Time: RM D 8 47-49 Monotonic Time.
* RM E.5(28-29); Partition Communication Subsystem: RM E 5 28-29 Partition Communication Subsystem.
* RM F(7); COBOL Support: RM F 7 COBOL Support.
* RM F.1(2); Decimal Radix Support: RM F 1 2 Decimal Radix Support.
* RM G; Numerics: RM G Numerics.
* RM G.1.1(56-58); Complex Types: RM G 1 1 56-58 Complex Types.
* RM G.1.2(49); Complex Elementary Functions: RM G 1 2 49 Complex Elementary Functions.
* RM G.2.4(19); Accuracy Requirements: RM G 2 4 19 Accuracy Requirements.
* RM G.2.6(15); Complex Arithmetic Accuracy: RM G 2 6 15 Complex Arithmetic Accuracy.
* RM H.6(15/2); Pragma Partition_Elaboration_Policy: RM H 6 15/2 Pragma Partition_Elaboration_Policy.
@end menu
@node RM 1 1 3 20 Error Detection,RM 1 1 3 31 Child Units,,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-1-1-3-20-error-detection}@anchor{22c}
@section RM 1.1.3(20): Error Detection
@quotation
“If an implementation detects the use of an unsupported Specialized Needs
Annex feature at run time, it should raise @code{Program_Error} if
feasible.”
@end quotation
Not relevant. All specialized needs annex features are either supported,
or diagnosed at compile time.
@geindex Child Units
@node RM 1 1 3 31 Child Units,RM 1 1 5 12 Bounded Errors,RM 1 1 3 20 Error Detection,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-1-1-3-31-child-units}@anchor{22d}
@section RM 1.1.3(31): Child Units
@quotation
“If an implementation wishes to provide implementation-defined
extensions to the functionality of a language-defined library unit, it
should normally do so by adding children to the library unit.”
@end quotation
Followed.
@geindex Bounded errors
@node RM 1 1 5 12 Bounded Errors,RM 2 8 16 Pragmas,RM 1 1 3 31 Child Units,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-1-1-5-12-bounded-errors}@anchor{22e}
@section RM 1.1.5(12): Bounded Errors
@quotation
“If an implementation detects a bounded error or erroneous
execution, it should raise @code{Program_Error}.”
@end quotation
Followed in all cases in which the implementation detects a bounded
error or erroneous execution. Not all such situations are detected at
runtime.
@geindex Pragmas
@node RM 2 8 16 Pragmas,RM 2 8 17-19 Pragmas,RM 1 1 5 12 Bounded Errors,Implementation Advice
@anchor{gnat_rm/implementation_advice id2}@anchor{22f}@anchor{gnat_rm/implementation_advice rm-2-8-16-pragmas}@anchor{230}
@section RM 2.8(16): Pragmas
@quotation
“Normally, implementation-defined pragmas should have no semantic effect
for error-free programs; that is, if the implementation-defined pragmas
are removed from a working program, the program should still be legal,
and should still have the same semantics.”
@end quotation
The following implementation defined pragmas are exceptions to this
rule:
@multitable {xxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxx}
@headitem
Pragma
@tab
Explanation
@item
`Abort_Defer'
@tab
Affects semantics
@item
`Ada_83'
@tab
Affects legality
@item
`Assert'
@tab
Affects semantics
@item
`CPP_Class'
@tab
Affects semantics
@item
`CPP_Constructor'
@tab
Affects semantics
@item
`Debug'
@tab
Affects semantics
@item
`Interface_Name'
@tab
Affects semantics
@item
`Machine_Attribute'
@tab
Affects semantics
@item
`Unimplemented_Unit'
@tab
Affects legality
@item
`Unchecked_Union'
@tab
Affects semantics
@end multitable
In each of the above cases, it is essential to the purpose of the pragma
that this advice not be followed. For details see
@ref{7,,Implementation Defined Pragmas}.
@node RM 2 8 17-19 Pragmas,RM 3 5 2 5 Alternative Character Sets,RM 2 8 16 Pragmas,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-2-8-17-19-pragmas}@anchor{231}
@section RM 2.8(17-19): Pragmas
@quotation
“Normally, an implementation should not define pragmas that can
make an illegal program legal, except as follows:
@itemize *
@item
A pragma used to complete a declaration, such as a pragma @code{Import};
@item
A pragma used to configure the environment by adding, removing, or
replacing @code{library_items}.”
@end itemize
@end quotation
See @ref{230,,RM 2.8(16); Pragmas}.
@geindex Character Sets
@geindex Alternative Character Sets
@node RM 3 5 2 5 Alternative Character Sets,RM 3 5 4 28 Integer Types,RM 2 8 17-19 Pragmas,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-3-5-2-5-alternative-character-sets}@anchor{232}
@section RM 3.5.2(5): Alternative Character Sets
@quotation
“If an implementation supports a mode with alternative interpretations
for @code{Character} and @code{Wide_Character}, the set of graphic
characters of @code{Character} should nevertheless remain a proper
subset of the set of graphic characters of @code{Wide_Character}. Any
character set ‘localizations’ should be reflected in the results of
the subprograms defined in the language-defined package
@code{Characters.Handling} (see A.3) available in such a mode. In a mode with
an alternative interpretation of @code{Character}, the implementation should
also support a corresponding change in what is a legal
@code{identifier_letter}.”
@end quotation
Not all wide character modes follow this advice, in particular the JIS
and IEC modes reflect standard usage in Japan, and in these encoding,
the upper half of the Latin-1 set is not part of the wide-character
subset, since the most significant bit is used for wide character
encoding. However, this only applies to the external forms. Internally
there is no such restriction.
@geindex Integer types
@node RM 3 5 4 28 Integer Types,RM 3 5 4 29 Integer Types,RM 3 5 2 5 Alternative Character Sets,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-3-5-4-28-integer-types}@anchor{233}
@section RM 3.5.4(28): Integer Types
@quotation
“An implementation should support @code{Long_Integer} in addition to
@code{Integer} if the target machine supports 32-bit (or longer)
arithmetic. No other named integer subtypes are recommended for package
@code{Standard}. Instead, appropriate named integer subtypes should be
provided in the library package @code{Interfaces} (see B.2).”
@end quotation
@code{Long_Integer} is supported. Other standard integer types are supported
so this advice is not fully followed. These types
are supported for convenient interface to C, and so that all hardware
types of the machine are easily available.
@node RM 3 5 4 29 Integer Types,RM 3 5 5 8 Enumeration Values,RM 3 5 4 28 Integer Types,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-3-5-4-29-integer-types}@anchor{234}
@section RM 3.5.4(29): Integer Types
@quotation
“An implementation for a two’s complement machine should support
modular types with a binary modulus up to @code{System.Max_Int*2+2}. An
implementation should support a non-binary modules up to @code{Integer'Last}.”
@end quotation
Followed.
@geindex Enumeration values
@node RM 3 5 5 8 Enumeration Values,RM 3 5 7 17 Float Types,RM 3 5 4 29 Integer Types,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-3-5-5-8-enumeration-values}@anchor{235}
@section RM 3.5.5(8): Enumeration Values
@quotation
“For the evaluation of a call on @code{S'Pos} for an enumeration
subtype, if the value of the operand does not correspond to the internal
code for any enumeration literal of its type (perhaps due to an
un-initialized variable), then the implementation should raise
@code{Program_Error}. This is particularly important for enumeration
types with noncontiguous internal codes specified by an
enumeration_representation_clause.”
@end quotation
Followed.
@geindex Float types
@node RM 3 5 7 17 Float Types,RM 3 6 2 11 Multidimensional Arrays,RM 3 5 5 8 Enumeration Values,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-3-5-7-17-float-types}@anchor{236}
@section RM 3.5.7(17): Float Types
@quotation
“An implementation should support @code{Long_Float} in addition to
@code{Float} if the target machine supports 11 or more digits of
precision. No other named floating point subtypes are recommended for
package @code{Standard}. Instead, appropriate named floating point subtypes
should be provided in the library package @code{Interfaces} (see B.2).”
@end quotation
@code{Short_Float} and @code{Long_Long_Float} are also provided. The
former provides improved compatibility with other implementations
supporting this type. The latter corresponds to the highest precision
floating-point type supported by the hardware. On most machines, this
will be the same as @code{Long_Float}, but on some machines, it will
correspond to the IEEE extended form. The notable case is all x86
implementations, where @code{Long_Long_Float} corresponds to the 80-bit
extended precision format supported in hardware on this processor.
Note that the 128-bit format on SPARC is not supported, since this
is a software rather than a hardware format.
@geindex Multidimensional arrays
@geindex Arrays
@geindex multidimensional
@node RM 3 6 2 11 Multidimensional Arrays,RM 9 6 30-31 Duration’Small,RM 3 5 7 17 Float Types,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-3-6-2-11-multidimensional-arrays}@anchor{237}
@section RM 3.6.2(11): Multidimensional Arrays
@quotation
“An implementation should normally represent multidimensional arrays in
row-major order, consistent with the notation used for multidimensional
array aggregates (see 4.3.3). However, if a pragma @code{Convention}
(@code{Fortran}, …) applies to a multidimensional array type, then
column-major order should be used instead (see B.5, `Interfacing with Fortran').”
@end quotation
Followed.
@geindex Duration'Small
@node RM 9 6 30-31 Duration’Small,RM 10 2 1 12 Consistent Representation,RM 3 6 2 11 Multidimensional Arrays,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-9-6-30-31-duration-small}@anchor{238}
@section RM 9.6(30-31): Duration’Small
@quotation
“Whenever possible in an implementation, the value of @code{Duration'Small}
should be no greater than 100 microseconds.”
@end quotation
Followed. (@code{Duration'Small} = 10**(-9)).
@quotation
“The time base for @code{delay_relative_statements} should be monotonic;
it need not be the same time base as used for @code{Calendar.Clock}.”
@end quotation
Followed.
@node RM 10 2 1 12 Consistent Representation,RM 11 4 1 19 Exception Information,RM 9 6 30-31 Duration’Small,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-10-2-1-12-consistent-representation}@anchor{239}
@section RM 10.2.1(12): Consistent Representation
@quotation
“In an implementation, a type declared in a pre-elaborated package should
have the same representation in every elaboration of a given version of
the package, whether the elaborations occur in distinct executions of
the same program, or in executions of distinct programs or partitions
that include the given version.”
@end quotation
Followed, except in the case of tagged types. Tagged types involve
implicit pointers to a local copy of a dispatch table, and these pointers
have representations which thus depend on a particular elaboration of the
package. It is not easy to see how it would be possible to follow this
advice without severely impacting efficiency of execution.
@geindex Exception information
@node RM 11 4 1 19 Exception Information,RM 11 5 28 Suppression of Checks,RM 10 2 1 12 Consistent Representation,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-11-4-1-19-exception-information}@anchor{23a}
@section RM 11.4.1(19): Exception Information
@quotation
“@code{Exception_Message} by default and @code{Exception_Information}
should produce information useful for
debugging. @code{Exception_Message} should be short, about one
line. @code{Exception_Information} can be long. @code{Exception_Message}
should not include the
@code{Exception_Name}. @code{Exception_Information} should include both
the @code{Exception_Name} and the @code{Exception_Message}.”
@end quotation
Followed. For each exception that doesn’t have a specified
@code{Exception_Message}, the compiler generates one containing the location
of the raise statement. This location has the form ‘file_name:line’, where
file_name is the short file name (without path information) and line is the line
number in the file. Note that in the case of the Zero Cost Exception
mechanism, these messages become redundant with the Exception_Information that
contains a full backtrace of the calling sequence, so they are disabled.
To disable explicitly the generation of the source location message, use the
Pragma @code{Discard_Names}.
@geindex Suppression of checks
@geindex Checks
@geindex suppression of
@node RM 11 5 28 Suppression of Checks,RM 13 1 21-24 Representation Clauses,RM 11 4 1 19 Exception Information,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-11-5-28-suppression-of-checks}@anchor{23b}
@section RM 11.5(28): Suppression of Checks
@quotation
“The implementation should minimize the code executed for checks that
have been suppressed.”
@end quotation
Followed.
@geindex Representation clauses
@node RM 13 1 21-24 Representation Clauses,RM 13 2 6-8 Packed Types,RM 11 5 28 Suppression of Checks,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-1-21-24-representation-clauses}@anchor{23c}
@section RM 13.1 (21-24): Representation Clauses
@quotation
“The recommended level of support for all representation items is
qualified as follows:
An implementation need not support representation items containing
nonstatic expressions, except that an implementation should support a
representation item for a given entity if each nonstatic expression in
the representation item is a name that statically denotes a constant
declared before the entity.”
@end quotation
Followed. In fact, GNAT goes beyond the recommended level of support
by allowing nonstatic expressions in some representation clauses even
without the need to declare constants initialized with the values of
such expressions. For example:
@example
X : Integer;
Y : Float;
for Y'Address use X'Address;
@end example
is accepted directly by GNAT.
@quotation
“An implementation need not support a specification for the @code{Size}
for a given composite subtype, nor the size or storage place for an
object (including a component) of a given composite subtype, unless the
constraints on the subtype and its composite subcomponents (if any) are
all static constraints.”
@end quotation
Followed. Size Clauses are not permitted on nonstatic components, as
described above.
@quotation
“An aliased component, or a component whose type is by-reference, should
always be allocated at an addressable location.”
@end quotation
Followed.
@geindex Packed types
@node RM 13 2 6-8 Packed Types,RM 13 3 14-19 Address Clauses,RM 13 1 21-24 Representation Clauses,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-2-6-8-packed-types}@anchor{23d}
@section RM 13.2(6-8): Packed Types
@quotation
“If a type is packed, then the implementation should try to minimize
storage allocated to objects of the type, possibly at the expense of
speed of accessing components, subject to reasonable complexity in
addressing calculations.
The recommended level of support pragma @code{Pack} is:
For a packed record type, the components should be packed as tightly as
possible subject to the Sizes of the component subtypes, and subject to
any `record_representation_clause' that applies to the type; the
implementation may, but need not, reorder components or cross aligned
word boundaries to improve the packing. A component whose @code{Size} is
greater than the word size may be allocated an integral number of words.”
@end quotation
Followed. Tight packing of arrays is supported for all component sizes
up to 64-bits. If the array component size is 1 (that is to say, if
the component is a boolean type or an enumeration type with two values)
then values of the type are implicitly initialized to zero. This
happens both for objects of the packed type, and for objects that have a
subcomponent of the packed type.
@geindex Address clauses
@node RM 13 3 14-19 Address Clauses,RM 13 3 29-35 Alignment Clauses,RM 13 2 6-8 Packed Types,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-3-14-19-address-clauses}@anchor{23e}
@section RM 13.3(14-19): Address Clauses
@quotation
“For an array @code{X}, @code{X'Address} should point at the first
component of the array, and not at the array bounds.”
@end quotation
Followed.
@quotation
“The recommended level of support for the @code{Address} attribute is:
@code{X'Address} should produce a useful result if @code{X} is an
object that is aliased or of a by-reference type, or is an entity whose
@code{Address} has been specified.”
@end quotation
Followed. A valid address will be produced even if none of those
conditions have been met. If necessary, the object is forced into
memory to ensure the address is valid.
@quotation
“An implementation should support @code{Address} clauses for imported
subprograms.”
@end quotation
Followed.
@quotation
“Objects (including subcomponents) that are aliased or of a by-reference
type should be allocated on storage element boundaries.”
@end quotation
Followed.
@quotation
“If the @code{Address} of an object is specified, or it is imported or exported,
then the implementation should not perform optimizations based on
assumptions of no aliases.”
@end quotation
Followed.
@geindex Alignment clauses
@node RM 13 3 29-35 Alignment Clauses,RM 13 3 42-43 Size Clauses,RM 13 3 14-19 Address Clauses,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-3-29-35-alignment-clauses}@anchor{23f}
@section RM 13.3(29-35): Alignment Clauses
@quotation
“The recommended level of support for the @code{Alignment} attribute for
subtypes is:
An implementation should support specified Alignments that are factors
and multiples of the number of storage elements per word, subject to the
following:”
@end quotation
Followed.
@quotation
“An implementation need not support specified Alignments for
combinations of Sizes and Alignments that cannot be easily
loaded and stored by available machine instructions.”
@end quotation
Followed.
@quotation
“An implementation need not support specified Alignments that are
greater than the maximum @code{Alignment} the implementation ever returns by
default.”
@end quotation
Followed.
@quotation
“The recommended level of support for the @code{Alignment} attribute for
objects is:
Same as above, for subtypes, but in addition:”
@end quotation
Followed.
@quotation
“For stand-alone library-level objects of statically constrained
subtypes, the implementation should support all alignments
supported by the target linker. For example, page alignment is likely to
be supported for such objects, but not for subtypes.”
@end quotation
Followed.
@geindex Size clauses
@node RM 13 3 42-43 Size Clauses,RM 13 3 50-56 Size Clauses,RM 13 3 29-35 Alignment Clauses,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-3-42-43-size-clauses}@anchor{240}
@section RM 13.3(42-43): Size Clauses
@quotation
“The recommended level of support for the @code{Size} attribute of
objects is:
A @code{Size} clause should be supported for an object if the specified
@code{Size} is at least as large as its subtype’s @code{Size}, and
corresponds to a size in storage elements that is a multiple of the
object’s @code{Alignment} (if the @code{Alignment} is nonzero).”
@end quotation
Followed.
@node RM 13 3 50-56 Size Clauses,RM 13 3 71-73 Component Size Clauses,RM 13 3 42-43 Size Clauses,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-3-50-56-size-clauses}@anchor{241}
@section RM 13.3(50-56): Size Clauses
@quotation
“If the @code{Size} of a subtype is specified, and allows for efficient
independent addressability (see 9.10) on the target architecture, then
the @code{Size} of the following objects of the subtype should equal the
@code{Size} of the subtype:
Aliased objects (including components).”
@end quotation
Followed.
@quotation
“@cite{Size} clause on a composite subtype should not affect the
internal layout of components.”
@end quotation
Followed. But note that this can be overridden by use of the implementation
pragma Implicit_Packing in the case of packed arrays.
@quotation
“The recommended level of support for the @code{Size} attribute of subtypes is:
The @code{Size} (if not specified) of a static discrete or fixed point
subtype should be the number of bits needed to represent each value
belonging to the subtype using an unbiased representation, leaving space
for a sign bit only if the subtype contains negative values. If such a
subtype is a first subtype, then an implementation should support a
specified @code{Size} for it that reflects this representation.”
@end quotation
Followed.
@quotation
“For a subtype implemented with levels of indirection, the @code{Size}
should include the size of the pointers, but not the size of what they
point at.”
@end quotation
Followed.
@geindex Component_Size clauses
@node RM 13 3 71-73 Component Size Clauses,RM 13 4 9-10 Enumeration Representation Clauses,RM 13 3 50-56 Size Clauses,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-3-71-73-component-size-clauses}@anchor{242}
@section RM 13.3(71-73): Component Size Clauses
@quotation
“The recommended level of support for the @code{Component_Size}
attribute is:
An implementation need not support specified @code{Component_Sizes} that are
less than the @code{Size} of the component subtype.”
@end quotation
Followed.
@quotation
“An implementation should support specified Component_Sizes that
are factors and multiples of the word size. For such
Component_Sizes, the array should contain no gaps between
components. For other Component_Sizes (if supported), the array
should contain no gaps between components when packing is also
specified; the implementation should forbid this combination in cases
where it cannot support a no-gaps representation.”
@end quotation
Followed.
@geindex Enumeration representation clauses
@geindex Representation clauses
@geindex enumeration
@node RM 13 4 9-10 Enumeration Representation Clauses,RM 13 5 1 17-22 Record Representation Clauses,RM 13 3 71-73 Component Size Clauses,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-4-9-10-enumeration-representation-clauses}@anchor{243}
@section RM 13.4(9-10): Enumeration Representation Clauses
@quotation
“The recommended level of support for enumeration representation clauses
is:
An implementation need not support enumeration representation clauses
for boolean types, but should at minimum support the internal codes in
the range @code{System.Min_Int .. System.Max_Int}.”
@end quotation
Followed.
@geindex Record representation clauses
@geindex Representation clauses
@geindex records
@node RM 13 5 1 17-22 Record Representation Clauses,RM 13 5 2 5 Storage Place Attributes,RM 13 4 9-10 Enumeration Representation Clauses,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-5-1-17-22-record-representation-clauses}@anchor{244}
@section RM 13.5.1(17-22): Record Representation Clauses
@quotation
“The recommended level of support for
`record_representation_clause's is:
An implementation should support storage places that can be extracted
with a load, mask, shift sequence of machine code, and set with a load,
shift, mask, store sequence, given the available machine instructions
and run-time model.”
@end quotation
Followed.
@quotation
“A storage place should be supported if its size is equal to the
@code{Size} of the component subtype, and it starts and ends on a
boundary that obeys the @code{Alignment} of the component subtype.”
@end quotation
Followed.
@quotation
“If the default bit ordering applies to the declaration of a given type,
then for a component whose subtype’s @code{Size} is less than the word
size, any storage place that does not cross an aligned word boundary
should be supported.”
@end quotation
Followed.
@quotation
“An implementation may reserve a storage place for the tag field of a
tagged type, and disallow other components from overlapping that place.”
@end quotation
Followed. The storage place for the tag field is the beginning of the tagged
record, and its size is Address’Size. GNAT will reject an explicit component
clause for the tag field.
@quotation
“An implementation need not support a `component_clause' for a
component of an extension part if the storage place is not after the
storage places of all components of the parent type, whether or not
those storage places had been specified.”
@end quotation
Followed. The above advice on record representation clauses is followed,
and all mentioned features are implemented.
@geindex Storage place attributes
@node RM 13 5 2 5 Storage Place Attributes,RM 13 5 3 7-8 Bit Ordering,RM 13 5 1 17-22 Record Representation Clauses,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-5-2-5-storage-place-attributes}@anchor{245}
@section RM 13.5.2(5): Storage Place Attributes
@quotation
“If a component is represented using some form of pointer (such as an
offset) to the actual data of the component, and this data is contiguous
with the rest of the object, then the storage place attributes should
reflect the place of the actual data, not the pointer. If a component is
allocated discontinuously from the rest of the object, then a warning
should be generated upon reference to one of its storage place
attributes.”
@end quotation
Followed. There are no such components in GNAT.
@geindex Bit ordering
@node RM 13 5 3 7-8 Bit Ordering,RM 13 7 37 Address as Private,RM 13 5 2 5 Storage Place Attributes,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-5-3-7-8-bit-ordering}@anchor{246}
@section RM 13.5.3(7-8): Bit Ordering
@quotation
“The recommended level of support for the non-default bit ordering is:
The implementation should support the nondefault bit ordering in addition
to the default bit ordering.”
@end quotation
Followed.
@geindex Address
@geindex as private type
@node RM 13 7 37 Address as Private,RM 13 7 1 16 Address Operations,RM 13 5 3 7-8 Bit Ordering,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-7-37-address-as-private}@anchor{247}
@section RM 13.7(37): Address as Private
@quotation
“@cite{Address} should be of a private type.”
@end quotation
Followed.
@geindex Operations
@geindex on `@w{`}Address`@w{`}
@geindex Address
@geindex operations of
@node RM 13 7 1 16 Address Operations,RM 13 9 14-17 Unchecked Conversion,RM 13 7 37 Address as Private,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-7-1-16-address-operations}@anchor{248}
@section RM 13.7.1(16): Address Operations
@quotation
“Operations in @code{System} and its children should reflect the target
environment semantics as closely as is reasonable. For example, on most
machines, it makes sense for address arithmetic to ‘wrap around’.
Operations that do not make sense should raise @code{Program_Error}.”
@end quotation
Followed. Address arithmetic is modular arithmetic that wraps around. No
operation raises @code{Program_Error}, since all operations make sense.
@geindex Unchecked conversion
@node RM 13 9 14-17 Unchecked Conversion,RM 13 11 23-25 Implicit Heap Usage,RM 13 7 1 16 Address Operations,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-9-14-17-unchecked-conversion}@anchor{249}
@section RM 13.9(14-17): Unchecked Conversion
@quotation
“The @code{Size} of an array object should not include its bounds; hence,
the bounds should not be part of the converted data.”
@end quotation
Followed.
@quotation
“The implementation should not generate unnecessary run-time checks to
ensure that the representation of @code{S} is a representation of the
target type. It should take advantage of the permission to return by
reference when possible. Restrictions on unchecked conversions should be
avoided unless required by the target environment.”
@end quotation
Followed. There are no restrictions on unchecked conversion. A warning is
generated if the source and target types do not have the same size since
the semantics in this case may be target dependent.
@quotation
“The recommended level of support for unchecked conversions is:
Unchecked conversions should be supported and should be reversible in
the cases where this clause defines the result. To enable meaningful use
of unchecked conversion, a contiguous representation should be used for
elementary subtypes, for statically constrained array subtypes whose
component subtype is one of the subtypes described in this paragraph,
and for record subtypes without discriminants whose component subtypes
are described in this paragraph.”
@end quotation
Followed.
@geindex Heap usage
@geindex implicit
@node RM 13 11 23-25 Implicit Heap Usage,RM 13 11 2 17 Unchecked Deallocation,RM 13 9 14-17 Unchecked Conversion,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-11-23-25-implicit-heap-usage}@anchor{24a}
@section RM 13.11(23-25): Implicit Heap Usage
@quotation
“An implementation should document any cases in which it dynamically
allocates heap storage for a purpose other than the evaluation of an
allocator.”
@end quotation
Followed, the only other points at which heap storage is dynamically
allocated are as follows:
@itemize *
@item
At initial elaboration time, to allocate dynamically sized global
objects.
@item
To allocate space for a task when a task is created.
@item
To extend the secondary stack dynamically when needed. The secondary
stack is used for returning variable length results.
@end itemize
@quotation
“A default (implementation-provided) storage pool for an
access-to-constant type should not have overhead to support deallocation of
individual objects.”
@end quotation
Followed.
@quotation
“A storage pool for an anonymous access type should be created at the
point of an allocator for the type, and be reclaimed when the designated
object becomes inaccessible.”
@end quotation
Followed.
@geindex Unchecked deallocation
@node RM 13 11 2 17 Unchecked Deallocation,RM 13 13 2 1 6 Stream Oriented Attributes,RM 13 11 23-25 Implicit Heap Usage,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-11-2-17-unchecked-deallocation}@anchor{24b}
@section RM 13.11.2(17): Unchecked Deallocation
@quotation
“For a standard storage pool, @code{Free} should actually reclaim the
storage.”
@end quotation
Followed.
@geindex Stream oriented attributes
@node RM 13 13 2 1 6 Stream Oriented Attributes,RM A 1 52 Names of Predefined Numeric Types,RM 13 11 2 17 Unchecked Deallocation,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-13-13-2-1-6-stream-oriented-attributes}@anchor{24c}
@section RM 13.13.2(1.6): Stream Oriented Attributes
@quotation
“If not specified, the value of Stream_Size for an elementary type
should be the number of bits that corresponds to the minimum number of
stream elements required by the first subtype of the type, rounded up
to the nearest factor or multiple of the word size that is also a
multiple of the stream element size.”
@end quotation
Followed, except that the number of stream elements is 1, 2, 3, 4 or 8.
The Stream_Size may be used to override the default choice.
The default implementation is based on direct binary representations and is
therefore target- and endianness-dependent. To address this issue, GNAT also
supplies an alternate implementation of the stream attributes @code{Read} and
@code{Write}, which uses the target-independent XDR standard representation for
scalar types. This XDR alternative can be enabled via the binder switch -xdr.
@geindex XDR representation
@geindex Read attribute
@geindex Write attribute
@geindex Stream oriented attributes
@node RM A 1 52 Names of Predefined Numeric Types,RM A 3 2 49 Ada Characters Handling,RM 13 13 2 1 6 Stream Oriented Attributes,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-a-1-52-names-of-predefined-numeric-types}@anchor{24d}
@section RM A.1(52): Names of Predefined Numeric Types
@quotation
“If an implementation provides additional named predefined integer types,
then the names should end with @code{Integer} as in
@code{Long_Integer}. If an implementation provides additional named
predefined floating point types, then the names should end with
@code{Float} as in @code{Long_Float}.”
@end quotation
Followed.
@geindex Ada.Characters.Handling
@node RM A 3 2 49 Ada Characters Handling,RM A 4 4 106 Bounded-Length String Handling,RM A 1 52 Names of Predefined Numeric Types,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-a-3-2-49-ada-characters-handling}@anchor{24e}
@section RM A.3.2(49): @code{Ada.Characters.Handling}
@quotation
“If an implementation provides a localized definition of @code{Character}
or @code{Wide_Character}, then the effects of the subprograms in
@code{Characters.Handling} should reflect the localizations.
See also 3.5.2.”
@end quotation
Followed. GNAT provides no such localized definitions.
@geindex Bounded-length strings
@node RM A 4 4 106 Bounded-Length String Handling,RM A 5 2 46-47 Random Number Generation,RM A 3 2 49 Ada Characters Handling,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-a-4-4-106-bounded-length-string-handling}@anchor{24f}
@section RM A.4.4(106): Bounded-Length String Handling
@quotation
“Bounded string objects should not be implemented by implicit pointers
and dynamic allocation.”
@end quotation
Followed. No implicit pointers or dynamic allocation are used.
@geindex Random number generation
@node RM A 5 2 46-47 Random Number Generation,RM A 10 7 23 Get_Immediate,RM A 4 4 106 Bounded-Length String Handling,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-a-5-2-46-47-random-number-generation}@anchor{250}
@section RM A.5.2(46-47): Random Number Generation
@quotation
“Any storage associated with an object of type @code{Generator} should be
reclaimed on exit from the scope of the object.”
@end quotation
Followed.
@quotation
“If the generator period is sufficiently long in relation to the number
of distinct initiator values, then each possible value of
@code{Initiator} passed to @code{Reset} should initiate a sequence of
random numbers that does not, in a practical sense, overlap the sequence
initiated by any other value. If this is not possible, then the mapping
between initiator values and generator states should be a rapidly
varying function of the initiator value.”
@end quotation
Followed. The generator period is sufficiently long for the first
condition here to hold true.
@geindex Get_Immediate
@node RM A 10 7 23 Get_Immediate,RM A 18 Containers,RM A 5 2 46-47 Random Number Generation,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-a-10-7-23-get-immediate}@anchor{251}
@section RM A.10.7(23): @code{Get_Immediate}
@quotation
“The @code{Get_Immediate} procedures should be implemented with
unbuffered input. For a device such as a keyboard, input should be
available if a key has already been typed, whereas for a disk
file, input should always be available except at end of file. For a file
associated with a keyboard-like device, any line-editing features of the
underlying operating system should be disabled during the execution of
@code{Get_Immediate}.”
@end quotation
Followed on all targets except VxWorks. For VxWorks, there is no way to
provide this functionality that does not result in the input buffer being
flushed before the @code{Get_Immediate} call. A special unit
@code{Interfaces.Vxworks.IO} is provided that contains routines to enable
this functionality.
@geindex Containers
@node RM A 18 Containers,RM B 1 39-41 Pragma Export,RM A 10 7 23 Get_Immediate,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-a-18-containers}@anchor{252}
@section RM A.18: @code{Containers}
All implementation advice pertaining to Ada.Containers and its
child units (that is, all implementation advice occurring within
section A.18 and its subsections) is followed except for A.18.24(17):
@quotation
“Bounded ordered set objects should be implemented without implicit pointers or dynamic allocation. “
@end quotation
The implementations of the two Reference_Preserving_Key functions of
the generic package Ada.Containers.Bounded_Ordered_Sets each currently make
use of dynamic allocation; other operations on bounded ordered set objects
follow the implementation advice.
@geindex Export
@node RM B 1 39-41 Pragma Export,RM B 2 12-13 Package Interfaces,RM A 18 Containers,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-b-1-39-41-pragma-export}@anchor{253}
@section RM B.1(39-41): Pragma @code{Export}
@quotation
“If an implementation supports pragma @code{Export} to a given language,
then it should also allow the main subprogram to be written in that
language. It should support some mechanism for invoking the elaboration
of the Ada library units included in the system, and for invoking the
finalization of the environment task. On typical systems, the
recommended mechanism is to provide two subprograms whose link names are
@code{adainit} and @code{adafinal}. @code{adainit} should contain the
elaboration code for library units. @code{adafinal} should contain the
finalization code. These subprograms should have no effect the second
and subsequent time they are called.”
@end quotation
Followed.
@quotation
“Automatic elaboration of pre-elaborated packages should be
provided when pragma @code{Export} is supported.”
@end quotation
Followed when the main program is in Ada. If the main program is in a
foreign language, then
@code{adainit} must be called to elaborate pre-elaborated
packages.
@quotation
“For each supported convention `L' other than @code{Intrinsic}, an
implementation should support @code{Import} and @code{Export} pragmas
for objects of `L'-compatible types and for subprograms, and pragma
@cite{Convention} for `L'-eligible types and for subprograms,
presuming the other language has corresponding features. Pragma
@code{Convention} need not be supported for scalar types.”
@end quotation
Followed.
@geindex Package Interfaces
@geindex Interfaces
@node RM B 2 12-13 Package Interfaces,RM B 3 63-71 Interfacing with C,RM B 1 39-41 Pragma Export,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-b-2-12-13-package-interfaces}@anchor{254}
@section RM B.2(12-13): Package @code{Interfaces}
@quotation
“For each implementation-defined convention identifier, there should be a
child package of package Interfaces with the corresponding name. This
package should contain any declarations that would be useful for
interfacing to the language (implementation) represented by the
convention. Any declarations useful for interfacing to any language on
the given hardware architecture should be provided directly in
@code{Interfaces}.”
@end quotation
Followed.
@quotation
“An implementation supporting an interface to C, COBOL, or Fortran should
provide the corresponding package or packages described in the following
clauses.”
@end quotation
Followed. GNAT provides all the packages described in this section.
@geindex C
@geindex interfacing with
@node RM B 3 63-71 Interfacing with C,RM B 4 95-98 Interfacing with COBOL,RM B 2 12-13 Package Interfaces,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-b-3-63-71-interfacing-with-c}@anchor{255}
@section RM B.3(63-71): Interfacing with C
@quotation
“An implementation should support the following interface correspondences
between Ada and C.”
@end quotation
Followed.
@quotation
“An Ada procedure corresponds to a void-returning C function.”
@end quotation
Followed.
@quotation
“An Ada function corresponds to a non-void C function.”
@end quotation
Followed.
@quotation
“An Ada @code{in} scalar parameter is passed as a scalar argument to a C
function.”
@end quotation
Followed.
@quotation
“An Ada @code{in} parameter of an access-to-object type with designated
type @code{T} is passed as a @code{t*} argument to a C function,
where @code{t} is the C type corresponding to the Ada type @code{T}.”
@end quotation
Followed.
@quotation
“An Ada access @code{T} parameter, or an Ada @code{out} or @code{in out}
parameter of an elementary type @code{T}, is passed as a @code{t*}
argument to a C function, where @code{t} is the C type corresponding to
the Ada type @code{T}. In the case of an elementary @code{out} or
@code{in out} parameter, a pointer to a temporary copy is used to
preserve by-copy semantics.”
@end quotation
Followed.
@quotation
“An Ada parameter of a record type @code{T}, of any mode, is passed as a
@code{t*} argument to a C function, where @code{t} is the C
structure corresponding to the Ada type @code{T}.”
@end quotation
Followed. This convention may be overridden by the use of the C_Pass_By_Copy
pragma, or Convention, or by explicitly specifying the mechanism for a given
call using an extended import or export pragma.
@quotation
“An Ada parameter of an array type with component type @code{T}, of any
mode, is passed as a @code{t*} argument to a C function, where
@code{t} is the C type corresponding to the Ada type @code{T}.”
@end quotation
Followed.
@quotation
“An Ada parameter of an access-to-subprogram type is passed as a pointer
to a C function whose prototype corresponds to the designated
subprogram’s specification.”
@end quotation
Followed.
@geindex COBOL
@geindex interfacing with
@node RM B 4 95-98 Interfacing with COBOL,RM B 5 22-26 Interfacing with Fortran,RM B 3 63-71 Interfacing with C,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-b-4-95-98-interfacing-with-cobol}@anchor{256}
@section RM B.4(95-98): Interfacing with COBOL
@quotation
“An Ada implementation should support the following interface
correspondences between Ada and COBOL.”
@end quotation
Followed.
@quotation
“An Ada access @code{T} parameter is passed as a @code{BY REFERENCE} data item of
the COBOL type corresponding to @code{T}.”
@end quotation
Followed.
@quotation
“An Ada in scalar parameter is passed as a @code{BY CONTENT} data item of
the corresponding COBOL type.”
@end quotation
Followed.
@quotation
“Any other Ada parameter is passed as a @code{BY REFERENCE} data item of the
COBOL type corresponding to the Ada parameter type; for scalars, a local
copy is used if necessary to ensure by-copy semantics.”
@end quotation
Followed.
@geindex Fortran
@geindex interfacing with
@node RM B 5 22-26 Interfacing with Fortran,RM C 1 3-5 Access to Machine Operations,RM B 4 95-98 Interfacing with COBOL,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-b-5-22-26-interfacing-with-fortran}@anchor{257}
@section RM B.5(22-26): Interfacing with Fortran
@quotation
“An Ada implementation should support the following interface
correspondences between Ada and Fortran:”
@end quotation
Followed.
@quotation
“An Ada procedure corresponds to a Fortran subroutine.”
@end quotation
Followed.
@quotation
“An Ada function corresponds to a Fortran function.”
@end quotation
Followed.
@quotation
“An Ada parameter of an elementary, array, or record type @code{T} is
passed as a @code{T} argument to a Fortran procedure, where @code{T} is
the Fortran type corresponding to the Ada type @code{T}, and where the
INTENT attribute of the corresponding dummy argument matches the Ada
formal parameter mode; the Fortran implementation’s parameter passing
conventions are used. For elementary types, a local copy is used if
necessary to ensure by-copy semantics.”
@end quotation
Followed.
@quotation
“An Ada parameter of an access-to-subprogram type is passed as a
reference to a Fortran procedure whose interface corresponds to the
designated subprogram’s specification.”
@end quotation
Followed.
@geindex Machine operations
@node RM C 1 3-5 Access to Machine Operations,RM C 1 10-16 Access to Machine Operations,RM B 5 22-26 Interfacing with Fortran,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-c-1-3-5-access-to-machine-operations}@anchor{258}
@section RM C.1(3-5): Access to Machine Operations
@quotation
“The machine code or intrinsic support should allow access to all
operations normally available to assembly language programmers for the
target environment, including privileged instructions, if any.”
@end quotation
Followed.
@quotation
“The interfacing pragmas (see Annex B) should support interface to
assembler; the default assembler should be associated with the
convention identifier @code{Assembler}.”
@end quotation
Followed.
@quotation
“If an entity is exported to assembly language, then the implementation
should allocate it at an addressable location, and should ensure that it
is retained by the linking process, even if not otherwise referenced
from the Ada code. The implementation should assume that any call to a
machine code or assembler subprogram is allowed to read or update every
object that is specified as exported.”
@end quotation
Followed.
@node RM C 1 10-16 Access to Machine Operations,RM C 3 28 Interrupt Support,RM C 1 3-5 Access to Machine Operations,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-c-1-10-16-access-to-machine-operations}@anchor{259}
@section RM C.1(10-16): Access to Machine Operations
@quotation
“The implementation should ensure that little or no overhead is
associated with calling intrinsic and machine-code subprograms.”
@end quotation
Followed for both intrinsics and machine-code subprograms.
@quotation
“It is recommended that intrinsic subprograms be provided for convenient
access to any machine operations that provide special capabilities or
efficiency and that are not otherwise available through the language
constructs.”
@end quotation
Followed. A full set of machine operation intrinsic subprograms is provided.
@quotation
“Atomic read-modify-write operations—e.g., test and set, compare and
swap, decrement and test, enqueue/dequeue.”
@end quotation
Followed on any target supporting such operations.
@quotation
“Standard numeric functions—e.g.:, sin, log.”
@end quotation
Followed on any target supporting such operations.
@quotation
“String manipulation operations—e.g.:, translate and test.”
@end quotation
Followed on any target supporting such operations.
@quotation
“Vector operations—e.g.:, compare vector against thresholds.”
@end quotation
Followed on any target supporting such operations.
@quotation
“Direct operations on I/O ports.”
@end quotation
Followed on any target supporting such operations.
@geindex Interrupt support
@node RM C 3 28 Interrupt Support,RM C 3 1 20-21 Protected Procedure Handlers,RM C 1 10-16 Access to Machine Operations,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-c-3-28-interrupt-support}@anchor{25a}
@section RM C.3(28): Interrupt Support
@quotation
“If the @code{Ceiling_Locking} policy is not in effect, the
implementation should provide means for the application to specify which
interrupts are to be blocked during protected actions, if the underlying
system allows for a finer-grain control of interrupt blocking.”
@end quotation
Followed. The underlying system does not allow for finer-grain control
of interrupt blocking.
@geindex Protected procedure handlers
@node RM C 3 1 20-21 Protected Procedure Handlers,RM C 3 2 25 Package Interrupts,RM C 3 28 Interrupt Support,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-c-3-1-20-21-protected-procedure-handlers}@anchor{25b}
@section RM C.3.1(20-21): Protected Procedure Handlers
@quotation
“Whenever possible, the implementation should allow interrupt handlers to
be called directly by the hardware.”
@end quotation
Followed on any target where the underlying operating system permits
such direct calls.
@quotation
“Whenever practical, violations of any
implementation-defined restrictions should be detected before run time.”
@end quotation
Followed. Compile time warnings are given when possible.
@geindex Package `@w{`}Interrupts`@w{`}
@geindex Interrupts
@node RM C 3 2 25 Package Interrupts,RM C 4 14 Pre-elaboration Requirements,RM C 3 1 20-21 Protected Procedure Handlers,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-c-3-2-25-package-interrupts}@anchor{25c}
@section RM C.3.2(25): Package @code{Interrupts}
@quotation
“If implementation-defined forms of interrupt handler procedures are
supported, such as protected procedures with parameters, then for each
such form of a handler, a type analogous to @code{Parameterless_Handler}
should be specified in a child package of @code{Interrupts}, with the
same operations as in the predefined package Interrupts.”
@end quotation
Followed.
@geindex Pre-elaboration requirements
@node RM C 4 14 Pre-elaboration Requirements,RM C 5 8 Pragma Discard_Names,RM C 3 2 25 Package Interrupts,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-c-4-14-pre-elaboration-requirements}@anchor{25d}
@section RM C.4(14): Pre-elaboration Requirements
@quotation
“It is recommended that pre-elaborated packages be implemented in such a
way that there should be little or no code executed at run time for the
elaboration of entities not already covered by the Implementation
Requirements.”
@end quotation
Followed. Executable code is generated in some cases, e.g., loops
to initialize large arrays.
@node RM C 5 8 Pragma Discard_Names,RM C 7 2 30 The Package Task_Attributes,RM C 4 14 Pre-elaboration Requirements,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-c-5-8-pragma-discard-names}@anchor{25e}
@section RM C.5(8): Pragma @code{Discard_Names}
@quotation
“If the pragma applies to an entity, then the implementation should
reduce the amount of storage used for storing names associated with that
entity.”
@end quotation
Followed.
@geindex Package Task_Attributes
@geindex Task_Attributes
@node RM C 7 2 30 The Package Task_Attributes,RM D 3 17 Locking Policies,RM C 5 8 Pragma Discard_Names,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-c-7-2-30-the-package-task-attributes}@anchor{25f}
@section RM C.7.2(30): The Package Task_Attributes
@quotation
“Some implementations are targeted to domains in which memory use at run
time must be completely deterministic. For such implementations, it is
recommended that the storage for task attributes will be pre-allocated
statically and not from the heap. This can be accomplished by either
placing restrictions on the number and the size of the task’s
attributes, or by using the pre-allocated storage for the first @code{N}
attribute objects, and the heap for the others. In the latter case,
@code{N} should be documented.”
@end quotation
Not followed. This implementation is not targeted to such a domain.
@geindex Locking Policies
@node RM D 3 17 Locking Policies,RM D 4 16 Entry Queuing Policies,RM C 7 2 30 The Package Task_Attributes,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-d-3-17-locking-policies}@anchor{260}
@section RM D.3(17): Locking Policies
@quotation
“The implementation should use names that end with @code{_Locking} for
locking policies defined by the implementation.”
@end quotation
Followed. Two implementation-defined locking policies are defined,
whose names (@code{Inheritance_Locking} and
@code{Concurrent_Readers_Locking}) follow this suggestion.
@geindex Entry queuing policies
@node RM D 4 16 Entry Queuing Policies,RM D 6 9-10 Preemptive Abort,RM D 3 17 Locking Policies,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-d-4-16-entry-queuing-policies}@anchor{261}
@section RM D.4(16): Entry Queuing Policies
@quotation
“Names that end with @code{_Queuing} should be used
for all implementation-defined queuing policies.”
@end quotation
Followed. No such implementation-defined queuing policies exist.
@geindex Preemptive abort
@node RM D 6 9-10 Preemptive Abort,RM D 7 21 Tasking Restrictions,RM D 4 16 Entry Queuing Policies,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-d-6-9-10-preemptive-abort}@anchor{262}
@section RM D.6(9-10): Preemptive Abort
@quotation
“Even though the `abort_statement' is included in the list of
potentially blocking operations (see 9.5.1), it is recommended that this
statement be implemented in a way that never requires the task executing
the `abort_statement' to block.”
@end quotation
Followed.
@quotation
“On a multi-processor, the delay associated with aborting a task on
another processor should be bounded; the implementation should use
periodic polling, if necessary, to achieve this.”
@end quotation
Followed.
@geindex Tasking restrictions
@node RM D 7 21 Tasking Restrictions,RM D 8 47-49 Monotonic Time,RM D 6 9-10 Preemptive Abort,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-d-7-21-tasking-restrictions}@anchor{263}
@section RM D.7(21): Tasking Restrictions
@quotation
“When feasible, the implementation should take advantage of the specified
restrictions to produce a more efficient implementation.”
@end quotation
GNAT currently takes advantage of these restrictions by providing an optimized
run time when the Ravenscar profile and the GNAT restricted run time set
of restrictions are specified. See pragma @code{Profile (Ravenscar)} and
pragma @code{Profile (Restricted)} for more details.
@geindex Time
@geindex monotonic
@node RM D 8 47-49 Monotonic Time,RM E 5 28-29 Partition Communication Subsystem,RM D 7 21 Tasking Restrictions,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-d-8-47-49-monotonic-time}@anchor{264}
@section RM D.8(47-49): Monotonic Time
@quotation
“When appropriate, implementations should provide configuration
mechanisms to change the value of @code{Tick}.”
@end quotation
Such configuration mechanisms are not appropriate to this implementation
and are thus not supported.
@quotation
“It is recommended that @code{Calendar.Clock} and @code{Real_Time.Clock}
be implemented as transformations of the same time base.”
@end quotation
Followed.
@quotation
“It is recommended that the best time base which exists in
the underlying system be available to the application through
@code{Clock}. @cite{Best} may mean highest accuracy or largest range.”
@end quotation
Followed.
@geindex Partition communication subsystem
@geindex PCS
@node RM E 5 28-29 Partition Communication Subsystem,RM F 7 COBOL Support,RM D 8 47-49 Monotonic Time,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-e-5-28-29-partition-communication-subsystem}@anchor{265}
@section RM E.5(28-29): Partition Communication Subsystem
@quotation
“Whenever possible, the PCS on the called partition should allow for
multiple tasks to call the RPC-receiver with different messages and
should allow them to block until the corresponding subprogram body
returns.”
@end quotation
Followed by GLADE, a separately supplied PCS that can be used with
GNAT.
@quotation
“The @code{Write} operation on a stream of type @code{Params_Stream_Type}
should raise @code{Storage_Error} if it runs out of space trying to
write the @code{Item} into the stream.”
@end quotation
Followed by GLADE, a separately supplied PCS that can be used with
GNAT.
@geindex COBOL support
@node RM F 7 COBOL Support,RM F 1 2 Decimal Radix Support,RM E 5 28-29 Partition Communication Subsystem,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-f-7-cobol-support}@anchor{266}
@section RM F(7): COBOL Support
@quotation
“If COBOL (respectively, C) is widely supported in the target
environment, implementations supporting the Information Systems Annex
should provide the child package @code{Interfaces.COBOL} (respectively,
@code{Interfaces.C}) specified in Annex B and should support a
@code{convention_identifier} of COBOL (respectively, C) in the interfacing
pragmas (see Annex B), thus allowing Ada programs to interface with
programs written in that language.”
@end quotation
Followed.
@geindex Decimal radix support
@node RM F 1 2 Decimal Radix Support,RM G Numerics,RM F 7 COBOL Support,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-f-1-2-decimal-radix-support}@anchor{267}
@section RM F.1(2): Decimal Radix Support
@quotation
“Packed decimal should be used as the internal representation for objects
of subtype @code{S} when @code{S}’Machine_Radix = 10.”
@end quotation
Not followed. GNAT ignores @code{S}’Machine_Radix and always uses binary
representations.
@geindex Numerics
@node RM G Numerics,RM G 1 1 56-58 Complex Types,RM F 1 2 Decimal Radix Support,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-g-numerics}@anchor{268}
@section RM G: Numerics
@quotation
“If Fortran (respectively, C) is widely supported in the target
environment, implementations supporting the Numerics Annex
should provide the child package @code{Interfaces.Fortran} (respectively,
@code{Interfaces.C}) specified in Annex B and should support a
@code{convention_identifier} of Fortran (respectively, C) in the interfacing
pragmas (see Annex B), thus allowing Ada programs to interface with
programs written in that language.”
@end quotation
Followed.
@geindex Complex types
@node RM G 1 1 56-58 Complex Types,RM G 1 2 49 Complex Elementary Functions,RM G Numerics,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-g-1-1-56-58-complex-types}@anchor{269}
@section RM G.1.1(56-58): Complex Types
@quotation
“Because the usual mathematical meaning of multiplication of a complex
operand and a real operand is that of the scaling of both components of
the former by the latter, an implementation should not perform this
operation by first promoting the real operand to complex type and then
performing a full complex multiplication. In systems that, in the
future, support an Ada binding to IEC 559:1989, the latter technique
will not generate the required result when one of the components of the
complex operand is infinite. (Explicit multiplication of the infinite
component by the zero component obtained during promotion yields a NaN
that propagates into the final result.) Analogous advice applies in the
case of multiplication of a complex operand and a pure-imaginary
operand, and in the case of division of a complex operand by a real or
pure-imaginary operand.”
@end quotation
Not followed.
@quotation
“Similarly, because the usual mathematical meaning of addition of a
complex operand and a real operand is that the imaginary operand remains
unchanged, an implementation should not perform this operation by first
promoting the real operand to complex type and then performing a full
complex addition. In implementations in which the @code{Signed_Zeros}
attribute of the component type is @code{True} (and which therefore
conform to IEC 559:1989 in regard to the handling of the sign of zero in
predefined arithmetic operations), the latter technique will not
generate the required result when the imaginary component of the complex
operand is a negatively signed zero. (Explicit addition of the negative
zero to the zero obtained during promotion yields a positive zero.)
Analogous advice applies in the case of addition of a complex operand
and a pure-imaginary operand, and in the case of subtraction of a
complex operand and a real or pure-imaginary operand.”
@end quotation
Not followed.
@quotation
“Implementations in which @code{Real'Signed_Zeros} is @code{True} should
attempt to provide a rational treatment of the signs of zero results and
result components. As one example, the result of the @code{Argument}
function should have the sign of the imaginary component of the
parameter @code{X} when the point represented by that parameter lies on
the positive real axis; as another, the sign of the imaginary component
of the @code{Compose_From_Polar} function should be the same as
(respectively, the opposite of) that of the @code{Argument} parameter when that
parameter has a value of zero and the @code{Modulus} parameter has a
nonnegative (respectively, negative) value.”
@end quotation
Followed.
@geindex Complex elementary functions
@node RM G 1 2 49 Complex Elementary Functions,RM G 2 4 19 Accuracy Requirements,RM G 1 1 56-58 Complex Types,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-g-1-2-49-complex-elementary-functions}@anchor{26a}
@section RM G.1.2(49): Complex Elementary Functions
@quotation
“Implementations in which @code{Complex_Types.Real'Signed_Zeros} is
@code{True} should attempt to provide a rational treatment of the signs
of zero results and result components. For example, many of the complex
elementary functions have components that are odd functions of one of
the parameter components; in these cases, the result component should
have the sign of the parameter component at the origin. Other complex
elementary functions have zero components whose sign is opposite that of
a parameter component at the origin, or is always positive or always
negative.”
@end quotation
Followed.
@geindex Accuracy requirements
@node RM G 2 4 19 Accuracy Requirements,RM G 2 6 15 Complex Arithmetic Accuracy,RM G 1 2 49 Complex Elementary Functions,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-g-2-4-19-accuracy-requirements}@anchor{26b}
@section RM G.2.4(19): Accuracy Requirements
@quotation
“The versions of the forward trigonometric functions without a
@code{Cycle} parameter should not be implemented by calling the
corresponding version with a @code{Cycle} parameter of
@code{2.0*Numerics.Pi}, since this will not provide the required
accuracy in some portions of the domain. For the same reason, the
version of @code{Log} without a @code{Base} parameter should not be
implemented by calling the corresponding version with a @code{Base}
parameter of @code{Numerics.e}.”
@end quotation
Followed.
@geindex Complex arithmetic accuracy
@geindex Accuracy
@geindex complex arithmetic
@node RM G 2 6 15 Complex Arithmetic Accuracy,RM H 6 15/2 Pragma Partition_Elaboration_Policy,RM G 2 4 19 Accuracy Requirements,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-g-2-6-15-complex-arithmetic-accuracy}@anchor{26c}
@section RM G.2.6(15): Complex Arithmetic Accuracy
@quotation
“The version of the @code{Compose_From_Polar} function without a
@code{Cycle} parameter should not be implemented by calling the
corresponding version with a @code{Cycle} parameter of
@code{2.0*Numerics.Pi}, since this will not provide the required
accuracy in some portions of the domain.”
@end quotation
Followed.
@geindex Sequential elaboration policy
@node RM H 6 15/2 Pragma Partition_Elaboration_Policy,,RM G 2 6 15 Complex Arithmetic Accuracy,Implementation Advice
@anchor{gnat_rm/implementation_advice rm-h-6-15-2-pragma-partition-elaboration-policy}@anchor{26d}
@section RM H.6(15/2): Pragma Partition_Elaboration_Policy
@quotation
“If the partition elaboration policy is @code{Sequential} and the
Environment task becomes permanently blocked during elaboration then the
partition is deadlocked and it is recommended that the partition be
immediately terminated.”
@end quotation
Not followed.
@node Implementation Defined Characteristics,Intrinsic Subprograms,Implementation Advice,Top
@anchor{gnat_rm/implementation_defined_characteristics doc}@anchor{26e}@anchor{gnat_rm/implementation_defined_characteristics id1}@anchor{26f}@anchor{gnat_rm/implementation_defined_characteristics implementation-defined-characteristics}@anchor{b}
@chapter Implementation Defined Characteristics
In addition to the implementation dependent pragmas and attributes, and the
implementation advice, there are a number of other Ada features that are
potentially implementation dependent and are designated as
implementation-defined. These are mentioned throughout the Ada Reference
Manual, and are summarized in Annex M.
A requirement for conforming Ada compilers is that they provide
documentation describing how the implementation deals with each of these
issues. In this chapter you will find each point in Annex M listed,
followed by a description of how GNAT handles the implementation dependence.
You can use this chapter as a guide to minimizing implementation
dependent features in your programs if portability to other compilers
and other operating systems is an important consideration. The numbers
in each entry below correspond to the paragraph numbers in the Ada
Reference Manual.
@itemize *
@item
“Whether or not each recommendation given in Implementation
Advice is followed. See 1.1.2(37).”
@end itemize
See @ref{a,,Implementation Advice}.
@itemize *
@item
“Capacity limitations of the implementation. See 1.1.3(3).”
@end itemize
The complexity of programs that can be processed is limited only by the
total amount of available virtual memory, and disk space for the
generated object files.
@itemize *
@item
“Variations from the standard that are impractical to avoid
given the implementation’s execution environment. See 1.1.3(6).”
@end itemize
There are no variations from the standard.
@itemize *
@item
“Which code_statements cause external
interactions. See 1.1.3(10).”
@end itemize
Any `code_statement' can potentially cause external interactions.
@itemize *
@item
“The coded representation for the text of an Ada
program. See 2.1(4).”
@end itemize
See separate section on source representation.
@itemize *
@item
“The semantics of an Ada program whose text is not in
Normalization Form C. See 2.1(4).”
@end itemize
See separate section on source representation.
@itemize *
@item
“The representation for an end of line. See 2.2(2).”
@end itemize
See separate section on source representation.
@itemize *
@item
“Maximum supported line length and lexical element
length. See 2.2(15).”
@end itemize
The maximum line length is 255 characters and the maximum length of
a lexical element is also 255 characters. This is the default setting
if not overridden by the use of compiler switch `-gnaty' (which
sets the maximum to 79) or `-gnatyMnn' which allows the maximum
line length to be specified to be any value up to 32767. The maximum
length of a lexical element is the same as the maximum line length.
@itemize *
@item
“Implementation defined pragmas. See 2.8(14).”
@end itemize
See @ref{7,,Implementation Defined Pragmas}.
@itemize *
@item
“Effect of pragma @code{Optimize}. See 2.8(27).”
@end itemize
Pragma @code{Optimize}, if given with a @code{Time} or @code{Space}
parameter, checks that the optimization flag is set, and aborts if it is
not.
@itemize *
@item
“The message string associated with the Assertion_Error exception raised
by the failure of a predicate check if there is no applicable
Predicate_Failure aspect. See 3.2.4(31).”
@end itemize
In the case of a Dynamic_Predicate aspect, the string is
“Dynamic_Predicate failed at <source position>”, where
“<source position>” might be something like “foo.adb:123”.
The Static_Predicate case is handled analogously.
@itemize *
@item
“The predefined integer types declared in
@code{Standard}. See 3.5.4(25).”
@end itemize
@multitable {xxxxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
@headitem
Type
@tab
Representation
@item
`Short_Short_Integer'
@tab
8-bit signed
@item
`Short_Integer'
@tab
16-bit signed
@item
`Integer'
@tab
32-bit signed
@item
`Long_Integer'
@tab
64-bit signed (on most 64-bit targets,
depending on the C definition of long)
32-bit signed (on all other targets)
@item
`Long_Long_Integer'
@tab
64-bit signed
@item
`Long_Long_Long_Integer'
@tab
128-bit signed (on 64-bit targets)
64-bit signed (on 32-bit targets)
@end multitable
@itemize *
@item
“Any nonstandard integer types and the operators defined
for them. See 3.5.4(26).”
@end itemize
There are no nonstandard integer types.
@itemize *
@item
“Any nonstandard real types and the operators defined for
them. See 3.5.6(8).”
@end itemize
There are no nonstandard real types.
@itemize *
@item
“What combinations of requested decimal precision and range
are supported for floating point types. See 3.5.7(7).”
@end itemize
The precision and range are defined by the IEEE Standard for Floating-Point
Arithmetic (IEEE 754-2019).
@itemize *
@item
“The predefined floating point types declared in
@code{Standard}. See 3.5.7(16).”
@end itemize
@multitable {xxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
@headitem
Type
@tab
Representation
@item
`Short_Float'
@tab
IEEE Binary32 (Single)
@item
`Float'
@tab
IEEE Binary32 (Single)
@item
`Long_Float'
@tab
IEEE Binary64 (Double)
@item
`Long_Long_Float'
@tab
IEEE Binary64 (Double) on non-x86 architectures
IEEE 80-bit Extended on x86 architecture
@end multitable
The default rounding mode specified by the IEEE 754 Standard is assumed both
for static and dynamic computations (that is, round to nearest, ties to even).
The input routines yield correctly rounded values for Short_Float, Float, and
Long_Float at least. The output routines can compute up to twice as many exact
digits as the value of @code{T'Digits} for any type, for example 30 digits for
Long_Float; if more digits are requested, zeros are printed.
@itemize *
@item
“The small of an ordinary fixed point type. See 3.5.9(8).”
@end itemize
The small is the largest power of two that does not exceed the delta.
@itemize *
@item
“What combinations of small, range, and digits are
supported for fixed point types. See 3.5.9(10).”
@end itemize
For an ordinary fixed point type, on 32-bit platforms, the small must lie in
2.0**(-80) .. 2.0**80 and the range in -9.0E+36 .. 9.0E+36; any combination
is permitted that does not result in a mantissa larger than 63 bits.
On 64-bit platforms, the small must lie in 2.0**(-127) .. 2.0**127 and the
range in -1.0E+76 .. 1.0E+76; any combination is permitted that does not
result in a mantissa larger than 63 bits, and any combination is permitted
that results in a mantissa between 64 and 127 bits if the small is the
ratio of two integers that lie in 1 .. 2.0**127.
If the small is the ratio of two integers with 64-bit magnitude on 32-bit
platforms and 128-bit magnitude on 64-bit platforms, which is the case if
no @code{small} clause is provided, then the operations of the fixed point
type are entirely implemented by means of integer instructions. In the
other cases, some operations, in particular input and output, may be
implemented by means of floating-point instructions and may be affected
by accuracy issues on architectures other than x86.
For a decimal fixed point type, on 32-bit platforms, the small must lie in
1.0E-18 .. 1.0E+18 and the digits in 1 .. 18. On 64-bit platforms, the
small must lie in 1.0E-38 .. 1.0E+38 and the digits in 1 .. 38.
@itemize *
@item
“The result of @code{Tags.Expanded_Name} for types declared
within an unnamed `block_statement'. See 3.9(10).”
@end itemize
Block numbers of the form @code{B@var{nnn}}, where `nnn' is a
decimal integer are allocated.
@itemize *
@item
“The sequence of characters of the value returned by Tags.Expanded_Name
(respectively, Tags.Wide_Expanded_Name) when some of the graphic
characters of Tags.Wide_Wide_Expanded_Name are not defined in Character
(respectively, Wide_Character). See 3.9(10.1).”
@end itemize
This is handled in the same way as the implementation-defined behavior
referenced in A.4.12(34).
@itemize *
@item
“Implementation-defined attributes. See 4.1.4(12).”
@end itemize
See @ref{8,,Implementation Defined Attributes}.
@itemize *
@item
“The value of the parameter to Empty for some container aggregates.
See 4.3.5(40).”
@end itemize
As per the suggestion given in the Annotated Ada RM, the default value
of the formal parameter is used if one exists and zero is used otherwise.
@itemize *
@item
“The maximum number of chunks for a parallel reduction expression without
a chunk_specification. See 4.5.10(21).”
@end itemize
Feature unimplemented.
@itemize *
@item
“Rounding of real static expressions which are exactly half-way between
two machine numbers. See 4.9(38).”
@end itemize
Round to even is used in all such cases.
@itemize *
@item
“The maximum number of chunks for a parallel generalized iterator without
a chunk_specification. See 5.5.2(10).”
@end itemize
Feature unimplemented.
@itemize *
@item
“The number of chunks for an array component iterator. See 5.5.2(11).”
@end itemize
Feature unimplemented.
@itemize *
@item
“Any extensions of the Global aspect. See 6.1.2(43).”
@end itemize
Feature unimplemented.
@itemize *
@item
“The circumstances the implementation passes in the null value for a view
conversion of an access type used as an out parameter. See 6.4.1(19).”
@end itemize
Difficult to characterize.
@itemize *
@item
“Any extensions of the Default_Initial_Condition aspect. See 7.3.3(11).”
@end itemize
SPARK allows specifying `null' as the Default_Initial_Condition
aspect of a type. See the SPARK reference manual for further details.
@itemize *
@item
“Any implementation-defined time types. See 9.6(6).”
@end itemize
There are no implementation-defined time types.
@itemize *
@item
“The time base associated with relative delays. See 9.6(20).”
@end itemize
See 9.6(20). The time base used is that provided by the C library
function @code{gettimeofday}.
@itemize *
@item
“The time base of the type @code{Calendar.Time}. See 9.6(23).”
@end itemize
The time base used is that provided by the C library function
@code{gettimeofday}.
@itemize *
@item
“The time zone used for package @code{Calendar}
operations. See 9.6(24).”
@end itemize
The time zone used by package @code{Calendar} is the current system time zone
setting for local time, as accessed by the C library function
@code{localtime}.
@itemize *
@item
“Any limit on `delay_until_statements' of
`select_statements'. See 9.6(29).”
@end itemize
There are no such limits.
@itemize *
@item
“The result of Calendar.Formatting.Image if its argument represents more
than 100 hours. See 9.6.1(86).”
@end itemize
Calendar.Time_Error is raised.
@itemize *
@item
“Implementation-defined conflict check policies. See 9.10.1(5).”
@end itemize
There are no implementation-defined conflict check policies.
@itemize *
@item
“The representation for a compilation. See 10.1(2).”
@end itemize
A compilation is represented by a sequence of files presented to the
compiler in a single invocation of the `gcc' command.
@itemize *
@item
“Any restrictions on compilations that contain multiple
compilation_units. See 10.1(4).”
@end itemize
No single file can contain more than one compilation unit, but any
sequence of files can be presented to the compiler as a single
compilation.
@itemize *
@item
“The mechanisms for creating an environment and for adding
and replacing compilation units. See 10.1.4(3).”
@end itemize
See separate section on compilation model.
@itemize *
@item
“The manner of explicitly assigning library units to a
partition. See 10.2(2).”
@end itemize
If a unit contains an Ada main program, then the Ada units for the partition
are determined by recursive application of the rules in the Ada Reference
Manual section 10.2(2-6). In other words, the Ada units will be those that
are needed by the main program, and then this definition of need is applied
recursively to those units, and the partition contains the transitive
closure determined by this relationship. In short, all the necessary units
are included, with no need to explicitly specify the list. If additional
units are required, e.g., by foreign language units, then all units must be
mentioned in the context clause of one of the needed Ada units.
If the partition contains no main program, or if the main program is in
a language other than Ada, then GNAT
provides the binder options `-z' and `-n' respectively, and in
this case a list of units can be explicitly supplied to the binder for
inclusion in the partition (all units needed by these units will also
be included automatically). For full details on the use of these
options, refer to `GNAT Make Program gnatmake' in the
@cite{GNAT User’s Guide}.
@itemize *
@item
“The implementation-defined means, if any, of specifying which compilation
units are needed by a given compilation unit. See 10.2(2).”
@end itemize
The units needed by a given compilation unit are as defined in
the Ada Reference Manual section 10.2(2-6). There are no
implementation-defined pragmas or other implementation-defined
means for specifying needed units.
@itemize *
@item
“The manner of designating the main subprogram of a
partition. See 10.2(7).”
@end itemize
The main program is designated by providing the name of the
corresponding @code{ALI} file as the input parameter to the binder.
@itemize *
@item
“The order of elaboration of `library_items'. See 10.2(18).”
@end itemize
The first constraint on ordering is that it meets the requirements of
Chapter 10 of the Ada Reference Manual. This still leaves some
implementation-dependent choices, which are resolved by analyzing
the elaboration code of each unit and identifying implicit
elaboration-order dependencies.
@itemize *
@item
“Parameter passing and function return for the main
subprogram. See 10.2(21).”
@end itemize
The main program has no parameters. It may be a procedure, or a function
returning an integer type. In the latter case, the returned integer
value is the return code of the program (overriding any value that
may have been set by a call to @code{Ada.Command_Line.Set_Exit_Status}).
@itemize *
@item
“The mechanisms for building and running partitions. See 10.2(24).”
@end itemize
GNAT itself supports programs with only a single partition. The GNATDIST
tool provided with the GLADE package (which also includes an implementation
of the PCS) provides a completely flexible method for building and running
programs consisting of multiple partitions. See the separate GLADE manual
for details.
@itemize *
@item
“The details of program execution, including program
termination. See 10.2(25).”
@end itemize
See separate section on compilation model.
@itemize *
@item
“The semantics of any non-active partitions supported by the
implementation. See 10.2(28).”
@end itemize
Passive partitions are supported on targets where shared memory is
provided by the operating system. See the GLADE reference manual for
further details.
@itemize *
@item
“The information returned by @code{Exception_Message}. See 11.4.1(10).”
@end itemize
Exception message returns the null string unless a specific message has
been passed by the program.
@itemize *
@item
“The result of @code{Exceptions.Exception_Name} for types
declared within an unnamed `block_statement'. See 11.4.1(12).”
@end itemize
Blocks have implementation defined names of the form @code{B@var{nnn}}
where `nnn' is an integer.
@itemize *
@item
“The information returned by
@code{Exception_Information}. See 11.4.1(13).”
@end itemize
@code{Exception_Information} returns a string in the following format:
@example
*Exception_Name:* nnnnn
*Message:* mmmmm
*PID:* ppp
*Load address:* 0xhhhh
*Call stack traceback locations:*
0xhhhh 0xhhhh 0xhhhh ... 0xhhh
@end example
where
@quotation
@itemize *
@item
@code{nnnn} is the fully qualified name of the exception in all upper
case letters. This line is always present.
@item
@code{mmmm} is the message (this line present only if message is non-null)
@item
@code{ppp} is the Process Id value as a decimal integer (this line is
present only if the Process Id is nonzero). Currently we are
not making use of this field.
@item
The Load address line, the Call stack traceback locations line and the
following values are present only if at least one traceback location was
recorded. The Load address indicates the address at which the main executable
was loaded; this line may not be present if operating system hasn’t relocated
the main executable. The values are given in C style format, with lower case
letters for a-f, and only as many digits present as are necessary.
The line terminator sequence at the end of each line, including
the last line is a single @code{LF} character (@code{16#0A#}).
@end itemize
@end quotation
@itemize *
@item
“The sequence of characters of the value returned by
Exceptions.Exception_Name (respectively, Exceptions.Wide_Exception_Name)
when some of the graphic characters of Exceptions.Wide_Wide_Exception_Name
are not defined in Character (respectively, Wide_Character).
See 11.4.1(12.1).”
@end itemize
This is handled in the same way as the implementation-defined behavior
referenced in A.4.12(34).
@itemize *
@item
“The information returned by Exception_Information. See 11.4.1(13).”
@end itemize
The exception name and the source location at which the exception was
raised are included.
@itemize *
@item
“Implementation-defined policy_identifiers and assertion_aspect_marks
allowed in a pragma Assertion_Policy. See 11.4.2(9).”
@end itemize
Implementation-defined assertion_aspect_marks include Assert_And_Cut,
Assume, Contract_Cases, Debug, Ghost, Initial_Condition, Loop_Invariant,
Loop_Variant, Postcondition, Precondition, Predicate, Refined_Post,
Statement_Assertions, and Subprogram_Variant. Implementation-defined
policy_identifiers include Ignore and Suppressible.
@itemize *
@item
“The default assertion policy. See 11.4.2(10).”
@end itemize
The default assertion policy is Ignore, although this can be overridden
via compiler switches such as “-gnata”.
@itemize *
@item
“Implementation-defined check names. See 11.5(27).”
@end itemize
The implementation defined check names include Alignment_Check,
Atomic_Synchronization, Duplicated_Tag_Check, Container_Checks,
Tampering_Check, Predicate_Check, and Validity_Check. In addition, a user
program can add implementation-defined check names by means of the pragma
Check_Name. See the description of pragma @code{Suppress} for full details.
@itemize *
@item
“Existence and meaning of second parameter of pragma Unsuppress.
See 11.5(27.1).”
@end itemize
The legality rules for and semantics of the second parameter of pragma
Unsuppress match those for the second argument of pragma Suppress.
@itemize *
@item
“The cases that cause conflicts between the representation of the
ancestors of a type_declaration. See 13.1(13.1).”
@end itemize
No such cases exist.
@itemize *
@item
“The interpretation of each representation aspect. See 13.1(20).”
@end itemize
See separate section on data representations.
@itemize *
@item
“Any restrictions placed upon the specification of representation aspects.
See 13.1(20).”
@end itemize
See separate section on data representations.
@itemize *
@item
“Implementation-defined aspects, including the syntax for specifying
such aspects and the legality rules for such aspects. See 13.1.1(38).”
@end itemize
See @ref{12b,,Implementation Defined Aspects}.
@itemize *
@item
“The set of machine scalars. See 13.3(8.1).”
@end itemize
See separate section on data representations.
@itemize *
@item
“The meaning of @code{Size} for indefinite subtypes. See 13.3(48).”
@end itemize
The Size attribute of an indefinite subtype is not less than the Size
attribute of any object of that type.
@itemize *
@item
“The meaning of Object_Size for indefinite subtypes. See 13.3(58).”
@end itemize
The Object_Size attribute of an indefinite subtype is not less than the
Object_Size attribute of any object of that type.
@itemize *
@item
“The default external representation for a type tag. See 13.3(75).”
@end itemize
The default external representation for a type tag is the fully expanded
name of the type in upper case letters.
@itemize *
@item
“What determines whether a compilation unit is the same in
two different partitions. See 13.3(76).”
@end itemize
A compilation unit is the same in two different partitions if and only
if it derives from the same source file.
@itemize *
@item
“Implementation-defined components. See 13.5.1(15).”
@end itemize
The only implementation defined component is the tag for a tagged type,
which contains a pointer to the dispatching table.
@itemize *
@item
“If @code{Word_Size} = @code{Storage_Unit}, the default bit
ordering. See 13.5.3(5).”
@end itemize
@code{Word_Size} does not equal @code{Storage_Unit} in this implementation.
@itemize *
@item
“The contents of the visible part of package @code{System}. See 13.7(2).”
@end itemize
See the definition of package System in @code{system.ads}.
Note that two declarations are added to package System.
@example
Max_Priority : constant Positive := Priority'Last;
Max_Interrupt_Priority : constant Positive := Interrupt_Priority'Last;
@end example
@itemize *
@item
“The range of Storage_Elements.Storage_Offset, the modulus of
Storage_Elements.Storage_Element, and the declaration of
Storage_Elements.Integer_Address. See 13.7.1(11).”
@end itemize
See the definition of package System.Storage_Elements in @code{s-stoele.ads}.
@itemize *
@item
“The contents of the visible part of package @code{System.Machine_Code},
and the meaning of `code_statements'. See 13.8(7).”
@end itemize
See the definition and documentation in file @code{s-maccod.ads}.
@itemize *
@item
“The result of unchecked conversion for instances with scalar result
types whose result is not defined by the language. See 13.9(11).”
@end itemize
Unchecked conversion between types of the same size
results in an uninterpreted transmission of the bits from one type
to the other. If the types are of unequal sizes, then in the case of
discrete types, a shorter source is first zero or sign extended as
necessary, and a shorter target is simply truncated on the left.
For all non-discrete types, the source is first copied if necessary
to ensure that the alignment requirements of the target are met, then
a pointer is constructed to the source value, and the result is obtained
by dereferencing this pointer after converting it to be a pointer to the
target type. Unchecked conversions where the target subtype is an
unconstrained array are not permitted. If the target alignment is
greater than the source alignment, then a copy of the result is
made with appropriate alignment
@itemize *
@item
“The result of unchecked conversion for instances with nonscalar result
types whose result is not defined by the language. See 13.9(11).”
@end itemize
See preceding definition for the scalar result case.
@itemize *
@item
“Whether or not the implementation provides user-accessible
names for the standard pool type(s). See 13.11(17).”
@end itemize
There are 3 different standard pools used by the compiler when
@code{Storage_Pool} is not specified depending whether the type is local
to a subprogram or defined at the library level and whether
@code{Storage_Size`@w{`}is specified or not. See documentation in the runtime
library units `@w{`}System.Pool_Global}, @code{System.Pool_Size} and
@code{System.Pool_Local} in files @code{s-poosiz.ads},
@code{s-pooglo.ads} and @code{s-pooloc.ads} for full details on the
default pools used. All these pools are accessible by means of @cite{with}ing
these units.
@itemize *
@item
“The meaning of @code{Storage_Size} when neither the Storage_Size nor the
Storage_Pool is specified for an access type. See 13.11(18).”
@end itemize
@code{Storage_Size} is measured in storage units, and refers to the
total space available for an access type collection, or to the primary
stack space for a task.
@itemize *
@item
“The effect of specifying aspect Default_Storage_Pool on an instance
of a language-defined generic unit. See 13.11.3(5).”
@end itemize
Instances of language-defined generic units are treated the same as other
instances with respect to the Default_Storage_Pool aspect.
@itemize *
@item
“Implementation-defined restrictions allowed in a pragma
@code{Restrictions}. See 13.12(8.7).”
@end itemize
See @ref{9,,Standard and Implementation Defined Restrictions}.
@itemize *
@item
“The consequences of violating limitations on
@code{Restrictions} pragmas. See 13.12(9).”
@end itemize
Restrictions that can be checked at compile time are enforced at
compile time; violations are illegal. For other restrictions, any
violation during program execution results in erroneous execution.
@itemize *
@item
“Implementation-defined usage profiles allowed in a pragma Profile.
See 13.12(15).”
@end itemize
See @ref{7,,Implementation Defined Pragmas}.
@itemize *
@item
“The contents of the stream elements read and written by the Read and
Write attributes of elementary types. See 13.13.2(9).”
@end itemize
The representation is the in-memory representation of the base type of
the type, using the number of bits corresponding to the
@code{type'Size} value, and the natural ordering of the machine.
@itemize *
@item
“The names and characteristics of the numeric subtypes
declared in the visible part of package @code{Standard}. See A.1(3).”
@end itemize
See items describing the integer and floating-point types supported.
@itemize *
@item
“The values returned by Strings.Hash. See A.4.9(3).”
@end itemize
This hash function has predictable collisions and is subject to
equivalent substring attacks. It is not suitable for construction of a
hash table keyed on possibly malicious user input.
@itemize *
@item
“The value returned by a call to a Text_Buffer Get procedure if any
character in the returned sequence is not defined in Character.
See A.4.12(34).”
@end itemize
The contents of a buffer is represented internally as a UTF_8 string.
The value return by Text_Buffer.Get is the result of passing that
UTF_8 string to UTF_Encoding.Strings.Decode.
@itemize *
@item
“The value returned by a call to a Text_Buffer Wide_Get procedure if
any character in the returned sequence is not defined in Wide_Character.
See A.4.12(34).”
@end itemize
The contents of a buffer is represented internally as a UTF_8 string.
The value return by Text_Buffer.Wide_Get is the result of passing that
UTF_8 string to UTF_Encoding.Wide_Strings.Decode.
@itemize *
@item
“The accuracy actually achieved by the elementary
functions. See A.5.1(1).”
@end itemize
The elementary functions correspond to the functions available in the C
library. Only fast math mode is implemented.
@itemize *
@item
“The sign of a zero result from some of the operators or
functions in @code{Numerics.Generic_Elementary_Functions}, when
@code{Float_Type'Signed_Zeros} is @code{True}. See A.5.1(46).”
@end itemize
The sign of zeroes follows the requirements of the IEEE 754 standard on
floating-point.
@itemize *
@item
“The value of
@code{Numerics.Float_Random.Max_Image_Width}. See A.5.2(27).”
@end itemize
Maximum image width is 6864, see library file @code{s-rannum.ads}.
@itemize *
@item
“The value of
@code{Numerics.Discrete_Random.Max_Image_Width}. See A.5.2(27).”
@end itemize
Maximum image width is 6864, see library file @code{s-rannum.ads}.
@itemize *
@item
“The string representation of a random number generator’s
state. See A.5.2(38).”
@end itemize
The value returned by the Image function is the concatenation of
the fixed-width decimal representations of the 624 32-bit integers
of the state vector.
@itemize *
@item
“The values of the @code{Model_Mantissa},
@code{Model_Emin}, @code{Model_Epsilon}, @code{Model},
@code{Safe_First}, and @code{Safe_Last} attributes, if the Numerics
Annex is not supported. See A.5.3(72).”
@end itemize
Running the compiler with `-gnatS' to produce a listing of package
@code{Standard} displays the values of these attributes.
@itemize *
@item
“The value of @code{Buffer_Size} in @code{Storage_IO}. See A.9(10).”
@end itemize
All type representations are contiguous, and the @code{Buffer_Size} is
the value of @code{type'Size} rounded up to the next storage unit
boundary.
@itemize *
@item
“External files for standard input, standard output, and
standard error See A.10(5).”
@end itemize
These files are mapped onto the files provided by the C streams
libraries. See source file @code{i-cstrea.ads} for further details.
@itemize *
@item
“The accuracy of the value produced by @code{Put}. See A.10.9(36).”
@end itemize
If more digits are requested in the output than are represented by the
precision of the value, zeroes are output in the corresponding least
significant digit positions.
@itemize *
@item
“Current size for a stream file for which positioning is not supported.
See A.12.1(1.1).”
@end itemize
Positioning is supported.
@itemize *
@item
“The meaning of @code{Argument_Count}, @code{Argument}, and
@code{Command_Name}. See A.15(1).”
@end itemize
These are mapped onto the @code{argv} and @code{argc} parameters of the
main program in the natural manner.
@itemize *
@item
“The interpretation of file names and directory names. See A.16(46).”
@end itemize
These names are interpreted consistently with the underlying file system.
@itemize *
@item
“The maxium value for a file size in Directories. See A.16(87).”
@end itemize
Directories.File_Size’Last is equal to Long_Long_Integer’Last .
@itemize *
@item
“The result for Directories.Size for a directory or special file.
See A.16(93).”
@end itemize
Name_Error is raised.
@itemize *
@item
“The result for Directories.Modification_Time for a directory or special file.
See A.16(93).”
@end itemize
Name_Error is raised.
@itemize *
@item
“The interpretation of a nonnull search pattern in Directories.
See A.16(104).”
@end itemize
When the @code{Pattern} parameter is not the null string, it is interpreted
according to the syntax of regular expressions as defined in the
@code{GNAT.Regexp} package.
See @ref{270,,GNAT.Regexp (g-regexp.ads)}.
@itemize *
@item
“The results of a Directories search if the contents of the directory are
altered while a search is in progress. See A.16(110).”
@end itemize
The effect of a call to Get_Next_Entry is determined by the current
state of the directory.
@itemize *
@item
“The definition and meaning of an environment variable. See A.17(1).”
@end itemize
This definition is determined by the underlying operating system.
@itemize *
@item
“The circumstances where an environment variable cannot be defined.
See A.17(16).”
@end itemize
There are no such implementation-defined circumstances.
@itemize *
@item
“Environment names for which Set has the effect of Clear. See A.17(17).”
@end itemize
There are no such names.
@itemize *
@item
“The value of Containers.Hash_Type’Modulus. The value of
Containers.Count_Type’Last. See A.18.1(7).”
@end itemize
Containers.Hash_Type’Modulus is 2**32.
Containers.Count_Type’Last is 2**31 - 1.
@itemize *
@item
“Implementation-defined convention names. See B.1(11).”
@end itemize
The following convention names are supported
@multitable {xxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
@headitem
Convention Name
@tab
Interpretation
@item
`Ada'
@tab
Ada
@item
`Ada_Pass_By_Copy'
@tab
Allowed for any types except by-reference types such as limited
records. Compatible with convention Ada, but causes any parameters
with this convention to be passed by copy.
@item
`Ada_Pass_By_Reference'
@tab
Allowed for any types except by-copy types such as scalars.
Compatible with convention Ada, but causes any parameters
with this convention to be passed by reference.
@item
`Assembler'
@tab
Assembly language
@item
`Asm'
@tab
Synonym for Assembler
@item
`Assembly'
@tab
Synonym for Assembler
@item
`C'
@tab
C
@item
`C_Pass_By_Copy'
@tab
Allowed only for record types, like C, but also notes that record
is to be passed by copy rather than reference.
@item
`COBOL'
@tab
COBOL
@item
`C_Plus_Plus (or CPP)'
@tab
C++
@item
`Default'
@tab
Treated the same as C
@item
`External'
@tab
Treated the same as C
@item
`Fortran'
@tab
Fortran
@item
`Intrinsic'
@tab
For support of pragma @code{Import} with convention Intrinsic, see
separate section on Intrinsic Subprograms.
@item
`Stdcall'
@tab
Stdcall (used for Windows implementations only). This convention correspond
to the WINAPI (previously called Pascal convention) C/C++ convention under
Windows. A routine with this convention cleans the stack before
exit. This pragma cannot be applied to a dispatching call.
@item
`DLL'
@tab
Synonym for Stdcall
@item
`Win32'
@tab
Synonym for Stdcall
@item
`Stubbed'
@tab
Stubbed is a special convention used to indicate that the body of the
subprogram will be entirely ignored. Any call to the subprogram
is converted into a raise of the @code{Program_Error} exception. If a
pragma @code{Import} specifies convention @code{stubbed} then no body need
be present at all. This convention is useful during development for the
inclusion of subprograms whose body has not yet been written.
In addition, all otherwise unrecognized convention names are also
treated as being synonymous with convention C. In all implementations,
use of such other names results in a warning.
@end multitable
@itemize *
@item
“The meaning of link names. See B.1(36).”
@end itemize
Link names are the actual names used by the linker.
@itemize *
@item
“The manner of choosing link names when neither the link name nor the
address of an imported or exported entity is specified. See B.1(36).”
@end itemize
The default linker name is that which would be assigned by the relevant
external language, interpreting the Ada name as being in all lower case
letters.
@itemize *
@item
“The effect of pragma @code{Linker_Options}. See B.1(37).”
@end itemize
The string passed to @code{Linker_Options} is presented uninterpreted as
an argument to the link command, unless it contains ASCII.NUL characters.
NUL characters if they appear act as argument separators, so for example
@example
pragma Linker_Options ("-labc" & ASCII.NUL & "-ldef");
@end example
causes two separate arguments @code{-labc} and @code{-ldef} to be passed to the
linker. The order of linker options is preserved for a given unit. The final
list of options passed to the linker is in reverse order of the elaboration
order. For example, linker options for a body always appear before the options
from the corresponding package spec.
@itemize *
@item
“The contents of the visible part of package
@code{Interfaces} and its language-defined descendants. See B.2(1).”
@end itemize
See files with prefix @code{i-} in the distributed library.
@itemize *
@item
“Implementation-defined children of package
@code{Interfaces}. The contents of the visible part of package
@code{Interfaces}. See B.2(11).”
@end itemize
See files with prefix @code{i-} in the distributed library.
@itemize *
@item
“The definitions of certain types and constants in Interfaces.C.
See B.3(41).”
@end itemize
See source file @code{i-c.ads}.
@itemize *
@item
“The types @code{Floating}, @code{Long_Floating},
@code{Binary}, @code{Long_Binary}, @code{Decimal_ Element}, and
@code{COBOL_Character}; and the initialization of the variables
@code{Ada_To_COBOL} and @code{COBOL_To_Ada}, in
@code{Interfaces.COBOL}. See B.4(50).”
@end itemize
@multitable {xxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
@headitem
COBOL
@tab
Ada
@item
`Floating'
@tab
Float
@item
`Long_Floating'
@tab
(Floating) Long_Float
@item
`Binary'
@tab
Integer
@item
`Long_Binary'
@tab
Long_Long_Integer
@item
`Decimal_Element'
@tab
Character
@item
`COBOL_Character'
@tab
Character
@end multitable
For initialization, see the file @code{i-cobol.ads} in the distributed library.
@itemize *
@item
“The types Fortran_Integer, Real, Double_Precision, and Character_Set
in Interfaces.Fortran. See B.5(17).”
@end itemize
See source file @code{i-fortra.ads}. These types are derived, respectively,
from Integer, Float, Long_Float, and Character.
@itemize *
@item
“Implementation-defined intrinsic subprograms. See C.1(1).”
@end itemize
See separate section on Intrinsic Subprograms.
@itemize *
@item
“Any restrictions on a protected procedure or its containing type when an
aspect Attach_handler or Interrupt_Handler is specified. See C.3.1(17).”
@end itemize
There are no such restrictions.
@itemize *
@item
“Any other forms of interrupt handler supported by the Attach_Handler and
Interrupt_Handler aspects. See C.3.1(19).”
@end itemize
There are no such forms.
@itemize *
@item
“The semantics of some attributes and functions of an entity for which
aspect Discard_Names is True. See C.5(7).”
@end itemize
If Discard_Names is True for an enumeration type, the Image attribute
provides the image of the Pos of the literal, and Value accepts
Pos values.
If both of the aspects`@w{`}Discard_Names`@w{`} and @code{No_Tagged_Streams} are true
for a tagged type, its Expanded_Name and External_Tag values are
empty strings. This is useful to avoid exposing entity names at binary
level.
@itemize *
@item
“The modulus and size of Test_and_Set_Flag. See C.6.3(8).”
@end itemize
The modulus is 2**8. The size is 8.
@itemize *
@item
“The value used to represent the set value for Atomic_Test_and_Set.
See C.6.3(10).”
@end itemize
The value is 1.
@itemize *
@item
“The result of the @code{Task_Identification.Image}
attribute. See C.7.1(7).”
@end itemize
The result of this attribute is a string that identifies
the object or component that denotes a given task. If a variable @code{Var}
has a task type, the image for this task will have the form @code{Var_@var{XXXXXXXX}},
where the suffix `XXXXXXXX'
is the hexadecimal representation of the virtual address of the corresponding
task control block. If the variable is an array of tasks, the image of each
task will have the form of an indexed component indicating the position of a
given task in the array, e.g., @code{Group(5)_@var{XXXXXXX}}. If the task is a
component of a record, the image of the task will have the form of a selected
component. These rules are fully recursive, so that the image of a task that
is a subcomponent of a composite object corresponds to the expression that
designates this task.
If a task is created by an allocator, its image depends on the context. If the
allocator is part of an object declaration, the rules described above are used
to construct its image, and this image is not affected by subsequent
assignments. If the allocator appears within an expression, the image
includes only the name of the task type.
If the configuration pragma Discard_Names is present, or if the restriction
No_Implicit_Heap_Allocation is in effect, the image reduces to
the numeric suffix, that is to say the hexadecimal representation of the
virtual address of the control block of the task.
@itemize *
@item
“The value of @code{Current_Task} when in a protected entry
or interrupt handler. See C.7.1(17).”
@end itemize
Protected entries or interrupt handlers can be executed by any
convenient thread, so the value of @code{Current_Task} is undefined.
@itemize *
@item
“Granularity of locking for Task_Attributes. See C.7.2(16).”
@end itemize
No locking is needed if the formal type Attribute has the size and
alignment of either Integer or System.Address and the bit representation
of Initial_Value is all zeroes. Otherwise, locking is performed.
@itemize *
@item
“The declarations of @code{Any_Priority} and
@code{Priority}. See D.1(11).”
@end itemize
See declarations in file @code{system.ads}.
@itemize *
@item
“Implementation-defined execution resources. See D.1(15).”
@end itemize
There are no implementation-defined execution resources.
@itemize *
@item
“Whether, on a multiprocessor, a task that is waiting for
access to a protected object keeps its processor busy. See D.2.1(3).”
@end itemize
On a multi-processor, a task that is waiting for access to a protected
object does not keep its processor busy.
@itemize *
@item
“The affect of implementation defined execution resources
on task dispatching. See D.2.1(9).”
@end itemize
Tasks map to threads in the threads package used by GNAT. Where possible
and appropriate, these threads correspond to native threads of the
underlying operating system.
@itemize *
@item
“Implementation-defined task dispatching policies. See D.2.2(3).”
@end itemize
There are no implementation-defined task dispatching policies.
@itemize *
@item
“The value of Default_Quantum in Dispatching.Round_Robin. See D.2.5(4).”
@end itemize
The value is 10 milliseconds.
@itemize *
@item
“Implementation-defined `policy_identifiers' allowed
in a pragma @code{Locking_Policy}. See D.3(4).”
@end itemize
The two implementation defined policies permitted in GNAT are
@code{Inheritance_Locking} and @code{Concurrent_Readers_Locking}. On
targets that support the @code{Inheritance_Locking} policy, locking is
implemented by inheritance, i.e., the task owning the lock operates
at a priority equal to the highest priority of any task currently
requesting the lock. On targets that support the
@code{Concurrent_Readers_Locking} policy, locking is implemented with a
read/write lock allowing multiple protected object functions to enter
concurrently.
@itemize *
@item
“Default ceiling priorities. See D.3(10).”
@end itemize
The ceiling priority of protected objects of the type
@code{System.Interrupt_Priority'Last} as described in the Ada
Reference Manual D.3(10),
@itemize *
@item
“The ceiling of any protected object used internally by
the implementation. See D.3(16).”
@end itemize
The ceiling priority of internal protected objects is
@code{System.Priority'Last}.
@itemize *
@item
“Implementation-defined queuing policies. See D.4(1).”
@end itemize
There are no implementation-defined queuing policies.
@itemize *
@item
“Implementation-defined admission policies. See D.4.1(1).”
@end itemize
There are no implementation-defined admission policies.
@itemize *
@item
“Any operations that implicitly require heap storage
allocation. See D.7(8).”
@end itemize
The only operation that implicitly requires heap storage allocation is
task creation.
@itemize *
@item
“When restriction No_Dynamic_CPU_Assignment applies to a partition, the
processor on which a task with a CPU value of a Not_A_Specific_CPU will
execute. See D.7(10).”
@end itemize
Unknown.
@itemize *
@item
“When restriction No_Task_Termination applies to a partition, what happens
when a task terminates. See D.7(15.1).”
@end itemize
Execution is erroneous in that case.
@itemize *
@item
“The behavior when restriction Max_Storage_At_Blocking is violated.
See D.7(17).”
@end itemize
Execution is erroneous in that case.
@itemize *
@item
“The behavior when restriction Max_Asynchronous_Select_Nesting is violated.
See D.7(18).”
@end itemize
Execution is erroneous in that case.
@itemize *
@item
“The behavior when restriction Max_Tasks is violated. See D.7(19).”
@end itemize
Execution is erroneous in that case.
@itemize *
@item
“Whether the use of pragma Restrictions results in a reduction in program
code or data size or execution time. See D.7(20).”
@end itemize
Yes it can, but the precise circumstances and properties of such reductions
are difficult to characterize.
@itemize *
@item
“The value of Barrier_Limit’Last in Synchronous_Barriers. See D.10.1(4).”
@end itemize
Synchronous_Barriers.Barrier_Limit’Last is Integer’Last .
@itemize *
@item
“When an aborted task that is waiting on a Synchronous_Barrier is aborted.
See D.10.1(13).”
@end itemize
Difficult to characterize.
@itemize *
@item
“The value of Min_Handler_Ceiling in Execution_Time.Group_Budgets.
See D.14.2(7).”
@end itemize
See source file @code{a-etgrbu.ads}.
@itemize *
@item
“The value of CPU_Range’Last in System.Multiprocessors. See D.16(4).”
@end itemize
See source file @code{s-multip.ads}.
@itemize *
@item
“The processor on which the environment task executes in the absence
of a value for the aspect CPU. See D.16(13).”
@end itemize
Unknown.
@itemize *
@item
“The means for creating and executing distributed
programs. See E(5).”
@end itemize
The GLADE package provides a utility GNATDIST for creating and executing
distributed programs. See the GLADE reference manual for further details.
@itemize *
@item
“Any events that can result in a partition becoming
inaccessible. See E.1(7).”
@end itemize
See the GLADE reference manual for full details on such events.
@itemize *
@item
“The scheduling policies, treatment of priorities, and management of
shared resources between partitions in certain cases. See E.1(11).”
@end itemize
See the GLADE reference manual for full details on these aspects of
multi-partition execution.
@itemize *
@item
“Whether the execution of the remote subprogram is
immediately aborted as a result of cancellation. See E.4(13).”
@end itemize
See the GLADE reference manual for details on the effect of abort in
a distributed application.
@itemize *
@item
“The range of type System.RPC.Partition_Id. See E.5(14).”
@end itemize
System.RPC.Partition_ID’Last is Integer’Last. See source file @code{s-rpc.ads}.
@itemize *
@item
“Implementation-defined interfaces in the PCS. See E.5(26).”
@end itemize
See the GLADE reference manual for a full description of all
implementation defined interfaces.
@itemize *
@item
“The values of named numbers in the package
@code{Decimal}. See F.2(7).”
@end itemize
@multitable {xxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxx}
@headitem
Named Number
@tab
Value
@item
`Max_Scale'
@tab
+18
@item
`Min_Scale'
@tab
-18
@item
`Min_Delta'
@tab
1.0E-18
@item
`Max_Delta'
@tab
1.0E+18
@item
`Max_Decimal_Digits'
@tab
18
@end multitable
@itemize *
@item
“The value of @code{Max_Picture_Length} in the package
@code{Text_IO.Editing}. See F.3.3(16).”
64
@item
“The value of @code{Max_Picture_Length} in the package
@code{Wide_Text_IO.Editing}. See F.3.4(5).”
64
@item
“The accuracy actually achieved by the complex elementary
functions and by other complex arithmetic operations. See G.1(1).”
@end itemize
Standard library functions are used for the complex arithmetic
operations. Only fast math mode is currently supported.
@itemize *
@item
“The sign of a zero result (or a component thereof) from
any operator or function in @code{Numerics.Generic_Complex_Types}, when
@code{Real'Signed_Zeros} is True. See G.1.1(53).”
@end itemize
The signs of zero values are as recommended by the relevant
implementation advice.
@itemize *
@item
“The sign of a zero result (or a component thereof) from
any operator or function in
@code{Numerics.Generic_Complex_Elementary_Functions}, when
@code{Real'Signed_Zeros} is @code{True}. See G.1.2(45).”
@end itemize
The signs of zero values are as recommended by the relevant
implementation advice.
@itemize *
@item
“Whether the strict mode or the relaxed mode is the
default. See G.2(2).”
@end itemize
The strict mode is the default. There is no separate relaxed mode. GNAT
provides a highly efficient implementation of strict mode.
@itemize *
@item
“The result interval in certain cases of fixed-to-float
conversion. See G.2.1(10).”
@end itemize
For cases where the result interval is implementation dependent, the
accuracy is that provided by performing all operations in 64-bit IEEE
floating-point format.
@itemize *
@item
“The result of a floating point arithmetic operation in
overflow situations, when the @code{Machine_Overflows} attribute of the
result type is @code{False}. See G.2.1(13).”
@end itemize
Infinite and NaN values are produced as dictated by the IEEE
floating-point standard.
Note that on machines that are not fully compliant with the IEEE
floating-point standard, such as Alpha, the `-mieee' compiler flag
must be used for achieving IEEE conforming behavior (although at the cost
of a significant performance penalty), so infinite and NaN values are
properly generated.
@itemize *
@item
“The result interval for division (or exponentiation by a
negative exponent), when the floating point hardware implements division
as multiplication by a reciprocal. See G.2.1(16).”
@end itemize
Not relevant, division is IEEE exact.
@itemize *
@item
“The definition of close result set, which determines the accuracy of
certain fixed point multiplications and divisions. See G.2.3(5).”
@end itemize
Operations in the close result set are performed using IEEE long format
floating-point arithmetic. The input operands are converted to
floating-point, the operation is done in floating-point, and the result
is converted to the target type.
@itemize *
@item
“Conditions on a `universal_real' operand of a fixed
point multiplication or division for which the result shall be in the
perfect result set. See G.2.3(22).”
@end itemize
The result is only defined to be in the perfect result set if the result
can be computed by a single scaling operation involving a scale factor
representable in 64 bits.
@itemize *
@item
“The result of a fixed point arithmetic operation in
overflow situations, when the @code{Machine_Overflows} attribute of the
result type is @code{False}. See G.2.3(27).”
@end itemize
Not relevant, @code{Machine_Overflows} is @code{True} for fixed-point
types.
@itemize *
@item
“The result of an elementary function reference in
overflow situations, when the @code{Machine_Overflows} attribute of the
result type is @code{False}. See G.2.4(4).”
@end itemize
IEEE infinite and Nan values are produced as appropriate.
@itemize *
@item
“The value of the angle threshold, within which certain
elementary functions, complex arithmetic operations, and complex
elementary functions yield results conforming to a maximum relative
error bound. See G.2.4(10).”
@end itemize
Information on this subject is not yet available.
@itemize *
@item
“The accuracy of certain elementary functions for
parameters beyond the angle threshold. See G.2.4(10).”
@end itemize
Information on this subject is not yet available.
@itemize *
@item
“The result of a complex arithmetic operation or complex
elementary function reference in overflow situations, when the
@code{Machine_Overflows} attribute of the corresponding real type is
@code{False}. See G.2.6(5).”
@end itemize
IEEE infinite and Nan values are produced as appropriate.
@itemize *
@item
“The accuracy of certain complex arithmetic operations and
certain complex elementary functions for parameters (or components
thereof) beyond the angle threshold. See G.2.6(8).”
@end itemize
Information on those subjects is not yet available.
@itemize *
@item
“The accuracy requirements for the subprograms Solve, Inverse,
Determinant, Eigenvalues and Eigensystem for type Real_Matrix.
See G.3.1(81).”
@end itemize
Information on those subjects is not yet available.
@itemize *
@item
“The accuracy requirements for the subprograms Solve, Inverse,
Determinant, Eigenvalues and Eigensystem for type Complex_Matrix.
See G.3.2(149).”
@end itemize
Information on those subjects is not yet available.
@itemize *
@item
“The consequences of violating No_Hidden_Indirect_Globals. See H.4(23.9).”
@end itemize
Execution is erroneous in that case.
@node Intrinsic Subprograms,Representation Clauses and Pragmas,Implementation Defined Characteristics,Top
@anchor{gnat_rm/intrinsic_subprograms doc}@anchor{271}@anchor{gnat_rm/intrinsic_subprograms id1}@anchor{272}@anchor{gnat_rm/intrinsic_subprograms intrinsic-subprograms}@anchor{c}
@chapter Intrinsic Subprograms
@geindex Intrinsic Subprograms
GNAT allows a user application program to write the declaration:
@example
pragma Import (Intrinsic, name);
@end example
providing that the name corresponds to one of the implemented intrinsic
subprograms in GNAT, and that the parameter profile of the referenced
subprogram meets the requirements. This chapter describes the set of
implemented intrinsic subprograms, and the requirements on parameter profiles.
Note that no body is supplied; as with other uses of pragma Import, the
body is supplied elsewhere (in this case by the compiler itself). Note
that any use of this feature is potentially non-portable, since the
Ada standard does not require Ada compilers to implement this feature.
@menu
* Intrinsic Operators::
* Compilation_ISO_Date::
* Compilation_Date::
* Compilation_Time::
* Enclosing_Entity::
* Exception_Information::
* Exception_Message::
* Exception_Name::
* File::
* Line::
* Shifts and Rotates::
* Source_Location::
@end menu
@node Intrinsic Operators,Compilation_ISO_Date,,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms id2}@anchor{273}@anchor{gnat_rm/intrinsic_subprograms intrinsic-operators}@anchor{274}
@section Intrinsic Operators
@geindex Intrinsic operator
All the predefined numeric operators in package Standard
in @code{pragma Import (Intrinsic,..)}
declarations. In the binary operator case, the operands must have the same
size. The operand or operands must also be appropriate for
the operator. For example, for addition, the operands must
both be floating-point or both be fixed-point, and the
right operand for @code{"**"} must have a root type of
@code{Standard.Integer'Base}.
You can use an intrinsic operator declaration as in the following example:
@example
type Int1 is new Integer;
type Int2 is new Integer;
function "+" (X1 : Int1; X2 : Int2) return Int1;
function "+" (X1 : Int1; X2 : Int2) return Int2;
pragma Import (Intrinsic, "+");
@end example
This declaration would permit ‘mixed mode’ arithmetic on items
of the differing types @code{Int1} and @code{Int2}.
It is also possible to specify such operators for private types, if the
full views are appropriate arithmetic types.
@node Compilation_ISO_Date,Compilation_Date,Intrinsic Operators,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms compilation-iso-date}@anchor{275}@anchor{gnat_rm/intrinsic_subprograms id3}@anchor{276}
@section Compilation_ISO_Date
@geindex Compilation_ISO_Date
This intrinsic subprogram is used in the implementation of the
library package @code{GNAT.Source_Info}. The only useful use of the
intrinsic import in this case is the one in this unit, so an
application program should simply call the function
@code{GNAT.Source_Info.Compilation_ISO_Date} to obtain the date of
the current compilation (in local time format YYYY-MM-DD).
@node Compilation_Date,Compilation_Time,Compilation_ISO_Date,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms compilation-date}@anchor{277}@anchor{gnat_rm/intrinsic_subprograms id4}@anchor{278}
@section Compilation_Date
@geindex Compilation_Date
Same as Compilation_ISO_Date, except the string is in the form
MMM DD YYYY.
@node Compilation_Time,Enclosing_Entity,Compilation_Date,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms compilation-time}@anchor{279}@anchor{gnat_rm/intrinsic_subprograms id5}@anchor{27a}
@section Compilation_Time
@geindex Compilation_Time
This intrinsic subprogram is used in the implementation of the
library package @code{GNAT.Source_Info}. The only useful use of the
intrinsic import in this case is the one in this unit, so an
application program should simply call the function
@code{GNAT.Source_Info.Compilation_Time} to obtain the time of
the current compilation (in local time format HH:MM:SS).
@node Enclosing_Entity,Exception_Information,Compilation_Time,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms enclosing-entity}@anchor{27b}@anchor{gnat_rm/intrinsic_subprograms id6}@anchor{27c}
@section Enclosing_Entity
@geindex Enclosing_Entity
This intrinsic subprogram is used in the implementation of the
library package @code{GNAT.Source_Info}. The only useful use of the
intrinsic import in this case is the one in this unit, so an
application program should simply call the function
@code{GNAT.Source_Info.Enclosing_Entity} to obtain the name of
the current subprogram, package, task, entry, or protected subprogram.
@node Exception_Information,Exception_Message,Enclosing_Entity,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms exception-information}@anchor{27d}@anchor{gnat_rm/intrinsic_subprograms id7}@anchor{27e}
@section Exception_Information
@geindex Exception_Information'
This intrinsic subprogram is used in the implementation of the
library package @code{GNAT.Current_Exception}. The only useful
use of the intrinsic import in this case is the one in this unit,
so an application program should simply call the function
@code{GNAT.Current_Exception.Exception_Information} to obtain
the exception information associated with the current exception.
@node Exception_Message,Exception_Name,Exception_Information,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms exception-message}@anchor{27f}@anchor{gnat_rm/intrinsic_subprograms id8}@anchor{280}
@section Exception_Message
@geindex Exception_Message
This intrinsic subprogram is used in the implementation of the
library package @code{GNAT.Current_Exception}. The only useful
use of the intrinsic import in this case is the one in this unit,
so an application program should simply call the function
@code{GNAT.Current_Exception.Exception_Message} to obtain
the message associated with the current exception.
@node Exception_Name,File,Exception_Message,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms exception-name}@anchor{281}@anchor{gnat_rm/intrinsic_subprograms id9}@anchor{282}
@section Exception_Name
@geindex Exception_Name
This intrinsic subprogram is used in the implementation of the
library package @code{GNAT.Current_Exception}. The only useful
use of the intrinsic import in this case is the one in this unit,
so an application program should simply call the function
@code{GNAT.Current_Exception.Exception_Name} to obtain
the name of the current exception.
@node File,Line,Exception_Name,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms file}@anchor{283}@anchor{gnat_rm/intrinsic_subprograms id10}@anchor{284}
@section File
@geindex File
This intrinsic subprogram is used in the implementation of the
library package @code{GNAT.Source_Info}. The only useful use of the
intrinsic import in this case is the one in this unit, so an
application program should simply call the function
@code{GNAT.Source_Info.File} to obtain the name of the current
file.
@node Line,Shifts and Rotates,File,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms id11}@anchor{285}@anchor{gnat_rm/intrinsic_subprograms line}@anchor{286}
@section Line
@geindex Line
This intrinsic subprogram is used in the implementation of the
library package @code{GNAT.Source_Info}. The only useful use of the
intrinsic import in this case is the one in this unit, so an
application program should simply call the function
@code{GNAT.Source_Info.Line} to obtain the number of the current
source line.
@node Shifts and Rotates,Source_Location,Line,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms id12}@anchor{287}@anchor{gnat_rm/intrinsic_subprograms shifts-and-rotates}@anchor{288}
@section Shifts and Rotates
@geindex Shift_Left
@geindex Shift_Right
@geindex Shift_Right_Arithmetic
@geindex Rotate_Left
@geindex Rotate_Right
In standard Ada, the shift and rotate functions are available only
for the predefined modular types in package @code{Interfaces}. However, in
GNAT it is possible to define these functions for any integer
type (signed or modular), as in this example:
@example
function Shift_Left
(Value : T;
Amount : Natural) return T
with Import, Convention => Intrinsic;
@end example
The function name must be one of
Shift_Left, Shift_Right, Shift_Right_Arithmetic, Rotate_Left, or
Rotate_Right. T must be an integer type. T’Size must be
8, 16, 32 or 64 bits; if T is modular, the modulus
must be 2**8, 2**16, 2**32 or 2**64.
The result type must be the same as the type of @code{Value}.
The shift amount must be Natural.
The formal parameter names can be anything.
A more convenient way of providing these shift operators is to use the
Provide_Shift_Operators pragma, which provides the function declarations and
corresponding pragma Import’s for all five shift functions. For signed types
the semantics of these operators is to interpret the bitwise result of the
corresponding operator for modular type. In particular, shifting a negative
number may change its sign bit to positive.
@node Source_Location,,Shifts and Rotates,Intrinsic Subprograms
@anchor{gnat_rm/intrinsic_subprograms id13}@anchor{289}@anchor{gnat_rm/intrinsic_subprograms source-location}@anchor{28a}
@section Source_Location
@geindex Source_Location
This intrinsic subprogram is used in the implementation of the
library routine @code{GNAT.Source_Info}. The only useful use of the
intrinsic import in this case is the one in this unit, so an
application program should simply call the function
@code{GNAT.Source_Info.Source_Location} to obtain the current
source file location.
@node Representation Clauses and Pragmas,Standard Library Routines,Intrinsic Subprograms,Top
@anchor{gnat_rm/representation_clauses_and_pragmas doc}@anchor{28b}@anchor{gnat_rm/representation_clauses_and_pragmas id1}@anchor{28c}@anchor{gnat_rm/representation_clauses_and_pragmas representation-clauses-and-pragmas}@anchor{d}
@chapter Representation Clauses and Pragmas
@geindex Representation Clauses
@geindex Representation Clause
@geindex Representation Pragma
@geindex Pragma
@geindex representation
This section describes the representation clauses accepted by GNAT, and
their effect on the representation of corresponding data objects.
GNAT fully implements Annex C (Systems Programming). This means that all
the implementation advice sections in chapter 13 are fully implemented.
However, these sections only require a minimal level of support for
representation clauses. GNAT provides much more extensive capabilities,
and this section describes the additional capabilities provided.
@menu
* Alignment Clauses::
* Size Clauses::
* Storage_Size Clauses::
* Size of Variant Record Objects::
* Biased Representation::
* Value_Size and Object_Size Clauses::
* Component_Size Clauses::
* Bit_Order Clauses::
* Effect of Bit_Order on Byte Ordering::
* Pragma Pack for Arrays::
* Pragma Pack for Records::
* Record Representation Clauses::
* Handling of Records with Holes::
* Enumeration Clauses::
* Address Clauses::
* Use of Address Clauses for Memory-Mapped I/O::
* Effect of Convention on Representation::
* Conventions and Anonymous Access Types::
* Determining the Representations chosen by GNAT::
@end menu
@node Alignment Clauses,Size Clauses,,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas alignment-clauses}@anchor{28d}@anchor{gnat_rm/representation_clauses_and_pragmas id2}@anchor{28e}
@section Alignment Clauses
@geindex Alignment Clause
GNAT requires that all alignment clauses specify 0 or a power of 2, and
all default alignments are always a power of 2. Specifying 0 is the
same as specifying 1.
The default alignment values are as follows:
@itemize *
@item
`Elementary Types'.
For elementary types, the alignment is the minimum of the actual size of
objects of the type divided by @code{Storage_Unit},
and the maximum alignment supported by the target.
(This maximum alignment is given by the GNAT-specific attribute
@code{Standard'Maximum_Alignment}; see @ref{19d,,Attribute Maximum_Alignment}.)
@geindex Maximum_Alignment attribute
For example, for type @code{Long_Float}, the object size is 8 bytes, and the
default alignment will be 8 on any target that supports alignments
this large, but on some targets, the maximum alignment may be smaller
than 8, in which case objects of type @code{Long_Float} will be maximally
aligned.
@item
`Arrays'.
For arrays, the alignment is equal to the alignment of the component type
for the normal case where no packing or component size is given. If the
array is packed, and the packing is effective (see separate section on
packed arrays), then the alignment will be either 4, 2, or 1 for long packed
arrays or arrays whose length is not known at compile time, depending on
whether the component size is divisible by 4, 2, or is odd. For short packed
arrays, which are handled internally as modular types, the alignment
will be as described for elementary types, e.g. a packed array of length
31 bits will have an object size of four bytes, and an alignment of 4.
@item
`Records'.
For the normal unpacked case, the alignment of a record is equal to
the maximum alignment of any of its components. For tagged records, this
includes the implicit access type used for the tag. If a pragma @code{Pack}
is used and all components are packable (see separate section on pragma
@code{Pack}), then the resulting alignment is 1, unless the layout of the
record makes it profitable to increase it.
A special case is when:
@itemize *
@item
the size of the record is given explicitly, or a
full record representation clause is given, and
@item
the size of the record is 2, 4, or 8 bytes.
@end itemize
In this case, an alignment is chosen to match the
size of the record. For example, if we have:
@example
type Small is record
A, B : Character;
end record;
for Small'Size use 16;
@end example
then the default alignment of the record type @code{Small} is 2, not 1. This
leads to more efficient code when the record is treated as a unit, and also
allows the type to specified as @code{Atomic} on architectures requiring
strict alignment.
@end itemize
An alignment clause may specify a larger alignment than the default value
up to some maximum value dependent on the target (obtainable by using the
attribute reference @code{Standard'Maximum_Alignment}). It may also specify
a smaller alignment than the default value for enumeration, integer and
fixed point types, as well as for record types, for example
@example
type V is record
A : Integer;
end record;
for V'alignment use 1;
@end example
@geindex Alignment
@geindex default
The default alignment for the type @code{V} is 4, as a result of the
Integer field in the record, but it is permissible, as shown, to
override the default alignment of the record with a smaller value.
@geindex Alignment
@geindex subtypes
Note that according to the Ada standard, an alignment clause applies only
to the first named subtype. If additional subtypes are declared, then the
compiler is allowed to choose any alignment it likes, and there is no way
to control this choice. Consider:
@example
type R is range 1 .. 10_000;
for R'Alignment use 1;
subtype RS is R range 1 .. 1000;
@end example
The alignment clause specifies an alignment of 1 for the first named subtype
@code{R} but this does not necessarily apply to @code{RS}. When writing
portable Ada code, you should avoid writing code that explicitly or
implicitly relies on the alignment of such subtypes.
For the GNAT compiler, if an explicit alignment clause is given, this
value is also used for any subsequent subtypes. So for GNAT, in the
above example, you can count on the alignment of @code{RS} being 1. But this
assumption is non-portable, and other compilers may choose different
alignments for the subtype @code{RS}.
@node Size Clauses,Storage_Size Clauses,Alignment Clauses,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas id3}@anchor{28f}@anchor{gnat_rm/representation_clauses_and_pragmas size-clauses}@anchor{290}
@section Size Clauses
@geindex Size Clause
The default size for a type @code{T} is obtainable through the
language-defined attribute @code{T'Size} and also through the
equivalent GNAT-defined attribute @code{T'Value_Size}.
For objects of type @code{T}, GNAT will generally increase the type size
so that the object size (obtainable through the GNAT-defined attribute
@code{T'Object_Size})
is a multiple of @code{T'Alignment * Storage_Unit}.
For example:
@example
type Smallint is range 1 .. 6;
type Rec is record
Y1 : integer;
Y2 : boolean;
end record;
@end example
In this example, @code{Smallint'Size} = @code{Smallint'Value_Size} = 3,
as specified by the RM rules,
but objects of this type will have a size of 8
(@code{Smallint'Object_Size} = 8),
since objects by default occupy an integral number
of storage units. On some targets, notably older
versions of the Digital Alpha, the size of stand
alone objects of this type may be 32, reflecting
the inability of the hardware to do byte load/stores.
Similarly, the size of type @code{Rec} is 40 bits
(@code{Rec'Size} = @code{Rec'Value_Size} = 40), but
the alignment is 4, so objects of this type will have
their size increased to 64 bits so that it is a multiple
of the alignment (in bits). This decision is
in accordance with the specific Implementation Advice in RM 13.3(43):
@quotation
“A @code{Size} clause should be supported for an object if the specified
@code{Size} is at least as large as its subtype’s @code{Size}, and corresponds
to a size in storage elements that is a multiple of the object’s
@code{Alignment} (if the @code{Alignment} is nonzero).”
@end quotation
An explicit size clause may be used to override the default size by
increasing it. For example, if we have:
@example
type My_Boolean is new Boolean;
for My_Boolean'Size use 32;
@end example
then values of this type will always be 32-bit long. In the case of discrete
types, the size can be increased up to 64 bits on 32-bit targets and 128 bits
on 64-bit targets, with the effect that the entire specified field is used to
hold the value, sign- or zero-extended as appropriate. If more than 64 bits
or 128 bits resp. is specified, then padding space is allocated after the
value, and a warning is issued that there are unused bits.
Similarly the size of records and arrays may be increased, and the effect
is to add padding bits after the value. This also causes a warning message
to be generated.
The largest Size value permitted in GNAT is 2**31-1. Since this is a
Size in bits, this corresponds to an object of size 256 megabytes (minus
one). This limitation is true on all targets. The reason for this
limitation is that it improves the quality of the code in many cases
if it is known that a Size value can be accommodated in an object of
type Integer.
@node Storage_Size Clauses,Size of Variant Record Objects,Size Clauses,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas id4}@anchor{291}@anchor{gnat_rm/representation_clauses_and_pragmas storage-size-clauses}@anchor{292}
@section Storage_Size Clauses
@geindex Storage_Size Clause
For tasks, the @code{Storage_Size} clause specifies the amount of space
to be allocated for the task stack. This cannot be extended, and if the
stack is exhausted, then @code{Storage_Error} will be raised (if stack
checking is enabled). Use a @code{Storage_Size} attribute definition clause,
or a @code{Storage_Size} pragma in the task definition to set the
appropriate required size. A useful technique is to include in every
task definition a pragma of the form:
@example
pragma Storage_Size (Default_Stack_Size);
@end example
Then @code{Default_Stack_Size} can be defined in a global package, and
modified as required. Any tasks requiring stack sizes different from the
default can have an appropriate alternative reference in the pragma.
You can also use the `-d' binder switch to modify the default stack
size.
For access types, the @code{Storage_Size} clause specifies the maximum
space available for allocation of objects of the type. If this space is
exceeded then @code{Storage_Error} will be raised by an allocation attempt.
In the case where the access type is declared local to a subprogram, the
use of a @code{Storage_Size} clause triggers automatic use of a special
predefined storage pool (@code{System.Pool_Size}) that ensures that all
space for the pool is automatically reclaimed on exit from the scope in
which the type is declared.
A special case recognized by the compiler is the specification of a
@code{Storage_Size} of zero for an access type. This means that no
items can be allocated from the pool, and this is recognized at compile
time, and all the overhead normally associated with maintaining a fixed
size storage pool is eliminated. Consider the following example:
@example
procedure p is
type R is array (Natural) of Character;
type P is access all R;
for P'Storage_Size use 0;
-- Above access type intended only for interfacing purposes
y : P;
procedure g (m : P);
pragma Import (C, g);
-- ...
begin
-- ...
y := new R;
end;
@end example
As indicated in this example, these dummy storage pools are often useful in
connection with interfacing where no object will ever be allocated. If you
compile the above example, you get the warning:
@example
p.adb:16:09: warning: allocation from empty storage pool
p.adb:16:09: warning: Storage_Error will be raised at run time
@end example
Of course in practice, there will not be any explicit allocators in the
case of such an access declaration.
@node Size of Variant Record Objects,Biased Representation,Storage_Size Clauses,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas id5}@anchor{293}@anchor{gnat_rm/representation_clauses_and_pragmas size-of-variant-record-objects}@anchor{294}
@section Size of Variant Record Objects
@geindex Size
@geindex variant record objects
@geindex Variant record objects
@geindex size
In the case of variant record objects, there is a question whether Size gives
information about a particular variant, or the maximum size required
for any variant. Consider the following program
@example
with Text_IO; use Text_IO;
procedure q is
type R1 (A : Boolean := False) is record
case A is
when True => X : Character;
when False => null;
end case;
end record;
V1 : R1 (False);
V2 : R1;
begin
Put_Line (Integer'Image (V1'Size));
Put_Line (Integer'Image (V2'Size));
end q;
@end example
Here we are dealing with a variant record, where the True variant
requires 16 bits, and the False variant requires 8 bits.
In the above example, both V1 and V2 contain the False variant,
which is only 8 bits long. However, the result of running the
program is:
@example
8
16
@end example
The reason for the difference here is that the discriminant value of
V1 is fixed, and will always be False. It is not possible to assign
a True variant value to V1, therefore 8 bits is sufficient. On the
other hand, in the case of V2, the initial discriminant value is
False (from the default), but it is possible to assign a True
variant value to V2, therefore 16 bits must be allocated for V2
in the general case, even fewer bits may be needed at any particular
point during the program execution.
As can be seen from the output of this program, the @code{'Size}
attribute applied to such an object in GNAT gives the actual allocated
size of the variable, which is the largest size of any of the variants.
The Ada Reference Manual is not completely clear on what choice should
be made here, but the GNAT behavior seems most consistent with the
language in the RM.
In some cases, it may be desirable to obtain the size of the current
variant, rather than the size of the largest variant. This can be
achieved in GNAT by making use of the fact that in the case of a
subprogram parameter, GNAT does indeed return the size of the current
variant (because a subprogram has no way of knowing how much space
is actually allocated for the actual).
Consider the following modified version of the above program:
@example
with Text_IO; use Text_IO;
procedure q is
type R1 (A : Boolean := False) is record
case A is
when True => X : Character;
when False => null;
end case;
end record;
V2 : R1;
function Size (V : R1) return Integer is
begin
return V'Size;
end Size;
begin
Put_Line (Integer'Image (V2'Size));
Put_Line (Integer'Image (Size (V2)));
V2 := (True, 'x');
Put_Line (Integer'Image (V2'Size));
Put_Line (Integer'Image (Size (V2)));
end q;
@end example
The output from this program is
@example
16
8
16
16
@end example
Here we see that while the @code{'Size} attribute always returns
the maximum size, regardless of the current variant value, the
@code{Size} function does indeed return the size of the current
variant value.
@node Biased Representation,Value_Size and Object_Size Clauses,Size of Variant Record Objects,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas biased-representation}@anchor{295}@anchor{gnat_rm/representation_clauses_and_pragmas id6}@anchor{296}
@section Biased Representation
@geindex Size for biased representation
@geindex Biased representation
In the case of scalars with a range starting at other than zero, it is
possible in some cases to specify a size smaller than the default minimum
value, and in such cases, GNAT uses an unsigned biased representation,
in which zero is used to represent the lower bound, and successive values
represent successive values of the type.
For example, suppose we have the declaration:
@example
type Small is range -7 .. -4;
for Small'Size use 2;
@end example
Although the default size of type @code{Small} is 4, the @code{Size}
clause is accepted by GNAT and results in the following representation
scheme:
@example
-7 is represented as 2#00#
-6 is represented as 2#01#
-5 is represented as 2#10#
-4 is represented as 2#11#
@end example
Biased representation is only used if the specified @code{Size} clause
cannot be accepted in any other manner. These reduced sizes that force
biased representation can be used for all discrete types except for
enumeration types for which a representation clause is given.
@node Value_Size and Object_Size Clauses,Component_Size Clauses,Biased Representation,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas id7}@anchor{297}@anchor{gnat_rm/representation_clauses_and_pragmas value-size-and-object-size-clauses}@anchor{298}
@section Value_Size and Object_Size Clauses
@geindex Value_Size
@geindex Object_Size
@geindex Size
@geindex of objects
In Ada 95 and Ada 2005, @code{T'Size} for a type @code{T} is the minimum
number of bits required to hold values of type @code{T}.
Although this interpretation was allowed in Ada 83, it was not required,
and this requirement in practice can cause some significant difficulties.
For example, in most Ada 83 compilers, @code{Natural'Size} was 32.
However, in Ada 95 and Ada 2005,
@code{Natural'Size} is
typically 31. This means that code may change in behavior when moving
from Ada 83 to Ada 95 or Ada 2005. For example, consider:
@example
type Rec is record
A : Natural;
B : Natural;
end record;
for Rec use record
A at 0 range 0 .. Natural'Size - 1;
B at 0 range Natural'Size .. 2 * Natural'Size - 1;
end record;
@end example
In the above code, since the typical size of @code{Natural} objects
is 32 bits and @code{Natural'Size} is 31, the above code can cause
unexpected inefficient packing in Ada 95 and Ada 2005, and in general
there are cases where the fact that the object size can exceed the
size of the type causes surprises.
To help get around this problem GNAT provides two implementation
defined attributes, @code{Value_Size} and @code{Object_Size}. When
applied to a type, these attributes yield the size of the type
(corresponding to the RM defined size attribute), and the size of
objects of the type respectively.
The @code{Object_Size} is used for determining the default size of
objects and components. This size value can be referred to using the
@code{Object_Size} attribute. The phrase ‘is used’ here means that it is
the basis of the determination of the size. The backend is free to
pad this up if necessary for efficiency, e.g., an 8-bit stand-alone
character might be stored in 32 bits on a machine with no efficient
byte access instructions such as the Alpha.
The default rules for the value of @code{Object_Size} for
discrete types are as follows:
@itemize *
@item
The @code{Object_Size} for base subtypes reflect the natural hardware
size in bits (run the compiler with `-gnatS' to find those values
for numeric types). Enumeration types and fixed-point base subtypes have
8, 16, 32, or 64 bits for this size, depending on the range of values
to be stored.
@item
The @code{Object_Size} of a subtype is the same as the
@code{Object_Size} of
the type from which it is obtained.
@item
The @code{Object_Size} of a derived base type is copied from the parent
base type, and the @code{Object_Size} of a derived first subtype is copied
from the parent first subtype.
@end itemize
The @code{Value_Size} attribute
is the (minimum) number of bits required to store a value
of the type.
This value is used to determine how tightly to pack
records or arrays with components of this type, and also affects
the semantics of unchecked conversion (unchecked conversions where
the @code{Value_Size} values differ generate a warning, and are potentially
target dependent).
The default rules for the value of @code{Value_Size} are as follows:
@itemize *
@item
The @code{Value_Size} for a base subtype is the minimum number of bits
required to store all values of the type (including the sign bit
only if negative values are possible).
@item
If a subtype statically matches the first subtype of a given type, then it has
by default the same @code{Value_Size} as the first subtype. (This is a
consequence of RM 13.1(14): “if two subtypes statically match,
then their subtype-specific aspects are the same”.)
@item
All other subtypes have a @code{Value_Size} corresponding to the minimum
number of bits required to store all values of the subtype. For
dynamic bounds, it is assumed that the value can range down or up
to the corresponding bound of the ancestor
@end itemize
The RM defined attribute @code{Size} corresponds to the
@code{Value_Size} attribute.
The @code{Size} attribute may be defined for a first-named subtype. This sets
the @code{Value_Size} of
the first-named subtype to the given value, and the
@code{Object_Size} of this first-named subtype to the given value padded up
to an appropriate boundary. It is a consequence of the default rules
above that this @code{Object_Size} will apply to all further subtypes. On the
other hand, @code{Value_Size} is affected only for the first subtype, any
dynamic subtypes obtained from it directly, and any statically matching
subtypes. The @code{Value_Size} of any other static subtypes is not affected.
@code{Value_Size} and
@code{Object_Size} may be explicitly set for any subtype using
an attribute definition clause. Note that the use of these attributes
can cause the RM 13.1(14) rule to be violated. If two access types
reference aliased objects whose subtypes have differing @code{Object_Size}
values as a result of explicit attribute definition clauses, then it
is illegal to convert from one access subtype to the other. For a more
complete description of this additional legality rule, see the
description of the @code{Object_Size} attribute.
To get a feel for the difference, consider the following examples (note
that in each case the base is @code{Short_Short_Integer} with a size of 8):
@multitable {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxx}
@headitem
Type or subtype declaration
@tab
Object_Size
@tab
Value_Size
@item
@code{type x1 is range 0 .. 5;}
@tab
8
@tab
3
@item
@code{type x2 is range 0 .. 5;}
@code{for x2'size use 12;}
@tab
16
@tab
12
@item
@code{subtype x3 is x2 range 0 .. 3;}
@tab
16
@tab
2
@item
@code{subtype x4 is x2'base range 0 .. 10;}
@tab
8
@tab
4
@item
@code{dynamic : x2'Base range -64 .. +63;}
@tab
@tab
@item
@code{subtype x5 is x2 range 0 .. dynamic;}
@tab
16
@tab
3*
@item
@code{subtype x6 is x2'base range 0 .. dynamic;}
@tab
8
@tab
7*
@end multitable
Note: the entries marked ‘*’ are not actually specified by the Ada
Reference Manual, which has nothing to say about size in the dynamic
case. What GNAT does is to allocate sufficient bits to accommodate any
possible dynamic values for the bounds at run-time.
So far, so good, but GNAT has to obey the RM rules, so the question is
under what conditions must the RM @code{Size} be used.
The following is a list
of the occasions on which the RM @code{Size} must be used:
@itemize *
@item
Component size for packed arrays or records
@item
Value of the attribute @code{Size} for a type
@item
Warning about sizes not matching for unchecked conversion
@end itemize
For record types, the @code{Object_Size} is always a multiple of the
alignment of the type (this is true for all types). In some cases the
@code{Value_Size} can be smaller. Consider:
@example
type R is record
X : Integer;
Y : Character;
end record;
@end example
On a typical 32-bit architecture, the X component will occupy four bytes
and the Y component will occupy one byte, for a total of 5 bytes. As a
result @code{R'Value_Size} will be 40 (bits) since this is the minimum size
required to store a value of this type. For example, it is permissible
to have a component of type R in an array whose component size is
specified to be 40 bits.
However, @code{R'Object_Size} will be 64 (bits). The difference is due to
the alignment requirement for objects of the record type. The X
component will require four-byte alignment because that is what type
Integer requires, whereas the Y component, a Character, will only
require 1-byte alignment. Since the alignment required for X is the
greatest of all the components’ alignments, that is the alignment
required for the enclosing record type, i.e., 4 bytes or 32 bits. As
indicated above, the actual object size must be rounded up so that it is
a multiple of the alignment value. Therefore, 40 bits rounded up to the
next multiple of 32 yields 64 bits.
For all other types, the @code{Object_Size}
and @code{Value_Size} are the same (and equivalent to the RM attribute @code{Size}).
Only @code{Size} may be specified for such types.
Note that @code{Value_Size} can be used to force biased representation
for a particular subtype. Consider this example:
@example
type R is (A, B, C, D, E, F);
subtype RAB is R range A .. B;
subtype REF is R range E .. F;
@end example
By default, @code{RAB}
has a size of 1 (sufficient to accommodate the representation
of @code{A} and @code{B}, 0 and 1), and @code{REF}
has a size of 3 (sufficient to accommodate the representation
of @code{E} and @code{F}, 4 and 5). But if we add the
following @code{Value_Size} attribute definition clause:
@example
for REF'Value_Size use 1;
@end example
then biased representation is forced for @code{REF},
and 0 will represent @code{E} and 1 will represent @code{F}.
A warning is issued when a @code{Value_Size} attribute
definition clause forces biased representation. This
warning can be turned off using @code{-gnatw.B}.
@node Component_Size Clauses,Bit_Order Clauses,Value_Size and Object_Size Clauses,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas component-size-clauses}@anchor{299}@anchor{gnat_rm/representation_clauses_and_pragmas id8}@anchor{29a}
@section Component_Size Clauses
@geindex Component_Size Clause
Normally, the value specified in a component size clause must be consistent
with the subtype of the array component with regard to size and alignment.
In other words, the value specified must be at least equal to the size
of this subtype, and must be a multiple of the alignment value.
In addition, component size clauses are allowed which cause the array
to be packed, by specifying a smaller value. A first case is for
component size values in the range 1 through 63 on 32-bit targets,
and 1 through 127 on 64-bit targets. The value specified may not
be smaller than the Size of the subtype. GNAT will accurately
honor all packing requests in this range. For example, if we have:
@example
type r is array (1 .. 8) of Natural;
for r'Component_Size use 31;
@end example
then the resulting array has a length of 31 bytes (248 bits = 8 * 31).
Of course access to the components of such an array is considerably
less efficient than if the natural component size of 32 is used.
A second case is when the subtype of the component is a record type
padded because of its default alignment. For example, if we have:
@example
type r is record
i : Integer;
j : Integer;
b : Boolean;
end record;
type a is array (1 .. 8) of r;
for a'Component_Size use 72;
@end example
then the resulting array has a length of 72 bytes, instead of 96 bytes
if the alignment of the record (4) was obeyed.
Note that there is no point in giving both a component size clause
and a pragma Pack for the same array type. if such duplicate
clauses are given, the pragma Pack will be ignored.
@node Bit_Order Clauses,Effect of Bit_Order on Byte Ordering,Component_Size Clauses,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas bit-order-clauses}@anchor{29b}@anchor{gnat_rm/representation_clauses_and_pragmas id9}@anchor{29c}
@section Bit_Order Clauses
@geindex Bit_Order Clause
@geindex bit ordering
@geindex ordering
@geindex of bits
For record subtypes, GNAT permits the specification of the @code{Bit_Order}
attribute. The specification may either correspond to the default bit
order for the target, in which case the specification has no effect and
places no additional restrictions, or it may be for the non-standard
setting (that is the opposite of the default).
In the case where the non-standard value is specified, the effect is
to renumber bits within each byte, but the ordering of bytes is not
affected. There are certain
restrictions placed on component clauses as follows:
@itemize *
@item
Components fitting within a single storage unit.
These are unrestricted, and the effect is merely to renumber bits. For
example if we are on a little-endian machine with @code{Low_Order_First}
being the default, then the following two declarations have exactly
the same effect:
@example
type R1 is record
A : Boolean;
B : Integer range 1 .. 120;
end record;
for R1 use record
A at 0 range 0 .. 0;
B at 0 range 1 .. 7;
end record;
type R2 is record
A : Boolean;
B : Integer range 1 .. 120;
end record;
for R2'Bit_Order use High_Order_First;
for R2 use record
A at 0 range 7 .. 7;
B at 0 range 0 .. 6;
end record;
@end example
The useful application here is to write the second declaration with the
@code{Bit_Order} attribute definition clause, and know that it will be treated
the same, regardless of whether the target is little-endian or big-endian.
@item
Components occupying an integral number of bytes.
These are components that exactly fit in two or more bytes. Such component
declarations are allowed, but have no effect, since it is important to realize
that the @code{Bit_Order} specification does not affect the ordering of bytes.
In particular, the following attempt at getting an endian-independent integer
does not work:
@example
type R2 is record
A : Integer;
end record;
for R2'Bit_Order use High_Order_First;
for R2 use record
A at 0 range 0 .. 31;
end record;
@end example
This declaration will result in a little-endian integer on a
little-endian machine, and a big-endian integer on a big-endian machine.
If byte flipping is required for interoperability between big- and
little-endian machines, this must be explicitly programmed. This capability
is not provided by @code{Bit_Order}.
@item
Components that are positioned across byte boundaries.
but do not occupy an integral number of bytes. Given that bytes are not
reordered, such fields would occupy a non-contiguous sequence of bits
in memory, requiring non-trivial code to reassemble. They are for this
reason not permitted, and any component clause specifying such a layout
will be flagged as illegal by GNAT.
@end itemize
Since the misconception that Bit_Order automatically deals with all
endian-related incompatibilities is a common one, the specification of
a component field that is an integral number of bytes will always
generate a warning. This warning may be suppressed using @code{pragma Warnings (Off)}
if desired. The following section contains additional
details regarding the issue of byte ordering.
@node Effect of Bit_Order on Byte Ordering,Pragma Pack for Arrays,Bit_Order Clauses,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas effect-of-bit-order-on-byte-ordering}@anchor{29d}@anchor{gnat_rm/representation_clauses_and_pragmas id10}@anchor{29e}
@section Effect of Bit_Order on Byte Ordering
@geindex byte ordering
@geindex ordering
@geindex of bytes
In this section we will review the effect of the @code{Bit_Order} attribute
definition clause on byte ordering. Briefly, it has no effect at all, but
a detailed example will be helpful. Before giving this
example, let us review the precise
definition of the effect of defining @code{Bit_Order}. The effect of a
non-standard bit order is described in section 13.5.3 of the Ada
Reference Manual:
@quotation
“2 A bit ordering is a method of interpreting the meaning of
the storage place attributes.”
@end quotation
To understand the precise definition of storage place attributes in
this context, we visit section 13.5.1 of the manual:
@quotation
“13 A record_representation_clause (without the mod_clause)
specifies the layout. The storage place attributes (see 13.5.2)
are taken from the values of the position, first_bit, and last_bit
expressions after normalizing those values so that first_bit is
less than Storage_Unit.”
@end quotation
The critical point here is that storage places are taken from
the values after normalization, not before. So the @code{Bit_Order}
interpretation applies to normalized values. The interpretation
is described in the later part of the 13.5.3 paragraph:
@quotation
“2 A bit ordering is a method of interpreting the meaning of
the storage place attributes. High_Order_First (known in the
vernacular as ‘big endian’) means that the first bit of a
storage element (bit 0) is the most significant bit (interpreting
the sequence of bits that represent a component as an unsigned
integer value). Low_Order_First (known in the vernacular as
‘little endian’) means the opposite: the first bit is the
least significant.”
@end quotation
Note that the numbering is with respect to the bits of a storage
unit. In other words, the specification affects only the numbering
of bits within a single storage unit.
We can make the effect clearer by giving an example.
Suppose that we have an external device which presents two bytes, the first
byte presented, which is the first (low addressed byte) of the two byte
record is called Master, and the second byte is called Slave.
The left most (most significant) bit is called Control for each byte, and
the remaining 7 bits are called V1, V2, … V7, where V7 is the rightmost
(least significant) bit.
On a big-endian machine, we can write the following representation clause
@example
type Data is record
Master_Control : Bit;
Master_V1 : Bit;
Master_V2 : Bit;
Master_V3 : Bit;
Master_V4 : Bit;
Master_V5 : Bit;
Master_V6 : Bit;
Master_V7 : Bit;
Slave_Control : Bit;
Slave_V1 : Bit;
Slave_V2 : Bit;
Slave_V3 : Bit;
Slave_V4 : Bit;
Slave_V5 : Bit;
Slave_V6 : Bit;
Slave_V7 : Bit;
end record;
for Data use record
Master_Control at 0 range 0 .. 0;
Master_V1 at 0 range 1 .. 1;
Master_V2 at 0 range 2 .. 2;
Master_V3 at 0 range 3 .. 3;
Master_V4 at 0 range 4 .. 4;
Master_V5 at 0 range 5 .. 5;
Master_V6 at 0 range 6 .. 6;
Master_V7 at 0 range 7 .. 7;
Slave_Control at 1 range 0 .. 0;
Slave_V1 at 1 range 1 .. 1;
Slave_V2 at 1 range 2 .. 2;
Slave_V3 at 1 range 3 .. 3;
Slave_V4 at 1 range 4 .. 4;
Slave_V5 at 1 range 5 .. 5;
Slave_V6 at 1 range 6 .. 6;
Slave_V7 at 1 range 7 .. 7;
end record;
@end example
Now if we move this to a little endian machine, then the bit ordering within
the byte is backwards, so we have to rewrite the record rep clause as:
@example
for Data use record
Master_Control at 0 range 7 .. 7;
Master_V1 at 0 range 6 .. 6;
Master_V2 at 0 range 5 .. 5;
Master_V3 at 0 range 4 .. 4;
Master_V4 at 0 range 3 .. 3;
Master_V5 at 0 range 2 .. 2;
Master_V6 at 0 range 1 .. 1;
Master_V7 at 0 range 0 .. 0;
Slave_Control at 1 range 7 .. 7;
Slave_V1 at 1 range 6 .. 6;
Slave_V2 at 1 range 5 .. 5;
Slave_V3 at 1 range 4 .. 4;
Slave_V4 at 1 range 3 .. 3;
Slave_V5 at 1 range 2 .. 2;
Slave_V6 at 1 range 1 .. 1;
Slave_V7 at 1 range 0 .. 0;
end record;
@end example
It is a nuisance to have to rewrite the clause, especially if
the code has to be maintained on both machines. However,
this is a case that we can handle with the
@code{Bit_Order} attribute if it is implemented.
Note that the implementation is not required on byte addressed
machines, but it is indeed implemented in GNAT.
This means that we can simply use the
first record clause, together with the declaration
@example
for Data'Bit_Order use High_Order_First;
@end example
and the effect is what is desired, namely the layout is exactly the same,
independent of whether the code is compiled on a big-endian or little-endian
machine.
The important point to understand is that byte ordering is not affected.
A @code{Bit_Order} attribute definition never affects which byte a field
ends up in, only where it ends up in that byte.
To make this clear, let us rewrite the record rep clause of the previous
example as:
@example
for Data'Bit_Order use High_Order_First;
for Data use record
Master_Control at 0 range 0 .. 0;
Master_V1 at 0 range 1 .. 1;
Master_V2 at 0 range 2 .. 2;
Master_V3 at 0 range 3 .. 3;
Master_V4 at 0 range 4 .. 4;
Master_V5 at 0 range 5 .. 5;
Master_V6 at 0 range 6 .. 6;
Master_V7 at 0 range 7 .. 7;
Slave_Control at 0 range 8 .. 8;
Slave_V1 at 0 range 9 .. 9;
Slave_V2 at 0 range 10 .. 10;
Slave_V3 at 0 range 11 .. 11;
Slave_V4 at 0 range 12 .. 12;
Slave_V5 at 0 range 13 .. 13;
Slave_V6 at 0 range 14 .. 14;
Slave_V7 at 0 range 15 .. 15;
end record;
@end example
This is exactly equivalent to saying (a repeat of the first example):
@example
for Data'Bit_Order use High_Order_First;
for Data use record
Master_Control at 0 range 0 .. 0;
Master_V1 at 0 range 1 .. 1;
Master_V2 at 0 range 2 .. 2;
Master_V3 at 0 range 3 .. 3;
Master_V4 at 0 range 4 .. 4;
Master_V5 at 0 range 5 .. 5;
Master_V6 at 0 range 6 .. 6;
Master_V7 at 0 range 7 .. 7;
Slave_Control at 1 range 0 .. 0;
Slave_V1 at 1 range 1 .. 1;
Slave_V2 at 1 range 2 .. 2;
Slave_V3 at 1 range 3 .. 3;
Slave_V4 at 1 range 4 .. 4;
Slave_V5 at 1 range 5 .. 5;
Slave_V6 at 1 range 6 .. 6;
Slave_V7 at 1 range 7 .. 7;
end record;
@end example
Why are they equivalent? Well take a specific field, the @code{Slave_V2}
field. The storage place attributes are obtained by normalizing the
values given so that the @code{First_Bit} value is less than 8. After
normalizing the values (0,10,10) we get (1,2,2) which is exactly what
we specified in the other case.
Now one might expect that the @code{Bit_Order} attribute might affect
bit numbering within the entire record component (two bytes in this
case, thus affecting which byte fields end up in), but that is not
the way this feature is defined, it only affects numbering of bits,
not which byte they end up in.
Consequently it never makes sense to specify a starting bit number
greater than 7 (for a byte addressable field) if an attribute
definition for @code{Bit_Order} has been given, and indeed it
may be actively confusing to specify such a value, so the compiler
generates a warning for such usage.
If you do need to control byte ordering then appropriate conditional
values must be used. If in our example, the slave byte came first on
some machines we might write:
@example
Master_Byte_First constant Boolean := ...;
Master_Byte : constant Natural :=
1 - Boolean'Pos (Master_Byte_First);
Slave_Byte : constant Natural :=
Boolean'Pos (Master_Byte_First);
for Data'Bit_Order use High_Order_First;
for Data use record
Master_Control at Master_Byte range 0 .. 0;
Master_V1 at Master_Byte range 1 .. 1;
Master_V2 at Master_Byte range 2 .. 2;
Master_V3 at Master_Byte range 3 .. 3;
Master_V4 at Master_Byte range 4 .. 4;
Master_V5 at Master_Byte range 5 .. 5;
Master_V6 at Master_Byte range 6 .. 6;
Master_V7 at Master_Byte range 7 .. 7;
Slave_Control at Slave_Byte range 0 .. 0;
Slave_V1 at Slave_Byte range 1 .. 1;
Slave_V2 at Slave_Byte range 2 .. 2;
Slave_V3 at Slave_Byte range 3 .. 3;
Slave_V4 at Slave_Byte range 4 .. 4;
Slave_V5 at Slave_Byte range 5 .. 5;
Slave_V6 at Slave_Byte range 6 .. 6;
Slave_V7 at Slave_Byte range 7 .. 7;
end record;
@end example
Now to switch between machines, all that is necessary is
to set the boolean constant @code{Master_Byte_First} in
an appropriate manner.
@node Pragma Pack for Arrays,Pragma Pack for Records,Effect of Bit_Order on Byte Ordering,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas id11}@anchor{29f}@anchor{gnat_rm/representation_clauses_and_pragmas pragma-pack-for-arrays}@anchor{2a0}
@section Pragma Pack for Arrays
@geindex Pragma Pack (for arrays)
Pragma @code{Pack} applied to an array has an effect that depends upon whether the
component type is `packable'. For a component type to be `packable', it must
be one of the following cases:
@itemize *
@item
Any elementary type.
@item
Any small packed array type with a static size.
@item
Any small simple record type with a static size.
@end itemize
For all these cases, if the component subtype size is in the range
1 through 63 on 32-bit targets, and 1 through 127 on 64-bit targets,
then the effect of the pragma @code{Pack} is exactly as though a
component size were specified giving the component subtype size.
All other types are non-packable, they occupy an integral number of storage
units and the only effect of pragma Pack is to remove alignment gaps.
For example if we have:
@example
type r is range 0 .. 17;
type ar is array (1 .. 8) of r;
pragma Pack (ar);
@end example
Then the component size of @code{ar} will be set to 5 (i.e., to @code{r'size},
and the size of the array @code{ar} will be exactly 40 bits).
Note that in some cases this rather fierce approach to packing can produce
unexpected effects. For example, in Ada 95 and Ada 2005,
subtype @code{Natural} typically has a size of 31, meaning that if you
pack an array of @code{Natural}, you get 31-bit
close packing, which saves a few bits, but results in far less efficient
access. Since many other Ada compilers will ignore such a packing request,
GNAT will generate a warning on some uses of pragma @code{Pack} that it guesses
might not be what is intended. You can easily remove this warning by
using an explicit @code{Component_Size} setting instead, which never generates
a warning, since the intention of the programmer is clear in this case.
GNAT treats packed arrays in one of two ways. If the size of the array is
known at compile time and is at most 64 bits on 32-bit targets, and at most
128 bits on 64-bit targets, then internally the array is represented as a
single modular type, of exactly the appropriate number of bits. If the
length is greater than 64 bits on 32-bit targets, and greater than 128
bits on 64-bit targets, or is not known at compile time, then the packed
array is represented as an array of bytes, and its length is always a
multiple of 8 bits.
Note that to represent a packed array as a modular type, the alignment must
be suitable for the modular type involved. For example, on typical machines
a 32-bit packed array will be represented by a 32-bit modular integer with
an alignment of four bytes. If you explicitly override the default alignment
with an alignment clause that is too small, the modular representation
cannot be used. For example, consider the following set of declarations:
@example
type R is range 1 .. 3;
type S is array (1 .. 31) of R;
for S'Component_Size use 2;
for S'Size use 62;
for S'Alignment use 1;
@end example
If the alignment clause were not present, then a 62-bit modular
representation would be chosen (typically with an alignment of 4 or 8
bytes depending on the target). But the default alignment is overridden
with the explicit alignment clause. This means that the modular
representation cannot be used, and instead the array of bytes
representation must be used, meaning that the length must be a multiple
of 8. Thus the above set of declarations will result in a diagnostic
rejecting the size clause and noting that the minimum size allowed is 64.
@geindex Pragma Pack (for type Natural)
@geindex Pragma Pack warning
One special case that is worth noting occurs when the base type of the
component size is 8/16/32 and the subtype is one bit less. Notably this
occurs with subtype @code{Natural}. Consider:
@example
type Arr is array (1 .. 32) of Natural;
pragma Pack (Arr);
@end example
In all commonly used Ada 83 compilers, this pragma Pack would be ignored,
since typically @code{Natural'Size} is 32 in Ada 83, and in any case most
Ada 83 compilers did not attempt 31 bit packing.
In Ada 95 and Ada 2005, @code{Natural'Size} is required to be 31. Furthermore,
GNAT really does pack 31-bit subtype to 31 bits. This may result in a
substantial unintended performance penalty when porting legacy Ada 83 code.
To help prevent this, GNAT generates a warning in such cases. If you really
want 31 bit packing in a case like this, you can set the component size
explicitly:
@example
type Arr is array (1 .. 32) of Natural;
for Arr'Component_Size use 31;
@end example
Here 31-bit packing is achieved as required, and no warning is generated,
since in this case the programmer intention is clear.
@node Pragma Pack for Records,Record Representation Clauses,Pragma Pack for Arrays,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas id12}@anchor{2a1}@anchor{gnat_rm/representation_clauses_and_pragmas pragma-pack-for-records}@anchor{2a2}
@section Pragma Pack for Records
@geindex Pragma Pack (for records)
Pragma @code{Pack} applied to a record will pack the components to reduce
wasted space from alignment gaps and by reducing the amount of space
taken by components. We distinguish between `packable' components and
`non-packable' components.
Components of the following types are considered packable:
@itemize *
@item
Components of an elementary type are packable unless they are aliased,
independent or atomic.
@item
Small packed arrays, where the size is statically known, are represented
internally as modular integers, and so they are also packable.
@item
Small simple records, where the size is statically known, are also packable.
@end itemize
For all these cases, if the @code{'Size} value is in the range 1 through 64 on
32-bit targets, and 1 through 128 on 64-bit targets, the components occupy
the exact number of bits corresponding to this value and are packed with no
padding bits, i.e. they can start on an arbitrary bit boundary.
All other types are non-packable, they occupy an integral number of storage
units and the only effect of pragma @code{Pack} is to remove alignment gaps.
For example, consider the record
@example
type Rb1 is array (1 .. 13) of Boolean;
pragma Pack (Rb1);
type Rb2 is array (1 .. 65) of Boolean;
pragma Pack (Rb2);
type AF is new Float with Atomic;
type X2 is record
L1 : Boolean;
L2 : Duration;
L3 : AF;
L4 : Boolean;
L5 : Rb1;
L6 : Rb2;
end record;
pragma Pack (X2);
@end example
The representation for the record @code{X2} is as follows on 32-bit targets:
@example
for X2'Size use 224;
for X2 use record
L1 at 0 range 0 .. 0;
L2 at 0 range 1 .. 64;
L3 at 12 range 0 .. 31;
L4 at 16 range 0 .. 0;
L5 at 16 range 1 .. 13;
L6 at 18 range 0 .. 71;
end record;
@end example
Studying this example, we see that the packable fields @code{L1}
and @code{L2} are of length equal to their sizes, and placed at
specific bit boundaries (and not byte boundaries) to eliminate
padding. But @code{L3} is of a non-packable float type (because
it is aliased), so it is on the next appropriate alignment boundary.
The next two fields are fully packable, so @code{L4} and @code{L5} are
minimally packed with no gaps. However, type @code{Rb2} is a packed
array that is longer than 64 bits, so it is itself non-packable on
32-bit targets. Thus the @code{L6} field is aligned to the next byte
boundary, and takes an integral number of bytes, i.e., 72 bits.
@node Record Representation Clauses,Handling of Records with Holes,Pragma Pack for Records,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas id13}@anchor{2a3}@anchor{gnat_rm/representation_clauses_and_pragmas record-representation-clauses}@anchor{2a4}
@section Record Representation Clauses
@geindex Record Representation Clause
Record representation clauses may be given for all record types, including
types obtained by record extension. Component clauses are allowed for any
static component. The restrictions on component clauses depend on the type
of the component.
@geindex Component Clause
For all components of an elementary type, the only restriction on component
clauses is that the size must be at least the @code{'Size} value of the type
(actually the Value_Size). There are no restrictions due to alignment,
and such components may freely cross storage boundaries.
Packed arrays with a size up to and including 64 bits on 32-bit targets,
and up to and including 128 bits on 64-bit targets, are represented
internally using a modular type with the appropriate number of bits, and
thus the same lack of restriction applies. For example, if you declare:
@example
type R is array (1 .. 49) of Boolean;
pragma Pack (R);
for R'Size use 49;
@end example
then a component clause for a component of type @code{R} may start on any
specified bit boundary, and may specify a value of 49 bits or greater.
For packed bit arrays that are longer than 64 bits on 32-bit targets,
and longer than 128 bits on 64-bit targets, there are two cases. If the
component size is a power of 2 (1,2,4,8,16,32,64 bits), including the
important case of single bits or boolean values, then there are no
limitations on placement of such components, and they may start and
end at arbitrary bit boundaries.
If the component size is not a power of 2 (e.g., 3 or 5), then an array
of this type must always be placed on on a storage unit (byte) boundary
and occupy an integral number of storage units (bytes). Any component
clause that does not meet this requirement will be rejected.
Any aliased component, or component of an aliased type, must have its
normal alignment and size. A component clause that does not meet this
requirement will be rejected.
The tag field of a tagged type always occupies an address sized field at
the start of the record. No component clause may attempt to overlay this
tag. When a tagged type appears as a component, the tag field must have
proper alignment
In the case of a record extension @code{T1}, of a type @code{T}, no component
clause applied to the type @code{T1} can specify a storage location that
would overlap the first @code{T'Object_Size} bits of the record.
For all other component types, including non-bit-packed arrays,
the component can be placed at an arbitrary bit boundary,
so for example, the following is permitted:
@example
type R is array (1 .. 10) of Boolean;
for R'Size use 80;
type Q is record
G, H : Boolean;
L, M : R;
end record;
for Q use record
G at 0 range 0 .. 0;
H at 0 range 1 .. 1;
L at 0 range 2 .. 81;
R at 0 range 82 .. 161;
end record;
@end example
@node Handling of Records with Holes,Enumeration Clauses,Record Representation Clauses,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas handling-of-records-with-holes}@anchor{2a5}@anchor{gnat_rm/representation_clauses_and_pragmas id14}@anchor{2a6}
@section Handling of Records with Holes
@geindex Handling of Records with Holes
As a result of alignment considerations, records may contain “holes”
or gaps which do not correspond to the data bits of any of the components.
Record representation clauses can also result in holes in records.
GNAT does not attempt to clear these holes, so in record objects,
they should be considered to hold undefined rubbish. The generated
equality routine just tests components so does not access these
undefined bits, and assignment and copy operations may or may not
preserve the contents of these holes (for assignments, the holes
in the target will in practice contain either the bits that are
present in the holes in the source, or the bits that were present
in the target before the assignment).
If it is necessary to ensure that holes in records have all zero
bits, then record objects for which this initialization is desired
should be explicitly set to all zero values using Unchecked_Conversion
or address overlays. For example
@example
type HRec is record
C : Character;
I : Integer;
end record;
@end example
On typical machines, integers need to be aligned on a four-byte
boundary, resulting in three bytes of undefined rubbish following
the 8-bit field for C. To ensure that the hole in a variable of
type HRec is set to all zero bits,
you could for example do:
@example
type Base is record
Dummy1, Dummy2 : Integer := 0;
end record;
BaseVar : Base;
RealVar : Hrec;
for RealVar'Address use BaseVar'Address;
@end example
Now the 8-bytes of the value of RealVar start out containing all zero
bits. A safer approach is to just define dummy fields, avoiding the
holes, as in:
@example
type HRec is record
C : Character;
Dummy1 : Short_Short_Integer := 0;
Dummy2 : Short_Short_Integer := 0;
Dummy3 : Short_Short_Integer := 0;
I : Integer;
end record;
@end example
And to make absolutely sure that the intent of this is followed, you
can use representation clauses:
@example
for Hrec use record
C at 0 range 0 .. 7;
Dummy1 at 1 range 0 .. 7;
Dummy2 at 2 range 0 .. 7;
Dummy3 at 3 range 0 .. 7;
I at 4 range 0 .. 31;
end record;
for Hrec'Size use 64;
@end example
@node Enumeration Clauses,Address Clauses,Handling of Records with Holes,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas enumeration-clauses}@anchor{2a7}@anchor{gnat_rm/representation_clauses_and_pragmas id15}@anchor{2a8}
@section Enumeration Clauses
The only restriction on enumeration clauses is that the range of values
must be representable. For the signed case, if one or more of the
representation values are negative, all values must be in the range:
@example
System.Min_Int .. System.Max_Int
@end example
For the unsigned case, where all values are nonnegative, the values must
be in the range:
@example
0 .. System.Max_Binary_Modulus;
@end example
A `confirming' representation clause is one in which the values range
from 0 in sequence, i.e., a clause that confirms the default representation
for an enumeration type.
Such a confirming representation
is permitted by these rules, and is specially recognized by the compiler so
that no extra overhead results from the use of such a clause.
If an array has an index type which is an enumeration type to which an
enumeration clause has been applied, then the array is stored in a compact
manner. Consider the declarations:
@example
type r is (A, B, C);
for r use (A => 1, B => 5, C => 10);
type t is array (r) of Character;
@end example
The array type t corresponds to a vector with exactly three elements and
has a default size equal to @code{3*Character'Size}. This ensures efficient
use of space, but means that accesses to elements of the array will incur
the overhead of converting representation values to the corresponding
positional values, (i.e., the value delivered by the @code{Pos} attribute).
@node Address Clauses,Use of Address Clauses for Memory-Mapped I/O,Enumeration Clauses,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas address-clauses}@anchor{2a9}@anchor{gnat_rm/representation_clauses_and_pragmas id16}@anchor{2aa}
@section Address Clauses
@geindex Address Clause
The reference manual allows a general restriction on representation clauses,
as found in RM 13.1(22):
@quotation
“An implementation need not support representation
items containing nonstatic expressions, except that
an implementation should support a representation item
for a given entity if each nonstatic expression in the
representation item is a name that statically denotes
a constant declared before the entity.”
@end quotation
In practice this is applicable only to address clauses, since this is the
only case in which a nonstatic expression is permitted by the syntax. As
the AARM notes in sections 13.1 (22.a-22.h):
@quotation
22.a Reason: This is to avoid the following sort of thing:
22.b X : Integer := F(…);
Y : Address := G(…);
for X’Address use Y;
22.c In the above, we have to evaluate the
initialization expression for X before we
know where to put the result. This seems
like an unreasonable implementation burden.
22.d The above code should instead be written
like this:
22.e Y : constant Address := G(…);
X : Integer := F(…);
for X’Address use Y;
22.f This allows the expression ‘Y’ to be safely
evaluated before X is created.
22.g The constant could be a formal parameter of mode in.
22.h An implementation can support other nonstatic
expressions if it wants to. Expressions of type
Address are hardly ever static, but their value
might be known at compile time anyway in many
cases.
@end quotation
GNAT does indeed permit many additional cases of nonstatic expressions. In
particular, if the type involved is elementary there are no restrictions
(since in this case, holding a temporary copy of the initialization value,
if one is present, is inexpensive). In addition, if there is no implicit or
explicit initialization, then there are no restrictions. GNAT will reject
only the case where all three of these conditions hold:
@itemize *
@item
The type of the item is non-elementary (e.g., a record or array).
@item
There is explicit or implicit initialization required for the object.
Note that access values are always implicitly initialized.
@item
The address value is nonstatic. Here GNAT is more permissive than the
RM, and allows the address value to be the address of a previously declared
stand-alone variable, as long as it does not itself have an address clause.
@example
Anchor : Some_Initialized_Type;
Overlay : Some_Initialized_Type;
for Overlay'Address use Anchor'Address;
@end example
However, the prefix of the address clause cannot be an array component, or
a component of a discriminated record.
@end itemize
As noted above in section 22.h, address values are typically nonstatic. In
particular the To_Address function, even if applied to a literal value, is
a nonstatic function call. To avoid this minor annoyance, GNAT provides
the implementation defined attribute ‘To_Address. The following two
expressions have identical values:
@geindex Attribute
@geindex To_Address
@example
To_Address (16#1234_0000#)
System'To_Address (16#1234_0000#);
@end example
except that the second form is considered to be a static expression, and
thus when used as an address clause value is always permitted.
Additionally, GNAT treats as static an address clause that is an
unchecked_conversion of a static integer value. This simplifies the porting
of legacy code, and provides a portable equivalent to the GNAT attribute
@code{To_Address}.
Another issue with address clauses is the interaction with alignment
requirements. When an address clause is given for an object, the address
value must be consistent with the alignment of the object (which is usually
the same as the alignment of the type of the object). If an address clause
is given that specifies an inappropriately aligned address value, then the
program execution is erroneous.
Since this source of erroneous behavior can have unfortunate effects on
machines with strict alignment requirements, GNAT
checks (at compile time if possible, generating a warning, or at execution
time with a run-time check) that the alignment is appropriate. If the
run-time check fails, then @code{Program_Error} is raised. This run-time
check is suppressed if range checks are suppressed, or if the special GNAT
check Alignment_Check is suppressed, or if
@code{pragma Restrictions (No_Elaboration_Code)} is in effect. It is also
suppressed by default on non-strict alignment machines (such as the x86).
In some cases, GNAT does not support an address specification (using either
form of aspect specification syntax) for the declaration of an object that has
an indefinite nominal subtype. An object declaration has an indefinite
nominal subtype if it takes its bounds (for an array type), discriminant
values (for a discriminated type whose discriminants lack defaults), or tag
(for a class-wide type) from its initial value, as in
@example
X : String := Some_Function_Call;
-- String has no constraint, so bounds for X come from function call
@end example
This restriction does not apply if the size of the object’s initial value is
known at compile time and the type of the object is not class-wide.
@geindex Export
An address clause cannot be given for an exported object. More
understandably the real restriction is that objects with an address
clause cannot be exported. This is because such variables are not
defined by the Ada program, so there is no external object to export.
@geindex Import
It is permissible to give an address clause and a pragma Import for the
same object. In this case, the variable is not really defined by the
Ada program, so there is no external symbol to be linked. The link name
and the external name are ignored in this case. The reason that we allow this
combination is that it provides a useful idiom to avoid unwanted
initializations on objects with address clauses.
When an address clause is given for an object that has implicit or
explicit initialization, then by default initialization takes place. This
means that the effect of the object declaration is to overwrite the
memory at the specified address. This is almost always not what the
programmer wants, so GNAT will output a warning:
@example
with System;
package G is
type R is record
M : Integer := 0;
end record;
Ext : R;
for Ext'Address use System'To_Address (16#1234_1234#);
|
>>> warning: implicit initialization of "Ext" may
modify overlaid storage
>>> warning: use pragma Import for "Ext" to suppress
initialization (RM B(24))
end G;
@end example
As indicated by the warning message, the solution is to use a (dummy) pragma
Import to suppress this initialization. The pragma tell the compiler that the
object is declared and initialized elsewhere. The following package compiles
without warnings (and the initialization is suppressed):
@example
with System;
package G is
type R is record
M : Integer := 0;
end record;
Ext : R;
for Ext'Address use System'To_Address (16#1234_1234#);
pragma Import (Ada, Ext);
end G;
@end example
A final issue with address clauses involves their use for overlaying
variables, as in the following example:
@geindex Overlaying of objects
@example
A : Integer;
B : Integer;
for B'Address use A'Address;
@end example
or alternatively, using the form recommended by the RM:
@example
A : Integer;
Addr : constant Address := A'Address;
B : Integer;
for B'Address use Addr;
@end example
In both of these cases, @code{A} and @code{B} become aliased to one another
via the address clause. This use of address clauses to overlay
variables, achieving an effect similar to unchecked conversion
was erroneous in Ada 83, but in Ada 95 and Ada 2005
the effect is implementation defined. Furthermore, the
Ada RM specifically recommends that in a situation
like this, @code{B} should be subject to the following
implementation advice (RM 13.3(19)):
@quotation
“19 If the Address of an object is specified, or it is imported
or exported, then the implementation should not perform
optimizations based on assumptions of no aliases.”
@end quotation
GNAT follows this recommendation, and goes further by also applying
this recommendation to the overlaid variable (@code{A} in the above example)
in this case. This means that the overlay works “as expected”, in that
a modification to one of the variables will affect the value of the other.
More generally, GNAT interprets this recommendation conservatively for
address clauses: in the cases other than overlays, it considers that the
object is effectively subject to pragma @code{Volatile} and implements the
associated semantics.
Note that when address clause overlays are used in this way, there is an
issue of unintentional initialization, as shown by this example:
@example
package Overwrite_Record is
type R is record
A : Character := 'C';
B : Character := 'A';
end record;
X : Short_Integer := 3;
Y : R;
for Y'Address use X'Address;
|
>>> warning: default initialization of "Y" may
modify "X", use pragma Import for "Y" to
suppress initialization (RM B.1(24))
end Overwrite_Record;
@end example
Here the default initialization of @code{Y} will clobber the value
of @code{X}, which justifies the warning. The warning notes that
this effect can be eliminated by adding a @code{pragma Import}
which suppresses the initialization:
@example
package Overwrite_Record is
type R is record
A : Character := 'C';
B : Character := 'A';
end record;
X : Short_Integer := 3;
Y : R;
for Y'Address use X'Address;
pragma Import (Ada, Y);
end Overwrite_Record;
@end example
Note that the use of @code{pragma Initialize_Scalars} may cause variables to
be initialized when they would not otherwise have been in the absence
of the use of this pragma. This may cause an overlay to have this
unintended clobbering effect. The compiler avoids this for scalar
types, but not for composite objects (where in general the effect
of @code{Initialize_Scalars} is part of the initialization routine
for the composite object):
@example
pragma Initialize_Scalars;
with Ada.Text_IO; use Ada.Text_IO;
procedure Overwrite_Array is
type Arr is array (1 .. 5) of Integer;
X : Arr := (others => 1);
A : Arr;
for A'Address use X'Address;
|
>>> warning: default initialization of "A" may
modify "X", use pragma Import for "A" to
suppress initialization (RM B.1(24))
begin
if X /= Arr'(others => 1) then
Put_Line ("X was clobbered");
else
Put_Line ("X was not clobbered");
end if;
end Overwrite_Array;
@end example
The above program generates the warning as shown, and at execution
time, prints @code{X was clobbered}. If the @code{pragma Import} is
added as suggested:
@example
pragma Initialize_Scalars;
with Ada.Text_IO; use Ada.Text_IO;
procedure Overwrite_Array is
type Arr is array (1 .. 5) of Integer;
X : Arr := (others => 1);
A : Arr;
for A'Address use X'Address;
pragma Import (Ada, A);
begin
if X /= Arr'(others => 1) then
Put_Line ("X was clobbered");
else
Put_Line ("X was not clobbered");
end if;
end Overwrite_Array;
@end example
then the program compiles without the warning and when run will generate
the output @code{X was not clobbered}.
@node Use of Address Clauses for Memory-Mapped I/O,Effect of Convention on Representation,Address Clauses,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas id17}@anchor{2ab}@anchor{gnat_rm/representation_clauses_and_pragmas use-of-address-clauses-for-memory-mapped-i-o}@anchor{2ac}
@section Use of Address Clauses for Memory-Mapped I/O
@geindex Memory-mapped I/O
A common pattern is to use an address clause to map an atomic variable to
a location in memory that corresponds to a memory-mapped I/O operation or
operations, for example:
@example
type Mem_Word is record
A,B,C,D : Byte;
end record;
pragma Atomic (Mem_Word);
for Mem_Word_Size use 32;
Mem : Mem_Word;
for Mem'Address use some-address;
...
Temp := Mem;
Temp.A := 32;
Mem := Temp;
@end example
For a full access (reference or modification) of the variable (Mem) in this
case, as in the above examples, GNAT guarantees that the entire atomic word
will be accessed, in accordance with the RM C.6(15) clause.
A problem arises with a component access such as:
@example
Mem.A := 32;
@end example
Note that the component A is not declared as atomic. This means that it is
not clear what this assignment means. It could correspond to full word read
and write as given in the first example, or on architectures that supported
such an operation it might be a single byte store instruction. The RM does
not have anything to say in this situation, and GNAT does not make any
guarantee. The code generated may vary from target to target. GNAT will issue
a warning in such a case:
@example
Mem.A := 32;
|
>>> warning: access to non-atomic component of atomic array,
may cause unexpected accesses to atomic object
@end example
It is best to be explicit in this situation, by either declaring the
components to be atomic if you want the byte store, or explicitly writing
the full word access sequence if that is what the hardware requires.
Alternatively, if the full word access sequence is required, GNAT also
provides the pragma @code{Volatile_Full_Access} which can be used in lieu of
pragma @code{Atomic} and will give the additional guarantee.
@node Effect of Convention on Representation,Conventions and Anonymous Access Types,Use of Address Clauses for Memory-Mapped I/O,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas effect-of-convention-on-representation}@anchor{2ad}@anchor{gnat_rm/representation_clauses_and_pragmas id18}@anchor{2ae}
@section Effect of Convention on Representation
@geindex Convention
@geindex effect on representation
Normally the specification of a foreign language convention for a type or
an object has no effect on the chosen representation. In particular, the
representation chosen for data in GNAT generally meets the standard system
conventions, and for example records are laid out in a manner that is
consistent with C. This means that specifying convention C (for example)
has no effect.
There are four exceptions to this general rule:
@itemize *
@item
`Convention Fortran and array subtypes'.
If pragma Convention Fortran is specified for an array subtype, then in
accordance with the implementation advice in section 3.6.2(11) of the
Ada Reference Manual, the array will be stored in a Fortran-compatible
column-major manner, instead of the normal default row-major order.
@item
`Convention C and enumeration types'
GNAT normally stores enumeration types in 8, 16, or 32 bits as required
to accommodate all values of the type. For example, for the enumeration
type declared by:
@example
type Color is (Red, Green, Blue);
@end example
8 bits is sufficient to store all values of the type, so by default, objects
of type @code{Color} will be represented using 8 bits. However, normal C
convention is to use 32 bits for all enum values in C, since enum values
are essentially of type int. If pragma @code{Convention C} is specified for an
Ada enumeration type, then the size is modified as necessary (usually to
32 bits) to be consistent with the C convention for enum values.
Note that this treatment applies only to types. If Convention C is given for
an enumeration object, where the enumeration type is not Convention C, then
Object_Size bits are allocated. For example, for a normal enumeration type,
with less than 256 elements, only 8 bits will be allocated for the object.
Since this may be a surprise in terms of what C expects, GNAT will issue a
warning in this situation. The warning can be suppressed by giving an explicit
size clause specifying the desired size.
@item
`Convention C/Fortran and Boolean types'
In C, the usual convention for boolean values, that is values used for
conditions, is that zero represents false, and nonzero values represent
true. In Ada, the normal convention is that two specific values, typically
0/1, are used to represent false/true respectively.
Fortran has a similar convention for @code{LOGICAL} values (any nonzero
value represents true).
To accommodate the Fortran and C conventions, if a pragma Convention specifies
C or Fortran convention for a derived Boolean, as in the following example:
@example
type C_Switch is new Boolean;
pragma Convention (C, C_Switch);
@end example
then the GNAT generated code will treat any nonzero value as true. For truth
values generated by GNAT, the conventional value 1 will be used for True, but
when one of these values is read, any nonzero value is treated as True.
@end itemize
@node Conventions and Anonymous Access Types,Determining the Representations chosen by GNAT,Effect of Convention on Representation,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas conventions-and-anonymous-access-types}@anchor{2af}@anchor{gnat_rm/representation_clauses_and_pragmas id19}@anchor{2b0}
@section Conventions and Anonymous Access Types
@geindex Anonymous access types
@geindex Convention for anonymous access types
The RM is not entirely clear on convention handling in a number of cases,
and in particular, it is not clear on the convention to be given to
anonymous access types in general, and in particular what is to be
done for the case of anonymous access-to-subprogram.
In GNAT, we decide that if an explicit Convention is applied
to an object or component, and its type is such an anonymous type,
then the convention will apply to this anonymous type as well. This
seems to make sense since it is anomolous in any case to have a
different convention for an object and its type, and there is clearly
no way to explicitly specify a convention for an anonymous type, since
it doesn’t have a name to specify!
Furthermore, we decide that if a convention is applied to a record type,
then this convention is inherited by any of its components that are of an
anonymous access type which do not have an explicitly specified convention.
The following program shows these conventions in action:
@example
package ConvComp is
type Foo is range 1 .. 10;
type T1 is record
A : access function (X : Foo) return Integer;
B : Integer;
end record;
pragma Convention (C, T1);
type T2 is record
A : access function (X : Foo) return Integer;
pragma Convention (C, A);
B : Integer;
end record;
pragma Convention (COBOL, T2);
type T3 is record
A : access function (X : Foo) return Integer;
pragma Convention (COBOL, A);
B : Integer;
end record;
pragma Convention (C, T3);
type T4 is record
A : access function (X : Foo) return Integer;
B : Integer;
end record;
pragma Convention (COBOL, T4);
function F (X : Foo) return Integer;
pragma Convention (C, F);
function F (X : Foo) return Integer is (13);
TV1 : T1 := (F'Access, 12); -- OK
TV2 : T2 := (F'Access, 13); -- OK
TV3 : T3 := (F'Access, 13); -- ERROR
|
>>> subprogram "F" has wrong convention
>>> does not match access to subprogram declared at line 17
38. TV4 : T4 := (F'Access, 13); -- ERROR
|
>>> subprogram "F" has wrong convention
>>> does not match access to subprogram declared at line 24
39. end ConvComp;
@end example
@node Determining the Representations chosen by GNAT,,Conventions and Anonymous Access Types,Representation Clauses and Pragmas
@anchor{gnat_rm/representation_clauses_and_pragmas determining-the-representations-chosen-by-gnat}@anchor{2b1}@anchor{gnat_rm/representation_clauses_and_pragmas id20}@anchor{2b2}
@section Determining the Representations chosen by GNAT
@geindex Representation
@geindex determination of
@geindex -gnatR (gcc)
Although the descriptions in this section are intended to be complete, it is
often easier to simply experiment to see what GNAT accepts and what the
effect is on the layout of types and objects.
As required by the Ada RM, if a representation clause is not accepted, then
it must be rejected as illegal by the compiler. However, when a
representation clause or pragma is accepted, there can still be questions
of what the compiler actually does. For example, if a partial record
representation clause specifies the location of some components and not
others, then where are the non-specified components placed? Or if pragma
@code{Pack} is used on a record, then exactly where are the resulting
fields placed? The section on pragma @code{Pack} in this chapter can be
used to answer the second question, but it is often easier to just see
what the compiler does.
For this purpose, GNAT provides the option `-gnatR'. If you compile
with this option, then the compiler will output information on the actual
representations chosen, in a format similar to source representation
clauses. For example, if we compile the package:
@example
package q is
type r (x : boolean) is tagged record
case x is
when True => S : String (1 .. 100);
when False => null;
end case;
end record;
type r2 is new r (false) with record
y2 : integer;
end record;
for r2 use record
y2 at 16 range 0 .. 31;
end record;
type x is record
y : character;
end record;
type x1 is array (1 .. 10) of x;
for x1'component_size use 11;
type ia is access integer;
type Rb1 is array (1 .. 13) of Boolean;
pragma Pack (rb1);
type Rb2 is array (1 .. 65) of Boolean;
pragma Pack (rb2);
type x2 is record
l1 : Boolean;
l2 : Duration;
l3 : Float;
l4 : Boolean;
l5 : Rb1;
l6 : Rb2;
end record;
pragma Pack (x2);
end q;
@end example
using the switch `-gnatR' we obtain the following output:
@example
Representation information for unit q
-------------------------------------
for r'Size use ??;
for r'Alignment use 4;
for r use record
x at 4 range 0 .. 7;
_tag at 0 range 0 .. 31;
s at 5 range 0 .. 799;
end record;
for r2'Size use 160;
for r2'Alignment use 4;
for r2 use record
x at 4 range 0 .. 7;
_tag at 0 range 0 .. 31;
_parent at 0 range 0 .. 63;
y2 at 16 range 0 .. 31;
end record;
for x'Size use 8;
for x'Alignment use 1;
for x use record
y at 0 range 0 .. 7;
end record;
for x1'Size use 112;
for x1'Alignment use 1;
for x1'Component_Size use 11;
for rb1'Size use 13;
for rb1'Alignment use 2;
for rb1'Component_Size use 1;
for rb2'Size use 72;
for rb2'Alignment use 1;
for rb2'Component_Size use 1;
for x2'Size use 224;
for x2'Alignment use 4;
for x2 use record
l1 at 0 range 0 .. 0;
l2 at 0 range 1 .. 64;
l3 at 12 range 0 .. 31;
l4 at 16 range 0 .. 0;
l5 at 16 range 1 .. 13;
l6 at 18 range 0 .. 71;
end record;
@end example
The Size values are actually the Object_Size, i.e., the default size that
will be allocated for objects of the type.
The @code{??} size for type r indicates that we have a variant record, and the
actual size of objects will depend on the discriminant value.
The Alignment values show the actual alignment chosen by the compiler
for each record or array type.
The record representation clause for type r shows where all fields
are placed, including the compiler generated tag field (whose location
cannot be controlled by the programmer).
The record representation clause for the type extension r2 shows all the
fields present, including the parent field, which is a copy of the fields
of the parent type of r2, i.e., r1.
The component size and size clauses for types rb1 and rb2 show
the exact effect of pragma @code{Pack} on these arrays, and the record
representation clause for type x2 shows how pragma @cite{Pack} affects
this record type.
In some cases, it may be useful to cut and paste the representation clauses
generated by the compiler into the original source to fix and guarantee
the actual representation to be used.
@node Standard Library Routines,The Implementation of Standard I/O,Representation Clauses and Pragmas,Top
@anchor{gnat_rm/standard_library_routines doc}@anchor{2b3}@anchor{gnat_rm/standard_library_routines id1}@anchor{2b4}@anchor{gnat_rm/standard_library_routines standard-library-routines}@anchor{e}
@chapter Standard Library Routines
The Ada Reference Manual contains in Annex A a full description of an
extensive set of standard library routines that can be used in any Ada
program, and which must be provided by all Ada compilers. They are
analogous to the standard C library used by C programs.
GNAT implements all of the facilities described in annex A, and for most
purposes the description in the Ada Reference Manual, or appropriate Ada
text book, will be sufficient for making use of these facilities.
In the case of the input-output facilities,
@ref{f,,The Implementation of Standard I/O},
gives details on exactly how GNAT interfaces to the
file system. For the remaining packages, the Ada Reference Manual
should be sufficient. The following is a list of the packages included,
together with a brief description of the functionality that is provided.
For completeness, references are included to other predefined library
routines defined in other sections of the Ada Reference Manual (these are
cross-indexed from Annex A). For further details see the relevant
package declarations in the run-time library. In particular, a few units
are not implemented, as marked by the presence of pragma Unimplemented_Unit,
and in this case the package declaration contains comments explaining why
the unit is not implemented.
@table @asis
@item @code{Ada} `(A.2)'
This is a parent package for all the standard library packages. It is
usually included implicitly in your program, and itself contains no
useful data or routines.
@item @code{Ada.Assertions} `(11.4.2)'
@code{Assertions} provides the @code{Assert} subprograms, and also
the declaration of the @code{Assertion_Error} exception.
@item @code{Ada.Asynchronous_Task_Control} `(D.11)'
@code{Asynchronous_Task_Control} provides low level facilities for task
synchronization. It is typically not implemented. See package spec for details.
@item @code{Ada.Calendar} `(9.6)'
@code{Calendar} provides time of day access, and routines for
manipulating times and durations.
@item @code{Ada.Calendar.Arithmetic} `(9.6.1)'
This package provides additional arithmetic
operations for @code{Calendar}.
@item @code{Ada.Calendar.Formatting} `(9.6.1)'
This package provides formatting operations for @code{Calendar}.
@item @code{Ada.Calendar.Time_Zones} `(9.6.1)'
This package provides additional @code{Calendar} facilities
for handling time zones.
@item @code{Ada.Characters} `(A.3.1)'
This is a dummy parent package that contains no useful entities
@item @code{Ada.Characters.Conversions} `(A.3.2)'
This package provides character conversion functions.
@item @code{Ada.Characters.Handling} `(A.3.2)'
This package provides some basic character handling capabilities,
including classification functions for classes of characters (e.g., test
for letters, or digits).
@item @code{Ada.Characters.Latin_1} `(A.3.3)'
This package includes a complete set of definitions of the characters
that appear in type CHARACTER. It is useful for writing programs that
will run in international environments. For example, if you want an
upper case E with an acute accent in a string, it is often better to use
the definition of @code{UC_E_Acute} in this package. Then your program
will print in an understandable manner even if your environment does not
support these extended characters.
@item @code{Ada.Command_Line} `(A.15)'
This package provides access to the command line parameters and the name
of the current program (analogous to the use of @code{argc} and @code{argv}
in C), and also allows the exit status for the program to be set in a
system-independent manner.
@item @code{Ada.Complex_Text_IO} `(G.1.3)'
This package provides text input and output of complex numbers.
@item @code{Ada.Containers} `(A.18.1)'
A top level package providing a few basic definitions used by all the
following specific child packages that provide specific kinds of
containers.
@end table
@code{Ada.Containers.Bounded_Priority_Queues} `(A.18.31)'
@code{Ada.Containers.Bounded_Synchronized_Queues} `(A.18.29)'
@code{Ada.Containers.Doubly_Linked_Lists} `(A.18.3)'
@code{Ada.Containers.Generic_Array_Sort} `(A.18.26)'
@code{Ada.Containers.Generic_Constrained_Array_Sort} `(A.18.26)'
@code{Ada.Containers.Generic_Sort} `(A.18.26)'
@code{Ada.Containers.Hashed_Maps} `(A.18.5)'
@code{Ada.Containers.Hashed_Sets} `(A.18.8)'
@code{Ada.Containers.Indefinite_Doubly_Linked_Lists} `(A.18.12)'
@code{Ada.Containers.Indefinite_Hashed_Maps} `(A.18.13)'
@code{Ada.Containers.Indefinite_Hashed_Sets} `(A.18.15)'
@code{Ada.Containers.Indefinite_Holders} `(A.18.18)'
@code{Ada.Containers.Indefinite_Multiway_Trees} `(A.18.17)'
@code{Ada.Containers.Indefinite_Ordered_Maps} `(A.18.14)'
@code{Ada.Containers.Indefinite_Ordered_Sets} `(A.18.16)'
@code{Ada.Containers.Indefinite_Vectors} `(A.18.11)'
@code{Ada.Containers.Multiway_Trees} `(A.18.10)'
@code{Ada.Containers.Ordered_Maps} `(A.18.6)'
@code{Ada.Containers.Ordered_Sets} `(A.18.9)'
@code{Ada.Containers.Synchronized_Queue_Interfaces} `(A.18.27)'
@code{Ada.Containers.Unbounded_Priority_Queues} `(A.18.30)'
@code{Ada.Containers.Unbounded_Synchronized_Queues} `(A.18.28)'
@code{Ada.Containers.Vectors} `(A.18.2)'
@table @asis
@item @code{Ada.Directories} `(A.16)'
This package provides operations on directories.
@item @code{Ada.Directories.Hierarchical_File_Names} `(A.16.1)'
This package provides additional directory operations handling
hierarchical file names.
@item @code{Ada.Directories.Information} `(A.16)'
This is an implementation defined package for additional directory
operations, which is not implemented in GNAT.
@item @code{Ada.Decimal} `(F.2)'
This package provides constants describing the range of decimal numbers
implemented, and also a decimal divide routine (analogous to the COBOL
verb DIVIDE … GIVING … REMAINDER …)
@item @code{Ada.Direct_IO} `(A.8.4)'
This package provides input-output using a model of a set of records of
fixed-length, containing an arbitrary definite Ada type, indexed by an
integer record number.
@item @code{Ada.Dispatching} `(D.2.1)'
A parent package containing definitions for task dispatching operations.
@item @code{Ada.Dispatching.EDF} `(D.2.6)'
Not implemented in GNAT.
@item @code{Ada.Dispatching.Non_Preemptive} `(D.2.4)'
Not implemented in GNAT.
@item @code{Ada.Dispatching.Round_Robin} `(D.2.5)'
Not implemented in GNAT.
@item @code{Ada.Dynamic_Priorities} `(D.5)'
This package allows the priorities of a task to be adjusted dynamically
as the task is running.
@item @code{Ada.Environment_Variables} `(A.17)'
This package provides facilities for accessing environment variables.
@item @code{Ada.Exceptions} `(11.4.1)'
This package provides additional information on exceptions, and also
contains facilities for treating exceptions as data objects, and raising
exceptions with associated messages.
@item @code{Ada.Execution_Time} `(D.14)'
This package provides CPU clock functionalities. It is not implemented on
all targets (see package spec for details).
@item @code{Ada.Execution_Time.Group_Budgets} `(D.14.2)'
Not implemented in GNAT.
@item @code{Ada.Execution_Time.Timers} `(D.14.1)’'
Not implemented in GNAT.
@item @code{Ada.Finalization} `(7.6)'
This package contains the declarations and subprograms to support the
use of controlled types, providing for automatic initialization and
finalization (analogous to the constructors and destructors of C++).
@item @code{Ada.Float_Text_IO} `(A.10.9)'
A library level instantiation of Text_IO.Float_IO for type Float.
@item @code{Ada.Float_Wide_Text_IO} `(A.10.9)'
A library level instantiation of Wide_Text_IO.Float_IO for type Float.
@item @code{Ada.Float_Wide_Wide_Text_IO} `(A.10.9)'
A library level instantiation of Wide_Wide_Text_IO.Float_IO for type Float.
@item @code{Ada.Integer_Text_IO} `(A.10.9)'
A library level instantiation of Text_IO.Integer_IO for type Integer.
@item @code{Ada.Integer_Wide_Text_IO} `(A.10.9)'
A library level instantiation of Wide_Text_IO.Integer_IO for type Integer.
@item @code{Ada.Integer_Wide_Wide_Text_IO} `(A.10.9)'
A library level instantiation of Wide_Wide_Text_IO.Integer_IO for type Integer.
@item @code{Ada.Interrupts} `(C.3.2)'
This package provides facilities for interfacing to interrupts, which
includes the set of signals or conditions that can be raised and
recognized as interrupts.
@item @code{Ada.Interrupts.Names} `(C.3.2)'
This package provides the set of interrupt names (actually signal
or condition names) that can be handled by GNAT.
@item @code{Ada.IO_Exceptions} `(A.13)'
This package defines the set of exceptions that can be raised by use of
the standard IO packages.
@item @code{Ada.Iterator_Interfaces} `(5.5.1)'
This package provides a generic interface to generalized iterators.
@item @code{Ada.Locales} `(A.19)'
This package provides declarations providing information (Language
and Country) about the current locale.
@item @code{Ada.Numerics}
This package contains some standard constants and exceptions used
throughout the numerics packages. Note that the constants pi and e are
defined here, and it is better to use these definitions than rolling
your own.
@item @code{Ada.Numerics.Complex_Arrays} `(G.3.2)'
Provides operations on arrays of complex numbers.
@item @code{Ada.Numerics.Complex_Elementary_Functions}
Provides the implementation of standard elementary functions (such as
log and trigonometric functions) operating on complex numbers using the
standard @code{Float} and the @code{Complex} and @code{Imaginary} types
created by the package @code{Numerics.Complex_Types}.
@item @code{Ada.Numerics.Complex_Types}
This is a predefined instantiation of
@code{Numerics.Generic_Complex_Types} using @code{Standard.Float} to
build the type @code{Complex} and @code{Imaginary}.
@item @code{Ada.Numerics.Discrete_Random}
This generic package provides a random number generator suitable for generating
uniformly distributed values of a specified discrete subtype.
@item @code{Ada.Numerics.Float_Random}
This package provides a random number generator suitable for generating
uniformly distributed floating point values in the unit interval.
@item @code{Ada.Numerics.Generic_Complex_Elementary_Functions}
This is a generic version of the package that provides the
implementation of standard elementary functions (such as log and
trigonometric functions) for an arbitrary complex type.
The following predefined instantiations of this package are provided:
@itemize *
@item
@code{Short_Float}
@code{Ada.Numerics.Short_Complex_Elementary_Functions}
@item
@code{Float}
@code{Ada.Numerics.Complex_Elementary_Functions}
@item
@code{Long_Float}
@code{Ada.Numerics.Long_Complex_Elementary_Functions}
@end itemize
@item @code{Ada.Numerics.Generic_Complex_Types}
This is a generic package that allows the creation of complex types,
with associated complex arithmetic operations.
The following predefined instantiations of this package exist
@itemize *
@item
@code{Short_Float}
@code{Ada.Numerics.Short_Complex_Complex_Types}
@item
@code{Float}
@code{Ada.Numerics.Complex_Complex_Types}
@item
@code{Long_Float}
@code{Ada.Numerics.Long_Complex_Complex_Types}
@end itemize
@item @code{Ada.Numerics.Generic_Elementary_Functions}
This is a generic package that provides the implementation of standard
elementary functions (such as log an trigonometric functions) for an
arbitrary float type.
The following predefined instantiations of this package exist
@itemize *
@item
@code{Short_Float}
@code{Ada.Numerics.Short_Elementary_Functions}
@item
@code{Float}
@code{Ada.Numerics.Elementary_Functions}
@item
@code{Long_Float}
@code{Ada.Numerics.Long_Elementary_Functions}
@end itemize
@item @code{Ada.Numerics.Generic_Real_Arrays} `(G.3.1)'
Generic operations on arrays of reals
@item @code{Ada.Numerics.Real_Arrays} `(G.3.1)'
Preinstantiation of Ada.Numerics.Generic_Real_Arrays (Float).
@item @code{Ada.Real_Time} `(D.8)'
This package provides facilities similar to those of @code{Calendar}, but
operating with a finer clock suitable for real time control. Note that
annex D requires that there be no backward clock jumps, and GNAT generally
guarantees this behavior, but of course if the external clock on which
the GNAT runtime depends is deliberately reset by some external event,
then such a backward jump may occur.
@item @code{Ada.Real_Time.Timing_Events} `(D.15)'
Not implemented in GNAT.
@item @code{Ada.Sequential_IO} `(A.8.1)'
This package provides input-output facilities for sequential files,
which can contain a sequence of values of a single type, which can be
any Ada type, including indefinite (unconstrained) types.
@item @code{Ada.Storage_IO} `(A.9)'
This package provides a facility for mapping arbitrary Ada types to and
from a storage buffer. It is primarily intended for the creation of new
IO packages.
@item @code{Ada.Streams} `(13.13.1)'
This is a generic package that provides the basic support for the
concept of streams as used by the stream attributes (@code{Input},
@code{Output}, @code{Read} and @code{Write}).
@item @code{Ada.Streams.Stream_IO} `(A.12.1)'
This package is a specialization of the type @code{Streams} defined in
package @code{Streams} together with a set of operations providing
Stream_IO capability. The Stream_IO model permits both random and
sequential access to a file which can contain an arbitrary set of values
of one or more Ada types.
@item @code{Ada.Strings} `(A.4.1)'
This package provides some basic constants used by the string handling
packages.
@item @code{Ada.Strings.Bounded} `(A.4.4)'
This package provides facilities for handling variable length
strings. The bounded model requires a maximum length. It is thus
somewhat more limited than the unbounded model, but avoids the use of
dynamic allocation or finalization.
@item @code{Ada.Strings.Bounded.Equal_Case_Insensitive} `(A.4.10)'
Provides case-insensitive comparisons of bounded strings
@item @code{Ada.Strings.Bounded.Hash} `(A.4.9)'
This package provides a generic hash function for bounded strings
@item @code{Ada.Strings.Bounded.Hash_Case_Insensitive} `(A.4.9)'
This package provides a generic hash function for bounded strings that
converts the string to be hashed to lower case.
@item @code{Ada.Strings.Bounded.Less_Case_Insensitive} `(A.4.10)'
This package provides a comparison function for bounded strings that works
in a case insensitive manner by converting to lower case before the comparison.
@item @code{Ada.Strings.Fixed} `(A.4.3)'
This package provides facilities for handling fixed length strings.
@item @code{Ada.Strings.Fixed.Equal_Case_Insensitive} `(A.4.10)'
This package provides an equality function for fixed strings that compares
the strings after converting both to lower case.
@item @code{Ada.Strings.Fixed.Hash_Case_Insensitive} `(A.4.9)'
This package provides a case insensitive hash function for fixed strings that
converts the string to lower case before computing the hash.
@item @code{Ada.Strings.Fixed.Less_Case_Insensitive} `(A.4.10)'
This package provides a comparison function for fixed strings that works
in a case insensitive manner by converting to lower case before the comparison.
@item @code{Ada.Strings.Hash} `(A.4.9)'
This package provides a hash function for strings.
@item @code{Ada.Strings.Hash_Case_Insensitive} `(A.4.9)'
This package provides a hash function for strings that is case insensitive.
The string is converted to lower case before computing the hash.
@item @code{Ada.Strings.Less_Case_Insensitive} `(A.4.10)'
This package provides a comparison function for\strings that works
in a case insensitive manner by converting to lower case before the comparison.
@item @code{Ada.Strings.Maps} `(A.4.2)'
This package provides facilities for handling character mappings and
arbitrarily defined subsets of characters. For instance it is useful in
defining specialized translation tables.
@item @code{Ada.Strings.Maps.Constants} `(A.4.6)'
This package provides a standard set of predefined mappings and
predefined character sets. For example, the standard upper to lower case
conversion table is found in this package. Note that upper to lower case
conversion is non-trivial if you want to take the entire set of
characters, including extended characters like E with an acute accent,
into account. You should use the mappings in this package (rather than
adding 32 yourself) to do case mappings.
@item @code{Ada.Strings.Unbounded} `(A.4.5)'
This package provides facilities for handling variable length
strings. The unbounded model allows arbitrary length strings, but
requires the use of dynamic allocation and finalization.
@item @code{Ada.Strings.Unbounded.Equal_Case_Insensitive} `(A.4.10)'
Provides case-insensitive comparisons of unbounded strings
@item @code{Ada.Strings.Unbounded.Hash} `(A.4.9)'
This package provides a generic hash function for unbounded strings
@item @code{Ada.Strings.Unbounded.Hash_Case_Insensitive} `(A.4.9)'
This package provides a generic hash function for unbounded strings that
converts the string to be hashed to lower case.
@item @code{Ada.Strings.Unbounded.Less_Case_Insensitive} `(A.4.10)'
This package provides a comparison function for unbounded strings that works
in a case insensitive manner by converting to lower case before the comparison.
@item @code{Ada.Strings.UTF_Encoding} `(A.4.11)'
This package provides basic definitions for dealing with UTF-encoded strings.
@item @code{Ada.Strings.UTF_Encoding.Conversions} `(A.4.11)'
This package provides conversion functions for UTF-encoded strings.
@end table
@code{Ada.Strings.UTF_Encoding.Strings} `(A.4.11)'
@code{Ada.Strings.UTF_Encoding.Wide_Strings} `(A.4.11)'
@table @asis
@item @code{Ada.Strings.UTF_Encoding.Wide_Wide_Strings} `(A.4.11)'
These packages provide facilities for handling UTF encodings for
Strings, Wide_Strings and Wide_Wide_Strings.
@end table
@code{Ada.Strings.Wide_Bounded} `(A.4.7)'
@code{Ada.Strings.Wide_Fixed} `(A.4.7)'
@code{Ada.Strings.Wide_Maps} `(A.4.7)'
@table @asis
@item @code{Ada.Strings.Wide_Unbounded} `(A.4.7)'
These packages provide analogous capabilities to the corresponding
packages without @code{Wide_} in the name, but operate with the types
@code{Wide_String} and @code{Wide_Character} instead of @code{String}
and @code{Character}. Versions of all the child packages are available.
@end table
@code{Ada.Strings.Wide_Wide_Bounded} `(A.4.7)'
@code{Ada.Strings.Wide_Wide_Fixed} `(A.4.7)'
@code{Ada.Strings.Wide_Wide_Maps} `(A.4.7)'
@table @asis
@item @code{Ada.Strings.Wide_Wide_Unbounded} `(A.4.7)'
These packages provide analogous capabilities to the corresponding
packages without @code{Wide_} in the name, but operate with the types
@code{Wide_Wide_String} and @code{Wide_Wide_Character} instead
of @code{String} and @code{Character}.
@item @code{Ada.Synchronous_Barriers} `(D.10.1)'
This package provides facilities for synchronizing tasks at a low level
with barriers.
@item @code{Ada.Synchronous_Task_Control} `(D.10)'
This package provides some standard facilities for controlling task
communication in a synchronous manner.
@item @code{Ada.Synchronous_Task_Control.EDF} `(D.10)'
Not implemented in GNAT.
@item @code{Ada.Tags}
This package contains definitions for manipulation of the tags of tagged
values.
@item @code{Ada.Tags.Generic_Dispatching_Constructor} `(3.9)'
This package provides a way of constructing tagged class-wide values given
only the tag value.
@item @code{Ada.Task_Attributes} `(C.7.2)'
This package provides the capability of associating arbitrary
task-specific data with separate tasks.
@item @code{Ada.Task_Identification} `(C.7.1)'
This package provides capabilities for task identification.
@item @code{Ada.Task_Termination} `(C.7.3)'
This package provides control over task termination.
@item @code{Ada.Text_IO}
This package provides basic text input-output capabilities for
character, string and numeric data. The subpackages of this
package are listed next. Note that although these are defined
as subpackages in the RM, they are actually transparently
implemented as child packages in GNAT, meaning that they
are only loaded if needed.
@item @code{Ada.Text_IO.Decimal_IO}
Provides input-output facilities for decimal fixed-point types
@item @code{Ada.Text_IO.Enumeration_IO}
Provides input-output facilities for enumeration types.
@item @code{Ada.Text_IO.Fixed_IO}
Provides input-output facilities for ordinary fixed-point types.
@item @code{Ada.Text_IO.Float_IO}
Provides input-output facilities for float types. The following
predefined instantiations of this generic package are available:
@itemize *
@item
@code{Short_Float}
@code{Short_Float_Text_IO}
@item
@code{Float}
@code{Float_Text_IO}
@item
@code{Long_Float}
@code{Long_Float_Text_IO}
@end itemize
@item @code{Ada.Text_IO.Integer_IO}
Provides input-output facilities for integer types. The following
predefined instantiations of this generic package are available:
@itemize *
@item
@code{Short_Short_Integer}
@code{Ada.Short_Short_Integer_Text_IO}
@item
@code{Short_Integer}
@code{Ada.Short_Integer_Text_IO}
@item
@code{Integer}
@code{Ada.Integer_Text_IO}
@item
@code{Long_Integer}
@code{Ada.Long_Integer_Text_IO}
@item
@code{Long_Long_Integer}
@code{Ada.Long_Long_Integer_Text_IO}
@end itemize
@item @code{Ada.Text_IO.Modular_IO}
Provides input-output facilities for modular (unsigned) types.
@item @code{Ada.Text_IO.Bounded_IO (A.10.11)}
Provides input-output facilities for bounded strings.
@item @code{Ada.Text_IO.Complex_IO (G.1.3)}
This package provides basic text input-output capabilities for complex
data.
@item @code{Ada.Text_IO.Editing (F.3.3)}
This package contains routines for edited output, analogous to the use
of pictures in COBOL. The picture formats used by this package are a
close copy of the facility in COBOL.
@item @code{Ada.Text_IO.Text_Streams (A.12.2)}
This package provides a facility that allows Text_IO files to be treated
as streams, so that the stream attributes can be used for writing
arbitrary data, including binary data, to Text_IO files.
@item @code{Ada.Text_IO.Unbounded_IO (A.10.12)}
This package provides input-output facilities for unbounded strings.
@item @code{Ada.Unchecked_Conversion (13.9)}
This generic package allows arbitrary conversion from one type to
another of the same size, providing for breaking the type safety in
special circumstances.
If the types have the same Size (more accurately the same Value_Size),
then the effect is simply to transfer the bits from the source to the
target type without any modification. This usage is well defined, and
for simple types whose representation is typically the same across
all implementations, gives a portable method of performing such
conversions.
If the types do not have the same size, then the result is implementation
defined, and thus may be non-portable. The following describes how GNAT
handles such unchecked conversion cases.
If the types are of different sizes, and are both discrete types, then
the effect is of a normal type conversion without any constraint checking.
In particular if the result type has a larger size, the result will be
zero or sign extended. If the result type has a smaller size, the result
will be truncated by ignoring high order bits.
If the types are of different sizes, and are not both discrete types,
then the conversion works as though pointers were created to the source
and target, and the pointer value is converted. The effect is that bits
are copied from successive low order storage units and bits of the source
up to the length of the target type.
A warning is issued if the lengths differ, since the effect in this
case is implementation dependent, and the above behavior may not match
that of some other compiler.
A pointer to one type may be converted to a pointer to another type using
unchecked conversion. The only case in which the effect is undefined is
when one or both pointers are pointers to unconstrained array types. In
this case, the bounds information may get incorrectly transferred, and in
particular, GNAT uses double size pointers for such types, and it is
meaningless to convert between such pointer types. GNAT will issue a
warning if the alignment of the target designated type is more strict
than the alignment of the source designated type (since the result may
be unaligned in this case).
A pointer other than a pointer to an unconstrained array type may be
converted to and from System.Address. Such usage is common in Ada 83
programs, but note that Ada.Address_To_Access_Conversions is the
preferred method of performing such conversions in Ada 95 and Ada 2005.
Neither
unchecked conversion nor Ada.Address_To_Access_Conversions should be
used in conjunction with pointers to unconstrained objects, since
the bounds information cannot be handled correctly in this case.
@item @code{Ada.Unchecked_Deallocation} `(13.11.2)'
This generic package allows explicit freeing of storage previously
allocated by use of an allocator.
@item @code{Ada.Wide_Text_IO} `(A.11)'
This package is similar to @code{Ada.Text_IO}, except that the external
file supports wide character representations, and the internal types are
@code{Wide_Character} and @code{Wide_String} instead of @code{Character}
and @code{String}. The corresponding set of nested packages and child
packages are defined.
@item @code{Ada.Wide_Wide_Text_IO} `(A.11)'
This package is similar to @code{Ada.Text_IO}, except that the external
file supports wide character representations, and the internal types are
@code{Wide_Character} and @code{Wide_String} instead of @code{Character}
and @code{String}. The corresponding set of nested packages and child
packages are defined.
@end table
For packages in Interfaces and System, all the RM defined packages are
available in GNAT, see the Ada 2012 RM for full details.
@node The Implementation of Standard I/O,The GNAT Library,Standard Library Routines,Top
@anchor{gnat_rm/the_implementation_of_standard_i_o doc}@anchor{2b5}@anchor{gnat_rm/the_implementation_of_standard_i_o id1}@anchor{2b6}@anchor{gnat_rm/the_implementation_of_standard_i_o the-implementation-of-standard-i-o}@anchor{f}
@chapter The Implementation of Standard I/O
GNAT implements all the required input-output facilities described in
A.6 through A.14. These sections of the Ada Reference Manual describe the
required behavior of these packages from the Ada point of view, and if
you are writing a portable Ada program that does not need to know the
exact manner in which Ada maps to the outside world when it comes to
reading or writing external files, then you do not need to read this
chapter. As long as your files are all regular files (not pipes or
devices), and as long as you write and read the files only from Ada, the
description in the Ada Reference Manual is sufficient.
However, if you want to do input-output to pipes or other devices, such
as the keyboard or screen, or if the files you are dealing with are
either generated by some other language, or to be read by some other
language, then you need to know more about the details of how the GNAT
implementation of these input-output facilities behaves.
In this chapter we give a detailed description of exactly how GNAT
interfaces to the file system. As always, the sources of the system are
available to you for answering questions at an even more detailed level,
but for most purposes the information in this chapter will suffice.
Another reason that you may need to know more about how input-output is
implemented arises when you have a program written in mixed languages
where, for example, files are shared between the C and Ada sections of
the same program. GNAT provides some additional facilities, in the form
of additional child library packages, that facilitate this sharing, and
these additional facilities are also described in this chapter.
@menu
* Standard I/O Packages::
* FORM Strings::
* Direct_IO::
* Sequential_IO::
* Text_IO::
* Wide_Text_IO::
* Wide_Wide_Text_IO::
* Stream_IO::
* Text Translation::
* Shared Files::
* Filenames encoding::
* File content encoding::
* Open Modes::
* Operations on C Streams::
* Interfacing to C Streams::
@end menu
@node Standard I/O Packages,FORM Strings,,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o id2}@anchor{2b7}@anchor{gnat_rm/the_implementation_of_standard_i_o standard-i-o-packages}@anchor{2b8}
@section Standard I/O Packages
The Standard I/O packages described in Annex A for
@itemize *
@item
Ada.Text_IO
@item
Ada.Text_IO.Complex_IO
@item
Ada.Text_IO.Text_Streams
@item
Ada.Wide_Text_IO
@item
Ada.Wide_Text_IO.Complex_IO
@item
Ada.Wide_Text_IO.Text_Streams
@item
Ada.Wide_Wide_Text_IO
@item
Ada.Wide_Wide_Text_IO.Complex_IO
@item
Ada.Wide_Wide_Text_IO.Text_Streams
@item
Ada.Stream_IO
@item
Ada.Sequential_IO
@item
Ada.Direct_IO
@end itemize
are implemented using the C
library streams facility; where
@itemize *
@item
All files are opened using @code{fopen}.
@item
All input/output operations use @code{fread}/@code{fwrite}.
@end itemize
There is no internal buffering of any kind at the Ada library level. The only
buffering is that provided at the system level in the implementation of the
library routines that support streams. This facilitates shared use of these
streams by mixed language programs. Note though that system level buffering is
explicitly enabled at elaboration of the standard I/O packages and that can
have an impact on mixed language programs, in particular those using I/O before
calling the Ada elaboration routine (e.g., adainit). It is recommended to call
the Ada elaboration routine before performing any I/O or when impractical,
flush the common I/O streams and in particular Standard_Output before
elaborating the Ada code.
@node FORM Strings,Direct_IO,Standard I/O Packages,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o form-strings}@anchor{2b9}@anchor{gnat_rm/the_implementation_of_standard_i_o id3}@anchor{2ba}
@section FORM Strings
The format of a FORM string in GNAT is:
@example
"keyword=value,keyword=value,...,keyword=value"
@end example
where letters may be in upper or lower case, and there are no spaces
between values. The order of the entries is not important. Currently
the following keywords defined.
@example
TEXT_TRANSLATION=[YES|NO|TEXT|BINARY|U8TEXT|WTEXT|U16TEXT]
SHARED=[YES|NO]
WCEM=[n|h|u|s|e|8|b]
ENCODING=[UTF8|8BITS]
@end example
The use of these parameters is described later in this section. If an
unrecognized keyword appears in a form string, it is silently ignored
and not considered invalid.
@node Direct_IO,Sequential_IO,FORM Strings,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o direct-io}@anchor{2bb}@anchor{gnat_rm/the_implementation_of_standard_i_o id4}@anchor{2bc}
@section Direct_IO
Direct_IO can only be instantiated for definite types. This is a
restriction of the Ada language, which means that the records are fixed
length (the length being determined by @code{type'Size}, rounded
up to the next storage unit boundary if necessary).
The records of a Direct_IO file are simply written to the file in index
sequence, with the first record starting at offset zero, and subsequent
records following. There is no control information of any kind. For
example, if 32-bit integers are being written, each record takes
4-bytes, so the record at index @code{K} starts at offset @code{(K-1)*4}.
There is no limit on the size of Direct_IO files, they are expanded as
necessary to accommodate whatever records are written to the file.
@node Sequential_IO,Text_IO,Direct_IO,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o id5}@anchor{2bd}@anchor{gnat_rm/the_implementation_of_standard_i_o sequential-io}@anchor{2be}
@section Sequential_IO
Sequential_IO may be instantiated with either a definite (constrained)
or indefinite (unconstrained) type.
For the definite type case, the elements written to the file are simply
the memory images of the data values with no control information of any
kind. The resulting file should be read using the same type, no validity
checking is performed on input.
For the indefinite type case, the elements written consist of two
parts. First is the size of the data item, written as the memory image
of a @code{Interfaces.C.size_t} value, followed by the memory image of
the data value. The resulting file can only be read using the same
(unconstrained) type. Normal assignment checks are performed on these
read operations, and if these checks fail, @code{Data_Error} is
raised. In particular, in the array case, the lengths must match, and in
the variant record case, if the variable for a particular read operation
is constrained, the discriminants must match.
Note that it is not possible to use Sequential_IO to write variable
length array items, and then read the data back into different length
arrays. For example, the following will raise @code{Data_Error}:
@example
package IO is new Sequential_IO (String);
F : IO.File_Type;
S : String (1..4);
...
IO.Create (F)
IO.Write (F, "hello!")
IO.Reset (F, Mode=>In_File);
IO.Read (F, S);
Put_Line (S);
@end example
On some Ada implementations, this will print @code{hell}, but the program is
clearly incorrect, since there is only one element in the file, and that
element is the string @code{hello!}.
In Ada 95 and Ada 2005, this kind of behavior can be legitimately achieved
using Stream_IO, and this is the preferred mechanism. In particular, the
above program fragment rewritten to use Stream_IO will work correctly.
@node Text_IO,Wide_Text_IO,Sequential_IO,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o id6}@anchor{2bf}@anchor{gnat_rm/the_implementation_of_standard_i_o text-io}@anchor{2c0}
@section Text_IO
Text_IO files consist of a stream of characters containing the following
special control characters:
@example
LF (line feed, 16#0A#) Line Mark
FF (form feed, 16#0C#) Page Mark
@end example
A canonical Text_IO file is defined as one in which the following
conditions are met:
@itemize *
@item
The character @code{LF} is used only as a line mark, i.e., to mark the end
of the line.
@item
The character @code{FF} is used only as a page mark, i.e., to mark the
end of a page and consequently can appear only immediately following a
@code{LF} (line mark) character.
@item
The file ends with either @code{LF} (line mark) or @code{LF}-@cite{FF}
(line mark, page mark). In the former case, the page mark is implicitly
assumed to be present.
@end itemize
A file written using Text_IO will be in canonical form provided that no
explicit @code{LF} or @code{FF} characters are written using @code{Put}
or @code{Put_Line}. There will be no @code{FF} character at the end of
the file unless an explicit @code{New_Page} operation was performed
before closing the file.
A canonical Text_IO file that is a regular file (i.e., not a device or a
pipe) can be read using any of the routines in Text_IO. The
semantics in this case will be exactly as defined in the Ada Reference
Manual, and all the routines in Text_IO are fully implemented.
A text file that does not meet the requirements for a canonical Text_IO
file has one of the following:
@itemize *
@item
The file contains @code{FF} characters not immediately following a
@code{LF} character.
@item
The file contains @code{LF} or @code{FF} characters written by
@code{Put} or @code{Put_Line}, which are not logically considered to be
line marks or page marks.
@item
The file ends in a character other than @code{LF} or @code{FF},
i.e., there is no explicit line mark or page mark at the end of the file.
@end itemize
Text_IO can be used to read such non-standard text files but subprograms
to do with line or page numbers do not have defined meanings. In
particular, a @code{FF} character that does not follow a @code{LF}
character may or may not be treated as a page mark from the point of
view of page and line numbering. Every @code{LF} character is considered
to end a line, and there is an implied @code{LF} character at the end of
the file.
@menu
* Stream Pointer Positioning::
* Reading and Writing Non-Regular Files::
* Get_Immediate::
* Treating Text_IO Files as Streams::
* Text_IO Extensions::
* Text_IO Facilities for Unbounded Strings::
@end menu
@node Stream Pointer Positioning,Reading and Writing Non-Regular Files,,Text_IO
@anchor{gnat_rm/the_implementation_of_standard_i_o id7}@anchor{2c1}@anchor{gnat_rm/the_implementation_of_standard_i_o stream-pointer-positioning}@anchor{2c2}
@subsection Stream Pointer Positioning
@code{Ada.Text_IO} has a definition of current position for a file that
is being read. No internal buffering occurs in Text_IO, and usually the
physical position in the stream used to implement the file corresponds
to this logical position defined by Text_IO. There are two exceptions:
@itemize *
@item
After a call to @code{End_Of_Page} that returns @code{True}, the stream
is positioned past the @code{LF} (line mark) that precedes the page
mark. Text_IO maintains an internal flag so that subsequent read
operations properly handle the logical position which is unchanged by
the @code{End_Of_Page} call.
@item
After a call to @code{End_Of_File} that returns @code{True}, if the
Text_IO file was positioned before the line mark at the end of file
before the call, then the logical position is unchanged, but the stream
is physically positioned right at the end of file (past the line mark,
and past a possible page mark following the line mark. Again Text_IO
maintains internal flags so that subsequent read operations properly
handle the logical position.
@end itemize
These discrepancies have no effect on the observable behavior of
Text_IO, but if a single Ada stream is shared between a C program and
Ada program, or shared (using @code{shared=yes} in the form string)
between two Ada files, then the difference may be observable in some
situations.
@node Reading and Writing Non-Regular Files,Get_Immediate,Stream Pointer Positioning,Text_IO
@anchor{gnat_rm/the_implementation_of_standard_i_o id8}@anchor{2c3}@anchor{gnat_rm/the_implementation_of_standard_i_o reading-and-writing-non-regular-files}@anchor{2c4}
@subsection Reading and Writing Non-Regular Files
A non-regular file is a device (such as a keyboard), or a pipe. Text_IO
can be used for reading and writing. Writing is not affected and the
sequence of characters output is identical to the normal file case, but
for reading, the behavior of Text_IO is modified to avoid undesirable
look-ahead as follows:
An input file that is not a regular file is considered to have no page
marks. Any @code{Ascii.FF} characters (the character normally used for a
page mark) appearing in the file are considered to be data
characters. In particular:
@itemize *
@item
@code{Get_Line} and @code{Skip_Line} do not test for a page mark
following a line mark. If a page mark appears, it will be treated as a
data character.
@item
This avoids the need to wait for an extra character to be typed or
entered from the pipe to complete one of these operations.
@item
@code{End_Of_Page} always returns @code{False}
@item
@code{End_Of_File} will return @code{False} if there is a page mark at
the end of the file.
@end itemize
Output to non-regular files is the same as for regular files. Page marks
may be written to non-regular files using @code{New_Page}, but as noted
above they will not be treated as page marks on input if the output is
piped to another Ada program.
Another important discrepancy when reading non-regular files is that the end
of file indication is not ‘sticky’. If an end of file is entered, e.g., by
pressing the @code{EOT} key,
then end of file
is signaled once (i.e., the test @code{End_Of_File}
will yield @code{True}, or a read will
raise @code{End_Error}), but then reading can resume
to read data past that end of
file indication, until another end of file indication is entered.
@node Get_Immediate,Treating Text_IO Files as Streams,Reading and Writing Non-Regular Files,Text_IO
@anchor{gnat_rm/the_implementation_of_standard_i_o get-immediate}@anchor{2c5}@anchor{gnat_rm/the_implementation_of_standard_i_o id9}@anchor{2c6}
@subsection Get_Immediate
@geindex Get_Immediate
Get_Immediate returns the next character (including control characters)
from the input file. In particular, Get_Immediate will return LF or FF
characters used as line marks or page marks. Such operations leave the
file positioned past the control character, and it is thus not treated
as having its normal function. This means that page, line and column
counts after this kind of Get_Immediate call are set as though the mark
did not occur. In the case where a Get_Immediate leaves the file
positioned between the line mark and page mark (which is not normally
possible), it is undefined whether the FF character will be treated as a
page mark.
@node Treating Text_IO Files as Streams,Text_IO Extensions,Get_Immediate,Text_IO
@anchor{gnat_rm/the_implementation_of_standard_i_o id10}@anchor{2c7}@anchor{gnat_rm/the_implementation_of_standard_i_o treating-text-io-files-as-streams}@anchor{2c8}
@subsection Treating Text_IO Files as Streams
@geindex Stream files
The package @code{Text_IO.Streams} allows a @code{Text_IO} file to be treated
as a stream. Data written to a @code{Text_IO} file in this stream mode is
binary data. If this binary data contains bytes 16#0A# (@code{LF}) or
16#0C# (@code{FF}), the resulting file may have non-standard
format. Similarly if read operations are used to read from a Text_IO
file treated as a stream, then @code{LF} and @code{FF} characters may be
skipped and the effect is similar to that described above for
@code{Get_Immediate}.
@node Text_IO Extensions,Text_IO Facilities for Unbounded Strings,Treating Text_IO Files as Streams,Text_IO
@anchor{gnat_rm/the_implementation_of_standard_i_o id11}@anchor{2c9}@anchor{gnat_rm/the_implementation_of_standard_i_o text-io-extensions}@anchor{2ca}
@subsection Text_IO Extensions
@geindex Text_IO extensions
A package GNAT.IO_Aux in the GNAT library provides some useful extensions
to the standard @code{Text_IO} package:
@itemize *
@item
function File_Exists (Name : String) return Boolean;
Determines if a file of the given name exists.
@item
function Get_Line return String;
Reads a string from the standard input file. The value returned is exactly
the length of the line that was read.
@item
function Get_Line (File : Ada.Text_IO.File_Type) return String;
Similar, except that the parameter File specifies the file from which
the string is to be read.
@end itemize
@node Text_IO Facilities for Unbounded Strings,,Text_IO Extensions,Text_IO
@anchor{gnat_rm/the_implementation_of_standard_i_o id12}@anchor{2cb}@anchor{gnat_rm/the_implementation_of_standard_i_o text-io-facilities-for-unbounded-strings}@anchor{2cc}
@subsection Text_IO Facilities for Unbounded Strings
@geindex Text_IO for unbounded strings
@geindex Unbounded_String
@geindex Text_IO operations
The package @code{Ada.Strings.Unbounded.Text_IO}
in library files @code{a-suteio.ads/adb} contains some GNAT-specific
subprograms useful for Text_IO operations on unbounded strings:
@itemize *
@item
function Get_Line (File : File_Type) return Unbounded_String;
Reads a line from the specified file
and returns the result as an unbounded string.
@item
procedure Put (File : File_Type; U : Unbounded_String);
Writes the value of the given unbounded string to the specified file
Similar to the effect of
@code{Put (To_String (U))} except that an extra copy is avoided.
@item
procedure Put_Line (File : File_Type; U : Unbounded_String);
Writes the value of the given unbounded string to the specified file,
followed by a @code{New_Line}.
Similar to the effect of @code{Put_Line (To_String (U))} except
that an extra copy is avoided.
@end itemize
In the above procedures, @code{File} is of type @code{Ada.Text_IO.File_Type}
and is optional. If the parameter is omitted, then the standard input or
output file is referenced as appropriate.
The package @code{Ada.Strings.Wide_Unbounded.Wide_Text_IO} in library
files @code{a-swuwti.ads} and @code{a-swuwti.adb} provides similar extended
@code{Wide_Text_IO} functionality for unbounded wide strings.
The package @code{Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO} in library
files @code{a-szuzti.ads} and @code{a-szuzti.adb} provides similar extended
@code{Wide_Wide_Text_IO} functionality for unbounded wide wide strings.
@node Wide_Text_IO,Wide_Wide_Text_IO,Text_IO,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o id13}@anchor{2cd}@anchor{gnat_rm/the_implementation_of_standard_i_o wide-text-io}@anchor{2ce}
@section Wide_Text_IO
@code{Wide_Text_IO} is similar in most respects to Text_IO, except that
both input and output files may contain special sequences that represent
wide character values. The encoding scheme for a given file may be
specified using a FORM parameter:
@example
WCEM=`x`
@end example
as part of the FORM string (WCEM = wide character encoding method),
where @code{x} is one of the following characters
@multitable {xxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxx}
@headitem
Character
@tab
Encoding
@item
`h'
@tab
Hex ESC encoding
@item
`u'
@tab
Upper half encoding
@item
`s'
@tab
Shift-JIS encoding
@item
`e'
@tab
EUC Encoding
@item
`8'
@tab
UTF-8 encoding
@item
`b'
@tab
Brackets encoding
@end multitable
The encoding methods match those that
can be used in a source
program, but there is no requirement that the encoding method used for
the source program be the same as the encoding method used for files,
and different files may use different encoding methods.
The default encoding method for the standard files, and for opened files
for which no WCEM parameter is given in the FORM string matches the
wide character encoding specified for the main program (the default
being brackets encoding if no coding method was specified with -gnatW).
@table @asis
@item `Hex Coding'
In this encoding, a wide character is represented by a five character
sequence:
@end table
@example
ESC a b c d
@end example
@quotation
where @code{a}, @code{b}, @code{c}, @code{d} are the four hexadecimal
characters (using upper case letters) of the wide character code. For
example, ESC A345 is used to represent the wide character with code
16#A345#. This scheme is compatible with use of the full
@code{Wide_Character} set.
@end quotation
@table @asis
@item `Upper Half Coding'
The wide character with encoding 16#abcd#, where the upper bit is on
(i.e., a is in the range 8-F) is represented as two bytes 16#ab# and
16#cd#. The second byte may never be a format control character, but is
not required to be in the upper half. This method can be also used for
shift-JIS or EUC where the internal coding matches the external coding.
@item `Shift JIS Coding'
A wide character is represented by a two character sequence 16#ab# and
16#cd#, with the restrictions described for upper half encoding as
described above. The internal character code is the corresponding JIS
character according to the standard algorithm for Shift-JIS
conversion. Only characters defined in the JIS code set table can be
used with this encoding method.
@item `EUC Coding'
A wide character is represented by a two character sequence 16#ab# and
16#cd#, with both characters being in the upper half. The internal
character code is the corresponding JIS character according to the EUC
encoding algorithm. Only characters defined in the JIS code set table
can be used with this encoding method.
@item `UTF-8 Coding'
A wide character is represented using
UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO
10646-1/Am.2. Depending on the character value, the representation
is a one, two, or three byte sequence:
@end table
@example
16#0000#-16#007f#: 2#0xxxxxxx#
16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#
16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#
@end example
@quotation
where the @code{xxx} bits correspond to the left-padded bits of the
16-bit character value. Note that all lower half ASCII characters
are represented as ASCII bytes and all upper half characters and
other wide characters are represented as sequences of upper-half
(The full UTF-8 scheme allows for encoding 31-bit characters as
6-byte sequences, but in this implementation, all UTF-8 sequences
of four or more bytes length will raise a Constraint_Error, as
will all invalid UTF-8 sequences.)
@end quotation
@table @asis
@item `Brackets Coding'
In this encoding, a wide character is represented by the following eight
character sequence:
@end table
@example
[ " a b c d " ]
@end example
@quotation
where @code{a}, @code{b}, @code{c}, @code{d} are the four hexadecimal
characters (using uppercase letters) of the wide character code. For
example, @code{["A345"]} is used to represent the wide character with code
@code{16#A345#}.
This scheme is compatible with use of the full Wide_Character set.
On input, brackets coding can also be used for upper half characters,
e.g., @code{["C1"]} for lower case a. However, on output, brackets notation
is only used for wide characters with a code greater than @code{16#FF#}.
Note that brackets coding is not normally used in the context of
Wide_Text_IO or Wide_Wide_Text_IO, since it is really just designed as
a portable way of encoding source files. In the context of Wide_Text_IO
or Wide_Wide_Text_IO, it can only be used if the file does not contain
any instance of the left bracket character other than to encode wide
character values using the brackets encoding method. In practice it is
expected that some standard wide character encoding method such
as UTF-8 will be used for text input output.
If brackets notation is used, then any occurrence of a left bracket
in the input file which is not the start of a valid wide character
sequence will cause Constraint_Error to be raised. It is possible to
encode a left bracket as [“5B”] and Wide_Text_IO and Wide_Wide_Text_IO
input will interpret this as a left bracket.
However, when a left bracket is output, it will be output as a left bracket
and not as [“5B”]. We make this decision because for normal use of
Wide_Text_IO for outputting messages, it is unpleasant to clobber left
brackets. For example, if we write:
@example
Put_Line ("Start of output [first run]");
@end example
we really do not want to have the left bracket in this message clobbered so
that the output reads:
@end quotation
@example
Start of output ["5B"]first run]
@end example
@quotation
In practice brackets encoding is reasonably useful for normal Put_Line use
since we won’t get confused between left brackets and wide character
sequences in the output. But for input, or when files are written out
and read back in, it really makes better sense to use one of the standard
encoding methods such as UTF-8.
@end quotation
For the coding schemes other than UTF-8, Hex, or Brackets encoding,
not all wide character
values can be represented. An attempt to output a character that cannot
be represented using the encoding scheme for the file causes
Constraint_Error to be raised. An invalid wide character sequence on
input also causes Constraint_Error to be raised.
@menu
* Stream Pointer Positioning: Stream Pointer Positioning<2>.
* Reading and Writing Non-Regular Files: Reading and Writing Non-Regular Files<2>.
@end menu
@node Stream Pointer Positioning<2>,Reading and Writing Non-Regular Files<2>,,Wide_Text_IO
@anchor{gnat_rm/the_implementation_of_standard_i_o id14}@anchor{2cf}@anchor{gnat_rm/the_implementation_of_standard_i_o stream-pointer-positioning-1}@anchor{2d0}
@subsection Stream Pointer Positioning
@code{Ada.Wide_Text_IO} is similar to @code{Ada.Text_IO} in its handling
of stream pointer positioning (@ref{2c0,,Text_IO}). There is one additional
case:
If @code{Ada.Wide_Text_IO.Look_Ahead} reads a character outside the
normal lower ASCII set, i.e. a character in the range:
@example
Wide_Character'Val (16#0080#) .. Wide_Character'Val (16#FFFF#)
@end example
then although the logical position of the file pointer is unchanged by
the @code{Look_Ahead} call, the stream is physically positioned past the
wide character sequence. Again this is to avoid the need for buffering
or backup, and all @code{Wide_Text_IO} routines check the internal
indication that this situation has occurred so that this is not visible
to a normal program using @code{Wide_Text_IO}. However, this discrepancy
can be observed if the wide text file shares a stream with another file.
@node Reading and Writing Non-Regular Files<2>,,Stream Pointer Positioning<2>,Wide_Text_IO
@anchor{gnat_rm/the_implementation_of_standard_i_o id15}@anchor{2d1}@anchor{gnat_rm/the_implementation_of_standard_i_o reading-and-writing-non-regular-files-1}@anchor{2d2}
@subsection Reading and Writing Non-Regular Files
As in the case of Text_IO, when a non-regular file is read, it is
assumed that the file contains no page marks (any form characters are
treated as data characters), and @code{End_Of_Page} always returns
@code{False}. Similarly, the end of file indication is not sticky, so
it is possible to read beyond an end of file.
@node Wide_Wide_Text_IO,Stream_IO,Wide_Text_IO,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o id16}@anchor{2d3}@anchor{gnat_rm/the_implementation_of_standard_i_o wide-wide-text-io}@anchor{2d4}
@section Wide_Wide_Text_IO
@code{Wide_Wide_Text_IO} is similar in most respects to Text_IO, except that
both input and output files may contain special sequences that represent
wide wide character values. The encoding scheme for a given file may be
specified using a FORM parameter:
@example
WCEM=`x`
@end example
as part of the FORM string (WCEM = wide character encoding method),
where @code{x} is one of the following characters
@multitable {xxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxx}
@headitem
Character
@tab
Encoding
@item
`h'
@tab
Hex ESC encoding
@item
`u'
@tab
Upper half encoding
@item
`s'
@tab
Shift-JIS encoding
@item
`e'
@tab
EUC Encoding
@item
`8'
@tab
UTF-8 encoding
@item
`b'
@tab
Brackets encoding
@end multitable
The encoding methods match those that
can be used in a source
program, but there is no requirement that the encoding method used for
the source program be the same as the encoding method used for files,
and different files may use different encoding methods.
The default encoding method for the standard files, and for opened files
for which no WCEM parameter is given in the FORM string matches the
wide character encoding specified for the main program (the default
being brackets encoding if no coding method was specified with -gnatW).
@table @asis
@item `UTF-8 Coding'
A wide character is represented using
UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO
10646-1/Am.2. Depending on the character value, the representation
is a one, two, three, or four byte sequence:
@end table
@example
16#000000#-16#00007f#: 2#0xxxxxxx#
16#000080#-16#0007ff#: 2#110xxxxx# 2#10xxxxxx#
16#000800#-16#00ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#
16#010000#-16#10ffff#: 2#11110xxx# 2#10xxxxxx# 2#10xxxxxx# 2#10xxxxxx#
@end example
@quotation
where the @code{xxx} bits correspond to the left-padded bits of the
21-bit character value. Note that all lower half ASCII characters
are represented as ASCII bytes and all upper half characters and
other wide characters are represented as sequences of upper-half
characters.
@end quotation
@table @asis
@item `Brackets Coding'
In this encoding, a wide wide character is represented by the following eight
character sequence if is in wide character range
@end table
@example
[ " a b c d " ]
@end example
@quotation
and by the following ten character sequence if not
@end quotation
@example
[ " a b c d e f " ]
@end example
@quotation
where @code{a}, @code{b}, @code{c}, @code{d}, @code{e}, and @code{f}
are the four or six hexadecimal
characters (using uppercase letters) of the wide wide character code. For
example, @code{["01A345"]} is used to represent the wide wide character
with code @code{16#01A345#}.
This scheme is compatible with use of the full Wide_Wide_Character set.
On input, brackets coding can also be used for upper half characters,
e.g., @code{["C1"]} for lower case a. However, on output, brackets notation
is only used for wide characters with a code greater than @code{16#FF#}.
@end quotation
If is also possible to use the other Wide_Character encoding methods,
such as Shift-JIS, but the other schemes cannot support the full range
of wide wide characters.
An attempt to output a character that cannot
be represented using the encoding scheme for the file causes
Constraint_Error to be raised. An invalid wide character sequence on
input also causes Constraint_Error to be raised.
@menu
* Stream Pointer Positioning: Stream Pointer Positioning<3>.
* Reading and Writing Non-Regular Files: Reading and Writing Non-Regular Files<3>.
@end menu
@node Stream Pointer Positioning<3>,Reading and Writing Non-Regular Files<3>,,Wide_Wide_Text_IO
@anchor{gnat_rm/the_implementation_of_standard_i_o id17}@anchor{2d5}@anchor{gnat_rm/the_implementation_of_standard_i_o stream-pointer-positioning-2}@anchor{2d6}
@subsection Stream Pointer Positioning
@code{Ada.Wide_Wide_Text_IO} is similar to @code{Ada.Text_IO} in its handling
of stream pointer positioning (@ref{2c0,,Text_IO}). There is one additional
case:
If @code{Ada.Wide_Wide_Text_IO.Look_Ahead} reads a character outside the
normal lower ASCII set, i.e. a character in the range:
@example
Wide_Wide_Character'Val (16#0080#) .. Wide_Wide_Character'Val (16#10FFFF#)
@end example
then although the logical position of the file pointer is unchanged by
the @code{Look_Ahead} call, the stream is physically positioned past the
wide character sequence. Again this is to avoid the need for buffering
or backup, and all @code{Wide_Wide_Text_IO} routines check the internal
indication that this situation has occurred so that this is not visible
to a normal program using @code{Wide_Wide_Text_IO}. However, this discrepancy
can be observed if the wide text file shares a stream with another file.
@node Reading and Writing Non-Regular Files<3>,,Stream Pointer Positioning<3>,Wide_Wide_Text_IO
@anchor{gnat_rm/the_implementation_of_standard_i_o id18}@anchor{2d7}@anchor{gnat_rm/the_implementation_of_standard_i_o reading-and-writing-non-regular-files-2}@anchor{2d8}
@subsection Reading and Writing Non-Regular Files
As in the case of Text_IO, when a non-regular file is read, it is
assumed that the file contains no page marks (any form characters are
treated as data characters), and @code{End_Of_Page} always returns
@code{False}. Similarly, the end of file indication is not sticky, so
it is possible to read beyond an end of file.
@node Stream_IO,Text Translation,Wide_Wide_Text_IO,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o id19}@anchor{2d9}@anchor{gnat_rm/the_implementation_of_standard_i_o stream-io}@anchor{2da}
@section Stream_IO
A stream file is a sequence of bytes, where individual elements are
written to the file as described in the Ada Reference Manual. The type
@code{Stream_Element} is simply a byte. There are two ways to read or
write a stream file.
@itemize *
@item
The operations @code{Read} and @code{Write} directly read or write a
sequence of stream elements with no control information.
@item
The stream attributes applied to a stream file transfer data in the
manner described for stream attributes.
@end itemize
@node Text Translation,Shared Files,Stream_IO,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o id20}@anchor{2db}@anchor{gnat_rm/the_implementation_of_standard_i_o text-translation}@anchor{2dc}
@section Text Translation
@code{Text_Translation=xxx} may be used as the Form parameter
passed to Text_IO.Create and Text_IO.Open. @code{Text_Translation=xxx}
has no effect on Unix systems. Possible values are:
@itemize *
@item
@code{Yes} or @code{Text} is the default, which means to
translate LF to/from CR/LF on Windows systems.
@code{No} disables this translation; i.e. it
uses binary mode. For output files, @code{Text_Translation=No}
may be used to create Unix-style files on
Windows.
@item
@code{wtext} translation enabled in Unicode mode.
(corresponds to _O_WTEXT).
@item
@code{u8text} translation enabled in Unicode UTF-8 mode.
(corresponds to O_U8TEXT).
@item
@code{u16text} translation enabled in Unicode UTF-16
mode. (corresponds to_O_U16TEXT).
@end itemize
@node Shared Files,Filenames encoding,Text Translation,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o id21}@anchor{2dd}@anchor{gnat_rm/the_implementation_of_standard_i_o shared-files}@anchor{2de}
@section Shared Files
Section A.14 of the Ada Reference Manual allows implementations to
provide a wide variety of behavior if an attempt is made to access the
same external file with two or more internal files.
To provide a full range of functionality, while at the same time
minimizing the problems of portability caused by this implementation
dependence, GNAT handles file sharing as follows:
@itemize *
@item
In the absence of a @code{shared=xxx} form parameter, an attempt
to open two or more files with the same full name is considered an error
and is not supported. The exception @code{Use_Error} will be
raised. Note that a file that is not explicitly closed by the program
remains open until the program terminates.
@item
If the form parameter @code{shared=no} appears in the form string, the
file can be opened or created with its own separate stream identifier,
regardless of whether other files sharing the same external file are
opened. The exact effect depends on how the C stream routines handle
multiple accesses to the same external files using separate streams.
@item
If the form parameter @code{shared=yes} appears in the form string for
each of two or more files opened using the same full name, the same
stream is shared between these files, and the semantics are as described
in Ada Reference Manual, Section A.14.
@end itemize
When a program that opens multiple files with the same name is ported
from another Ada compiler to GNAT, the effect will be that
@code{Use_Error} is raised.
The documentation of the original compiler and the documentation of the
program should then be examined to determine if file sharing was
expected, and @code{shared=xxx} parameters added to @code{Open}
and @code{Create} calls as required.
When a program is ported from GNAT to some other Ada compiler, no
special attention is required unless the @code{shared=xxx} form
parameter is used in the program. In this case, you must examine the
documentation of the new compiler to see if it supports the required
file sharing semantics, and form strings modified appropriately. Of
course it may be the case that the program cannot be ported if the
target compiler does not support the required functionality. The best
approach in writing portable code is to avoid file sharing (and hence
the use of the @code{shared=xxx} parameter in the form string)
completely.
One common use of file sharing in Ada 83 is the use of instantiations of
Sequential_IO on the same file with different types, to achieve
heterogeneous input-output. Although this approach will work in GNAT if
@code{shared=yes} is specified, it is preferable in Ada to use Stream_IO
for this purpose (using the stream attributes)
@node Filenames encoding,File content encoding,Shared Files,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o filenames-encoding}@anchor{2df}@anchor{gnat_rm/the_implementation_of_standard_i_o id22}@anchor{2e0}
@section Filenames encoding
An encoding form parameter can be used to specify the filename
encoding @code{encoding=xxx}.
@itemize *
@item
If the form parameter @code{encoding=utf8} appears in the form string, the
filename must be encoded in UTF-8.
@item
If the form parameter @code{encoding=8bits} appears in the form
string, the filename must be a standard 8bits string.
@end itemize
In the absence of a @code{encoding=xxx} form parameter, the
encoding is controlled by the @code{GNAT_CODE_PAGE} environment
variable. And if not set @code{utf8} is assumed.
@table @asis
@item `CP_ACP'
The current system Windows ANSI code page.
@item `CP_UTF8'
UTF-8 encoding
@end table
This encoding form parameter is only supported on the Windows
platform. On the other Operating Systems the run-time is supporting
UTF-8 natively.
@node File content encoding,Open Modes,Filenames encoding,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o file-content-encoding}@anchor{2e1}@anchor{gnat_rm/the_implementation_of_standard_i_o id23}@anchor{2e2}
@section File content encoding
For text files it is possible to specify the encoding to use. This is
controlled by the by the @code{GNAT_CCS_ENCODING} environment
variable. And if not set @code{TEXT} is assumed.
The possible values are those supported on Windows:
@table @asis
@item `TEXT'
Translated text mode
@item `WTEXT'
Translated unicode encoding
@item `U16TEXT'
Unicode 16-bit encoding
@item `U8TEXT'
Unicode 8-bit encoding
@end table
This encoding is only supported on the Windows platform.
@node Open Modes,Operations on C Streams,File content encoding,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o id24}@anchor{2e3}@anchor{gnat_rm/the_implementation_of_standard_i_o open-modes}@anchor{2e4}
@section Open Modes
@code{Open} and @code{Create} calls result in a call to @code{fopen}
using the mode shown in the following table:
@multitable {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxx}
@headitem
@code{Open} and @code{Create} Call Modes
@tab
@tab
@item
@tab
`OPEN'
@tab
`CREATE'
@item
Append_File
@tab
“r+”
@tab
“w+”
@item
In_File
@tab
“r”
@tab
“w+”
@item
Out_File (Direct_IO)
@tab
“r+”
@tab
“w”
@item
Out_File (all other cases)
@tab
“w”
@tab
“w”
@item
Inout_File
@tab
“r+”
@tab
“w+”
@end multitable
If text file translation is required, then either @code{b} or @code{t}
is added to the mode, depending on the setting of Text. Text file
translation refers to the mapping of CR/LF sequences in an external file
to LF characters internally. This mapping only occurs in DOS and
DOS-like systems, and is not relevant to other systems.
A special case occurs with Stream_IO. As shown in the above table, the
file is initially opened in @code{r} or @code{w} mode for the
@code{In_File} and @code{Out_File} cases. If a @code{Set_Mode} operation
subsequently requires switching from reading to writing or vice-versa,
then the file is reopened in @code{r+} mode to permit the required operation.
@node Operations on C Streams,Interfacing to C Streams,Open Modes,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o id25}@anchor{2e5}@anchor{gnat_rm/the_implementation_of_standard_i_o operations-on-c-streams}@anchor{2e6}
@section Operations on C Streams
The package @code{Interfaces.C_Streams} provides an Ada program with direct
access to the C library functions for operations on C streams:
@example
package Interfaces.C_Streams is
-- Note: the reason we do not use the types that are in
-- Interfaces.C is that we want to avoid dragging in the
-- code in this unit if possible.
subtype chars is System.Address;
-- Pointer to null-terminated array of characters
subtype FILEs is System.Address;
-- Corresponds to the C type FILE*
subtype voids is System.Address;
-- Corresponds to the C type void*
subtype int is Integer;
subtype long is Long_Integer;
-- Note: the above types are subtypes deliberately, and it
-- is part of this spec that the above correspondences are
-- guaranteed. This means that it is legitimate to, for
-- example, use Integer instead of int. We provide these
-- synonyms for clarity, but in some cases it may be
-- convenient to use the underlying types (for example to
-- avoid an unnecessary dependency of a spec on the spec
-- of this unit).
type size_t is mod 2 ** Standard'Address_Size;
NULL_Stream : constant FILEs;
-- Value returned (NULL in C) to indicate an
-- fdopen/fopen/tmpfile error
----------------------------------
-- Constants Defined in stdio.h --
----------------------------------
EOF : constant int;
-- Used by a number of routines to indicate error or
-- end of file
IOFBF : constant int;
IOLBF : constant int;
IONBF : constant int;
-- Used to indicate buffering mode for setvbuf call
SEEK_CUR : constant int;
SEEK_END : constant int;
SEEK_SET : constant int;
-- Used to indicate origin for fseek call
function stdin return FILEs;
function stdout return FILEs;
function stderr return FILEs;
-- Streams associated with standard files
--------------------------
-- Standard C functions --
--------------------------
-- The functions selected below are ones that are
-- available in UNIX (but not necessarily in ANSI C).
-- These are very thin interfaces
-- which copy exactly the C headers. For more
-- documentation on these functions, see the Microsoft C
-- "Run-Time Library Reference" (Microsoft Press, 1990,
-- ISBN 1-55615-225-6), which includes useful information
-- on system compatibility.
procedure clearerr (stream : FILEs);
function fclose (stream : FILEs) return int;
function fdopen (handle : int; mode : chars) return FILEs;
function feof (stream : FILEs) return int;
function ferror (stream : FILEs) return int;
function fflush (stream : FILEs) return int;
function fgetc (stream : FILEs) return int;
function fgets (strng : chars; n : int; stream : FILEs)
return chars;
function fileno (stream : FILEs) return int;
function fopen (filename : chars; Mode : chars)
return FILEs;
-- Note: to maintain target independence, use
-- text_translation_required, a boolean variable defined in
-- a-sysdep.c to deal with the target dependent text
-- translation requirement. If this variable is set,
-- then b/t should be appended to the standard mode
-- argument to set the text translation mode off or on
-- as required.
function fputc (C : int; stream : FILEs) return int;
function fputs (Strng : chars; Stream : FILEs) return int;
function fread
(buffer : voids;
size : size_t;
count : size_t;
stream : FILEs)
return size_t;
function freopen
(filename : chars;
mode : chars;
stream : FILEs)
return FILEs;
function fseek
(stream : FILEs;
offset : long;
origin : int)
return int;
function ftell (stream : FILEs) return long;
function fwrite
(buffer : voids;
size : size_t;
count : size_t;
stream : FILEs)
return size_t;
function isatty (handle : int) return int;
procedure mktemp (template : chars);
-- The return value (which is just a pointer to template)
-- is discarded
procedure rewind (stream : FILEs);
function rmtmp return int;
function setvbuf
(stream : FILEs;
buffer : chars;
mode : int;
size : size_t)
return int;
function tmpfile return FILEs;
function ungetc (c : int; stream : FILEs) return int;
function unlink (filename : chars) return int;
---------------------
-- Extra functions --
---------------------
-- These functions supply slightly thicker bindings than
-- those above. They are derived from functions in the
-- C Run-Time Library, but may do a bit more work than
-- just directly calling one of the Library functions.
function is_regular_file (handle : int) return int;
-- Tests if given handle is for a regular file (result 1)
-- or for a non-regular file (pipe or device, result 0).
---------------------------------
-- Control of Text/Binary Mode --
---------------------------------
-- If text_translation_required is true, then the following
-- functions may be used to dynamically switch a file from
-- binary to text mode or vice versa. These functions have
-- no effect if text_translation_required is false (i.e., in
-- normal UNIX mode). Use fileno to get a stream handle.
procedure set_binary_mode (handle : int);
procedure set_text_mode (handle : int);
----------------------------
-- Full Path Name support --
----------------------------
procedure full_name (nam : chars; buffer : chars);
-- Given a NUL terminated string representing a file
-- name, returns in buffer a NUL terminated string
-- representing the full path name for the file name.
-- On systems where it is relevant the drive is also
-- part of the full path name. It is the responsibility
-- of the caller to pass an actual parameter for buffer
-- that is big enough for any full path name. Use
-- max_path_len given below as the size of buffer.
max_path_len : integer;
-- Maximum length of an allowable full path name on the
-- system, including a terminating NUL character.
end Interfaces.C_Streams;
@end example
@node Interfacing to C Streams,,Operations on C Streams,The Implementation of Standard I/O
@anchor{gnat_rm/the_implementation_of_standard_i_o id26}@anchor{2e7}@anchor{gnat_rm/the_implementation_of_standard_i_o interfacing-to-c-streams}@anchor{2e8}
@section Interfacing to C Streams
The packages in this section permit interfacing Ada files to C Stream
operations.
@example
with Interfaces.C_Streams;
package Ada.Sequential_IO.C_Streams is
function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;
procedure Open
(File : in out File_Type;
Mode : in File_Mode;
C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");
end Ada.Sequential_IO.C_Streams;
with Interfaces.C_Streams;
package Ada.Direct_IO.C_Streams is
function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;
procedure Open
(File : in out File_Type;
Mode : in File_Mode;
C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");
end Ada.Direct_IO.C_Streams;
with Interfaces.C_Streams;
package Ada.Text_IO.C_Streams is
function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;
procedure Open
(File : in out File_Type;
Mode : in File_Mode;
C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");
end Ada.Text_IO.C_Streams;
with Interfaces.C_Streams;
package Ada.Wide_Text_IO.C_Streams is
function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;
procedure Open
(File : in out File_Type;
Mode : in File_Mode;
C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");
end Ada.Wide_Text_IO.C_Streams;
with Interfaces.C_Streams;
package Ada.Wide_Wide_Text_IO.C_Streams is
function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;
procedure Open
(File : in out File_Type;
Mode : in File_Mode;
C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");
end Ada.Wide_Wide_Text_IO.C_Streams;
with Interfaces.C_Streams;
package Ada.Stream_IO.C_Streams is
function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;
procedure Open
(File : in out File_Type;
Mode : in File_Mode;
C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");
end Ada.Stream_IO.C_Streams;
@end example
In each of these six packages, the @code{C_Stream} function obtains the
@code{FILE} pointer from a currently opened Ada file. It is then
possible to use the @code{Interfaces.C_Streams} package to operate on
this stream, or the stream can be passed to a C program which can
operate on it directly. Of course the program is responsible for
ensuring that only appropriate sequences of operations are executed.
One particular use of relevance to an Ada program is that the
@code{setvbuf} function can be used to control the buffering of the
stream used by an Ada file. In the absence of such a call the standard
default buffering is used.
The @code{Open} procedures in these packages open a file giving an
existing C Stream instead of a file name. Typically this stream is
imported from a C program, allowing an Ada file to operate on an
existing C file.
@node The GNAT Library,Interfacing to Other Languages,The Implementation of Standard I/O,Top
@anchor{gnat_rm/the_gnat_library doc}@anchor{2e9}@anchor{gnat_rm/the_gnat_library id1}@anchor{2ea}@anchor{gnat_rm/the_gnat_library the-gnat-library}@anchor{10}
@chapter The GNAT Library
The GNAT library contains a number of general and special purpose packages.
It represents functionality that the GNAT developers have found useful, and
which is made available to GNAT users. The packages described here are fully
supported, and upwards compatibility will be maintained in future releases,
so you can use these facilities with the confidence that the same functionality
will be available in future releases.
The chapter here simply gives a brief summary of the facilities available.
The full documentation is found in the spec file for the package. The full
sources of these library packages, including both spec and body, are provided
with all GNAT releases. For example, to find out the full specifications of
the SPITBOL pattern matching capability, including a full tutorial and
extensive examples, look in the @code{g-spipat.ads} file in the library.
For each entry here, the package name (as it would appear in a @code{with}
clause) is given, followed by the name of the corresponding spec file in
parentheses. The packages are children in four hierarchies, @code{Ada},
@code{Interfaces}, @code{System}, and @code{GNAT}, the latter being a
GNAT-specific hierarchy.
Note that an application program should only use packages in one of these
four hierarchies if the package is defined in the Ada Reference Manual,
or is listed in this section of the GNAT Programmers Reference Manual.
All other units should be considered internal implementation units and
should not be directly @code{with}ed by application code. The use of
a @code{with} clause that references one of these internal implementation
units makes an application potentially dependent on changes in versions
of GNAT, and will generate a warning message.
@menu
* Ada.Characters.Latin_9 (a-chlat9.ads): Ada Characters Latin_9 a-chlat9 ads.
* Ada.Characters.Wide_Latin_1 (a-cwila1.ads): Ada Characters Wide_Latin_1 a-cwila1 ads.
* Ada.Characters.Wide_Latin_9 (a-cwila9.ads): Ada Characters Wide_Latin_9 a-cwila9 ads.
* Ada.Characters.Wide_Wide_Latin_1 (a-chzla1.ads): Ada Characters Wide_Wide_Latin_1 a-chzla1 ads.
* Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads): Ada Characters Wide_Wide_Latin_9 a-chzla9 ads.
* Ada.Containers.Bounded_Holders (a-coboho.ads): Ada Containers Bounded_Holders a-coboho ads.
* Ada.Command_Line.Environment (a-colien.ads): Ada Command_Line Environment a-colien ads.
* Ada.Command_Line.Remove (a-colire.ads): Ada Command_Line Remove a-colire ads.
* Ada.Command_Line.Response_File (a-clrefi.ads): Ada Command_Line Response_File a-clrefi ads.
* Ada.Direct_IO.C_Streams (a-diocst.ads): Ada Direct_IO C_Streams a-diocst ads.
* Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads): Ada Exceptions Is_Null_Occurrence a-einuoc ads.
* Ada.Exceptions.Last_Chance_Handler (a-elchha.ads): Ada Exceptions Last_Chance_Handler a-elchha ads.
* Ada.Exceptions.Traceback (a-exctra.ads): Ada Exceptions Traceback a-exctra ads.
* Ada.Sequential_IO.C_Streams (a-siocst.ads): Ada Sequential_IO C_Streams a-siocst ads.
* Ada.Streams.Stream_IO.C_Streams (a-ssicst.ads): Ada Streams Stream_IO C_Streams a-ssicst ads.
* Ada.Strings.Unbounded.Text_IO (a-suteio.ads): Ada Strings Unbounded Text_IO a-suteio ads.
* Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads): Ada Strings Wide_Unbounded Wide_Text_IO a-swuwti ads.
* Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO (a-szuzti.ads): Ada Strings Wide_Wide_Unbounded Wide_Wide_Text_IO a-szuzti ads.
* Ada.Task_Initialization (a-tasini.ads): Ada Task_Initialization a-tasini ads.
* Ada.Text_IO.C_Streams (a-tiocst.ads): Ada Text_IO C_Streams a-tiocst ads.
* Ada.Text_IO.Reset_Standard_Files (a-tirsfi.ads): Ada Text_IO Reset_Standard_Files a-tirsfi ads.
* Ada.Wide_Characters.Unicode (a-wichun.ads): Ada Wide_Characters Unicode a-wichun ads.
* Ada.Wide_Text_IO.C_Streams (a-wtcstr.ads): Ada Wide_Text_IO C_Streams a-wtcstr ads.
* Ada.Wide_Text_IO.Reset_Standard_Files (a-wrstfi.ads): Ada Wide_Text_IO Reset_Standard_Files a-wrstfi ads.
* Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads): Ada Wide_Wide_Characters Unicode a-zchuni ads.
* Ada.Wide_Wide_Text_IO.C_Streams (a-ztcstr.ads): Ada Wide_Wide_Text_IO C_Streams a-ztcstr ads.
* Ada.Wide_Wide_Text_IO.Reset_Standard_Files (a-zrstfi.ads): Ada Wide_Wide_Text_IO Reset_Standard_Files a-zrstfi ads.
* GNAT.Altivec (g-altive.ads): GNAT Altivec g-altive ads.
* GNAT.Altivec.Conversions (g-altcon.ads): GNAT Altivec Conversions g-altcon ads.
* GNAT.Altivec.Vector_Operations (g-alveop.ads): GNAT Altivec Vector_Operations g-alveop ads.
* GNAT.Altivec.Vector_Types (g-alvety.ads): GNAT Altivec Vector_Types g-alvety ads.
* GNAT.Altivec.Vector_Views (g-alvevi.ads): GNAT Altivec Vector_Views g-alvevi ads.
* GNAT.Array_Split (g-arrspl.ads): GNAT Array_Split g-arrspl ads.
* GNAT.AWK (g-awk.ads): GNAT AWK g-awk ads.
* GNAT.Binary_Search (g-binsea.ads): GNAT Binary_Search g-binsea ads.
* GNAT.Bind_Environment (g-binenv.ads): GNAT Bind_Environment g-binenv ads.
* GNAT.Branch_Prediction (g-brapre.ads): GNAT Branch_Prediction g-brapre ads.
* GNAT.Bounded_Buffers (g-boubuf.ads): GNAT Bounded_Buffers g-boubuf ads.
* GNAT.Bounded_Mailboxes (g-boumai.ads): GNAT Bounded_Mailboxes g-boumai ads.
* GNAT.Bubble_Sort (g-bubsor.ads): GNAT Bubble_Sort g-bubsor ads.
* GNAT.Bubble_Sort_A (g-busora.ads): GNAT Bubble_Sort_A g-busora ads.
* GNAT.Bubble_Sort_G (g-busorg.ads): GNAT Bubble_Sort_G g-busorg ads.
* GNAT.Byte_Order_Mark (g-byorma.ads): GNAT Byte_Order_Mark g-byorma ads.
* GNAT.Byte_Swapping (g-bytswa.ads): GNAT Byte_Swapping g-bytswa ads.
* GNAT.Calendar (g-calend.ads): GNAT Calendar g-calend ads.
* GNAT.Calendar.Time_IO (g-catiio.ads): GNAT Calendar Time_IO g-catiio ads.
* GNAT.CRC32 (g-crc32.ads): GNAT CRC32 g-crc32 ads.
* GNAT.Case_Util (g-casuti.ads): GNAT Case_Util g-casuti ads.
* GNAT.CGI (g-cgi.ads): GNAT CGI g-cgi ads.
* GNAT.CGI.Cookie (g-cgicoo.ads): GNAT CGI Cookie g-cgicoo ads.
* GNAT.CGI.Debug (g-cgideb.ads): GNAT CGI Debug g-cgideb ads.
* GNAT.Command_Line (g-comlin.ads): GNAT Command_Line g-comlin ads.
* GNAT.Compiler_Version (g-comver.ads): GNAT Compiler_Version g-comver ads.
* GNAT.Ctrl_C (g-ctrl_c.ads): GNAT Ctrl_C g-ctrl_c ads.
* GNAT.Current_Exception (g-curexc.ads): GNAT Current_Exception g-curexc ads.
* GNAT.Debug_Pools (g-debpoo.ads): GNAT Debug_Pools g-debpoo ads.
* GNAT.Debug_Utilities (g-debuti.ads): GNAT Debug_Utilities g-debuti ads.
* GNAT.Decode_String (g-decstr.ads): GNAT Decode_String g-decstr ads.
* GNAT.Decode_UTF8_String (g-deutst.ads): GNAT Decode_UTF8_String g-deutst ads.
* GNAT.Directory_Operations (g-dirope.ads): GNAT Directory_Operations g-dirope ads.
* GNAT.Directory_Operations.Iteration (g-diopit.ads): GNAT Directory_Operations Iteration g-diopit ads.
* GNAT.Dynamic_HTables (g-dynhta.ads): GNAT Dynamic_HTables g-dynhta ads.
* GNAT.Dynamic_Tables (g-dyntab.ads): GNAT Dynamic_Tables g-dyntab ads.
* GNAT.Encode_String (g-encstr.ads): GNAT Encode_String g-encstr ads.
* GNAT.Encode_UTF8_String (g-enutst.ads): GNAT Encode_UTF8_String g-enutst ads.
* GNAT.Exception_Actions (g-excact.ads): GNAT Exception_Actions g-excact ads.
* GNAT.Exception_Traces (g-exctra.ads): GNAT Exception_Traces g-exctra ads.
* GNAT.Exceptions (g-except.ads): GNAT Exceptions g-except ads.
* GNAT.Expect (g-expect.ads): GNAT Expect g-expect ads.
* GNAT.Expect.TTY (g-exptty.ads): GNAT Expect TTY g-exptty ads.
* GNAT.Float_Control (g-flocon.ads): GNAT Float_Control g-flocon ads.
* GNAT.Formatted_String (g-forstr.ads): GNAT Formatted_String g-forstr ads.
* GNAT.Generic_Fast_Math_Functions (g-gfmafu.ads): GNAT Generic_Fast_Math_Functions g-gfmafu ads.
* GNAT.Heap_Sort (g-heasor.ads): GNAT Heap_Sort g-heasor ads.
* GNAT.Heap_Sort_A (g-hesora.ads): GNAT Heap_Sort_A g-hesora ads.
* GNAT.Heap_Sort_G (g-hesorg.ads): GNAT Heap_Sort_G g-hesorg ads.
* GNAT.HTable (g-htable.ads): GNAT HTable g-htable ads.
* GNAT.IO (g-io.ads): GNAT IO g-io ads.
* GNAT.IO_Aux (g-io_aux.ads): GNAT IO_Aux g-io_aux ads.
* GNAT.Lock_Files (g-locfil.ads): GNAT Lock_Files g-locfil ads.
* GNAT.MBBS_Discrete_Random (g-mbdira.ads): GNAT MBBS_Discrete_Random g-mbdira ads.
* GNAT.MBBS_Float_Random (g-mbflra.ads): GNAT MBBS_Float_Random g-mbflra ads.
* GNAT.MD5 (g-md5.ads): GNAT MD5 g-md5 ads.
* GNAT.Memory_Dump (g-memdum.ads): GNAT Memory_Dump g-memdum ads.
* GNAT.Most_Recent_Exception (g-moreex.ads): GNAT Most_Recent_Exception g-moreex ads.
* GNAT.OS_Lib (g-os_lib.ads): GNAT OS_Lib g-os_lib ads.
* GNAT.Perfect_Hash_Generators (g-pehage.ads): GNAT Perfect_Hash_Generators g-pehage ads.
* GNAT.Random_Numbers (g-rannum.ads): GNAT Random_Numbers g-rannum ads.
* GNAT.Regexp (g-regexp.ads): GNAT Regexp g-regexp ads.
* GNAT.Registry (g-regist.ads): GNAT Registry g-regist ads.
* GNAT.Regpat (g-regpat.ads): GNAT Regpat g-regpat ads.
* GNAT.Rewrite_Data (g-rewdat.ads): GNAT Rewrite_Data g-rewdat ads.
* GNAT.Secondary_Stack_Info (g-sestin.ads): GNAT Secondary_Stack_Info g-sestin ads.
* GNAT.Semaphores (g-semaph.ads): GNAT Semaphores g-semaph ads.
* GNAT.Serial_Communications (g-sercom.ads): GNAT Serial_Communications g-sercom ads.
* GNAT.SHA1 (g-sha1.ads): GNAT SHA1 g-sha1 ads.
* GNAT.SHA224 (g-sha224.ads): GNAT SHA224 g-sha224 ads.
* GNAT.SHA256 (g-sha256.ads): GNAT SHA256 g-sha256 ads.
* GNAT.SHA384 (g-sha384.ads): GNAT SHA384 g-sha384 ads.
* GNAT.SHA512 (g-sha512.ads): GNAT SHA512 g-sha512 ads.
* GNAT.Signals (g-signal.ads): GNAT Signals g-signal ads.
* GNAT.Sockets (g-socket.ads): GNAT Sockets g-socket ads.
* GNAT.Source_Info (g-souinf.ads): GNAT Source_Info g-souinf ads.
* GNAT.Spelling_Checker (g-speche.ads): GNAT Spelling_Checker g-speche ads.
* GNAT.Spelling_Checker_Generic (g-spchge.ads): GNAT Spelling_Checker_Generic g-spchge ads.
* GNAT.Spitbol.Patterns (g-spipat.ads): GNAT Spitbol Patterns g-spipat ads.
* GNAT.Spitbol (g-spitbo.ads): GNAT Spitbol g-spitbo ads.
* GNAT.Spitbol.Table_Boolean (g-sptabo.ads): GNAT Spitbol Table_Boolean g-sptabo ads.
* GNAT.Spitbol.Table_Integer (g-sptain.ads): GNAT Spitbol Table_Integer g-sptain ads.
* GNAT.Spitbol.Table_VString (g-sptavs.ads): GNAT Spitbol Table_VString g-sptavs ads.
* GNAT.SSE (g-sse.ads): GNAT SSE g-sse ads.
* GNAT.SSE.Vector_Types (g-ssvety.ads): GNAT SSE Vector_Types g-ssvety ads.
* GNAT.String_Hash (g-strhas.ads): GNAT String_Hash g-strhas ads.
* GNAT.Strings (g-string.ads): GNAT Strings g-string ads.
* GNAT.String_Split (g-strspl.ads): GNAT String_Split g-strspl ads.
* GNAT.Table (g-table.ads): GNAT Table g-table ads.
* GNAT.Task_Lock (g-tasloc.ads): GNAT Task_Lock g-tasloc ads.
* GNAT.Time_Stamp (g-timsta.ads): GNAT Time_Stamp g-timsta ads.
* GNAT.Threads (g-thread.ads): GNAT Threads g-thread ads.
* GNAT.Traceback (g-traceb.ads): GNAT Traceback g-traceb ads.
* GNAT.Traceback.Symbolic (g-trasym.ads): GNAT Traceback Symbolic g-trasym ads.
* GNAT.UTF_32 (g-utf_32.ads): GNAT UTF_32 g-utf_32 ads.
* GNAT.UTF_32_Spelling_Checker (g-u3spch.ads): GNAT UTF_32_Spelling_Checker g-u3spch ads.
* GNAT.Wide_Spelling_Checker (g-wispch.ads): GNAT Wide_Spelling_Checker g-wispch ads.
* GNAT.Wide_String_Split (g-wistsp.ads): GNAT Wide_String_Split g-wistsp ads.
* GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads): GNAT Wide_Wide_Spelling_Checker g-zspche ads.
* GNAT.Wide_Wide_String_Split (g-zistsp.ads): GNAT Wide_Wide_String_Split g-zistsp ads.
* Interfaces.C.Extensions (i-cexten.ads): Interfaces C Extensions i-cexten ads.
* Interfaces.C.Streams (i-cstrea.ads): Interfaces C Streams i-cstrea ads.
* Interfaces.Packed_Decimal (i-pacdec.ads): Interfaces Packed_Decimal i-pacdec ads.
* Interfaces.VxWorks (i-vxwork.ads): Interfaces VxWorks i-vxwork ads.
* Interfaces.VxWorks.IO (i-vxwoio.ads): Interfaces VxWorks IO i-vxwoio ads.
* System.Address_Image (s-addima.ads): System Address_Image s-addima ads.
* System.Assertions (s-assert.ads): System Assertions s-assert ads.
* System.Atomic_Counters (s-atocou.ads): System Atomic_Counters s-atocou ads.
* System.Memory (s-memory.ads): System Memory s-memory ads.
* System.Multiprocessors (s-multip.ads): System Multiprocessors s-multip ads.
* System.Multiprocessors.Dispatching_Domains (s-mudido.ads): System Multiprocessors Dispatching_Domains s-mudido ads.
* System.Partition_Interface (s-parint.ads): System Partition_Interface s-parint ads.
* System.Pool_Global (s-pooglo.ads): System Pool_Global s-pooglo ads.
* System.Pool_Local (s-pooloc.ads): System Pool_Local s-pooloc ads.
* System.Restrictions (s-restri.ads): System Restrictions s-restri ads.
* System.Rident (s-rident.ads): System Rident s-rident ads.
* System.Strings.Stream_Ops (s-ststop.ads): System Strings Stream_Ops s-ststop ads.
* System.Unsigned_Types (s-unstyp.ads): System Unsigned_Types s-unstyp ads.
* System.Wch_Cnv (s-wchcnv.ads): System Wch_Cnv s-wchcnv ads.
* System.Wch_Con (s-wchcon.ads): System Wch_Con s-wchcon ads.
@end menu
@node Ada Characters Latin_9 a-chlat9 ads,Ada Characters Wide_Latin_1 a-cwila1 ads,,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-characters-latin-9-a-chlat9-ads}@anchor{2eb}@anchor{gnat_rm/the_gnat_library id2}@anchor{2ec}
@section @code{Ada.Characters.Latin_9} (@code{a-chlat9.ads})
@geindex Ada.Characters.Latin_9 (a-chlat9.ads)
@geindex Latin_9 constants for Character
This child of @code{Ada.Characters}
provides a set of definitions corresponding to those in the
RM-defined package @code{Ada.Characters.Latin_1} but with the
few modifications required for @code{Latin-9}.
The provision of such a package
is specifically authorized by the Ada Reference Manual
(RM A.3.3(27)).
@node Ada Characters Wide_Latin_1 a-cwila1 ads,Ada Characters Wide_Latin_9 a-cwila9 ads,Ada Characters Latin_9 a-chlat9 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-characters-wide-latin-1-a-cwila1-ads}@anchor{2ed}@anchor{gnat_rm/the_gnat_library id3}@anchor{2ee}
@section @code{Ada.Characters.Wide_Latin_1} (@code{a-cwila1.ads})
@geindex Ada.Characters.Wide_Latin_1 (a-cwila1.ads)
@geindex Latin_1 constants for Wide_Character
This child of @code{Ada.Characters}
provides a set of definitions corresponding to those in the
RM-defined package @code{Ada.Characters.Latin_1} but with the
types of the constants being @code{Wide_Character}
instead of @code{Character}. The provision of such a package
is specifically authorized by the Ada Reference Manual
(RM A.3.3(27)).
@node Ada Characters Wide_Latin_9 a-cwila9 ads,Ada Characters Wide_Wide_Latin_1 a-chzla1 ads,Ada Characters Wide_Latin_1 a-cwila1 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-characters-wide-latin-9-a-cwila9-ads}@anchor{2ef}@anchor{gnat_rm/the_gnat_library id4}@anchor{2f0}
@section @code{Ada.Characters.Wide_Latin_9} (@code{a-cwila9.ads})
@geindex Ada.Characters.Wide_Latin_9 (a-cwila9.ads)
@geindex Latin_9 constants for Wide_Character
This child of @code{Ada.Characters}
provides a set of definitions corresponding to those in the
GNAT defined package @code{Ada.Characters.Latin_9} but with the
types of the constants being @code{Wide_Character}
instead of @code{Character}. The provision of such a package
is specifically authorized by the Ada Reference Manual
(RM A.3.3(27)).
@node Ada Characters Wide_Wide_Latin_1 a-chzla1 ads,Ada Characters Wide_Wide_Latin_9 a-chzla9 ads,Ada Characters Wide_Latin_9 a-cwila9 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-characters-wide-wide-latin-1-a-chzla1-ads}@anchor{2f1}@anchor{gnat_rm/the_gnat_library id5}@anchor{2f2}
@section @code{Ada.Characters.Wide_Wide_Latin_1} (@code{a-chzla1.ads})
@geindex Ada.Characters.Wide_Wide_Latin_1 (a-chzla1.ads)
@geindex Latin_1 constants for Wide_Wide_Character
This child of @code{Ada.Characters}
provides a set of definitions corresponding to those in the
RM-defined package @code{Ada.Characters.Latin_1} but with the
types of the constants being @code{Wide_Wide_Character}
instead of @code{Character}. The provision of such a package
is specifically authorized by the Ada Reference Manual
(RM A.3.3(27)).
@node Ada Characters Wide_Wide_Latin_9 a-chzla9 ads,Ada Containers Bounded_Holders a-coboho ads,Ada Characters Wide_Wide_Latin_1 a-chzla1 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-characters-wide-wide-latin-9-a-chzla9-ads}@anchor{2f3}@anchor{gnat_rm/the_gnat_library id6}@anchor{2f4}
@section @code{Ada.Characters.Wide_Wide_Latin_9} (@code{a-chzla9.ads})
@geindex Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads)
@geindex Latin_9 constants for Wide_Wide_Character
This child of @code{Ada.Characters}
provides a set of definitions corresponding to those in the
GNAT defined package @code{Ada.Characters.Latin_9} but with the
types of the constants being @code{Wide_Wide_Character}
instead of @code{Character}. The provision of such a package
is specifically authorized by the Ada Reference Manual
(RM A.3.3(27)).
@node Ada Containers Bounded_Holders a-coboho ads,Ada Command_Line Environment a-colien ads,Ada Characters Wide_Wide_Latin_9 a-chzla9 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-containers-bounded-holders-a-coboho-ads}@anchor{2f5}@anchor{gnat_rm/the_gnat_library id7}@anchor{2f6}
@section @code{Ada.Containers.Bounded_Holders} (@code{a-coboho.ads})
@geindex Ada.Containers.Bounded_Holders (a-coboho.ads)
@geindex Formal container for vectors
This child of @code{Ada.Containers} defines a modified version of
Indefinite_Holders that avoids heap allocation.
@node Ada Command_Line Environment a-colien ads,Ada Command_Line Remove a-colire ads,Ada Containers Bounded_Holders a-coboho ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-command-line-environment-a-colien-ads}@anchor{2f7}@anchor{gnat_rm/the_gnat_library id8}@anchor{2f8}
@section @code{Ada.Command_Line.Environment} (@code{a-colien.ads})
@geindex Ada.Command_Line.Environment (a-colien.ads)
@geindex Environment entries
This child of @code{Ada.Command_Line}
provides a mechanism for obtaining environment values on systems
where this concept makes sense.
@node Ada Command_Line Remove a-colire ads,Ada Command_Line Response_File a-clrefi ads,Ada Command_Line Environment a-colien ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-command-line-remove-a-colire-ads}@anchor{2f9}@anchor{gnat_rm/the_gnat_library id9}@anchor{2fa}
@section @code{Ada.Command_Line.Remove} (@code{a-colire.ads})
@geindex Ada.Command_Line.Remove (a-colire.ads)
@geindex Removing command line arguments
@geindex Command line
@geindex argument removal
This child of @code{Ada.Command_Line}
provides a mechanism for logically removing
arguments from the argument list. Once removed, an argument is not visible
to further calls to the subprograms in @code{Ada.Command_Line}. These calls
will not see the removed argument.
@node Ada Command_Line Response_File a-clrefi ads,Ada Direct_IO C_Streams a-diocst ads,Ada Command_Line Remove a-colire ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-command-line-response-file-a-clrefi-ads}@anchor{2fb}@anchor{gnat_rm/the_gnat_library id10}@anchor{2fc}
@section @code{Ada.Command_Line.Response_File} (@code{a-clrefi.ads})
@geindex Ada.Command_Line.Response_File (a-clrefi.ads)
@geindex Response file for command line
@geindex Command line
@geindex response file
@geindex Command line
@geindex handling long command lines
This child of @code{Ada.Command_Line} provides a mechanism facilities for
getting command line arguments from a text file, called a “response file”.
Using a response file allow passing a set of arguments to an executable longer
than the maximum allowed by the system on the command line.
@node Ada Direct_IO C_Streams a-diocst ads,Ada Exceptions Is_Null_Occurrence a-einuoc ads,Ada Command_Line Response_File a-clrefi ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-direct-io-c-streams-a-diocst-ads}@anchor{2fd}@anchor{gnat_rm/the_gnat_library id11}@anchor{2fe}
@section @code{Ada.Direct_IO.C_Streams} (@code{a-diocst.ads})
@geindex Ada.Direct_IO.C_Streams (a-diocst.ads)
@geindex C Streams
@geindex Interfacing with Direct_IO
This package provides subprograms that allow interfacing between
C streams and @code{Direct_IO}. The stream identifier can be
extracted from a file opened on the Ada side, and an Ada file
can be constructed from a stream opened on the C side.
@node Ada Exceptions Is_Null_Occurrence a-einuoc ads,Ada Exceptions Last_Chance_Handler a-elchha ads,Ada Direct_IO C_Streams a-diocst ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-exceptions-is-null-occurrence-a-einuoc-ads}@anchor{2ff}@anchor{gnat_rm/the_gnat_library id12}@anchor{300}
@section @code{Ada.Exceptions.Is_Null_Occurrence} (@code{a-einuoc.ads})
@geindex Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads)
@geindex Null_Occurrence
@geindex testing for
This child subprogram provides a way of testing for the null
exception occurrence (@code{Null_Occurrence}) without raising
an exception.
@node Ada Exceptions Last_Chance_Handler a-elchha ads,Ada Exceptions Traceback a-exctra ads,Ada Exceptions Is_Null_Occurrence a-einuoc ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-exceptions-last-chance-handler-a-elchha-ads}@anchor{301}@anchor{gnat_rm/the_gnat_library id13}@anchor{302}
@section @code{Ada.Exceptions.Last_Chance_Handler} (@code{a-elchha.ads})
@geindex Ada.Exceptions.Last_Chance_Handler (a-elchha.ads)
@geindex Null_Occurrence
@geindex testing for
This child subprogram is used for handling otherwise unhandled
exceptions (hence the name last chance), and perform clean ups before
terminating the program. Note that this subprogram never returns.
@node Ada Exceptions Traceback a-exctra ads,Ada Sequential_IO C_Streams a-siocst ads,Ada Exceptions Last_Chance_Handler a-elchha ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-exceptions-traceback-a-exctra-ads}@anchor{303}@anchor{gnat_rm/the_gnat_library id14}@anchor{304}
@section @code{Ada.Exceptions.Traceback} (@code{a-exctra.ads})
@geindex Ada.Exceptions.Traceback (a-exctra.ads)
@geindex Traceback for Exception Occurrence
This child package provides the subprogram (@code{Tracebacks}) to
give a traceback array of addresses based on an exception
occurrence.
@node Ada Sequential_IO C_Streams a-siocst ads,Ada Streams Stream_IO C_Streams a-ssicst ads,Ada Exceptions Traceback a-exctra ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-sequential-io-c-streams-a-siocst-ads}@anchor{305}@anchor{gnat_rm/the_gnat_library id15}@anchor{306}
@section @code{Ada.Sequential_IO.C_Streams} (@code{a-siocst.ads})
@geindex Ada.Sequential_IO.C_Streams (a-siocst.ads)
@geindex C Streams
@geindex Interfacing with Sequential_IO
This package provides subprograms that allow interfacing between
C streams and @code{Sequential_IO}. The stream identifier can be
extracted from a file opened on the Ada side, and an Ada file
can be constructed from a stream opened on the C side.
@node Ada Streams Stream_IO C_Streams a-ssicst ads,Ada Strings Unbounded Text_IO a-suteio ads,Ada Sequential_IO C_Streams a-siocst ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-streams-stream-io-c-streams-a-ssicst-ads}@anchor{307}@anchor{gnat_rm/the_gnat_library id16}@anchor{308}
@section @code{Ada.Streams.Stream_IO.C_Streams} (@code{a-ssicst.ads})
@geindex Ada.Streams.Stream_IO.C_Streams (a-ssicst.ads)
@geindex C Streams
@geindex Interfacing with Stream_IO
This package provides subprograms that allow interfacing between
C streams and @code{Stream_IO}. The stream identifier can be
extracted from a file opened on the Ada side, and an Ada file
can be constructed from a stream opened on the C side.
@node Ada Strings Unbounded Text_IO a-suteio ads,Ada Strings Wide_Unbounded Wide_Text_IO a-swuwti ads,Ada Streams Stream_IO C_Streams a-ssicst ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-strings-unbounded-text-io-a-suteio-ads}@anchor{309}@anchor{gnat_rm/the_gnat_library id17}@anchor{30a}
@section @code{Ada.Strings.Unbounded.Text_IO} (@code{a-suteio.ads})
@geindex Ada.Strings.Unbounded.Text_IO (a-suteio.ads)
@geindex Unbounded_String
@geindex IO support
@geindex Text_IO
@geindex extensions for unbounded strings
This package provides subprograms for Text_IO for unbounded
strings, avoiding the necessity for an intermediate operation
with ordinary strings.
@node Ada Strings Wide_Unbounded Wide_Text_IO a-swuwti ads,Ada Strings Wide_Wide_Unbounded Wide_Wide_Text_IO a-szuzti ads,Ada Strings Unbounded Text_IO a-suteio ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-strings-wide-unbounded-wide-text-io-a-swuwti-ads}@anchor{30b}@anchor{gnat_rm/the_gnat_library id18}@anchor{30c}
@section @code{Ada.Strings.Wide_Unbounded.Wide_Text_IO} (@code{a-swuwti.ads})
@geindex Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads)
@geindex Unbounded_Wide_String
@geindex IO support
@geindex Text_IO
@geindex extensions for unbounded wide strings
This package provides subprograms for Text_IO for unbounded
wide strings, avoiding the necessity for an intermediate operation
with ordinary wide strings.
@node Ada Strings Wide_Wide_Unbounded Wide_Wide_Text_IO a-szuzti ads,Ada Task_Initialization a-tasini ads,Ada Strings Wide_Unbounded Wide_Text_IO a-swuwti ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-strings-wide-wide-unbounded-wide-wide-text-io-a-szuzti-ads}@anchor{30d}@anchor{gnat_rm/the_gnat_library id19}@anchor{30e}
@section @code{Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO} (@code{a-szuzti.ads})
@geindex Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO (a-szuzti.ads)
@geindex Unbounded_Wide_Wide_String
@geindex IO support
@geindex Text_IO
@geindex extensions for unbounded wide wide strings
This package provides subprograms for Text_IO for unbounded
wide wide strings, avoiding the necessity for an intermediate operation
with ordinary wide wide strings.
@node Ada Task_Initialization a-tasini ads,Ada Text_IO C_Streams a-tiocst ads,Ada Strings Wide_Wide_Unbounded Wide_Wide_Text_IO a-szuzti ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-task-initialization-a-tasini-ads}@anchor{30f}@anchor{gnat_rm/the_gnat_library id20}@anchor{310}
@section @code{Ada.Task_Initialization} (@code{a-tasini.ads})
@geindex Ada.Task_Initialization (a-tasini.ads)
This package provides a way to set a global initialization handler that
is automatically invoked whenever a task is activated. Handlers are
parameterless procedures. Note that such a handler is only invoked for
those tasks activated after the handler is set.
@node Ada Text_IO C_Streams a-tiocst ads,Ada Text_IO Reset_Standard_Files a-tirsfi ads,Ada Task_Initialization a-tasini ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-text-io-c-streams-a-tiocst-ads}@anchor{311}@anchor{gnat_rm/the_gnat_library id21}@anchor{312}
@section @code{Ada.Text_IO.C_Streams} (@code{a-tiocst.ads})
@geindex Ada.Text_IO.C_Streams (a-tiocst.ads)
@geindex C Streams
@geindex Interfacing with `@w{`}Text_IO`@w{`}
This package provides subprograms that allow interfacing between
C streams and @code{Text_IO}. The stream identifier can be
extracted from a file opened on the Ada side, and an Ada file
can be constructed from a stream opened on the C side.
@node Ada Text_IO Reset_Standard_Files a-tirsfi ads,Ada Wide_Characters Unicode a-wichun ads,Ada Text_IO C_Streams a-tiocst ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-text-io-reset-standard-files-a-tirsfi-ads}@anchor{313}@anchor{gnat_rm/the_gnat_library id22}@anchor{314}
@section @code{Ada.Text_IO.Reset_Standard_Files} (@code{a-tirsfi.ads})
@geindex Ada.Text_IO.Reset_Standard_Files (a-tirsfi.ads)
@geindex Text_IO resetting standard files
This procedure is used to reset the status of the standard files used
by Ada.Text_IO. This is useful in a situation (such as a restart in an
embedded application) where the status of the files may change during
execution (for example a standard input file may be redefined to be
interactive).
@node Ada Wide_Characters Unicode a-wichun ads,Ada Wide_Text_IO C_Streams a-wtcstr ads,Ada Text_IO Reset_Standard_Files a-tirsfi ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-wide-characters-unicode-a-wichun-ads}@anchor{315}@anchor{gnat_rm/the_gnat_library id23}@anchor{316}
@section @code{Ada.Wide_Characters.Unicode} (@code{a-wichun.ads})
@geindex Ada.Wide_Characters.Unicode (a-wichun.ads)
@geindex Unicode categorization
@geindex Wide_Character
This package provides subprograms that allow categorization of
Wide_Character values according to Unicode categories.
@node Ada Wide_Text_IO C_Streams a-wtcstr ads,Ada Wide_Text_IO Reset_Standard_Files a-wrstfi ads,Ada Wide_Characters Unicode a-wichun ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-wide-text-io-c-streams-a-wtcstr-ads}@anchor{317}@anchor{gnat_rm/the_gnat_library id24}@anchor{318}
@section @code{Ada.Wide_Text_IO.C_Streams} (@code{a-wtcstr.ads})
@geindex Ada.Wide_Text_IO.C_Streams (a-wtcstr.ads)
@geindex C Streams
@geindex Interfacing with `@w{`}Wide_Text_IO`@w{`}
This package provides subprograms that allow interfacing between
C streams and @code{Wide_Text_IO}. The stream identifier can be
extracted from a file opened on the Ada side, and an Ada file
can be constructed from a stream opened on the C side.
@node Ada Wide_Text_IO Reset_Standard_Files a-wrstfi ads,Ada Wide_Wide_Characters Unicode a-zchuni ads,Ada Wide_Text_IO C_Streams a-wtcstr ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-wide-text-io-reset-standard-files-a-wrstfi-ads}@anchor{319}@anchor{gnat_rm/the_gnat_library id25}@anchor{31a}
@section @code{Ada.Wide_Text_IO.Reset_Standard_Files} (@code{a-wrstfi.ads})
@geindex Ada.Wide_Text_IO.Reset_Standard_Files (a-wrstfi.ads)
@geindex Wide_Text_IO resetting standard files
This procedure is used to reset the status of the standard files used
by Ada.Wide_Text_IO. This is useful in a situation (such as a restart in an
embedded application) where the status of the files may change during
execution (for example a standard input file may be redefined to be
interactive).
@node Ada Wide_Wide_Characters Unicode a-zchuni ads,Ada Wide_Wide_Text_IO C_Streams a-ztcstr ads,Ada Wide_Text_IO Reset_Standard_Files a-wrstfi ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-wide-wide-characters-unicode-a-zchuni-ads}@anchor{31b}@anchor{gnat_rm/the_gnat_library id26}@anchor{31c}
@section @code{Ada.Wide_Wide_Characters.Unicode} (@code{a-zchuni.ads})
@geindex Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads)
@geindex Unicode categorization
@geindex Wide_Wide_Character
This package provides subprograms that allow categorization of
Wide_Wide_Character values according to Unicode categories.
@node Ada Wide_Wide_Text_IO C_Streams a-ztcstr ads,Ada Wide_Wide_Text_IO Reset_Standard_Files a-zrstfi ads,Ada Wide_Wide_Characters Unicode a-zchuni ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-wide-wide-text-io-c-streams-a-ztcstr-ads}@anchor{31d}@anchor{gnat_rm/the_gnat_library id27}@anchor{31e}
@section @code{Ada.Wide_Wide_Text_IO.C_Streams} (@code{a-ztcstr.ads})
@geindex Ada.Wide_Wide_Text_IO.C_Streams (a-ztcstr.ads)
@geindex C Streams
@geindex Interfacing with `@w{`}Wide_Wide_Text_IO`@w{`}
This package provides subprograms that allow interfacing between
C streams and @code{Wide_Wide_Text_IO}. The stream identifier can be
extracted from a file opened on the Ada side, and an Ada file
can be constructed from a stream opened on the C side.
@node Ada Wide_Wide_Text_IO Reset_Standard_Files a-zrstfi ads,GNAT Altivec g-altive ads,Ada Wide_Wide_Text_IO C_Streams a-ztcstr ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library ada-wide-wide-text-io-reset-standard-files-a-zrstfi-ads}@anchor{31f}@anchor{gnat_rm/the_gnat_library id28}@anchor{320}
@section @code{Ada.Wide_Wide_Text_IO.Reset_Standard_Files} (@code{a-zrstfi.ads})
@geindex Ada.Wide_Wide_Text_IO.Reset_Standard_Files (a-zrstfi.ads)
@geindex Wide_Wide_Text_IO resetting standard files
This procedure is used to reset the status of the standard files used
by Ada.Wide_Wide_Text_IO. This is useful in a situation (such as a
restart in an embedded application) where the status of the files may
change during execution (for example a standard input file may be
redefined to be interactive).
@node GNAT Altivec g-altive ads,GNAT Altivec Conversions g-altcon ads,Ada Wide_Wide_Text_IO Reset_Standard_Files a-zrstfi ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-altivec-g-altive-ads}@anchor{321}@anchor{gnat_rm/the_gnat_library id29}@anchor{322}
@section @code{GNAT.Altivec} (@code{g-altive.ads})
@geindex GNAT.Altivec (g-altive.ads)
@geindex AltiVec
This is the root package of the GNAT AltiVec binding. It provides
definitions of constants and types common to all the versions of the
binding.
@node GNAT Altivec Conversions g-altcon ads,GNAT Altivec Vector_Operations g-alveop ads,GNAT Altivec g-altive ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-altivec-conversions-g-altcon-ads}@anchor{323}@anchor{gnat_rm/the_gnat_library id30}@anchor{324}
@section @code{GNAT.Altivec.Conversions} (@code{g-altcon.ads})
@geindex GNAT.Altivec.Conversions (g-altcon.ads)
@geindex AltiVec
This package provides the Vector/View conversion routines.
@node GNAT Altivec Vector_Operations g-alveop ads,GNAT Altivec Vector_Types g-alvety ads,GNAT Altivec Conversions g-altcon ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-altivec-vector-operations-g-alveop-ads}@anchor{325}@anchor{gnat_rm/the_gnat_library id31}@anchor{326}
@section @code{GNAT.Altivec.Vector_Operations} (@code{g-alveop.ads})
@geindex GNAT.Altivec.Vector_Operations (g-alveop.ads)
@geindex AltiVec
This package exposes the Ada interface to the AltiVec operations on
vector objects. A soft emulation is included by default in the GNAT
library. The hard binding is provided as a separate package. This unit
is common to both bindings.
@node GNAT Altivec Vector_Types g-alvety ads,GNAT Altivec Vector_Views g-alvevi ads,GNAT Altivec Vector_Operations g-alveop ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-altivec-vector-types-g-alvety-ads}@anchor{327}@anchor{gnat_rm/the_gnat_library id32}@anchor{328}
@section @code{GNAT.Altivec.Vector_Types} (@code{g-alvety.ads})
@geindex GNAT.Altivec.Vector_Types (g-alvety.ads)
@geindex AltiVec
This package exposes the various vector types part of the Ada binding
to AltiVec facilities.
@node GNAT Altivec Vector_Views g-alvevi ads,GNAT Array_Split g-arrspl ads,GNAT Altivec Vector_Types g-alvety ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-altivec-vector-views-g-alvevi-ads}@anchor{329}@anchor{gnat_rm/the_gnat_library id33}@anchor{32a}
@section @code{GNAT.Altivec.Vector_Views} (@code{g-alvevi.ads})
@geindex GNAT.Altivec.Vector_Views (g-alvevi.ads)
@geindex AltiVec
This package provides public ‘View’ data types from/to which private
vector representations can be converted via
GNAT.Altivec.Conversions. This allows convenient access to individual
vector elements and provides a simple way to initialize vector
objects.
@node GNAT Array_Split g-arrspl ads,GNAT AWK g-awk ads,GNAT Altivec Vector_Views g-alvevi ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-array-split-g-arrspl-ads}@anchor{32b}@anchor{gnat_rm/the_gnat_library id34}@anchor{32c}
@section @code{GNAT.Array_Split} (@code{g-arrspl.ads})
@geindex GNAT.Array_Split (g-arrspl.ads)
@geindex Array splitter
Useful array-manipulation routines: given a set of separators, split
an array wherever the separators appear, and provide direct access
to the resulting slices.
@node GNAT AWK g-awk ads,GNAT Binary_Search g-binsea ads,GNAT Array_Split g-arrspl ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-awk-g-awk-ads}@anchor{32d}@anchor{gnat_rm/the_gnat_library id35}@anchor{32e}
@section @code{GNAT.AWK} (@code{g-awk.ads})
@geindex GNAT.AWK (g-awk.ads)
@geindex Parsing
@geindex AWK
Provides AWK-like parsing functions, with an easy interface for parsing one
or more files containing formatted data. The file is viewed as a database
where each record is a line and a field is a data element in this line.
@node GNAT Binary_Search g-binsea ads,GNAT Bind_Environment g-binenv ads,GNAT AWK g-awk ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-binary-search-g-binsea-ads}@anchor{32f}@anchor{gnat_rm/the_gnat_library id36}@anchor{330}
@section @code{GNAT.Binary_Search} (@code{g-binsea.ads})
@geindex GNAT.Binary_Search (g-binsea.ads)
@geindex Binary search
Allow binary search of a sorted array (or of an array-like container;
the generic does not reference the array directly).
@node GNAT Bind_Environment g-binenv ads,GNAT Branch_Prediction g-brapre ads,GNAT Binary_Search g-binsea ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-bind-environment-g-binenv-ads}@anchor{331}@anchor{gnat_rm/the_gnat_library id37}@anchor{332}
@section @code{GNAT.Bind_Environment} (@code{g-binenv.ads})
@geindex GNAT.Bind_Environment (g-binenv.ads)
@geindex Bind environment
Provides access to key=value associations captured at bind time.
These associations can be specified using the @code{-V} binder command
line switch.
@node GNAT Branch_Prediction g-brapre ads,GNAT Bounded_Buffers g-boubuf ads,GNAT Bind_Environment g-binenv ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-branch-prediction-g-brapre-ads}@anchor{333}@anchor{gnat_rm/the_gnat_library id38}@anchor{334}
@section @code{GNAT.Branch_Prediction} (@code{g-brapre.ads})
@geindex GNAT.Branch_Prediction (g-brapre.ads)
@geindex Branch Prediction
Provides routines giving hints to the branch predictor of the code generator.
@node GNAT Bounded_Buffers g-boubuf ads,GNAT Bounded_Mailboxes g-boumai ads,GNAT Branch_Prediction g-brapre ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-bounded-buffers-g-boubuf-ads}@anchor{335}@anchor{gnat_rm/the_gnat_library id39}@anchor{336}
@section @code{GNAT.Bounded_Buffers} (@code{g-boubuf.ads})
@geindex GNAT.Bounded_Buffers (g-boubuf.ads)
@geindex Parsing
@geindex Bounded Buffers
Provides a concurrent generic bounded buffer abstraction. Instances are
useful directly or as parts of the implementations of other abstractions,
such as mailboxes.
@node GNAT Bounded_Mailboxes g-boumai ads,GNAT Bubble_Sort g-bubsor ads,GNAT Bounded_Buffers g-boubuf ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-bounded-mailboxes-g-boumai-ads}@anchor{337}@anchor{gnat_rm/the_gnat_library id40}@anchor{338}
@section @code{GNAT.Bounded_Mailboxes} (@code{g-boumai.ads})
@geindex GNAT.Bounded_Mailboxes (g-boumai.ads)
@geindex Parsing
@geindex Mailboxes
Provides a thread-safe asynchronous intertask mailbox communication facility.
@node GNAT Bubble_Sort g-bubsor ads,GNAT Bubble_Sort_A g-busora ads,GNAT Bounded_Mailboxes g-boumai ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-bubble-sort-g-bubsor-ads}@anchor{339}@anchor{gnat_rm/the_gnat_library id41}@anchor{33a}
@section @code{GNAT.Bubble_Sort} (@code{g-bubsor.ads})
@geindex GNAT.Bubble_Sort (g-bubsor.ads)
@geindex Sorting
@geindex Bubble sort
Provides a general implementation of bubble sort usable for sorting arbitrary
data items. Exchange and comparison procedures are provided by passing
access-to-procedure values.
@node GNAT Bubble_Sort_A g-busora ads,GNAT Bubble_Sort_G g-busorg ads,GNAT Bubble_Sort g-bubsor ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-bubble-sort-a-g-busora-ads}@anchor{33b}@anchor{gnat_rm/the_gnat_library id42}@anchor{33c}
@section @code{GNAT.Bubble_Sort_A} (@code{g-busora.ads})
@geindex GNAT.Bubble_Sort_A (g-busora.ads)
@geindex Sorting
@geindex Bubble sort
Provides a general implementation of bubble sort usable for sorting arbitrary
data items. Move and comparison procedures are provided by passing
access-to-procedure values. This is an older version, retained for
compatibility. Usually @code{GNAT.Bubble_Sort} will be preferable.
@node GNAT Bubble_Sort_G g-busorg ads,GNAT Byte_Order_Mark g-byorma ads,GNAT Bubble_Sort_A g-busora ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-bubble-sort-g-g-busorg-ads}@anchor{33d}@anchor{gnat_rm/the_gnat_library id43}@anchor{33e}
@section @code{GNAT.Bubble_Sort_G} (@code{g-busorg.ads})
@geindex GNAT.Bubble_Sort_G (g-busorg.ads)
@geindex Sorting
@geindex Bubble sort
Similar to @code{Bubble_Sort_A} except that the move and sorting procedures
are provided as generic parameters, this improves efficiency, especially
if the procedures can be inlined, at the expense of duplicating code for
multiple instantiations.
@node GNAT Byte_Order_Mark g-byorma ads,GNAT Byte_Swapping g-bytswa ads,GNAT Bubble_Sort_G g-busorg ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-byte-order-mark-g-byorma-ads}@anchor{33f}@anchor{gnat_rm/the_gnat_library id44}@anchor{340}
@section @code{GNAT.Byte_Order_Mark} (@code{g-byorma.ads})
@geindex GNAT.Byte_Order_Mark (g-byorma.ads)
@geindex UTF-8 representation
@geindex Wide characte representations
Provides a routine which given a string, reads the start of the string to
see whether it is one of the standard byte order marks (BOM’s) which signal
the encoding of the string. The routine includes detection of special XML
sequences for various UCS input formats.
@node GNAT Byte_Swapping g-bytswa ads,GNAT Calendar g-calend ads,GNAT Byte_Order_Mark g-byorma ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-byte-swapping-g-bytswa-ads}@anchor{341}@anchor{gnat_rm/the_gnat_library id45}@anchor{342}
@section @code{GNAT.Byte_Swapping} (@code{g-bytswa.ads})
@geindex GNAT.Byte_Swapping (g-bytswa.ads)
@geindex Byte swapping
@geindex Endianness
General routines for swapping the bytes in 2-, 4-, and 8-byte quantities.
Machine-specific implementations are available in some cases.
@node GNAT Calendar g-calend ads,GNAT Calendar Time_IO g-catiio ads,GNAT Byte_Swapping g-bytswa ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-calendar-g-calend-ads}@anchor{343}@anchor{gnat_rm/the_gnat_library id46}@anchor{344}
@section @code{GNAT.Calendar} (@code{g-calend.ads})
@geindex GNAT.Calendar (g-calend.ads)
@geindex Calendar
Extends the facilities provided by @code{Ada.Calendar} to include handling
of days of the week, an extended @code{Split} and @code{Time_Of} capability.
Also provides conversion of @code{Ada.Calendar.Time} values to and from the
C @code{timeval} format.
@node GNAT Calendar Time_IO g-catiio ads,GNAT CRC32 g-crc32 ads,GNAT Calendar g-calend ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-calendar-time-io-g-catiio-ads}@anchor{345}@anchor{gnat_rm/the_gnat_library id47}@anchor{346}
@section @code{GNAT.Calendar.Time_IO} (@code{g-catiio.ads})
@geindex Calendar
@geindex Time
@geindex GNAT.Calendar.Time_IO (g-catiio.ads)
@node GNAT CRC32 g-crc32 ads,GNAT Case_Util g-casuti ads,GNAT Calendar Time_IO g-catiio ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-crc32-g-crc32-ads}@anchor{347}@anchor{gnat_rm/the_gnat_library id48}@anchor{348}
@section @code{GNAT.CRC32} (@code{g-crc32.ads})
@geindex GNAT.CRC32 (g-crc32.ads)
@geindex CRC32
@geindex Cyclic Redundancy Check
This package implements the CRC-32 algorithm. For a full description
of this algorithm see
`Computation of Cyclic Redundancy Checks via Table Look-Up',
@cite{Communications of the ACM}, Vol. 31 No. 8, pp. 1008-1013,
Aug. 1988. Sarwate, D.V.
@node GNAT Case_Util g-casuti ads,GNAT CGI g-cgi ads,GNAT CRC32 g-crc32 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-case-util-g-casuti-ads}@anchor{349}@anchor{gnat_rm/the_gnat_library id49}@anchor{34a}
@section @code{GNAT.Case_Util} (@code{g-casuti.ads})
@geindex GNAT.Case_Util (g-casuti.ads)
@geindex Casing utilities
@geindex Character handling (`@w{`}GNAT.Case_Util`@w{`})
A set of simple routines for handling upper and lower casing of strings
without the overhead of the full casing tables
in @code{Ada.Characters.Handling}.
@node GNAT CGI g-cgi ads,GNAT CGI Cookie g-cgicoo ads,GNAT Case_Util g-casuti ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-cgi-g-cgi-ads}@anchor{34b}@anchor{gnat_rm/the_gnat_library id50}@anchor{34c}
@section @code{GNAT.CGI} (@code{g-cgi.ads})
@geindex GNAT.CGI (g-cgi.ads)
@geindex CGI (Common Gateway Interface)
This is a package for interfacing a GNAT program with a Web server via the
Common Gateway Interface (CGI). Basically this package parses the CGI
parameters, which are a set of key/value pairs sent by the Web server. It
builds a table whose index is the key and provides some services to deal
with this table.
@node GNAT CGI Cookie g-cgicoo ads,GNAT CGI Debug g-cgideb ads,GNAT CGI g-cgi ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-cgi-cookie-g-cgicoo-ads}@anchor{34d}@anchor{gnat_rm/the_gnat_library id51}@anchor{34e}
@section @code{GNAT.CGI.Cookie} (@code{g-cgicoo.ads})
@geindex GNAT.CGI.Cookie (g-cgicoo.ads)
@geindex CGI (Common Gateway Interface) cookie support
@geindex Cookie support in CGI
This is a package to interface a GNAT program with a Web server via the
Common Gateway Interface (CGI). It exports services to deal with Web
cookies (piece of information kept in the Web client software).
@node GNAT CGI Debug g-cgideb ads,GNAT Command_Line g-comlin ads,GNAT CGI Cookie g-cgicoo ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-cgi-debug-g-cgideb-ads}@anchor{34f}@anchor{gnat_rm/the_gnat_library id52}@anchor{350}
@section @code{GNAT.CGI.Debug} (@code{g-cgideb.ads})
@geindex GNAT.CGI.Debug (g-cgideb.ads)
@geindex CGI (Common Gateway Interface) debugging
This is a package to help debugging CGI (Common Gateway Interface)
programs written in Ada.
@node GNAT Command_Line g-comlin ads,GNAT Compiler_Version g-comver ads,GNAT CGI Debug g-cgideb ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-command-line-g-comlin-ads}@anchor{351}@anchor{gnat_rm/the_gnat_library id53}@anchor{352}
@section @code{GNAT.Command_Line} (@code{g-comlin.ads})
@geindex GNAT.Command_Line (g-comlin.ads)
@geindex Command line
Provides a high level interface to @code{Ada.Command_Line} facilities,
including the ability to scan for named switches with optional parameters
and expand file names using wildcard notations.
@node GNAT Compiler_Version g-comver ads,GNAT Ctrl_C g-ctrl_c ads,GNAT Command_Line g-comlin ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-compiler-version-g-comver-ads}@anchor{353}@anchor{gnat_rm/the_gnat_library id54}@anchor{354}
@section @code{GNAT.Compiler_Version} (@code{g-comver.ads})
@geindex GNAT.Compiler_Version (g-comver.ads)
@geindex Compiler Version
@geindex Version
@geindex of compiler
Provides a routine for obtaining the version of the compiler used to
compile the program. More accurately this is the version of the binder
used to bind the program (this will normally be the same as the version
of the compiler if a consistent tool set is used to compile all units
of a partition).
@node GNAT Ctrl_C g-ctrl_c ads,GNAT Current_Exception g-curexc ads,GNAT Compiler_Version g-comver ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-ctrl-c-g-ctrl-c-ads}@anchor{355}@anchor{gnat_rm/the_gnat_library id55}@anchor{356}
@section @code{GNAT.Ctrl_C} (@code{g-ctrl_c.ads})
@geindex GNAT.Ctrl_C (g-ctrl_c.ads)
@geindex Interrupt
Provides a simple interface to handle Ctrl-C keyboard events.
@node GNAT Current_Exception g-curexc ads,GNAT Debug_Pools g-debpoo ads,GNAT Ctrl_C g-ctrl_c ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-current-exception-g-curexc-ads}@anchor{357}@anchor{gnat_rm/the_gnat_library id56}@anchor{358}
@section @code{GNAT.Current_Exception} (@code{g-curexc.ads})
@geindex GNAT.Current_Exception (g-curexc.ads)
@geindex Current exception
@geindex Exception retrieval
Provides access to information on the current exception that has been raised
without the need for using the Ada 95 / Ada 2005 exception choice parameter
specification syntax.
This is particularly useful in simulating typical facilities for
obtaining information about exceptions provided by Ada 83 compilers.
@node GNAT Debug_Pools g-debpoo ads,GNAT Debug_Utilities g-debuti ads,GNAT Current_Exception g-curexc ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-debug-pools-g-debpoo-ads}@anchor{359}@anchor{gnat_rm/the_gnat_library id57}@anchor{35a}
@section @code{GNAT.Debug_Pools} (@code{g-debpoo.ads})
@geindex GNAT.Debug_Pools (g-debpoo.ads)
@geindex Debugging
@geindex Debug pools
@geindex Memory corruption debugging
Provides a debugging storage pools that helps tracking memory corruption
problems.
See @code{The GNAT Debug_Pool Facility} section in the @cite{GNAT User’s Guide}.
@node GNAT Debug_Utilities g-debuti ads,GNAT Decode_String g-decstr ads,GNAT Debug_Pools g-debpoo ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-debug-utilities-g-debuti-ads}@anchor{35b}@anchor{gnat_rm/the_gnat_library id58}@anchor{35c}
@section @code{GNAT.Debug_Utilities} (@code{g-debuti.ads})
@geindex GNAT.Debug_Utilities (g-debuti.ads)
@geindex Debugging
Provides a few useful utilities for debugging purposes, including conversion
to and from string images of address values. Supports both C and Ada formats
for hexadecimal literals.
@node GNAT Decode_String g-decstr ads,GNAT Decode_UTF8_String g-deutst ads,GNAT Debug_Utilities g-debuti ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-decode-string-g-decstr-ads}@anchor{35d}@anchor{gnat_rm/the_gnat_library id59}@anchor{35e}
@section @code{GNAT.Decode_String} (@code{g-decstr.ads})
@geindex GNAT.Decode_String (g-decstr.ads)
@geindex Decoding strings
@geindex String decoding
@geindex Wide character encoding
@geindex UTF-8
@geindex Unicode
A generic package providing routines for decoding wide character and wide wide
character strings encoded as sequences of 8-bit characters using a specified
encoding method. Includes validation routines, and also routines for stepping
to next or previous encoded character in an encoded string.
Useful in conjunction with Unicode character coding. Note there is a
preinstantiation for UTF-8. See next entry.
@node GNAT Decode_UTF8_String g-deutst ads,GNAT Directory_Operations g-dirope ads,GNAT Decode_String g-decstr ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-decode-utf8-string-g-deutst-ads}@anchor{35f}@anchor{gnat_rm/the_gnat_library id60}@anchor{360}
@section @code{GNAT.Decode_UTF8_String} (@code{g-deutst.ads})
@geindex GNAT.Decode_UTF8_String (g-deutst.ads)
@geindex Decoding strings
@geindex Decoding UTF-8 strings
@geindex UTF-8 string decoding
@geindex Wide character decoding
@geindex UTF-8
@geindex Unicode
A preinstantiation of GNAT.Decode_Strings for UTF-8 encoding.
@node GNAT Directory_Operations g-dirope ads,GNAT Directory_Operations Iteration g-diopit ads,GNAT Decode_UTF8_String g-deutst ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-directory-operations-g-dirope-ads}@anchor{361}@anchor{gnat_rm/the_gnat_library id61}@anchor{362}
@section @code{GNAT.Directory_Operations} (@code{g-dirope.ads})
@geindex GNAT.Directory_Operations (g-dirope.ads)
@geindex Directory operations
Provides a set of routines for manipulating directories, including changing
the current directory, making new directories, and scanning the files in a
directory.
@node GNAT Directory_Operations Iteration g-diopit ads,GNAT Dynamic_HTables g-dynhta ads,GNAT Directory_Operations g-dirope ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-directory-operations-iteration-g-diopit-ads}@anchor{363}@anchor{gnat_rm/the_gnat_library id62}@anchor{364}
@section @code{GNAT.Directory_Operations.Iteration} (@code{g-diopit.ads})
@geindex GNAT.Directory_Operations.Iteration (g-diopit.ads)
@geindex Directory operations iteration
A child unit of GNAT.Directory_Operations providing additional operations
for iterating through directories.
@node GNAT Dynamic_HTables g-dynhta ads,GNAT Dynamic_Tables g-dyntab ads,GNAT Directory_Operations Iteration g-diopit ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-dynamic-htables-g-dynhta-ads}@anchor{365}@anchor{gnat_rm/the_gnat_library id63}@anchor{366}
@section @code{GNAT.Dynamic_HTables} (@code{g-dynhta.ads})
@geindex GNAT.Dynamic_HTables (g-dynhta.ads)
@geindex Hash tables
A generic implementation of hash tables that can be used to hash arbitrary
data. Provided in two forms, a simple form with built in hash functions,
and a more complex form in which the hash function is supplied.
This package provides a facility similar to that of @code{GNAT.HTable},
except that this package declares a type that can be used to define
dynamic instances of the hash table, while an instantiation of
@code{GNAT.HTable} creates a single instance of the hash table.
@node GNAT Dynamic_Tables g-dyntab ads,GNAT Encode_String g-encstr ads,GNAT Dynamic_HTables g-dynhta ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-dynamic-tables-g-dyntab-ads}@anchor{367}@anchor{gnat_rm/the_gnat_library id64}@anchor{368}
@section @code{GNAT.Dynamic_Tables} (@code{g-dyntab.ads})
@geindex GNAT.Dynamic_Tables (g-dyntab.ads)
@geindex Table implementation
@geindex Arrays
@geindex extendable
A generic package providing a single dimension array abstraction where the
length of the array can be dynamically modified.
This package provides a facility similar to that of @code{GNAT.Table},
except that this package declares a type that can be used to define
dynamic instances of the table, while an instantiation of
@code{GNAT.Table} creates a single instance of the table type.
@node GNAT Encode_String g-encstr ads,GNAT Encode_UTF8_String g-enutst ads,GNAT Dynamic_Tables g-dyntab ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-encode-string-g-encstr-ads}@anchor{369}@anchor{gnat_rm/the_gnat_library id65}@anchor{36a}
@section @code{GNAT.Encode_String} (@code{g-encstr.ads})
@geindex GNAT.Encode_String (g-encstr.ads)
@geindex Encoding strings
@geindex String encoding
@geindex Wide character encoding
@geindex UTF-8
@geindex Unicode
A generic package providing routines for encoding wide character and wide
wide character strings as sequences of 8-bit characters using a specified
encoding method. Useful in conjunction with Unicode character coding.
Note there is a preinstantiation for UTF-8. See next entry.
@node GNAT Encode_UTF8_String g-enutst ads,GNAT Exception_Actions g-excact ads,GNAT Encode_String g-encstr ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-encode-utf8-string-g-enutst-ads}@anchor{36b}@anchor{gnat_rm/the_gnat_library id66}@anchor{36c}
@section @code{GNAT.Encode_UTF8_String} (@code{g-enutst.ads})
@geindex GNAT.Encode_UTF8_String (g-enutst.ads)
@geindex Encoding strings
@geindex Encoding UTF-8 strings
@geindex UTF-8 string encoding
@geindex Wide character encoding
@geindex UTF-8
@geindex Unicode
A preinstantiation of GNAT.Encode_Strings for UTF-8 encoding.
@node GNAT Exception_Actions g-excact ads,GNAT Exception_Traces g-exctra ads,GNAT Encode_UTF8_String g-enutst ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-exception-actions-g-excact-ads}@anchor{36d}@anchor{gnat_rm/the_gnat_library id67}@anchor{36e}
@section @code{GNAT.Exception_Actions} (@code{g-excact.ads})
@geindex GNAT.Exception_Actions (g-excact.ads)
@geindex Exception actions
Provides callbacks when an exception is raised. Callbacks can be registered
for specific exceptions, or when any exception is raised. This
can be used for instance to force a core dump to ease debugging.
@node GNAT Exception_Traces g-exctra ads,GNAT Exceptions g-except ads,GNAT Exception_Actions g-excact ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-exception-traces-g-exctra-ads}@anchor{36f}@anchor{gnat_rm/the_gnat_library id68}@anchor{370}
@section @code{GNAT.Exception_Traces} (@code{g-exctra.ads})
@geindex GNAT.Exception_Traces (g-exctra.ads)
@geindex Exception traces
@geindex Debugging
Provides an interface allowing to control automatic output upon exception
occurrences.
@node GNAT Exceptions g-except ads,GNAT Expect g-expect ads,GNAT Exception_Traces g-exctra ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-exceptions-g-except-ads}@anchor{371}@anchor{gnat_rm/the_gnat_library id69}@anchor{372}
@section @code{GNAT.Exceptions} (@code{g-except.ads})
@geindex GNAT.Exceptions (g-except.ads)
@geindex Exceptions
@geindex Pure
@geindex Pure packages
@geindex exceptions
Normally it is not possible to raise an exception with
a message from a subprogram in a pure package, since the
necessary types and subprograms are in @code{Ada.Exceptions}
which is not a pure unit. @code{GNAT.Exceptions} provides a
facility for getting around this limitation for a few
predefined exceptions, and for example allows raising
@code{Constraint_Error} with a message from a pure subprogram.
@node GNAT Expect g-expect ads,GNAT Expect TTY g-exptty ads,GNAT Exceptions g-except ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-expect-g-expect-ads}@anchor{373}@anchor{gnat_rm/the_gnat_library id70}@anchor{374}
@section @code{GNAT.Expect} (@code{g-expect.ads})
@geindex GNAT.Expect (g-expect.ads)
Provides a set of subprograms similar to what is available
with the standard Tcl Expect tool.
It allows you to easily spawn and communicate with an external process.
You can send commands or inputs to the process, and compare the output
with some expected regular expression. Currently @code{GNAT.Expect}
is implemented on all native GNAT ports.
It is not implemented for cross ports, and in particular is not
implemented for VxWorks or LynxOS.
@node GNAT Expect TTY g-exptty ads,GNAT Float_Control g-flocon ads,GNAT Expect g-expect ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-expect-tty-g-exptty-ads}@anchor{375}@anchor{gnat_rm/the_gnat_library id71}@anchor{376}
@section @code{GNAT.Expect.TTY} (@code{g-exptty.ads})
@geindex GNAT.Expect.TTY (g-exptty.ads)
As GNAT.Expect but using pseudo-terminal.
Currently @code{GNAT.Expect.TTY} is implemented on all native GNAT
ports. It is not implemented for cross ports, and
in particular is not implemented for VxWorks or LynxOS.
@node GNAT Float_Control g-flocon ads,GNAT Formatted_String g-forstr ads,GNAT Expect TTY g-exptty ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-float-control-g-flocon-ads}@anchor{377}@anchor{gnat_rm/the_gnat_library id72}@anchor{378}
@section @code{GNAT.Float_Control} (@code{g-flocon.ads})
@geindex GNAT.Float_Control (g-flocon.ads)
@geindex Floating-Point Processor
Provides an interface for resetting the floating-point processor into the
mode required for correct semantic operation in Ada. Some third party
library calls may cause this mode to be modified, and the Reset procedure
in this package can be used to reestablish the required mode.
@node GNAT Formatted_String g-forstr ads,GNAT Generic_Fast_Math_Functions g-gfmafu ads,GNAT Float_Control g-flocon ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-formatted-string-g-forstr-ads}@anchor{379}@anchor{gnat_rm/the_gnat_library id73}@anchor{37a}
@section @code{GNAT.Formatted_String} (@code{g-forstr.ads})
@geindex GNAT.Formatted_String (g-forstr.ads)
@geindex Formatted String
Provides support for C/C++ printf() formatted strings. The format is
copied from the printf() routine and should therefore give identical
output. Some generic routines are provided to be able to use types
derived from Integer, Float or enumerations as values for the
formatted string.
@node GNAT Generic_Fast_Math_Functions g-gfmafu ads,GNAT Heap_Sort g-heasor ads,GNAT Formatted_String g-forstr ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-generic-fast-math-functions-g-gfmafu-ads}@anchor{37b}@anchor{gnat_rm/the_gnat_library id74}@anchor{37c}
@section @code{GNAT.Generic_Fast_Math_Functions} (@code{g-gfmafu.ads})
@geindex GNAT.Generic_Fast_Math_Functions (g-gfmafu.ads)
@geindex Mathematical functions
Provides direct access to the underlying implementation of the common
mathematical functions, generally from the system mathematical library.
This differs from @code{Ada.Numerics.Generic_Elementary_Functions} in that
the implementation may deviate from the semantics specified for these
functions in the Reference Manual, for example @code{Numerics.Argument_Error}
is not raised. On selected platforms, some of these functions may also
have a vector implementation that can be automatically used by the
compiler when auto-vectorization is enabled.
@node GNAT Heap_Sort g-heasor ads,GNAT Heap_Sort_A g-hesora ads,GNAT Generic_Fast_Math_Functions g-gfmafu ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-heap-sort-g-heasor-ads}@anchor{37d}@anchor{gnat_rm/the_gnat_library id75}@anchor{37e}
@section @code{GNAT.Heap_Sort} (@code{g-heasor.ads})
@geindex GNAT.Heap_Sort (g-heasor.ads)
@geindex Sorting
Provides a general implementation of heap sort usable for sorting arbitrary
data items. Exchange and comparison procedures are provided by passing
access-to-procedure values. The algorithm used is a modified heap sort
that performs approximately N*log(N) comparisons in the worst case.
@node GNAT Heap_Sort_A g-hesora ads,GNAT Heap_Sort_G g-hesorg ads,GNAT Heap_Sort g-heasor ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-heap-sort-a-g-hesora-ads}@anchor{37f}@anchor{gnat_rm/the_gnat_library id76}@anchor{380}
@section @code{GNAT.Heap_Sort_A} (@code{g-hesora.ads})
@geindex GNAT.Heap_Sort_A (g-hesora.ads)
@geindex Sorting
Provides a general implementation of heap sort usable for sorting arbitrary
data items. Move and comparison procedures are provided by passing
access-to-procedure values. The algorithm used is a modified heap sort
that performs approximately N*log(N) comparisons in the worst case.
This differs from @code{GNAT.Heap_Sort} in having a less convenient
interface, but may be slightly more efficient.
@node GNAT Heap_Sort_G g-hesorg ads,GNAT HTable g-htable ads,GNAT Heap_Sort_A g-hesora ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-heap-sort-g-g-hesorg-ads}@anchor{381}@anchor{gnat_rm/the_gnat_library id77}@anchor{382}
@section @code{GNAT.Heap_Sort_G} (@code{g-hesorg.ads})
@geindex GNAT.Heap_Sort_G (g-hesorg.ads)
@geindex Sorting
Similar to @code{Heap_Sort_A} except that the move and sorting procedures
are provided as generic parameters, this improves efficiency, especially
if the procedures can be inlined, at the expense of duplicating code for
multiple instantiations.
@node GNAT HTable g-htable ads,GNAT IO g-io ads,GNAT Heap_Sort_G g-hesorg ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-htable-g-htable-ads}@anchor{383}@anchor{gnat_rm/the_gnat_library id78}@anchor{384}
@section @code{GNAT.HTable} (@code{g-htable.ads})
@geindex GNAT.HTable (g-htable.ads)
@geindex Hash tables
A generic implementation of hash tables that can be used to hash arbitrary
data. Provides two approaches, one a simple static approach, and the other
allowing arbitrary dynamic hash tables.
@node GNAT IO g-io ads,GNAT IO_Aux g-io_aux ads,GNAT HTable g-htable ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-io-g-io-ads}@anchor{385}@anchor{gnat_rm/the_gnat_library id79}@anchor{386}
@section @code{GNAT.IO} (@code{g-io.ads})
@geindex GNAT.IO (g-io.ads)
@geindex Simple I/O
@geindex Input/Output facilities
A simple preelaborable input-output package that provides a subset of
simple Text_IO functions for reading characters and strings from
Standard_Input, and writing characters, strings and integers to either
Standard_Output or Standard_Error.
@node GNAT IO_Aux g-io_aux ads,GNAT Lock_Files g-locfil ads,GNAT IO g-io ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-io-aux-g-io-aux-ads}@anchor{387}@anchor{gnat_rm/the_gnat_library id80}@anchor{388}
@section @code{GNAT.IO_Aux} (@code{g-io_aux.ads})
@geindex GNAT.IO_Aux (g-io_aux.ads)
@geindex Text_IO
@geindex Input/Output facilities
Provides some auxiliary functions for use with Text_IO, including a test
for whether a file exists, and functions for reading a line of text.
@node GNAT Lock_Files g-locfil ads,GNAT MBBS_Discrete_Random g-mbdira ads,GNAT IO_Aux g-io_aux ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-lock-files-g-locfil-ads}@anchor{389}@anchor{gnat_rm/the_gnat_library id81}@anchor{38a}
@section @code{GNAT.Lock_Files} (@code{g-locfil.ads})
@geindex GNAT.Lock_Files (g-locfil.ads)
@geindex File locking
@geindex Locking using files
Provides a general interface for using files as locks. Can be used for
providing program level synchronization.
@node GNAT MBBS_Discrete_Random g-mbdira ads,GNAT MBBS_Float_Random g-mbflra ads,GNAT Lock_Files g-locfil ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-mbbs-discrete-random-g-mbdira-ads}@anchor{38b}@anchor{gnat_rm/the_gnat_library id82}@anchor{38c}
@section @code{GNAT.MBBS_Discrete_Random} (@code{g-mbdira.ads})
@geindex GNAT.MBBS_Discrete_Random (g-mbdira.ads)
@geindex Random number generation
The original implementation of @code{Ada.Numerics.Discrete_Random}. Uses
a modified version of the Blum-Blum-Shub generator.
@node GNAT MBBS_Float_Random g-mbflra ads,GNAT MD5 g-md5 ads,GNAT MBBS_Discrete_Random g-mbdira ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-mbbs-float-random-g-mbflra-ads}@anchor{38d}@anchor{gnat_rm/the_gnat_library id83}@anchor{38e}
@section @code{GNAT.MBBS_Float_Random} (@code{g-mbflra.ads})
@geindex GNAT.MBBS_Float_Random (g-mbflra.ads)
@geindex Random number generation
The original implementation of @code{Ada.Numerics.Float_Random}. Uses
a modified version of the Blum-Blum-Shub generator.
@node GNAT MD5 g-md5 ads,GNAT Memory_Dump g-memdum ads,GNAT MBBS_Float_Random g-mbflra ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-md5-g-md5-ads}@anchor{38f}@anchor{gnat_rm/the_gnat_library id84}@anchor{390}
@section @code{GNAT.MD5} (@code{g-md5.ads})
@geindex GNAT.MD5 (g-md5.ads)
@geindex Message Digest MD5
Implements the MD5 Message-Digest Algorithm as described in RFC 1321, and
the HMAC-MD5 message authentication function as described in RFC 2104 and
FIPS PUB 198.
@node GNAT Memory_Dump g-memdum ads,GNAT Most_Recent_Exception g-moreex ads,GNAT MD5 g-md5 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-memory-dump-g-memdum-ads}@anchor{391}@anchor{gnat_rm/the_gnat_library id85}@anchor{392}
@section @code{GNAT.Memory_Dump} (@code{g-memdum.ads})
@geindex GNAT.Memory_Dump (g-memdum.ads)
@geindex Dump Memory
Provides a convenient routine for dumping raw memory to either the
standard output or standard error files. Uses GNAT.IO for actual
output.
@node GNAT Most_Recent_Exception g-moreex ads,GNAT OS_Lib g-os_lib ads,GNAT Memory_Dump g-memdum ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-most-recent-exception-g-moreex-ads}@anchor{393}@anchor{gnat_rm/the_gnat_library id86}@anchor{394}
@section @code{GNAT.Most_Recent_Exception} (@code{g-moreex.ads})
@geindex GNAT.Most_Recent_Exception (g-moreex.ads)
@geindex Exception
@geindex obtaining most recent
Provides access to the most recently raised exception. Can be used for
various logging purposes, including duplicating functionality of some
Ada 83 implementation dependent extensions.
@node GNAT OS_Lib g-os_lib ads,GNAT Perfect_Hash_Generators g-pehage ads,GNAT Most_Recent_Exception g-moreex ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-os-lib-g-os-lib-ads}@anchor{395}@anchor{gnat_rm/the_gnat_library id87}@anchor{396}
@section @code{GNAT.OS_Lib} (@code{g-os_lib.ads})
@geindex GNAT.OS_Lib (g-os_lib.ads)
@geindex Operating System interface
@geindex Spawn capability
Provides a range of target independent operating system interface functions,
including time/date management, file operations, subprocess management,
including a portable spawn procedure, and access to environment variables
and error return codes.
@node GNAT Perfect_Hash_Generators g-pehage ads,GNAT Random_Numbers g-rannum ads,GNAT OS_Lib g-os_lib ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-perfect-hash-generators-g-pehage-ads}@anchor{397}@anchor{gnat_rm/the_gnat_library id88}@anchor{398}
@section @code{GNAT.Perfect_Hash_Generators} (@code{g-pehage.ads})
@geindex GNAT.Perfect_Hash_Generators (g-pehage.ads)
@geindex Hash functions
Provides a generator of static minimal perfect hash functions. No
collisions occur and each item can be retrieved from the table in one
probe (perfect property). The hash table size corresponds to the exact
size of the key set and no larger (minimal property). The key set has to
be known in advance (static property). The hash functions are also order
preserving. If w2 is inserted after w1 in the generator, their
hashcode are in the same order. These hashing functions are very
convenient for use with realtime applications.
@node GNAT Random_Numbers g-rannum ads,GNAT Regexp g-regexp ads,GNAT Perfect_Hash_Generators g-pehage ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-random-numbers-g-rannum-ads}@anchor{399}@anchor{gnat_rm/the_gnat_library id89}@anchor{39a}
@section @code{GNAT.Random_Numbers} (@code{g-rannum.ads})
@geindex GNAT.Random_Numbers (g-rannum.ads)
@geindex Random number generation
Provides random number capabilities which extend those available in the
standard Ada library and are more convenient to use.
@node GNAT Regexp g-regexp ads,GNAT Registry g-regist ads,GNAT Random_Numbers g-rannum ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-regexp-g-regexp-ads}@anchor{270}@anchor{gnat_rm/the_gnat_library id90}@anchor{39b}
@section @code{GNAT.Regexp} (@code{g-regexp.ads})
@geindex GNAT.Regexp (g-regexp.ads)
@geindex Regular expressions
@geindex Pattern matching
A simple implementation of regular expressions, using a subset of regular
expression syntax copied from familiar Unix style utilities. This is the
simplest of the three pattern matching packages provided, and is particularly
suitable for ‘file globbing’ applications.
@node GNAT Registry g-regist ads,GNAT Regpat g-regpat ads,GNAT Regexp g-regexp ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-registry-g-regist-ads}@anchor{39c}@anchor{gnat_rm/the_gnat_library id91}@anchor{39d}
@section @code{GNAT.Registry} (@code{g-regist.ads})
@geindex GNAT.Registry (g-regist.ads)
@geindex Windows Registry
This is a high level binding to the Windows registry. It is possible to
do simple things like reading a key value, creating a new key. For full
registry API, but at a lower level of abstraction, refer to the Win32.Winreg
package provided with the Win32Ada binding
@node GNAT Regpat g-regpat ads,GNAT Rewrite_Data g-rewdat ads,GNAT Registry g-regist ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-regpat-g-regpat-ads}@anchor{39e}@anchor{gnat_rm/the_gnat_library id92}@anchor{39f}
@section @code{GNAT.Regpat} (@code{g-regpat.ads})
@geindex GNAT.Regpat (g-regpat.ads)
@geindex Regular expressions
@geindex Pattern matching
A complete implementation of Unix-style regular expression matching, copied
from the original V7 style regular expression library written in C by
Henry Spencer (and binary compatible with this C library).
@node GNAT Rewrite_Data g-rewdat ads,GNAT Secondary_Stack_Info g-sestin ads,GNAT Regpat g-regpat ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-rewrite-data-g-rewdat-ads}@anchor{3a0}@anchor{gnat_rm/the_gnat_library id93}@anchor{3a1}
@section @code{GNAT.Rewrite_Data} (@code{g-rewdat.ads})
@geindex GNAT.Rewrite_Data (g-rewdat.ads)
@geindex Rewrite data
A unit to rewrite on-the-fly string occurrences in a stream of
data. The implementation has a very minimal memory footprint as the
full content to be processed is not loaded into memory all at once. This makes
this interface usable for large files or socket streams.
@node GNAT Secondary_Stack_Info g-sestin ads,GNAT Semaphores g-semaph ads,GNAT Rewrite_Data g-rewdat ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-secondary-stack-info-g-sestin-ads}@anchor{3a2}@anchor{gnat_rm/the_gnat_library id94}@anchor{3a3}
@section @code{GNAT.Secondary_Stack_Info} (@code{g-sestin.ads})
@geindex GNAT.Secondary_Stack_Info (g-sestin.ads)
@geindex Secondary Stack Info
Provides the capability to query the high water mark of the current task’s
secondary stack.
@node GNAT Semaphores g-semaph ads,GNAT Serial_Communications g-sercom ads,GNAT Secondary_Stack_Info g-sestin ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-semaphores-g-semaph-ads}@anchor{3a4}@anchor{gnat_rm/the_gnat_library id95}@anchor{3a5}
@section @code{GNAT.Semaphores} (@code{g-semaph.ads})
@geindex GNAT.Semaphores (g-semaph.ads)
@geindex Semaphores
Provides classic counting and binary semaphores using protected types.
@node GNAT Serial_Communications g-sercom ads,GNAT SHA1 g-sha1 ads,GNAT Semaphores g-semaph ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-serial-communications-g-sercom-ads}@anchor{3a6}@anchor{gnat_rm/the_gnat_library id96}@anchor{3a7}
@section @code{GNAT.Serial_Communications} (@code{g-sercom.ads})
@geindex GNAT.Serial_Communications (g-sercom.ads)
@geindex Serial_Communications
Provides a simple interface to send and receive data over a serial
port. This is only supported on GNU/Linux and Windows.
@node GNAT SHA1 g-sha1 ads,GNAT SHA224 g-sha224 ads,GNAT Serial_Communications g-sercom ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-sha1-g-sha1-ads}@anchor{3a8}@anchor{gnat_rm/the_gnat_library id97}@anchor{3a9}
@section @code{GNAT.SHA1} (@code{g-sha1.ads})
@geindex GNAT.SHA1 (g-sha1.ads)
@geindex Secure Hash Algorithm SHA-1
Implements the SHA-1 Secure Hash Algorithm as described in FIPS PUB 180-3
and RFC 3174, and the HMAC-SHA1 message authentication function as described
in RFC 2104 and FIPS PUB 198.
@node GNAT SHA224 g-sha224 ads,GNAT SHA256 g-sha256 ads,GNAT SHA1 g-sha1 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-sha224-g-sha224-ads}@anchor{3aa}@anchor{gnat_rm/the_gnat_library id98}@anchor{3ab}
@section @code{GNAT.SHA224} (@code{g-sha224.ads})
@geindex GNAT.SHA224 (g-sha224.ads)
@geindex Secure Hash Algorithm SHA-224
Implements the SHA-224 Secure Hash Algorithm as described in FIPS PUB 180-3,
and the HMAC-SHA224 message authentication function as described
in RFC 2104 and FIPS PUB 198.
@node GNAT SHA256 g-sha256 ads,GNAT SHA384 g-sha384 ads,GNAT SHA224 g-sha224 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-sha256-g-sha256-ads}@anchor{3ac}@anchor{gnat_rm/the_gnat_library id99}@anchor{3ad}
@section @code{GNAT.SHA256} (@code{g-sha256.ads})
@geindex GNAT.SHA256 (g-sha256.ads)
@geindex Secure Hash Algorithm SHA-256
Implements the SHA-256 Secure Hash Algorithm as described in FIPS PUB 180-3,
and the HMAC-SHA256 message authentication function as described
in RFC 2104 and FIPS PUB 198.
@node GNAT SHA384 g-sha384 ads,GNAT SHA512 g-sha512 ads,GNAT SHA256 g-sha256 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-sha384-g-sha384-ads}@anchor{3ae}@anchor{gnat_rm/the_gnat_library id100}@anchor{3af}
@section @code{GNAT.SHA384} (@code{g-sha384.ads})
@geindex GNAT.SHA384 (g-sha384.ads)
@geindex Secure Hash Algorithm SHA-384
Implements the SHA-384 Secure Hash Algorithm as described in FIPS PUB 180-3,
and the HMAC-SHA384 message authentication function as described
in RFC 2104 and FIPS PUB 198.
@node GNAT SHA512 g-sha512 ads,GNAT Signals g-signal ads,GNAT SHA384 g-sha384 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-sha512-g-sha512-ads}@anchor{3b0}@anchor{gnat_rm/the_gnat_library id101}@anchor{3b1}
@section @code{GNAT.SHA512} (@code{g-sha512.ads})
@geindex GNAT.SHA512 (g-sha512.ads)
@geindex Secure Hash Algorithm SHA-512
Implements the SHA-512 Secure Hash Algorithm as described in FIPS PUB 180-3,
and the HMAC-SHA512 message authentication function as described
in RFC 2104 and FIPS PUB 198.
@node GNAT Signals g-signal ads,GNAT Sockets g-socket ads,GNAT SHA512 g-sha512 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-signals-g-signal-ads}@anchor{3b2}@anchor{gnat_rm/the_gnat_library id102}@anchor{3b3}
@section @code{GNAT.Signals} (@code{g-signal.ads})
@geindex GNAT.Signals (g-signal.ads)
@geindex Signals
Provides the ability to manipulate the blocked status of signals on supported
targets.
@node GNAT Sockets g-socket ads,GNAT Source_Info g-souinf ads,GNAT Signals g-signal ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-sockets-g-socket-ads}@anchor{3b4}@anchor{gnat_rm/the_gnat_library id103}@anchor{3b5}
@section @code{GNAT.Sockets} (@code{g-socket.ads})
@geindex GNAT.Sockets (g-socket.ads)
@geindex Sockets
A high level and portable interface to develop sockets based applications.
This package is based on the sockets thin binding found in
@code{GNAT.Sockets.Thin}. Currently @code{GNAT.Sockets} is implemented
on all native GNAT ports and on VxWorks cross ports. It is not implemented for
the LynxOS cross port.
@node GNAT Source_Info g-souinf ads,GNAT Spelling_Checker g-speche ads,GNAT Sockets g-socket ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-source-info-g-souinf-ads}@anchor{3b6}@anchor{gnat_rm/the_gnat_library id104}@anchor{3b7}
@section @code{GNAT.Source_Info} (@code{g-souinf.ads})
@geindex GNAT.Source_Info (g-souinf.ads)
@geindex Source Information
Provides subprograms that give access to source code information known at
compile time, such as the current file name and line number. Also provides
subprograms yielding the date and time of the current compilation (like the
C macros @code{__DATE__} and @code{__TIME__})
@node GNAT Spelling_Checker g-speche ads,GNAT Spelling_Checker_Generic g-spchge ads,GNAT Source_Info g-souinf ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-spelling-checker-g-speche-ads}@anchor{3b8}@anchor{gnat_rm/the_gnat_library id105}@anchor{3b9}
@section @code{GNAT.Spelling_Checker} (@code{g-speche.ads})
@geindex GNAT.Spelling_Checker (g-speche.ads)
@geindex Spell checking
Provides a function for determining whether one string is a plausible
near misspelling of another string.
@node GNAT Spelling_Checker_Generic g-spchge ads,GNAT Spitbol Patterns g-spipat ads,GNAT Spelling_Checker g-speche ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-spelling-checker-generic-g-spchge-ads}@anchor{3ba}@anchor{gnat_rm/the_gnat_library id106}@anchor{3bb}
@section @code{GNAT.Spelling_Checker_Generic} (@code{g-spchge.ads})
@geindex GNAT.Spelling_Checker_Generic (g-spchge.ads)
@geindex Spell checking
Provides a generic function that can be instantiated with a string type for
determining whether one string is a plausible near misspelling of another
string.
@node GNAT Spitbol Patterns g-spipat ads,GNAT Spitbol g-spitbo ads,GNAT Spelling_Checker_Generic g-spchge ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-spitbol-patterns-g-spipat-ads}@anchor{3bc}@anchor{gnat_rm/the_gnat_library id107}@anchor{3bd}
@section @code{GNAT.Spitbol.Patterns} (@code{g-spipat.ads})
@geindex GNAT.Spitbol.Patterns (g-spipat.ads)
@geindex SPITBOL pattern matching
@geindex Pattern matching
A complete implementation of SNOBOL4 style pattern matching. This is the
most elaborate of the pattern matching packages provided. It fully duplicates
the SNOBOL4 dynamic pattern construction and matching capabilities, using the
efficient algorithm developed by Robert Dewar for the SPITBOL system.
@node GNAT Spitbol g-spitbo ads,GNAT Spitbol Table_Boolean g-sptabo ads,GNAT Spitbol Patterns g-spipat ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-spitbol-g-spitbo-ads}@anchor{3be}@anchor{gnat_rm/the_gnat_library id108}@anchor{3bf}
@section @code{GNAT.Spitbol} (@code{g-spitbo.ads})
@geindex GNAT.Spitbol (g-spitbo.ads)
@geindex SPITBOL interface
The top level package of the collection of SPITBOL-style functionality, this
package provides basic SNOBOL4 string manipulation functions, such as
Pad, Reverse, Trim, Substr capability, as well as a generic table function
useful for constructing arbitrary mappings from strings in the style of
the SNOBOL4 TABLE function.
@node GNAT Spitbol Table_Boolean g-sptabo ads,GNAT Spitbol Table_Integer g-sptain ads,GNAT Spitbol g-spitbo ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-spitbol-table-boolean-g-sptabo-ads}@anchor{3c0}@anchor{gnat_rm/the_gnat_library id109}@anchor{3c1}
@section @code{GNAT.Spitbol.Table_Boolean} (@code{g-sptabo.ads})
@geindex GNAT.Spitbol.Table_Boolean (g-sptabo.ads)
@geindex Sets of strings
@geindex SPITBOL Tables
A library level of instantiation of @code{GNAT.Spitbol.Patterns.Table}
for type @code{Standard.Boolean}, giving an implementation of sets of
string values.
@node GNAT Spitbol Table_Integer g-sptain ads,GNAT Spitbol Table_VString g-sptavs ads,GNAT Spitbol Table_Boolean g-sptabo ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-spitbol-table-integer-g-sptain-ads}@anchor{3c2}@anchor{gnat_rm/the_gnat_library id110}@anchor{3c3}
@section @code{GNAT.Spitbol.Table_Integer} (@code{g-sptain.ads})
@geindex GNAT.Spitbol.Table_Integer (g-sptain.ads)
@geindex Integer maps
@geindex Maps
@geindex SPITBOL Tables
A library level of instantiation of @code{GNAT.Spitbol.Patterns.Table}
for type @code{Standard.Integer}, giving an implementation of maps
from string to integer values.
@node GNAT Spitbol Table_VString g-sptavs ads,GNAT SSE g-sse ads,GNAT Spitbol Table_Integer g-sptain ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-spitbol-table-vstring-g-sptavs-ads}@anchor{3c4}@anchor{gnat_rm/the_gnat_library id111}@anchor{3c5}
@section @code{GNAT.Spitbol.Table_VString} (@code{g-sptavs.ads})
@geindex GNAT.Spitbol.Table_VString (g-sptavs.ads)
@geindex String maps
@geindex Maps
@geindex SPITBOL Tables
A library level of instantiation of @code{GNAT.Spitbol.Patterns.Table} for
a variable length string type, giving an implementation of general
maps from strings to strings.
@node GNAT SSE g-sse ads,GNAT SSE Vector_Types g-ssvety ads,GNAT Spitbol Table_VString g-sptavs ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-sse-g-sse-ads}@anchor{3c6}@anchor{gnat_rm/the_gnat_library id112}@anchor{3c7}
@section @code{GNAT.SSE} (@code{g-sse.ads})
@geindex GNAT.SSE (g-sse.ads)
Root of a set of units aimed at offering Ada bindings to a subset of
the Intel(r) Streaming SIMD Extensions with GNAT on the x86 family of
targets. It exposes vector component types together with a general
introduction to the binding contents and use.
@node GNAT SSE Vector_Types g-ssvety ads,GNAT String_Hash g-strhas ads,GNAT SSE g-sse ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-sse-vector-types-g-ssvety-ads}@anchor{3c8}@anchor{gnat_rm/the_gnat_library id113}@anchor{3c9}
@section @code{GNAT.SSE.Vector_Types} (@code{g-ssvety.ads})
@geindex GNAT.SSE.Vector_Types (g-ssvety.ads)
SSE vector types for use with SSE related intrinsics.
@node GNAT String_Hash g-strhas ads,GNAT Strings g-string ads,GNAT SSE Vector_Types g-ssvety ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-string-hash-g-strhas-ads}@anchor{3ca}@anchor{gnat_rm/the_gnat_library id114}@anchor{3cb}
@section @code{GNAT.String_Hash} (@code{g-strhas.ads})
@geindex GNAT.String_Hash (g-strhas.ads)
@geindex Hash functions
Provides a generic hash function working on arrays of scalars. Both the scalar
type and the hash result type are parameters.
@node GNAT Strings g-string ads,GNAT String_Split g-strspl ads,GNAT String_Hash g-strhas ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-strings-g-string-ads}@anchor{3cc}@anchor{gnat_rm/the_gnat_library id115}@anchor{3cd}
@section @code{GNAT.Strings} (@code{g-string.ads})
@geindex GNAT.Strings (g-string.ads)
Common String access types and related subprograms. Basically it
defines a string access and an array of string access types.
@node GNAT String_Split g-strspl ads,GNAT Table g-table ads,GNAT Strings g-string ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-string-split-g-strspl-ads}@anchor{3ce}@anchor{gnat_rm/the_gnat_library id116}@anchor{3cf}
@section @code{GNAT.String_Split} (@code{g-strspl.ads})
@geindex GNAT.String_Split (g-strspl.ads)
@geindex String splitter
Useful string manipulation routines: given a set of separators, split
a string wherever the separators appear, and provide direct access
to the resulting slices. This package is instantiated from
@code{GNAT.Array_Split}.
@node GNAT Table g-table ads,GNAT Task_Lock g-tasloc ads,GNAT String_Split g-strspl ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-table-g-table-ads}@anchor{3d0}@anchor{gnat_rm/the_gnat_library id117}@anchor{3d1}
@section @code{GNAT.Table} (@code{g-table.ads})
@geindex GNAT.Table (g-table.ads)
@geindex Table implementation
@geindex Arrays
@geindex extendable
A generic package providing a single dimension array abstraction where the
length of the array can be dynamically modified.
This package provides a facility similar to that of @code{GNAT.Dynamic_Tables},
except that this package declares a single instance of the table type,
while an instantiation of @code{GNAT.Dynamic_Tables} creates a type that can be
used to define dynamic instances of the table.
@node GNAT Task_Lock g-tasloc ads,GNAT Time_Stamp g-timsta ads,GNAT Table g-table ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-task-lock-g-tasloc-ads}@anchor{3d2}@anchor{gnat_rm/the_gnat_library id118}@anchor{3d3}
@section @code{GNAT.Task_Lock} (@code{g-tasloc.ads})
@geindex GNAT.Task_Lock (g-tasloc.ads)
@geindex Task synchronization
@geindex Task locking
@geindex Locking
A very simple facility for locking and unlocking sections of code using a
single global task lock. Appropriate for use in situations where contention
between tasks is very rarely expected.
@node GNAT Time_Stamp g-timsta ads,GNAT Threads g-thread ads,GNAT Task_Lock g-tasloc ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-time-stamp-g-timsta-ads}@anchor{3d4}@anchor{gnat_rm/the_gnat_library id119}@anchor{3d5}
@section @code{GNAT.Time_Stamp} (@code{g-timsta.ads})
@geindex GNAT.Time_Stamp (g-timsta.ads)
@geindex Time stamp
@geindex Current time
Provides a simple function that returns a string YYYY-MM-DD HH:MM:SS.SS that
represents the current date and time in ISO 8601 format. This is a very simple
routine with minimal code and there are no dependencies on any other unit.
@node GNAT Threads g-thread ads,GNAT Traceback g-traceb ads,GNAT Time_Stamp g-timsta ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-threads-g-thread-ads}@anchor{3d6}@anchor{gnat_rm/the_gnat_library id120}@anchor{3d7}
@section @code{GNAT.Threads} (@code{g-thread.ads})
@geindex GNAT.Threads (g-thread.ads)
@geindex Foreign threads
@geindex Threads
@geindex foreign
Provides facilities for dealing with foreign threads which need to be known
by the GNAT run-time system. Consult the documentation of this package for
further details if your program has threads that are created by a non-Ada
environment which then accesses Ada code.
@node GNAT Traceback g-traceb ads,GNAT Traceback Symbolic g-trasym ads,GNAT Threads g-thread ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-traceback-g-traceb-ads}@anchor{3d8}@anchor{gnat_rm/the_gnat_library id121}@anchor{3d9}
@section @code{GNAT.Traceback} (@code{g-traceb.ads})
@geindex GNAT.Traceback (g-traceb.ads)
@geindex Trace back facilities
Provides a facility for obtaining non-symbolic traceback information, useful
in various debugging situations.
@node GNAT Traceback Symbolic g-trasym ads,GNAT UTF_32 g-utf_32 ads,GNAT Traceback g-traceb ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-traceback-symbolic-g-trasym-ads}@anchor{3da}@anchor{gnat_rm/the_gnat_library id122}@anchor{3db}
@section @code{GNAT.Traceback.Symbolic} (@code{g-trasym.ads})
@geindex GNAT.Traceback.Symbolic (g-trasym.ads)
@geindex Trace back facilities
@node GNAT UTF_32 g-utf_32 ads,GNAT UTF_32_Spelling_Checker g-u3spch ads,GNAT Traceback Symbolic g-trasym ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-utf-32-g-utf-32-ads}@anchor{3dc}@anchor{gnat_rm/the_gnat_library id123}@anchor{3dd}
@section @code{GNAT.UTF_32} (@code{g-utf_32.ads})
@geindex GNAT.UTF_32 (g-utf_32.ads)
@geindex Wide character codes
This is a package intended to be used in conjunction with the
@code{Wide_Character} type in Ada 95 and the
@code{Wide_Wide_Character} type in Ada 2005 (available
in @code{GNAT} in Ada 2005 mode). This package contains
Unicode categorization routines, as well as lexical
categorization routines corresponding to the Ada 2005
lexical rules for identifiers and strings, and also a
lower case to upper case fold routine corresponding to
the Ada 2005 rules for identifier equivalence.
@node GNAT UTF_32_Spelling_Checker g-u3spch ads,GNAT Wide_Spelling_Checker g-wispch ads,GNAT UTF_32 g-utf_32 ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-utf-32-spelling-checker-g-u3spch-ads}@anchor{3de}@anchor{gnat_rm/the_gnat_library id124}@anchor{3df}
@section @code{GNAT.UTF_32_Spelling_Checker} (@code{g-u3spch.ads})
@geindex GNAT.UTF_32_Spelling_Checker (g-u3spch.ads)
@geindex Spell checking
Provides a function for determining whether one wide wide string is a plausible
near misspelling of another wide wide string, where the strings are represented
using the UTF_32_String type defined in System.Wch_Cnv.
@node GNAT Wide_Spelling_Checker g-wispch ads,GNAT Wide_String_Split g-wistsp ads,GNAT UTF_32_Spelling_Checker g-u3spch ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-wide-spelling-checker-g-wispch-ads}@anchor{3e0}@anchor{gnat_rm/the_gnat_library id125}@anchor{3e1}
@section @code{GNAT.Wide_Spelling_Checker} (@code{g-wispch.ads})
@geindex GNAT.Wide_Spelling_Checker (g-wispch.ads)
@geindex Spell checking
Provides a function for determining whether one wide string is a plausible
near misspelling of another wide string.
@node GNAT Wide_String_Split g-wistsp ads,GNAT Wide_Wide_Spelling_Checker g-zspche ads,GNAT Wide_Spelling_Checker g-wispch ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-wide-string-split-g-wistsp-ads}@anchor{3e2}@anchor{gnat_rm/the_gnat_library id126}@anchor{3e3}
@section @code{GNAT.Wide_String_Split} (@code{g-wistsp.ads})
@geindex GNAT.Wide_String_Split (g-wistsp.ads)
@geindex Wide_String splitter
Useful wide string manipulation routines: given a set of separators, split
a wide string wherever the separators appear, and provide direct access
to the resulting slices. This package is instantiated from
@code{GNAT.Array_Split}.
@node GNAT Wide_Wide_Spelling_Checker g-zspche ads,GNAT Wide_Wide_String_Split g-zistsp ads,GNAT Wide_String_Split g-wistsp ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-wide-wide-spelling-checker-g-zspche-ads}@anchor{3e4}@anchor{gnat_rm/the_gnat_library id127}@anchor{3e5}
@section @code{GNAT.Wide_Wide_Spelling_Checker} (@code{g-zspche.ads})
@geindex GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads)
@geindex Spell checking
Provides a function for determining whether one wide wide string is a plausible
near misspelling of another wide wide string.
@node GNAT Wide_Wide_String_Split g-zistsp ads,Interfaces C Extensions i-cexten ads,GNAT Wide_Wide_Spelling_Checker g-zspche ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library gnat-wide-wide-string-split-g-zistsp-ads}@anchor{3e6}@anchor{gnat_rm/the_gnat_library id128}@anchor{3e7}
@section @code{GNAT.Wide_Wide_String_Split} (@code{g-zistsp.ads})
@geindex GNAT.Wide_Wide_String_Split (g-zistsp.ads)
@geindex Wide_Wide_String splitter
Useful wide wide string manipulation routines: given a set of separators, split
a wide wide string wherever the separators appear, and provide direct access
to the resulting slices. This package is instantiated from
@code{GNAT.Array_Split}.
@node Interfaces C Extensions i-cexten ads,Interfaces C Streams i-cstrea ads,GNAT Wide_Wide_String_Split g-zistsp ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id129}@anchor{3e8}@anchor{gnat_rm/the_gnat_library interfaces-c-extensions-i-cexten-ads}@anchor{3e9}
@section @code{Interfaces.C.Extensions} (@code{i-cexten.ads})
@geindex Interfaces.C.Extensions (i-cexten.ads)
This package contains additional C-related definitions, intended
for use with either manually or automatically generated bindings
to C libraries.
@node Interfaces C Streams i-cstrea ads,Interfaces Packed_Decimal i-pacdec ads,Interfaces C Extensions i-cexten ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id130}@anchor{3ea}@anchor{gnat_rm/the_gnat_library interfaces-c-streams-i-cstrea-ads}@anchor{3eb}
@section @code{Interfaces.C.Streams} (@code{i-cstrea.ads})
@geindex Interfaces.C.Streams (i-cstrea.ads)
@geindex C streams
@geindex interfacing
This package is a binding for the most commonly used operations
on C streams.
@node Interfaces Packed_Decimal i-pacdec ads,Interfaces VxWorks i-vxwork ads,Interfaces C Streams i-cstrea ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id131}@anchor{3ec}@anchor{gnat_rm/the_gnat_library interfaces-packed-decimal-i-pacdec-ads}@anchor{3ed}
@section @code{Interfaces.Packed_Decimal} (@code{i-pacdec.ads})
@geindex Interfaces.Packed_Decimal (i-pacdec.ads)
@geindex IBM Packed Format
@geindex Packed Decimal
This package provides a set of routines for conversions to and
from a packed decimal format compatible with that used on IBM
mainframes.
@node Interfaces VxWorks i-vxwork ads,Interfaces VxWorks IO i-vxwoio ads,Interfaces Packed_Decimal i-pacdec ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id132}@anchor{3ee}@anchor{gnat_rm/the_gnat_library interfaces-vxworks-i-vxwork-ads}@anchor{3ef}
@section @code{Interfaces.VxWorks} (@code{i-vxwork.ads})
@geindex Interfaces.VxWorks (i-vxwork.ads)
@geindex Interfacing to VxWorks
@geindex VxWorks
@geindex interfacing
This package provides a limited binding to the VxWorks API.
@node Interfaces VxWorks IO i-vxwoio ads,System Address_Image s-addima ads,Interfaces VxWorks i-vxwork ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id133}@anchor{3f0}@anchor{gnat_rm/the_gnat_library interfaces-vxworks-io-i-vxwoio-ads}@anchor{3f1}
@section @code{Interfaces.VxWorks.IO} (@code{i-vxwoio.ads})
@geindex Interfaces.VxWorks.IO (i-vxwoio.ads)
@geindex Interfacing to VxWorks' I/O
@geindex VxWorks
@geindex I/O interfacing
@geindex VxWorks
@geindex Get_Immediate
@geindex Get_Immediate
@geindex VxWorks
This package provides a binding to the ioctl (IO/Control)
function of VxWorks, defining a set of option values and
function codes. A particular use of this package is
to enable the use of Get_Immediate under VxWorks.
@node System Address_Image s-addima ads,System Assertions s-assert ads,Interfaces VxWorks IO i-vxwoio ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id134}@anchor{3f2}@anchor{gnat_rm/the_gnat_library system-address-image-s-addima-ads}@anchor{3f3}
@section @code{System.Address_Image} (@code{s-addima.ads})
@geindex System.Address_Image (s-addima.ads)
@geindex Address image
@geindex Image
@geindex of an address
This function provides a useful debugging
function that gives an (implementation dependent)
string which identifies an address.
@node System Assertions s-assert ads,System Atomic_Counters s-atocou ads,System Address_Image s-addima ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id135}@anchor{3f4}@anchor{gnat_rm/the_gnat_library system-assertions-s-assert-ads}@anchor{3f5}
@section @code{System.Assertions} (@code{s-assert.ads})
@geindex System.Assertions (s-assert.ads)
@geindex Assertions
@geindex Assert_Failure
@geindex exception
This package provides the declaration of the exception raised
by an run-time assertion failure, as well as the routine that
is used internally to raise this assertion.
@node System Atomic_Counters s-atocou ads,System Memory s-memory ads,System Assertions s-assert ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id136}@anchor{3f6}@anchor{gnat_rm/the_gnat_library system-atomic-counters-s-atocou-ads}@anchor{3f7}
@section @code{System.Atomic_Counters} (@code{s-atocou.ads})
@geindex System.Atomic_Counters (s-atocou.ads)
This package provides the declaration of an atomic counter type,
together with efficient routines (using hardware
synchronization primitives) for incrementing, decrementing,
and testing of these counters. This package is implemented
on most targets, including all Alpha, AARCH64, ARM, ia64, PowerPC, SPARC V9,
x86, and x86_64 platforms.
@node System Memory s-memory ads,System Multiprocessors s-multip ads,System Atomic_Counters s-atocou ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id137}@anchor{3f8}@anchor{gnat_rm/the_gnat_library system-memory-s-memory-ads}@anchor{3f9}
@section @code{System.Memory} (@code{s-memory.ads})
@geindex System.Memory (s-memory.ads)
@geindex Memory allocation
This package provides the interface to the low level routines used
by the generated code for allocation and freeing storage for the
default storage pool (analogous to the C routines malloc and free).
It also provides a reallocation interface analogous to the C routine
realloc. The body of this unit may be modified to provide alternative
allocation mechanisms for the default pool, and in addition, direct
calls to this unit may be made for low level allocation uses (for
example see the body of @code{GNAT.Tables}).
@node System Multiprocessors s-multip ads,System Multiprocessors Dispatching_Domains s-mudido ads,System Memory s-memory ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id138}@anchor{3fa}@anchor{gnat_rm/the_gnat_library system-multiprocessors-s-multip-ads}@anchor{3fb}
@section @code{System.Multiprocessors} (@code{s-multip.ads})
@geindex System.Multiprocessors (s-multip.ads)
@geindex Multiprocessor interface
This is an Ada 2012 unit defined in the Ada 2012 Reference Manual, but
in GNAT we also make it available in Ada 95 and Ada 2005 (where it is
technically an implementation-defined addition).
@node System Multiprocessors Dispatching_Domains s-mudido ads,System Partition_Interface s-parint ads,System Multiprocessors s-multip ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id139}@anchor{3fc}@anchor{gnat_rm/the_gnat_library system-multiprocessors-dispatching-domains-s-mudido-ads}@anchor{3fd}
@section @code{System.Multiprocessors.Dispatching_Domains} (@code{s-mudido.ads})
@geindex System.Multiprocessors.Dispatching_Domains (s-mudido.ads)
@geindex Multiprocessor interface
This is an Ada 2012 unit defined in the Ada 2012 Reference Manual, but
in GNAT we also make it available in Ada 95 and Ada 2005 (where it is
technically an implementation-defined addition).
@node System Partition_Interface s-parint ads,System Pool_Global s-pooglo ads,System Multiprocessors Dispatching_Domains s-mudido ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id140}@anchor{3fe}@anchor{gnat_rm/the_gnat_library system-partition-interface-s-parint-ads}@anchor{3ff}
@section @code{System.Partition_Interface} (@code{s-parint.ads})
@geindex System.Partition_Interface (s-parint.ads)
@geindex Partition interfacing functions
This package provides facilities for partition interfacing. It
is used primarily in a distribution context when using Annex E
with @code{GLADE}.
@node System Pool_Global s-pooglo ads,System Pool_Local s-pooloc ads,System Partition_Interface s-parint ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id141}@anchor{400}@anchor{gnat_rm/the_gnat_library system-pool-global-s-pooglo-ads}@anchor{401}
@section @code{System.Pool_Global} (@code{s-pooglo.ads})
@geindex System.Pool_Global (s-pooglo.ads)
@geindex Storage pool
@geindex global
@geindex Global storage pool
This package provides a storage pool that is equivalent to the default
storage pool used for access types for which no pool is specifically
declared. It uses malloc/free to allocate/free and does not attempt to
do any automatic reclamation.
@node System Pool_Local s-pooloc ads,System Restrictions s-restri ads,System Pool_Global s-pooglo ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id142}@anchor{402}@anchor{gnat_rm/the_gnat_library system-pool-local-s-pooloc-ads}@anchor{403}
@section @code{System.Pool_Local} (@code{s-pooloc.ads})
@geindex System.Pool_Local (s-pooloc.ads)
@geindex Storage pool
@geindex local
@geindex Local storage pool
This package provides a storage pool that is intended for use with locally
defined access types. It uses malloc/free for allocate/free, and maintains
a list of allocated blocks, so that all storage allocated for the pool can
be freed automatically when the pool is finalized.
@node System Restrictions s-restri ads,System Rident s-rident ads,System Pool_Local s-pooloc ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id143}@anchor{404}@anchor{gnat_rm/the_gnat_library system-restrictions-s-restri-ads}@anchor{405}
@section @code{System.Restrictions} (@code{s-restri.ads})
@geindex System.Restrictions (s-restri.ads)
@geindex Run-time restrictions access
This package provides facilities for accessing at run time
the status of restrictions specified at compile time for
the partition. Information is available both with regard
to actual restrictions specified, and with regard to
compiler determined information on which restrictions
are violated by one or more packages in the partition.
@node System Rident s-rident ads,System Strings Stream_Ops s-ststop ads,System Restrictions s-restri ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id144}@anchor{406}@anchor{gnat_rm/the_gnat_library system-rident-s-rident-ads}@anchor{407}
@section @code{System.Rident} (@code{s-rident.ads})
@geindex System.Rident (s-rident.ads)
@geindex Restrictions definitions
This package provides definitions of the restrictions
identifiers supported by GNAT, and also the format of
the restrictions provided in package System.Restrictions.
It is not normally necessary to @code{with} this generic package
since the necessary instantiation is included in
package System.Restrictions.
@node System Strings Stream_Ops s-ststop ads,System Unsigned_Types s-unstyp ads,System Rident s-rident ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id145}@anchor{408}@anchor{gnat_rm/the_gnat_library system-strings-stream-ops-s-ststop-ads}@anchor{409}
@section @code{System.Strings.Stream_Ops} (@code{s-ststop.ads})
@geindex System.Strings.Stream_Ops (s-ststop.ads)
@geindex Stream operations
@geindex String stream operations
This package provides a set of stream subprograms for standard string types.
It is intended primarily to support implicit use of such subprograms when
stream attributes are applied to string types, but the subprograms in this
package can be used directly by application programs.
@node System Unsigned_Types s-unstyp ads,System Wch_Cnv s-wchcnv ads,System Strings Stream_Ops s-ststop ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id146}@anchor{40a}@anchor{gnat_rm/the_gnat_library system-unsigned-types-s-unstyp-ads}@anchor{40b}
@section @code{System.Unsigned_Types} (@code{s-unstyp.ads})
@geindex System.Unsigned_Types (s-unstyp.ads)
This package contains definitions of standard unsigned types that
correspond in size to the standard signed types declared in Standard,
and (unlike the types in Interfaces) have corresponding names. It
also contains some related definitions for other specialized types
used by the compiler in connection with packed array types.
@node System Wch_Cnv s-wchcnv ads,System Wch_Con s-wchcon ads,System Unsigned_Types s-unstyp ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id147}@anchor{40c}@anchor{gnat_rm/the_gnat_library system-wch-cnv-s-wchcnv-ads}@anchor{40d}
@section @code{System.Wch_Cnv} (@code{s-wchcnv.ads})
@geindex System.Wch_Cnv (s-wchcnv.ads)
@geindex Wide Character
@geindex Representation
@geindex Wide String
@geindex Conversion
@geindex Representation of wide characters
This package provides routines for converting between
wide and wide wide characters and a representation as a value of type
@code{Standard.String}, using a specified wide character
encoding method. It uses definitions in
package @code{System.Wch_Con}.
@node System Wch_Con s-wchcon ads,,System Wch_Cnv s-wchcnv ads,The GNAT Library
@anchor{gnat_rm/the_gnat_library id148}@anchor{40e}@anchor{gnat_rm/the_gnat_library system-wch-con-s-wchcon-ads}@anchor{40f}
@section @code{System.Wch_Con} (@code{s-wchcon.ads})
@geindex System.Wch_Con (s-wchcon.ads)
This package provides definitions and descriptions of
the various methods used for encoding wide characters
in ordinary strings. These definitions are used by
the package @code{System.Wch_Cnv}.
@node Interfacing to Other Languages,Specialized Needs Annexes,The GNAT Library,Top
@anchor{gnat_rm/interfacing_to_other_languages doc}@anchor{410}@anchor{gnat_rm/interfacing_to_other_languages id1}@anchor{411}@anchor{gnat_rm/interfacing_to_other_languages interfacing-to-other-languages}@anchor{11}
@chapter Interfacing to Other Languages
The facilities in Annex B of the Ada Reference Manual are fully
implemented in GNAT, and in addition, a full interface to C++ is
provided.
@menu
* Interfacing to C::
* Interfacing to C++::
* Interfacing to COBOL::
* Interfacing to Fortran::
* Interfacing to non-GNAT Ada code::
@end menu
@node Interfacing to C,Interfacing to C++,,Interfacing to Other Languages
@anchor{gnat_rm/interfacing_to_other_languages id2}@anchor{412}@anchor{gnat_rm/interfacing_to_other_languages interfacing-to-c}@anchor{413}
@section Interfacing to C
Interfacing to C with GNAT can use one of two approaches:
@itemize *
@item
The types in the package @code{Interfaces.C} may be used.
@item
Standard Ada types may be used directly. This may be less portable to
other compilers, but will work on all GNAT compilers, which guarantee
correspondence between the C and Ada types.
@end itemize
Pragma @code{Convention C} may be applied to Ada types, but mostly has no
effect, since this is the default. The following table shows the
correspondence between Ada scalar types and the corresponding C types.
@multitable {xxxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
@headitem
Ada Type
@tab
C Type
@item
@code{Integer}
@tab
@code{int}
@item
@code{Short_Integer}
@tab
@code{short}
@item
@code{Short_Short_Integer}
@tab
@code{signed char}
@item
@code{Long_Integer}
@tab
@code{long}
@item
@code{Long_Long_Integer}
@tab
@code{long long}
@item
@code{Short_Float}
@tab
@code{float}
@item
@code{Float}
@tab
@code{float}
@item
@code{Long_Float}
@tab
@code{double}
@item
@code{Long_Long_Float}
@tab
This is the longest floating-point type supported by the hardware.
@end multitable
Additionally, there are the following general correspondences between Ada
and C types:
@itemize *
@item
Ada enumeration types map to C enumeration types directly if pragma
@code{Convention C} is specified, which causes them to have a length of
32 bits, except for boolean types which map to C99 @code{bool} and for
which the length is 8 bits.
Without pragma @code{Convention C}, Ada enumeration types map to
8, 16, or 32 bits (i.e., C types @code{signed char}, @code{short},
@code{int}, respectively) depending on the number of values passed.
This is the only case in which pragma @code{Convention C} affects the
representation of an Ada type.
@item
Ada access types map to C pointers, except for the case of pointers to
unconstrained types in Ada, which have no direct C equivalent.
@item
Ada arrays map directly to C arrays.
@item
Ada records map directly to C structures.
@item
Packed Ada records map to C structures where all members are bit fields
of the length corresponding to the @code{type'Size} value in Ada.
@end itemize
@node Interfacing to C++,Interfacing to COBOL,Interfacing to C,Interfacing to Other Languages
@anchor{gnat_rm/interfacing_to_other_languages id3}@anchor{49}@anchor{gnat_rm/interfacing_to_other_languages id4}@anchor{414}
@section Interfacing to C++
The interface to C++ makes use of the following pragmas, which are
primarily intended to be constructed automatically using a binding generator
tool, although it is possible to construct them by hand.
Using these pragmas it is possible to achieve complete
inter-operability between Ada tagged types and C++ class definitions.
See @ref{7,,Implementation Defined Pragmas}, for more details.
@table @asis
@item @code{pragma CPP_Class ([Entity =>] @var{LOCAL_NAME})}
The argument denotes an entity in the current declarative region that is
declared as a tagged or untagged record type. It indicates that the type
corresponds to an externally declared C++ class type, and is to be laid
out the same way that C++ would lay out the type.
Note: Pragma @code{CPP_Class} is currently obsolete. It is supported
for backward compatibility but its functionality is available
using pragma @code{Import} with @code{Convention} = @code{CPP}.
@item @code{pragma CPP_Constructor ([Entity =>] @var{LOCAL_NAME})}
This pragma identifies an imported function (imported in the usual way
with pragma @code{Import}) as corresponding to a C++ constructor.
@end table
A few restrictions are placed on the use of the @code{Access} attribute
in conjunction with subprograms subject to convention @code{CPP}: the
attribute may be used neither on primitive operations of a tagged
record type with convention @code{CPP}, imported or not, nor on
subprograms imported with pragma @code{CPP_Constructor}.
In addition, C++ exceptions are propagated and can be handled in an
@code{others} choice of an exception handler. The corresponding Ada
occurrence has no message, and the simple name of the exception identity
contains @code{Foreign_Exception}. Finalization and awaiting dependent
tasks works properly when such foreign exceptions are propagated.
It is also possible to import a C++ exception using the following syntax:
@example
LOCAL_NAME : exception;
pragma Import (Cpp,
[Entity =>] LOCAL_NAME,
[External_Name =>] static_string_EXPRESSION);
@end example
The @code{External_Name} is the name of the C++ RTTI symbol. You can then
cover a specific C++ exception in an exception handler.
@node Interfacing to COBOL,Interfacing to Fortran,Interfacing to C++,Interfacing to Other Languages
@anchor{gnat_rm/interfacing_to_other_languages id5}@anchor{415}@anchor{gnat_rm/interfacing_to_other_languages interfacing-to-cobol}@anchor{416}
@section Interfacing to COBOL
Interfacing to COBOL is achieved as described in section B.4 of
the Ada Reference Manual.
@node Interfacing to Fortran,Interfacing to non-GNAT Ada code,Interfacing to COBOL,Interfacing to Other Languages
@anchor{gnat_rm/interfacing_to_other_languages id6}@anchor{417}@anchor{gnat_rm/interfacing_to_other_languages interfacing-to-fortran}@anchor{418}
@section Interfacing to Fortran
Interfacing to Fortran is achieved as described in section B.5 of the
Ada Reference Manual. The pragma @code{Convention Fortran}, applied to a
multi-dimensional array causes the array to be stored in column-major
order as required for convenient interface to Fortran.
@node Interfacing to non-GNAT Ada code,,Interfacing to Fortran,Interfacing to Other Languages
@anchor{gnat_rm/interfacing_to_other_languages id7}@anchor{419}@anchor{gnat_rm/interfacing_to_other_languages interfacing-to-non-gnat-ada-code}@anchor{41a}
@section Interfacing to non-GNAT Ada code
It is possible to specify the convention @code{Ada} in a pragma
@code{Import} or pragma @code{Export}. However this refers to
the calling conventions used by GNAT, which may or may not be
similar enough to those used by some other Ada 83 / Ada 95 / Ada 2005
compiler to allow interoperation.
If arguments types are kept simple, and if the foreign compiler generally
follows system calling conventions, then it may be possible to integrate
files compiled by other Ada compilers, provided that the elaboration
issues are adequately addressed (for example by eliminating the
need for any load time elaboration).
In particular, GNAT running on VMS is designed to
be highly compatible with the DEC Ada 83 compiler, so this is one
case in which it is possible to import foreign units of this type,
provided that the data items passed are restricted to simple scalar
values or simple record types without variants, or simple array
types with fixed bounds.
@node Specialized Needs Annexes,Implementation of Specific Ada Features,Interfacing to Other Languages,Top
@anchor{gnat_rm/specialized_needs_annexes doc}@anchor{41b}@anchor{gnat_rm/specialized_needs_annexes id1}@anchor{41c}@anchor{gnat_rm/specialized_needs_annexes specialized-needs-annexes}@anchor{12}
@chapter Specialized Needs Annexes
Ada 95, Ada 2005, and Ada 2012 define a number of Specialized Needs Annexes, which are not
required in all implementations. However, as described in this chapter,
GNAT implements all of these annexes:
@table @asis
@item `Systems Programming (Annex C)'
The Systems Programming Annex is fully implemented.
@item `Real-Time Systems (Annex D)'
The Real-Time Systems Annex is fully implemented.
@item `Distributed Systems (Annex E)'
Stub generation is fully implemented in the GNAT compiler. In addition,
a complete compatible PCS is available as part of the GLADE system,
a separate product. When the two
products are used in conjunction, this annex is fully implemented.
@item `Information Systems (Annex F)'
The Information Systems annex is fully implemented.
@item `Numerics (Annex G)'
The Numerics Annex is fully implemented.
@item `Safety and Security / High-Integrity Systems (Annex H)'
The Safety and Security Annex (termed the High-Integrity Systems Annex
in Ada 2005) is fully implemented.
@end table
@node Implementation of Specific Ada Features,Implementation of Ada 2012 Features,Specialized Needs Annexes,Top
@anchor{gnat_rm/implementation_of_specific_ada_features doc}@anchor{41d}@anchor{gnat_rm/implementation_of_specific_ada_features id1}@anchor{41e}@anchor{gnat_rm/implementation_of_specific_ada_features implementation-of-specific-ada-features}@anchor{13}
@chapter Implementation of Specific Ada Features
This chapter describes the GNAT implementation of several Ada language
facilities.
@menu
* Machine Code Insertions::
* GNAT Implementation of Tasking::
* GNAT Implementation of Shared Passive Packages::
* Code Generation for Array Aggregates::
* The Size of Discriminated Records with Default Discriminants::
* Image Values For Nonscalar Types::
* Strict Conformance to the Ada Reference Manual::
@end menu
@node Machine Code Insertions,GNAT Implementation of Tasking,,Implementation of Specific Ada Features
@anchor{gnat_rm/implementation_of_specific_ada_features id2}@anchor{41f}@anchor{gnat_rm/implementation_of_specific_ada_features machine-code-insertions}@anchor{178}
@section Machine Code Insertions
@geindex Machine Code insertions
Package @code{Machine_Code} provides machine code support as described
in the Ada Reference Manual in two separate forms:
@itemize *
@item
Machine code statements, consisting of qualified expressions that
fit the requirements of RM section 13.8.
@item
An intrinsic callable procedure, providing an alternative mechanism of
including machine instructions in a subprogram.
@end itemize
The two features are similar, and both are closely related to the mechanism
provided by the asm instruction in the GNU C compiler. Full understanding
and use of the facilities in this package requires understanding the asm
instruction, see the section on Extended Asm in
@cite{Using_the_GNU_Compiler_Collection_(GCC)}.
Calls to the function @code{Asm} and the procedure @code{Asm} have identical
semantic restrictions and effects as described below. Both are provided so
that the procedure call can be used as a statement, and the function call
can be used to form a code_statement.
Consider this C @code{asm} instruction:
@example
asm ("fsinx %1 %0" : "=f" (result) : "f" (angle));
@end example
The equivalent can be written for GNAT as:
@example
Asm ("fsinx %1 %0",
My_Float'Asm_Output ("=f", result),
My_Float'Asm_Input ("f", angle));
@end example
The first argument to @code{Asm} is the assembler template, and is
identical to what is used in GNU C. This string must be a static
expression. The second argument is the output operand list. It is
either a single @code{Asm_Output} attribute reference, or a list of such
references enclosed in parentheses (technically an array aggregate of
such references).
The @code{Asm_Output} attribute denotes a function that takes two
parameters. The first is a string, the second is the name of a variable
of the type designated by the attribute prefix. The first (string)
argument is required to be a static expression and designates the
constraint (see the section on Constraints in
@cite{Using_the_GNU_Compiler_Collection_(GCC)})
for the parameter; e.g., what kind of register is required. The second
argument is the variable to be written or updated with the
result. The possible values for constraint are the same as those used in
the RTL, and are dependent on the configuration file used to build the
GCC back end. If there are no output operands, then this argument may
either be omitted, or explicitly given as @code{No_Output_Operands}.
No support is provided for GNU C’s symbolic names for output parameters.
The second argument of @code{my_float'Asm_Output} functions as
though it were an @code{out} parameter, which is a little curious, but
all names have the form of expressions, so there is no syntactic
irregularity, even though normally functions would not be permitted
@code{out} parameters. The third argument is the list of input
operands. It is either a single @code{Asm_Input} attribute reference, or
a list of such references enclosed in parentheses (technically an array
aggregate of such references).
The @code{Asm_Input} attribute denotes a function that takes two
parameters. The first is a string, the second is an expression of the
type designated by the prefix. The first (string) argument is required
to be a static expression, and is the constraint for the parameter,
(e.g., what kind of register is required). The second argument is the
value to be used as the input argument. The possible values for the
constraint are the same as those used in the RTL, and are dependent on
the configuration file used to built the GCC back end.
No support is provided for GNU C’s symbolic names for input parameters.
If there are no input operands, this argument may either be omitted, or
explicitly given as @code{No_Input_Operands}. The fourth argument, not
present in the above example, is a list of register names, called the
`clobber' argument. This argument, if given, must be a static string
expression, and is a space or comma separated list of names of registers
that must be considered destroyed as a result of the @code{Asm} call. If
this argument is the null string (the default value), then the code
generator assumes that no additional registers are destroyed.
In addition to registers, the special clobbers @code{memory} and
@code{cc} as described in the GNU C docs are both supported.
The fifth argument, not present in the above example, called the
`volatile' argument, is by default @code{False}. It can be set to
the literal value @code{True} to indicate to the code generator that all
optimizations with respect to the instruction specified should be
suppressed, and in particular an instruction that has outputs
will still be generated, even if none of the outputs are
used. See @cite{Using_the_GNU_Compiler_Collection_(GCC)}
for the full description.
Generally it is strongly advisable to use Volatile for any ASM statement
that is missing either input or output operands or to avoid unwanted
optimizations. A warning is generated if this advice is not followed.
No support is provided for GNU C’s @code{asm goto} feature.
The @code{Asm} subprograms may be used in two ways. First the procedure
forms can be used anywhere a procedure call would be valid, and
correspond to what the RM calls ‘intrinsic’ routines. Such calls can
be used to intersperse machine instructions with other Ada statements.
Second, the function forms, which return a dummy value of the limited
private type @code{Asm_Insn}, can be used in code statements, and indeed
this is the only context where such calls are allowed. Code statements
appear as aggregates of the form:
@example
Asm_Insn'(Asm (...));
Asm_Insn'(Asm_Volatile (...));
@end example
In accordance with RM rules, such code statements are allowed only
within subprograms whose entire body consists of such statements. It is
not permissible to intermix such statements with other Ada statements.
Typically the form using intrinsic procedure calls is more convenient
and more flexible. The code statement form is provided to meet the RM
suggestion that such a facility should be made available. The following
is the exact syntax of the call to @code{Asm}. As usual, if named notation
is used, the arguments may be given in arbitrary order, following the
normal rules for use of positional and named arguments:
@example
ASM_CALL ::= Asm (
[Template =>] static_string_EXPRESSION
[,[Outputs =>] OUTPUT_OPERAND_LIST ]
[,[Inputs =>] INPUT_OPERAND_LIST ]
[,[Clobber =>] static_string_EXPRESSION ]
[,[Volatile =>] static_boolean_EXPRESSION] )
OUTPUT_OPERAND_LIST ::=
[PREFIX.]No_Output_Operands
| OUTPUT_OPERAND_ATTRIBUTE
| (OUTPUT_OPERAND_ATTRIBUTE @{,OUTPUT_OPERAND_ATTRIBUTE@})
OUTPUT_OPERAND_ATTRIBUTE ::=
SUBTYPE_MARK'Asm_Output (static_string_EXPRESSION, NAME)
INPUT_OPERAND_LIST ::=
[PREFIX.]No_Input_Operands
| INPUT_OPERAND_ATTRIBUTE
| (INPUT_OPERAND_ATTRIBUTE @{,INPUT_OPERAND_ATTRIBUTE@})
INPUT_OPERAND_ATTRIBUTE ::=
SUBTYPE_MARK'Asm_Input (static_string_EXPRESSION, EXPRESSION)
@end example
The identifiers @code{No_Input_Operands} and @code{No_Output_Operands}
are declared in the package @code{Machine_Code} and must be referenced
according to normal visibility rules. In particular if there is no
@code{use} clause for this package, then appropriate package name
qualification is required.
@node GNAT Implementation of Tasking,GNAT Implementation of Shared Passive Packages,Machine Code Insertions,Implementation of Specific Ada Features
@anchor{gnat_rm/implementation_of_specific_ada_features gnat-implementation-of-tasking}@anchor{420}@anchor{gnat_rm/implementation_of_specific_ada_features id3}@anchor{421}
@section GNAT Implementation of Tasking
This chapter outlines the basic GNAT approach to tasking (in particular,
a multi-layered library for portability) and discusses issues related
to compliance with the Real-Time Systems Annex.
@menu
* Mapping Ada Tasks onto the Underlying Kernel Threads::
* Ensuring Compliance with the Real-Time Annex::
* Support for Locking Policies::
@end menu
@node Mapping Ada Tasks onto the Underlying Kernel Threads,Ensuring Compliance with the Real-Time Annex,,GNAT Implementation of Tasking
@anchor{gnat_rm/implementation_of_specific_ada_features id4}@anchor{422}@anchor{gnat_rm/implementation_of_specific_ada_features mapping-ada-tasks-onto-the-underlying-kernel-threads}@anchor{423}
@subsection Mapping Ada Tasks onto the Underlying Kernel Threads
GNAT’s run-time support comprises two layers:
@itemize *
@item
GNARL (GNAT Run-time Layer)
@item
GNULL (GNAT Low-level Library)
@end itemize
In GNAT, Ada’s tasking services rely on a platform and OS independent
layer known as GNARL. This code is responsible for implementing the
correct semantics of Ada’s task creation, rendezvous, protected
operations etc.
GNARL decomposes Ada’s tasking semantics into simpler lower level
operations such as create a thread, set the priority of a thread,
yield, create a lock, lock/unlock, etc. The spec for these low-level
operations constitutes GNULLI, the GNULL Interface. This interface is
directly inspired from the POSIX real-time API.
If the underlying executive or OS implements the POSIX standard
faithfully, the GNULL Interface maps as is to the services offered by
the underlying kernel. Otherwise, some target dependent glue code maps
the services offered by the underlying kernel to the semantics expected
by GNARL.
Whatever the underlying OS (VxWorks, UNIX, Windows, etc.) the
key point is that each Ada task is mapped on a thread in the underlying
kernel. For example, in the case of VxWorks, one Ada task = one VxWorks task.
In addition Ada task priorities map onto the underlying thread priorities.
Mapping Ada tasks onto the underlying kernel threads has several advantages:
@itemize *
@item
The underlying scheduler is used to schedule the Ada tasks. This
makes Ada tasks as efficient as kernel threads from a scheduling
standpoint.
@item
Interaction with code written in C containing threads is eased
since at the lowest level Ada tasks and C threads map onto the same
underlying kernel concept.
@item
When an Ada task is blocked during I/O the remaining Ada tasks are
able to proceed.
@item
On multiprocessor systems Ada tasks can execute in parallel.
@end itemize
Some threads libraries offer a mechanism to fork a new process, with the
child process duplicating the threads from the parent.
GNAT does not
support this functionality when the parent contains more than one task.
@geindex Forking a new process
@node Ensuring Compliance with the Real-Time Annex,Support for Locking Policies,Mapping Ada Tasks onto the Underlying Kernel Threads,GNAT Implementation of Tasking
@anchor{gnat_rm/implementation_of_specific_ada_features ensuring-compliance-with-the-real-time-annex}@anchor{424}@anchor{gnat_rm/implementation_of_specific_ada_features id5}@anchor{425}
@subsection Ensuring Compliance with the Real-Time Annex
@geindex Real-Time Systems Annex compliance
Although mapping Ada tasks onto
the underlying threads has significant advantages, it does create some
complications when it comes to respecting the scheduling semantics
specified in the real-time annex (Annex D).
For instance the Annex D requirement for the @code{FIFO_Within_Priorities}
scheduling policy states:
@quotation
`When the active priority of a ready task that is not running
changes, or the setting of its base priority takes effect, the
task is removed from the ready queue for its old active priority
and is added at the tail of the ready queue for its new active
priority, except in the case where the active priority is lowered
due to the loss of inherited priority, in which case the task is
added at the head of the ready queue for its new active priority.'
@end quotation
While most kernels do put tasks at the end of the priority queue when
a task changes its priority, (which respects the main
FIFO_Within_Priorities requirement), almost none keep a thread at the
beginning of its priority queue when its priority drops from the loss
of inherited priority.
As a result most vendors have provided incomplete Annex D implementations.
The GNAT run-time, has a nice cooperative solution to this problem
which ensures that accurate FIFO_Within_Priorities semantics are
respected.
The principle is as follows. When an Ada task T is about to start
running, it checks whether some other Ada task R with the same
priority as T has been suspended due to the loss of priority
inheritance. If this is the case, T yields and is placed at the end of
its priority queue. When R arrives at the front of the queue it
executes.
Note that this simple scheme preserves the relative order of the tasks
that were ready to execute in the priority queue where R has been
placed at the end.
@c Support_for_Locking_Policies
@node Support for Locking Policies,,Ensuring Compliance with the Real-Time Annex,GNAT Implementation of Tasking
@anchor{gnat_rm/implementation_of_specific_ada_features support-for-locking-policies}@anchor{426}
@subsection Support for Locking Policies
This section specifies which policies specified by pragma Locking_Policy
are supported on which platforms.
GNAT supports the standard @code{Ceiling_Locking} policy, and the
implementation defined @code{Inheritance_Locking} and
@code{Concurrent_Readers_Locking} policies.
@code{Ceiling_Locking} is supported on all platforms if the operating system
supports it. In particular, @code{Ceiling_Locking} is not supported on
VxWorks.
@code{Inheritance_Locking} is supported on
Linux,
Darwin (Mac OS X),
LynxOS 178,
and VxWorks.
@code{Concurrent_Readers_Locking} is supported on Linux.
Notes about @code{Ceiling_Locking} on Linux:
If the process is running as ‘root’, ceiling locking is used.
If the capabilities facility is installed
(“sudo apt-get –assume-yes install libcap-dev” on Ubuntu,
for example),
and the program is linked against that library
(“-largs -lcap”),
and the executable file has the cap_sys_nice capability
(“sudo /sbin/setcap cap_sys_nice=ep executable_file_name”),
then ceiling locking is used.
Otherwise, the @code{Ceiling_Locking} policy is ignored.
@node GNAT Implementation of Shared Passive Packages,Code Generation for Array Aggregates,GNAT Implementation of Tasking,Implementation of Specific Ada Features
@anchor{gnat_rm/implementation_of_specific_ada_features gnat-implementation-of-shared-passive-packages}@anchor{427}@anchor{gnat_rm/implementation_of_specific_ada_features id6}@anchor{428}
@section GNAT Implementation of Shared Passive Packages
@geindex Shared passive packages
GNAT fully implements the
@geindex pragma Shared_Passive
pragma
@code{Shared_Passive} for
the purpose of designating shared passive packages.
This allows the use of passive partitions in the
context described in the Ada Reference Manual; i.e., for communication
between separate partitions of a distributed application using the
features in Annex E.
@geindex Annex E
@geindex Distribution Systems Annex
However, the implementation approach used by GNAT provides for more
extensive usage as follows:
@table @asis
@item `Communication between separate programs'
This allows separate programs to access the data in passive
partitions, using protected objects for synchronization where
needed. The only requirement is that the two programs have a
common shared file system. It is even possible for programs
running on different machines with different architectures
(e.g., different endianness) to communicate via the data in
a passive partition.
@item `Persistence between program runs'
The data in a passive package can persist from one run of a
program to another, so that a later program sees the final
values stored by a previous run of the same program.
@end table
The implementation approach used is to store the data in files. A
separate stream file is created for each object in the package, and
an access to an object causes the corresponding file to be read or
written.
@geindex SHARED_MEMORY_DIRECTORY environment variable
The environment variable @code{SHARED_MEMORY_DIRECTORY} should be
set to the directory to be used for these files.
The files in this directory
have names that correspond to their fully qualified names. For
example, if we have the package
@example
package X is
pragma Shared_Passive (X);
Y : Integer;
Z : Float;
end X;
@end example
and the environment variable is set to @code{/stemp/}, then the files created
will have the names:
@example
/stemp/x.y
/stemp/x.z
@end example
These files are created when a value is initially written to the object, and
the files are retained until manually deleted. This provides the persistence
semantics. If no file exists, it means that no partition has assigned a value
to the variable; in this case the initial value declared in the package
will be used. This model ensures that there are no issues in synchronizing
the elaboration process, since elaboration of passive packages elaborates the
initial values, but does not create the files.
The files are written using normal @code{Stream_IO} access.
If you want to be able
to communicate between programs or partitions running on different
architectures, then you should use the XDR versions of the stream attribute
routines, since these are architecture independent.
If active synchronization is required for access to the variables in the
shared passive package, then as described in the Ada Reference Manual, the
package may contain protected objects used for this purpose. In this case
a lock file (whose name is @code{___lock}, with three underscores)
is created in the shared memory directory.
@geindex ___lock file (for shared passive packages)
This is used to provide the required locking
semantics for proper protected object synchronization.
@node Code Generation for Array Aggregates,The Size of Discriminated Records with Default Discriminants,GNAT Implementation of Shared Passive Packages,Implementation of Specific Ada Features
@anchor{gnat_rm/implementation_of_specific_ada_features code-generation-for-array-aggregates}@anchor{429}@anchor{gnat_rm/implementation_of_specific_ada_features id7}@anchor{42a}
@section Code Generation for Array Aggregates
Aggregates have a rich syntax and allow the user to specify the values of
complex data structures by means of a single construct. As a result, the
code generated for aggregates can be quite complex and involve loops, case
statements and multiple assignments. In the simplest cases, however, the
compiler will recognize aggregates whose components and constraints are
fully static, and in those cases the compiler will generate little or no
executable code. The following is an outline of the code that GNAT generates
for various aggregate constructs. For further details, you will find it
useful to examine the output produced by the -gnatG flag to see the expanded
source that is input to the code generator. You may also want to examine
the assembly code generated at various levels of optimization.
The code generated for aggregates depends on the context, the component values,
and the type. In the context of an object declaration the code generated is
generally simpler than in the case of an assignment. As a general rule, static
component values and static subtypes also lead to simpler code.
@menu
* Static constant aggregates with static bounds::
* Constant aggregates with unconstrained nominal types::
* Aggregates with static bounds::
* Aggregates with nonstatic bounds::
* Aggregates in assignment statements::
@end menu
@node Static constant aggregates with static bounds,Constant aggregates with unconstrained nominal types,,Code Generation for Array Aggregates
@anchor{gnat_rm/implementation_of_specific_ada_features id8}@anchor{42b}@anchor{gnat_rm/implementation_of_specific_ada_features static-constant-aggregates-with-static-bounds}@anchor{42c}
@subsection Static constant aggregates with static bounds
For the declarations:
@example
type One_Dim is array (1..10) of integer;
ar0 : constant One_Dim := (1, 2, 3, 4, 5, 6, 7, 8, 9, 0);
@end example
GNAT generates no executable code: the constant ar0 is placed in static memory.
The same is true for constant aggregates with named associations:
@example
Cr1 : constant One_Dim := (4 => 16, 2 => 4, 3 => 9, 1 => 1, 5 .. 10 => 0);
Cr3 : constant One_Dim := (others => 7777);
@end example
The same is true for multidimensional constant arrays such as:
@example
type two_dim is array (1..3, 1..3) of integer;
Unit : constant two_dim := ( (1,0,0), (0,1,0), (0,0,1));
@end example
The same is true for arrays of one-dimensional arrays: the following are
static:
@example
type ar1b is array (1..3) of boolean;
type ar_ar is array (1..3) of ar1b;
None : constant ar1b := (others => false); -- fully static
None2 : constant ar_ar := (1..3 => None); -- fully static
@end example
However, for multidimensional aggregates with named associations, GNAT will
generate assignments and loops, even if all associations are static. The
following two declarations generate a loop for the first dimension, and
individual component assignments for the second dimension:
@example
Zero1: constant two_dim := (1..3 => (1..3 => 0));
Zero2: constant two_dim := (others => (others => 0));
@end example
@node Constant aggregates with unconstrained nominal types,Aggregates with static bounds,Static constant aggregates with static bounds,Code Generation for Array Aggregates
@anchor{gnat_rm/implementation_of_specific_ada_features constant-aggregates-with-unconstrained-nominal-types}@anchor{42d}@anchor{gnat_rm/implementation_of_specific_ada_features id9}@anchor{42e}
@subsection Constant aggregates with unconstrained nominal types
In such cases the aggregate itself establishes the subtype, so that
associations with @code{others} cannot be used. GNAT determines the
bounds for the actual subtype of the aggregate, and allocates the
aggregate statically as well. No code is generated for the following:
@example
type One_Unc is array (natural range <>) of integer;
Cr_Unc : constant One_Unc := (12,24,36);
@end example
@node Aggregates with static bounds,Aggregates with nonstatic bounds,Constant aggregates with unconstrained nominal types,Code Generation for Array Aggregates
@anchor{gnat_rm/implementation_of_specific_ada_features aggregates-with-static-bounds}@anchor{42f}@anchor{gnat_rm/implementation_of_specific_ada_features id10}@anchor{430}
@subsection Aggregates with static bounds
In all previous examples the aggregate was the initial (and immutable) value
of a constant. If the aggregate initializes a variable, then code is generated
for it as a combination of individual assignments and loops over the target
object. The declarations
@example
Cr_Var1 : One_Dim := (2, 5, 7, 11, 0, 0, 0, 0, 0, 0);
Cr_Var2 : One_Dim := (others > -1);
@end example
generate the equivalent of
@example
Cr_Var1 (1) := 2;
Cr_Var1 (2) := 3;
Cr_Var1 (3) := 5;
Cr_Var1 (4) := 11;
for I in Cr_Var2'range loop
Cr_Var2 (I) := -1;
end loop;
@end example
@node Aggregates with nonstatic bounds,Aggregates in assignment statements,Aggregates with static bounds,Code Generation for Array Aggregates
@anchor{gnat_rm/implementation_of_specific_ada_features aggregates-with-nonstatic-bounds}@anchor{431}@anchor{gnat_rm/implementation_of_specific_ada_features id11}@anchor{432}
@subsection Aggregates with nonstatic bounds
If the bounds of the aggregate are not statically compatible with the bounds
of the nominal subtype of the target, then constraint checks have to be
generated on the bounds. For a multidimensional array, constraint checks may
have to be applied to sub-arrays individually, if they do not have statically
compatible subtypes.
@node Aggregates in assignment statements,,Aggregates with nonstatic bounds,Code Generation for Array Aggregates
@anchor{gnat_rm/implementation_of_specific_ada_features aggregates-in-assignment-statements}@anchor{433}@anchor{gnat_rm/implementation_of_specific_ada_features id12}@anchor{434}
@subsection Aggregates in assignment statements
In general, aggregate assignment requires the construction of a temporary,
and a copy from the temporary to the target of the assignment. This is because
it is not always possible to convert the assignment into a series of individual
component assignments. For example, consider the simple case:
@example
A := (A(2), A(1));
@end example
This cannot be converted into:
@example
A(1) := A(2);
A(2) := A(1);
@end example
So the aggregate has to be built first in a separate location, and then
copied into the target. GNAT recognizes simple cases where this intermediate
step is not required, and the assignments can be performed in place, directly
into the target. The following sufficient criteria are applied:
@itemize *
@item
The bounds of the aggregate are static, and the associations are static.
@item
The components of the aggregate are static constants, names of
simple variables that are not renamings, or expressions not involving
indexed components whose operands obey these rules.
@end itemize
If any of these conditions are violated, the aggregate will be built in
a temporary (created either by the front-end or the code generator) and then
that temporary will be copied onto the target.
@node The Size of Discriminated Records with Default Discriminants,Image Values For Nonscalar Types,Code Generation for Array Aggregates,Implementation of Specific Ada Features
@anchor{gnat_rm/implementation_of_specific_ada_features id13}@anchor{435}@anchor{gnat_rm/implementation_of_specific_ada_features the-size-of-discriminated-records-with-default-discriminants}@anchor{436}
@section The Size of Discriminated Records with Default Discriminants
If a discriminated type @code{T} has discriminants with default values, it is
possible to declare an object of this type without providing an explicit
constraint:
@example
type Size is range 1..100;
type Rec (D : Size := 15) is record
Name : String (1..D);
end T;
Word : Rec;
@end example
Such an object is said to be `unconstrained'.
The discriminant of the object
can be modified by a full assignment to the object, as long as it preserves the
relation between the value of the discriminant, and the value of the components
that depend on it:
@example
Word := (3, "yes");
Word := (5, "maybe");
Word := (5, "no"); -- raises Constraint_Error
@end example
In order to support this behavior efficiently, an unconstrained object is
given the maximum size that any value of the type requires. In the case
above, @code{Word} has storage for the discriminant and for
a @code{String} of length 100.
It is important to note that unconstrained objects do not require dynamic
allocation. It would be an improper implementation to place on the heap those
components whose size depends on discriminants. (This improper implementation
was used by some Ada83 compilers, where the @code{Name} component above
would have
been stored as a pointer to a dynamic string). Following the principle that
dynamic storage management should never be introduced implicitly,
an Ada compiler should reserve the full size for an unconstrained declared
object, and place it on the stack.
This maximum size approach
has been a source of surprise to some users, who expect the default
values of the discriminants to determine the size reserved for an
unconstrained object: “If the default is 15, why should the object occupy
a larger size?”
The answer, of course, is that the discriminant may be later modified,
and its full range of values must be taken into account. This is why the
declaration:
@example
type Rec (D : Positive := 15) is record
Name : String (1..D);
end record;
Too_Large : Rec;
@end example
is flagged by the compiler with a warning:
an attempt to create @code{Too_Large} will raise @code{Storage_Error},
because the required size includes @code{Positive'Last}
bytes. As the first example indicates, the proper approach is to declare an
index type of ‘reasonable’ range so that unconstrained objects are not too
large.
One final wrinkle: if the object is declared to be @code{aliased}, or if it is
created in the heap by means of an allocator, then it is `not'
unconstrained:
it is constrained by the default values of the discriminants, and those values
cannot be modified by full assignment. This is because in the presence of
aliasing all views of the object (which may be manipulated by different tasks,
say) must be consistent, so it is imperative that the object, once created,
remain invariant.
@node Image Values For Nonscalar Types,Strict Conformance to the Ada Reference Manual,The Size of Discriminated Records with Default Discriminants,Implementation of Specific Ada Features
@anchor{gnat_rm/implementation_of_specific_ada_features id14}@anchor{437}@anchor{gnat_rm/implementation_of_specific_ada_features image-values-for-nonscalar-types}@anchor{438}
@section Image Values For Nonscalar Types
Ada 2022 defines the Image, Wide_Image, and Wide_Wide image attributes
for nonscalar types; earlier Ada versions defined these attributes only
for scalar types. Ada RM 4.10 provides some general guidance regarding
the default implementation of these attributes and the GNAT compiler
follows that guidance. However, beyond that the precise details of the
image text generated in these cases are deliberately not documented and are
subject to change. In particular, users should not rely on formatting details
(such as spaces or line breaking), record field order, image values for access
types, image values for types that have ancestor or subcomponent types
declared in non-Ada2022 code, image values for predefined types, or the
compiler’s choices regarding the implementation permissions described in
Ada RM 4.10. This list is not intended to be exhaustive. If more precise
control of image text is required for some type T, then T’Put_Image should be
explicitly specified.
@node Strict Conformance to the Ada Reference Manual,,Image Values For Nonscalar Types,Implementation of Specific Ada Features
@anchor{gnat_rm/implementation_of_specific_ada_features id15}@anchor{439}@anchor{gnat_rm/implementation_of_specific_ada_features strict-conformance-to-the-ada-reference-manual}@anchor{43a}
@section Strict Conformance to the Ada Reference Manual
The dynamic semantics defined by the Ada Reference Manual impose a set of
run-time checks to be generated. By default, the GNAT compiler will insert many
run-time checks into the compiled code, including most of those required by the
Ada Reference Manual. However, there are two checks that are not enabled in
the default mode for efficiency reasons: checks for access before elaboration
on subprogram calls, and stack overflow checking (most operating systems do not
perform this check by default).
Strict conformance to the Ada Reference Manual can be achieved by adding two
compiler options for dynamic checks for access-before-elaboration on subprogram
calls and generic instantiations (`-gnatE'), and stack overflow checking
(`-fstack-check').
Note that the result of a floating point arithmetic operation in overflow and
invalid situations, when the @code{Machine_Overflows} attribute of the result
type is @code{False}, is to generate IEEE NaN and infinite values. This is the
case for machines compliant with the IEEE floating-point standard, but on
machines that are not fully compliant with this standard, such as Alpha, the
`-mieee' compiler flag must be used for achieving IEEE confirming
behavior (although at the cost of a significant performance penalty), so
infinite and NaN values are properly generated.
@node Implementation of Ada 2012 Features,GNAT language extensions,Implementation of Specific Ada Features,Top
@anchor{gnat_rm/implementation_of_ada_2012_features doc}@anchor{43b}@anchor{gnat_rm/implementation_of_ada_2012_features id1}@anchor{43c}@anchor{gnat_rm/implementation_of_ada_2012_features implementation-of-ada-2012-features}@anchor{14}
@chapter Implementation of Ada 2012 Features
@geindex Ada 2012 implementation status
@geindex -gnat12 option (gcc)
@geindex pragma Ada_2012
@geindex configuration pragma Ada_2012
@geindex Ada_2012 configuration pragma
This chapter contains a complete list of Ada 2012 features that have been
implemented.
Generally, these features are only
available if the `-gnat12' (Ada 2012 features enabled) option is set,
which is the default behavior,
or if the configuration pragma @code{Ada_2012} is used.
However, new pragmas, attributes, and restrictions are
unconditionally available, since the Ada 95 standard allows the addition of
new pragmas, attributes, and restrictions (there are exceptions, which are
documented in the individual descriptions), and also certain packages
were made available in earlier versions of Ada.
An ISO date (YYYY-MM-DD) appears in parentheses on the description line.
This date shows the implementation date of the feature. Any wavefront
subsequent to this date will contain the indicated feature, as will any
subsequent releases. A date of 0000-00-00 means that GNAT has always
implemented the feature, or implemented it as soon as it appeared as a
binding interpretation.
Each feature corresponds to an Ada Issue (‘AI’) approved by the Ada
standardization group (ISO/IEC JTC1/SC22/WG9) for inclusion in Ada 2012.
The features are ordered based on the relevant sections of the Ada
Reference Manual (“RM”). When a given AI relates to multiple points
in the RM, the earliest is used.
A complete description of the AIs may be found in
@indicateurl{http://www.ada-auth.org/ai05-summary.html}.
@geindex AI-0002 (Ada 2012 feature)
@itemize *
@item
`AI-0002 Export C with unconstrained arrays (0000-00-00)'
The compiler is not required to support exporting an Ada subprogram with
convention C if there are parameters or a return type of an unconstrained
array type (such as @code{String}). GNAT allows such declarations but
generates warnings. It is possible, but complicated, to write the
corresponding C code and certainly such code would be specific to GNAT and
non-portable.
RM References: B.01 (17) B.03 (62) B.03 (71.1/2)
@end itemize
@geindex AI-0003 (Ada 2012 feature)
@itemize *
@item
`AI-0003 Qualified expressions as names (2010-07-11)'
In Ada 2012, a qualified expression is considered to be syntactically a name,
meaning that constructs such as @code{A'(F(X)).B} are now legal. This is
useful in disambiguating some cases of overloading.
RM References: 3.03 (11) 3.03 (21) 4.01 (2) 4.04 (7) 4.07 (3)
5.04 (7)
@end itemize
@geindex AI-0007 (Ada 2012 feature)
@itemize *
@item
`AI-0007 Stream read and private scalar types (0000-00-00)'
The RM as written appeared to limit the possibilities of declaring read
attribute procedures for private scalar types. This limitation was not
intended, and has never been enforced by GNAT.
RM References: 13.13.02 (50/2) 13.13.02 (51/2)
@end itemize
@geindex AI-0008 (Ada 2012 feature)
@itemize *
@item
`AI-0008 General access to constrained objects (0000-00-00)'
The wording in the RM implied that if you have a general access to a
constrained object, it could be used to modify the discriminants. This was
obviously not intended. @code{Constraint_Error} should be raised, and GNAT
has always done so in this situation.
RM References: 3.03 (23) 3.10.02 (26/2) 4.01 (9) 6.04.01 (17) 8.05.01 (5/2)
@end itemize
@geindex AI-0009 (Ada 2012 feature)
@itemize *
@item
`AI-0009 Pragma Independent[_Components] (2010-07-23)'
This AI introduces the new pragmas @code{Independent} and
@code{Independent_Components},
which control guaranteeing independence of access to objects and components.
The AI also requires independence not unaffected by confirming rep clauses.
RM References: 9.10 (1) 13.01 (15/1) 13.02 (9) 13.03 (13) C.06 (2)
C.06 (4) C.06 (6) C.06 (9) C.06 (13) C.06 (14)
@end itemize
@geindex AI-0012 (Ada 2012 feature)
@itemize *
@item
`AI-0012 Pack/Component_Size for aliased/atomic (2010-07-15)'
It is now illegal to give an inappropriate component size or a pragma
@code{Pack} that attempts to change the component size in the case of atomic
or aliased components. Previously GNAT ignored such an attempt with a
warning.
RM References: 13.02 (6.1/2) 13.02 (7) C.06 (10) C.06 (11) C.06 (21)
@end itemize
@geindex AI-0015 (Ada 2012 feature)
@itemize *
@item
`AI-0015 Constant return objects (0000-00-00)'
The return object declared in an `extended_return_statement' may be
declared constant. This was always intended, and GNAT has always allowed it.
RM References: 6.05 (2.1/2) 3.03 (10/2) 3.03 (21) 6.05 (5/2)
6.05 (5.7/2)
@end itemize
@geindex AI-0017 (Ada 2012 feature)
@itemize *
@item
`AI-0017 Freezing and incomplete types (0000-00-00)'
So-called ‘Taft-amendment types’ (i.e., types that are completed in package
bodies) are not frozen by the occurrence of bodies in the
enclosing declarative part. GNAT always implemented this properly.
RM References: 13.14 (3/1)
@end itemize
@geindex AI-0019 (Ada 2012 feature)
@itemize *
@item
`AI-0019 Freezing of primitives for tagged types (0000-00-00)'
The RM suggests that primitive subprograms of a specific tagged type are
frozen when the tagged type is frozen. This would be an incompatible change
and is not intended. GNAT has never attempted this kind of freezing and its
behavior is consistent with the recommendation of this AI.
RM References: 13.14 (2) 13.14 (3/1) 13.14 (8.1/1) 13.14 (10) 13.14 (14) 13.14 (15.1/2)
@end itemize
@geindex AI-0026 (Ada 2012 feature)
@itemize *
@item
`AI-0026 Missing rules for Unchecked_Union (2010-07-07)'
Record representation clauses concerning Unchecked_Union types cannot mention
the discriminant of the type. The type of a component declared in the variant
part of an Unchecked_Union cannot be controlled, have controlled components,
nor have protected or task parts. If an Unchecked_Union type is declared
within the body of a generic unit or its descendants, then the type of a
component declared in the variant part cannot be a formal private type or a
formal private extension declared within the same generic unit.
RM References: 7.06 (9.4/2) B.03.03 (9/2) B.03.03 (10/2)
@end itemize
@geindex AI-0030 (Ada 2012 feature)
@itemize *
@item
`AI-0030 Requeue on synchronized interfaces (2010-07-19)'
Requeue is permitted to a protected, synchronized or task interface primitive
providing it is known that the overriding operation is an entry. Otherwise
the requeue statement has the same effect as a procedure call. Use of pragma
@code{Implemented} provides a way to impose a static requirement on the
overriding operation by adhering to one of the implementation kinds: entry,
protected procedure or any of the above.
RM References: 9.05 (9) 9.05.04 (2) 9.05.04 (3) 9.05.04 (5)
9.05.04 (6) 9.05.04 (7) 9.05.04 (12)
@end itemize
@geindex AI-0031 (Ada 2012 feature)
@itemize *
@item
`AI-0031 Add From parameter to Find_Token (2010-07-25)'
A new version of @code{Find_Token} is added to all relevant string packages,
with an extra parameter @code{From}. Instead of starting at the first
character of the string, the search for a matching Token starts at the
character indexed by the value of @code{From}.
These procedures are available in all versions of Ada
but if used in versions earlier than Ada 2012 they will generate a warning
that an Ada 2012 subprogram is being used.
RM References: A.04.03 (16) A.04.03 (67) A.04.03 (68/1) A.04.04 (51)
A.04.05 (46)
@end itemize
@geindex AI-0032 (Ada 2012 feature)
@itemize *
@item
`AI-0032 Extended return for class-wide functions (0000-00-00)'
If a function returns a class-wide type, the object of an extended return
statement can be declared with a specific type that is covered by the class-
wide type. This has been implemented in GNAT since the introduction of
extended returns. Note AI-0103 complements this AI by imposing matching
rules for constrained return types.
RM References: 6.05 (5.2/2) 6.05 (5.3/2) 6.05 (5.6/2) 6.05 (5.8/2)
6.05 (8/2)
@end itemize
@geindex AI-0033 (Ada 2012 feature)
@itemize *
@item
`AI-0033 Attach/Interrupt_Handler in generic (2010-07-24)'
Neither of these two pragmas may appear within a generic template, because
the generic might be instantiated at other than the library level.
RM References: 13.11.02 (16) C.03.01 (7/2) C.03.01 (8/2)
@end itemize
@geindex AI-0034 (Ada 2012 feature)
@itemize *
@item
`AI-0034 Categorization of limited views (0000-00-00)'
The RM makes certain limited with clauses illegal because of categorization
considerations, when the corresponding normal with would be legal. This is
not intended, and GNAT has always implemented the recommended behavior.
RM References: 10.02.01 (11/1) 10.02.01 (17/2)
@end itemize
@geindex AI-0035 (Ada 2012 feature)
@itemize *
@item
`AI-0035 Inconsistencies with Pure units (0000-00-00)'
This AI remedies some inconsistencies in the legality rules for Pure units.
Derived access types are legal in a pure unit (on the assumption that the
rule for a zero storage pool size has been enforced on the ancestor type).
The rules are enforced in generic instances and in subunits. GNAT has always
implemented the recommended behavior.
RM References: 10.02.01 (15.1/2) 10.02.01 (15.4/2) 10.02.01 (15.5/2) 10.02.01 (17/2)
@end itemize
@geindex AI-0037 (Ada 2012 feature)
@itemize *
@item
`AI-0037 Out-of-range box associations in aggregate (0000-00-00)'
This AI confirms that an association of the form @code{Indx => <>} in an
array aggregate must raise @code{Constraint_Error} if @code{Indx}
is out of range. The RM specified a range check on other associations, but
not when the value of the association was defaulted. GNAT has always inserted
a constraint check on the index value.
RM References: 4.03.03 (29)
@end itemize
@geindex AI-0038 (Ada 2012 feature)
@itemize *
@item
`AI-0038 Minor errors in Text_IO (0000-00-00)'
These are minor errors in the description on three points. The intent on
all these points has always been clear, and GNAT has always implemented the
correct intended semantics.
RM References: A.10.05 (37) A.10.07 (8/1) A.10.07 (10) A.10.07 (12) A.10.08 (10) A.10.08 (24)
@end itemize
@geindex AI-0039 (Ada 2012 feature)
@itemize *
@item
`AI-0039 Stream attributes cannot be dynamic (0000-00-00)'
The RM permitted the use of dynamic expressions (such as @code{ptr.all})
for stream attributes, but these were never useful and are now illegal. GNAT
has always regarded such expressions as illegal.
RM References: 13.03 (4) 13.03 (6) 13.13.02 (38/2)
@end itemize
@geindex AI-0040 (Ada 2012 feature)
@itemize *
@item
`AI-0040 Limited with clauses on descendant (0000-00-00)'
This AI confirms that a limited with clause in a child unit cannot name
an ancestor of the unit. This has always been checked in GNAT.
RM References: 10.01.02 (20/2)
@end itemize
@geindex AI-0042 (Ada 2012 feature)
@itemize *
@item
`AI-0042 Overriding versus implemented-by (0000-00-00)'
This AI fixes a wording gap in the RM. An operation of a synchronized
interface can be implemented by a protected or task entry, but the abstract
operation is not being overridden in the usual sense, and it must be stated
separately that this implementation is legal. This has always been the case
in GNAT.
RM References: 9.01 (9.2/2) 9.04 (11.1/2)
@end itemize
@geindex AI-0043 (Ada 2012 feature)
@itemize *
@item
`AI-0043 Rules about raising exceptions (0000-00-00)'
This AI covers various omissions in the RM regarding the raising of
exceptions. GNAT has always implemented the intended semantics.
RM References: 11.04.01 (10.1/2) 11 (2)
@end itemize
@geindex AI-0044 (Ada 2012 feature)
@itemize *
@item
`AI-0044 Restrictions on container instantiations (0000-00-00)'
This AI places restrictions on allowed instantiations of generic containers.
These restrictions are not checked by the compiler, so there is nothing to
change in the implementation. This affects only the RM documentation.
RM References: A.18 (4/2) A.18.02 (231/2) A.18.03 (145/2) A.18.06 (56/2) A.18.08 (66/2) A.18.09 (79/2) A.18.26 (5/2) A.18.26 (9/2)
@end itemize
@geindex AI-0046 (Ada 2012 feature)
@itemize *
@item
`AI-0046 Null exclusion match for full conformance (2010-07-17)'
For full conformance, in the case of access parameters, the null exclusion
must match (either both or neither must have @code{not null}).
RM References: 6.03.02 (18)
@end itemize
@geindex AI-0050 (Ada 2012 feature)
@itemize *
@item
`AI-0050 Raising Constraint_Error early for function call (0000-00-00)'
The implementation permissions for raising @code{Constraint_Error} early on a function call
when it was clear an exception would be raised were over-permissive and allowed
mishandling of discriminants in some cases. GNAT did
not take advantage of these incorrect permissions in any case.
RM References: 6.05 (24/2)
@end itemize
@geindex AI-0056 (Ada 2012 feature)
@itemize *
@item
`AI-0056 Index on null string returns zero (0000-00-00)'
The wording in the Ada 2005 RM implied an incompatible handling of the
@code{Index} functions, resulting in raising an exception instead of
returning zero in some situations.
This was not intended and has been corrected.
GNAT always returned zero, and is thus consistent with this AI.
RM References: A.04.03 (56.2/2) A.04.03 (58.5/2)
@end itemize
@geindex AI-0058 (Ada 2012 feature)
@itemize *
@item
`AI-0058 Abnormal completion of an extended return (0000-00-00)'
The RM had some incorrect wording implying wrong treatment of abnormal
completion in an extended return. GNAT has always implemented the intended
correct semantics as described by this AI.
RM References: 6.05 (22/2)
@end itemize
@geindex AI-0060 (Ada 2012 feature)
@itemize *
@item
`AI-0060 Extended definition of remote access types (0000-00-00)'
This AI extends the definition of remote access types to include access
to limited, synchronized, protected or task class-wide interface types.
GNAT already implemented this extension.
RM References: A (4) E.02.02 (9/1) E.02.02 (9.2/1) E.02.02 (14/2) E.02.02 (18)
@end itemize
@geindex AI-0062 (Ada 2012 feature)
@itemize *
@item
`AI-0062 Null exclusions and deferred constants (0000-00-00)'
A full constant may have a null exclusion even if its associated deferred
constant does not. GNAT has always allowed this.
RM References: 7.04 (6/2) 7.04 (7.1/2)
@end itemize
@geindex AI-0064 (Ada 2012 feature)
@itemize *
@item
`AI-0064 Redundant finalization rule (0000-00-00)'
This is an editorial change only. The intended behavior is already checked
by an existing ACATS test, which GNAT has always executed correctly.
RM References: 7.06.01 (17.1/1)
@end itemize
@geindex AI-0065 (Ada 2012 feature)
@itemize *
@item
`AI-0065 Remote access types and external streaming (0000-00-00)'
This AI clarifies the fact that all remote access types support external
streaming. This fixes an obvious oversight in the definition of the
language, and GNAT always implemented the intended correct rules.
RM References: 13.13.02 (52/2)
@end itemize
@geindex AI-0070 (Ada 2012 feature)
@itemize *
@item
`AI-0070 Elaboration of interface types (0000-00-00)'
This is an editorial change only, there are no testable consequences short of
checking for the absence of generated code for an interface declaration.
RM References: 3.09.04 (18/2)
@end itemize
@geindex AI-0072 (Ada 2012 feature)
@itemize *
@item
`AI-0072 Task signalling using ‘Terminated (0000-00-00)'
This AI clarifies that task signalling for reading @code{'Terminated} only
occurs if the result is True. GNAT semantics has always been consistent with
this notion of task signalling.
RM References: 9.10 (6.1/1)
@end itemize
@geindex AI-0073 (Ada 2012 feature)
@itemize *
@item
`AI-0073 Functions returning abstract types (2010-07-10)'
This AI covers a number of issues regarding returning abstract types. In
particular generic functions cannot have abstract result types or access
result types designated an abstract type. There are some other cases which
are detailed in the AI. Note that this binding interpretation has not been
retrofitted to operate before Ada 2012 mode, since it caused a significant
number of regressions.
RM References: 3.09.03 (8) 3.09.03 (10) 6.05 (8/2)
@end itemize
@geindex AI-0076 (Ada 2012 feature)
@itemize *
@item
`AI-0076 function with controlling result (0000-00-00)'
This is an editorial change only. The RM defines calls with controlling
results, but uses the term ‘function with controlling result’ without an
explicit definition.
RM References: 3.09.02 (2/2)
@end itemize
@geindex AI-0077 (Ada 2012 feature)
@itemize *
@item
`AI-0077 Limited withs and scope of declarations (0000-00-00)'
This AI clarifies that a declaration does not include a context clause,
and confirms that it is illegal to have a context in which both a limited
and a nonlimited view of a package are accessible. Such double visibility
was always rejected by GNAT.
RM References: 10.01.02 (12/2) 10.01.02 (21/2) 10.01.02 (22/2)
@end itemize
@geindex AI-0078 (Ada 2012 feature)
@itemize *
@item
`AI-0078 Relax Unchecked_Conversion alignment rules (0000-00-00)'
In Ada 2012, compilers are required to support unchecked conversion where the
target alignment is a multiple of the source alignment. GNAT always supported
this case (and indeed all cases of differing alignments, doing copies where
required if the alignment was reduced).
RM References: 13.09 (7)
@end itemize
@geindex AI-0079 (Ada 2012 feature)
@itemize *
@item
`AI-0079 Allow other_format characters in source (2010-07-10)'
Wide characters in the unicode category `other_format' are now allowed in
source programs between tokens, but not within a token such as an identifier.
RM References: 2.01 (4/2) 2.02 (7)
@end itemize
@geindex AI-0080 (Ada 2012 feature)
@itemize *
@item
`AI-0080 ‘View of’ not needed if clear from context (0000-00-00)'
This is an editorial change only, described as non-testable in the AI.
RM References: 3.01 (7)
@end itemize
@geindex AI-0087 (Ada 2012 feature)
@itemize *
@item
`AI-0087 Actual for formal nonlimited derived type (2010-07-15)'
The actual for a formal nonlimited derived type cannot be limited. In
particular, a formal derived type that extends a limited interface but which
is not explicitly limited cannot be instantiated with a limited type.
RM References: 7.05 (5/2) 12.05.01 (5.1/2)
@end itemize
@geindex AI-0088 (Ada 2012 feature)
@itemize *
@item
`AI-0088 The value of exponentiation (0000-00-00)'
This AI clarifies the equivalence rule given for the dynamic semantics of
exponentiation: the value of the operation can be obtained by repeated
multiplication, but the operation can be implemented otherwise (for example
using the familiar divide-by-two-and-square algorithm, even if this is less
accurate), and does not imply repeated reads of a volatile base.
RM References: 4.05.06 (11)
@end itemize
@geindex AI-0091 (Ada 2012 feature)
@itemize *
@item
`AI-0091 Do not allow other_format in identifiers (0000-00-00)'
Wide characters in the unicode category `other_format' are not permitted
within an identifier, since this can be a security problem. The error
message for this case has been improved to be more specific, but GNAT has
never allowed such characters to appear in identifiers.
RM References: 2.03 (3.1/2) 2.03 (4/2) 2.03 (5/2) 2.03 (5.1/2) 2.03 (5.2/2) 2.03 (5.3/2) 2.09 (2/2)
@end itemize
@geindex AI-0093 (Ada 2012 feature)
@itemize *
@item
`AI-0093 Additional rules use immutably limited (0000-00-00)'
This is an editorial change only, to make more widespread use of the Ada 2012
‘immutably limited’.
RM References: 3.03 (23.4/3)
@end itemize
@geindex AI-0095 (Ada 2012 feature)
@itemize *
@item
`AI-0095 Address of intrinsic subprograms (0000-00-00)'
The prefix of @code{'Address} cannot statically denote a subprogram with
convention @code{Intrinsic}. The use of the @code{Address} attribute raises
@code{Program_Error} if the prefix denotes a subprogram with convention
@code{Intrinsic}.
RM References: 13.03 (11/1)
@end itemize
@geindex AI-0096 (Ada 2012 feature)
@itemize *
@item
`AI-0096 Deriving from formal private types (2010-07-20)'
In general it is illegal for a type derived from a formal limited type to be
nonlimited. This AI makes an exception to this rule: derivation is legal
if it appears in the private part of the generic, and the formal type is not
tagged. If the type is tagged, the legality check must be applied to the
private part of the package.
RM References: 3.04 (5.1/2) 6.02 (7)
@end itemize
@geindex AI-0097 (Ada 2012 feature)
@itemize *
@item
`AI-0097 Treatment of abstract null extension (2010-07-19)'
The RM as written implied that in some cases it was possible to create an
object of an abstract type, by having an abstract extension inherit a non-
abstract constructor from its parent type. This mistake has been corrected
in GNAT and in the RM, and this construct is now illegal.
RM References: 3.09.03 (4/2)
@end itemize
@geindex AI-0098 (Ada 2012 feature)
@itemize *
@item
`AI-0098 Anonymous subprogram access restrictions (0000-00-00)'
An unintentional omission in the RM implied some inconsistent restrictions on
the use of anonymous access to subprogram values. These restrictions were not
intentional, and have never been enforced by GNAT.
RM References: 3.10.01 (6) 3.10.01 (9.2/2)
@end itemize
@geindex AI-0099 (Ada 2012 feature)
@itemize *
@item
`AI-0099 Tag determines whether finalization needed (0000-00-00)'
This AI clarifies that ‘needs finalization’ is part of dynamic semantics,
and therefore depends on the run-time characteristics of an object (i.e. its
tag) and not on its nominal type. As the AI indicates: “we do not expect
this to affect any implementation”.
RM References: 7.06.01 (6) 7.06.01 (7) 7.06.01 (8) 7.06.01 (9/2)
@end itemize
@geindex AI-0100 (Ada 2012 feature)
@itemize *
@item
`AI-0100 Placement of pragmas (2010-07-01)'
This AI is an earlier version of AI-163. It simplifies the rules
for legal placement of pragmas. In the case of lists that allow pragmas, if
the list may have no elements, then the list may consist solely of pragmas.
RM References: 2.08 (7)
@end itemize
@geindex AI-0102 (Ada 2012 feature)
@itemize *
@item
`AI-0102 Some implicit conversions are illegal (0000-00-00)'
It is illegal to assign an anonymous access constant to an anonymous access
variable. The RM did not have a clear rule to prevent this, but GNAT has
always generated an error for this usage.
RM References: 3.07 (16) 3.07.01 (9) 6.04.01 (6) 8.06 (27/2)
@end itemize
@geindex AI-0103 (Ada 2012 feature)
@itemize *
@item
`AI-0103 Static matching for extended return (2010-07-23)'
If the return subtype of a function is an elementary type or a constrained
type, the subtype indication in an extended return statement must match
statically this return subtype.
RM References: 6.05 (5.2/2)
@end itemize
@geindex AI-0104 (Ada 2012 feature)
@itemize *
@item
`AI-0104 Null exclusion and uninitialized allocator (2010-07-15)'
The assignment @code{Ptr := new not null Some_Ptr;} will raise
@code{Constraint_Error} because the default value of the allocated object is
`null'. This useless construct is illegal in Ada 2012.
RM References: 4.08 (2)
@end itemize
@geindex AI-0106 (Ada 2012 feature)
@itemize *
@item
`AI-0106 No representation pragmas on generic formals (0000-00-00)'
The RM appeared to allow representation pragmas on generic formal parameters,
but this was not intended, and GNAT has never permitted this usage.
RM References: 13.01 (9.1/1)
@end itemize
@geindex AI-0108 (Ada 2012 feature)
@itemize *
@item
`AI-0108 Limited incomplete view and discriminants (0000-00-00)'
This AI confirms that an incomplete type from a limited view does not have
discriminants. This has always been the case in GNAT.
RM References: 10.01.01 (12.3/2)
@end itemize
@geindex AI-0109 (Ada 2012 feature)
@itemize *
@item
`AI-0109 Redundant check in S’Class’Input (0000-00-00)'
This AI is an editorial change only. It removes the need for a tag check
that can never fail.
RM References: 13.13.02 (34/2)
@end itemize
@geindex AI-0112 (Ada 2012 feature)
@itemize *
@item
`AI-0112 Detection of duplicate pragmas (2010-07-24)'
This AI concerns giving names to various representation aspects, but the
practical effect is simply to make the use of duplicate
@code{Atomic[_Components]},
@code{Volatile[_Components]}, and
@code{Independent[_Components]} pragmas illegal, and GNAT
now performs this required check.
RM References: 13.01 (8)
@end itemize
@geindex AI-0114 (Ada 2012 feature)
@itemize *
@item
`AI-0114 Classification of letters (0000-00-00)'
The code points 170 (@code{FEMININE ORDINAL INDICATOR}),
181 (@code{MICRO SIGN}), and
186 (@code{MASCULINE ORDINAL INDICATOR}) are technically considered
lower case letters by Unicode.
However, they are not allowed in identifiers, and they
return @code{False} to @code{Ada.Characters.Handling.Is_Letter/Is_Lower}.
This behavior is consistent with that defined in Ada 95.
RM References: A.03.02 (59) A.04.06 (7)
@end itemize
@geindex AI-0116 (Ada 2012 feature)
@itemize *
@item
`AI-0116 Alignment of class-wide objects (0000-00-00)'
This AI requires that the alignment of a class-wide object be no greater
than the alignment of any type in the class. GNAT has always followed this
recommendation.
RM References: 13.03 (29) 13.11 (16)
@end itemize
@geindex AI-0118 (Ada 2012 feature)
@itemize *
@item
`AI-0118 The association of parameter associations (0000-00-00)'
This AI clarifies the rules for named associations in subprogram calls and
generic instantiations. The rules have been in place since Ada 83.
RM References: 6.04.01 (2) 12.03 (9)
@end itemize
@geindex AI-0120 (Ada 2012 feature)
@itemize *
@item
`AI-0120 Constant instance of protected object (0000-00-00)'
This is an RM editorial change only. The section that lists objects that are
constant failed to include the current instance of a protected object
within a protected function. This has always been treated as a constant
in GNAT.
RM References: 3.03 (21)
@end itemize
@geindex AI-0122 (Ada 2012 feature)
@itemize *
@item
`AI-0122 Private with and children of generics (0000-00-00)'
This AI clarifies the visibility of private children of generic units within
instantiations of a parent. GNAT has always handled this correctly.
RM References: 10.01.02 (12/2)
@end itemize
@geindex AI-0123 (Ada 2012 feature)
@itemize *
@item
`AI-0123 Composability of equality (2010-04-13)'
Equality of untagged record composes, so that the predefined equality for a
composite type that includes a component of some untagged record type
@code{R} uses the equality operation of @code{R} (which may be user-defined
or predefined). This makes the behavior of untagged records identical to that
of tagged types in this respect.
This change is an incompatibility with previous versions of Ada, but it
corrects a non-uniformity that was often a source of confusion. Analysis of
a large number of industrial programs indicates that in those rare cases
where a composite type had an untagged record component with a user-defined
equality, either there was no use of the composite equality, or else the code
expected the same composability as for tagged types, and thus had a bug that
would be fixed by this change.
RM References: 4.05.02 (9.7/2) 4.05.02 (14) 4.05.02 (15) 4.05.02 (24)
8.05.04 (8)
@end itemize
@geindex AI-0125 (Ada 2012 feature)
@itemize *
@item
`AI-0125 Nonoverridable operations of an ancestor (2010-09-28)'
In Ada 2012, the declaration of a primitive operation of a type extension
or private extension can also override an inherited primitive that is not
visible at the point of this declaration.
RM References: 7.03.01 (6) 8.03 (23) 8.03.01 (5/2) 8.03.01 (6/2)
@end itemize
@geindex AI-0126 (Ada 2012 feature)
@itemize *
@item
`AI-0126 Dispatching with no declared operation (0000-00-00)'
This AI clarifies dispatching rules, and simply confirms that dispatching
executes the operation of the parent type when there is no explicitly or
implicitly declared operation for the descendant type. This has always been
the case in all versions of GNAT.
RM References: 3.09.02 (20/2) 3.09.02 (20.1/2) 3.09.02 (20.2/2)
@end itemize
@geindex AI-0127 (Ada 2012 feature)
@itemize *
@item
`AI-0127 Adding Locale Capabilities (2010-09-29)'
This package provides an interface for identifying the current locale.
RM References: A.19 A.19.01 A.19.02 A.19.03 A.19.05 A.19.06
A.19.07 A.19.08 A.19.09 A.19.10 A.19.11 A.19.12 A.19.13
@end itemize
@geindex AI-0128 (Ada 2012 feature)
@itemize *
@item
`AI-0128 Inequality is a primitive operation (0000-00-00)'
If an equality operator (“=”) is declared for a type, then the implicitly
declared inequality operator (“/=”) is a primitive operation of the type.
This is the only reasonable interpretation, and is the one always implemented
by GNAT, but the RM was not entirely clear in making this point.
RM References: 3.02.03 (6) 6.06 (6)
@end itemize
@geindex AI-0129 (Ada 2012 feature)
@itemize *
@item
`AI-0129 Limited views and incomplete types (0000-00-00)'
This AI clarifies the description of limited views: a limited view of a
package includes only one view of a type that has an incomplete declaration
and a full declaration (there is no possible ambiguity in a client package).
This AI also fixes an omission: a nested package in the private part has no
limited view. GNAT always implemented this correctly.
RM References: 10.01.01 (12.2/2) 10.01.01 (12.3/2)
@end itemize
@geindex AI-0132 (Ada 2012 feature)
@itemize *
@item
`AI-0132 Placement of library unit pragmas (0000-00-00)'
This AI fills a gap in the description of library unit pragmas. The pragma
clearly must apply to a library unit, even if it does not carry the name
of the enclosing unit. GNAT has always enforced the required check.
RM References: 10.01.05 (7)
@end itemize
@geindex AI-0134 (Ada 2012 feature)
@itemize *
@item
`AI-0134 Profiles must match for full conformance (0000-00-00)'
For full conformance, the profiles of anonymous-access-to-subprogram
parameters must match. GNAT has always enforced this rule.
RM References: 6.03.01 (18)
@end itemize
@geindex AI-0137 (Ada 2012 feature)
@itemize *
@item
`AI-0137 String encoding package (2010-03-25)'
The packages @code{Ada.Strings.UTF_Encoding}, together with its child
packages, @code{Conversions}, @code{Strings}, @code{Wide_Strings},
and @code{Wide_Wide_Strings} have been
implemented. These packages (whose documentation can be found in the spec
files @code{a-stuten.ads}, @code{a-suenco.ads}, @code{a-suenst.ads},
@code{a-suewst.ads}, @code{a-suezst.ads}) allow encoding and decoding of
@code{String}, @code{Wide_String}, and @code{Wide_Wide_String}
values using UTF coding schemes (including UTF-8, UTF-16LE, UTF-16BE, and
UTF-16), as well as conversions between the different UTF encodings. With
the exception of @code{Wide_Wide_Strings}, these packages are available in
Ada 95 and Ada 2005 mode as well as Ada 2012 mode.
The @code{Wide_Wide_Strings} package
is available in Ada 2005 mode as well as Ada 2012 mode (but not in Ada 95
mode since it uses @code{Wide_Wide_Character}).
RM References: A.04.11
@end itemize
@geindex AI-0139-2 (Ada 2012 feature)
@itemize *
@item
`AI-0139-2 Syntactic sugar for iterators (2010-09-29)'
The new syntax for iterating over arrays and containers is now implemented.
Iteration over containers is for now limited to read-only iterators. Only
default iterators are supported, with the syntax: @code{for Elem of C}.
RM References: 5.05
@end itemize
@geindex AI-0146 (Ada 2012 feature)
@itemize *
@item
`AI-0146 Type invariants (2009-09-21)'
Type invariants may be specified for private types using the aspect notation.
Aspect @code{Type_Invariant} may be specified for any private type,
@code{Type_Invariant'Class} can
only be specified for tagged types, and is inherited by any descendent of the
tagged types. The invariant is a boolean expression that is tested for being
true in the following situations: conversions to the private type, object
declarations for the private type that are default initialized, and
[`in'] `out'
parameters and returned result on return from any primitive operation for
the type that is visible to a client.
GNAT defines the synonyms @code{Invariant} for @code{Type_Invariant} and
@code{Invariant'Class} for @code{Type_Invariant'Class}.
RM References: 13.03.03 (00)
@end itemize
@geindex AI-0147 (Ada 2012 feature)
@itemize *
@item
`AI-0147 Conditional expressions (2009-03-29)'
Conditional expressions are permitted. The form of such an expression is:
@example
(if expr then expr @{elsif expr then expr@} [else expr])
@end example
The parentheses can be omitted in contexts where parentheses are present
anyway, such as subprogram arguments and pragma arguments. If the `else'
clause is omitted, `else' `True' is assumed;
thus @code{(if A then B)} is a way to conveniently represent
`(A implies B)' in standard logic.
RM References: 4.03.03 (15) 4.04 (1) 4.04 (7) 4.05.07 (0) 4.07 (2)
4.07 (3) 4.09 (12) 4.09 (33) 5.03 (3) 5.03 (4) 7.05 (2.1/2)
@end itemize
@geindex AI-0152 (Ada 2012 feature)
@itemize *
@item
`AI-0152 Restriction No_Anonymous_Allocators (2010-09-08)'
Restriction @code{No_Anonymous_Allocators} prevents the use of allocators
where the type of the returned value is an anonymous access type.
RM References: H.04 (8/1)
@end itemize
@geindex AI-0157 (Ada 2012 feature)
@itemize *
@item
`AI-0157 Allocation/Deallocation from empty pool (2010-07-11)'
Allocation and Deallocation from an empty storage pool (i.e. allocation or
deallocation of a pointer for which a static storage size clause of zero
has been given) is now illegal and is detected as such. GNAT
previously gave a warning but not an error.
RM References: 4.08 (5.3/2) 13.11.02 (4) 13.11.02 (17)
@end itemize
@geindex AI-0158 (Ada 2012 feature)
@itemize *
@item
`AI-0158 Generalizing membership tests (2010-09-16)'
This AI extends the syntax of membership tests to simplify complex conditions
that can be expressed as membership in a subset of values of any type. It
introduces syntax for a list of expressions that may be used in loop contexts
as well.
RM References: 3.08.01 (5) 4.04 (3) 4.05.02 (3) 4.05.02 (5) 4.05.02 (27)
@end itemize
@geindex AI-0161 (Ada 2012 feature)
@itemize *
@item
`AI-0161 Restriction No_Default_Stream_Attributes (2010-09-11)'
A new restriction @code{No_Default_Stream_Attributes} prevents the use of any
of the default stream attributes for elementary types. If this restriction is
in force, then it is necessary to provide explicit subprograms for any
stream attributes used.
RM References: 13.12.01 (4/2) 13.13.02 (40/2) 13.13.02 (52/2)
@end itemize
@geindex AI-0162 (Ada 2012 feature)
@itemize *
@item
`AI-0162 Incomplete type completed by partial view (2010-09-15)'
Incomplete types are made more useful by allowing them to be completed by
private types and private extensions.
RM References: 3.10.01 (2.5/2) 3.10.01 (2.6/2) 3.10.01 (3) 3.10.01 (4/2)
@end itemize
@geindex AI-0163 (Ada 2012 feature)
@itemize *
@item
`AI-0163 Pragmas in place of null (2010-07-01)'
A statement sequence may be composed entirely of pragmas. It is no longer
necessary to add a dummy @code{null} statement to make the sequence legal.
RM References: 2.08 (7) 2.08 (16)
@end itemize
@geindex AI-0171 (Ada 2012 feature)
@itemize *
@item
`AI-0171 Pragma CPU and Ravenscar Profile (2010-09-24)'
A new package @code{System.Multiprocessors} is added, together with the
definition of pragma @code{CPU} for controlling task affinity. A new no
dependence restriction, on @code{System.Multiprocessors.Dispatching_Domains},
is added to the Ravenscar profile.
RM References: D.13.01 (4/2) D.16
@end itemize
@geindex AI-0173 (Ada 2012 feature)
@itemize *
@item
`AI-0173 Testing if tags represent abstract types (2010-07-03)'
The function @code{Ada.Tags.Type_Is_Abstract} returns @code{True} if invoked
with the tag of an abstract type, and @code{False} otherwise.
RM References: 3.09 (7.4/2) 3.09 (12.4/2)
@end itemize
@geindex AI-0176 (Ada 2012 feature)
@itemize *
@item
`AI-0176 Quantified expressions (2010-09-29)'
Both universally and existentially quantified expressions are implemented.
They use the new syntax for iterators proposed in AI05-139-2, as well as
the standard Ada loop syntax.
RM References: 1.01.04 (12) 2.09 (2/2) 4.04 (7) 4.05.09 (0)
@end itemize
@geindex AI-0177 (Ada 2012 feature)
@itemize *
@item
`AI-0177 Parameterized expressions (2010-07-10)'
The new Ada 2012 notion of parameterized expressions is implemented. The form
is:
@example
function-specification is (expression)
@end example
This is exactly equivalent to the
corresponding function body that returns the expression, but it can appear
in a package spec. Note that the expression must be parenthesized.
RM References: 13.11.01 (3/2)
@end itemize
@geindex AI-0178 (Ada 2012 feature)
@itemize *
@item
`AI-0178 Incomplete views are limited (0000-00-00)'
This AI clarifies the role of incomplete views and plugs an omission in the
RM. GNAT always correctly restricted the use of incomplete views and types.
RM References: 7.05 (3/2) 7.05 (6/2)
@end itemize
@geindex AI-0179 (Ada 2012 feature)
@itemize *
@item
`AI-0179 Statement not required after label (2010-04-10)'
It is not necessary to have a statement following a label, so a label
can appear at the end of a statement sequence without the need for putting a
null statement afterwards, but it is not allowable to have only labels and
no real statements in a statement sequence.
RM References: 5.01 (2)
@end itemize
@geindex AI-0181 (Ada 2012 feature)
@itemize *
@item
`AI-0181 Soft hyphen is a non-graphic character (2010-07-23)'
From Ada 2005 on, soft hyphen is considered a non-graphic character, which
means that it has a special name (@code{SOFT_HYPHEN}) in conjunction with the
@code{Image} and @code{Value} attributes for the character types. Strictly
speaking this is an inconsistency with Ada 95, but in practice the use of
these attributes is so obscure that it will not cause problems.
RM References: 3.05.02 (2/2) A.01 (35/2) A.03.03 (21)
@end itemize
@geindex AI-0182 (Ada 2012 feature)
@itemize *
@item
`AI-0182 Additional forms for' @code{Character'Value} `(0000-00-00)'
This AI allows @code{Character'Value} to accept the string @code{'?'} where
@code{?} is any character including non-graphic control characters. GNAT has
always accepted such strings. It also allows strings such as
@code{HEX_00000041} to be accepted, but GNAT does not take advantage of this
permission and raises @code{Constraint_Error}, as is certainly still
permitted.
RM References: 3.05 (56/2)
@end itemize
@geindex AI-0183 (Ada 2012 feature)
@itemize *
@item
`AI-0183 Aspect specifications (2010-08-16)'
Aspect specifications have been fully implemented except for pre and post-
conditions, and type invariants, which have their own separate AI’s. All
forms of declarations listed in the AI are supported. The following is a
list of the aspects supported (with GNAT implementation aspects marked)
@end itemize
@multitable {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxx}
@headitem
Supported Aspect
@tab
Source
@item
@code{Ada_2005}
@tab
– GNAT
@item
@code{Ada_2012}
@tab
– GNAT
@item
@code{Address}
@tab
@item
@code{Alignment}
@tab
@item
@code{Atomic}
@tab
@item
@code{Atomic_Components}
@tab
@item
@code{Bit_Order}
@tab
@item
@code{Component_Size}
@tab
@item
@code{Contract_Cases}
@tab
– GNAT
@item
@code{Discard_Names}
@tab
@item
@code{External_Tag}
@tab
@item
@code{Favor_Top_Level}
@tab
– GNAT
@item
@code{Inline}
@tab
@item
@code{Inline_Always}
@tab
– GNAT
@item
@code{Invariant}
@tab
– GNAT
@item
@code{Machine_Radix}
@tab
@item
@code{No_Return}
@tab
@item
@code{Object_Size}
@tab
– GNAT
@item
@code{Pack}
@tab
@item
@code{Persistent_BSS}
@tab
– GNAT
@item
@code{Post}
@tab
@item
@code{Pre}
@tab
@item
@code{Predicate}
@tab
@item
@code{Preelaborable_Initialization}
@tab
@item
@code{Pure_Function}
@tab
– GNAT
@item
@code{Remote_Access_Type}
@tab
– GNAT
@item
@code{Shared}
@tab
– GNAT
@item
@code{Size}
@tab
@item
@code{Storage_Pool}
@tab
@item
@code{Storage_Size}
@tab
@item
@code{Stream_Size}
@tab
@item
@code{Suppress}
@tab
@item
@code{Suppress_Debug_Info}
@tab
– GNAT
@item
@code{Test_Case}
@tab
– GNAT
@item
@code{Thread_Local_Storage}
@tab
– GNAT
@item
@code{Type_Invariant}
@tab
@item
@code{Unchecked_Union}
@tab
@item
@code{Universal_Aliasing}
@tab
– GNAT
@item
@code{Unmodified}
@tab
– GNAT
@item
@code{Unreferenced}
@tab
– GNAT
@item
@code{Unreferenced_Objects}
@tab
– GNAT
@item
@code{Unsuppress}
@tab
@item
@code{Value_Size}
@tab
– GNAT
@item
@code{Volatile}
@tab
@item
@code{Volatile_Components}
@tab
@item
@code{Warnings}
@tab
– GNAT
@end multitable
@quotation
Note that for aspects with an expression, e.g. @code{Size}, the expression is
treated like a default expression (visibility is analyzed at the point of
occurrence of the aspect, but evaluation of the expression occurs at the
freeze point of the entity involved).
RM References: 3.02.01 (3) 3.02.02 (2) 3.03.01 (2/2) 3.08 (6)
3.09.03 (1.1/2) 6.01 (2/2) 6.07 (2/2) 9.05.02 (2/2) 7.01 (3) 7.03
(2) 7.03 (3) 9.01 (2/2) 9.01 (3/2) 9.04 (2/2) 9.04 (3/2)
9.05.02 (2/2) 11.01 (2) 12.01 (3) 12.03 (2/2) 12.04 (2/2) 12.05 (2)
12.06 (2.1/2) 12.06 (2.2/2) 12.07 (2) 13.01 (0.1/2) 13.03 (5/1)
13.03.01 (0)
@end quotation
@geindex AI-0185 (Ada 2012 feature)
@itemize *
@item
`AI-0185 Ada.Wide_[Wide_]Characters.Handling (2010-07-06)'
Two new packages @code{Ada.Wide_[Wide_]Characters.Handling} provide
classification functions for @code{Wide_Character} and
@code{Wide_Wide_Character}, as well as providing
case folding routines for @code{Wide_[Wide_]Character} and
@code{Wide_[Wide_]String}.
RM References: A.03.05 (0) A.03.06 (0)
@end itemize
@geindex AI-0188 (Ada 2012 feature)
@itemize *
@item
`AI-0188 Case expressions (2010-01-09)'
Case expressions are permitted. This allows use of constructs such as:
@example
X := (case Y is when 1 => 2, when 2 => 3, when others => 31)
@end example
RM References: 4.05.07 (0) 4.05.08 (0) 4.09 (12) 4.09 (33)
@end itemize
@geindex AI-0189 (Ada 2012 feature)
@itemize *
@item
`AI-0189 No_Allocators_After_Elaboration (2010-01-23)'
This AI introduces a new restriction @code{No_Allocators_After_Elaboration},
which says that no dynamic allocation will occur once elaboration is
completed.
In general this requires a run-time check, which is not required, and which
GNAT does not attempt. But the static cases of allocators in a task body or
in the body of the main program are detected and flagged at compile or bind
time.
RM References: D.07 (19.1/2) H.04 (23.3/2)
@end itemize
@geindex AI-0190 (Ada 2012 feature)
@itemize *
@item
`AI-0190 pragma Default_Storage_Pool (2010-09-15)'
This AI introduces a new pragma @code{Default_Storage_Pool}, which can be
used to control storage pools globally.
In particular, you can force every access
type that is used for allocation (`new') to have an explicit storage pool,
or you can declare a pool globally to be used for all access types that lack
an explicit one.
RM References: D.07 (8)
@end itemize
@geindex AI-0193 (Ada 2012 feature)
@itemize *
@item
`AI-0193 Alignment of allocators (2010-09-16)'
This AI introduces a new attribute @code{Max_Alignment_For_Allocation},
analogous to @code{Max_Size_In_Storage_Elements}, but for alignment instead
of size.
RM References: 13.11 (16) 13.11 (21) 13.11.01 (0) 13.11.01 (1)
13.11.01 (2) 13.11.01 (3)
@end itemize
@geindex AI-0194 (Ada 2012 feature)
@itemize *
@item
`AI-0194 Value of Stream_Size attribute (0000-00-00)'
The @code{Stream_Size} attribute returns the default number of bits in the
stream representation of the given type.
This value is not affected by the presence
of stream subprogram attributes for the type. GNAT has always implemented
this interpretation.
RM References: 13.13.02 (1.2/2)
@end itemize
@geindex AI-0195 (Ada 2012 feature)
@itemize *
@item
`AI-0195 Invalid value handling is implementation defined (2010-07-03)'
The handling of invalid values is now designated to be implementation
defined. This is a documentation change only, requiring Annex M in the GNAT
Reference Manual to document this handling.
In GNAT, checks for invalid values are made
only when necessary to avoid erroneous behavior. Operations like assignments
which cannot cause erroneous behavior ignore the possibility of invalid
values and do not do a check. The date given above applies only to the
documentation change, this behavior has always been implemented by GNAT.
RM References: 13.09.01 (10)
@end itemize
@geindex AI-0196 (Ada 2012 feature)
@itemize *
@item
`AI-0196 Null exclusion tests for out parameters (0000-00-00)'
Null exclusion checks are not made for @code{out} parameters when
evaluating the actual parameters. GNAT has never generated these checks.
RM References: 6.04.01 (13)
@end itemize
@geindex AI-0198 (Ada 2012 feature)
@itemize *
@item
`AI-0198 Inheriting abstract operators (0000-00-00)'
This AI resolves a conflict between two rules involving inherited abstract
operations and predefined operators. If a derived numeric type inherits
an abstract operator, it overrides the predefined one. This interpretation
was always the one implemented in GNAT.
RM References: 3.09.03 (4/3)
@end itemize
@geindex AI-0199 (Ada 2012 feature)
@itemize *
@item
`AI-0199 Aggregate with anonymous access components (2010-07-14)'
A choice list in a record aggregate can include several components of
(distinct) anonymous access types as long as they have matching designated
subtypes.
RM References: 4.03.01 (16)
@end itemize
@geindex AI-0200 (Ada 2012 feature)
@itemize *
@item
`AI-0200 Mismatches in formal package declarations (0000-00-00)'
This AI plugs a gap in the RM which appeared to allow some obviously intended
illegal instantiations. GNAT has never allowed these instantiations.
RM References: 12.07 (16)
@end itemize
@geindex AI-0201 (Ada 2012 feature)
@itemize *
@item
`AI-0201 Independence of atomic object components (2010-07-22)'
If an Atomic object has a pragma @code{Pack} or a @code{Component_Size}
attribute, then individual components may not be addressable by independent
tasks. However, if the representation clause has no effect (is confirming),
then independence is not compromised. Furthermore, in GNAT, specification of
other appropriately addressable component sizes (e.g. 16 for 8-bit
characters) also preserves independence. GNAT now gives very clear warnings
both for the declaration of such a type, and for any assignment to its components.
RM References: 9.10 (1/3) C.06 (22/2) C.06 (23/2)
@end itemize
@geindex AI-0203 (Ada 2012 feature)
@itemize *
@item
`AI-0203 Extended return cannot be abstract (0000-00-00)'
A return_subtype_indication cannot denote an abstract subtype. GNAT has never
permitted such usage.
RM References: 3.09.03 (8/3)
@end itemize
@geindex AI-0205 (Ada 2012 feature)
@itemize *
@item
`AI-0205 Extended return declares visible name (0000-00-00)'
This AI corrects a simple omission in the RM. Return objects have always
been visible within an extended return statement.
RM References: 8.03 (17)
@end itemize
@geindex AI-0206 (Ada 2012 feature)
@itemize *
@item
`AI-0206 Remote types packages and preelaborate (2010-07-24)'
Remote types packages are now allowed to depend on preelaborated packages.
This was formerly considered illegal.
RM References: E.02.02 (6)
@end itemize
@geindex AI-0207 (Ada 2012 feature)
@itemize *
@item
`AI-0207 Mode conformance and access constant (0000-00-00)'
This AI confirms that access_to_constant indication must match for mode
conformance. This was implemented in GNAT when the qualifier was originally
introduced in Ada 2005.
RM References: 6.03.01 (16/2)
@end itemize
@geindex AI-0208 (Ada 2012 feature)
@itemize *
@item
`AI-0208 Characteristics of incomplete views (0000-00-00)'
The wording in the Ada 2005 RM concerning characteristics of incomplete views
was incorrect and implied that some programs intended to be legal were now
illegal. GNAT had never considered such programs illegal, so it has always
implemented the intent of this AI.
RM References: 3.10.01 (2.4/2) 3.10.01 (2.6/2)
@end itemize
@geindex AI-0210 (Ada 2012 feature)
@itemize *
@item
`AI-0210 Correct Timing_Events metric (0000-00-00)'
This is a documentation only issue regarding wording of metric requirements,
that does not affect the implementation of the compiler.
RM References: D.15 (24/2)
@end itemize
@geindex AI-0211 (Ada 2012 feature)
@itemize *
@item
`AI-0211 No_Relative_Delays forbids Set_Handler use (2010-07-09)'
The restriction @code{No_Relative_Delays} forbids any calls to the subprogram
@code{Ada.Real_Time.Timing_Events.Set_Handler}.
RM References: D.07 (5) D.07 (10/2) D.07 (10.4/2) D.07 (10.7/2)
@end itemize
@geindex AI-0214 (Ada 2012 feature)
@itemize *
@item
`AI-0214 Defaulted discriminants for limited tagged (2010-10-01)'
Ada 2012 relaxes the restriction that forbids discriminants of tagged types
to have default expressions by allowing them when the type is limited. It
is often useful to define a default value for a discriminant even though
it can’t be changed by assignment.
RM References: 3.07 (9.1/2) 3.07.02 (3)
@end itemize
@geindex AI-0216 (Ada 2012 feature)
@itemize *
@item
`AI-0216 No_Task_Hierarchy forbids local tasks (0000-00-00)'
It is clearly the intention that @code{No_Task_Hierarchy} is intended to
forbid tasks declared locally within subprograms, or functions returning task
objects, and that is the implementation that GNAT has always provided.
However the language in the RM was not sufficiently clear on this point.
Thus this is a documentation change in the RM only.
RM References: D.07 (3/3)
@end itemize
@geindex AI-0219 (Ada 2012 feature)
@itemize *
@item
`AI-0219 Pure permissions and limited parameters (2010-05-25)'
This AI refines the rules for the cases with limited parameters which do not
allow the implementations to omit ‘redundant’. GNAT now properly conforms
to the requirements of this binding interpretation.
RM References: 10.02.01 (18/2)
@end itemize
@geindex AI-0220 (Ada 2012 feature)
@itemize *
@item
`AI-0220 Needed components for aggregates (0000-00-00)'
This AI addresses a wording problem in the RM that appears to permit some
complex cases of aggregates with nonstatic discriminants. GNAT has always
implemented the intended semantics.
RM References: 4.03.01 (17)
@end itemize
@node GNAT language extensions,Security Hardening Features,Implementation of Ada 2012 Features,Top
@anchor{gnat_rm/gnat_language_extensions doc}@anchor{43d}@anchor{gnat_rm/gnat_language_extensions gnat-language-extensions}@anchor{43e}@anchor{gnat_rm/gnat_language_extensions id1}@anchor{43f}
@chapter GNAT language extensions
The GNAT compiler implements a certain number of language extensions on top of
the latest Ada standard, implementing its own extended superset of Ada.
There are two sets of language extensions:
@itemize *
@item
The first is the curated set. The features in that set are features that we
consider being worthy additions to the Ada language, and that we want to make
available to users early on.
@item
The second is the experimental set. It includes the first, but also
experimental features, that are here because they’re still in an early
prototyping phase.
@end itemize
@menu
* How to activate the extended GNAT Ada superset::
* Curated Extensions::
* Experimental Language Extensions::
@end menu
@node How to activate the extended GNAT Ada superset,Curated Extensions,,GNAT language extensions
@anchor{gnat_rm/gnat_language_extensions how-to-activate-the-extended-gnat-ada-superset}@anchor{440}
@section How to activate the extended GNAT Ada superset
There are two ways to activate the extended GNAT Ada superset:
@itemize *
@item
The @ref{68,,Pragma Extensions_Allowed}. To activate
the curated set of extensions, you should use
@end itemize
@example
pragma Extensions_Allowed (On)
@end example
As a configuration pragma, you can either put it at the beginning of a source
file, or in a @code{.adc} file corresponding to your project.
@itemize *
@item
The @code{-gnatX} option, that you can pass to the compiler directly, will
activate the curated subset of extensions.
@end itemize
@cartouche
@quotation Attention
You can activate the extended set of extensions by using either
the @code{-gnatX0} command line flag, or the pragma @code{Extensions_Allowed} with
@code{All_Extensions} as an argument. However, it is not recommended you use
this subset for serious projects; it is only meant as a technology preview
for use in playground experiments.
@end quotation
@end cartouche
@node Curated Extensions,Experimental Language Extensions,How to activate the extended GNAT Ada superset,GNAT language extensions
@anchor{gnat_rm/gnat_language_extensions curated-extensions}@anchor{441}@anchor{gnat_rm/gnat_language_extensions curated-language-extensions}@anchor{69}
@section Curated Extensions
@menu
* Local Declarations Without Block::
* Conditional when constructs::
* Fixed lower bounds for array types and subtypes::
* Prefixed-view notation for calls to primitive subprograms of untagged types::
* Expression defaults for generic formal functions::
* String interpolation::
* Constrained attribute for generic objects::
* Static aspect on intrinsic functions::
@end menu
@node Local Declarations Without Block,Conditional when constructs,,Curated Extensions
@anchor{gnat_rm/gnat_language_extensions local-declarations-without-block}@anchor{442}
@subsection Local Declarations Without Block
A basic_declarative_item may appear at the place of any statement.
This avoids the heavy syntax of block_statements just to declare
something locally.
Link to the original RFC:
@indicateurl{https://github.com/AdaCore/ada-spark-rfcs/blob/master/prototyped/rfc-local-vars-without-block.md}
For example:
@example
if X > 5 then
X := X + 1;
Squared : constant Integer := X**2;
X := X + Squared;
end if;
@end example
@node Conditional when constructs,Fixed lower bounds for array types and subtypes,Local Declarations Without Block,Curated Extensions
@anchor{gnat_rm/gnat_language_extensions conditional-when-constructs}@anchor{443}
@subsection Conditional when constructs
This feature extends the use of @code{when} as a way to condition a control-flow
related statement, to all control-flow related statements.
To do a conditional return in a procedure the following syntax should be used:
@example
procedure P (Condition : Boolean) is
begin
return when Condition;
end;
@end example
This will return from the procedure if @code{Condition} is true.
When being used in a function the conditional part comes after the return value:
@example
function Is_Null (I : Integer) return Boolean is
begin
return True when I = 0;
return False;
end;
@end example
In a similar way to the @code{exit when} a @code{goto ... when} can be employed:
@example
procedure Low_Level_Optimized is
Flags : Bitmapping;
begin
Do_1 (Flags);
goto Cleanup when Flags (1);
Do_2 (Flags);
goto Cleanup when Flags (32);
-- ...
<<Cleanup>>
-- ...
end;
@end example
@c code-block
To use a conditional raise construct:
@example
procedure Foo is
begin
raise Error when Imported_C_Func /= 0;
end;
@end example
An exception message can also be added:
@example
procedure Foo is
begin
raise Error with "Unix Error"
when Imported_C_Func /= 0;
end;
@end example
Link to the original RFC:
@indicateurl{https://github.com/AdaCore/ada-spark-rfcs/blob/master/prototyped/rfc-conditional-when-constructs.rst}
@node Fixed lower bounds for array types and subtypes,Prefixed-view notation for calls to primitive subprograms of untagged types,Conditional when constructs,Curated Extensions
@anchor{gnat_rm/gnat_language_extensions fixed-lower-bounds-for-array-types-and-subtypes}@anchor{444}
@subsection Fixed lower bounds for array types and subtypes
Unconstrained array types and subtypes can be specified with a lower bound that
is fixed to a certain value, by writing an index range that uses the syntax
@code{<lower-bound-expression> .. <>}. This guarantees that all objects of the
type or subtype will have the specified lower bound.
For example, a matrix type with fixed lower bounds of zero for each dimension
can be declared by the following:
@example
type Matrix is
array (Natural range 0 .. <>, Natural range 0 .. <>) of Integer;
@end example
Objects of type @code{Matrix} declared with an index constraint must have index
ranges starting at zero:
@example
M1 : Matrix (0 .. 9, 0 .. 19);
M2 : Matrix (2 .. 11, 3 .. 22); -- Warning about bounds; will raise CE
@end example
Similarly, a subtype of @code{String} can be declared that specifies the lower
bound of objects of that subtype to be @code{1}:
@quotation
@example
subtype String_1 is String (1 .. <>);
@end example
@end quotation
If a string slice is passed to a formal of subtype @code{String_1} in a call to a
subprogram @code{S}, the slice’s bounds will “slide” so that the lower bound is
@code{1}.
Within @code{S}, the lower bound of the formal is known to be @code{1}, so, unlike a
normal unconstrained @code{String} formal, there is no need to worry about
accounting for other possible lower-bound values. Sliding of bounds also occurs
in other contexts, such as for object declarations with an unconstrained
subtype with fixed lower bound, as well as in subtype conversions.
Use of this feature increases safety by simplifying code, and can also improve
the efficiency of indexing operations, since the compiler statically knows the
lower bound of unconstrained array formals when the formal’s subtype has index
ranges with static fixed lower bounds.
Link to the original RFC:
@indicateurl{https://github.com/AdaCore/ada-spark-rfcs/blob/master/prototyped/rfc-fixed-lower-bound.rst}
@node Prefixed-view notation for calls to primitive subprograms of untagged types,Expression defaults for generic formal functions,Fixed lower bounds for array types and subtypes,Curated Extensions
@anchor{gnat_rm/gnat_language_extensions prefixed-view-notation-for-calls-to-primitive-subprograms-of-untagged-types}@anchor{445}
@subsection Prefixed-view notation for calls to primitive subprograms of untagged types
When operating on an untagged type, if it has any primitive operations, and the
first parameter of an operation is of the type (or is an access parameter with
an anonymous type that designates the type), you may invoke these operations
using an @code{object.op(...)} notation, where the parameter that would normally be
the first parameter is brought out front, and the remaining parameters (if any)
appear within parentheses after the name of the primitive operation.
This same notation is already available for tagged types. This extension allows
for untagged types. It is allowed for all primitive operations of the type
independent of whether they were originally declared in a package spec or its
private part, or were inherited and/or overridden as part of a derived type
declaration occuring anywhere, so long as the first parameter is of the type,
or an access parameter designating the type.
For example:
@example
generic
type Elem_Type is private;
package Vectors is
type Vector is private;
procedure Add_Element (V : in out Vector; Elem : Elem_Type);
function Nth_Element (V : Vector; N : Positive) return Elem_Type;
function Length (V : Vector) return Natural;
private
function Capacity (V : Vector) return Natural;
-- Return number of elements that may be added without causing
-- any new allocation of space
type Vector is ...
with Type_Invariant => Vector.Length <= Vector.Capacity;
...
end Vectors;
package Int_Vecs is new Vectors(Integer);
V : Int_Vecs.Vector;
...
V.Add_Element(42);
V.Add_Element(-33);
pragma Assert (V.Length = 2);
pragma Assert (V.Nth_Element(1) = 42);
@end example
Link to the original RFC:
@indicateurl{https://github.com/AdaCore/ada-spark-rfcs/blob/master/prototyped/rfc-prefixed-untagged.rst}
@node Expression defaults for generic formal functions,String interpolation,Prefixed-view notation for calls to primitive subprograms of untagged types,Curated Extensions
@anchor{gnat_rm/gnat_language_extensions expression-defaults-for-generic-formal-functions}@anchor{446}
@subsection Expression defaults for generic formal functions
The declaration of a generic formal function is allowed to specify
an expression as a default, using the syntax of an expression function.
Here is an example of this feature:
@example
generic
type T is private;
with function Copy (Item : T) return T is (Item); -- Defaults to Item
package Stacks is
type Stack is limited private;
procedure Push (S : in out Stack; X : T); -- Calls Copy on X
function Pop (S : in out Stack) return T; -- Calls Copy to return item
private
-- ...
end Stacks;
@end example
Link to the original RFC:
@indicateurl{https://github.com/AdaCore/ada-spark-rfcs/blob/master/prototyped/rfc-expression-functions-as-default-for-generic-formal-function-parameters.rst}
@node String interpolation,Constrained attribute for generic objects,Expression defaults for generic formal functions,Curated Extensions
@anchor{gnat_rm/gnat_language_extensions string-interpolation}@anchor{447}
@subsection String interpolation
The syntax for string literals is extended to support string interpolation.
Within an interpolated string literal, an arbitrary expression, when
enclosed in @code{@{ ... @}}, is expanded at run time into the result of calling
@code{'Image} on the result of evaluating the expression enclosed by the brace
characters, unless it is already a string or a single character.
Here is an example of this feature where the expressions @code{Name} and @code{X + Y}
will be evaluated and included in the string.
@example
procedure Test_Interpolation is
X : Integer := 12;
Y : Integer := 15;
Name : String := "Leo";
begin
Put_Line (f"The name is @{Name@} and the sum is @{X + Y@}.");
end Test_Interpolation;
@end example
In addition, an escape character (@code{\}) is provided for inserting certain
standard control characters (such as @code{\t} for tabulation or @code{\n} for
newline) or to escape characters with special significance to the
interpolated string syntax, namely @code{"}, @code{@{}, @code{@}},and @code{\} itself.
@multitable {xxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxx}
@item
escaped_character
@tab
meaning
@item
@code{\a}
@tab
ALERT
@item
@code{\b}
@tab
BACKSPACE
@item
@code{\f}
@tab
FORM FEED
@item
@code{\n}
@tab
LINE FEED
@item
@code{\r}
@tab
CARRIAGE RETURN
@item
@code{\t}
@tab
CHARACTER TABULATION
@item
@code{\v}
@tab
LINE TABULATION
@item
@code{\0}
@tab
NUL
@item
@code{\\}
@tab
@code{\}
@item
@code{\"}
@tab
@code{"}
@item
@code{\@{}
@tab
@code{@{}
@item
@code{\@}}
@tab
@code{@}}
@end multitable
Note that, unlike normal string literals, doubled characters have no
special significance. So to include a double-quote or a brace character
in an interpolated string, they must be preceded by a @code{\}.
For example:
@example
Put_Line
(f"X = @{X@} and Y = @{Y@} and X+Y = @{X+Y@};\n" &
f" a double quote is \" and" &
f" an open brace is \@{");
@end example
Link to the original RFC:
@indicateurl{https://github.com/AdaCore/ada-spark-rfcs/blob/master/prototyped/rfc-string-interpolation.md}
@node Constrained attribute for generic objects,Static aspect on intrinsic functions,String interpolation,Curated Extensions
@anchor{gnat_rm/gnat_language_extensions constrained-attribute-for-generic-objects}@anchor{448}
@subsection Constrained attribute for generic objects
The @code{Constrained} attribute is permitted for objects of generic types. The
result indicates whether the corresponding actual is constrained.
@node Static aspect on intrinsic functions,,Constrained attribute for generic objects,Curated Extensions
@anchor{gnat_rm/gnat_language_extensions static-aspect-on-intrinsic-functions}@anchor{449}
@subsection @code{Static} aspect on intrinsic functions
The Ada 202x @code{Static} aspect can be specified on Intrinsic imported functions
and the compiler will evaluate some of these intrinsics statically, in
particular the @code{Shift_Left} and @code{Shift_Right} intrinsics.
@node Experimental Language Extensions,,Curated Extensions,GNAT language extensions
@anchor{gnat_rm/gnat_language_extensions experimental-language-extensions}@anchor{6a}@anchor{gnat_rm/gnat_language_extensions id2}@anchor{44a}
@section Experimental Language Extensions
@menu
* Storage Model::
* Attribute Super::
* Simpler accessibility model::
* Case pattern matching::
* Mutably Tagged Types with Size’Class Aspect::
* Generalized Finalization::
@end menu
@node Storage Model,Attribute Super,,Experimental Language Extensions
@anchor{gnat_rm/gnat_language_extensions storage-model}@anchor{44b}
@subsection Storage Model
This feature proposes to redesign the concepts of Storage Pools into a more
efficient model allowing higher performances and easier integration with low
footprint embedded run-times.
It also extends it to support distributed memory models, in particular to
support interactions with GPU.
Here is a link to the full RFC:
@indicateurl{https://github.com/AdaCore/ada-spark-rfcs/blob/master/prototyped/rfc-storage-model.rst}
@node Attribute Super,Simpler accessibility model,Storage Model,Experimental Language Extensions
@anchor{gnat_rm/gnat_language_extensions attribute-super}@anchor{44c}
@subsection Attribute Super
@geindex Super
The @code{Super} attribute can be applied to objects of tagged types in order
to obtain a view conversion to the most immediate specific parent type.
It cannot be applied to objects of types without any ancestors, or types whose
immediate parent is abstract.
@example
type T1 is tagged null record;
procedure P (V : T1);
type T2 is new T1 with null record;
procedure P (V : T2);
procedure Call (V : T2'Class) is
begin
V'Super.P; -- Equivalent to "P (T1 (V));", a nondispatching call
-- to T1's primitive procedure P.
end;
@end example
Here is a link to the full RFC:
@indicateurl{https://github.com/QuentinOchem/ada-spark-rfcs/blob/oop/considered/rfc-oop-super.rst}
@node Simpler accessibility model,Case pattern matching,Attribute Super,Experimental Language Extensions
@anchor{gnat_rm/gnat_language_extensions simpler-accessibility-model}@anchor{44d}
@subsection Simpler accessibility model
The goal of this feature is to restore a common understanding of accessibility
rules for implementers and users alike. The new rules should both be effective
at preventing errors and feel natural and compatible in an Ada environment
while removing dynamic accessibility checking.
Here is a link to the full RFC:
@indicateurl{https://github.com/AdaCore/ada-spark-rfcs/blob/master/prototyped/rfc-simpler-accessibility.md}
@node Case pattern matching,Mutably Tagged Types with Size’Class Aspect,Simpler accessibility model,Experimental Language Extensions
@anchor{gnat_rm/gnat_language_extensions case-pattern-matching}@anchor{44e}
@subsection Case pattern matching
The selector for a case statement (but not yet for a case expression) may be of a composite type, subject to
some restrictions (described below). Aggregate syntax is used for choices
of such a case statement; however, in cases where a “normal” aggregate would
require a discrete value, a discrete subtype may be used instead; box
notation can also be used to match all values.
Consider this example:
@example
type Rec is record
F1, F2 : Integer;
end record;
procedure Caser_1 (X : Rec) is
begin
case X is
when (F1 => Positive, F2 => Positive) =>
Do_This;
when (F1 => Natural, F2 => <>) | (F1 => <>, F2 => Natural) =>
Do_That;
when others =>
Do_The_Other_Thing;
end case;
end Caser_1;
@end example
If @code{Caser_1} is called and both components of X are positive, then
@code{Do_This} will be called; otherwise, if either component is nonnegative
then @code{Do_That} will be called; otherwise, @code{Do_The_Other_Thing} will be
called.
In addition, pattern bindings are supported. This is a mechanism
for binding a name to a component of a matching value for use within
an alternative of a case statement. For a component association
that occurs within a case choice, the expression may be followed by
@code{is <identifier>}. In the special case of a “box” component association,
the identifier may instead be provided within the box. Either of these
indicates that the given identifier denotes (a constant view of) the matching
subcomponent of the case selector.
@cartouche
@quotation Attention
Binding is not yet supported for arrays or subcomponents
thereof.
@end quotation
@end cartouche
Consider this example (which uses type @code{Rec} from the previous example):
@example
procedure Caser_2 (X : Rec) is
begin
case X is
when (F1 => Positive is Abc, F2 => Positive) =>
Do_This (Abc)
when (F1 => Natural is N1, F2 => <N2>) |
(F1 => <N2>, F2 => Natural is N1) =>
Do_That (Param_1 => N1, Param_2 => N2);
when others =>
Do_The_Other_Thing;
end case;
end Caser_2;
@end example
This example is the same as the previous one with respect to determining
whether @code{Do_This}, @code{Do_That}, or @code{Do_The_Other_Thing} will be called. But
for this version, @code{Do_This} takes a parameter and @code{Do_That} takes two
parameters. If @code{Do_This} is called, the actual parameter in the call will be
@code{X.F1}.
If @code{Do_That} is called, the situation is more complex because there are two
choices for that alternative. If @code{Do_That} is called because the first choice
matched (i.e., because @code{X.F1} is nonnegative and either @code{X.F1} or @code{X.F2}
is zero or negative), then the actual parameters of the call will be (in order)
@code{X.F1} and @code{X.F2}. If @code{Do_That} is called because the second choice
matched (and the first one did not), then the actual parameters will be
reversed.
Within the choice list for single alternative, each choice must define the same
set of bindings and the component subtypes for for a given identifer must all
statically match. Currently, the case of a binding for a nondiscrete component
is not implemented.
If the set of values that match the choice(s) of an earlier alternative
overlaps the corresponding set of a later alternative, then the first set shall
be a proper subset of the second (and the later alternative will not be
executed if the earlier alternative “matches”). All possible values of the
composite type shall be covered. The composite type of the selector shall be an
array or record type that is neither limited nor class-wide. Currently, a “when
others =>” case choice is required; it is intended that this requirement will
be relaxed at some point.
If a subcomponent’s subtype does not meet certain restrictions, then the only
value that can be specified for that subcomponent in a case choice expression
is a “box” component association (which matches all possible values for the
subcomponent). This restriction applies if:
@itemize -
@item
the component subtype is not a record, array, or discrete type; or
@item
the component subtype is subject to a non-static constraint or has a
predicate; or:
@item
the component type is an enumeration type that is subject to an enumeration
representation clause; or
@item
the component type is a multidimensional array type or an array type with a
nonstatic index subtype.
@end itemize
Support for casing on arrays (and on records that contain arrays) is
currently subject to some restrictions. Non-positional
array aggregates are not supported as (or within) case choices. Likewise
for array type and subtype names. The current implementation exceeds
compile-time capacity limits in some annoyingly common scenarios; the
message generated in such cases is usually “Capacity exceeded in compiling
case statement with composite selector type”.
Link to the original RFC:
@indicateurl{https://github.com/AdaCore/ada-spark-rfcs/blob/master/prototyped/rfc-pattern-matching.rst}
@node Mutably Tagged Types with Size’Class Aspect,Generalized Finalization,Case pattern matching,Experimental Language Extensions
@anchor{gnat_rm/gnat_language_extensions mutably-tagged-types-with-size-class-aspect}@anchor{44f}
@subsection Mutably Tagged Types with Size’Class Aspect
The @cite{Size’Class} aspect can be applied to a tagged type to specify a size
constraint for the type and its descendants. When this aspect is specified
on a tagged type, the class-wide type of that type is considered to be a
“mutably tagged” type - meaning that objects of the class-wide type can have
their tag changed by assignment from objects with a different tag.
When the aspect is applied to a type, the size of each of its descendant types
must not exceed the size specified for the aspect.
Example:
@example
type Base is tagged null record
with Size'Class => 16 * 8; -- Size in bits (128 bits, or 16 bytes)
type Derived_Type is new Base with record
Data_Field : Integer;
end record; -- ERROR if Derived_Type exceeds 16 bytes
@end example
Class-wide types with a specified @cite{Size’Class} can be used as the type of
array components, record components, and stand-alone objects.
@example
Inst : Base'Class;
type Array_of_Base is array (Positive range <>) of Base'Class;
@end example
Note: Legality of the @cite{Size’Class} aspect is subject to certain restrictions on
the tagged type, such as being undiscriminated, having no dynamic composite
subcomponents, among others detailed in the RFC.
Link to the original RFC:
@indicateurl{https://github.com/AdaCore/ada-spark-rfcs/blob/topic/rfc-finally/considered/rfc-class-size.md}
@node Generalized Finalization,,Mutably Tagged Types with Size’Class Aspect,Experimental Language Extensions
@anchor{gnat_rm/gnat_language_extensions generalized-finalization}@anchor{450}
@subsection Generalized Finalization
The @cite{Finalizable} aspect can be applied to any record type, tagged or not,
to specify that it provides the same level of control on the operations of initialization, finalization, and assignment of objects as the controlled
types (see RM 7.6(2) for a high-level overview). The only restriction is
that the record type must be a root type, in other words not a derived type.
The aspect additionally makes it possible to specify relaxed semantics for
the finalization operations by means of the @cite{Relaxed_Finalization} setting.
Example:
@example
type Ctrl is record
Id : Natural := 0;
end record
with Finalizable => (Initialize => Initialize,
Adjust => Adjust,
Finalize => Finalize,
Relaxed_Finalization => True);
procedure Adjust (Obj : in out Ctrl);
procedure Finalize (Obj : in out Ctrl);
procedure Initialize (Obj : in out Ctrl);
@end example
As of this writing, the RFC is implemented except for the @cite{No_Raise} aspect.
Link to the original RFC:
@indicateurl{https://github.com/AdaCore/ada-spark-rfcs/blob/topic/finalization-rehaul/considered/rfc-generalized-finalization.md}
@node Security Hardening Features,Obsolescent Features,GNAT language extensions,Top
@anchor{gnat_rm/security_hardening_features doc}@anchor{451}@anchor{gnat_rm/security_hardening_features id1}@anchor{452}@anchor{gnat_rm/security_hardening_features security-hardening-features}@anchor{15}
@chapter Security Hardening Features
This chapter describes Ada extensions aimed at security hardening that
are provided by GNAT.
The features in this chapter are currently experimental and subject to
change.
@c Register Scrubbing:
@menu
* Register Scrubbing::
* Stack Scrubbing::
* Hardened Conditionals::
* Hardened Booleans::
* Control Flow Redundancy::
@end menu
@node Register Scrubbing,Stack Scrubbing,,Security Hardening Features
@anchor{gnat_rm/security_hardening_features register-scrubbing}@anchor{453}
@section Register Scrubbing
GNAT can generate code to zero-out hardware registers before returning
from a subprogram.
It can be enabled with the @code{-fzero-call-used-regs=`choice'}
command-line option, to affect all subprograms in a compilation, and
with a @code{Machine_Attribute} pragma, to affect only specific
subprograms.
@example
procedure Foo;
pragma Machine_Attribute (Foo, "zero_call_used_regs", "used");
-- Before returning, Foo scrubs only call-clobbered registers
-- that it uses itself.
function Bar return Integer;
pragma Machine_Attribute (Bar, "zero_call_used_regs", "all");
-- Before returning, Bar scrubs all call-clobbered registers.
function Baz return Integer;
pragma Machine_Attribute (Bar, "zero_call_used_regs", "leafy");
-- Before returning, Bar scrubs call-clobbered registers, either
-- those it uses itself, if it can be identified as a leaf
-- function, or all of them otherwise.
@end example
For usage and more details on the command-line option, on the
@code{zero_call_used_regs} attribute, and on their use with other
programming languages, see @cite{Using the GNU Compiler Collection (GCC)}.
@c Stack Scrubbing:
@node Stack Scrubbing,Hardened Conditionals,Register Scrubbing,Security Hardening Features
@anchor{gnat_rm/security_hardening_features stack-scrubbing}@anchor{454}
@section Stack Scrubbing
GNAT can generate code to zero-out stack frames used by subprograms.
It can be activated with the @code{Machine_Attribute} pragma, on
specific subprograms and variables, or their types. (This attribute
always applies to a type, even when it is associated with a subprogram
or a variable.)
@example
function Foo returns Integer;
pragma Machine_Attribute (Foo, "strub");
-- Foo and its callers are modified so as to scrub the stack
-- space used by Foo after it returns. Shorthand for:
-- pragma Machine_Attribute (Foo, "strub", "at-calls");
procedure Bar;
pragma Machine_Attribute (Bar, "strub", "internal");
-- Bar is turned into a wrapper for its original body,
-- and they scrub the stack used by the original body.
Var : Integer;
pragma Machine_Attribute (Var, "strub");
-- Reading from Var in a subprogram enables stack scrubbing
-- of the stack space used by the subprogram. Furthermore, if
-- Var is declared within a subprogram, this also enables
-- scrubbing of the stack space used by that subprogram.
@end example
Given these declarations, Foo has its type and body modified as
follows:
@example
function Foo (<WaterMark> : in out System.Address) returns Integer
is
-- ...
begin
<__strub_update> (<WaterMark>); -- Updates the stack WaterMark.
-- ...
end;
@end example
whereas its callers are modified from:
@example
X := Foo;
@end example
to:
@example
declare
<WaterMark> : System.Address;
begin
<__strub_enter> (<WaterMark>); -- Initialize <WaterMark>.
X := Foo (<WaterMark>);
<__strub_leave> (<WaterMark>); -- Scrubs stack up to <WaterMark>.
end;
@end example
As for Bar, because it is strubbed in internal mode, its callers are
not modified. Its definition is modified roughly as follows:
@example
procedure Bar is
<WaterMark> : System.Address;
procedure Strubbed_Bar (<WaterMark> : in out System.Address) is
begin
<__strub_update> (<WaterMark>); -- Updates the stack WaterMark.
-- original Bar body.
end Strubbed_Bar;
begin
<__strub_enter> (<WaterMark>); -- Initialize <WaterMark>.
Strubbed_Bar (<WaterMark>);
<__strub_leave> (<WaterMark>); -- Scrubs stack up to <WaterMark>.
end Bar;
@end example
There are also @code{-fstrub=`choice'} command-line options to
control default settings. For usage and more details on the
command-line options, on the @code{strub} attribute, and their use with
other programming languages, see @cite{Using the GNU Compiler Collection (GCC)}.
Note that Ada secondary stacks are not scrubbed. The restriction
@code{No_Secondary_Stack} avoids their use, and thus their accidental
preservation of data that should be scrubbed.
Attributes @code{Access} and @code{Unconstrained_Access} of variables and
constants with @code{strub} enabled require types with @code{strub} enabled;
there is no way to express an access-to-strub type otherwise.
@code{Unchecked_Access} bypasses this constraint, but the resulting
access type designates a non-strub type.
@example
VI : aliased Integer;
pragma Machine_Attribute (VI, "strub");
XsVI : access Integer := VI'Access; -- Error.
UXsVI : access Integer := VI'Unchecked_Access; -- OK,
-- UXsVI does *not* enable strub in subprograms that
-- dereference it to obtain the UXsVI.all value.
type Strub_Int is new Integer;
pragma Machine_Attribute (Strub_Int, "strub");
VSI : aliased Strub_Int;
XsVSI : access Strub_Int := VSI'Access; -- OK,
-- VSI and XsVSI.all both enable strub in subprograms that
-- read their values.
@end example
Every access-to-subprogram type, renaming, and overriding and
overridden dispatching operations that may refer to a subprogram with
an attribute-modified interface must be annotated with the same
interface-modifying attribute. Access-to-subprogram types can be
explicitly converted to different strub modes, as long as they are
interface-compatible (i.e., adding or removing @code{at-calls} is not
allowed). For example, a @code{strub}-@code{disabled} subprogram can be
turned @code{callable} through such an explicit conversion:
@example
type TBar is access procedure;
type TBar_Callable is access procedure;
pragma Machine_Attribute (TBar_Callable, "strub", "callable");
-- The attribute modifies the procedure type, rather than the
-- access type, because of the extra argument after "strub",
-- only applicable to subprogram types.
Bar_Callable_Ptr : constant TBar_Callable
:= TBar_Callable (TBar'(Bar'Access));
procedure Bar_Callable renames Bar_Callable_Ptr.all;
pragma Machine_Attribute (Bar_Callable, "strub", "callable");
@end example
Note that the renaming declaration is expanded to a full subprogram
body, it won’t be just an alias. Only if it is inlined will it be as
efficient as a call by dereferencing the access-to-subprogram constant
Bar_Callable_Ptr.
@c Hardened Conditionals:
@node Hardened Conditionals,Hardened Booleans,Stack Scrubbing,Security Hardening Features
@anchor{gnat_rm/security_hardening_features hardened-conditionals}@anchor{455}
@section Hardened Conditionals
GNAT can harden conditionals to protect against control-flow attacks.
This is accomplished by two complementary transformations, each
activated by a separate command-line option.
The option @code{-fharden-compares} enables hardening of compares
that compute results stored in variables, adding verification that the
reversed compare yields the opposite result, turning:
@example
B := X = Y;
@end example
into:
@example
B := X = Y;
declare
NotB : Boolean := X /= Y; -- Computed independently of B.
begin
if B = NotB then
<__builtin_trap>;
end if;
end;
@end example
The option @code{-fharden-conditional-branches} enables hardening
of compares that guard conditional branches, adding verification of
the reversed compare to both execution paths, turning:
@example
if X = Y then
X := Z + 1;
else
Y := Z - 1;
end if;
@end example
into:
@example
if X = Y then
if X /= Y then -- Computed independently of X = Y.
<__builtin_trap>;
end if;
X := Z + 1;
else
if X /= Y then -- Computed independently of X = Y.
null;
else
<__builtin_trap>;
end if;
Y := Z - 1;
end if;
@end example
These transformations are introduced late in the compilation pipeline,
long after boolean expressions are decomposed into separate compares,
each one turned into either a conditional branch or a compare whose
result is stored in a boolean variable or temporary. Compiler
optimizations, if enabled, may also turn conditional branches into
stored compares, and vice-versa, or into operations with implied
conditionals (e.g. MIN and MAX). Conditionals may also be optimized
out entirely, if their value can be determined at compile time, and
occasionally multiple compares can be combined into one.
It is thus difficult to predict which of these two options will affect
a specific compare operation expressed in source code. Using both
options ensures that every compare that is neither optimized out nor
optimized into implied conditionals will be hardened.
The addition of reversed compares can be observed by enabling the dump
files of the corresponding passes, through command-line options
@code{-fdump-tree-hardcmp} and @code{-fdump-tree-hardcbr},
respectively.
They are separate options, however, because of the significantly
different performance impact of the hardening transformations.
For usage and more details on the command-line options, see
@cite{Using the GNU Compiler Collection (GCC)}. These options can
be used with other programming languages supported by GCC.
@c Hardened Booleans:
@node Hardened Booleans,Control Flow Redundancy,Hardened Conditionals,Security Hardening Features
@anchor{gnat_rm/security_hardening_features hardened-booleans}@anchor{456}
@section Hardened Booleans
Ada has built-in support for introducing boolean types with
alternative representations, using representation clauses:
@example
type HBool is new Boolean;
for HBool use (16#5a#, 16#a5#);
for HBool'Size use 8;
@end example
When validity checking is enabled, the compiler will check that
variables of such types hold values corresponding to the selected
representations.
There are multiple strategies for where to introduce validity checking
(see @code{-gnatV} options). Their goal is to guard against
various kinds of programming errors, and GNAT strives to omit checks
when program logic rules out an invalid value, and optimizers may
further remove checks found to be redundant.
For additional hardening, the @code{hardbool} @code{Machine_Attribute}
pragma can be used to annotate boolean types with representation
clauses, so that expressions of such types used as conditions are
checked even when compiling with @code{-gnatVT}:
@example
pragma Machine_Attribute (HBool, "hardbool");
function To_Boolean (X : HBool) returns Boolean is (Boolean (X));
@end example
is compiled roughly like:
@example
function To_Boolean (X : HBool) returns Boolean is
begin
if X not in True | False then
raise Constraint_Error;
elsif X in True then
return True;
else
return False;
end if;
end To_Boolean;
@end example
Note that @code{-gnatVn} will disable even @code{hardbool} testing.
Analogous behavior is available as a GCC extension to the C and
Objective C programming languages, through the @code{hardbool} attribute,
with the difference that, instead of raising a Constraint_Error
exception, when a hardened boolean variable is found to hold a value
that stands for neither True nor False, the program traps. For usage
and more details on that attribute, see @cite{Using the GNU Compiler Collection (GCC)}.
@c Control Flow Redundancy:
@node Control Flow Redundancy,,Hardened Booleans,Security Hardening Features
@anchor{gnat_rm/security_hardening_features control-flow-redundancy}@anchor{457}
@section Control Flow Redundancy
GNAT can guard against unexpected execution flows, such as branching
into the middle of subprograms, as in Return Oriented Programming
exploits.
In units compiled with @code{-fharden-control-flow-redundancy},
subprograms are instrumented so that, every time they are called,
basic blocks take note as control flows through them, and, before
returning, subprograms verify that the taken notes are consistent with
the control-flow graph.
The performance impact of verification on leaf subprograms can be much
higher, while the averted risks are much lower on them.
Instrumentation can be disabled for leaf subprograms with
@code{-fhardcfr-skip-leaf}.
Functions with too many basic blocks, or with multiple return points,
call a run-time function to perform the verification. Other functions
perform the verification inline before returning.
Optimizing the inlined verification can be quite time consuming, so
the default upper limit for the inline mode is set at 16 blocks.
Command-line option @code{--param hardcfr-max-inline-blocks=} can
override it.
Even though typically sparse control-flow graphs exhibit run-time
verification time nearly proportional to the block count of a
subprogram, it may become very significant for generated subprograms
with thousands of blocks. Command-line option
@code{--param hardcfr-max-blocks=} can set an upper limit for
instrumentation.
For each block that is marked as visited, the mechanism checks that at
least one of its predecessors, and at least one of its successors, are
also marked as visited.
Verification is performed just before a subprogram returns. The
following fragment:
@example
if X then
Y := F (Z);
return;
end if;
@end example
gets turned into:
@example
type Visited_Bitmap is array (1..N) of Boolean with Pack;
Visited : aliased Visited_Bitmap := (others => False);
-- Bitmap of visited blocks. N is the basic block count.
[...]
-- Basic block #I
Visited(I) := True;
if X then
-- Basic block #J
Visited(J) := True;
Y := F (Z);
CFR.Check (N, Visited'Access, CFG'Access);
-- CFR is a hypothetical package whose Check procedure calls
-- libgcc's __hardcfr_check, that traps if the Visited bitmap
-- does not hold a valid path in CFG, the run-time
-- representation of the control flow graph in the enclosing
-- subprogram.
return;
end if;
-- Basic block #K
Visited(K) := True;
@end example
Verification would also be performed before tail calls, if any
front-ends marked them as mandatory or desirable, but none do.
Regular calls are optimized into tail calls too late for this
transformation to act on it.
In order to avoid adding verification after potential tail calls,
which would prevent tail-call optimization, we recognize returning
calls, i.e., calls whose result, if any, is returned by the calling
subprogram to its caller immediately after the call returns.
Verification is performed before such calls, whether or not they are
ultimately optimized to tail calls. This behavior is enabled by
default whenever sibcall optimization is enabled (see
@code{-foptimize-sibling-calls}); it may be disabled with
@code{-fno-hardcfr-check-returning-calls}, or enabled with
@code{-fhardcfr-check-returning-calls}, regardless of the
optimization, but the lack of other optimizations may prevent calls
from being recognized as returning calls:
@example
-- CFR.Check here, with -fhardcfr-check-returning-calls.
P (X);
-- CFR.Check here, with -fno-hardcfr-check-returning-calls.
return;
@end example
or:
@example
-- CFR.Check here, with -fhardcfr-check-returning-calls.
R := F (X);
-- CFR.Check here, with -fno-hardcfr-check-returning-calls.
return R;
@end example
Any subprogram from which an exception may escape, i.e., that may
raise or propagate an exception that isn’t handled internally, is
conceptually enclosed by a cleanup handler that performs verification,
unless this is disabled with @code{-fno-hardcfr-check-exceptions}.
With this feature enabled, a subprogram body containing:
@example
-- ...
Y := F (X); -- May raise exceptions.
-- ...
raise E; -- Not handled internally.
-- ...
@end example
gets modified as follows:
@example
begin
-- ...
Y := F (X); -- May raise exceptions.
-- ...
raise E; -- Not handled internally.
-- ...
exception
when others =>
CFR.Check (N, Visited'Access, CFG'Access);
raise;
end;
@end example
Verification may also be performed before No_Return calls, whether all
of them, with @code{-fhardcfr-check-noreturn-calls=always}; all but
internal subprograms involved in exception-raising or -reraising or
subprograms explicitly marked with both @code{No_Return} and
@code{Machine_Attribute} @code{expected_throw} pragmas, with
@code{-fhardcfr-check-noreturn-calls=no-xthrow} (default); only
nothrow ones, with @code{-fhardcfr-check-noreturn-calls=nothrow};
or none, with @code{-fhardcfr-check-noreturn-calls=never}.
When a No_Return call returns control to its caller through an
exception, verification may have already been performed before the
call, if @code{-fhardcfr-check-noreturn-calls=always} or
@code{-fhardcfr-check-noreturn-calls=no-xthrow} is in effect. The
compiler arranges for already-checked No_Return calls without a
preexisting handler to bypass the implicitly-added cleanup handler and
thus the redundant check, but a local exception or cleanup handler, if
present, will modify the set of visited blocks, and checking will take
place again when the caller reaches the next verification point,
whether it is a return or reraise statement after the exception is
otherwise handled, or even another No_Return call.
The instrumentation for hardening with control flow redundancy can be
observed in dump files generated by the command-line option
@code{-fdump-tree-hardcfr}.
For more details on the control flow redundancy command-line options,
see @cite{Using the GNU Compiler Collection (GCC)}. These options
can be used with other programming languages supported by GCC.
@node Obsolescent Features,Compatibility and Porting Guide,Security Hardening Features,Top
@anchor{gnat_rm/obsolescent_features doc}@anchor{458}@anchor{gnat_rm/obsolescent_features id1}@anchor{459}@anchor{gnat_rm/obsolescent_features obsolescent-features}@anchor{16}
@chapter Obsolescent Features
This chapter describes features that are provided by GNAT, but are
considered obsolescent since there are preferred ways of achieving
the same effect. These features are provided solely for historical
compatibility purposes.
@menu
* pragma No_Run_Time::
* pragma Ravenscar::
* pragma Restricted_Run_Time::
* pragma Task_Info::
* package System.Task_Info (s-tasinf.ads): package System Task_Info s-tasinf ads.
@end menu
@node pragma No_Run_Time,pragma Ravenscar,,Obsolescent Features
@anchor{gnat_rm/obsolescent_features id2}@anchor{45a}@anchor{gnat_rm/obsolescent_features pragma-no-run-time}@anchor{45b}
@section pragma No_Run_Time
The pragma @code{No_Run_Time} is used to achieve an affect similar
to the use of the “Zero Foot Print” configurable run time, but without
requiring a specially configured run time. The result of using this
pragma, which must be used for all units in a partition, is to restrict
the use of any language features requiring run-time support code. The
preferred usage is to use an appropriately configured run-time that
includes just those features that are to be made accessible.
@node pragma Ravenscar,pragma Restricted_Run_Time,pragma No_Run_Time,Obsolescent Features
@anchor{gnat_rm/obsolescent_features id3}@anchor{45c}@anchor{gnat_rm/obsolescent_features pragma-ravenscar}@anchor{45d}
@section pragma Ravenscar
The pragma @code{Ravenscar} has exactly the same effect as pragma
@code{Profile (Ravenscar)}. The latter usage is preferred since it
is part of the new Ada 2005 standard.
@node pragma Restricted_Run_Time,pragma Task_Info,pragma Ravenscar,Obsolescent Features
@anchor{gnat_rm/obsolescent_features id4}@anchor{45e}@anchor{gnat_rm/obsolescent_features pragma-restricted-run-time}@anchor{45f}
@section pragma Restricted_Run_Time
The pragma @code{Restricted_Run_Time} has exactly the same effect as
pragma @code{Profile (Restricted)}. The latter usage is
preferred since the Ada 2005 pragma @code{Profile} is intended for
this kind of implementation dependent addition.
@node pragma Task_Info,package System Task_Info s-tasinf ads,pragma Restricted_Run_Time,Obsolescent Features
@anchor{gnat_rm/obsolescent_features id5}@anchor{460}@anchor{gnat_rm/obsolescent_features pragma-task-info}@anchor{461}
@section pragma Task_Info
The functionality provided by pragma @code{Task_Info} is now part of the
Ada language. The @code{CPU} aspect and the package
@code{System.Multiprocessors} offer a less system-dependent way to specify
task affinity or to query the number of processors.
Syntax
@example
pragma Task_Info (EXPRESSION);
@end example
This pragma appears within a task definition (like pragma
@code{Priority}) and applies to the task in which it appears. The
argument must be of type @code{System.Task_Info.Task_Info_Type}.
The @code{Task_Info} pragma provides system dependent control over
aspects of tasking implementation, for example, the ability to map
tasks to specific processors. For details on the facilities available
for the version of GNAT that you are using, see the documentation
in the spec of package System.Task_Info in the runtime
library.
@node package System Task_Info s-tasinf ads,,pragma Task_Info,Obsolescent Features
@anchor{gnat_rm/obsolescent_features package-system-task-info}@anchor{462}@anchor{gnat_rm/obsolescent_features package-system-task-info-s-tasinf-ads}@anchor{463}
@section package System.Task_Info (@code{s-tasinf.ads})
This package provides target dependent functionality that is used
to support the @code{Task_Info} pragma. The predefined Ada package
@code{System.Multiprocessors} and the @code{CPU} aspect now provide a
standard replacement for GNAT’s @code{Task_Info} functionality.
@node Compatibility and Porting Guide,GNU Free Documentation License,Obsolescent Features,Top
@anchor{gnat_rm/compatibility_and_porting_guide doc}@anchor{464}@anchor{gnat_rm/compatibility_and_porting_guide compatibility-and-porting-guide}@anchor{17}@anchor{gnat_rm/compatibility_and_porting_guide id1}@anchor{465}
@chapter Compatibility and Porting Guide
This chapter presents some guidelines for developing portable Ada code,
describes the compatibility issues that may arise between
GNAT and other Ada compilation systems (including those for Ada 83),
and shows how GNAT can expedite porting
applications developed in other Ada environments.
@menu
* Writing Portable Fixed-Point Declarations::
* Compatibility with Ada 83::
* Compatibility between Ada 95 and Ada 2005::
* Implementation-dependent characteristics::
* Compatibility with Other Ada Systems::
* Representation Clauses::
* Compatibility with HP Ada 83::
@end menu
@node Writing Portable Fixed-Point Declarations,Compatibility with Ada 83,,Compatibility and Porting Guide
@anchor{gnat_rm/compatibility_and_porting_guide id2}@anchor{466}@anchor{gnat_rm/compatibility_and_porting_guide writing-portable-fixed-point-declarations}@anchor{467}
@section Writing Portable Fixed-Point Declarations
The Ada Reference Manual gives an implementation freedom to choose bounds
that are narrower by @code{Small} from the given bounds.
For example, if we write
@example
type F1 is delta 1.0 range -128.0 .. +128.0;
@end example
then the implementation is allowed to choose -128.0 .. +127.0 if it
likes, but is not required to do so.
This leads to possible portability problems, so let’s have a closer
look at this, and figure out how to avoid these problems.
First, why does this freedom exist, and why would an implementation
take advantage of it? To answer this, take a closer look at the type
declaration for @code{F1} above. If the compiler uses the given bounds,
it would need 9 bits to hold the largest positive value (and typically
that means 16 bits on all machines). But if the implementation chooses
the +127.0 bound then it can fit values of the type in 8 bits.
Why not make the user write +127.0 if that’s what is wanted?
The rationale is that if you are thinking of fixed point
as a kind of ‘poor man’s floating-point’, then you don’t want
to be thinking about the scaled integers that are used in its
representation. Let’s take another example:
@example
type F2 is delta 2.0**(-15) range -1.0 .. +1.0;
@end example
Looking at this declaration, it seems casually as though
it should fit in 16 bits, but again that extra positive value
+1.0 has the scaled integer equivalent of 2**15 which is one too
big for signed 16 bits. The implementation can treat this as:
@example
type F2 is delta 2.0**(-15) range -1.0 .. +1.0-(2.0**(-15));
@end example
and the Ada language design team felt that this was too annoying
to require. We don’t need to debate this decision at this point,
since it is well established (the rule about narrowing the ranges
dates to Ada 83).
But the important point is that an implementation is not required
to do this narrowing, so we have a potential portability problem.
We could imagine three types of implementation:
@enumerate a
@item
those that narrow the range automatically if they can figure
out that the narrower range will allow storage in a smaller machine unit,
@item
those that will narrow only if forced to by a @code{'Size} clause, and
@item
those that will never narrow.
@end enumerate
Now if we are language theoreticians, we can imagine a fourth
approach: to narrow all the time, e.g. to treat
@example
type F3 is delta 1.0 range -10.0 .. +23.0;
@end example
as though it had been written:
@example
type F3 is delta 1.0 range -9.0 .. +22.0;
@end example
But although technically allowed, such a behavior would be hostile and silly,
and no real compiler would do this. All real compilers will fall into one of
the categories (a), (b) or (c) above.
So, how do you get the compiler to do what you want? The answer is give the
actual bounds you want, and then use a @code{'Small} clause and a
@code{'Size} clause to absolutely pin down what the compiler does.
E.g., for @code{F2} above, we will write:
@example
My_Small : constant := 2.0**(-15);
My_First : constant := -1.0;
My_Last : constant := +1.0 - My_Small;
type F2 is delta My_Small range My_First .. My_Last;
@end example
and then add
@example
for F2'Small use my_Small;
for F2'Size use 16;
@end example
In practice all compilers will do the same thing here and will give you
what you want, so the above declarations are fully portable. If you really
want to play language lawyer and guard against ludicrous behavior by the
compiler you could add
@example
Test1 : constant := 1 / Boolean'Pos (F2'First = My_First);
Test2 : constant := 1 / Boolean'Pos (F2'Last = My_Last);
@end example
One or other or both are allowed to be illegal if the compiler is
behaving in a silly manner, but at least the silly compiler will not
get away with silently messing with your (very clear) intentions.
If you follow this scheme you will be guaranteed that your fixed-point
types will be portable.
@node Compatibility with Ada 83,Compatibility between Ada 95 and Ada 2005,Writing Portable Fixed-Point Declarations,Compatibility and Porting Guide
@anchor{gnat_rm/compatibility_and_porting_guide compatibility-with-ada-83}@anchor{468}@anchor{gnat_rm/compatibility_and_porting_guide id3}@anchor{469}
@section Compatibility with Ada 83
@geindex Compatibility (between Ada 83 and Ada 95 / Ada 2005 / Ada 2012)
Ada 95 and the subsequent revisions Ada 2005 and Ada 2012
are highly upwards compatible with Ada 83. In
particular, the design intention was that the difficulties associated
with moving from Ada 83 to later versions of the standard should be no greater
than those that occur when moving from one Ada 83 system to another.
However, there are a number of points at which there are minor
incompatibilities. The @cite{Ada 95 Annotated Reference Manual} contains
full details of these issues as they relate to Ada 95,
and should be consulted for a complete treatment.
In practice the
following subsections treat the most likely issues to be encountered.
@menu
* Legal Ada 83 programs that are illegal in Ada 95::
* More deterministic semantics::
* Changed semantics::
* Other language compatibility issues::
@end menu
@node Legal Ada 83 programs that are illegal in Ada 95,More deterministic semantics,,Compatibility with Ada 83
@anchor{gnat_rm/compatibility_and_porting_guide id4}@anchor{46a}@anchor{gnat_rm/compatibility_and_porting_guide legal-ada-83-programs-that-are-illegal-in-ada-95}@anchor{46b}
@subsection Legal Ada 83 programs that are illegal in Ada 95
Some legal Ada 83 programs are illegal (i.e., they will fail to compile) in
Ada 95 and later versions of the standard:
@itemize *
@item
`Character literals'
Some uses of character literals are ambiguous. Since Ada 95 has introduced
@code{Wide_Character} as a new predefined character type, some uses of
character literals that were legal in Ada 83 are illegal in Ada 95.
For example:
@example
for Char in 'A' .. 'Z' loop ... end loop;
@end example
The problem is that ‘A’ and ‘Z’ could be from either
@code{Character} or @code{Wide_Character}. The simplest correction
is to make the type explicit; e.g.:
@example
for Char in Character range 'A' .. 'Z' loop ... end loop;
@end example
@item
`New reserved words'
The identifiers @code{abstract}, @code{aliased}, @code{protected},
@code{requeue}, @code{tagged}, and @code{until} are reserved in Ada 95.
Existing Ada 83 code using any of these identifiers must be edited to
use some alternative name.
@item
`Freezing rules'
The rules in Ada 95 are slightly different with regard to the point at
which entities are frozen, and representation pragmas and clauses are
not permitted past the freeze point. This shows up most typically in
the form of an error message complaining that a representation item
appears too late, and the appropriate corrective action is to move
the item nearer to the declaration of the entity to which it refers.
A particular case is that representation pragmas
cannot be applied to a subprogram body. If necessary, a separate subprogram
declaration must be introduced to which the pragma can be applied.
@item
`Optional bodies for library packages'
In Ada 83, a package that did not require a package body was nevertheless
allowed to have one. This lead to certain surprises in compiling large
systems (situations in which the body could be unexpectedly ignored by the
binder). In Ada 95, if a package does not require a body then it is not
permitted to have a body. To fix this problem, simply remove a redundant
body if it is empty, or, if it is non-empty, introduce a dummy declaration
into the spec that makes the body required. One approach is to add a private
part to the package declaration (if necessary), and define a parameterless
procedure called @code{Requires_Body}, which must then be given a dummy
procedure body in the package body, which then becomes required.
Another approach (assuming that this does not introduce elaboration
circularities) is to add an @code{Elaborate_Body} pragma to the package spec,
since one effect of this pragma is to require the presence of a package body.
@item
`Numeric_Error is the same exception as Constraint_Error'
In Ada 95, the exception @code{Numeric_Error} is a renaming of @code{Constraint_Error}.
This means that it is illegal to have separate exception handlers for
the two exceptions. The fix is simply to remove the handler for the
@code{Numeric_Error} case (since even in Ada 83, a compiler was free to raise
@code{Constraint_Error} in place of @code{Numeric_Error} in all cases).
@item
`Indefinite subtypes in generics'
In Ada 83, it was permissible to pass an indefinite type (e.g, @code{String})
as the actual for a generic formal private type, but then the instantiation
would be illegal if there were any instances of declarations of variables
of this type in the generic body. In Ada 95, to avoid this clear violation
of the methodological principle known as the ‘contract model’,
the generic declaration explicitly indicates whether
or not such instantiations are permitted. If a generic formal parameter
has explicit unknown discriminants, indicated by using @code{(<>)} after the
subtype name, then it can be instantiated with indefinite types, but no
stand-alone variables can be declared of this type. Any attempt to declare
such a variable will result in an illegality at the time the generic is
declared. If the @code{(<>)} notation is not used, then it is illegal
to instantiate the generic with an indefinite type.
This is the potential incompatibility issue when porting Ada 83 code to Ada 95.
It will show up as a compile time error, and
the fix is usually simply to add the @code{(<>)} to the generic declaration.
@end itemize
@node More deterministic semantics,Changed semantics,Legal Ada 83 programs that are illegal in Ada 95,Compatibility with Ada 83
@anchor{gnat_rm/compatibility_and_porting_guide id5}@anchor{46c}@anchor{gnat_rm/compatibility_and_porting_guide more-deterministic-semantics}@anchor{46d}
@subsection More deterministic semantics
@itemize *
@item
`Conversions'
Conversions from real types to integer types round away from 0. In Ada 83
the conversion Integer(2.5) could deliver either 2 or 3 as its value. This
implementation freedom was intended to support unbiased rounding in
statistical applications, but in practice it interfered with portability.
In Ada 95 the conversion semantics are unambiguous, and rounding away from 0
is required. Numeric code may be affected by this change in semantics.
Note, though, that this issue is no worse than already existed in Ada 83
when porting code from one vendor to another.
@item
`Tasking'
The Real-Time Annex introduces a set of policies that define the behavior of
features that were implementation dependent in Ada 83, such as the order in
which open select branches are executed.
@end itemize
@node Changed semantics,Other language compatibility issues,More deterministic semantics,Compatibility with Ada 83
@anchor{gnat_rm/compatibility_and_porting_guide changed-semantics}@anchor{46e}@anchor{gnat_rm/compatibility_and_porting_guide id6}@anchor{46f}
@subsection Changed semantics
The worst kind of incompatibility is one where a program that is legal in
Ada 83 is also legal in Ada 95 but can have an effect in Ada 95 that was not
possible in Ada 83. Fortunately this is extremely rare, but the one
situation that you should be alert to is the change in the predefined type
@code{Character} from 7-bit ASCII to 8-bit Latin-1.
@quotation
@geindex Latin-1
@end quotation
@itemize *
@item
`Range of type `@w{`}Character`@w{`}'
The range of @code{Standard.Character} is now the full 256 characters
of Latin-1, whereas in most Ada 83 implementations it was restricted
to 128 characters. Although some of the effects of
this change will be manifest in compile-time rejection of legal
Ada 83 programs it is possible for a working Ada 83 program to have
a different effect in Ada 95, one that was not permitted in Ada 83.
As an example, the expression
@code{Character'Pos(Character'Last)} returned @code{127} in Ada 83 and now
delivers @code{255} as its value.
In general, you should look at the logic of any
character-processing Ada 83 program and see whether it needs to be adapted
to work correctly with Latin-1. Note that the predefined Ada 95 API has a
character handling package that may be relevant if code needs to be adapted
to account for the additional Latin-1 elements.
The desirable fix is to
modify the program to accommodate the full character set, but in some cases
it may be convenient to define a subtype or derived type of Character that
covers only the restricted range.
@end itemize
@node Other language compatibility issues,,Changed semantics,Compatibility with Ada 83
@anchor{gnat_rm/compatibility_and_porting_guide id7}@anchor{470}@anchor{gnat_rm/compatibility_and_porting_guide other-language-compatibility-issues}@anchor{471}
@subsection Other language compatibility issues
@itemize *
@item
`-gnat83' switch
All implementations of GNAT provide a switch that causes GNAT to operate
in Ada 83 mode. In this mode, some but not all compatibility problems
of the type described above are handled automatically. For example, the
new reserved words introduced in Ada 95 and Ada 2005 are treated simply
as identifiers as in Ada 83. However,
in practice, it is usually advisable to make the necessary modifications
to the program to remove the need for using this switch.
See the @code{Compiling Different Versions of Ada} section in
the @cite{GNAT User’s Guide}.
@item
Support for removed Ada 83 pragmas and attributes
A number of pragmas and attributes from Ada 83 were removed from Ada 95,
generally because they were replaced by other mechanisms. Ada 95 and Ada 2005
compilers are allowed, but not required, to implement these missing
elements. In contrast with some other compilers, GNAT implements all
such pragmas and attributes, eliminating this compatibility concern. These
include @code{pragma Interface} and the floating point type attributes
(@code{Emax}, @code{Mantissa}, etc.), among other items.
@end itemize
@node Compatibility between Ada 95 and Ada 2005,Implementation-dependent characteristics,Compatibility with Ada 83,Compatibility and Porting Guide
@anchor{gnat_rm/compatibility_and_porting_guide compatibility-between-ada-95-and-ada-2005}@anchor{472}@anchor{gnat_rm/compatibility_and_porting_guide id8}@anchor{473}
@section Compatibility between Ada 95 and Ada 2005
@geindex Compatibility between Ada 95 and Ada 2005
Although Ada 2005 was designed to be upwards compatible with Ada 95, there are
a number of incompatibilities. Several are enumerated below;
for a complete description please see the
@cite{Annotated Ada 2005 Reference Manual}, or section 9.1.1 in
@cite{Rationale for Ada 2005}.
@itemize *
@item
`New reserved words.'
The words @code{interface}, @code{overriding} and @code{synchronized} are
reserved in Ada 2005.
A pre-Ada 2005 program that uses any of these as an identifier will be
illegal.
@item
`New declarations in predefined packages.'
A number of packages in the predefined environment contain new declarations:
@code{Ada.Exceptions}, @code{Ada.Real_Time}, @code{Ada.Strings},
@code{Ada.Strings.Fixed}, @code{Ada.Strings.Bounded},
@code{Ada.Strings.Unbounded}, @code{Ada.Strings.Wide_Fixed},
@code{Ada.Strings.Wide_Bounded}, @code{Ada.Strings.Wide_Unbounded},
@code{Ada.Tags}, @code{Ada.Text_IO}, and @code{Interfaces.C}.
If an Ada 95 program does a @code{with} and @code{use} of any of these
packages, the new declarations may cause name clashes.
@item
`Access parameters.'
A nondispatching subprogram with an access parameter cannot be renamed
as a dispatching operation. This was permitted in Ada 95.
@item
`Access types, discriminants, and constraints.'
Rule changes in this area have led to some incompatibilities; for example,
constrained subtypes of some access types are not permitted in Ada 2005.
@item
`Aggregates for limited types.'
The allowance of aggregates for limited types in Ada 2005 raises the
possibility of ambiguities in legal Ada 95 programs, since additional types
now need to be considered in expression resolution.
@item
`Fixed-point multiplication and division.'
Certain expressions involving ‘*’ or ‘/’ for a fixed-point type, which
were legal in Ada 95 and invoked the predefined versions of these operations,
are now ambiguous.
The ambiguity may be resolved either by applying a type conversion to the
expression, or by explicitly invoking the operation from package
@code{Standard}.
@item
`Return-by-reference types.'
The Ada 95 return-by-reference mechanism has been removed. Instead, the user
can declare a function returning a value from an anonymous access type.
@end itemize
@node Implementation-dependent characteristics,Compatibility with Other Ada Systems,Compatibility between Ada 95 and Ada 2005,Compatibility and Porting Guide
@anchor{gnat_rm/compatibility_and_porting_guide id9}@anchor{474}@anchor{gnat_rm/compatibility_and_porting_guide implementation-dependent-characteristics}@anchor{475}
@section Implementation-dependent characteristics
Although the Ada language defines the semantics of each construct as
precisely as practical, in some situations (for example for reasons of
efficiency, or where the effect is heavily dependent on the host or target
platform) the implementation is allowed some freedom. In porting Ada 83
code to GNAT, you need to be aware of whether / how the existing code
exercised such implementation dependencies. Such characteristics fall into
several categories, and GNAT offers specific support in assisting the
transition from certain Ada 83 compilers.
@menu
* Implementation-defined pragmas::
* Implementation-defined attributes::
* Libraries::
* Elaboration order::
* Target-specific aspects::
@end menu
@node Implementation-defined pragmas,Implementation-defined attributes,,Implementation-dependent characteristics
@anchor{gnat_rm/compatibility_and_porting_guide id10}@anchor{476}@anchor{gnat_rm/compatibility_and_porting_guide implementation-defined-pragmas}@anchor{477}
@subsection Implementation-defined pragmas
Ada compilers are allowed to supplement the language-defined pragmas, and
these are a potential source of non-portability. All GNAT-defined pragmas
are described in @ref{7,,Implementation Defined Pragmas},
and these include several that are specifically
intended to correspond to other vendors’ Ada 83 pragmas.
For migrating from VADS, the pragma @code{Use_VADS_Size} may be useful.
For compatibility with HP Ada 83, GNAT supplies the pragmas
@code{Extend_System}, @code{Ident}, @code{Inline_Generic},
@code{Interface_Name}, @code{Passive}, @code{Suppress_All},
and @code{Volatile}.
Other relevant pragmas include @code{External} and @code{Link_With}.
Some vendor-specific
Ada 83 pragmas (@code{Share_Generic}, @code{Subtitle}, and @code{Title}) are
recognized, thus
avoiding compiler rejection of units that contain such pragmas; they are not
relevant in a GNAT context and hence are not otherwise implemented.
@node Implementation-defined attributes,Libraries,Implementation-defined pragmas,Implementation-dependent characteristics
@anchor{gnat_rm/compatibility_and_porting_guide id11}@anchor{478}@anchor{gnat_rm/compatibility_and_porting_guide implementation-defined-attributes}@anchor{479}
@subsection Implementation-defined attributes
Analogous to pragmas, the set of attributes may be extended by an
implementation. All GNAT-defined attributes are described in
@ref{8,,Implementation Defined Attributes},
and these include several that are specifically intended
to correspond to other vendors’ Ada 83 attributes. For migrating from VADS,
the attribute @code{VADS_Size} may be useful. For compatibility with HP
Ada 83, GNAT supplies the attributes @code{Bit}, @code{Machine_Size} and
@code{Type_Class}.
@node Libraries,Elaboration order,Implementation-defined attributes,Implementation-dependent characteristics
@anchor{gnat_rm/compatibility_and_porting_guide id12}@anchor{47a}@anchor{gnat_rm/compatibility_and_porting_guide libraries}@anchor{47b}
@subsection Libraries
Vendors may supply libraries to supplement the standard Ada API. If Ada 83
code uses vendor-specific libraries then there are several ways to manage
this in Ada 95 and later versions of the standard:
@itemize *
@item
If the source code for the libraries (specs and bodies) are
available, then the libraries can be migrated in the same way as the
application.
@item
If the source code for the specs but not the bodies are
available, then you can reimplement the bodies.
@item
Some features introduced by Ada 95 obviate the need for library support. For
example most Ada 83 vendors supplied a package for unsigned integers. The
Ada 95 modular type feature is the preferred way to handle this need, so
instead of migrating or reimplementing the unsigned integer package it may
be preferable to retrofit the application using modular types.
@end itemize
@node Elaboration order,Target-specific aspects,Libraries,Implementation-dependent characteristics
@anchor{gnat_rm/compatibility_and_porting_guide elaboration-order}@anchor{47c}@anchor{gnat_rm/compatibility_and_porting_guide id13}@anchor{47d}
@subsection Elaboration order
The implementation can choose any elaboration order consistent with the unit
dependency relationship. This freedom means that some orders can result in
Program_Error being raised due to an ‘Access Before Elaboration’: an attempt
to invoke a subprogram before its body has been elaborated, or to instantiate
a generic before the generic body has been elaborated. By default GNAT
attempts to choose a safe order (one that will not encounter access before
elaboration problems) by implicitly inserting @code{Elaborate} or
@code{Elaborate_All} pragmas where
needed. However, this can lead to the creation of elaboration circularities
and a resulting rejection of the program by gnatbind. This issue is
thoroughly described in the `Elaboration Order Handling in GNAT' appendix
in the @cite{GNAT User’s Guide}.
In brief, there are several
ways to deal with this situation:
@itemize *
@item
Modify the program to eliminate the circularities, e.g., by moving
elaboration-time code into explicitly-invoked procedures
@item
Constrain the elaboration order by including explicit @code{Elaborate_Body} or
@code{Elaborate} pragmas, and then inhibit the generation of implicit
@code{Elaborate_All}
pragmas either globally (as an effect of the `-gnatE' switch) or locally
(by selectively suppressing elaboration checks via pragma
@code{Suppress(Elaboration_Check)} when it is safe to do so).
@end itemize
@node Target-specific aspects,,Elaboration order,Implementation-dependent characteristics
@anchor{gnat_rm/compatibility_and_porting_guide id14}@anchor{47e}@anchor{gnat_rm/compatibility_and_porting_guide target-specific-aspects}@anchor{47f}
@subsection Target-specific aspects
Low-level applications need to deal with machine addresses, data
representations, interfacing with assembler code, and similar issues. If
such an Ada 83 application is being ported to different target hardware (for
example where the byte endianness has changed) then you will need to
carefully examine the program logic; the porting effort will heavily depend
on the robustness of the original design. Moreover, Ada 95 (and thus
Ada 2005 and Ada 2012) are sometimes
incompatible with typical Ada 83 compiler practices regarding implicit
packing, the meaning of the Size attribute, and the size of access values.
GNAT’s approach to these issues is described in @ref{480,,Representation Clauses}.
@node Compatibility with Other Ada Systems,Representation Clauses,Implementation-dependent characteristics,Compatibility and Porting Guide
@anchor{gnat_rm/compatibility_and_porting_guide compatibility-with-other-ada-systems}@anchor{481}@anchor{gnat_rm/compatibility_and_porting_guide id15}@anchor{482}
@section Compatibility with Other Ada Systems
If programs avoid the use of implementation dependent and
implementation defined features, as documented in the
@cite{Ada Reference Manual}, there should be a high degree of portability between
GNAT and other Ada systems. The following are specific items which
have proved troublesome in moving Ada 95 programs from GNAT to other Ada 95
compilers, but do not affect porting code to GNAT.
(As of January 2007, GNAT is the only compiler available for Ada 2005;
the following issues may or may not arise for Ada 2005 programs
when other compilers appear.)
@itemize *
@item
`Ada 83 Pragmas and Attributes'
Ada 95 compilers are allowed, but not required, to implement the missing
Ada 83 pragmas and attributes that are no longer defined in Ada 95.
GNAT implements all such pragmas and attributes, eliminating this as
a compatibility concern, but some other Ada 95 compilers reject these
pragmas and attributes.
@item
`Specialized Needs Annexes'
GNAT implements the full set of special needs annexes. At the
current time, it is the only Ada 95 compiler to do so. This means that
programs making use of these features may not be portable to other Ada
95 compilation systems.
@item
`Representation Clauses'
Some other Ada 95 compilers implement only the minimal set of
representation clauses required by the Ada 95 reference manual. GNAT goes
far beyond this minimal set, as described in the next section.
@end itemize
@node Representation Clauses,Compatibility with HP Ada 83,Compatibility with Other Ada Systems,Compatibility and Porting Guide
@anchor{gnat_rm/compatibility_and_porting_guide id16}@anchor{483}@anchor{gnat_rm/compatibility_and_porting_guide representation-clauses}@anchor{480}
@section Representation Clauses
The Ada 83 reference manual was quite vague in describing both the minimal
required implementation of representation clauses, and also their precise
effects. Ada 95 (and thus also Ada 2005) are much more explicit, but the
minimal set of capabilities required is still quite limited.
GNAT implements the full required set of capabilities in
Ada 95 and Ada 2005, but also goes much further, and in particular
an effort has been made to be compatible with existing Ada 83 usage to the
greatest extent possible.
A few cases exist in which Ada 83 compiler behavior is incompatible with
the requirements in Ada 95 (and thus also Ada 2005). These are instances of
intentional or accidental dependence on specific implementation dependent
characteristics of these Ada 83 compilers. The following is a list of
the cases most likely to arise in existing Ada 83 code.
@itemize *
@item
`Implicit Packing'
Some Ada 83 compilers allowed a Size specification to cause implicit
packing of an array or record. This could cause expensive implicit
conversions for change of representation in the presence of derived
types, and the Ada design intends to avoid this possibility.
Subsequent AI’s were issued to make it clear that such implicit
change of representation in response to a Size clause is inadvisable,
and this recommendation is represented explicitly in the Ada 95 (and Ada 2005)
Reference Manuals as implementation advice that is followed by GNAT.
The problem will show up as an error
message rejecting the size clause. The fix is simply to provide
the explicit pragma @code{Pack}, or for more fine tuned control, provide
a Component_Size clause.
@item
`Meaning of Size Attribute'
The Size attribute in Ada 95 (and Ada 2005) for discrete types is defined as
the minimal number of bits required to hold values of the type. For example,
on a 32-bit machine, the size of @code{Natural} will typically be 31 and not
32 (since no sign bit is required). Some Ada 83 compilers gave 31, and
some 32 in this situation. This problem will usually show up as a compile
time error, but not always. It is a good idea to check all uses of the
‘Size attribute when porting Ada 83 code. The GNAT specific attribute
Object_Size can provide a useful way of duplicating the behavior of
some Ada 83 compiler systems.
@item
`Size of Access Types'
A common assumption in Ada 83 code is that an access type is in fact a pointer,
and that therefore it will be the same size as a System.Address value. This
assumption is true for GNAT in most cases with one exception. For the case of
a pointer to an unconstrained array type (where the bounds may vary from one
value of the access type to another), the default is to use a ‘fat pointer’,
which is represented as two separate pointers, one to the bounds, and one to
the array. This representation has a number of advantages, including improved
efficiency. However, it may cause some difficulties in porting existing Ada 83
code which makes the assumption that, for example, pointers fit in 32 bits on
a machine with 32-bit addressing.
To get around this problem, GNAT also permits the use of ‘thin pointers’ for
access types in this case (where the designated type is an unconstrained array
type). These thin pointers are indeed the same size as a System.Address value.
To specify a thin pointer, use a size clause for the type, for example:
@example
type X is access all String;
for X'Size use Standard'Address_Size;
@end example
which will cause the type X to be represented using a single pointer.
When using this representation, the bounds are right behind the array.
This representation is slightly less efficient, and does not allow quite
such flexibility in the use of foreign pointers or in using the
Unrestricted_Access attribute to create pointers to non-aliased objects.
But for any standard portable use of the access type it will work in
a functionally correct manner and allow porting of existing code.
Note that another way of forcing a thin pointer representation
is to use a component size clause for the element size in an array,
or a record representation clause for an access field in a record.
See the documentation of Unrestricted_Access in the GNAT RM for a
full discussion of possible problems using this attribute in conjunction
with thin pointers.
@end itemize
@node Compatibility with HP Ada 83,,Representation Clauses,Compatibility and Porting Guide
@anchor{gnat_rm/compatibility_and_porting_guide compatibility-with-hp-ada-83}@anchor{484}@anchor{gnat_rm/compatibility_and_porting_guide id17}@anchor{485}
@section Compatibility with HP Ada 83
All the HP Ada 83 pragmas and attributes are recognized, although only a subset
of them can sensibly be implemented. The description of pragmas in
@ref{7,,Implementation Defined Pragmas} indicates whether or not they are
applicable to GNAT.
@itemize *
@item
`Default floating-point representation'
In GNAT, the default floating-point format is IEEE, whereas in HP Ada 83,
it is VMS format.
@item
`System'
the package System in GNAT exactly corresponds to the definition in the
Ada 95 reference manual, which means that it excludes many of the
HP Ada 83 extensions. However, a separate package Aux_DEC is provided
that contains the additional definitions, and a special pragma,
Extend_System allows this package to be treated transparently as an
extension of package System.
@end itemize
@node GNU Free Documentation License,Index,Compatibility and Porting Guide,Top
@anchor{share/gnu_free_documentation_license doc}@anchor{486}@anchor{share/gnu_free_documentation_license gnu-fdl}@anchor{1}@anchor{share/gnu_free_documentation_license gnu-free-documentation-license}@anchor{487}
@chapter GNU Free Documentation License
Version 1.3, 3 November 2008
Copyright 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc
@indicateurl{https://fsf.org/}
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
`Preamble'
The purpose of this License is to make a manual, textbook, or other
functional and useful document “free” in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.
This License is a kind of “copyleft”, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.
`1. APPLICABILITY AND DEFINITIONS'
This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The `Document', below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “`you'”. You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.
A “`Modified Version'” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
A “`Secondary Section'” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.
The “`Invariant Sections'” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.
The “`Cover Texts'” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.
A “`Transparent'” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is called `Opaque'.
Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.
The “`Title Page'” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.
The “`publisher'” means any person or entity that distributes
copies of the Document to the public.
A section “`Entitled XYZ'” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “`Acknowledgements'”,
“`Dedications'”, “`Endorsements'”, or “`History'”.)
To “`Preserve the Title'”
of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.
`2. VERBATIM COPYING'
You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and
you may publicly display copies.
`3. COPYING IN QUANTITY'
If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.
If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.
`4. MODIFICATIONS'
You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:
@enumerate A
@item
Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.
@item
List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.
@item
State on the Title page the name of the publisher of the
Modified Version, as the publisher.
@item
Preserve all the copyright notices of the Document.
@item
Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.
@item
Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.
@item
Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.
@item
Include an unaltered copy of this License.
@item
Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.
@item
Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.
@item
For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.
@item
Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.
@item
Delete any section Entitled “Endorsements”. Such a section
may not be included in the Modified Version.
@item
Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.
@item
Preserve any Warranty Disclaimers.
@end enumerate
If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.
You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.
`5. COMBINING DOCUMENTS'
You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled
“History”; likewise combine any sections Entitled “Acknowledgements”,
and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.
`6. COLLECTIONS OF DOCUMENTS'
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.
`7. AGGREGATION WITH INDEPENDENT WORKS'
A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.
`8. TRANSLATION'
Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”,
“Dedications”, or “History”, the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.
`9. TERMINATION'
You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.
`10. FUTURE REVISIONS OF THIS LICENSE'
The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
@indicateurl{https://www.gnu.org/copyleft/}.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.
`11. RELICENSING'
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC
site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.
An MMC is “eligible for relicensing” if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.
`ADDENDUM: How to use this License for your documents'
To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:
@quotation
Copyright © YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU
Free Documentation License”.
@end quotation
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with … Texts.” line with this:
@quotation
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
@end quotation
If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.
@node Index,,GNU Free Documentation License,Top
@unnumbered Index
@printindex ge
@c %**end of body
@bye
|