aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/gcc-interface/decl.cc
blob: 456fe53737d4c4d7d6b82a60707a5370a92bed52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
/****************************************************************************
 *                                                                          *
 *                         GNAT COMPILER COMPONENTS                         *
 *                                                                          *
 *                                 D E C L                                  *
 *                                                                          *
 *                          C Implementation File                           *
 *                                                                          *
 *          Copyright (C) 1992-2023, Free Software Foundation, Inc.         *
 *                                                                          *
 * GNAT is free software;  you can  redistribute it  and/or modify it under *
 * terms of the  GNU General Public License as published  by the Free Soft- *
 * ware  Foundation;  either version 3,  or (at your option) any later ver- *
 * sion.  GNAT is distributed in the hope that it will be useful, but WITH- *
 * OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY *
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License *
 * for  more details.  You should have received a copy of the GNU General   *
 * Public License along with GCC; see the file COPYING3.  If not see        *
 * <http://www.gnu.org/licenses/>.                                          *
 *                                                                          *
 * GNAT was originally developed  by the GNAT team at  New York University. *
 * Extensive contributions were provided by Ada Core Technologies Inc.      *
 *                                                                          *
 ****************************************************************************/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "tree.h"
#include "gimple-expr.h"
#include "stringpool.h"
#include "diagnostic-core.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "tree-inline.h"
#include "demangle.h"

#include "ada.h"
#include "types.h"
#include "atree.h"
#include "elists.h"
#include "namet.h"
#include "nlists.h"
#include "repinfo.h"
#include "snames.h"
#include "uintp.h"
#include "urealp.h"
#include "fe.h"
#include "sinfo.h"
#include "einfo.h"
#include "ada-tree.h"
#include "gigi.h"

/* The "stdcall" convention is really supported on 32-bit x86/Windows only.
   The following macro is a helper to avoid having to check for a Windows
   specific attribute throughout this unit.  */

#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
#ifdef TARGET_64BIT
#define Has_Stdcall_Convention(E) \
  (!TARGET_64BIT && Convention (E) == Convention_Stdcall)
#else
#define Has_Stdcall_Convention(E) (Convention (E) == Convention_Stdcall)
#endif
#else
#define Has_Stdcall_Convention(E) 0
#endif

#define STDCALL_PREFIX "_imp__"

/* Stack realignment is necessary for functions with foreign conventions when
   the ABI doesn't mandate as much as what the compiler assumes - that is, up
   to PREFERRED_STACK_BOUNDARY.

   Such realignment can be requested with a dedicated function type attribute
   on the targets that support it.  We define FOREIGN_FORCE_REALIGN_STACK to
   characterize the situations where the attribute should be set.  We rely on
   compiler configuration settings for 'main' to decide.  */

#ifdef MAIN_STACK_BOUNDARY
#define FOREIGN_FORCE_REALIGN_STACK \
  (MAIN_STACK_BOUNDARY < PREFERRED_STACK_BOUNDARY)
#else
#define FOREIGN_FORCE_REALIGN_STACK 0
#endif

/* The largest TYPE_ARRAY_MAX_SIZE value we set on an array type.
   It's an artibrary limit (256 MB) above which we consider that
   the allocation is essentially unbounded.  */

#define TYPE_ARRAY_SIZE_LIMIT (1 << 28)

struct incomplete
{
  struct incomplete *next;
  tree old_type;
  Entity_Id full_type;
};

/* These variables are used to defer recursively expanding incomplete types
   while we are processing a record, an array or a subprogram type.  */
static int defer_incomplete_level = 0;
static struct incomplete *defer_incomplete_list;

/* This variable is used to delay expanding types coming from a limited with
   clause and completed Taft Amendment types until the end of the spec.  */
static struct incomplete *defer_limited_with_list;

typedef struct subst_pair_d {
  tree discriminant;
  tree replacement;
} subst_pair;


typedef struct variant_desc_d {
  /* The type of the variant.  */
  tree type;

  /* The associated field.  */
  tree field;

  /* The value of the qualifier.  */
  tree qual;

  /* The type of the variant after transformation.  */
  tree new_type;

  /* The auxiliary data.  */
  tree aux;
} variant_desc;


/* A map used to cache the result of annotate_value.  */
struct value_annotation_hasher : ggc_cache_ptr_hash<tree_int_map>
{
  static inline hashval_t
  hash (tree_int_map *m)
  {
    return htab_hash_pointer (m->base.from);
  }

  static inline bool
  equal (tree_int_map *a, tree_int_map *b)
  {
    return a->base.from == b->base.from;
  }

  static int
  keep_cache_entry (tree_int_map *&m)
  {
    return ggc_marked_p (m->base.from);
  }
};

static GTY ((cache)) hash_table<value_annotation_hasher> *annotate_value_cache;

/* A map used to associate a dummy type with a list of subprogram entities.  */
struct GTY((for_user)) tree_entity_vec_map
{
  struct tree_map_base base;
  vec<Entity_Id, va_gc_atomic> *to;
};

void
gt_pch_nx (Entity_Id &)
{
}

void
gt_pch_nx (Entity_Id *x, gt_pointer_operator op, void *cookie)
{
  op (x, NULL, cookie);
}

struct dummy_type_hasher : ggc_cache_ptr_hash<tree_entity_vec_map>
{
  static inline hashval_t
  hash (tree_entity_vec_map *m)
  {
    return htab_hash_pointer (m->base.from);
  }

  static inline bool
  equal (tree_entity_vec_map *a, tree_entity_vec_map *b)
  {
    return a->base.from == b->base.from;
  }

  static int
  keep_cache_entry (tree_entity_vec_map *&m)
  {
    return ggc_marked_p (m->base.from);
  }
};

static GTY ((cache)) hash_table<dummy_type_hasher> *dummy_to_subprog_map;

static void prepend_one_attribute (struct attrib **,
				   enum attrib_type, tree, tree, Node_Id);
static void prepend_one_attribute_pragma (struct attrib **, Node_Id);
static void prepend_attributes (struct attrib **, Entity_Id);
static tree elaborate_expression (Node_Id, Entity_Id, const char *, bool, bool,
				  bool);
static tree elaborate_expression_1 (tree, Entity_Id, const char *, bool, bool);
static tree elaborate_expression_2 (tree, Entity_Id, const char *, bool, bool,
				    unsigned int);
static tree elaborate_reference (tree, Entity_Id, bool, tree *);
static tree gnat_to_gnu_component_type (Entity_Id, bool, bool);
static tree gnat_to_gnu_subprog_type (Entity_Id, bool, bool, tree *);
static int adjust_packed (tree, tree, int);
static tree gnat_to_gnu_field (Entity_Id, tree, int, bool, bool);
static enum inline_status_t inline_status_for_subprog (Entity_Id);
static Entity_Id Gigi_Cloned_Subtype (Entity_Id);
static tree gnu_ext_name_for_subprog (Entity_Id, tree);
static void set_nonaliased_component_on_array_type (tree);
static void set_reverse_storage_order_on_array_type (tree);
static bool same_discriminant_p (Entity_Id, Entity_Id);
static bool array_type_has_nonaliased_component (tree, Entity_Id);
static bool compile_time_known_address_p (Node_Id);
static bool flb_cannot_be_superflat (Node_Id);
static bool range_cannot_be_superflat (Node_Id);
static bool constructor_address_p (tree);
static bool allocatable_size_p (tree, bool);
static bool initial_value_needs_conversion (tree, tree);
static tree update_n_elem (tree, tree, tree);
static int compare_field_bitpos (const void *, const void *);
static bool components_to_record (Node_Id, Entity_Id, tree, tree, int, bool,
				  bool, bool, bool, bool, bool, bool, tree,
				  tree *);
static Uint annotate_value (tree);
static void annotate_rep (Entity_Id, tree);
static tree build_position_list (tree, bool, tree, tree, unsigned int, tree);
static vec<subst_pair> build_subst_list (Entity_Id, Entity_Id, bool);
static vec<variant_desc> build_variant_list (tree, Node_Id, vec<subst_pair>,
					     vec<variant_desc>);
static tree maybe_saturate_size (tree, unsigned int align);
static tree validate_size (Uint, tree, Entity_Id, enum tree_code, bool, bool,
			   const char *, const char *);
static void set_rm_size (Uint, tree, Entity_Id);
static unsigned int validate_alignment (Uint, Entity_Id, unsigned int);
static unsigned int promote_object_alignment (tree, tree, Entity_Id);
static void check_ok_for_atomic_type (tree, Entity_Id, bool);
static bool type_for_atomic_builtin_p (tree);
static tree resolve_atomic_builtin (enum built_in_function, tree);
static tree create_field_decl_from (tree, tree, tree, tree, tree,
				    vec<subst_pair>);
static tree create_rep_part (tree, tree, tree);
static tree get_rep_part (tree);
static tree create_variant_part_from (tree, vec<variant_desc>, tree,
				      tree, vec<subst_pair>, bool);
static void copy_and_substitute_in_size (tree, tree, vec<subst_pair>);
static void copy_and_substitute_in_layout (Entity_Id, Entity_Id, tree, tree,
					   vec<subst_pair>, bool);
static tree associate_original_type_to_packed_array (tree, Entity_Id);
static const char *get_entity_char (Entity_Id);

/* The relevant constituents of a subprogram binding to a GCC builtin.  Used
   to pass around calls performing profile compatibility checks.  */

typedef struct {
  Entity_Id gnat_entity;  /* The Ada subprogram entity.  */
  tree ada_fntype;        /* The corresponding GCC type node.  */
  tree btin_fntype;       /* The GCC builtin function type node.  */
} intrin_binding_t;

static bool intrin_profiles_compatible_p (const intrin_binding_t *);

/* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada
   entity, return the equivalent GCC tree for that entity (a ..._DECL node)
   and associate the ..._DECL node with the input GNAT defining identifier.

   If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its
   initial value (in GCC tree form).  This is optional for a variable.  For
   a renamed entity, GNU_EXPR gives the object being renamed.

   DEFINITION is true if this call is intended for a definition.  This is used
   for separate compilation where it is necessary to know whether an external
   declaration or a definition must be created if the GCC equivalent was not
   created previously.  */

tree
gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, bool definition)
{
  /* The construct that declared the entity.  */
  const Node_Id gnat_decl = Declaration_Node (gnat_entity);
  /* The object that the entity renames, if any.  */
  const Entity_Id gnat_renamed_obj = Renamed_Object (gnat_entity);
  /* The kind of the entity.  */
  const Entity_Kind kind = Ekind (gnat_entity);
  /* True if this is a type.  */
  const bool is_type = IN (kind, Type_Kind);
  /* True if this is an artificial entity.  */
  const bool artificial_p = !Comes_From_Source (gnat_entity);
  /* True if debug info is requested for this entity.  */
  const bool debug_info_p = Needs_Debug_Info (gnat_entity);
  /* True if this entity is to be considered as imported.  */
  const bool imported_p
    = (Is_Imported (gnat_entity) && No (Address_Clause (gnat_entity)));
  /* True if this entity has a foreign convention.  */
  const bool foreign = Has_Foreign_Convention (gnat_entity);
  /* For a type, contains the equivalent GNAT node to be used in gigi.  */
  Entity_Id gnat_equiv_type = Empty;
  /* For a subtype, contains the GNAT node to be used  as cloned subtype.  */
  Entity_Id gnat_cloned_subtype = Empty;
  /* Temporary used to walk the GNAT tree.  */
  Entity_Id gnat_temp;
  /* Contains the GCC DECL node which is equivalent to the input GNAT node.
     This node will be associated with the GNAT node by calling at the end
     of the `switch' statement.  */
  tree gnu_decl = NULL_TREE;
  /* Contains the GCC type to be used for the GCC node.  */
  tree gnu_type = NULL_TREE;
  /* Contains the GCC size tree to be used for the GCC node.  */
  tree gnu_size = NULL_TREE;
  /* Contains the GCC name to be used for the GCC node.  */
  tree gnu_entity_name;
  /* True if we have already saved gnu_decl as a GNAT association.  This can
     also be used to purposely avoid making such an association but this use
     case ought not to be applied to types because it can break the deferral
     mechanism implemented for access types.  */
  bool saved = false;
  /* True if we incremented defer_incomplete_level.  */
  bool this_deferred = false;
  /* True if we incremented force_global.  */
  bool this_global = false;
  /* True if we should check to see if elaborated during processing.  */
  bool maybe_present = false;
  /* True if we made GNU_DECL and its type here.  */
  bool this_made_decl = false;
  /* Size and alignment of the GCC node, if meaningful.  */
  unsigned int esize = 0, align = 0;
  /* Contains the list of attributes directly attached to the entity.  */
  struct attrib *attr_list = NULL;

  /* Since a use of an itype is a definition, process it as such if it is in
     the main unit, except for E_Access_Subtype because it's actually a use
     of its base type, and for E_Class_Wide_Subtype with an Equivalent_Type
     because it's actually a use of the latter type.  */
  if (!definition
      && is_type
      && Is_Itype (gnat_entity)
      && Ekind (gnat_entity) != E_Access_Subtype
      && !(Ekind (gnat_entity) == E_Class_Wide_Subtype
	   && Present (Equivalent_Type (gnat_entity)))
      && !present_gnu_tree (gnat_entity)
      && In_Extended_Main_Code_Unit (gnat_entity))
    {
      /* Unless it's for an anonymous access type, whose scope is irrelevant,
	 ensure that we are in a subprogram mentioned in the Scope chain of
	 this entity, our current scope is global, or we encountered a task
	 or entry (where we can't currently accurately check scoping).  */
      if (Ekind (gnat_entity) == E_Anonymous_Access_Type
	  || !current_function_decl
	  || DECL_ELABORATION_PROC_P (current_function_decl))
	{
	  process_type (gnat_entity);
	  return get_gnu_tree (gnat_entity);
	}

      for (gnat_temp = Scope (gnat_entity);
	   Present (gnat_temp);
	   gnat_temp = Scope (gnat_temp))
	{
	  if (Is_Type (gnat_temp))
	    gnat_temp = Underlying_Type (gnat_temp);

	  if (Is_Subprogram (gnat_temp)
	      && Present (Protected_Body_Subprogram (gnat_temp)))
	    gnat_temp = Protected_Body_Subprogram (gnat_temp);

	  if (Ekind (gnat_temp) == E_Entry
	      || Ekind (gnat_temp) == E_Entry_Family
	      || Ekind (gnat_temp) == E_Task_Type
	      || (Is_Subprogram (gnat_temp)
		  && present_gnu_tree (gnat_temp)
		  && (current_function_decl
		      == gnat_to_gnu_entity (gnat_temp, NULL_TREE, false))))
	    {
	      process_type (gnat_entity);
	      return get_gnu_tree (gnat_entity);
	    }
	}

      /* This abort means the itype has an incorrect scope, i.e. that its
	 scope does not correspond to the subprogram it is first used in.  */
      gcc_unreachable ();
    }

  /* If we've already processed this entity, return what we got last time.
     If we are defining the node, we should not have already processed it.
     In that case, we will abort below when we try to save a new GCC tree
     for this object.  We also need to handle the case of getting a dummy
     type when a Full_View exists but be careful so as not to trigger its
     premature elaboration.  Likewise for a cloned subtype without its own
     freeze node, which typically happens when a generic gets instantiated
     on an incomplete or private type.  */
  if ((!definition || (is_type && imported_p))
      && present_gnu_tree (gnat_entity))
    {
      gnu_decl = get_gnu_tree (gnat_entity);

      if (TREE_CODE (gnu_decl) == TYPE_DECL
	  && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
	  && IN (kind, Incomplete_Or_Private_Kind)
	  && Present (Full_View (gnat_entity))
	  && (present_gnu_tree (Full_View (gnat_entity))
	      || No (Freeze_Node (Full_View (gnat_entity)))))
	{
	  gnu_decl
	    = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE,
				  false);
	  save_gnu_tree (gnat_entity, NULL_TREE, false);
	  save_gnu_tree (gnat_entity, gnu_decl, false);
	}

      if (TREE_CODE (gnu_decl) == TYPE_DECL
	  && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
	  && Ekind (gnat_entity) == E_Record_Subtype
	  && No (Freeze_Node (gnat_entity))
	  && Present (Cloned_Subtype (gnat_entity))
	  && (present_gnu_tree (Cloned_Subtype (gnat_entity))
	      || No (Freeze_Node (Cloned_Subtype (gnat_entity)))))
	{
	  gnu_decl
	    = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity), NULL_TREE,
				  false);
	  save_gnu_tree (gnat_entity, NULL_TREE, false);
	  save_gnu_tree (gnat_entity, gnu_decl, false);
	}

      return gnu_decl;
    }

  /* If this is a numeric or enumeral type, or an access type, a nonzero Esize
     must be specified unless it was specified by the programmer.  Exceptions
     are for access-to-protected-subprogram types and all access subtypes, as
     another GNAT type is used to lay out the GCC type for them, as well as
     access-to-subprogram types if front-end unnesting is enabled.  */
  gcc_assert (!is_type
	      || Known_Esize (gnat_entity)
	      || Has_Size_Clause (gnat_entity)
	      || (!Is_In_Numeric_Kind (kind)
		  && !IN (kind, Enumeration_Kind)
		  && (!IN (kind, Access_Kind)
		      || kind == E_Access_Protected_Subprogram_Type
		      || kind == E_Anonymous_Access_Protected_Subprogram_Type
		      || ((kind == E_Access_Subprogram_Type
			   || kind == E_Anonymous_Access_Subprogram_Type)
			  && Unnest_Subprogram_Mode)
		      || kind == E_Access_Subtype
		      || type_annotate_only)));

  /* The RM size must be specified for all discrete and fixed-point types.  */
  gcc_assert (!(Is_In_Discrete_Or_Fixed_Point_Kind (kind)
		&& !Known_RM_Size (gnat_entity)));

  /* If we get here, it means we have not yet done anything with this entity.
     If we are not defining it, it must be a type or an entity that is defined
     elsewhere or externally, otherwise we should have defined it already.

     In other words, the failure of this assertion typically arises when a
     reference to an entity (type or object) is made before its declaration,
     either directly or by means of a freeze node which is incorrectly placed.
     This can also happen for an entity referenced out of context, for example
     a parameter outside of the subprogram where it is declared.  GNAT_ENTITY
     is the N_Defining_Identifier of the entity, the problematic N_Identifier
     being the argument passed to Identifier_to_gnu in the parent frame.

     One exception is for an entity, typically an inherited operation, which is
     a local alias for the parent's operation.  It is neither defined, since it
     is an inherited operation, nor public, since it is declared in the current
     compilation unit, so we test Is_Public on the Alias entity instead.  */
  gcc_assert (definition
	      || is_type
	      || kind == E_Discriminant
	      || kind == E_Component
	      || kind == E_Label
	      || (kind == E_Constant && Present (Full_View (gnat_entity)))
	      || Is_Public (gnat_entity)
	      || (Present (Alias (gnat_entity))
		  && Is_Public (Alias (gnat_entity)))
	      || type_annotate_only);

  /* Get the name of the entity and set up the line number and filename of
     the original definition for use in any decl we make.  Make sure we do
     not inherit another source location.  */
  gnu_entity_name = get_entity_name (gnat_entity);
  if (!renaming_from_instantiation_p (gnat_entity))
    Sloc_to_locus (Sloc (gnat_entity), &input_location);

  /* For cases when we are not defining (i.e., we are referencing from
     another compilation unit) public entities, show we are at global level
     for the purpose of computing scopes.  Don't do this for components or
     discriminants since the relevant test is whether or not the record is
     being defined.  */
  if (!definition
      && kind != E_Component
      && kind != E_Discriminant
      && Is_Public (gnat_entity)
      && !Is_Statically_Allocated (gnat_entity))
    force_global++, this_global = true;

  /* Handle any attributes directly attached to the entity.  */
  if (Has_Gigi_Rep_Item (gnat_entity))
    prepend_attributes (&attr_list, gnat_entity);

  /* Do some common processing for types.  */
  if (is_type)
    {
      /* Compute the equivalent type to be used in gigi.  */
      gnat_equiv_type = Gigi_Equivalent_Type (gnat_entity);

      /* Machine_Attributes on types are expected to be propagated to
	 subtypes.  The corresponding Gigi_Rep_Items are only attached
	 to the first subtype though, so we handle the propagation here.  */
      if (Base_Type (gnat_entity) != gnat_entity
	  && !Is_First_Subtype (gnat_entity)
	  && Has_Gigi_Rep_Item (First_Subtype (Base_Type (gnat_entity))))
	prepend_attributes (&attr_list,
			    First_Subtype (Base_Type (gnat_entity)));

      /* Compute a default value for the size of an elementary type.  */
      if (Known_Esize (gnat_entity) && Is_Elementary_Type (gnat_entity))
	{
	  unsigned int max_esize;

	  gcc_assert (UI_Is_In_Int_Range (Esize (gnat_entity)));
	  esize = UI_To_Int (Esize (gnat_entity));

	  if (IN (kind, Float_Kind))
	    max_esize = fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE);
	  else if (IN (kind, Access_Kind))
	    max_esize = POINTER_SIZE * 2;
	  else
	    max_esize = Enable_128bit_Types ? 128 : LONG_LONG_TYPE_SIZE;

	  if (esize > max_esize)
	   esize = max_esize;
	}
    }

  switch (kind)
    {
    case E_Component:
    case E_Discriminant:
      {
	/* The GNAT record where the component was defined.  */
	Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity));

	/* If the entity is a discriminant of an extended tagged type used to
	   rename a discriminant of the parent type, return the latter.  */
	if (kind == E_Discriminant
	    && Present (Corresponding_Discriminant (gnat_entity))
	    && Is_Tagged_Type (gnat_record))
	  {
	    gnu_decl
	      = gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity),
				    gnu_expr, definition);
	    saved = true;
	    break;
	  }

	/* If the entity is an inherited component (in the case of extended
	   tagged record types), just return the original entity, which must
	   be a FIELD_DECL.  Likewise for discriminants.  If the entity is a
	   non-stored discriminant (in the case of derived untagged record
	   types), return the stored discriminant it renames.  */
	if (Present (Original_Record_Component (gnat_entity))
	    && Original_Record_Component (gnat_entity) != gnat_entity)
	  {
	    gnu_decl
	      = gnat_to_gnu_entity (Original_Record_Component (gnat_entity),
				    gnu_expr, definition);
	    /* GNU_DECL contains a PLACEHOLDER_EXPR for discriminants.  */
	    if (kind == E_Discriminant)
	      saved = true;
	    break;
	  }

	/* Otherwise, if we are not defining this and we have no GCC type
	   for the containing record, make one for it.  Then we should
	   have made our own equivalent.  */
	if (!definition && !present_gnu_tree (gnat_record))
	  {
	    /* ??? If this is in a record whose scope is a protected
	       type and we have an Original_Record_Component, use it.
	       This is a workaround for major problems in protected type
	       handling.  */
	    Entity_Id Scop = Scope (Scope (gnat_entity));
	    if (Is_Protected_Type (Underlying_Type (Scop))
		&& Present (Original_Record_Component (gnat_entity)))
	      {
		gnu_decl
		  = gnat_to_gnu_entity (Original_Record_Component
					(gnat_entity),
					gnu_expr, false);
	      }
	    else
	      {
		gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, false);
		gnu_decl = get_gnu_tree (gnat_entity);
	      }

	    saved = true;
	    break;
	  }

	/* Here we have no GCC type and this is a reference rather than a
	   definition.  This should never happen.  Most likely the cause is
	   reference before declaration in the GNAT tree for gnat_entity.  */
	gcc_unreachable ();
      }

    case E_Named_Integer:
    case E_Named_Real:
      {
	tree gnu_ext_name = NULL_TREE;

	if (Is_Public (gnat_entity))
	  gnu_ext_name = create_concat_name (gnat_entity, NULL);

	/* All references are supposed to be folded in the front-end.  */
	gcc_assert (definition && gnu_expr);

	gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
	gnu_expr = convert (gnu_type, gnu_expr);

	/* Build a CONST_DECL for debugging purposes exclusively.  */
	gnu_decl
	  = create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
			     gnu_expr, true, Is_Public (gnat_entity),
			     false, false, false, artificial_p,
			     debug_info_p, NULL, gnat_entity);
      }
      break;

    case E_Constant:
      /* Ignore constant definitions already marked with the error node.  See
	 the N_Object_Declaration case of gnat_to_gnu for the rationale.  */
      if (definition
	  && present_gnu_tree (gnat_entity)
	  && get_gnu_tree (gnat_entity) == error_mark_node)
	{
	  maybe_present = true;
	  break;
	}

      /* Ignore deferred constant definitions without address clause since
	 they are processed fully in the front-end.  If No_Initialization
	 is set, this is not a deferred constant but a constant whose value
	 is built manually.  And constants that are renamings are handled
	 like variables.  */
      if (definition
	  && !gnu_expr
	  && !No_Initialization (gnat_decl)
	  && No (Address_Clause (gnat_entity))
	  && No (gnat_renamed_obj))
	{
	  gnu_decl = error_mark_node;
	  saved = true;
	  break;
	}

      /* If this is a use of a deferred constant without address clause,
	 get its full definition.  */
      if (!definition
	  && No (Address_Clause (gnat_entity))
	  && Present (Full_View (gnat_entity)))
	{
	  gnu_decl
	    = gnat_to_gnu_entity (Full_View (gnat_entity), gnu_expr, false);
	  saved = true;
	  break;
	}

      /* If we have a constant that we are not defining, get the expression it
	 was defined to represent.  This is necessary to avoid generating dumb
	 elaboration code in simple cases, and we may throw it away later if it
	 is not a constant.  But do not do it for dispatch tables because they
	 are only referenced indirectly and we need to have a consistent view
	 of the exported and of the imported declarations of the tables from
	 external units for them to be properly merged in LTO mode.  Moreover
	 simply do not retrieve the expression if it is an allocator because
	 the designated type might still be dummy at this point.  Note that we
	 invoke gnat_to_gnu_external and not gnat_to_gnu because the expression
	 may contain N_Expression_With_Actions nodes and thus declarations of
	 objects from other units that we need to discard.  Note also that we
	 need to do it even if we are only annotating types, so as to be able
	 to validate representation clauses using constants.  */
      if (!definition
	  && !No_Initialization (gnat_decl)
	  && !Is_Dispatch_Table_Entity (gnat_entity)
	  && Present (gnat_temp = Expression (gnat_decl))
	  && Nkind (gnat_temp) != N_Allocator
	  && (Is_Elementary_Type (Etype (gnat_entity)) || !type_annotate_only))
	gnu_expr = gnat_to_gnu_external (gnat_temp);

      /* ... fall through ... */

    case E_Exception:
    case E_Loop_Parameter:
    case E_Out_Parameter:
    case E_Variable:
      {
	const Entity_Id gnat_type = Etype (gnat_entity);
	const Entity_Id gnat_und_type = Underlying_Type (gnat_type);
	/* Always create a variable for volatile objects and variables seen
	   constant but with a Linker_Section pragma.  */
	bool const_flag
	  = ((kind == E_Constant || kind == E_Variable)
	     && Is_True_Constant (gnat_entity)
	     && !(kind == E_Variable
		  && Present (Linker_Section_Pragma (gnat_entity)))
	     && !Treat_As_Volatile (gnat_entity)
	     && (((Nkind (gnat_decl) == N_Object_Declaration)
		  && Present (Expression (gnat_decl)))
		 || Present (gnat_renamed_obj)
		 || imported_p));
	bool inner_const_flag = const_flag;
	bool static_flag = Is_Statically_Allocated (gnat_entity);
	/* We implement RM 13.3(19) for exported and imported (non-constant)
	   objects by making them volatile.  */
	bool volatile_flag
	  = (Treat_As_Volatile (gnat_entity)
	     || (!const_flag && (Is_Exported (gnat_entity) || imported_p)));
	bool mutable_p = false;
	bool used_by_ref = false;
	tree gnu_ext_name = NULL_TREE;
	tree gnu_ada_size = NULL_TREE;

	/* We need to translate the renamed object even though we are only
	   referencing the renaming.  But it may contain a call for which
	   we'll generate a temporary to hold the return value and which
	   is part of the definition of the renaming, so discard it.  */
	if (Present (gnat_renamed_obj) && !definition)
	  {
	    if (kind == E_Exception)
	      gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity),
					     NULL_TREE, false);
	    else
	      gnu_expr = gnat_to_gnu_external (gnat_renamed_obj);
	  }

	/* Get the type after elaborating the renamed object.  */
	if (foreign && Is_Descendant_Of_Address (gnat_und_type))
	  gnu_type = ptr_type_node;
	else
	  gnu_type = gnat_to_gnu_type (gnat_type);

	/* For a debug renaming declaration, build a debug-only entity.  */
	if (Present (Debug_Renaming_Link (gnat_entity)))
	  {
	    /* Force a non-null value to make sure the symbol is retained.  */
	    tree value = build1 (INDIRECT_REF, gnu_type,
				 build1 (NOP_EXPR,
					 build_pointer_type (gnu_type),
					 integer_minus_one_node));
	    gnu_decl = build_decl (input_location,
				   VAR_DECL, gnu_entity_name, gnu_type);
	    SET_DECL_VALUE_EXPR (gnu_decl, value);
	    DECL_HAS_VALUE_EXPR_P (gnu_decl) = 1;
	    TREE_STATIC (gnu_decl) = global_bindings_p ();
	    gnat_pushdecl (gnu_decl, gnat_entity);
	    break;
	  }

	/* If this is a loop variable, its type should be the base type.
	   This is because the code for processing a loop determines whether
	   a normal loop end test can be done by comparing the bounds of the
	   loop against those of the base type, which is presumed to be the
	   size used for computation.  But this is not correct when the size
	   of the subtype is smaller than the type.  */
	if (kind == E_Loop_Parameter)
	  gnu_type = get_base_type (gnu_type);

	/* If this is a simple constant, strip the qualifiers from its type,
	   since the constant represents only its value.  */
	else if (simple_constant_p (gnat_entity))
	  gnu_type = TYPE_MAIN_VARIANT (gnu_type);

	/* Reject non-renamed objects whose type is an unconstrained array or
	   any object whose type is a dummy type or void.  */
	if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
	     && No (gnat_renamed_obj))
	    || TYPE_IS_DUMMY_P (gnu_type)
	    || VOID_TYPE_P (gnu_type))
	  {
	    gcc_assert (type_annotate_only);
	    if (this_global)
	      force_global--;
	    return error_mark_node;
	  }

	/* If an alignment is specified, use it if valid.  Note that exceptions
	   are objects but don't have an alignment and there is also no point in
	   setting it for an address clause, since the final type of the object
	   will be a reference type.  */
	if (Known_Alignment (gnat_entity)
	    && kind != E_Exception
	    && No (Address_Clause (gnat_entity)))
	  align = validate_alignment (Alignment (gnat_entity), gnat_entity,
				      TYPE_ALIGN (gnu_type));

	/* Likewise, if a size is specified, use it if valid.  */
	if (Known_Esize (gnat_entity))
	  gnu_size
	    = validate_size (Esize (gnat_entity), gnu_type, gnat_entity,
			     VAR_DECL, false, Has_Size_Clause (gnat_entity),
			     NULL, NULL);
	if (gnu_size)
	  {
	    gnu_type
	      = make_type_from_size (gnu_type, gnu_size,
				     Has_Biased_Representation (gnat_entity));

	    if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0))
	      gnu_size = NULL_TREE;
	  }

	/* If this object has self-referential size, it must be a record with
	   a default discriminant.  We are supposed to allocate an object of
	   the maximum size in this case, unless it is a constant with an
	   initializing expression, in which case we can get the size from
	   that.  Note that the resulting size may still be a variable, so
	   this may end up with an indirect allocation.  */
	if (No (gnat_renamed_obj)
	    && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
	  {
	    if (gnu_expr && kind == E_Constant)
	      {
		gnu_size = TYPE_SIZE (TREE_TYPE (gnu_expr));
		gnu_ada_size = TYPE_ADA_SIZE (TREE_TYPE (gnu_expr));
		if (CONTAINS_PLACEHOLDER_P (gnu_size))
		  {
		    /* If the initializing expression is itself a constant,
		       despite having a nominal type with self-referential
		       size, we can get the size directly from it.  */
		    if (TREE_CODE (gnu_expr) == COMPONENT_REF
			&& TYPE_IS_PADDING_P
			   (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
			&& VAR_P (TREE_OPERAND (gnu_expr, 0))
			&& (TREE_READONLY (TREE_OPERAND (gnu_expr, 0))
			    || DECL_READONLY_ONCE_ELAB
			       (TREE_OPERAND (gnu_expr, 0))))
		      {
			gnu_size = DECL_SIZE (TREE_OPERAND (gnu_expr, 0));
			gnu_ada_size = gnu_size;
		      }
		    else
		      {
			gnu_size
			  = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_size,
							    gnu_expr);
			gnu_ada_size
			  = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_ada_size,
							    gnu_expr);
		      }
		  }
	      }
	    /* We may have no GNU_EXPR because No_Initialization is
	       set even though there's an Expression.  */
	    else if (kind == E_Constant
		     && Nkind (gnat_decl) == N_Object_Declaration
		     && Present (Expression (gnat_decl)))
	      {
		tree gnu_expr_type
		  = gnat_to_gnu_type (Etype (Expression (gnat_decl)));
		gnu_size = TYPE_SIZE (gnu_expr_type);
		gnu_ada_size = TYPE_ADA_SIZE (gnu_expr_type);
	      }
	    else
	      {
		gnu_size = max_size (TYPE_SIZE (gnu_type), true);
		/* We can be called on unconstrained arrays in this mode.  */
		if (!type_annotate_only)
		  gnu_ada_size = max_size (TYPE_ADA_SIZE (gnu_type), true);
		mutable_p = true;
	      }

	    /* If the size isn't constant and we are at global level, call
	       elaborate_expression_1 to make a variable for it rather than
	       calculating it each time.  */
	    if (!TREE_CONSTANT (gnu_size) && global_bindings_p ())
	      gnu_size = elaborate_expression_1 (gnu_size, gnat_entity,
						 "SIZE", definition, false);
	  }

	/* If the size is zero byte, make it one byte since some linkers have
	   troubles with zero-sized objects.  If the object will have a
	   template, that will make it nonzero so don't bother.  Also avoid
	   doing that for an object renaming or an object with an address
	   clause, as we would lose useful information on the view size
	   (e.g. for null array slices) and we are not allocating the object
	   here anyway.  */
	if (((gnu_size
	      && integer_zerop (gnu_size)
	      && !TREE_OVERFLOW (gnu_size))
	     || (TYPE_SIZE (gnu_type)
		 && integer_zerop (TYPE_SIZE (gnu_type))
		 && !TREE_OVERFLOW (TYPE_SIZE (gnu_type))))
	    && !Is_Constr_Subt_For_UN_Aliased (gnat_type)
	    && No (gnat_renamed_obj)
	    && No (Address_Clause (gnat_entity)))
	  gnu_size = bitsize_unit_node;

	/* If this is an object with no specified size and alignment, and
	   if either it is full access or we are not optimizing alignment for
	   space and it is composite and not an exception, an Out parameter
	   or a reference to another object, and the size of its type is a
	   constant, set the alignment to the smallest one which is not
	   smaller than the size, with an appropriate cap.  */
	if (!Known_Esize (gnat_entity)
	    && !Known_Alignment (gnat_entity)
	    && (Is_Full_Access (gnat_entity)
		|| (!Optimize_Alignment_Space (gnat_entity)
		    && kind != E_Exception
		    && kind != E_Out_Parameter
		    && Is_Composite_Type (gnat_type)
		    && !Is_Constr_Subt_For_UN_Aliased (gnat_type)
		    && !Is_Exported (gnat_entity)
		    && !imported_p
		    && No (gnat_renamed_obj)
		    && No (Address_Clause (gnat_entity))))
	    && (TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST || gnu_size))
	  align = promote_object_alignment (gnu_type, gnu_size, gnat_entity);

	/* If the object is set to have atomic components, find the component
	   type and validate it.

	   ??? Note that we ignore Has_Volatile_Components on objects; it's
	   not at all clear what to do in that case.  */
	if (Has_Atomic_Components (gnat_entity))
	  {
	    tree gnu_inner = (TREE_CODE (gnu_type) == ARRAY_TYPE
			      ? TREE_TYPE (gnu_type) : gnu_type);

	    while (TREE_CODE (gnu_inner) == ARRAY_TYPE
		   && TYPE_MULTI_ARRAY_P (gnu_inner))
	      gnu_inner = TREE_TYPE (gnu_inner);

	    check_ok_for_atomic_type (gnu_inner, gnat_entity, true);
	  }

	/* If this is an aliased object with an unconstrained array nominal
	   subtype, make a type that includes the template.  We will either
	   allocate or create a variable of that type, see below.  */
	if (Is_Constr_Subt_For_UN_Aliased (gnat_type)
	    && Is_Array_Type (gnat_und_type)
	    && !type_annotate_only)
	  {
	    tree gnu_array = gnat_to_gnu_type (Base_Type (gnat_type));
	    gnu_type
	      = build_unc_object_type_from_ptr (TREE_TYPE (gnu_array),
						gnu_type,
						concat_name (gnu_entity_name,
							     "UNC"),
						debug_info_p);
	  }

	/* ??? If this is an object of CW type initialized to a value, try to
	   ensure that the object is sufficient aligned for this value, but
	   without pessimizing the allocation.  This is a kludge necessary
	   because we don't support dynamic alignment.  */
	if (align == 0
	    && Ekind (gnat_type) == E_Class_Wide_Subtype
	    && No (gnat_renamed_obj)
	    && No (Address_Clause (gnat_entity)))
	  align = get_target_system_allocator_alignment () * BITS_PER_UNIT;

#ifdef MINIMUM_ATOMIC_ALIGNMENT
	/* If the size is a constant and no alignment is specified, force
	   the alignment to be the minimum valid atomic alignment.  The
	   restriction on constant size avoids problems with variable-size
	   temporaries; if the size is variable, there's no issue with
	   atomic access.  Also don't do this for a constant, since it isn't
	   necessary and can interfere with constant replacement.  Finally,
	   do not do it for Out parameters since that creates an
	   size inconsistency with In parameters.  */
	if (align == 0
	    && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type)
	    && !FLOAT_TYPE_P (gnu_type)
	    && !const_flag && No (gnat_renamed_obj)
	    && !imported_p && No (Address_Clause (gnat_entity))
	    && kind != E_Out_Parameter
	    && (gnu_size ? TREE_CODE (gnu_size) == INTEGER_CST
		: TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST))
	  align = MINIMUM_ATOMIC_ALIGNMENT;
#endif

	/* Do not take into account aliased adjustments or alignment promotions
	   to compute the size of the object.  */
	tree gnu_object_size = gnu_size ? gnu_size : TYPE_SIZE (gnu_type);

	/* If the object is aliased, of a constrained nominal subtype and its
	   size might be zero at run time, we force at least the unit size.  */
	if (Is_Aliased (gnat_entity)
	    && Is_Constrained (gnat_type)
	    && !Is_Constr_Subt_For_UN_Aliased (gnat_type)
	    && Is_Array_Type (gnat_und_type)
	    && !TREE_CONSTANT (gnu_object_size))
	  gnu_size = size_binop (MAX_EXPR, gnu_object_size, bitsize_unit_node);

	/* Make a new type with the desired size and alignment, if needed.  */
	if (gnu_size || align > 0)
	  {
	    tree orig_type = gnu_type;

	    gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
				       false, definition, true);

	    /* If the nominal subtype of the object is unconstrained and its
	       size is not fixed, compute the Ada size from the Ada size of
	       the subtype and/or the expression; this will make it possible
	       for gnat_type_max_size to easily compute a maximum size.  */
	    if (gnu_ada_size && gnu_size && !TREE_CONSTANT (gnu_size))
	      SET_TYPE_ADA_SIZE (gnu_type, gnu_ada_size);

	    /* If a padding record was made, declare it now since it will
	       never be declared otherwise.  This is necessary to ensure
	       that its subtrees are properly marked.  */
	    if (gnu_type != orig_type && !DECL_P (TYPE_NAME (gnu_type)))
	      create_type_decl (TYPE_NAME (gnu_type), gnu_type, true,
				debug_info_p, gnat_entity);
	  }

	/* Now check if the type of the object allows atomic access.  */
	if (Is_Full_Access (gnat_entity))
	  check_ok_for_atomic_type (gnu_type, gnat_entity, false);

	/* If this is a renaming, avoid as much as possible to create a new
	   object.  However, in some cases, creating it is required because
	   renaming can be applied to objects that are not names in Ada.
	   This processing needs to be applied to the raw expression so as
	   to make it more likely to rename the underlying object.  */
	if (Present (gnat_renamed_obj))
	  {
	    /* If the renamed object had padding, strip off the reference to
	       the inner object and reset our type.  */
	    if ((TREE_CODE (gnu_expr) == COMPONENT_REF
		 && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))
		/* Strip useless conversions around the object.  */
		|| gnat_useless_type_conversion (gnu_expr))
	      {
		gnu_expr = TREE_OPERAND (gnu_expr, 0);
		gnu_type = TREE_TYPE (gnu_expr);
	      }

	    /* Or else, if the renamed object has an unconstrained type with
	       default discriminant, use the padded type.  */
	    else if (type_is_padding_self_referential (TREE_TYPE (gnu_expr)))
	      gnu_type = TREE_TYPE (gnu_expr);

	    /* If this is a constant renaming stemming from a function call,
	       treat it as a normal object whose initial value is what is being
	       renamed.  RM 3.3 says that the result of evaluating a function
	       call is a constant object.  Therefore, it can be the inner
	       object of a constant renaming and the renaming must be fully
	       instantiated, i.e. it cannot be a reference to (part of) an
	       existing object.  And treat other rvalues the same way.  */
	    tree inner = gnu_expr;
	    while (handled_component_p (inner) || CONVERT_EXPR_P (inner))
	      inner = TREE_OPERAND (inner, 0);
	    /* Expand_Dispatching_Call can prepend a comparison of the tags
	       before the call to "=".  */
	    if (TREE_CODE (inner) == TRUTH_ANDIF_EXPR
		|| TREE_CODE (inner) == COMPOUND_EXPR)
	      inner = TREE_OPERAND (inner, 1);
	    if ((TREE_CODE (inner) == CALL_EXPR
		 && !call_is_atomic_load (inner))
		|| TREE_CODE (inner) == CONSTRUCTOR
		|| CONSTANT_CLASS_P (inner)
		|| COMPARISON_CLASS_P (inner)
		|| BINARY_CLASS_P (inner)
		|| EXPRESSION_CLASS_P (inner)
		/* We need to detect the case where a temporary is created to
		   hold the return value, since we cannot safely rename it at
		   top level as it lives only in the elaboration routine.  */
		|| (VAR_P (inner)
		    && DECL_RETURN_VALUE_P (inner))
		/* We also need to detect the case where the front-end creates
		   a dangling 'reference to a function call at top level and
		   substitutes it in the renaming, for example:

		     q__b : boolean renames r__f.e (1);

	           can be rewritten into:

		     q__R1s : constant q__A2s := r__f'reference;
		     [...]
		     q__b : boolean renames q__R1s.all.e (1);

		   We cannot safely rename the rewritten expression since the
		   underlying object lives only in the elaboration routine.  */
		|| (INDIRECT_REF_P (inner)
		    && (inner
			= remove_conversions (TREE_OPERAND (inner, 0), true))
		    && VAR_P (inner)
		    && DECL_RETURN_VALUE_P (inner)))
	      ;

	    /* Otherwise, this is an lvalue being renamed, so it needs to be
	       elaborated as a reference and substituted for the entity.  But
	       this means that we must evaluate the address of the renaming
	       in the definition case to instantiate the SAVE_EXPRs.  */
	    else
	      {
		tree gnu_init = NULL_TREE;

		if (type_annotate_only && TREE_CODE (gnu_expr) == ERROR_MARK)
		  break;

		gnu_expr
		  = elaborate_reference (gnu_expr, gnat_entity, definition,
					 &gnu_init);

		/* No DECL_EXPR might be created so the expression needs to be
		   marked manually because it will likely be shared.  */
		if (global_bindings_p ())
		  MARK_VISITED (gnu_expr);

		/* This assertion will fail if the renamed object isn't aligned
		   enough as to make it possible to honor the alignment set on
		   the renaming.  */
		if (align)
		  {
		    const unsigned int ralign
		      = DECL_P (gnu_expr)
			? DECL_ALIGN (gnu_expr)
			: TYPE_ALIGN (TREE_TYPE (gnu_expr));
		    gcc_assert (ralign >= align);
		  }

		/* The expression might not be a DECL so save it manually.  */
		gnu_decl = gnu_expr;
		save_gnu_tree (gnat_entity, gnu_decl, true);
		saved = true;
		annotate_object (gnat_entity, gnu_type, NULL_TREE, false);

		/* If this is only a reference to the entity, we are done.  */
		if (!definition)
		  break;

		/* Otherwise, emit the initialization statement, if any.  */
		if (gnu_init)
		  add_stmt (gnu_init);

		/* If it needs to be materialized for debugging purposes, build
		   the entity as indirect reference to the renamed object.  */
		if (Materialize_Entity (gnat_entity))
		  {
		    gnu_type = build_reference_type (gnu_type);
		    const_flag = true;
		    volatile_flag = false;

		    gnu_expr = build_unary_op (ADDR_EXPR, gnu_type, gnu_expr);

		    create_var_decl (gnu_entity_name, gnu_ext_name,
				     TREE_TYPE (gnu_expr), gnu_expr,
				     const_flag, Is_Public (gnat_entity),
				     imported_p, static_flag, volatile_flag,
				     artificial_p, debug_info_p, attr_list,
				     gnat_entity, false);
		  }

		/* Otherwise, instantiate the SAVE_EXPRs if needed.  */
		else if (TREE_SIDE_EFFECTS (gnu_expr))
		  add_stmt (build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr));

		break;
	      }
	  }

	/* If we are defining an aliased object whose nominal subtype is
	   unconstrained, the object is a record that contains both the
	   template and the object.  If there is an initializer, it will
	   have already been converted to the right type, but we need to
	   create the template if there is no initializer.  */
	if (definition
	    && !gnu_expr
	    && TREE_CODE (gnu_type) == RECORD_TYPE
	    && (TYPE_CONTAINS_TEMPLATE_P (gnu_type)
	        /* Beware that padding might have been introduced above.  */
		|| (TYPE_PADDING_P (gnu_type)
		    && TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
		       == RECORD_TYPE
		    && TYPE_CONTAINS_TEMPLATE_P
		       (TREE_TYPE (TYPE_FIELDS (gnu_type))))))
	  {
	    tree template_field
	      = TYPE_PADDING_P (gnu_type)
		? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type)))
		: TYPE_FIELDS (gnu_type);
	    vec<constructor_elt, va_gc> *v;
	    vec_alloc (v, 1);
	    tree t = build_template (TREE_TYPE (template_field),
				     TREE_TYPE (DECL_CHAIN (template_field)),
				     NULL_TREE);
	    CONSTRUCTOR_APPEND_ELT (v, template_field, t);
	    gnu_expr = gnat_build_constructor (gnu_type, v);
	  }

	/* Convert the expression to the type of the object if need be.  */
	if (gnu_expr && initial_value_needs_conversion (gnu_type, gnu_expr))
	  gnu_expr = convert (gnu_type, gnu_expr);

	/* If this is a pointer that doesn't have an initializing expression,
	   initialize it to NULL, unless the object is declared imported as
	   per RM B.1(24).  */
	if (definition
	    && (POINTER_TYPE_P (gnu_type) || TYPE_IS_FAT_POINTER_P (gnu_type))
	    && !gnu_expr
	    && !Is_Imported (gnat_entity))
	  gnu_expr = null_pointer_node;

	/* If we are defining the object and it has an Address clause, we must
	   either get the address expression from the saved GCC tree for the
	   object if it has a Freeze node, or elaborate the address expression
	   here since the front-end has guaranteed that the elaboration has no
	   effects in this case.  */
	if (definition && Present (Address_Clause (gnat_entity)))
	  {
	    const Node_Id gnat_clause = Address_Clause (gnat_entity);
	    const Node_Id gnat_address = Expression (gnat_clause);
	    tree gnu_address = present_gnu_tree (gnat_entity)
			       ? TREE_OPERAND (get_gnu_tree (gnat_entity), 0)
			       : gnat_to_gnu (gnat_address);

	    save_gnu_tree (gnat_entity, NULL_TREE, false);

	    /* Convert the type of the object to a reference type that can
	       alias everything as per RM 13.3(19).  */
	    if (volatile_flag && !TYPE_VOLATILE (gnu_type))
	      gnu_type = change_qualified_type (gnu_type, TYPE_QUAL_VOLATILE);
	    gnu_type
	      = build_reference_type_for_mode (gnu_type, ptr_mode, true);
	    gnu_address = convert (gnu_type, gnu_address);
	    used_by_ref = true;
	    const_flag
	      = (!Is_Public (gnat_entity)
		 || compile_time_known_address_p (gnat_address));
	    volatile_flag = false;
	    gnu_size = NULL_TREE;

	    /* If this is an aliased object with an unconstrained array nominal
	       subtype, then it can overlay only another aliased object with an
	       unconstrained array nominal subtype and compatible template.  */
	    if (Is_Constr_Subt_For_UN_Aliased (gnat_type)
		&& Is_Array_Type (gnat_und_type)
		&& !type_annotate_only)
	      {
		tree rec_type = TREE_TYPE (gnu_type);
		tree off = byte_position (DECL_CHAIN (TYPE_FIELDS (rec_type)));

		/* This is the pattern built for a regular object.  */
		if (TREE_CODE (gnu_address) == POINTER_PLUS_EXPR
		    && TREE_OPERAND (gnu_address, 1) == off)
		  gnu_address = TREE_OPERAND (gnu_address, 0);

		/* This is the pattern built for an overaligned object.  */
		else if (TREE_CODE (gnu_address) == POINTER_PLUS_EXPR
			 && TREE_CODE (TREE_OPERAND (gnu_address, 1))
			    == PLUS_EXPR
			 && TREE_OPERAND (TREE_OPERAND (gnu_address, 1), 1)
			    == off)
		  gnu_address
		    = build2 (POINTER_PLUS_EXPR, gnu_type,
			      TREE_OPERAND (gnu_address, 0),
			      TREE_OPERAND (TREE_OPERAND (gnu_address, 1), 0));

		/* We make an exception for an absolute address but we warn
		   that there is a descriptor at the start of the object.  */
		else if (TREE_CODE (gnu_address) == INTEGER_CST)
		  {
		    post_error_ne ("??aliased object& with unconstrained "
				   "array nominal subtype", gnat_clause,
				   gnat_entity);
		    post_error ("\\starts with a descriptor whose size is "
				"given by ''Descriptor_Size", gnat_clause);
		  }

		else
		  {
		    post_error_ne ("aliased object& with unconstrained array "
				   "nominal subtype", gnat_clause,
				   gnat_entity);
		    post_error ("\\can overlay only aliased object with "
				"compatible subtype", gnat_clause);
		  }
	      }

	    /* If we don't have an initializing expression for the underlying
	       variable, the initializing expression for the pointer is the
	       specified address.  Otherwise, we have to make a COMPOUND_EXPR
	       to assign both the address and the initial value.  */
	    if (!gnu_expr)
	      gnu_expr = gnu_address;
	    else
	      gnu_expr
		= build2 (COMPOUND_EXPR, gnu_type,
			  build_binary_op (INIT_EXPR, NULL_TREE,
					   build_unary_op (INDIRECT_REF,
							   NULL_TREE,
							   gnu_address),
					   gnu_expr),
			  gnu_address);
	  }

	/* If it has an address clause and we are not defining it, mark it
	   as an indirect object.  Likewise for Stdcall objects that are
	   imported.  */
	if ((!definition && Present (Address_Clause (gnat_entity)))
	    || (imported_p && Has_Stdcall_Convention (gnat_entity)))
	  {
	    /* Convert the type of the object to a reference type that can
	       alias everything as per RM 13.3(19).  */
	    if (volatile_flag && !TYPE_VOLATILE (gnu_type))
	      gnu_type = change_qualified_type (gnu_type, TYPE_QUAL_VOLATILE);
	    gnu_type
	      = build_reference_type_for_mode (gnu_type, ptr_mode, true);
	    used_by_ref = true;
	    const_flag = false;
	    volatile_flag = false;
	    gnu_size = NULL_TREE;

	    /* No point in taking the address of an initializing expression
	       that isn't going to be used.  */
	    gnu_expr = NULL_TREE;

	    /* If it has an address clause whose value is known at compile
	       time, make the object a CONST_DECL.  This will avoid a
	       useless dereference.  */
	    if (Present (Address_Clause (gnat_entity)))
	      {
		Node_Id gnat_address
		  = Expression (Address_Clause (gnat_entity));

		if (compile_time_known_address_p (gnat_address))
		  {
		    gnu_expr = gnat_to_gnu (gnat_address);
		    const_flag = true;
		  }
	      }
	  }

	/* If we are at top level and this object is of variable size,
	   make the actual type a hidden pointer to the real type and
	   make the initializer be a memory allocation and initialization.
	   Likewise for objects we aren't defining (presumed to be
	   external references from other packages), but there we do
	   not set up an initialization.

	   If the object's size overflows, make an allocator too, so that
	   Storage_Error gets raised.  Note that we will never free
	   such memory, so we presume it never will get allocated.  */
	if (!allocatable_size_p (TYPE_SIZE_UNIT (gnu_type),
				 global_bindings_p ()
				 || !definition
				 || static_flag)
	    || (gnu_size
		&& !allocatable_size_p (convert (sizetype,
						 size_binop
						 (EXACT_DIV_EXPR, gnu_size,
						  bitsize_unit_node)),
					global_bindings_p ()
					|| !definition
					|| static_flag)))
	  {
	    if (volatile_flag && !TYPE_VOLATILE (gnu_type))
	      gnu_type = change_qualified_type (gnu_type, TYPE_QUAL_VOLATILE);
	    gnu_type = build_reference_type (gnu_type);
	    used_by_ref = true;
	    const_flag = true;
	    volatile_flag = false;
	    gnu_size = NULL_TREE;

	    /* In case this was a aliased object whose nominal subtype is
	       unconstrained, the pointer above will be a thin pointer and
	       build_allocator will automatically make the template.

	       If we have a template initializer only (that we made above),
	       pretend there is none and rely on what build_allocator creates
	       again anyway.  Otherwise (if we have a full initializer), get
	       the data part and feed that to build_allocator.

	       If we are elaborating a mutable object, tell build_allocator to
	       ignore a possibly simpler size from the initializer, if any, as
	       we must allocate the maximum possible size in this case.  */
	    if (definition && !imported_p)
	      {
		tree gnu_alloc_type = TREE_TYPE (gnu_type);

		if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE
		    && TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type))
		  {
		    gnu_alloc_type
		      = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_alloc_type)));

		    if (TREE_CODE (gnu_expr) == CONSTRUCTOR
			&& CONSTRUCTOR_NELTS (gnu_expr) == 1)
		      gnu_expr = NULL_TREE;
		    else
		      gnu_expr
			= build_component_ref
			    (gnu_expr,
			     DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))),
			     false);
		  }

		if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST
		    && !valid_constant_size_p (TYPE_SIZE_UNIT (gnu_alloc_type)))
		  post_error ("??Storage_Error will be raised at run time!",
			      gnat_entity);

		gnu_expr
		  = build_allocator (gnu_alloc_type, gnu_expr, gnu_type,
				     Empty, Empty, gnat_entity, mutable_p);
	      }
	    else
	      gnu_expr = NULL_TREE;
	  }

	/* If this object would go into the stack and has an alignment larger
	   than the largest stack alignment the back-end can honor, resort to
	   a variable of "aligning type".  */
	if (definition
	    && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT
	    && !imported_p
	    && !static_flag
	    && !global_bindings_p ())
	  {
	    /* Create the new variable.  No need for extra room before the
	       aligned field as this is in automatic storage.  */
	    tree gnu_new_type
	      = make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type),
				    TYPE_SIZE_UNIT (gnu_type),
				    BIGGEST_ALIGNMENT, 0, gnat_entity);
	    tree gnu_new_var
	      = create_var_decl (create_concat_name (gnat_entity, "ALIGN"),
				 NULL_TREE, gnu_new_type, NULL_TREE,
				 false, false, false, false, false,
				 true, debug_info_p && definition, NULL,
				 gnat_entity);

	    /* Initialize the aligned field if we have an initializer.  */
	    if (gnu_expr)
	      add_stmt_with_node
		(build_binary_op (INIT_EXPR, NULL_TREE,
				  build_component_ref
				  (gnu_new_var, TYPE_FIELDS (gnu_new_type),
				   false),
				  gnu_expr),
		 gnat_entity);

	    /* And setup this entity as a reference to the aligned field.  */
	    gnu_type = build_reference_type (gnu_type);
	    gnu_expr
	      = build_unary_op
		(ADDR_EXPR, NULL_TREE,
		 build_component_ref (gnu_new_var, TYPE_FIELDS (gnu_new_type),
				      false));
	    TREE_CONSTANT (gnu_expr) = 1;

	    used_by_ref = true;
	    const_flag = true;
	    volatile_flag = false;
	    gnu_size = NULL_TREE;
	  }

	/* If this is an aggregate constant initialized to a constant, force it
	   to be statically allocated.  This saves an initialization copy.  */
	if (!static_flag
	    && const_flag
	    && gnu_expr
	    && TREE_CONSTANT (gnu_expr)
	    && AGGREGATE_TYPE_P (gnu_type)
	    && tree_fits_uhwi_p (TYPE_SIZE_UNIT (gnu_type))
	    && !(TYPE_IS_PADDING_P (gnu_type)
		 && !tree_fits_uhwi_p (TYPE_SIZE_UNIT
				       (TREE_TYPE (TYPE_FIELDS (gnu_type))))))
	  static_flag = true;

	/* If this is an aliased object with an unconstrained array nominal
	   subtype, we make its type a thin reference, i.e. the reference
	   counterpart of a thin pointer, so it points to the array part.
	   This is aimed to make it easier for the debugger to decode the
	   object.  Note that we have to do it this late because of the
	   couple of allocation adjustments that might be made above.  */
	if (Is_Constr_Subt_For_UN_Aliased (gnat_type)
	    && Is_Array_Type (gnat_und_type)
	    && !type_annotate_only)
	  {
	    /* In case the object with the template has already been allocated
	       just above, we have nothing to do here.  */
	    if (!TYPE_IS_THIN_POINTER_P (gnu_type))
	      {
		/* This variable is a GNAT encoding used by Workbench: let it
		   go through the debugging information but mark it as
		   artificial: users are not interested in it.  */
		tree gnu_unc_var
		   = create_var_decl (concat_name (gnu_entity_name, "UNC"),
				      NULL_TREE, gnu_type, gnu_expr,
				      const_flag, Is_Public (gnat_entity),
				      imported_p || !definition, static_flag,
				      volatile_flag, true,
				      debug_info_p && definition,
				      NULL, gnat_entity);
		gnu_expr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_unc_var);
		TREE_CONSTANT (gnu_expr) = 1;

		used_by_ref = true;
		const_flag = true;
		volatile_flag = false;
		inner_const_flag = TREE_READONLY (gnu_unc_var);
		gnu_size = NULL_TREE;
	      }

	    tree gnu_array = gnat_to_gnu_type (Base_Type (gnat_type));
	    gnu_type
	      = build_reference_type (TYPE_OBJECT_RECORD_TYPE (gnu_array));
	  }

	/* Convert the expression to the type of the object if need be.  */
	if (gnu_expr && initial_value_needs_conversion (gnu_type, gnu_expr))
	  gnu_expr = convert (gnu_type, gnu_expr);

	/* If this name is external or a name was specified, use it, but don't
	   use the Interface_Name with an address clause (see cd30005).  */
	if ((Is_Public (gnat_entity) && !Is_Imported (gnat_entity))
	    || (Present (Interface_Name (gnat_entity))
		&& No (Address_Clause (gnat_entity))))
	  gnu_ext_name = create_concat_name (gnat_entity, NULL);

	/* Deal with a pragma Linker_Section on a constant or variable.  */
	if ((kind == E_Constant || kind == E_Variable)
	    && Present (Linker_Section_Pragma (gnat_entity)))
	  prepend_one_attribute_pragma (&attr_list,
					Linker_Section_Pragma (gnat_entity));

	/* Now create the variable or the constant and set various flags.  */
	gnu_decl
	  = create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
			     gnu_expr, const_flag, Is_Public (gnat_entity),
			     imported_p || !definition, static_flag,
			     volatile_flag, artificial_p,
			     debug_info_p && definition, attr_list,
			     gnat_entity);
	DECL_BY_REF_P (gnu_decl) = used_by_ref;
	DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag;
	DECL_CAN_NEVER_BE_NULL_P (gnu_decl) = Can_Never_Be_Null (gnat_entity);

	/* If we are defining an Out parameter and optimization isn't enabled,
	   create a fake PARM_DECL for debugging purposes and make it point to
	   the VAR_DECL.  Suppress debug info for the latter but make sure it
	   will live in memory so that it can be accessed from within the
	   debugger through the PARM_DECL.  */
	if (kind == E_Out_Parameter
	    && definition
	    && debug_info_p
	    && !optimize
	    && !flag_generate_lto)
	  {
	    tree param = create_param_decl (gnu_entity_name, gnu_type);
	    gnat_pushdecl (param, gnat_entity);
	    SET_DECL_VALUE_EXPR (param, gnu_decl);
	    DECL_HAS_VALUE_EXPR_P (param) = 1;
	    DECL_IGNORED_P (gnu_decl) = 1;
	    TREE_ADDRESSABLE (gnu_decl) = 1;
	  }

	/* If this is a loop parameter, set the corresponding flag.  */
	else if (kind == E_Loop_Parameter)
	  DECL_LOOP_PARM_P (gnu_decl) = 1;

	/* If this is a constant and we are defining it or it generates a real
	   symbol at the object level and we are referencing it, we may want
	   or need to have a true variable to represent it:
	     - if the constant is public and not overlaid on something else,
	     - if its address is taken,
	     - if it is aliased,
	     - if optimization isn't enabled, for debugging purposes.  */
	if (TREE_CODE (gnu_decl) == CONST_DECL
	    && (definition || Sloc (gnat_entity) > Standard_Location)
	    && ((Is_Public (gnat_entity) && No (Address_Clause (gnat_entity)))
		|| Address_Taken (gnat_entity)
		|| Is_Aliased (gnat_entity)
		|| (!optimize && debug_info_p)))
	  {
	    tree gnu_corr_var
	      = create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
				 gnu_expr, true, Is_Public (gnat_entity),
				 !definition, static_flag, volatile_flag,
				 artificial_p, debug_info_p && definition,
				 attr_list, gnat_entity, false);

	    SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, gnu_corr_var);
	    DECL_IGNORED_P (gnu_decl) = 1;
	  }

	/* If this is a constant, even if we don't need a true variable, we
	   may need to avoid returning the initializer in every case.  That
	   can happen for the address of a (constant) constructor because,
	   upon dereferencing it, the constructor will be reinjected in the
	   tree, which may not be valid in every case; see lvalue_required_p
	   for more details.  */
	if (TREE_CODE (gnu_decl) == CONST_DECL)
	  DECL_CONST_ADDRESS_P (gnu_decl) = constructor_address_p (gnu_expr);

	/* If this is a local variable with non-BLKmode and aggregate type,
	   and optimization isn't enabled, then force it in memory so that
	   a register won't be allocated to it with possible subparts left
	   uninitialized and reaching the register allocator.  */
	else if (VAR_P (gnu_decl)
		 && !DECL_EXTERNAL (gnu_decl)
		 && !TREE_STATIC (gnu_decl)
		 && DECL_MODE (gnu_decl) != BLKmode
		 && AGGREGATE_TYPE_P (TREE_TYPE (gnu_decl))
		 && !TYPE_IS_FAT_POINTER_P (TREE_TYPE (gnu_decl))
		 && !optimize)
	  TREE_ADDRESSABLE (gnu_decl) = 1;

	/* Back-annotate Esize and Alignment of the object if not already
	   known.  Note that we pick the values of the type, not those of
	   the object, to shield ourselves from low-level platform-dependent
	   adjustments like alignment promotion.  This is both consistent with
	   all the treatment above, where alignment and size are set on the
	   type of the object and not on the object directly, and makes it
	   possible to support all confirming representation clauses.  */
	annotate_object (gnat_entity, TREE_TYPE (gnu_decl), gnu_object_size,
			 used_by_ref);
      }
      break;

    case E_Void:
      /* Return a TYPE_DECL for "void" that we previously made.  */
      gnu_decl = TYPE_NAME (void_type_node);
      break;

    case E_Enumeration_Type:
      /* A special case: for the types Character and Wide_Character in
	 Standard, we do not list all the literals.  So if the literals
	 are not specified, make this an integer type.  */
      if (No (First_Literal (gnat_entity)))
	{
	  if (esize == CHAR_TYPE_SIZE && flag_signed_char)
	    gnu_type = make_signed_type (CHAR_TYPE_SIZE);
	  else
	    gnu_type = make_unsigned_type (esize);
	  TYPE_NAME (gnu_type) = gnu_entity_name;

	  /* Set TYPE_STRING_FLAG for Character and Wide_Character types.
	     This is needed by the DWARF-2 back-end to distinguish between
	     unsigned integer types and character types.  */
	  TYPE_STRING_FLAG (gnu_type) = 1;

	  /* This flag is needed by the call just below.  */
	  TYPE_ARTIFICIAL (gnu_type) = artificial_p;

	  finish_character_type (gnu_type);
	}
      else
	{
	  /* We have a list of enumeral constants in First_Literal.  We make a
	     CONST_DECL for each one and build into GNU_LITERAL_LIST the list
	     to be placed into TYPE_FIELDS.  Each node is itself a TREE_LIST
	     whose TREE_VALUE is the literal name and whose TREE_PURPOSE is the
	     value of the literal.  But when we have a regular boolean type, we
	     simplify this a little by using a BOOLEAN_TYPE.  */
	  const bool is_boolean = Is_Boolean_Type (gnat_entity)
				  && !Has_Non_Standard_Rep (gnat_entity);
	  const bool is_unsigned = Is_Unsigned_Type (gnat_entity);
	  tree gnu_list = NULL_TREE;
	  Entity_Id gnat_literal;

	  /* Boolean types with foreign convention have precision 1.  */
	  if (is_boolean && foreign)
	    esize = 1;

	  gnu_type = make_node (is_boolean ? BOOLEAN_TYPE : ENUMERAL_TYPE);
	  TYPE_PRECISION (gnu_type) = esize;
	  TYPE_UNSIGNED (gnu_type) = is_unsigned;
	  set_min_and_max_values_for_integral_type (gnu_type, esize,
						    TYPE_SIGN (gnu_type));
	  process_attributes (&gnu_type, &attr_list, true, gnat_entity);
	  layout_type (gnu_type);

	  for (gnat_literal = First_Literal (gnat_entity);
	       Present (gnat_literal);
	       gnat_literal = Next_Literal (gnat_literal))
	    {
	      tree gnu_value
		= UI_To_gnu (Enumeration_Rep (gnat_literal), gnu_type);
	      /* Do not generate debug info for individual enumerators.  */
	      tree gnu_literal
		= create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
				   gnu_type, gnu_value, true, false, false,
				   false, false, artificial_p, false,
				   NULL, gnat_literal);
	      save_gnu_tree (gnat_literal, gnu_literal, false);
	      gnu_list
	        = tree_cons (DECL_NAME (gnu_literal), gnu_value, gnu_list);
	    }

	  if (!is_boolean)
	    TYPE_VALUES (gnu_type) = nreverse (gnu_list);

	  /* Note that the bounds are updated at the end of this function
	     to avoid an infinite recursion since they refer to the type.  */
	  goto discrete_type;
	}
      break;

    case E_Signed_Integer_Type:
      /* For integer types, just make a signed type the appropriate number
	 of bits.  */
      gnu_type = make_signed_type (esize);
      goto discrete_type;

    case E_Ordinary_Fixed_Point_Type:
    case E_Decimal_Fixed_Point_Type:
      {
	/* Small_Value is the scale factor.  */
	const Ureal gnat_small_value = Small_Value (gnat_entity);
	tree scale_factor = NULL_TREE;

	gnu_type = make_signed_type (esize);

	/* When encoded as 1/2**N or 1/10**N, describe the scale factor as a
	   binary or decimal scale: it is easier to read for humans.  */
	if (UI_Eq (Numerator (gnat_small_value), Uint_1)
	    && (Rbase (gnat_small_value) == 2
		|| Rbase (gnat_small_value) == 10))
	  {
	    tree base
	      = build_int_cst (integer_type_node, Rbase (gnat_small_value));
	    tree exponent
	      = build_int_cst (integer_type_node,
			       UI_To_Int (Denominator (gnat_small_value)));
	    scale_factor
	      = build2 (RDIV_EXPR, integer_type_node,
			integer_one_node,
			build2 (POWER_EXPR, integer_type_node,
				base, exponent));
	  }

	/* Use the arbitrary scale factor description.  Note that we support
	   a Small_Value whose magnitude is larger than 64-bit even on 32-bit
	   platforms, so we unconditionally use a (dummy) 128-bit type.  */
	else
	  {
	    const Uint gnat_num = Norm_Num (gnat_small_value);
	    const Uint gnat_den = Norm_Den (gnat_small_value);
	    tree gnu_small_type = make_unsigned_type (128);
	    tree gnu_num = UI_To_gnu (gnat_num, gnu_small_type);
	    tree gnu_den = UI_To_gnu (gnat_den, gnu_small_type);

	    scale_factor
	      = build2 (RDIV_EXPR, gnu_small_type, gnu_num, gnu_den);
	  }

	TYPE_FIXED_POINT_P (gnu_type) = 1;
	SET_TYPE_SCALE_FACTOR (gnu_type, scale_factor);
      }
      goto discrete_type;

    case E_Modular_Integer_Type:
      {
	/* Packed Array Impl. Types are supposed to be subtypes only.  */
	gcc_assert (!Is_Packed_Array_Impl_Type (gnat_entity));

	/* For modular types, make the unsigned type of the proper number
	   of bits and then set up the modulus, if required.  */
	gnu_type = make_unsigned_type (esize);

	/* Get the modulus in this type.  If the modulus overflows, assume
	   that this is because it was equal to 2**Esize.  Note that there
	   is no overflow checking done on unsigned types, so we detect the
	   overflow by looking for a modulus of zero, which is invalid.  */
	tree gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type);

	/* If the modulus is not 2**Esize, then this also means that the upper
	   bound of the type, i.e. modulus - 1, is not maximal, so we create an
	   extra subtype to carry it and set the modulus on the base type.  */
	if (!integer_zerop (gnu_modulus))
	  {
	    TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT");
	    TYPE_MODULAR_P (gnu_type) = 1;
	    SET_TYPE_MODULUS (gnu_type, gnu_modulus);
	    tree gnu_high = fold_build2 (MINUS_EXPR, gnu_type, gnu_modulus,
					 build_int_cst (gnu_type, 1));
	    gnu_type
	      = create_extra_subtype (gnu_type, TYPE_MIN_VALUE (gnu_type),
				      gnu_high);
	  }
      }
      goto discrete_type;

    case E_Signed_Integer_Subtype:
    case E_Enumeration_Subtype:
    case E_Modular_Integer_Subtype:
    case E_Ordinary_Fixed_Point_Subtype:
    case E_Decimal_Fixed_Point_Subtype:
      gnat_cloned_subtype = Gigi_Cloned_Subtype (gnat_entity);
      if (Present (gnat_cloned_subtype))
	break;

      /* For integral subtypes, we make a new INTEGER_TYPE.  Note that we do
	 not want to call create_range_type since we would like each subtype
	 node to be distinct.  ??? Historically this was in preparation for
	 when memory aliasing is implemented, but that's obsolete now given
	 the call to relate_alias_sets below.

	 The TREE_TYPE field of the INTEGER_TYPE points to the base type;
	 this fact is used by the arithmetic conversion functions.

	 We elaborate the Ancestor_Subtype if it is not in the current unit
	 and one of our bounds is non-static.  We do this to ensure consistent
	 naming in the case where several subtypes share the same bounds, by
	 elaborating the first such subtype first, thus using its name.  */

      if (!definition
	  && Present (Ancestor_Subtype (gnat_entity))
	  && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
	  && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
	      || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
	gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, false);

      /* Set the precision to the Esize except for bit-packed arrays.  */
      if (Is_Packed_Array_Impl_Type (gnat_entity))
	esize = UI_To_Int (RM_Size (gnat_entity));

      /* Boolean types with foreign convention have precision 1.  */
      if (Is_Boolean_Type (gnat_entity) && foreign)
	{
	  gnu_type = make_node (BOOLEAN_TYPE);
	  TYPE_PRECISION (gnu_type) = 1;
	  TYPE_UNSIGNED (gnu_type) = 1;
	  set_min_and_max_values_for_integral_type (gnu_type, 1, UNSIGNED);
	  layout_type (gnu_type);
	}
      /* First subtypes of Character are treated as Character; otherwise
	 this should be an unsigned type if the base type is unsigned or
	 if the lower bound is constant and non-negative or if the type
	 is biased.  However, even if the lower bound is constant and
	 non-negative, we use a signed type for a subtype with the same
	 size as its signed base type, because this eliminates useless
	 conversions to it and gives more leeway to the optimizer; but
	 this means that we will need to explicitly test for this case
	 when we change the representation based on the RM size.  */
      else if (kind == E_Enumeration_Subtype
	  && No (First_Literal (Etype (gnat_entity)))
	  && Esize (gnat_entity) == RM_Size (gnat_entity)
	  && esize == CHAR_TYPE_SIZE
	  && flag_signed_char)
	gnu_type = make_signed_type (CHAR_TYPE_SIZE);
      else if (Is_Unsigned_Type (Underlying_Type (Etype (gnat_entity)))
	       || (Esize (Etype (gnat_entity)) != Esize (gnat_entity)
		   && Is_Unsigned_Type (gnat_entity))
	       || Has_Biased_Representation (gnat_entity))
	gnu_type = make_unsigned_type (esize);
      else
	gnu_type = make_signed_type (esize);
      TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));

      SET_TYPE_RM_MIN_VALUE
	(gnu_type, elaborate_expression (Type_Low_Bound (gnat_entity),
					 gnat_entity, "L", definition, true,
					 debug_info_p));

      SET_TYPE_RM_MAX_VALUE
	(gnu_type, elaborate_expression (Type_High_Bound (gnat_entity),
					 gnat_entity, "U", definition, true,
					 debug_info_p));

      if (TREE_CODE (gnu_type) == INTEGER_TYPE)
	TYPE_BIASED_REPRESENTATION_P (gnu_type)
	  = Has_Biased_Representation (gnat_entity);

      /* Do the same processing for Character subtypes as for types.  */
      if (TREE_CODE (TREE_TYPE (gnu_type)) == INTEGER_TYPE
	  && TYPE_STRING_FLAG (TREE_TYPE (gnu_type)))
	{
	  TYPE_NAME (gnu_type) = gnu_entity_name;
	  TYPE_STRING_FLAG (gnu_type) = 1;
	  TYPE_ARTIFICIAL (gnu_type) = artificial_p;
	  finish_character_type (gnu_type);
	}

      /* Inherit our alias set from what we're a subtype of.  Subtypes
	 are not different types and a pointer can designate any instance
	 within a subtype hierarchy.  */
      relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);

      /* One of the above calls might have caused us to be elaborated,
	 so don't blow up if so.  */
      if (present_gnu_tree (gnat_entity))
	{
	  maybe_present = true;
	  break;
	}

      /* Attach the TYPE_STUB_DECL in case we have a parallel type.  */
      TYPE_STUB_DECL (gnu_type)
	= create_type_stub_decl (gnu_entity_name, gnu_type);

    discrete_type:

      /* We have to handle clauses that under-align the type specially.  */
      if ((Present (Alignment_Clause (gnat_entity))
	   || (Is_Packed_Array_Impl_Type (gnat_entity)
	       && Present
		  (Alignment_Clause (Original_Array_Type (gnat_entity)))))
	  && UI_Is_In_Int_Range (Alignment (gnat_entity)))
	{
	  align = UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT;
	  if (align >= TYPE_ALIGN (gnu_type))
	    align = 0;
	}

      /* If the type we are dealing with represents a bit-packed array,
	 we need to have the bits left justified on big-endian targets
	 and right justified on little-endian targets.  We also need to
	 ensure that when the value is read (e.g. for comparison of two
	 such values), we only get the good bits, since the unused bits
	 are uninitialized.  Both goals are accomplished by wrapping up
	 the modular type in an enclosing record type.  */
      if (Is_Packed_Array_Impl_Type (gnat_entity))
	{
	  tree gnu_field_type, gnu_field, t;

	  gcc_assert (Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
	  TYPE_BIT_PACKED_ARRAY_TYPE_P (gnu_type) = 1;

	  /* Make the original array type a parallel/debug type.  */
	  if (debug_info_p)
	    {
	      tree gnu_name
		= associate_original_type_to_packed_array (gnu_type,
							   gnat_entity);
	      if (gnu_name)
		gnu_entity_name = gnu_name;
	    }

	  /* Set the RM size before wrapping up the original type.  */
	  SET_TYPE_RM_SIZE (gnu_type,
			    UI_To_gnu (RM_Size (gnat_entity), bitsizetype));

	  /* Create a stripped-down declaration, mainly for debugging.  */
	  t = create_type_decl (gnu_entity_name, gnu_type, true, debug_info_p,
				gnat_entity);

	  /* Now save it and build the enclosing record type.  */
	  gnu_field_type = gnu_type;

	  gnu_type = make_node (RECORD_TYPE);
	  TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "JM");
	  TYPE_PACKED (gnu_type) = 1;
	  TYPE_SIZE (gnu_type) = TYPE_SIZE (gnu_field_type);
	  TYPE_SIZE_UNIT (gnu_type) = TYPE_SIZE_UNIT (gnu_field_type);
	  SET_TYPE_ADA_SIZE (gnu_type, TYPE_RM_SIZE (gnu_field_type));

	  /* Propagate the alignment of the modular type to the record type,
	     unless there is an alignment clause that under-aligns the type.
	     This means that bit-packed arrays are given "ceil" alignment for
	     their size by default, which may seem counter-intuitive but makes
	     it possible to overlay them on modular types easily.  */
	  SET_TYPE_ALIGN (gnu_type,
			  align > 0 ? align : TYPE_ALIGN (gnu_field_type));

	  /* Propagate the reverse storage order flag to the record type so
	     that the required byte swapping is performed when retrieving the
	     enclosed modular value.  */
	  TYPE_REVERSE_STORAGE_ORDER (gnu_type)
	    = Reverse_Storage_Order (Original_Array_Type (gnat_entity));

	  relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);

	  /* Don't declare the field as addressable since we won't be taking
	     its address and this would prevent create_field_decl from making
	     a bitfield.  */
	  gnu_field
	    = create_field_decl (get_identifier ("OBJECT"), gnu_field_type,
				 gnu_type, NULL_TREE, bitsize_zero_node, 1, 0);

	  /* We will output additional debug info manually below.  */
	  finish_record_type (gnu_type, gnu_field, 2, false);
	  TYPE_JUSTIFIED_MODULAR_P (gnu_type) = 1;

	  /* Make the original array type a parallel/debug type.  Note that
	     gnat_get_array_descr_info needs a TYPE_IMPL_PACKED_ARRAY_P type
	     so we use an intermediate step for standard DWARF.  */
	  if (debug_info_p)
	    {
	      if (gnat_encodings != DWARF_GNAT_ENCODINGS_ALL)
		SET_TYPE_DEBUG_TYPE (gnu_type, gnu_field_type);
	      else if (DECL_PARALLEL_TYPE (t))
		add_parallel_type (gnu_type, DECL_PARALLEL_TYPE (t));
	    }
	}

      /* If the type we are dealing with has got a smaller alignment than the
	 natural one, we need to wrap it up in a record type and misalign the
	 latter; we reuse the padding machinery for this purpose.  */
      else if (align > 0)
	{
	  tree gnu_size = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);

	  /* Set the RM size before wrapping the type.  */
	  SET_TYPE_RM_SIZE (gnu_type, gnu_size);

	  /* Create a stripped-down declaration, mainly for debugging.  */
	  create_type_decl (gnu_entity_name, gnu_type, true, debug_info_p,
			    gnat_entity);

	  gnu_type
	    = maybe_pad_type (gnu_type, TYPE_SIZE (gnu_type), align,
			      gnat_entity, false, definition, false);

	  TYPE_PACKED (gnu_type) = 1;
	  SET_TYPE_ADA_SIZE (gnu_type, gnu_size);
	}

      break;

    case E_Floating_Point_Type:
      /* The type of the Low and High bounds can be our type if this is
	 a type from Standard, so set them at the end of the function.  */
      gnu_type = make_node (REAL_TYPE);
      TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
      layout_type (gnu_type);
      break;

    case E_Floating_Point_Subtype:
      gnat_cloned_subtype = Gigi_Cloned_Subtype (gnat_entity);
      if (Present (gnat_cloned_subtype))
	break;

      /* See the E_Signed_Integer_Subtype case for the rationale.  */
      if (!definition
	  && Present (Ancestor_Subtype (gnat_entity))
	  && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
	  && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
	      || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
	gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, false);

      gnu_type = make_node (REAL_TYPE);
      TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
      TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
      TYPE_GCC_MIN_VALUE (gnu_type)
	= TYPE_GCC_MIN_VALUE (TREE_TYPE (gnu_type));
      TYPE_GCC_MAX_VALUE (gnu_type)
	= TYPE_GCC_MAX_VALUE (TREE_TYPE (gnu_type));
      layout_type (gnu_type);

      SET_TYPE_RM_MIN_VALUE
	(gnu_type, elaborate_expression (Type_Low_Bound (gnat_entity),
					 gnat_entity, "L", definition, true,
					 debug_info_p));

      SET_TYPE_RM_MAX_VALUE
	(gnu_type, elaborate_expression (Type_High_Bound (gnat_entity),
					 gnat_entity, "U", definition, true,
					 debug_info_p));

      /* Inherit our alias set from what we're a subtype of, as for
	 integer subtypes.  */
      relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);

      /* One of the above calls might have caused us to be elaborated,
	 so don't blow up if so.  */
      maybe_present = true;
      break;

      /* Array Types and Subtypes

	 In GNAT unconstrained array types are represented by E_Array_Type and
	 constrained array types are represented by E_Array_Subtype.  They are
	 translated into UNCONSTRAINED_ARRAY_TYPE and ARRAY_TYPE respectively.
	 But there are no actual objects of an unconstrained array type; all we
	 have are pointers to that type.  In addition to the type node itself,
	 4 other types associated with it are built in the process:

	   1. the array type (suffix XUA) containing the actual data,

	   2. the template type (suffix XUB) containng the bounds,

	   3. the fat pointer type (suffix XUP) representing a pointer or a
	      reference to the unconstrained array type:
		XUP = struct { XUA *, XUB * }

	   4. the object record type (suffix XUT) containing bounds and data:
		XUT = struct { XUB, XUA }

	 The bounds of the array type XUA (de)reference the XUB * field of a
	 PLACEHOLDER_EXPR for the fat pointer type XUP, so the array type XUA
	 is to be interpreted in the context of the fat pointer type XUB for
	 debug info purposes.  */

    case E_Array_Type:
      {
	const Entity_Id PAT = Packed_Array_Impl_Type (gnat_entity);
	const bool convention_fortran_p
	  = (Convention (gnat_entity) == Convention_Fortran);
	const int ndim = Number_Dimensions (gnat_entity);
	tree gnu_fat_type, gnu_template_type, gnu_ptr_template;
	tree gnu_template_reference, gnu_template_fields;
	tree *gnu_index_types = XALLOCAVEC (tree, ndim);
	tree *gnu_temp_fields = XALLOCAVEC (tree, ndim);
	tree gnu_max_size = size_one_node;
	tree comp_type, tem, obj;
	Entity_Id gnat_index;
	alias_set_type ptr_set = -1;
	int index;

	/* Create the type for the component now, as it simplifies breaking
	   type reference loops.  */
	comp_type
	  = gnat_to_gnu_component_type (gnat_entity, definition, debug_info_p);
	if (present_gnu_tree (gnat_entity))
	  {
	    /* As a side effect, the type may have been translated.  */
	    maybe_present = true;
	    break;
	  }

	/* We complete an existing dummy fat pointer type in place.  This both
	   avoids further complex adjustments in update_pointer_to and yields
	   better debugging information in DWARF by leveraging the support for
	   incomplete declarations of "tagged" types in the DWARF back-end.  */
	gnu_type = get_dummy_type (gnat_entity);
	if (gnu_type && TYPE_POINTER_TO (gnu_type))
	  {
	    gnu_fat_type = TYPE_MAIN_VARIANT (TYPE_POINTER_TO (gnu_type));
	    TYPE_NAME (gnu_fat_type) = NULL_TREE;
	    gnu_ptr_template =
	      TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_fat_type)));
	    gnu_template_type = TREE_TYPE (gnu_ptr_template);

	    /* Save the contents of the dummy type for update_pointer_to.  */
	    TYPE_POINTER_TO (gnu_type) = copy_type (gnu_fat_type);
	    TYPE_FIELDS (TYPE_POINTER_TO (gnu_type))
	      = copy_node (TYPE_FIELDS (gnu_fat_type));
	    DECL_CHAIN (TYPE_FIELDS (TYPE_POINTER_TO (gnu_type)))
	      = copy_node (DECL_CHAIN (TYPE_FIELDS (gnu_fat_type)));
	  }
	else
	  {
	    gnu_fat_type = make_node (RECORD_TYPE);
	    gnu_template_type = make_node (RECORD_TYPE);
	    gnu_ptr_template = build_pointer_type (gnu_template_type);
	  }

	/* Make a node for the array.  If we are not defining the array
	   suppress expanding incomplete types.  */
	gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE);

	/* The component may refer to this type, so defer completion of any
	   incomplete types.  */
	if (!definition)
	  {
	    defer_incomplete_level++;
	    this_deferred = true;
	  }

	/* Build the fat pointer type.  Use a "void *" object instead of
	   a pointer to the array type since we don't have the array type
	   yet (it will reference the fat pointer via the bounds).  Note
	   that we reuse the existing fields of a dummy type because for:

	     type Arr is array (Positive range <>) of Element_Type;
	     type Array_Ref is access Arr;
	     Var : Array_Ref := Null;

	   in a declarative part, Arr will be frozen only after Var, which
	   means that the fields used in the CONSTRUCTOR built for Null are
	   those of the dummy type, which in turn means that COMPONENT_REFs
	   of Var may be built with these fields.  Now if COMPONENT_REFs of
	   Var are also built later with the fields of the final type, the
	   aliasing machinery may consider that the accesses are distinct
	   if the FIELD_DECLs are distinct as objects.  */
	if (COMPLETE_TYPE_P (gnu_fat_type))
	  {
	    tem = TYPE_FIELDS (gnu_fat_type);
	    if (TYPE_ALIAS_SET_KNOWN_P (TREE_TYPE (tem)))
	      ptr_set = TYPE_ALIAS_SET (TREE_TYPE (tem));
	    TREE_TYPE (tem) = ptr_type_node;
	    TREE_TYPE (DECL_CHAIN (tem)) = gnu_ptr_template;
	    TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (gnu_fat_type)) = 0;
	    for (tree t = gnu_fat_type; t; t = TYPE_NEXT_VARIANT (t))
	      SET_TYPE_UNCONSTRAINED_ARRAY (t, gnu_type);
	  }
	else
	  {
	    /* We make the fields addressable for the sake of compatibility
	       with languages for which the regular fields are addressable.  */
	    tem
	      = create_field_decl (get_identifier ("P_ARRAY"),
				   ptr_type_node, gnu_fat_type,
				   NULL_TREE, NULL_TREE, 0, 1);
	    DECL_CHAIN (tem)
	      = create_field_decl (get_identifier ("P_BOUNDS"),
				   gnu_ptr_template, gnu_fat_type,
				   NULL_TREE, NULL_TREE, 0, 1);
	    finish_fat_pointer_type (gnu_fat_type, tem);
	    SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type);
	  }

	/* If the GNAT encodings are used, give the fat pointer type a name.
	   If this is a packed type implemented specially, tell the debugger
	   how to interpret the underlying bits by fetching the name of the
	   implementation type.  But, in any case, mark it as artificial so
	   the debugger can skip it.  */
	const Entity_Id gnat_name
	  = Present (PAT) && gnat_encodings == DWARF_GNAT_ENCODINGS_ALL
	    ? PAT
	    : gnat_entity;
	tree xup_name
	  = gnat_encodings == DWARF_GNAT_ENCODINGS_ALL
	    ? create_concat_name (gnat_name, "XUP")
	    : gnu_entity_name;
	create_type_decl (xup_name, gnu_fat_type, true, debug_info_p,
			  gnat_entity);

	/* Build a reference to the template from a PLACEHOLDER_EXPR that
	   is the fat pointer.  This will be used to access the individual
	   fields once we build them.  */
	tem = build3 (COMPONENT_REF, gnu_ptr_template,
		      build0 (PLACEHOLDER_EXPR, gnu_fat_type),
		      DECL_CHAIN (TYPE_FIELDS (gnu_fat_type)), NULL_TREE);
	gnu_template_reference
	  = build_unary_op (INDIRECT_REF, gnu_template_type, tem);
	TREE_READONLY (gnu_template_reference) = 1;
	TREE_THIS_NOTRAP (gnu_template_reference) = 1;

	/* Now create the GCC type for each index and add the fields for that
	   index to the template.  */
	for (index = (convention_fortran_p ? ndim - 1 : 0),
	     gnat_index = First_Index (gnat_entity);
	     IN_RANGE (index, 0, ndim - 1);
	     index += (convention_fortran_p ? - 1 : 1),
	     gnat_index = Next_Index (gnat_index))
	  {
	    const bool is_flb
	      = Is_Fixed_Lower_Bound_Index_Subtype (Etype (gnat_index));
	    tree gnu_index_type = get_unpadded_type (Etype (gnat_index));
	    tree gnu_orig_min = TYPE_MIN_VALUE (gnu_index_type);
	    tree gnu_orig_max = TYPE_MAX_VALUE (gnu_index_type);
	    tree gnu_index_base_type = get_base_type (gnu_index_type);
	    tree gnu_lb_field, gnu_hb_field;
	    tree gnu_min, gnu_max, gnu_high;
	    char field_name[16];

	    /* Update the maximum size of the array in elements.  */
	    if (gnu_max_size)
	      gnu_max_size
		= update_n_elem (gnu_max_size, gnu_orig_min, gnu_orig_max);

	    /* Now build the self-referential bounds of the index type.  */
	    gnu_index_type = maybe_character_type (gnu_index_type);
	    gnu_index_base_type = maybe_character_type (gnu_index_base_type);

	    /* Make the FIELD_DECLs for the low and high bounds of this
	       type and then make extractions of these fields from the
	       template.  */
	    sprintf (field_name, "LB%d", index);
	    gnu_lb_field = create_field_decl (get_identifier (field_name),
					      gnu_index_type,
					      gnu_template_type, NULL_TREE,
					      NULL_TREE, 0, 0);
	    /* Mark the field specifically for INSTANTIATE_LOAD_IN_EXPR.  */
	    DECL_DISCRIMINANT_NUMBER (gnu_lb_field) = integer_minus_one_node;
	    Sloc_to_locus (Sloc (gnat_entity),
			   &DECL_SOURCE_LOCATION (gnu_lb_field));

	    field_name[0] = 'U';
	    gnu_hb_field = create_field_decl (get_identifier (field_name),
					      gnu_index_type,
					      gnu_template_type, NULL_TREE,
					      NULL_TREE, 0, 0);
	    /* Mark the field specifically for INSTANTIATE_LOAD_IN_EXPR.  */
	    DECL_DISCRIMINANT_NUMBER (gnu_hb_field) = integer_minus_one_node;
	    Sloc_to_locus (Sloc (gnat_entity),
			   &DECL_SOURCE_LOCATION (gnu_hb_field));

	    gnu_temp_fields[index] = chainon (gnu_lb_field, gnu_hb_field);

	    /* We can't use build_component_ref here since the template type
	       isn't complete yet.  */
	    if (!is_flb)
	      {
		gnu_orig_min = build3 (COMPONENT_REF, TREE_TYPE (gnu_lb_field),
				       gnu_template_reference, gnu_lb_field,
				       NULL_TREE);
		TREE_READONLY (gnu_orig_min) = 1;
	      }

	    gnu_orig_max = build3 (COMPONENT_REF, TREE_TYPE (gnu_hb_field),
				   gnu_template_reference, gnu_hb_field,
				   NULL_TREE);
	    TREE_READONLY (gnu_orig_max) = 1;

	    gnu_min = convert (sizetype, gnu_orig_min);
	    gnu_max = convert (sizetype, gnu_orig_max);

	    /* Compute the size of this dimension.  See the E_Array_Subtype
	       case below for the rationale.  */
	    if (is_flb
		&& Nkind (gnat_index) == N_Subtype_Indication
	        && flb_cannot_be_superflat (gnat_index))
	      gnu_high = gnu_max;

	    else
	      gnu_high
		= build3 (COND_EXPR, sizetype,
			  build2 (GE_EXPR, boolean_type_node,
				  gnu_orig_max, gnu_orig_min),
			  gnu_max,
			  TREE_CODE (gnu_min) == INTEGER_CST
			  ? int_const_binop (MINUS_EXPR, gnu_min, size_one_node)
			  : size_binop (MINUS_EXPR, gnu_min, size_one_node));

	    /* Make a range type with the new range in the Ada base type.
	       Then make an index type with the size range in sizetype.  */
	    gnu_index_types[index]
	      = create_index_type (gnu_min, gnu_high,
				   create_range_type (gnu_index_base_type,
						      gnu_orig_min,
						      gnu_orig_max),
				   gnat_entity);

	    TYPE_NAME (gnu_index_types[index])
	      = create_concat_name (gnat_entity, field_name);
	  }

	/* Install all the fields into the template.  */
	TYPE_NAME (gnu_template_type)
	  = create_concat_name (gnat_entity, "XUB");
	gnu_template_fields = NULL_TREE;
	for (index = 0; index < ndim; index++)
	  gnu_template_fields
	    = chainon (gnu_template_fields, gnu_temp_fields[index]);
	finish_record_type (gnu_template_type, gnu_template_fields, 0,
			    debug_info_p);
	TYPE_CONTEXT (gnu_template_type) = current_function_decl;

	/* If Component_Size is not already specified, annotate it with the
	   size of the component.  */
	if (!Known_Component_Size (gnat_entity))
	  Set_Component_Size (gnat_entity,
                              annotate_value (TYPE_SIZE (comp_type)));

	/* Compute the maximum size of the array in units.  */
	if (gnu_max_size)
	  gnu_max_size
	    = size_binop (MULT_EXPR, gnu_max_size, TYPE_SIZE_UNIT (comp_type));

	/* Now build the array type.  */
        tem = comp_type;
	for (index = ndim - 1; index >= 0; index--)
	  {
	    tem = build_nonshared_array_type (tem, gnu_index_types[index]);
	    TYPE_MULTI_ARRAY_P (tem) = (index > 0);
	    TYPE_CONVENTION_FORTRAN_P (tem) = convention_fortran_p;
	    if (index == ndim - 1 && Reverse_Storage_Order (gnat_entity))
	      set_reverse_storage_order_on_array_type (tem);
	    if (array_type_has_nonaliased_component (tem, gnat_entity))
	      set_nonaliased_component_on_array_type (tem);
	  }

	/* If this is a packed type implemented specially, then process the
	   implementation type so it is elaborated in the proper scope.  */
	if (Present (PAT))
	  gnat_to_gnu_entity (PAT, NULL_TREE, false);

	/* Otherwise, if an alignment is specified, use it if valid and, if
	   the alignment was requested with an explicit clause, state so.  */
	else if (Known_Alignment (gnat_entity))
	  {
	    SET_TYPE_ALIGN (tem,
			    validate_alignment (Alignment (gnat_entity),
						gnat_entity,
						TYPE_ALIGN (tem)));
	    if (Present (Alignment_Clause (gnat_entity)))
	      TYPE_USER_ALIGN (tem) = 1;
	  }

	/* Tag top-level ARRAY_TYPE nodes for packed arrays and their
	   implementation types as such so that the debug information back-end
	   can output the appropriate description for them.  */
	TYPE_PACKED (tem)
	  = (Is_Packed (gnat_entity)
	     || Is_Packed_Array_Impl_Type (gnat_entity));

	if (Treat_As_Volatile (gnat_entity))
	  tem = change_qualified_type (tem, TYPE_QUAL_VOLATILE);

	/* Adjust the type of the pointer-to-array field of the fat pointer
	   and preserve its existing alias set, if any.  Note that calling
	   again record_component_aliases on the fat pointer is not enough
	   because this may leave dangling references to the existing alias
	   set from types containing a fat pointer component.  If this is
	   a packed type implemented specially, then use a ref-all pointer
	   type since the implementation type may vary between constrained
	   subtypes and unconstrained base type.  */
	if (Present (PAT))
	  TREE_TYPE (TYPE_FIELDS (gnu_fat_type))
	    = build_pointer_type_for_mode (tem, ptr_mode, true);
	else
	  TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem);
	if (ptr_set != -1)
	  TYPE_ALIAS_SET (TREE_TYPE (TYPE_FIELDS (gnu_fat_type))) = ptr_set;

	/* If the maximum size doesn't overflow, use it.  */
	if (gnu_max_size
	    && TREE_CODE (gnu_max_size) == INTEGER_CST
	    && !TREE_OVERFLOW (gnu_max_size)
	    && compare_tree_int (gnu_max_size, TYPE_ARRAY_SIZE_LIMIT) <= 0)
	  TYPE_ARRAY_MAX_SIZE (tem) = gnu_max_size;

	/* See the above description for the rationale.  */
	create_type_decl (create_concat_name (gnat_entity, "XUA"), tem,
			  artificial_p, debug_info_p, gnat_entity);
	TYPE_CONTEXT (tem) = gnu_fat_type;
	TYPE_CONTEXT (TYPE_POINTER_TO (tem)) = gnu_fat_type;

	/* Create the type to be designated by thin pointers: a record type for
	   the array and its template.  We used to shift the fields to have the
	   template at a negative offset, but this was somewhat of a kludge; we
	   now shift thin pointer values explicitly but only those which have a
	   TYPE_UNCONSTRAINED_ARRAY attached to the designated RECORD_TYPE.
	   If the GNAT encodings are used, give it a name.  */
	tree xut_name
	  = (gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
	    ? create_concat_name (gnat_name, "XUT")
	    : gnu_entity_name;
	obj = build_unc_object_type (gnu_template_type, tem, xut_name,
				     debug_info_p);

	SET_TYPE_UNCONSTRAINED_ARRAY (obj, gnu_type);
	TYPE_OBJECT_RECORD_TYPE (gnu_type) = obj;

	/* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the
	   corresponding fat pointer.  */
	TREE_TYPE (gnu_type) = gnu_fat_type;
	TYPE_POINTER_TO (gnu_type) = gnu_fat_type;
	TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type;
	SET_TYPE_MODE (gnu_type, BLKmode);
	SET_TYPE_ALIGN (gnu_type, TYPE_ALIGN (tem));
      }
      break;

    case E_Array_Subtype:
      gnat_cloned_subtype = Gigi_Cloned_Subtype (gnat_entity);
      if (Present (gnat_cloned_subtype))
	break;

      /* This is the actual data type for array variables.  Multidimensional
	 arrays are implemented as arrays of arrays.  Note that arrays which
	 have sparse enumeration subtypes as index components create sparse
	 arrays, which is obviously space inefficient but so much easier to
	 code for now.

	 Also note that the subtype never refers to the unconstrained array
	 type, which is somewhat at variance with Ada semantics.

	 First check to see if this is simply a renaming of the array type.
	 If so, the result is the array type.  */

      gnu_type = TYPE_MAIN_VARIANT (gnat_to_gnu_type (Etype (gnat_entity)));
      if (!Is_Constrained (gnat_entity))
	;
      else
	{
	  const Entity_Id PAT = Packed_Array_Impl_Type (gnat_entity);
	  Entity_Id gnat_index, gnat_base_index;
	  const bool convention_fortran_p
	    = (Convention (gnat_entity) == Convention_Fortran);
	  const int ndim = Number_Dimensions (gnat_entity);
	  tree gnu_base_type = gnu_type;
	  tree *gnu_index_types = XALLOCAVEC (tree, ndim);
	  tree gnu_max_size = size_one_node;
	  bool need_index_type_struct = false;
	  int index;

	  /* First create the GCC type for each index and find out whether
	     special types are needed for debugging information.  */
	  for (index = (convention_fortran_p ? ndim - 1 : 0),
	       gnat_index = First_Index (gnat_entity),
	       gnat_base_index
		 = First_Index (Implementation_Base_Type (gnat_entity));
	       IN_RANGE (index, 0, ndim - 1);
	       index += (convention_fortran_p ? - 1 : 1),
	       gnat_index = Next_Index (gnat_index),
	       gnat_base_index = Next_Index (gnat_base_index))
	    {
	      tree gnu_index_type = get_unpadded_type (Etype (gnat_index));
	      tree gnu_orig_min = TYPE_MIN_VALUE (gnu_index_type);
	      tree gnu_orig_max = TYPE_MAX_VALUE (gnu_index_type);
	      tree gnu_index_base_type = get_base_type (gnu_index_type);
	      tree gnu_base_index_type
		= get_unpadded_type (Etype (gnat_base_index));
	      tree gnu_base_orig_min = TYPE_MIN_VALUE (gnu_base_index_type);
	      tree gnu_base_orig_max = TYPE_MAX_VALUE (gnu_base_index_type);
	      tree gnu_min, gnu_max, gnu_high;

	      /* We try to create subtypes for discriminants used as bounds
		 that are more restrictive than those declared, by using the
		 bounds of the index type of the base array type.  This will
		 make it possible to calculate the maximum size of the record
		 type more conservatively.  This may have already been done by
		 the front-end (Exp_Ch3.Adjust_Discriminants), in which case
		 there will be a conversion that needs to be removed first.  */
	      if (CONTAINS_PLACEHOLDER_P (gnu_orig_min)
		  && TYPE_RM_SIZE (gnu_base_index_type)
		  && tree_int_cst_lt (TYPE_RM_SIZE (gnu_base_index_type),
				      TYPE_RM_SIZE (gnu_index_type)))
		{
		  gnu_orig_min = remove_conversions (gnu_orig_min, false);
		  TREE_TYPE (gnu_orig_min)
		    = create_extra_subtype (TREE_TYPE (gnu_orig_min),
					    gnu_base_orig_min,
					    gnu_base_orig_max);
		}

	      if (CONTAINS_PLACEHOLDER_P (gnu_orig_max)
		  && TYPE_RM_SIZE (gnu_base_index_type)
		  && tree_int_cst_lt (TYPE_RM_SIZE (gnu_base_index_type),
				      TYPE_RM_SIZE (gnu_index_type)))
		{
		  gnu_orig_max = remove_conversions (gnu_orig_max, false);
		  TREE_TYPE (gnu_orig_max)
		    = create_extra_subtype (TREE_TYPE (gnu_orig_max),
					    gnu_base_orig_min,
					    gnu_base_orig_max);
		}

	      /* Update the maximum size of the array in elements.  Here we
		 see if any constraint on the index type of the base type
		 can be used in the case of self-referential bounds on the
		 index type of the array type. We look for a non-"infinite"
		 and non-self-referential bound from any type involved and
		 handle each bound separately.  */
	      if (gnu_max_size)
		{
		  if (CONTAINS_PLACEHOLDER_P (gnu_orig_min))
		    gnu_min = gnu_base_orig_min;
		  else
		    gnu_min = gnu_orig_min;

		  if (TREE_CODE (gnu_min) != INTEGER_CST
		      || TREE_OVERFLOW (gnu_min))
		    gnu_min = TYPE_MIN_VALUE (TREE_TYPE (gnu_min));

		  if (CONTAINS_PLACEHOLDER_P (gnu_orig_max))
		    gnu_max = gnu_base_orig_max;
		  else
		    gnu_max = gnu_orig_max;

		  if (TREE_CODE (gnu_max) != INTEGER_CST
		      || TREE_OVERFLOW (gnu_max))
		    gnu_max = TYPE_MAX_VALUE (TREE_TYPE (gnu_max));

		  gnu_max_size
		    = update_n_elem (gnu_max_size, gnu_min, gnu_max);
		}

	      /* Convert the bounds to the base type for consistency below.  */
	      gnu_index_base_type = maybe_character_type (gnu_index_base_type);
	      gnu_orig_min = convert (gnu_index_base_type, gnu_orig_min);
	      gnu_orig_max = convert (gnu_index_base_type, gnu_orig_max);

	      gnu_min = convert (sizetype, gnu_orig_min);
	      gnu_max = convert (sizetype, gnu_orig_max);

	      /* See if the base array type is already flat.  If it is, we
		 are probably compiling an ACATS test but it will cause the
		 code below to malfunction if we don't handle it specially.  */
	      if (TREE_CODE (gnu_base_orig_min) == INTEGER_CST
		  && TREE_CODE (gnu_base_orig_max) == INTEGER_CST
		  && tree_int_cst_lt (gnu_base_orig_max, gnu_base_orig_min))
		{
		  gnu_min = size_one_node;
		  gnu_max = size_zero_node;
		  gnu_high = gnu_max;
		}

	      /* Similarly, if one of the values overflows in sizetype and the
		 range is null, use 1..0 for the sizetype bounds.  */
	      else if (TREE_CODE (gnu_min) == INTEGER_CST
		       && TREE_CODE (gnu_max) == INTEGER_CST
		       && (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max))
		       && tree_int_cst_lt (gnu_orig_max, gnu_orig_min))
		{
		  gnu_min = size_one_node;
		  gnu_max = size_zero_node;
		  gnu_high = gnu_max;
		}

	      /* If the minimum and maximum values both overflow in sizetype,
		 but the difference in the original type does not overflow in
		 sizetype, ignore the overflow indication.  */
	      else if (TREE_CODE (gnu_min) == INTEGER_CST
		       && TREE_CODE (gnu_max) == INTEGER_CST
		       && TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max)
		       && !TREE_OVERFLOW
			   (convert (sizetype,
				     fold_build2 (MINUS_EXPR,
						  gnu_index_base_type,
						  gnu_orig_max,
						  gnu_orig_min))))
		{
		  TREE_OVERFLOW (gnu_min) = 0;
		  TREE_OVERFLOW (gnu_max) = 0;
		  gnu_high = gnu_max;
		}

	      /* Compute the size of this dimension in the general case.  We
		 need to provide GCC with an upper bound to use but have to
		 deal with the "superflat" case.  There are three ways to do
		 this.  If we can prove that the array can never be superflat,
		 we can just use the high bound of the index type.  */
	      else if ((Nkind (gnat_index) == N_Range
		        && range_cannot_be_superflat (gnat_index))
		       /* Bit-Packed Array Impl. Types are never superflat.  */
		       || (Is_Packed_Array_Impl_Type (gnat_entity)
			   && Is_Bit_Packed_Array
			      (Original_Array_Type (gnat_entity))))
		gnu_high = gnu_max;

	      /* Otherwise, if the high bound is constant but the low bound is
		 not, we use the expression (hb >= lb) ? lb : hb + 1 for the
		 lower bound.  Note that the comparison must be done in the
		 original type to avoid any overflow during the conversion.  */
	      else if (TREE_CODE (gnu_max) == INTEGER_CST
		       && TREE_CODE (gnu_min) != INTEGER_CST)
		{
		  gnu_high = gnu_max;
		  gnu_min
		    = build_cond_expr (sizetype,
				       build_binary_op (GE_EXPR,
							boolean_type_node,
							gnu_orig_max,
							gnu_orig_min),
				       gnu_min,
				       int_const_binop (PLUS_EXPR, gnu_max,
							size_one_node));
		}

	      /* Finally we use (hb >= lb) ? hb : lb - 1 for the upper bound
		 in all the other cases.  Note that we use int_const_binop for
		 the shift by 1 if the bound is constant to avoid any unwanted
		 overflow.  */
	      else
		gnu_high
		  = build_cond_expr (sizetype,
				     build_binary_op (GE_EXPR,
						      boolean_type_node,
						      gnu_orig_max,
						      gnu_orig_min),
				     gnu_max,
				     TREE_CODE (gnu_min) == INTEGER_CST
				     ? int_const_binop (MINUS_EXPR, gnu_min,
							size_one_node)
				     : size_binop (MINUS_EXPR, gnu_min,
						   size_one_node));

	      /* Reuse the index type for the range type.  Then make an index
		 type with the size range in sizetype.  */
	      gnu_index_types[index]
		= create_index_type (gnu_min, gnu_high, gnu_index_type,
				     gnat_entity);

	      /* We need special types for debugging information to point to
		 the index types if they have variable bounds, are not integer
		 types, are biased or are wider than sizetype.  These are GNAT
		 encodings, so we have to include them only when all encodings
		 are requested.  */
	      if ((TREE_CODE (gnu_orig_min) != INTEGER_CST
		   || TREE_CODE (gnu_orig_max) != INTEGER_CST
		   || TREE_CODE (gnu_index_type) != INTEGER_TYPE
		   || (TREE_TYPE (gnu_index_type)
		       && TREE_CODE (TREE_TYPE (gnu_index_type))
			  != INTEGER_TYPE)
		   || TYPE_BIASED_REPRESENTATION_P (gnu_index_type))
		  && gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
		need_index_type_struct = true;
	    }

	  /* Then flatten: create the array of arrays.  For an array type
	     used to implement a packed array, get the component type from
	     the original array type since the representation clauses that
	     can affect it are on the latter.  */
	  if (Is_Packed_Array_Impl_Type (gnat_entity)
	      && !Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
	    {
	      gnu_type = gnat_to_gnu_type (Original_Array_Type (gnat_entity));
	      for (index = ndim - 1; index >= 0; index--)
		gnu_type = TREE_TYPE (gnu_type);

	      /* One of the above calls might have caused us to be elaborated,
		 so don't blow up if so.  */
	      if (present_gnu_tree (gnat_entity))
		{
		  maybe_present = true;
		  break;
		}
	    }
	  else
	    {
	      gnu_type = gnat_to_gnu_component_type (gnat_entity, definition,
						     debug_info_p);

	      /* One of the above calls might have caused us to be elaborated,
		 so don't blow up if so.  */
	      if (present_gnu_tree (gnat_entity))
		{
		  maybe_present = true;
		  break;
		}
	    }

	  /* Compute the maximum size of the array in units.  */
	  if (gnu_max_size)
	    gnu_max_size
	      = size_binop (MULT_EXPR, gnu_max_size, TYPE_SIZE_UNIT (gnu_type));

	  /* Now build the array type.  */
	  for (index = ndim - 1; index >= 0; index --)
	    {
	      gnu_type = build_nonshared_array_type (gnu_type,
						     gnu_index_types[index]);
	      TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0);
	      TYPE_CONVENTION_FORTRAN_P (gnu_type) = convention_fortran_p;
	      if (index == ndim - 1 && Reverse_Storage_Order (gnat_entity))
		set_reverse_storage_order_on_array_type (gnu_type);
	      if (array_type_has_nonaliased_component (gnu_type, gnat_entity))
		set_nonaliased_component_on_array_type (gnu_type);

	      /* Kludge to remove the TREE_OVERFLOW flag for the sake of LTO
		 on maximally-sized array types designed by access types.  */
	      if (integer_zerop (TYPE_SIZE (gnu_type))
		  && TREE_OVERFLOW (TYPE_SIZE (gnu_type))
		  && Is_Itype (gnat_entity)
		  && (gnat_temp = Associated_Node_For_Itype (gnat_entity))
		  && IN (Nkind (gnat_temp), N_Declaration)
		  && Is_Access_Type (Defining_Entity (gnat_temp))
		  && Is_Entity_Name (First_Index (gnat_entity))
		  && UI_To_Int (RM_Size (Entity (First_Index (gnat_entity))))
		     == BITS_PER_WORD)
		{
		  TYPE_SIZE (gnu_type) = bitsize_zero_node;
		  TYPE_SIZE_UNIT (gnu_type) = size_zero_node;
		}
	    }

	  /* Attach the TYPE_STUB_DECL in case we have a parallel type.  */
	  TYPE_STUB_DECL (gnu_type)
	    = create_type_stub_decl (gnu_entity_name, gnu_type);

	  /* If this is a multi-dimensional array and we are at global level,
	     we need to make a variable corresponding to the stride of the
	     inner dimensions.   */
	  if (ndim > 1 && global_bindings_p ())
	    {
	      tree gnu_arr_type;

	      for (gnu_arr_type = TREE_TYPE (gnu_type), index = 1;
		   TREE_CODE (gnu_arr_type) == ARRAY_TYPE;
		   gnu_arr_type = TREE_TYPE (gnu_arr_type), index++)
		{
		  tree eltype = TREE_TYPE (gnu_arr_type);
		  char stride_name[32];

		  sprintf (stride_name, "ST%d", index);
		  TYPE_SIZE (gnu_arr_type)
		    = elaborate_expression_1 (TYPE_SIZE (gnu_arr_type),
					      gnat_entity, stride_name,
					      definition, false);

		  /* ??? For now, store the size as a multiple of the
		     alignment of the element type in bytes so that we
		     can see the alignment from the tree.  */
		  sprintf (stride_name, "ST%d_A_UNIT", index);
		  TYPE_SIZE_UNIT (gnu_arr_type)
		    = elaborate_expression_2 (TYPE_SIZE_UNIT (gnu_arr_type),
					      gnat_entity, stride_name,
					      definition, false,
					      TYPE_ALIGN (eltype));

		  /* ??? create_type_decl is not invoked on the inner types so
		     the MULT_EXPR node built above will never be marked.  */
		  MARK_VISITED (TYPE_SIZE_UNIT (gnu_arr_type));
		}
	    }

	  /* Set the TYPE_PACKED flag on packed array types and also on their
	     implementation types, so that the DWARF back-end can output the
	     appropriate description for them.  */
	  TYPE_PACKED (gnu_type)
	    = (Is_Packed (gnat_entity)
	       || Is_Packed_Array_Impl_Type (gnat_entity));

	  TYPE_BIT_PACKED_ARRAY_TYPE_P (gnu_type)
	    = (Is_Packed_Array_Impl_Type (gnat_entity)
	       && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));

	  /* If the maximum size doesn't overflow, use it.  */
	  if (gnu_max_size
	      && TREE_CODE (gnu_max_size) == INTEGER_CST
	      && !TREE_OVERFLOW (gnu_max_size)
	      && compare_tree_int (gnu_max_size, TYPE_ARRAY_SIZE_LIMIT) <= 0)
	    TYPE_ARRAY_MAX_SIZE (gnu_type) = gnu_max_size;

	  /* If we need to write out a record type giving the names of the
	     bounds for debugging purposes, do it now and make the record
	     type a parallel type.  This is not needed for a packed array
	     since the bounds are conveyed by the original array type.  */
	  if (need_index_type_struct
	      && debug_info_p
	      && !Is_Packed_Array_Impl_Type (gnat_entity))
	    {
	      tree gnu_bound_rec = make_node (RECORD_TYPE);
	      tree gnu_field_list = NULL_TREE;
	      tree gnu_field;

	      TYPE_NAME (gnu_bound_rec)
		= create_concat_name (gnat_entity, "XA");

	      for (index = ndim - 1; index >= 0; index--)
		{
		  tree gnu_index = TYPE_INDEX_TYPE (gnu_index_types[index]);
		  tree gnu_index_name = TYPE_IDENTIFIER (gnu_index);

		  /* Make sure to reference the types themselves, and not just
		     their names, as the debugger may fall back on them.  */
		  gnu_field = create_field_decl (gnu_index_name, gnu_index,
						 gnu_bound_rec, NULL_TREE,
						 NULL_TREE, 0, 0);
		  DECL_CHAIN (gnu_field) = gnu_field_list;
		  gnu_field_list = gnu_field;
		}

	      finish_record_type (gnu_bound_rec, gnu_field_list, 0, true);
	      add_parallel_type (gnu_type, gnu_bound_rec);
	    }

	  /* If this is a packed array type, make the original array type a
	     parallel/debug type.  Otherwise, if GNAT encodings are used, do
	     it for the base array type if it is not artificial to make sure
	     that it is kept in the debug info.  */
	  if (debug_info_p)
	    {
	      if (Is_Packed_Array_Impl_Type (gnat_entity))
		{
		  tree gnu_name
		    = associate_original_type_to_packed_array (gnu_type,
							       gnat_entity);
		  if (gnu_name)
		    gnu_entity_name = gnu_name;
		}

	      else if (gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
		{
		  tree gnu_base_decl
		    = gnat_to_gnu_entity (Etype (gnat_entity), NULL_TREE,
					  false);

		  if (!DECL_ARTIFICIAL (gnu_base_decl))
		    add_parallel_type (gnu_type,
				       TREE_TYPE (TREE_TYPE (gnu_base_decl)));
		}
	    }

	  /* Set our alias set to that of our base type.  This gives all
	     array subtypes the same alias set.  */
	  relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);

	  /* If this is a packed type implemented specially, then replace our
	     type with the implementation type.  */
	  if (Present (PAT))
	    {
	      /* First finish the type we had been making so that we output
		 debugging information for it.  */
	      process_attributes (&gnu_type, &attr_list, false, gnat_entity);
	      if (Treat_As_Volatile (gnat_entity))
		{
		  const int quals
		    = TYPE_QUAL_VOLATILE
		      | (Is_Full_Access (gnat_entity) ? TYPE_QUAL_ATOMIC : 0);
		  gnu_type = change_qualified_type (gnu_type, quals);
		}
	      /* Make it artificial only if the base type was artificial too.
		 That's sort of "morally" true and will make it possible for
		 the debugger to look it up by name in DWARF, which is needed
		 in order to decode the packed array type.  */
	      tree gnu_tmp_decl
		= create_type_decl (gnu_entity_name, gnu_type,
				    !Comes_From_Source (Etype (gnat_entity))
				    && artificial_p, debug_info_p,
				    gnat_entity);
	      /* Save it as our equivalent in case the call below elaborates
		 this type again.  */
	      save_gnu_tree (gnat_entity, gnu_tmp_decl, false);

	      gnu_type = gnat_to_gnu_type (PAT);
	      save_gnu_tree (gnat_entity, NULL_TREE, false);

	      /* Set the ___XP suffix for GNAT encodings.  */
	      if (gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
		gnu_entity_name = DECL_NAME (TYPE_NAME (gnu_type));

	      tree gnu_inner = gnu_type;
	      while (TREE_CODE (gnu_inner) == RECORD_TYPE
		     && (TYPE_JUSTIFIED_MODULAR_P (gnu_inner)
			 || TYPE_PADDING_P (gnu_inner)))
		gnu_inner = TREE_TYPE (TYPE_FIELDS (gnu_inner));

	      /* We need to attach the index type to the type we just made so
		 that the actual bounds can later be put into a template.  */
	      if ((TREE_CODE (gnu_inner) == ARRAY_TYPE
		   && !TYPE_ACTUAL_BOUNDS (gnu_inner))
		  || (TREE_CODE (gnu_inner) == INTEGER_TYPE
		      && !TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner)))
		{
		  if (TREE_CODE (gnu_inner) == INTEGER_TYPE)
		    {
		      /* The TYPE_ACTUAL_BOUNDS field is overloaded with the
			 TYPE_MODULUS for modular types so we make an extra
			 subtype if necessary.  */
		      if (TYPE_MODULAR_P (gnu_inner))
			gnu_inner
			  = create_extra_subtype (gnu_inner,
						  TYPE_MIN_VALUE (gnu_inner),
						  TYPE_MAX_VALUE (gnu_inner));

		      TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner) = 1;

		      /* Check for other cases of overloading.  */
		      gcc_checking_assert (!TYPE_ACTUAL_BOUNDS (gnu_inner));
		    }

		  for (Entity_Id gnat_index = First_Index (gnat_entity);
		       Present (gnat_index);
		       gnat_index = Next_Index (gnat_index))
		    SET_TYPE_ACTUAL_BOUNDS
		      (gnu_inner,
		       tree_cons (NULL_TREE,
				  get_unpadded_type (Etype (gnat_index)),
				  TYPE_ACTUAL_BOUNDS (gnu_inner)));

		  if (Convention (gnat_entity) != Convention_Fortran)
		    SET_TYPE_ACTUAL_BOUNDS
		      (gnu_inner, nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner)));

		  if (TREE_CODE (gnu_type) == RECORD_TYPE
		      && TYPE_JUSTIFIED_MODULAR_P (gnu_type))
		    TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner;
		}
	    }
	}
      break;

    case E_String_Literal_Subtype:
      /* Create the type for a string literal.  */
      {
	Entity_Id gnat_full_type
	  = (Is_Private_Type (Etype (gnat_entity))
	     && Present (Full_View (Etype (gnat_entity)))
	     ? Full_View (Etype (gnat_entity)) : Etype (gnat_entity));
	tree gnu_string_type = get_unpadded_type (gnat_full_type);
	tree gnu_string_array_type
	  = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type))));
	tree gnu_string_index_type
	  = get_base_type (TREE_TYPE (TYPE_INDEX_TYPE
				      (TYPE_DOMAIN (gnu_string_array_type))));
	tree gnu_lower_bound
	  = convert (gnu_string_index_type,
		     gnat_to_gnu (String_Literal_Low_Bound (gnat_entity)));
	tree gnu_length
	  = UI_To_gnu (String_Literal_Length (gnat_entity),
		       gnu_string_index_type);
	tree gnu_upper_bound
	  = build_binary_op (PLUS_EXPR, gnu_string_index_type,
			     gnu_lower_bound,
			     int_const_binop (MINUS_EXPR, gnu_length,
					      convert (gnu_string_index_type,
						       integer_one_node)));
	tree gnu_index_type
	  = create_index_type (convert (sizetype, gnu_lower_bound),
			       convert (sizetype, gnu_upper_bound),
			       create_range_type (gnu_string_index_type,
						  gnu_lower_bound,
						  gnu_upper_bound),
			       gnat_entity);

	gnu_type
	  = build_nonshared_array_type (gnat_to_gnu_type
					(Component_Type (gnat_entity)),
					gnu_index_type);
	if (array_type_has_nonaliased_component (gnu_type, gnat_entity))
	  set_nonaliased_component_on_array_type (gnu_type);
	relate_alias_sets (gnu_type, gnu_string_type, ALIAS_SET_COPY);
      }
      break;

    /* Record Types and Subtypes

       A record type definition is transformed into the equivalent of a C
       struct definition.  The fields that are the discriminants which are
       found in the Full_Type_Declaration node and the elements of the
       Component_List found in the Record_Type_Definition node.  The
       Component_List can be a recursive structure since each Variant of
       the Variant_Part of the Component_List has a Component_List.

       Processing of a record type definition comprises starting the list of
       field declarations here from the discriminants and the calling the
       function components_to_record to add the rest of the fields from the
       component list and return the gnu type node.  The function
       components_to_record will call itself recursively as it traverses
       the tree.  */

    case E_Record_Type:
      {
	Node_Id record_definition = Type_Definition (gnat_decl);

	if (Has_Complex_Representation (gnat_entity))
	  {
	    const Node_Id first_component
	      = First (Component_Items (Component_List (record_definition)));
	    tree gnu_component_type
	      = get_unpadded_type (Etype (Defining_Entity (first_component)));
	    gnu_type = build_complex_type (gnu_component_type);
	    break;
	  }

	Node_Id gnat_constr;
	Entity_Id gnat_field, gnat_parent_type;
	tree gnu_field, gnu_field_list = NULL_TREE;
	tree gnu_get_parent;
	/* Set PACKED in keeping with gnat_to_gnu_field.  */
	const int packed
	  = Is_Packed (gnat_entity)
	    ? 1
	    : Component_Alignment (gnat_entity) == Calign_Storage_Unit
	      ? -1
	      : 0;
	const bool has_align = Known_Alignment (gnat_entity);
	const bool has_discr = Has_Discriminants (gnat_entity);
	const bool is_extension
	  = (Is_Tagged_Type (gnat_entity)
	     && Nkind (record_definition) == N_Derived_Type_Definition);
	const bool has_rep
	  = is_extension
	    ? Has_Record_Rep_Clause (gnat_entity)
	    : Has_Specified_Layout (gnat_entity);
	const bool is_unchecked_union = Is_Unchecked_Union (gnat_entity);
	bool all_rep = has_rep;

	/* See if all fields have a rep clause.  Stop when we find one
	   that doesn't.  */
	if (all_rep)
	  for (gnat_field = First_Entity (gnat_entity);
	       Present (gnat_field);
	       gnat_field = Next_Entity (gnat_field))
	    if ((Ekind (gnat_field) == E_Component
		 || (Ekind (gnat_field) == E_Discriminant
		     && !is_unchecked_union))
		&& No (Component_Clause (gnat_field)))
	      {
		all_rep = false;
		break;
	      }

	/* If this is a record extension, go a level further to find the
	   record definition.  Also, verify we have a Parent_Subtype.  */
	if (is_extension)
	  {
	    if (!type_annotate_only
		|| Present (Record_Extension_Part (record_definition)))
	      record_definition = Record_Extension_Part (record_definition);

	    gcc_assert (Present (Parent_Subtype (gnat_entity))
		        || type_annotate_only);
	  }

	/* Make a node for the record type.  */
	gnu_type = make_node (tree_code_for_record_type (gnat_entity));
	TYPE_NAME (gnu_type) = gnu_entity_name;
	TYPE_PACKED (gnu_type) = (packed != 0) || has_align || has_rep;
	TYPE_REVERSE_STORAGE_ORDER (gnu_type)
	  = Reverse_Storage_Order (gnat_entity);

	/* If the record type has discriminants, pointers to it may also point
	   to constrained subtypes of it, so mark it as may_alias for LTO.  */
	if (has_discr)
	  prepend_one_attribute
	    (&attr_list, ATTR_MACHINE_ATTRIBUTE,
	     get_identifier ("may_alias"), NULL_TREE,
	     gnat_entity);

	process_attributes (&gnu_type, &attr_list, true, gnat_entity);

	/* Some component may refer to this type, so defer completion of any
	   incomplete types.  */
	if (!definition)
	  {
	    defer_incomplete_level++;
	    this_deferred = true;
	  }

	/* If both a size and rep clause were specified, put the size on
	   the record type now so that it can get the proper layout.  */
	if (has_rep && Known_RM_Size (gnat_entity))
	  TYPE_SIZE (gnu_type)
	    = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);

	/* Always set the alignment on the record type here so that it can
	   get the proper layout.  */
	if (has_align)
	  SET_TYPE_ALIGN (gnu_type,
			  validate_alignment (Alignment (gnat_entity),
					      gnat_entity, 0));
	else
	  {
	    SET_TYPE_ALIGN (gnu_type, 0);

	    /* If a type needs strict alignment, then its type size will also
	       be the RM size (see below).  Cap the alignment if needed, lest
	       it may cause this type size to become too large.  */
	    if (Strict_Alignment (gnat_entity) && Known_RM_Size (gnat_entity))
	      {
		unsigned int max_size = UI_To_Int (RM_Size (gnat_entity));
		unsigned int max_align = max_size & -max_size;
		if (max_align < BIGGEST_ALIGNMENT)
		  TYPE_MAX_ALIGN (gnu_type) = max_align;
	      }

	    /* Similarly if an Object_Size clause has been specified.  */
	    else if (Known_Esize (gnat_entity))
	      {
		unsigned int max_size = UI_To_Int (Esize (gnat_entity));
		unsigned int max_align = max_size & -max_size;
		if (max_align < BIGGEST_ALIGNMENT)
		  TYPE_MAX_ALIGN (gnu_type) = max_align;
	      }
	  }

	/* If we have a Parent_Subtype, make a field for the parent.  If
	   this record has rep clauses, force the position to zero.  */
	if (Present (Parent_Subtype (gnat_entity)))
	  {
	    Entity_Id gnat_parent = Parent_Subtype (gnat_entity);
	    tree gnu_dummy_parent_type = make_node (RECORD_TYPE);
	    tree gnu_parent;
	    int parent_packed = 0;

	    /* A major complexity here is that the parent subtype will
	       reference our discriminants in its Stored_Constraint list.
	       But those must reference the parent component of this record
	       which is precisely of the parent subtype we have not built yet!
	       To break the circle we first build a dummy COMPONENT_REF which
	       represents the "get to the parent" operation and initialize
	       each of those discriminants to a COMPONENT_REF of the above
	       dummy parent referencing the corresponding discriminant of the
	       base type of the parent subtype.  */
	    gnu_get_parent = build3 (COMPONENT_REF, gnu_dummy_parent_type,
				     build0 (PLACEHOLDER_EXPR, gnu_type),
				     build_decl (input_location,
						 FIELD_DECL, NULL_TREE,
						 gnu_dummy_parent_type),
				     NULL_TREE);

	    if (has_discr)
	      for (gnat_field = First_Stored_Discriminant (gnat_entity);
		   Present (gnat_field);
		   gnat_field = Next_Stored_Discriminant (gnat_field))
		if (Present (Corresponding_Discriminant (gnat_field)))
		  {
		    tree gnu_field
		      = gnat_to_gnu_field_decl (Corresponding_Discriminant
						(gnat_field));
		    save_gnu_tree
		      (gnat_field,
		       build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
			       gnu_get_parent, gnu_field, NULL_TREE),
		       true);
		  }

	    /* Then we build the parent subtype.  If it has discriminants but
	       the type itself has unknown discriminants, this means that it
	       doesn't contain information about how the discriminants are
	       derived from those of the ancestor type, so it cannot be used
	       directly.  Instead it is built by cloning the parent subtype
	       of the underlying record view of the type, for which the above
	       derivation of discriminants has been made explicit.  */
	    if (Has_Discriminants (gnat_parent)
		&& Has_Unknown_Discriminants (gnat_entity))
	      {
		Entity_Id gnat_uview = Underlying_Record_View (gnat_entity);

		/* If we are defining the type, the underlying record
		   view must already have been elaborated at this point.
		   Otherwise do it now as its parent subtype cannot be
		   technically elaborated on its own.  */
		if (definition)
		  gcc_assert (present_gnu_tree (gnat_uview));
		else
		  gnat_to_gnu_entity (gnat_uview, NULL_TREE, false);

		gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_uview));

		/* Substitute the "get to the parent" of the type for that
		   of its underlying record view in the cloned type.  */
		for (gnat_field = First_Stored_Discriminant (gnat_uview);
		     Present (gnat_field);
		     gnat_field = Next_Stored_Discriminant (gnat_field))
		  if (Present (Corresponding_Discriminant (gnat_field)))
		    {
		      tree gnu_field = gnat_to_gnu_field_decl (gnat_field);
		      tree gnu_ref
			= build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
				  gnu_get_parent, gnu_field, NULL_TREE);
		      gnu_parent
			= substitute_in_type (gnu_parent, gnu_field, gnu_ref);
		    }
	      }
	    else
	      gnu_parent = gnat_to_gnu_type (gnat_parent);

	    /* The parent field needs strict alignment so, if it is to
	       be created with a component clause below, then we need
	       to apply the same adjustment as in gnat_to_gnu_field.  */
	    if (has_rep && TYPE_ALIGN (gnu_type) < TYPE_ALIGN (gnu_parent))
	      {
		/* ??? For historical reasons, we do it on strict-alignment
		   platforms only, where it is really required.  This means
		   that a confirming representation clause will change the
		   behavior of the compiler on the other platforms.  */
		if (STRICT_ALIGNMENT)
		  SET_TYPE_ALIGN (gnu_type, TYPE_ALIGN (gnu_parent));
		else
		  parent_packed
		    = adjust_packed (gnu_parent, gnu_type, parent_packed);
	      }

	    /* Finally we fix up both kinds of twisted COMPONENT_REF we have
	       initially built.  The discriminants must reference the fields
	       of the parent subtype and not those of its base type for the
	       placeholder machinery to properly work.  */
	    if (has_discr)
	      {
		/* The actual parent subtype is the full view.  */
		if (Is_Private_Type (gnat_parent))
		  {
		    if (Present (Full_View (gnat_parent)))
		      gnat_parent = Full_View (gnat_parent);
		    else
		      gnat_parent = Underlying_Full_View (gnat_parent);
		  }

		for (gnat_field = First_Stored_Discriminant (gnat_entity);
		     Present (gnat_field);
		     gnat_field = Next_Stored_Discriminant (gnat_field))
		  if (Present (Corresponding_Discriminant (gnat_field)))
		    {
		      Entity_Id field;
		      for (field = First_Stored_Discriminant (gnat_parent);
			   Present (field);
			   field = Next_Stored_Discriminant (field))
			if (same_discriminant_p (gnat_field, field))
			  break;
		      gcc_assert (Present (field));
		      TREE_OPERAND (get_gnu_tree (gnat_field), 1)
			= gnat_to_gnu_field_decl (field);
		    }
	      }

	    /* The "get to the parent" COMPONENT_REF must be given its
	       proper type...  */
	    TREE_TYPE (gnu_get_parent) = gnu_parent;

	    /* ...and reference the _Parent field of this record.  */
	    gnu_field
	      = create_field_decl (parent_name_id,
				   gnu_parent, gnu_type,
				   has_rep
				   ? TYPE_SIZE (gnu_parent) : NULL_TREE,
				   has_rep
				   ? bitsize_zero_node : NULL_TREE,
				   parent_packed, 1);
	    DECL_INTERNAL_P (gnu_field) = 1;
	    TREE_OPERAND (gnu_get_parent, 1) = gnu_field;
	    TYPE_FIELDS (gnu_type) = gnu_field;
	  }

	/* Make the fields for the discriminants and put them into the record
	   unless it's an Unchecked_Union.  */
	if (has_discr)
	  for (gnat_field = First_Stored_Discriminant (gnat_entity);
	       Present (gnat_field);
	       gnat_field = Next_Stored_Discriminant (gnat_field))
	    {
	      /* If this is a record extension and this discriminant is the
		 renaming of another discriminant, we've handled it above.  */
	      if (is_extension
		  && Present (Corresponding_Discriminant (gnat_field)))
		continue;

	      gnu_field
		= gnat_to_gnu_field (gnat_field, gnu_type, packed, definition,
				     debug_info_p);

	      /* Make an expression using a PLACEHOLDER_EXPR from the
		 FIELD_DECL node just created and link that with the
		 corresponding GNAT defining identifier.  */
	      save_gnu_tree (gnat_field,
			     build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
				     build0 (PLACEHOLDER_EXPR, gnu_type),
				     gnu_field, NULL_TREE),
			     true);

	      if (!is_unchecked_union)
		{
		  DECL_CHAIN (gnu_field) = gnu_field_list;
		  gnu_field_list = gnu_field;
		}
	    }

	/* If we have a derived untagged type that renames discriminants in
	   the parent type, the (stored) discriminants are just a copy of the
	   discriminants of the parent type.  This means that any constraints
	   added by the renaming in the derivation are disregarded as far as
	   the layout of the derived type is concerned.  To rescue them, we
	   change the type of the (stored) discriminants to a subtype with
	   the bounds of the type of the visible discriminants.  */
	if (has_discr
	    && !is_extension
	    && Stored_Constraint (gnat_entity) != No_Elist)
	  for (gnat_constr = First_Elmt (Stored_Constraint (gnat_entity));
	       gnat_constr != No_Elmt;
	       gnat_constr = Next_Elmt (gnat_constr))
	    if (Nkind (Node (gnat_constr)) == N_Identifier
		/* Ignore access discriminants.  */
		&& !Is_Access_Type (Etype (Node (gnat_constr)))
		&& Ekind (Entity (Node (gnat_constr))) == E_Discriminant)
	      {
		const Entity_Id gnat_discr = Entity (Node (gnat_constr));
		tree gnu_discr_type = gnat_to_gnu_type (Etype (gnat_discr));
		tree gnu_ref
		  = gnat_to_gnu_entity (Original_Record_Component (gnat_discr),
					NULL_TREE, false);

		/* GNU_REF must be an expression using a PLACEHOLDER_EXPR built
		   just above for one of the stored discriminants.  */
		gcc_assert (TREE_TYPE (TREE_OPERAND (gnu_ref, 0)) == gnu_type);

		if (gnu_discr_type != TREE_TYPE (gnu_ref))
		  TREE_TYPE (gnu_ref)
		    = create_extra_subtype (TREE_TYPE (gnu_ref),
					    TYPE_MIN_VALUE (gnu_discr_type),
					    TYPE_MAX_VALUE (gnu_discr_type));
	      }

	/* If this is a derived type with discriminants and these discriminants
	   affect the initial shape it has inherited, factor them in.  */
	if (has_discr
	    && !is_extension
	    && !Has_Record_Rep_Clause (gnat_entity)
	    && Stored_Constraint (gnat_entity) != No_Elist
	    && (gnat_parent_type = Underlying_Type (Etype (gnat_entity)))
	    && Is_Record_Type (gnat_parent_type)
	    && Is_Unchecked_Union (gnat_entity)
	       == Is_Unchecked_Union (gnat_parent_type)
	    && No_Reordering (gnat_entity) == No_Reordering (gnat_parent_type))
	  {
	    tree gnu_parent_type
	      = TYPE_MAIN_VARIANT (gnat_to_gnu_type (gnat_parent_type));

	    if (TYPE_IS_PADDING_P (gnu_parent_type))
	      gnu_parent_type = TREE_TYPE (TYPE_FIELDS (gnu_parent_type));

	    vec<subst_pair> gnu_subst_list
	      = build_subst_list (gnat_entity, gnat_parent_type, definition);

	    /* Set the layout of the type to match that of the parent type,
	       doing required substitutions.  Note that, if we do not use the
	       GNAT encodings, we don't need debug info for the inner record
	       types, as they will be part of the embedding variant record's
	       debug info.  */
	    copy_and_substitute_in_layout
	      (gnat_entity, gnat_parent_type, gnu_type, gnu_parent_type,
	       gnu_subst_list,
	       debug_info_p && gnat_encodings == DWARF_GNAT_ENCODINGS_ALL);
	  }
	else
	  {
	    /* Add the fields into the record type and finish it up.  */
	    components_to_record (Component_List (record_definition),
				  gnat_entity, gnu_field_list, gnu_type,
				  packed, definition, false, all_rep,
				  is_unchecked_union, artificial_p,
				  debug_info_p, false,
				  all_rep ? NULL_TREE : bitsize_zero_node,
				  NULL);

	    /* Empty classes have the size of a storage unit in C++.  */
	    if (TYPE_SIZE (gnu_type) == bitsize_zero_node
		&& Convention (gnat_entity) == Convention_CPP)
	      {
		TYPE_SIZE (gnu_type) = bitsize_unit_node;
		TYPE_SIZE_UNIT (gnu_type) = size_one_node;
		compute_record_mode (gnu_type);
	      }

	    /* If the type needs strict alignment, then no object of the type
	       may have a size smaller than the natural size, which means that
	       the RM size of the type is equal to the type size.  */
	    if (Strict_Alignment (gnat_entity))
	      SET_TYPE_ADA_SIZE (gnu_type, TYPE_SIZE (gnu_type));

	    /* If there are entities in the chain corresponding to components
	       that we did not elaborate, ensure we elaborate their types if
	       they are itypes.  */
	    for (gnat_temp = First_Entity (gnat_entity);
		 Present (gnat_temp);
		 gnat_temp = Next_Entity (gnat_temp))
	      if ((Ekind (gnat_temp) == E_Component
		   || Ekind (gnat_temp) == E_Discriminant)
		  && Is_Itype (Etype (gnat_temp))
		  && !present_gnu_tree (gnat_temp))
		gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, false);
	  }

	/* Fill in locations of fields.  */
	annotate_rep (gnat_entity, gnu_type);
      }
      break;

    case E_Class_Wide_Subtype:
      /* If an equivalent type is present, that is what we should use.
	 Otherwise, fall through to handle this like a record subtype
	 since it may have constraints.  */
      if (gnat_equiv_type != gnat_entity)
	{
	  gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, false);
	  maybe_present = true;
	  break;
	}

      /* ... fall through ... */

    case E_Record_Subtype:
      gnat_cloned_subtype = Gigi_Cloned_Subtype (gnat_entity);
      if (Present (gnat_cloned_subtype))
	break;

      /* Otherwise, first ensure the base type is elaborated.  Then, if we are
	 changing the type, make a new type with each field having the type of
	 the field in the new subtype but the position computed by transforming
	 every discriminant reference according to the constraints.  We don't
	 see any difference between private and non-private type here since
	 derivations from types should have been deferred until the completion
	 of the private type.  */
      else
	{
	  Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity);

	  /* Some component may refer to this type, so defer completion of any
	     incomplete types.  We also need to do it for the special subtypes
	     designated by access subtypes in case they are recursive, see the
	     E_Access_Subtype case below.  */
	  if (!definition
	      || (Is_Itype (gnat_entity)
		  && Is_Frozen (gnat_entity)
		  && No (Freeze_Node (gnat_entity))))
	    {
	      defer_incomplete_level++;
	      this_deferred = true;
	    }

	  tree gnu_base_type
	    = TYPE_MAIN_VARIANT (gnat_to_gnu_type (gnat_base_type));

	  if (present_gnu_tree (gnat_entity))
	    {
	      maybe_present = true;
	      break;
	    }

	  /* When the subtype has discriminants and these discriminants affect
	     the initial shape it has inherited, factor them in.  But for an
	     Unchecked_Union (it must be an itype), just return the type.  */
	  if (Has_Discriminants (gnat_entity)
	      && Stored_Constraint (gnat_entity) != No_Elist
	      && Is_Record_Type (gnat_base_type)
	      && !Is_Unchecked_Union (gnat_base_type))
	    {
	      vec<subst_pair> gnu_subst_list
		= build_subst_list (gnat_entity, gnat_base_type, definition);
	      tree gnu_unpad_base_type;

	      gnu_type = make_node (RECORD_TYPE);
	      TYPE_NAME (gnu_type) = gnu_entity_name;
	      TYPE_PACKED (gnu_type) = TYPE_PACKED (gnu_base_type);
	      TYPE_REVERSE_STORAGE_ORDER (gnu_type)
		= Reverse_Storage_Order (gnat_entity);
	      process_attributes (&gnu_type, &attr_list, true, gnat_entity);

	      /* Set the size, alignment and alias set of the type to match
		 those of the base type, doing required substitutions.  */
	      copy_and_substitute_in_size (gnu_type, gnu_base_type,
					   gnu_subst_list);

	      if (TYPE_IS_PADDING_P (gnu_base_type))
		gnu_unpad_base_type = TREE_TYPE (TYPE_FIELDS (gnu_base_type));
	      else
		gnu_unpad_base_type = gnu_base_type;

	      /* Set the layout of the type to match that of the base type,
	         doing required substitutions.  We will output debug info
	         manually below so pass false as last argument.  */
	      copy_and_substitute_in_layout (gnat_entity, gnat_base_type,
					     gnu_type, gnu_unpad_base_type,
					     gnu_subst_list, false);

	      /* Fill in locations of fields.  */
	      annotate_rep (gnat_entity, gnu_type);

	      /* If debugging information is being written for the type and if
		 we are asked to output GNAT encodings, write a record that
		 shows what we are a subtype of and also make a variable that
		 indicates our size, if still variable.  */
	      if (debug_info_p
		  && gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
		{
		  tree gnu_subtype_marker = make_node (RECORD_TYPE);
		  tree gnu_unpad_base_name
		    = TYPE_IDENTIFIER (gnu_unpad_base_type);
		  tree gnu_size_unit = TYPE_SIZE_UNIT (gnu_type);

		  TYPE_NAME (gnu_subtype_marker)
		    = create_concat_name (gnat_entity, "XVS");
		  finish_record_type (gnu_subtype_marker,
				      create_field_decl (gnu_unpad_base_name,
							 build_reference_type
							 (gnu_unpad_base_type),
							 gnu_subtype_marker,
							 NULL_TREE, NULL_TREE,
							 0, 0),
				      0, true);

		  add_parallel_type (gnu_type, gnu_subtype_marker);

		  if (definition
		      && TREE_CODE (gnu_size_unit) != INTEGER_CST
		      && !CONTAINS_PLACEHOLDER_P (gnu_size_unit))
		    TYPE_SIZE_UNIT (gnu_subtype_marker)
		      = create_var_decl (create_concat_name (gnat_entity,
							     "XVZ"),
					 NULL_TREE, sizetype, gnu_size_unit,
					 true, false, false, false, false,
					 true, true, NULL, gnat_entity, false);
		}

	      /* Or else, if the subtype is artificial and GNAT encodings are
		 not used, use the base record type as the debug type.  */
	      else if (debug_info_p
		       && artificial_p
		       && gnat_encodings != DWARF_GNAT_ENCODINGS_ALL)
		SET_TYPE_DEBUG_TYPE (gnu_type, gnu_unpad_base_type);
	    }

	  /* Otherwise, go down all the components in the new type and make
	     them equivalent to those in the base type.  */
	  else
	    {
	      gnu_type = gnu_base_type;

	      for (gnat_temp = First_Entity (gnat_entity);
		   Present (gnat_temp);
		   gnat_temp = Next_Entity (gnat_temp))
		if ((Ekind (gnat_temp) == E_Discriminant
		     && !Is_Unchecked_Union (gnat_base_type))
		    || Ekind (gnat_temp) == E_Component)
		  save_gnu_tree (gnat_temp,
				 gnat_to_gnu_field_decl
				 (Original_Record_Component (gnat_temp)),
				 false);
	    }
	}
      break;

    case E_Access_Subprogram_Type:
    case E_Anonymous_Access_Subprogram_Type:
      /* Use the special descriptor type for dispatch tables if needed,
	 that is to say for the Prim_Ptr of a-tags.ads and its clones.
	 Note that we are only required to do so for static tables in
	 order to be compatible with the C++ ABI, but Ada 2005 allows
	 to extend library level tagged types at the local level so
	 we do it in the non-static case as well.  */
      if (TARGET_VTABLE_USES_DESCRIPTORS
	  && Is_Dispatch_Table_Entity (gnat_entity))
	{
	    gnu_type = fdesc_type_node;
	    gnu_size = TYPE_SIZE (gnu_type);
	    break;
	}

      /* ... fall through ... */

    case E_Allocator_Type:
    case E_Access_Type:
    case E_Access_Attribute_Type:
    case E_Anonymous_Access_Type:
    case E_General_Access_Type:
      {
	/* The designated type and its equivalent type for gigi.  */
	Entity_Id gnat_desig_type = Directly_Designated_Type (gnat_entity);
	Entity_Id gnat_desig_equiv = Gigi_Equivalent_Type (gnat_desig_type);
	/* Whether it comes from a limited with.  */
	const bool is_from_limited_with
	  = (Is_Incomplete_Type (gnat_desig_equiv)
	     && From_Limited_With (gnat_desig_equiv));
	/* Whether it is a completed Taft Amendment type.  Such a type is to
	   be treated as coming from a limited with clause if it is not in
	   the main unit, i.e. we break potential circularities here in case
	   the body of an external unit is loaded for inter-unit inlining.  */
        const bool is_completed_taft_type
	  = (Is_Incomplete_Type (gnat_desig_equiv)
	     && Has_Completion_In_Body (gnat_desig_equiv)
	     && Present (Full_View (gnat_desig_equiv)));
	/* The "full view" of the designated type.  If this is an incomplete
	   entity from a limited with, treat its non-limited view as the full
	   view.  Otherwise, if this is an incomplete or private type, use the
	   full view.  In the former case, we might point to a private type,
	   in which case, we need its full view.  Also, we want to look at the
	   actual type used for the representation, so this takes a total of
	   three steps.  */
	Entity_Id gnat_desig_full_direct_first
	  = (is_from_limited_with
	     ? Non_Limited_View (gnat_desig_equiv)
	     : (Is_Incomplete_Or_Private_Type (gnat_desig_equiv)
		? Full_View (gnat_desig_equiv) : Empty));
	Entity_Id gnat_desig_full_direct
	  = ((is_from_limited_with
	      && Present (gnat_desig_full_direct_first)
	      && Is_Private_Type (gnat_desig_full_direct_first))
	     ? Full_View (gnat_desig_full_direct_first)
	     : gnat_desig_full_direct_first);
	Entity_Id gnat_desig_full
	  = Gigi_Equivalent_Type (gnat_desig_full_direct);
	/* The type actually used to represent the designated type, either
	   gnat_desig_full or gnat_desig_equiv.  */
	Entity_Id gnat_desig_rep;
	/* We want to know if we'll be seeing the freeze node for any
	   incomplete type we may be pointing to.  */
	const bool in_main_unit
	  = (Present (gnat_desig_full)
	     ? In_Extended_Main_Code_Unit (gnat_desig_full)
	     : In_Extended_Main_Code_Unit (gnat_desig_type));
	/* True if we make a dummy type here.  */
	bool made_dummy = false;
	/* The mode to be used for the pointer type.  */
	scalar_int_mode p_mode;
	/* The GCC type used for the designated type.  */
	tree gnu_desig_type = NULL_TREE;

	if (!int_mode_for_size (esize, 0).exists (&p_mode)
	    || !targetm.valid_pointer_mode (p_mode))
	  p_mode = ptr_mode;

	/* If either the designated type or its full view is an unconstrained
	   array subtype, replace it with the type it's a subtype of.  This
	   avoids problems with multiple copies of unconstrained array types.
	   Likewise, if the designated type is a subtype of an incomplete
	   record type, use the parent type to avoid order of elaboration
	   issues.  This can lose some code efficiency, but there is no
	   alternative.  */
	if (Ekind (gnat_desig_equiv) == E_Array_Subtype
	    && !Is_Constrained (gnat_desig_equiv))
	  gnat_desig_equiv = Etype (gnat_desig_equiv);
	if (Present (gnat_desig_full)
	    && ((Ekind (gnat_desig_full) == E_Array_Subtype
		 && !Is_Constrained (gnat_desig_full))
		|| (Ekind (gnat_desig_full) == E_Record_Subtype
		    && Ekind (Etype (gnat_desig_full)) == E_Record_Type)))
	  gnat_desig_full = Etype (gnat_desig_full);

	/* Set the type that's the representation of the designated type.  */
	gnat_desig_rep
	  = Present (gnat_desig_full) ? gnat_desig_full : gnat_desig_equiv;

	/* If we already know what the full type is, use it.  */
	if (Present (gnat_desig_full) && present_gnu_tree (gnat_desig_full))
	  gnu_desig_type = TREE_TYPE (get_gnu_tree (gnat_desig_full));

	/* Get the type of the thing we are to point to and build a pointer to
	   it.  If it is a reference to an incomplete or private type with a
	   full view that is a record, an array or an access, make a dummy type
	   and get the actual type later when we have verified it is safe.  */
	else if ((!in_main_unit
		  && !present_gnu_tree (gnat_desig_equiv)
		  && Present (gnat_desig_full)
		  && (Is_Record_Type (gnat_desig_full)
		      || Is_Array_Type (gnat_desig_full)
		      || Is_Access_Type (gnat_desig_full)))
		 /* Likewise if this is a reference to a record, an array or a
		    subprogram type and we are to defer elaborating incomplete
		    types.  We do this because this access type may be the full
		    view of a private type.  */
		 || ((!in_main_unit || imported_p)
		     && defer_incomplete_level != 0
		     && !present_gnu_tree (gnat_desig_equiv)
		     && (Is_Record_Type (gnat_desig_rep)
			 || Is_Array_Type (gnat_desig_rep)
			 || Ekind (gnat_desig_rep) == E_Subprogram_Type))
		 /* If this is a reference from a limited_with type back to our
		    main unit and there's a freeze node for it, either we have
		    already processed the declaration and made the dummy type,
		    in which case we just reuse the latter, or we have not yet,
		    in which case we make the dummy type and it will be reused
		    when the declaration is finally processed.  In both cases,
		    the pointer eventually created below will be automatically
		    adjusted when the freeze node is processed.  */
		 || (in_main_unit
		     && is_from_limited_with
		     && Present (Freeze_Node (gnat_desig_rep))))
	  {
	    gnu_desig_type = make_dummy_type (gnat_desig_equiv);
	    made_dummy = true;
	  }

	/* Otherwise handle the case of a pointer to itself.  */
	else if (gnat_desig_equiv == gnat_entity)
	  {
	    gnu_type
	      = build_pointer_type_for_mode (void_type_node, p_mode,
					     No_Strict_Aliasing (gnat_entity));
	    TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type) = gnu_type;
	  }

	/* If expansion is disabled, the equivalent type of a concurrent type
	   is absent, so we use the void pointer type.  */
	else if (type_annotate_only && No (gnat_desig_equiv))
	  gnu_type = ptr_type_node;

	/* If the ultimately designated type is an incomplete type with no full
	   view, we use the void pointer type in LTO mode to avoid emitting a
	   dummy type in the GIMPLE IR.  We cannot do that in regular mode as
	   the name of the dummy type in used by GDB for a global lookup.  */
	else if (Ekind (gnat_desig_rep) == E_Incomplete_Type
		 && No (Full_View (gnat_desig_rep))
		 && flag_generate_lto)
	  gnu_type = ptr_type_node;

	/* Finally, handle the default case where we can just elaborate our
	   designated type.  */
	else
	  gnu_desig_type = gnat_to_gnu_type (gnat_desig_equiv);

	/* It is possible that a call to gnat_to_gnu_type above resolved our
	   type.  If so, just return it.  */
	if (present_gnu_tree (gnat_entity))
	  {
	    maybe_present = true;
	    break;
	  }

	/* Access-to-unconstrained-array types need a special treatment.  */
	if (Is_Array_Type (gnat_desig_rep) && !Is_Constrained (gnat_desig_rep))
	  {
	    /* If the processing above got something that has a pointer, then
	       we are done.  This could have happened either because the type
	       was elaborated or because somebody else executed the code.  */
	    if (!TYPE_POINTER_TO (gnu_desig_type))
	      build_dummy_unc_pointer_types (gnat_desig_equiv, gnu_desig_type);

	    gnu_type = TYPE_POINTER_TO (gnu_desig_type);
	  }

	/* If we haven't done it yet, build the pointer type the usual way.  */
	else if (!gnu_type)
	  {
	    /* Modify the designated type if we are pointing only to constant
	       objects, but don't do it for a dummy type.  */
	    if (Is_Access_Constant (gnat_entity)
		&& !TYPE_IS_DUMMY_P (gnu_desig_type))
	      gnu_desig_type
		= change_qualified_type (gnu_desig_type, TYPE_QUAL_CONST);

	    gnu_type
	      = build_pointer_type_for_mode (gnu_desig_type, p_mode,
					     No_Strict_Aliasing (gnat_entity));
	  }

	/* If the designated type is not declared in the main unit and we made
	   a dummy node for it, save our definition, elaborate the actual type
	   and replace the dummy type we made with the actual one.  But if we
	   are to defer actually looking up the actual type, make an entry in
	   the deferred list instead.  If this is from a limited with, we may
	   have to defer until the end of the current unit.  */
	if (!in_main_unit && made_dummy)
	  {
	    if (TYPE_IS_FAT_POINTER_P (gnu_type) && esize == POINTER_SIZE)
	      gnu_type
		= build_pointer_type (TYPE_OBJECT_RECORD_TYPE (gnu_desig_type));

	    process_attributes (&gnu_type, &attr_list, false, gnat_entity);
	    gnu_decl = create_type_decl (gnu_entity_name, gnu_type,
					 artificial_p, debug_info_p,
					 gnat_entity);
	    this_made_decl = true;
	    gnu_type = TREE_TYPE (gnu_decl);
	    save_gnu_tree (gnat_entity, gnu_decl, false);
	    saved = true;

	    if (defer_incomplete_level == 0
		&& !is_from_limited_with
		&& !is_completed_taft_type)
	      {
		update_pointer_to (TYPE_MAIN_VARIANT (gnu_desig_type),
				   gnat_to_gnu_type (gnat_desig_equiv));
	      }
	    else
	      {
		struct incomplete *p = XNEW (struct incomplete);
		struct incomplete **head
		  = (is_from_limited_with || is_completed_taft_type
		     ? &defer_limited_with_list : &defer_incomplete_list);

		p->old_type = gnu_desig_type;
		p->full_type = gnat_desig_equiv;
		p->next = *head;
		*head = p;
	      }
	  }
      }
      break;

    case E_Access_Protected_Subprogram_Type:
    case E_Anonymous_Access_Protected_Subprogram_Type:
      /* If we are just annotating types and have no equivalent record type,
	 just use the void pointer type.  */
      if (type_annotate_only && gnat_equiv_type == gnat_entity)
	gnu_type = ptr_type_node;

      /* The run-time representation is the equivalent type.  */
      else
	{
	  gnu_type = gnat_to_gnu_type (gnat_equiv_type);
	  maybe_present = true;
	}

      /* The designated subtype must be elaborated as well, if it does
	 not have its own freeze node.  */
      if (Is_Itype (Directly_Designated_Type (gnat_entity))
	  && !present_gnu_tree (Directly_Designated_Type (gnat_entity))
	  && No (Freeze_Node (Directly_Designated_Type (gnat_entity)))
	  && !Is_Record_Type (Scope (Directly_Designated_Type (gnat_entity))))
	gnat_to_gnu_entity (Directly_Designated_Type (gnat_entity),
			    NULL_TREE, false);

      break;

    case E_Access_Subtype:
      gnat_cloned_subtype = Gigi_Cloned_Subtype (gnat_entity);
      if (Present (gnat_cloned_subtype))
	break;

      /* We treat this as identical to its base type; any constraint is
	 meaningful only to the front-end.  */
      gnu_type = gnat_to_gnu_type (gnat_equiv_type);
      maybe_present = true;

      /* The designated subtype must be elaborated as well, if it does
	 not have its own freeze node.  */
      if (Is_Itype (Directly_Designated_Type (gnat_entity))
	  && !present_gnu_tree (Directly_Designated_Type (gnat_entity))
	  && Is_Frozen (Directly_Designated_Type (gnat_entity))
	  && No (Freeze_Node (Directly_Designated_Type (gnat_entity))))
	{
	  tree gnu_design_base_type
	    = TYPE_IS_FAT_POINTER_P (gnu_type)
	      ? TREE_TYPE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
	      : TREE_TYPE (gnu_type);

	  /* If we are to defer elaborating incomplete types, make a dummy
	     type node and elaborate it later.  */
	  if (defer_incomplete_level != 0)
	    {
	      struct incomplete *p = XNEW (struct incomplete);

	      p->old_type
		= make_dummy_type (Directly_Designated_Type (gnat_entity));
	      p->full_type = Directly_Designated_Type (gnat_entity);
	      p->next = defer_incomplete_list;
	      defer_incomplete_list = p;
	    }

	  /* Otherwise elaborate the designated subtype only if its base type
	     has already been elaborated.  */
	  else if (!TYPE_IS_DUMMY_P (gnu_design_base_type))
	    gnat_to_gnu_entity (Directly_Designated_Type (gnat_entity),
				NULL_TREE, false);
	}
      break;

    /* Subprogram Entities

       The following access functions are defined for subprograms:

		Etype       	Return type or Standard_Void_Type.
		First_Formal	The first formal parameter.
		Is_Imported     Indicates that the subprogram has appeared in
				an INTERFACE or IMPORT pragma.  For now we
				assume that the external language is C.
		Is_Exported     Likewise but for an EXPORT pragma.
		Is_Inlined      True if the subprogram is to be inlined.

       Each parameter is first checked by calling must_pass_by_ref on its
       type to determine if it is passed by reference.  For parameters which
       are copied in, if they are Ada In Out or Out parameters, their return
       value becomes part of a record which becomes the return type of the
       function (C function - note that this applies only to Ada procedures
       so there is no Ada return type).  Additional code to store back the
       parameters will be generated on the caller side.  This transformation
       is done here, not in the front-end.

       The intended result of the transformation can be seen from the
       equivalent source rewritings that follow:

						struct temp {int a,b};
       procedure P (A,B: In Out ...) is		temp P (int A,B)
       begin					{
	 ..					  ..
       end P;					  return {A,B};
						}

						temp t;
       P(X,Y);					t = P(X,Y);
						X = t.a , Y = t.b;

       For subprogram types we need to perform mainly the same conversions to
       GCC form that are needed for procedures and function declarations.  The
       only difference is that at the end, we make a type declaration instead
       of a function declaration.  */

    case E_Subprogram_Type:
    case E_Function:
    case E_Procedure:
      {
	tree gnu_ext_name
	  = gnu_ext_name_for_subprog (gnat_entity, gnu_entity_name);
	const enum inline_status_t inline_status
	  = inline_status_for_subprog (gnat_entity);
	bool public_flag = Is_Public (gnat_entity) || imported_p;
	/* Subprograms marked both Intrinsic and Always_Inline need not
	   have a body of their own.  */
	bool extern_flag
	  = ((Is_Public (gnat_entity) && !definition)
	     || imported_p
	     || (Is_Intrinsic_Subprogram (gnat_entity)
		 && Has_Pragma_Inline_Always (gnat_entity)));
	tree gnu_param_list;

	/* A parameter may refer to this type, so defer completion of any
	   incomplete types.  */
	if (kind == E_Subprogram_Type && !definition)
	  {
	    defer_incomplete_level++;
	    this_deferred = true;
	  }

	/* If the subprogram has an alias, it is probably inherited, so
	   we can use the original one.  If the original "subprogram"
	   is actually an enumeration literal, it may be the first use
	   of its type, so we must elaborate that type now.  */
	if (Present (Alias (gnat_entity)))
	  {
	    const Entity_Id gnat_alias = Alias (gnat_entity);

	    if (Ekind (gnat_alias) == E_Enumeration_Literal)
	      gnat_to_gnu_entity (Etype (gnat_alias), NULL_TREE, false);

	    gnu_decl = gnat_to_gnu_entity (gnat_alias, gnu_expr, false);

	    /* Elaborate any itypes in the parameters of this entity.  */
	    for (gnat_temp = First_Formal_With_Extras (gnat_entity);
		 Present (gnat_temp);
		 gnat_temp = Next_Formal_With_Extras (gnat_temp))
	      if (Is_Itype (Etype (gnat_temp)))
		gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, false);

	    /* Materialize renamed subprograms in the debugging information
	       when the renamed object is known at compile time; we consider
	       such renamings as imported declarations.

	       Because the parameters in generic instantiations are generally
	       materialized as renamings, we often end up having both the
	       renamed subprogram and the renaming in the same context and with
	       the same name; in this case, renaming is both useless debug-wise
	       and potentially harmful as name resolution in the debugger could
	       return twice the same entity!  So avoid this case.  */
	    if (debug_info_p
		&& !artificial_p
		&& (Ekind (gnat_alias) == E_Function
		    || Ekind (gnat_alias) == E_Procedure)
		&& !(get_debug_scope (gnat_entity, NULL)
		     == get_debug_scope (gnat_alias, NULL)
		     && Name_Equals (Chars (gnat_entity), Chars (gnat_alias)))
		&& TREE_CODE (gnu_decl) == FUNCTION_DECL)
	      {
		tree decl = build_decl (input_location, IMPORTED_DECL,
					gnu_entity_name, void_type_node);
		IMPORTED_DECL_ASSOCIATED_DECL (decl) = gnu_decl;
		gnat_pushdecl (decl, gnat_entity);
	      }

	    break;
	  }

	/* Get the GCC tree for the (underlying) subprogram type.  If the
	   entity is an actual subprogram, also get the parameter list.  */
	gnu_type
	  = gnat_to_gnu_subprog_type (gnat_entity, definition, debug_info_p,
				      &gnu_param_list);
	if (DECL_P (gnu_type))
	  {
	    gnu_decl = gnu_type;
	    gnu_type = TREE_TYPE (gnu_decl);
	    process_attributes (&gnu_decl, &attr_list, true, gnat_entity);
	    break;
	  }

	/* Deal with platform-specific calling conventions.  */
	if (Has_Stdcall_Convention (gnat_entity))
	  prepend_one_attribute
	    (&attr_list, ATTR_MACHINE_ATTRIBUTE,
	     get_identifier ("stdcall"), NULL_TREE,
	     gnat_entity);

	/* If we should request stack realignment for a foreign convention
	   subprogram, do so.  Note that this applies to task entry points
	   in particular.  */
	if (FOREIGN_FORCE_REALIGN_STACK && foreign)
	  prepend_one_attribute
	    (&attr_list, ATTR_MACHINE_ATTRIBUTE,
	     get_identifier ("force_align_arg_pointer"), NULL_TREE,
	     gnat_entity);

	/* Deal with a pragma Linker_Section on a subprogram.  */
	if ((kind == E_Function || kind == E_Procedure)
	    && Present (Linker_Section_Pragma (gnat_entity)))
	  prepend_one_attribute_pragma (&attr_list,
					Linker_Section_Pragma (gnat_entity));

	/* If we are defining the subprogram and it has an Address clause
	   we must get the address expression from the saved GCC tree for the
	   subprogram if it has a Freeze_Node.  Otherwise, we elaborate
	   the address expression here since the front-end has guaranteed
	   in that case that the elaboration has no effects.  If there is
	   an Address clause and we are not defining the object, just
	   make it a constant.  */
	if (Present (Address_Clause (gnat_entity)))
	  {
	    tree gnu_address = NULL_TREE;

	    if (definition)
	      gnu_address
		= (present_gnu_tree (gnat_entity)
		   ? get_gnu_tree (gnat_entity)
		   : gnat_to_gnu (Expression (Address_Clause (gnat_entity))));

	    save_gnu_tree (gnat_entity, NULL_TREE, false);

	    /* Convert the type of the object to a reference type that can
	       alias everything as per RM 13.3(19).  */
	    gnu_type
	      = build_reference_type_for_mode (gnu_type, ptr_mode, true);
	    if (gnu_address)
	      gnu_address = convert (gnu_type, gnu_address);

	    gnu_decl
	      = create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
				 gnu_address, false, Is_Public (gnat_entity),
				 extern_flag, false, false, artificial_p,
				 debug_info_p, NULL, gnat_entity);
	    DECL_BY_REF_P (gnu_decl) = 1;
	  }

	/* If this is a mere subprogram type, just create the declaration.  */
	else if (kind == E_Subprogram_Type)
	  {
	    process_attributes (&gnu_type, &attr_list, false, gnat_entity);

	    gnu_decl
	      = create_type_decl (gnu_entity_name, gnu_type, artificial_p,
				  debug_info_p, gnat_entity);
	  }

	/* Otherwise create the subprogram declaration with the external name,
	   the type and the parameter list.  However, if this a reference to
	   the allocation routines, reuse the canonical declaration nodes as
	   they come with special properties.  */
	else
	  {
	    if (extern_flag && gnu_ext_name == DECL_NAME (malloc_decl))
	      gnu_decl = malloc_decl;
	    else if (extern_flag && gnu_ext_name == DECL_NAME (realloc_decl))
	      gnu_decl = realloc_decl;
	    else
	      gnu_decl
		= create_subprog_decl (gnu_entity_name, gnu_ext_name,
				       gnu_type, gnu_param_list,
				       inline_status, public_flag,
				       extern_flag, artificial_p,
				       debug_info_p,
				       definition && imported_p, attr_list,
				       gnat_entity);
	  }
      }
      break;

    case E_Incomplete_Type:
    case E_Incomplete_Subtype:
    case E_Private_Type:
    case E_Private_Subtype:
    case E_Limited_Private_Type:
    case E_Limited_Private_Subtype:
    case E_Record_Type_With_Private:
    case E_Record_Subtype_With_Private:
      {
	const bool is_from_limited_with
	  = (IN (kind, Incomplete_Kind) && From_Limited_With (gnat_entity));
	/* Get the "full view" of this entity.  If this is an incomplete
	   entity from a limited with, treat its non-limited view as the
	   full view.  Otherwise, use either the full view or the underlying
	   full view, whichever is present.  This is used in all the tests
	   below.  */
	const Entity_Id full_view
	  = is_from_limited_with
	    ? Non_Limited_View (gnat_entity)
	    : Present (Full_View (gnat_entity))
	      ? Full_View (gnat_entity)
	      : IN (kind, Private_Kind)
		? Underlying_Full_View (gnat_entity)
		: Empty;

	/* If this is an incomplete type with no full view, it must be a Taft
	   Amendment type or an incomplete type coming from a limited context,
	   in which cases we return a dummy type.  Otherwise, we just get the
	   type from its Etype.  */
	if (No (full_view))
	  {
	    if (kind == E_Incomplete_Type)
	      {
		gnu_type = make_dummy_type (gnat_entity);
		gnu_decl = TYPE_STUB_DECL (gnu_type);
	      }
	    else
	      {
		gnu_decl
		  = gnat_to_gnu_entity (Etype (gnat_entity), NULL_TREE, false);
		maybe_present = true;
	      }
	  }

	/* Or else, if we already made a type for the full view, reuse it.  */
	else if (present_gnu_tree (full_view))
	  gnu_decl = get_gnu_tree (full_view);

	/* Or else, if we are not defining the type or there is no freeze
	   node on it, get the type for the full view.  Likewise if this is
	   a limited_with'ed type not declared in the main unit, which can
	   happen for incomplete formal types instantiated on a type coming
	   from a limited_with clause.  */
	else if (!definition
		 || No (Freeze_Node (full_view))
		 || (is_from_limited_with
		     && !In_Extended_Main_Code_Unit (full_view)))
	  {
	    gnu_decl = gnat_to_gnu_entity (full_view, NULL_TREE, false);
	    maybe_present = true;
	  }

	/* Otherwise, make a dummy type entry which will be replaced later.
	   Save it as the full declaration's type so we can do any needed
	   updates when we see it.  */
	else
	  {
	    gnu_type = make_dummy_type (gnat_entity);
	    gnu_decl = TYPE_STUB_DECL (gnu_type);
	    if (Has_Completion_In_Body (gnat_entity))
	      DECL_TAFT_TYPE_P (gnu_decl) = 1;
	    save_gnu_tree (full_view, gnu_decl, false);
	  }
      }
      break;

    case E_Class_Wide_Type:
      /* Class-wide types are always transformed into their root type.  */
      gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, false);
      maybe_present = true;
      break;

    case E_Protected_Type:
    case E_Protected_Subtype:
    case E_Task_Type:
    case E_Task_Subtype:
      /* If we are just annotating types and have no equivalent record type,
	 just return void_type, except for root types that have discriminants
	 because the discriminants will very likely be used in the declarative
	 part of the associated body so they need to be translated.  */
      if (type_annotate_only && gnat_equiv_type == gnat_entity)
	{
	  if (definition
	      && Has_Discriminants (gnat_entity)
	      && Root_Type (gnat_entity) == gnat_entity)
	    {
	      tree gnu_field_list = NULL_TREE;
	      Entity_Id gnat_field;

	      /* This is a minimal version of the E_Record_Type handling.  */
	      gnu_type = make_node (RECORD_TYPE);
	      TYPE_NAME (gnu_type) = gnu_entity_name;

	      for (gnat_field = First_Stored_Discriminant (gnat_entity);
		   Present (gnat_field);
		   gnat_field = Next_Stored_Discriminant (gnat_field))
		{
		  tree gnu_field
		    = gnat_to_gnu_field (gnat_field, gnu_type, false,
					 definition, debug_info_p);

		  save_gnu_tree (gnat_field,
				 build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
					 build0 (PLACEHOLDER_EXPR, gnu_type),
					 gnu_field, NULL_TREE),
				 true);

		  DECL_CHAIN (gnu_field) = gnu_field_list;
		  gnu_field_list = gnu_field;
		}

	      finish_record_type (gnu_type, nreverse (gnu_field_list), 0,
				  false);
	    }
	  else
	    gnu_type = void_type_node;
	}

      /* Concurrent types are always transformed into their record type.  */
      else
	gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, false);
      maybe_present = true;
      break;

    case E_Label:
      gnu_decl = create_label_decl (gnu_entity_name, gnat_entity);
      break;

    case E_Block:
    case E_Loop:
      /* Nothing at all to do here, so just return an ERROR_MARK and claim
	 we've already saved it, so we don't try to.  */
      gnu_decl = error_mark_node;
      saved = true;
      break;

    case E_Abstract_State:
      /* This is a SPARK annotation that only reaches here when compiling in
	 ASIS mode.  */
      gcc_assert (type_annotate_only);
      gnu_decl = error_mark_node;
      saved = true;
      break;

    default:
      gcc_unreachable ();
    }

  /* If this is the clone of a subtype, just reuse the cloned subtype; another
     approach would be to set the cloned subtype as the DECL_ORIGINAL_TYPE of
     the entity, which would generate a DW_TAG_typedef in the debug info, but
     at the cost of the duplication of the GCC type and, more annoyingly, of
     the need to update the copy if the cloned subtype is not complete yet.  */
  if (Present (gnat_cloned_subtype))
    {
      gnu_decl = gnat_to_gnu_entity (gnat_cloned_subtype, NULL_TREE, false);
      maybe_present = true;

      if (!TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl)))
	{
	  if (!Known_Alignment (gnat_entity))
	    Copy_Alignment (gnat_entity, gnat_cloned_subtype);
	  if (!Known_Esize (gnat_entity))
	    Copy_Esize (gnat_entity, gnat_cloned_subtype);
	  if (!Known_RM_Size (gnat_entity))
	    Copy_RM_Size (gnat_entity, gnat_cloned_subtype);
	}
    }

  /* If we had a case where we evaluated another type and it might have
     defined this one, handle it here.  */
  if (maybe_present && present_gnu_tree (gnat_entity))
    {
      gnu_decl = get_gnu_tree (gnat_entity);
      saved = true;
    }

  /* If we are processing a type and there is either no DECL for it or
     we just made one, do some common processing for the type, such as
     handling alignment and possible padding.  */
  if (is_type && (!gnu_decl || this_made_decl))
    {
      const bool is_by_ref = Is_By_Reference_Type (gnat_entity);

      gcc_assert (!TYPE_IS_DUMMY_P (gnu_type));

      /* Process the attributes, if not already done.  Note that the type is
	 already defined so we cannot pass true for IN_PLACE here.  */
      process_attributes (&gnu_type, &attr_list, false, gnat_entity);

      /* See if a size was specified, by means of either an Object_Size or
         a regular Size clause, and validate it if so.

	 ??? Don't set the size for a String_Literal since it is either
	 confirming or we don't handle it properly (if the low bound is
	 non-constant).  */
      if (!gnu_size && kind != E_String_Literal_Subtype)
	{
	  const char *size_s = "size for %s too small{, minimum allowed is ^}";
	  const char *type_s = is_by_ref ? "by-reference type &" : "&";

	  if (Known_Esize (gnat_entity))
	    gnu_size
	      = validate_size (Esize (gnat_entity), gnu_type, gnat_entity,
			       VAR_DECL, false, false, size_s, type_s);

	  /* ??? The test on Has_Size_Clause must be removed when "unknown" is
	     no longer represented as Uint_0 (i.e. Use_New_Unknown_Rep).  */
	  else if (Known_RM_Size (gnat_entity)
		   || Has_Size_Clause (gnat_entity))
	    gnu_size
	      = validate_size (RM_Size (gnat_entity), gnu_type, gnat_entity,
			       TYPE_DECL, false, Has_Size_Clause (gnat_entity),
			       size_s, type_s);
	}

      /* If a size was specified, see if we can make a new type of that size
	 by rearranging the type, for example from a fat to a thin pointer.  */
      if (gnu_size)
	{
	  gnu_type
	    = make_type_from_size (gnu_type, gnu_size,
				   Has_Biased_Representation (gnat_entity));

	  if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0)
	      && operand_equal_p (rm_size (gnu_type), gnu_size, 0))
	    gnu_size = NULL_TREE;
	}

      /* If the alignment has not already been processed and this is not
	 an unconstrained array type, see if an alignment is specified.
	 If not, we pick a default alignment for atomic objects.  */
      if (align > 0 || TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE)
	;
      else if (Known_Alignment (gnat_entity))
	{
	  align = validate_alignment (Alignment (gnat_entity), gnat_entity,
				      TYPE_ALIGN (gnu_type));

	  /* Warn on suspiciously large alignments.  This should catch
	     errors about the (alignment,byte)/(size,bit) discrepancy.  */
	  if (align > BIGGEST_ALIGNMENT && Has_Alignment_Clause (gnat_entity))
	    {
	      tree size;

	      /* If a size was specified, take it into account.  Otherwise
		 use the RM size for records or unions as the type size has
		 already been adjusted to the alignment.  */
	      if (gnu_size)
		size = gnu_size;
	      else if (RECORD_OR_UNION_TYPE_P (gnu_type)
		       && !TYPE_FAT_POINTER_P (gnu_type))
		size = rm_size (gnu_type);
	      else
	        size = TYPE_SIZE (gnu_type);

	      /* Consider an alignment as suspicious if the alignment/size
		 ratio is greater or equal to the byte/bit ratio.  */
	      if (tree_fits_uhwi_p (size)
		  && align >= tree_to_uhwi (size) * BITS_PER_UNIT)
		post_error_ne ("??suspiciously large alignment specified for&",
			       Expression (Alignment_Clause (gnat_entity)),
			       gnat_entity);
	    }
	}
      else if (Is_Full_Access (gnat_entity) && !gnu_size
	       && tree_fits_uhwi_p (TYPE_SIZE (gnu_type))
	       && integer_pow2p (TYPE_SIZE (gnu_type)))
	align = MIN (BIGGEST_ALIGNMENT,
		     tree_to_uhwi (TYPE_SIZE (gnu_type)));
      else if (Is_Full_Access (gnat_entity) && gnu_size
	       && tree_fits_uhwi_p (gnu_size)
	       && integer_pow2p (gnu_size))
	align = MIN (BIGGEST_ALIGNMENT, tree_to_uhwi (gnu_size));

      /* See if we need to pad the type.  If we did and built a new type,
	 then create a stripped-down declaration for the original type,
	 mainly for debugging, unless there was already one.  */
      if (gnu_size || align > 0)
	{
	  tree orig_type = gnu_type;

	  gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
				     false, definition, false);

	  if (gnu_type != orig_type && !gnu_decl)
	    create_type_decl (gnu_entity_name, orig_type, true, debug_info_p,
			      gnat_entity);
	}

      /* Now set the RM size of the type.  We cannot do it before padding
	 because we need to accept arbitrary RM sizes on integral types.  */
      if (Known_RM_Size (gnat_entity))
	set_rm_size (RM_Size (gnat_entity), gnu_type, gnat_entity);

      /* Back-annotate the alignment of the type if not already set.  */
      if (!Known_Alignment (gnat_entity))
	{
	  unsigned int double_align, align;
	  bool is_capped_double, align_clause;

	  /* If the default alignment of "double" or larger scalar types is
	     specifically capped and this is not an array with an alignment
	     clause on the component type, return the cap.  */
	  if ((double_align = double_float_alignment) > 0)
	    is_capped_double
	      = is_double_float_or_array (gnat_entity, &align_clause);
	  else if ((double_align = double_scalar_alignment) > 0)
	    is_capped_double
	      = is_double_scalar_or_array (gnat_entity, &align_clause);
	  else
	    is_capped_double = align_clause = false;

	  if (is_capped_double && !align_clause)
	    align = double_align;
	  else
	    align = TYPE_ALIGN (gnu_type) / BITS_PER_UNIT;

	  Set_Alignment (gnat_entity, UI_From_Int (align));
	}

      /* Likewise for the size, if any.  */
      if (!Known_Esize (gnat_entity) && TYPE_SIZE (gnu_type))
	{
	  tree size = TYPE_SIZE (gnu_type);

	  /* If the size is self-referential, annotate the maximum value
	     after saturating it, if need be, to avoid a No_Uint value.
	     But do not do it for cases where Analyze_Object_Declaration
	     in Sem_Ch3 would build a default subtype for objects.  */
	  if (CONTAINS_PLACEHOLDER_P (size)
	      && !Is_Limited_Record (gnat_entity)
	      && !Is_Concurrent_Type (gnat_entity))
	    {
	      const unsigned int align
		= UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT;
	      size = maybe_saturate_size (max_size (size, true), align);
	    }

	  /* If we are just annotating types and the type is tagged, the tag
	     and the parent components are not generated by the front-end so
	     alignment and sizes must be adjusted.  */
	  if (type_annotate_only && Is_Tagged_Type (gnat_entity))
	    {
	      const bool derived_p = Is_Derived_Type (gnat_entity);
	      const Entity_Id gnat_parent
		= derived_p ? Etype (Base_Type (gnat_entity)) : Empty;
	      /* The following test for Known_Alignment preserves the old behavior,
		 but is probably wrong. */
	      const unsigned int inherited_align
		= derived_p
		  ? (Known_Alignment (gnat_parent)
		     ? UI_To_Int (Alignment (gnat_parent)) * BITS_PER_UNIT
		     : 0)
		  : POINTER_SIZE;
	      const unsigned int align
		= MAX (TYPE_ALIGN (gnu_type), inherited_align);

	      Set_Alignment (gnat_entity, UI_From_Int (align / BITS_PER_UNIT));

	      /* If there is neither size clause nor representation clause, the
		 sizes need to be adjusted.  */
	      if (!Known_RM_Size (gnat_entity)
		  && !VOID_TYPE_P (gnu_type)
		  && (!TYPE_FIELDS (gnu_type)
		      || integer_zerop (bit_position (TYPE_FIELDS (gnu_type)))))
		{
		  tree offset
		    = derived_p
		      ? UI_To_gnu (Esize (gnat_parent), bitsizetype)
		      : bitsize_int (POINTER_SIZE);
		  if (TYPE_FIELDS (gnu_type))
		    offset
		      = round_up (offset, DECL_ALIGN (TYPE_FIELDS (gnu_type)));
		  size = size_binop (PLUS_EXPR, size, offset);
		}

	      size = maybe_saturate_size (round_up (size, align), align);
	      Set_Esize (gnat_entity, annotate_value (size));

	      /* Tagged types are Strict_Alignment so RM_Size = Esize.  */
	      if (!Known_RM_Size (gnat_entity))
		Set_RM_Size (gnat_entity, Esize (gnat_entity));
	    }

	  /* Otherwise no adjustment is needed.  */
	  else
	    Set_Esize (gnat_entity, No_Uint_To_0 (annotate_value (size)));
	}

      /* Likewise for the RM size, if any.  */
      if (!Known_RM_Size (gnat_entity) && TYPE_SIZE (gnu_type))
	Set_RM_Size (gnat_entity,
		     annotate_value (rm_size (gnu_type)));

      /* If we are at global level, GCC applied variable_size to the size but
	 this has done nothing.  So, if it's not constant or self-referential,
	 call elaborate_expression_1 to make a variable for it rather than
	 calculating it each time.  */
      if (TYPE_SIZE (gnu_type)
	  && !TREE_CONSTANT (TYPE_SIZE (gnu_type))
	  && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
	  && global_bindings_p ())
	{
	  tree orig_size = TYPE_SIZE (gnu_type);

	  TYPE_SIZE (gnu_type)
	    = elaborate_expression_1 (TYPE_SIZE (gnu_type), gnat_entity,
				      "SIZE", definition, false);

	  /* ??? For now, store the size as a multiple of the alignment in
	     bytes so that we can see the alignment from the tree.  */
	  TYPE_SIZE_UNIT (gnu_type)
	    = elaborate_expression_2 (TYPE_SIZE_UNIT (gnu_type), gnat_entity,
				      "SIZE_A_UNIT", definition, false,
				      TYPE_ALIGN (gnu_type));

	  /* ??? gnu_type may come from an existing type so the MULT_EXPR node
	     may not be marked by the call to create_type_decl below.  */
	  MARK_VISITED (TYPE_SIZE_UNIT (gnu_type));

	  /* For a record type, deal with the variant part, if any, and handle
	     the Ada size as well.  */
	  if (RECORD_OR_UNION_TYPE_P (gnu_type))
	    {
	      tree variant_part = get_variant_part (gnu_type);
	      tree ada_size = TYPE_ADA_SIZE (gnu_type);

	      if (variant_part)
		{
		  tree union_type = TREE_TYPE (variant_part);
		  tree offset = DECL_FIELD_OFFSET (variant_part);

		  /* If the position of the variant part is constant, subtract
		     it from the size of the type of the parent to get the new
		     size.  This manual CSE reduces the data size.  */
		  if (TREE_CODE (offset) == INTEGER_CST)
		    {
		      tree bitpos = DECL_FIELD_BIT_OFFSET (variant_part);
		      TYPE_SIZE (union_type)
			= size_binop (MINUS_EXPR, TYPE_SIZE (gnu_type),
				      bit_from_pos (offset, bitpos));
		      TYPE_SIZE_UNIT (union_type)
			= size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (gnu_type),
				      byte_from_pos (offset, bitpos));
		    }
		  else
		    {
		      TYPE_SIZE (union_type)
			= elaborate_expression_1 (TYPE_SIZE (union_type),
						  gnat_entity, "VSIZE",
						  definition, false);

		      /* ??? For now, store the size as a multiple of the
			 alignment in bytes so that we can see the alignment
			 from the tree.  */
		      TYPE_SIZE_UNIT (union_type)
			= elaborate_expression_2 (TYPE_SIZE_UNIT (union_type),
						  gnat_entity, "VSIZE_A_UNIT",
						  definition, false,
						  TYPE_ALIGN (union_type));

		      /* ??? For now, store the offset as a multiple of the
			 alignment in bytes so that we can see the alignment
			 from the tree.  */
		      DECL_FIELD_OFFSET (variant_part)
			= elaborate_expression_2 (offset, gnat_entity,
						  "VOFFSET", definition, false,
						  DECL_OFFSET_ALIGN
						  (variant_part));
		    }

		  DECL_SIZE (variant_part) = TYPE_SIZE (union_type);
		  DECL_SIZE_UNIT (variant_part) = TYPE_SIZE_UNIT (union_type);
		}

	      if (operand_equal_p (ada_size, orig_size, 0))
		ada_size = TYPE_SIZE (gnu_type);
	      else
		ada_size
		  = elaborate_expression_1 (ada_size, gnat_entity, "RM_SIZE",
					    definition, false);
	      SET_TYPE_ADA_SIZE (gnu_type, ada_size);
	    }
	}

      /* Similarly, if this is a record type or subtype at global level, call
	 elaborate_expression_2 on any field position.  Skip any fields that
	 we haven't made trees for to avoid problems with class-wide types.  */
      if (Is_In_Record_Kind (kind) && global_bindings_p ())
	for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp);
	     gnat_temp = Next_Entity (gnat_temp))
	  if (Ekind (gnat_temp) == E_Component && present_gnu_tree (gnat_temp))
	    {
	      tree gnu_field = get_gnu_tree (gnat_temp);

	      /* ??? For now, store the offset as a multiple of the alignment
		 in bytes so that we can see the alignment from the tree.  */
	      if (!TREE_CONSTANT (DECL_FIELD_OFFSET (gnu_field))
		  && !CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (gnu_field)))
		{
		  DECL_FIELD_OFFSET (gnu_field)
		    = elaborate_expression_2 (DECL_FIELD_OFFSET (gnu_field),
					      gnat_temp, "OFFSET", definition,
					      false,
					      DECL_OFFSET_ALIGN (gnu_field));

		  /* ??? The context of gnu_field is not necessarily gnu_type
		     so the MULT_EXPR node built above may not be marked by
		     the call to create_type_decl below.  */
		  MARK_VISITED (DECL_FIELD_OFFSET (gnu_field));
		}
	    }

      /* Now check if the type allows atomic access.  */
      if (Is_Full_Access (gnat_entity))
	check_ok_for_atomic_type (gnu_type, gnat_entity, false);

      /* If this is not an unconstrained array type, set some flags.  */
      if (TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE)
	{
	  bool align_clause;

	  /* Record the property that objects of tagged types are guaranteed to
	     be properly aligned.  This is necessary because conversions to the
	     class-wide type are translated into conversions to the root type,
	     which can be less aligned than some of its derived types.  */
	  if (Is_Tagged_Type (gnat_entity)
	      || Is_Class_Wide_Equivalent_Type (gnat_entity))
	    TYPE_ALIGN_OK (gnu_type) = 1;

	  /* Record whether the type is passed by reference.  */
	  if (is_by_ref && !VOID_TYPE_P (gnu_type))
	    TYPE_BY_REFERENCE_P (gnu_type) = 1;

	  /* Record whether an alignment clause was specified.  At this point
	     scalar types with a non-confirming clause have been wrapped into
	     a record type, so only scalar types with a confirming clause are
	     left untouched; we do not set the flag on them except if they are
	     types whose default alignment is specifically capped in order not
	     to lose the specified alignment.  */
	  if ((AGGREGATE_TYPE_P (gnu_type)
	       && Present (Alignment_Clause (gnat_entity)))
	      || (double_float_alignment > 0
		  && is_double_float_or_array (gnat_entity, &align_clause)
		  && align_clause)
	      || (double_scalar_alignment > 0
		  && is_double_scalar_or_array (gnat_entity, &align_clause)
		  && align_clause))
	    TYPE_USER_ALIGN (gnu_type) = 1;

	  /* Record whether a pragma Universal_Aliasing was specified.  */
	  if (Universal_Aliasing (gnat_entity) && !TYPE_IS_DUMMY_P (gnu_type))
	    TYPE_UNIVERSAL_ALIASING_P (gnu_type) = 1;

	  /* If it is passed by reference, force BLKmode to ensure that
	     objects of this type will always be put in memory.  */
	  if (AGGREGATE_TYPE_P (gnu_type) && TYPE_BY_REFERENCE_P (gnu_type))
	    SET_TYPE_MODE (gnu_type, BLKmode);
	}

      /* If this is a derived type, relate its alias set to that of its parent
	 to avoid troubles when a call to an inherited primitive is inlined in
	 a context where a derived object is accessed.  The inlined code works
	 on the parent view so the resulting code may access the same object
	 using both the parent and the derived alias sets, which thus have to
	 conflict.  As the same issue arises with component references, the
	 parent alias set also has to conflict with composite types enclosing
	 derived components.  For instance, if we have:

	    type D is new T;
	    type R is record
	       Component : D;
	    end record;

	 we want T to conflict with both D and R, in addition to R being a
	 superset of D by record/component construction.

	 One way to achieve this is to perform an alias set copy from the
	 parent to the derived type.  This is not quite appropriate, though,
	 as we don't want separate derived types to conflict with each other:

	    type I1 is new Integer;
	    type I2 is new Integer;

	 We want I1 and I2 to both conflict with Integer but we do not want
	 I1 to conflict with I2, and an alias set copy on derivation would
	 have that effect.

	 The option chosen is to make the alias set of the derived type a
	 superset of that of its parent type.  It trivially fulfills the
	 simple requirement for the Integer derivation example above, and
	 the component case as well by superset transitivity:

		   superset      superset
		R ----------> D ----------> T

	 However, for composite types, conversions between derived types are
	 translated into VIEW_CONVERT_EXPRs so a sequence like:

	    type Comp1 is new Comp;
	    type Comp2 is new Comp;
	    procedure Proc (C : Comp1);

	    C : Comp2;
	    Proc (Comp1 (C));

	 is translated into:

	    C : Comp2;
	    Proc ((Comp1 &) &VIEW_CONVERT_EXPR <Comp1> (C));

	 and gimplified into:

	    C : Comp2;
	    Comp1 *C.0;
	    C.0 = (Comp1 *) &C;
	    Proc (C.0);

	 i.e. generates code involving type punning.  Therefore, Comp1 needs
	 to conflict with Comp2 and an alias set copy is required.

	 The language rules ensure the parent type is already frozen here.  */
      if (kind != E_Subprogram_Type
	  && Is_Derived_Type (gnat_entity)
	  && !type_annotate_only)
	{
	  Entity_Id gnat_parent_type = Underlying_Type (Etype (gnat_entity));
	  /* For constrained packed array subtypes, the implementation type is
	     used instead of the nominal type.  */
	  if (kind == E_Array_Subtype
	      && Is_Constrained (gnat_entity)
	      && Present (Packed_Array_Impl_Type (gnat_parent_type)))
	    gnat_parent_type = Packed_Array_Impl_Type (gnat_parent_type);
	  relate_alias_sets (gnu_type, gnat_to_gnu_type (gnat_parent_type),
			     Is_Composite_Type (gnat_entity)
			     ? ALIAS_SET_COPY : ALIAS_SET_SUPERSET);
	}

      /* Finally get to the appropriate variant, except for the implementation
	 type of a packed array because the GNU type might be further adjusted
	 when the original array type is itself processed.  */
      if (Treat_As_Volatile (gnat_entity)
	  && !Is_Packed_Array_Impl_Type (gnat_entity))
	{
	  const int quals
	    = TYPE_QUAL_VOLATILE
	      | (Is_Full_Access (gnat_entity) ? TYPE_QUAL_ATOMIC : 0);
	  /* This is required by free_lang_data_in_type to disable the ODR.  */
	  if (TREE_CODE (gnu_type) == ENUMERAL_TYPE)
	    TYPE_STUB_DECL (gnu_type)
	      = create_type_stub_decl (TYPE_NAME (gnu_type), gnu_type);
	  gnu_type = change_qualified_type (gnu_type, quals);
	}

      /* If we already made a decl, just set the type, otherwise create it.  */
      if (gnu_decl)
	{
	  TREE_TYPE (gnu_decl) = gnu_type;
	  TYPE_STUB_DECL (gnu_type) = gnu_decl;
	}
      else
	gnu_decl = create_type_decl (gnu_entity_name, gnu_type, artificial_p,
				     debug_info_p, gnat_entity);
    }

  /* If we haven't already, associate the ..._DECL node that we just made with
     the input GNAT entity node.  */
  if (!saved)
    save_gnu_tree (gnat_entity, gnu_decl, false);

  /* Now we are sure gnat_entity has a corresponding ..._DECL node,
     eliminate as many deferred computations as possible.  */
  process_deferred_decl_context (false);

  /* If this is an enumeration or floating-point type, we were not able to set
     the bounds since they refer to the type.  These are always static.  */
  if ((kind == E_Enumeration_Type && Present (First_Literal (gnat_entity)))
      || (kind == E_Floating_Point_Type))
    {
      tree gnu_scalar_type = gnu_type;
      tree gnu_low_bound, gnu_high_bound;

      /* If this is a padded type, we need to use the underlying type.  */
      if (TYPE_IS_PADDING_P (gnu_scalar_type))
	gnu_scalar_type = TREE_TYPE (TYPE_FIELDS (gnu_scalar_type));

      /* If this is a floating point type and we haven't set a floating
	 point type yet, use this in the evaluation of the bounds.  */
      if (!longest_float_type_node && kind == E_Floating_Point_Type)
	longest_float_type_node = gnu_scalar_type;

      gnu_low_bound = gnat_to_gnu (Type_Low_Bound (gnat_entity));
      gnu_high_bound = gnat_to_gnu (Type_High_Bound (gnat_entity));

      if (kind == E_Enumeration_Type)
	{
	  /* Enumeration types have specific RM bounds.  */
	  SET_TYPE_RM_MIN_VALUE (gnu_scalar_type, gnu_low_bound);
	  SET_TYPE_RM_MAX_VALUE (gnu_scalar_type, gnu_high_bound);
	}
      else
	{
	  /* Floating-point types don't have specific RM bounds.  */
	  TYPE_GCC_MIN_VALUE (gnu_scalar_type) = gnu_low_bound;
	  TYPE_GCC_MAX_VALUE (gnu_scalar_type) = gnu_high_bound;
	}
    }

  /* If we deferred processing of incomplete types, re-enable it.  If there
     were no other disables and we have deferred types to process, do so.  */
  if (this_deferred
      && --defer_incomplete_level == 0
      && defer_incomplete_list)
    {
      struct incomplete *p, *next;

      /* We are back to level 0 for the deferring of incomplete types.
	 But processing these incomplete types below may itself require
	 deferring, so preserve what we have and restart from scratch.  */
      p = defer_incomplete_list;
      defer_incomplete_list = NULL;

      for (; p; p = next)
	{
	  next = p->next;

	  if (p->old_type)
	    update_pointer_to (TYPE_MAIN_VARIANT (p->old_type),
			       gnat_to_gnu_type (p->full_type));
	  free (p);
	}
    }

  /* If we are not defining this type, see if it's on one of the lists of
     incomplete types.  If so, handle the list entry now.  */
  if (is_type && !definition)
    {
      struct incomplete *p;

      for (p = defer_incomplete_list; p; p = p->next)
	if (p->old_type && p->full_type == gnat_entity)
	  {
	    update_pointer_to (TYPE_MAIN_VARIANT (p->old_type),
			       TREE_TYPE (gnu_decl));
	    p->old_type = NULL_TREE;
	  }

      for (p = defer_limited_with_list; p; p = p->next)
	if (p->old_type
	    && (Non_Limited_View (p->full_type) == gnat_entity
		|| Full_View (p->full_type) == gnat_entity))
	  {
	    update_pointer_to (TYPE_MAIN_VARIANT (p->old_type),
			       TREE_TYPE (gnu_decl));
	    if (TYPE_DUMMY_IN_PROFILE_P (p->old_type))
	      update_profiles_with (p->old_type);
	    p->old_type = NULL_TREE;
	  }
    }

  if (this_global)
    force_global--;

  /* If this is a packed array type whose original array type is itself
     an itype without freeze node, make sure the latter is processed.  */
  if (Is_Packed_Array_Impl_Type (gnat_entity)
      && Is_Itype (Original_Array_Type (gnat_entity))
      && No (Freeze_Node (Original_Array_Type (gnat_entity)))
      && !present_gnu_tree (Original_Array_Type (gnat_entity)))
    gnat_to_gnu_entity (Original_Array_Type (gnat_entity), NULL_TREE, false);

  return gnu_decl;
}

/* Similar, but if the returned value is a COMPONENT_REF, return the
   FIELD_DECL.  */

tree
gnat_to_gnu_field_decl (Entity_Id gnat_entity)
{
  tree gnu_field = gnat_to_gnu_entity (gnat_entity, NULL_TREE, false);

  if (TREE_CODE (gnu_field) == COMPONENT_REF)
    gnu_field = TREE_OPERAND (gnu_field, 1);

  return gnu_field;
}

/* Similar, but GNAT_ENTITY is assumed to refer to a GNAT type.  Return
   the GCC type corresponding to that entity.  */

tree
gnat_to_gnu_type (Entity_Id gnat_entity)
{
  tree gnu_decl;

  /* The back end never attempts to annotate generic types.  */
  if (Is_Generic_Type (gnat_entity) && type_annotate_only)
     return void_type_node;

  gnu_decl = gnat_to_gnu_entity (gnat_entity, NULL_TREE, false);
  gcc_assert (TREE_CODE (gnu_decl) == TYPE_DECL);

  return TREE_TYPE (gnu_decl);
}

/* Similar, but GNAT_ENTITY is assumed to refer to a GNAT type.  Return
   the unpadded version of the GCC type corresponding to that entity.  */

tree
get_unpadded_type (Entity_Id gnat_entity)
{
  tree type = gnat_to_gnu_type (gnat_entity);

  if (TYPE_IS_PADDING_P (type))
    type = TREE_TYPE (TYPE_FIELDS (type));

  return type;
}

/* Return whether the E_Subprogram_Type/E_Function/E_Procedure GNAT_ENTITY is
   a C++ imported method or equivalent.

   We use the predicate to find out whether we need to use METHOD_TYPE instead
   of FUNCTION_TYPE for GNAT_ENTITY for the sake compatibility with C++.  This
   in turn determines whether the "thiscall" calling convention is used by the
   back-end for GNAT_ENTITY on 32-bit x86/Windows.  */

static bool
is_cplusplus_method (Entity_Id gnat_entity)
{
  /* A constructor is a method on the C++ side.  We deal with it now because
     it is declared without the 'this' parameter in the sources and, although
     the front-end will create a version with the 'this' parameter for code
     generation purposes, we want to return true for both versions.  */
  if (Is_Constructor (gnat_entity))
    return true;

  /* Check that the subprogram has C++ convention.  */
  if (Convention (gnat_entity) != Convention_CPP)
    return false;

  /* And that the type of the first parameter (indirectly) has it too, but
     we make an exception for Interfaces because they need not be imported.  */
  Entity_Id gnat_first = First_Formal (gnat_entity);
  if (No (gnat_first))
    return false;
  Entity_Id gnat_type = Etype (gnat_first);
  if (Is_Access_Type (gnat_type))
    gnat_type = Directly_Designated_Type (gnat_type);
  if (Convention (gnat_type) != Convention_CPP && !Is_Interface (gnat_type))
    return false;

  /* This is the main case: a C++ virtual method imported as a primitive
     operation of a tagged type.  */
  if (Is_Dispatching_Operation (gnat_entity))
    return true;

  /* This is set on the E_Subprogram_Type built for a dispatching call.  */
  if (Is_Dispatch_Table_Entity (gnat_entity))
    return true;

  /* A thunk needs to be handled like its associated primitive operation.  */
  if (Is_Subprogram (gnat_entity) && Is_Thunk (gnat_entity))
    return true;

  /* Now on to the annoying case: a C++ non-virtual method, imported either
     as a non-primitive operation of a tagged type or as a primitive operation
     of an untagged type.  We cannot reliably differentiate these cases from
     their static member or regular function equivalents in Ada, so we ask
     the C++ side through the mangled name of the function, as the implicit
     'this' parameter is not encoded in the mangled name of a method.  */
  if (Is_Subprogram (gnat_entity) && Present (Interface_Name (gnat_entity)))
    {
      String_Template temp = { 0, 0 };
      String_Pointer sp = { "", &temp };
      Get_External_Name (gnat_entity, false, sp);

      void *mem;
      struct demangle_component *cmp
	= cplus_demangle_v3_components (Name_Buffer,
					DMGL_GNU_V3
					| DMGL_TYPES
					| DMGL_PARAMS
					| DMGL_RET_DROP,
					&mem);
      if (!cmp)
	return false;

      /* We need to release MEM once we have a successful demangling.  */
      bool ret = false;

      if (cmp->type == DEMANGLE_COMPONENT_TYPED_NAME
	  && cmp->u.s_binary.right->type == DEMANGLE_COMPONENT_FUNCTION_TYPE
	  && (cmp = cmp->u.s_binary.right->u.s_binary.right) != NULL
	  && cmp->type == DEMANGLE_COMPONENT_ARGLIST)
	{
	  /* Make sure there is at least one parameter in C++ too.  */
	  if (cmp->u.s_binary.left)
	    {
	      unsigned int n_ada_args = 0;
	      do {
		n_ada_args++;
		gnat_first = Next_Formal (gnat_first);
	      } while (Present (gnat_first));

	      unsigned int n_cpp_args = 0;
	      do {
		n_cpp_args++;
		cmp = cmp->u.s_binary.right;
	      } while (cmp);

	      if (n_cpp_args < n_ada_args)
		ret = true;
	    }
	  else
	    ret = true;
	}

      free (mem);

      return ret;
    }

  return false;
}

/* Return the inlining status of the GNAT subprogram SUBPROG.  */

static enum inline_status_t
inline_status_for_subprog (Entity_Id subprog)
{
  if (Has_Pragma_No_Inline (subprog))
    return is_suppressed;

  if (Has_Pragma_Inline_Always (subprog))
    return is_required;

  if (Is_Inlined (subprog))
    {
      tree gnu_type;

      /* This is a kludge to work around a pass ordering issue: for small
	 record types with many components, i.e. typically bit-fields, the
	 initialization routine can contain many assignments that will be
	 merged by the GIMPLE store merging pass.  But this pass runs very
	 late in the pipeline, in particular after the inlining decisions
	 are made, so the inlining heuristics cannot take its outcome into
	 account.  Therefore, we optimistically override the heuristics for
	 the initialization routine in this case.  */
      if (Is_Init_Proc (subprog)
	  && flag_store_merging
	  && Is_Record_Type (Etype (First_Formal (subprog)))
	  && (gnu_type = gnat_to_gnu_type (Etype (First_Formal (subprog))))
	  && !TYPE_IS_BY_REFERENCE_P (gnu_type)
	  && tree_fits_uhwi_p (TYPE_SIZE (gnu_type))
	  && compare_tree_int (TYPE_SIZE (gnu_type), MAX_FIXED_MODE_SIZE) <= 0)
	return is_prescribed;

      /* If this is an expression function and we're not optimizing for size,
	 override the heuristics, unless -gnatd.8 is specified.  */
      if (Is_Expression_Function (subprog)
	  && !optimize_size
	  && !Debug_Flag_Dot_8)
	return is_prescribed;

      return is_requested;
    }

  return is_default;
}

/* Finalize the processing of From_Limited_With incomplete types.  */

void
finalize_from_limited_with (void)
{
  struct incomplete *p, *next;

  p = defer_limited_with_list;
  defer_limited_with_list = NULL;

  for (; p; p = next)
    {
      next = p->next;

      if (p->old_type)
	{
	  update_pointer_to (TYPE_MAIN_VARIANT (p->old_type),
			     gnat_to_gnu_type (p->full_type));
	  if (TYPE_DUMMY_IN_PROFILE_P (p->old_type))
	    update_profiles_with (p->old_type);
	}

      free (p);
    }
}

/* Return the cloned subtype to be used for GNAT_ENTITY, if the latter is a
   kind of subtype that needs to be considered as a clone by Gigi, otherwise
   return Empty.  */

static Entity_Id
Gigi_Cloned_Subtype (Entity_Id gnat_entity)
{
  Node_Id gnat_decl;

  switch (Ekind (gnat_entity))
    {
    case E_Class_Wide_Subtype:
      if (Present (Equivalent_Type (gnat_entity)))
	return Empty;

      /* ... fall through ... */

    case E_Record_Subtype:
      /* If Cloned_Subtype is Present, this means that this record subtype has
	 the same layout as that of the specified (sub)type, and also that the
	 front-end guarantees that the component list is shared.  */
      return Cloned_Subtype (gnat_entity);

    case E_Access_Subtype:
    case E_Array_Subtype:
    case E_Signed_Integer_Subtype:
    case E_Enumeration_Subtype:
    case E_Modular_Integer_Subtype:
    case E_Ordinary_Fixed_Point_Subtype:
    case E_Decimal_Fixed_Point_Subtype:
    case E_Floating_Point_Subtype:
      if (Sloc (gnat_entity) == Standard_Location)
	break;

      /* We return true for the subtypes generated for the actuals of formal
	 private types in instantiations, so that these actuals are the types
	 of the instantiated objects in the debug info.  */
      gnat_decl = Declaration_Node (gnat_entity);
      if (Present (gnat_decl)
	  && Nkind (gnat_decl) == N_Subtype_Declaration
	  && Present (Generic_Parent_Type (gnat_decl))
	  && Is_Entity_Name (Subtype_Indication (gnat_decl)))
	return Entity (Subtype_Indication (gnat_decl));

      /* Likewise for the full view of such subtypes when they are private.  */
      if (Is_Itype (gnat_entity))
	{
	  gnat_decl = Associated_Node_For_Itype (gnat_entity);
	  if (Present (gnat_decl)
	      && Nkind (gnat_decl) == N_Subtype_Declaration
	      && Is_Private_Type (Defining_Identifier (gnat_decl))
	      && Full_View (Defining_Identifier (gnat_decl)) == gnat_entity
	      && Present (Generic_Parent_Type (gnat_decl))
	      && Is_Entity_Name (Subtype_Indication (gnat_decl)))
	    return Entity (Subtype_Indication (gnat_decl));
	}
      break;

    default:
      break;
    }

  return Empty;
}

/* Return the equivalent type to be used for GNAT_ENTITY, if it's a kind
   of type (such E_Task_Type) that has a different type which Gigi uses
   for its representation.  If the type does not have a special type for
   its representation, return GNAT_ENTITY.  */

Entity_Id
Gigi_Equivalent_Type (Entity_Id gnat_entity)
{
  Entity_Id gnat_equiv = gnat_entity;

  if (No (gnat_entity))
    return gnat_entity;

  switch (Ekind (gnat_entity))
    {
    case E_Class_Wide_Subtype:
      if (Present (Equivalent_Type (gnat_entity)))
	gnat_equiv = Equivalent_Type (gnat_entity);
      break;

    case E_Access_Protected_Subprogram_Type:
    case E_Anonymous_Access_Protected_Subprogram_Type:
      if (Present (Equivalent_Type (gnat_entity)))
	gnat_equiv = Equivalent_Type (gnat_entity);
      break;

    case E_Access_Subtype:
      gnat_equiv = Etype (gnat_entity);
      break;

    case E_Array_Subtype:
      if (!Is_Constrained (gnat_entity))
	gnat_equiv = Etype (gnat_entity);
      break;

    case E_Class_Wide_Type:
      gnat_equiv = Root_Type (gnat_entity);
      break;

    case E_Protected_Type:
    case E_Protected_Subtype:
    case E_Task_Type:
    case E_Task_Subtype:
      if (Present (Corresponding_Record_Type (gnat_entity)))
	gnat_equiv = Corresponding_Record_Type (gnat_entity);
      break;

    default:
      break;
    }

  return gnat_equiv;
}

/* Return a GCC tree for a type corresponding to the component type of the
   array type or subtype GNAT_ARRAY.  DEFINITION is true if this component
   is for an array being defined.  DEBUG_INFO_P is true if we need to write
   debug information for other types that we may create in the process.  */

static tree
gnat_to_gnu_component_type (Entity_Id gnat_array, bool definition,
			    bool debug_info_p)
{
  const Entity_Id gnat_type = Component_Type (gnat_array);
  const bool is_bit_packed = Is_Bit_Packed_Array (gnat_array);
  tree gnu_type = gnat_to_gnu_type (gnat_type);
  tree gnu_comp_size;
  bool has_packed_components;
  unsigned int max_align;

  /* If an alignment is specified, use it as a cap on the component type
     so that it can be honored for the whole type, but ignore it for the
     original type of packed array types.  */
  if (No (Packed_Array_Impl_Type (gnat_array))
      && Known_Alignment (gnat_array))
    max_align = validate_alignment (Alignment (gnat_array), gnat_array, 0);
  else
    max_align = 0;

  /* Try to get a packable form of the component if needed.  */
  if ((Is_Packed (gnat_array) || Has_Component_Size_Clause (gnat_array))
      && !is_bit_packed
      && !Has_Aliased_Components (gnat_array)
      && !Strict_Alignment (gnat_type)
      && RECORD_OR_UNION_TYPE_P (gnu_type)
      && !TYPE_FAT_POINTER_P (gnu_type)
      && tree_fits_uhwi_p (TYPE_SIZE (gnu_type)))
    {
      gnu_type = make_packable_type (gnu_type, false, max_align);
      has_packed_components = true;
    }
  else
    has_packed_components = is_bit_packed;

  /* Get and validate any specified Component_Size.  */
  gnu_comp_size
    = validate_size (Component_Size (gnat_array), gnu_type, gnat_array,
		     has_packed_components ? TYPE_DECL : VAR_DECL, true,
		     Has_Component_Size_Clause (gnat_array), NULL, NULL);

  /* If the component type is a RECORD_TYPE that has a self-referential size,
     then use the maximum size for the component size.  */
  if (!gnu_comp_size
      && TREE_CODE (gnu_type) == RECORD_TYPE
      && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
    gnu_comp_size = max_size (TYPE_SIZE (gnu_type), true);

  /* If the array has aliased components and the component size is zero, force
     the unit size to ensure that the components have distinct addresses.  */
  if (!gnu_comp_size
      && Has_Aliased_Components (gnat_array)
      && integer_zerop (TYPE_SIZE (gnu_type)))
    gnu_comp_size = bitsize_unit_node;

  /* Honor the component size.  This is not needed for bit-packed arrays.  */
  if (gnu_comp_size && !is_bit_packed)
    {
      tree orig_type = gnu_type;
      unsigned int gnu_comp_align;

      gnu_type = make_type_from_size (gnu_type, gnu_comp_size, false);
      if (max_align > 0 && TYPE_ALIGN (gnu_type) > max_align)
	gnu_type = orig_type;
      else
	orig_type = gnu_type;

      /* We need to make sure that the size is a multiple of the alignment.
	 But we do not misalign the component type because of the alignment
	 of the array type here; this either must have been done earlier in
	 the packed case or should be rejected in the non-packed case.  */
      if (TREE_CODE (gnu_comp_size) == INTEGER_CST)
	{
	  const unsigned HOST_WIDE_INT int_size = tree_to_uhwi (gnu_comp_size);
	  gnu_comp_align = int_size & -int_size;
	  if (gnu_comp_align > TYPE_ALIGN (gnu_type))
	    gnu_comp_align = 0;
	}
       else
	 gnu_comp_align = 0;

      gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, gnu_comp_align,
				 gnat_array, true, definition, true);

      /* If a padding record was made, declare it now since it will never be
	 declared otherwise.  This is necessary to ensure that its subtrees
	 are properly marked.  */
      if (gnu_type != orig_type && !DECL_P (TYPE_NAME (gnu_type)))
	create_type_decl (TYPE_NAME (gnu_type), gnu_type, true, debug_info_p,
			  gnat_array);
    }

  /* This is a very special case where the array has aliased components and the
     component size might be zero at run time.  As explained above, we force at
     least the unit size but we don't want to build a distinct padding type for
     each invocation (they are not canonicalized if they have variable size) so
     we cache this special padding type as TYPE_PADDING_FOR_COMPONENT.  */
  else if (Has_Aliased_Components (gnat_array)
	   && TREE_CODE (gnu_type) == ARRAY_TYPE
	   && !TREE_CONSTANT (TYPE_SIZE (gnu_type)))
    {
      if (TYPE_PADDING_FOR_COMPONENT (gnu_type))
	gnu_type = TYPE_PADDING_FOR_COMPONENT (gnu_type);
      else
	{
	  gnu_comp_size
	    = size_binop (MAX_EXPR, TYPE_SIZE (gnu_type), bitsize_unit_node);
	  TYPE_PADDING_FOR_COMPONENT (gnu_type)
	    = maybe_pad_type (gnu_type, gnu_comp_size, 0, gnat_array,
			      true, definition, true);
	  gnu_type = TYPE_PADDING_FOR_COMPONENT (gnu_type);
	  create_type_decl (TYPE_NAME (gnu_type), gnu_type, true, debug_info_p,
			    gnat_array);
	}
    }

  /* Now check if the type of the component allows atomic access.  */
  if (Has_Atomic_Components (gnat_array) || Is_Full_Access (gnat_type))
    check_ok_for_atomic_type (gnu_type, gnat_array, true);

  /* If the component type is a padded type made for a non-bit-packed array
     of scalars with reverse storage order, we need to propagate the reverse
     storage order to the padding type since it is the innermost enclosing
     aggregate type around the scalar.  */
  if (TYPE_IS_PADDING_P (gnu_type)
      && !is_bit_packed
      && Reverse_Storage_Order (gnat_array)
      && Is_Scalar_Type (gnat_type))
    gnu_type = set_reverse_storage_order_on_pad_type (gnu_type);

  if (Has_Volatile_Components (gnat_array))
    {
      const int quals
	= TYPE_QUAL_VOLATILE
	  | (Has_Atomic_Components (gnat_array) ? TYPE_QUAL_ATOMIC : 0);
      gnu_type = change_qualified_type (gnu_type, quals);
    }

  return gnu_type;
}

/* Return whether TYPE requires that formal parameters of TYPE be initialized
   when they are Out parameters passed by copy.

   This just implements the set of conditions listed in RM 6.4.1(12).  */

static bool
type_requires_init_of_formal (Entity_Id type)
{
  type = Underlying_Type (type);

  if (Is_Access_Type (type))
    return true;

  if (Is_Scalar_Type (type))
    return Has_Default_Aspect (type);

  if (Is_Array_Type (type))
    return Has_Default_Aspect (type)
	   || type_requires_init_of_formal (Component_Type (type));

  if (Is_Record_Type (type))
    for (Entity_Id field = First_Entity (type);
	 Present (field);
	 field = Next_Entity (field))
      {
	if (Ekind (field) == E_Discriminant && !Is_Unchecked_Union (type))
	  return true;

	if (Ekind (field) == E_Component
	    && (Present (Expression (Parent (field)))
		|| type_requires_init_of_formal (Etype (field))))
	  return true;
      }

  return false;
}

/* Return a GCC tree for a parameter corresponding to GNAT_PARAM, to be placed
   in the parameter list of GNAT_SUBPROG.  GNU_PARAM_TYPE is the GCC tree for
   the type of the parameter.  FIRST is true if this is the first parameter in
   the list of GNAT_SUBPROG.  Also set CICO to true if the parameter must use
   the copy-in copy-out implementation mechanism.

   The returned tree is a PARM_DECL, except for the cases where no parameter
   needs to be actually passed to the subprogram; the type of this "shadow"
   parameter is then returned instead.  */

static tree
gnat_to_gnu_param (Entity_Id gnat_param, tree gnu_param_type, bool first,
		   Entity_Id gnat_subprog, bool *cico)
{
  Mechanism_Type mech = Mechanism (gnat_param);
  tree gnu_param_name = get_entity_name (gnat_param);
  bool foreign = Has_Foreign_Convention (gnat_subprog);
  bool in_param = (Ekind (gnat_param) == E_In_Parameter);
  /* The parameter can be indirectly modified if its address is taken.  */
  bool ro_param = in_param && !Address_Taken (gnat_param);
  bool by_return = false, by_component_ptr = false;
  bool by_ref = false;
  bool forced_by_ref = false;
  bool restricted_aliasing_p = false;
  location_t saved_location = input_location;
  tree gnu_param;

  /* Make sure to use the proper SLOC for vector ABI warnings.  */
  if (VECTOR_TYPE_P (gnu_param_type))
    Sloc_to_locus (Sloc (gnat_subprog), &input_location);

  /* Builtins are expanded inline and there is no real call sequence involved.
     So the type expected by the underlying expander is always the type of the
     argument "as is".  */
  if (Is_Intrinsic_Subprogram (gnat_subprog)
      && Present (Interface_Name (gnat_subprog)))
    mech = By_Copy;

  /* Handle the first parameter of a valued procedure specially: it's a copy
     mechanism for which the parameter is never allocated.  */
  else if (first && Is_Valued_Procedure (gnat_subprog))
    {
      gcc_assert (Ekind (gnat_param) == E_Out_Parameter);
      mech = By_Copy;
      by_return = true;
    }

  /* Or else, see if a Mechanism was supplied that forced this parameter
     to be passed one way or another.  */
  else if (mech == Default || mech == By_Copy || mech == By_Reference)
    forced_by_ref
      = (mech == By_Reference
	 && !foreign
	 && !TYPE_IS_BY_REFERENCE_P (gnu_param_type)
	 && !Is_Aliased (gnat_param));

  /* Positive mechanism means by copy for sufficiently small parameters.  */
  else if (mech > 0)
    {
      if (TREE_CODE (gnu_param_type) == UNCONSTRAINED_ARRAY_TYPE
	  || TREE_CODE (TYPE_SIZE (gnu_param_type)) != INTEGER_CST
	  || compare_tree_int (TYPE_SIZE (gnu_param_type), mech) > 0)
	mech = By_Reference;
      else
	mech = By_Copy;
    }

  /* Otherwise, it's an unsupported mechanism so error out.  */
  else
    {
      post_error ("unsupported mechanism for&", gnat_param);
      mech = Default;
    }

  /* Either for foreign conventions, or if the underlying type is not passed
     by reference and is as large and aligned as the original type, strip off
     a possible padding type.  */
  if (TYPE_IS_PADDING_P (gnu_param_type))
    {
      tree inner_type = TREE_TYPE (TYPE_FIELDS (gnu_param_type));

      if (foreign
	  || (mech != By_Reference
	      && !must_pass_by_ref (inner_type)
	      && (mech == By_Copy || !default_pass_by_ref (inner_type))
	      && ((TYPE_SIZE (inner_type) == TYPE_SIZE (gnu_param_type)
		   && TYPE_ALIGN (inner_type) >= TYPE_ALIGN (gnu_param_type))
		  || Is_Init_Proc (gnat_subprog))))
	gnu_param_type = inner_type;
    }

  /* For foreign conventions, pass arrays as pointers to the element type.
     First check for unconstrained array and get the underlying array.  */
  if (foreign && TREE_CODE (gnu_param_type) == UNCONSTRAINED_ARRAY_TYPE)
    gnu_param_type
      = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_param_type))));

  /* Arrays are passed as pointers to element type for foreign conventions.  */
  if (foreign && mech != By_Copy && TREE_CODE (gnu_param_type) == ARRAY_TYPE)
    {
      /* Strip off any multi-dimensional entries, then strip
	 off the last array to get the component type.  */
      while (TREE_CODE (TREE_TYPE (gnu_param_type)) == ARRAY_TYPE
	     && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_param_type)))
	gnu_param_type = TREE_TYPE (gnu_param_type);

      gnu_param_type = TREE_TYPE (gnu_param_type);
      gnu_param_type = build_pointer_type (gnu_param_type);
      by_component_ptr = true;
    }

  /* Fat pointers are passed as thin pointers for foreign conventions.  */
  else if (foreign && TYPE_IS_FAT_POINTER_P (gnu_param_type))
    gnu_param_type
      = make_type_from_size (gnu_param_type, size_int (POINTER_SIZE), 0);

  /* Use a pointer type for the "this" pointer of C++ constructors.  */
  else if (Chars (gnat_param) == Name_uInit && Is_Constructor (gnat_subprog))
    {
      gcc_assert (mech == By_Reference);
      gnu_param_type = build_pointer_type (gnu_param_type);
      by_ref = true;
    }

  /* If we were requested or muss pass by reference, do so.
     If we were requested to pass by copy, do so.
     Otherwise, for foreign conventions, pass In Out or Out parameters
     or aggregates by reference.  For COBOL and Fortran, pass all
     integer and FP types that way too.  For Convention Ada, use
     the standard Ada default.  */
  else if (mech == By_Reference
	   || must_pass_by_ref (gnu_param_type)
	   || (mech != By_Copy
	       && ((foreign
		    && (!in_param || AGGREGATE_TYPE_P (gnu_param_type)))
		   || (foreign
		       && (Convention (gnat_subprog) == Convention_Fortran
			   || Convention (gnat_subprog) == Convention_COBOL)
		       && (INTEGRAL_TYPE_P (gnu_param_type)
			   || FLOAT_TYPE_P (gnu_param_type)))
		   || (!foreign
		       && default_pass_by_ref (gnu_param_type)))))
    {
      /* We take advantage of 6.2(12) by considering that references built for
	 parameters whose type isn't by-ref and for which the mechanism hasn't
	 been forced to by-ref allow only a restricted form of aliasing.  */
      restricted_aliasing_p
	= !TYPE_IS_BY_REFERENCE_P (gnu_param_type) && mech != By_Reference;
      gnu_param_type = build_reference_type (gnu_param_type);
      by_ref = true;
    }

  /* Pass In Out or Out parameters using copy-in copy-out mechanism.  */
  else if (!in_param)
    *cico = true;

  input_location = saved_location;

  if (mech == By_Copy && (by_ref || by_component_ptr))
    post_error ("??cannot pass & by copy", gnat_param);

  /* If this is an Out parameter that isn't passed by reference and whose
     type doesn't require the initialization of formals, we don't make a
     PARM_DECL for it.  Instead, it will be a VAR_DECL created when we
     process the procedure, so just return its type here.  Likewise for
     the _Init parameter of an initialization procedure or the special
     parameter of a valued procedure, never pass them in.  */
  if (Ekind (gnat_param) == E_Out_Parameter
      && !by_ref
      && !by_component_ptr
      && (!type_requires_init_of_formal (Etype (gnat_param))
	  || Is_Init_Proc (gnat_subprog)
	  || by_return))
    {
      Set_Mechanism (gnat_param, By_Copy);
      return gnu_param_type;
    }

  gnu_param = create_param_decl (gnu_param_name, gnu_param_type);
  TREE_READONLY (gnu_param) = ro_param || by_ref || by_component_ptr;
  DECL_ARTIFICIAL (gnu_param) = !Comes_From_Source (gnat_param);
  DECL_BY_REF_P (gnu_param) = by_ref;
  DECL_FORCED_BY_REF_P (gnu_param) = forced_by_ref;
  DECL_BY_COMPONENT_PTR_P (gnu_param) = by_component_ptr;
  DECL_POINTS_TO_READONLY_P (gnu_param)
    = (ro_param && (by_ref || by_component_ptr));
  DECL_CAN_NEVER_BE_NULL_P (gnu_param) = Can_Never_Be_Null (gnat_param);
  DECL_RESTRICTED_ALIASING_P (gnu_param) = restricted_aliasing_p;
  Sloc_to_locus (Sloc (gnat_param), &DECL_SOURCE_LOCATION (gnu_param));

  /* If no Mechanism was specified, indicate what we're using, then
     back-annotate it.  */
  if (mech == Default)
    mech = (by_ref || by_component_ptr) ? By_Reference : By_Copy;

  Set_Mechanism (gnat_param, mech);
  return gnu_param;
}

/* Associate GNAT_SUBPROG with GNU_TYPE, which must be a dummy type, so that
   GNAT_SUBPROG is updated when GNU_TYPE is completed.

   Ada 2012 (AI05-019) says that freezing a subprogram does not always freeze
   the corresponding profile, which means that, by the time the freeze node
   of the subprogram is encountered, types involved in its profile may still
   be not yet frozen.  That's why we need to update GNAT_SUBPROG when we see
   the freeze node of types involved in its profile, either types of formal
   parameters or the return type.  */

static void
associate_subprog_with_dummy_type (Entity_Id gnat_subprog, tree gnu_type)
{
  gcc_assert (TYPE_IS_DUMMY_P (gnu_type));

  struct tree_entity_vec_map in;
  in.base.from = gnu_type;
  struct tree_entity_vec_map **slot
    = dummy_to_subprog_map->find_slot (&in, INSERT);
  if (!*slot)
    {
      tree_entity_vec_map *e = ggc_alloc<tree_entity_vec_map> ();
      e->base.from = gnu_type;
      e->to = NULL;
      *slot = e;
    }

  /* Even if there is already a slot for GNU_TYPE, we need to set the flag
     because the vector might have been just emptied by update_profiles_with.
     This can happen when there are 2 freeze nodes associated with different
     views of the same type; the type will be really complete only after the
     second freeze node is encountered.  */
  TYPE_DUMMY_IN_PROFILE_P (gnu_type) = 1;

  vec<Entity_Id, va_gc_atomic> *v = (*slot)->to;

  /* Make sure GNAT_SUBPROG is not associated twice with the same dummy type,
     since this would mean updating twice its profile.  */
  if (v)
    {
      const unsigned len = v->length ();
      unsigned int l = 0, u = len;

      /* Entity_Id is a simple integer so we can implement a stable order on
	 the vector with an ordered insertion scheme and binary search.  */
      while (l < u)
	{
	  unsigned int m = (l + u) / 2;
	  int diff = (int) (*v)[m] - (int) gnat_subprog;
	  if (diff > 0)
	    u = m;
	  else if (diff < 0)
	    l = m + 1;
	  else
	    return;
	}

      /* l == u and therefore is the insertion point.  */
      vec_safe_insert (v, l, gnat_subprog);
    }
  else
    vec_safe_push (v, gnat_subprog);

  (*slot)->to = v;
}

/* Update the GCC tree previously built for the profile of GNAT_SUBPROG.  */

static void
update_profile (Entity_Id gnat_subprog)
{
  tree gnu_param_list;
  tree gnu_type = gnat_to_gnu_subprog_type (gnat_subprog, true,
					    Needs_Debug_Info (gnat_subprog),
					    &gnu_param_list);
  if (DECL_P (gnu_type))
    {
      /* Builtins cannot have their address taken so we can reset them.  */
      gcc_assert (fndecl_built_in_p (gnu_type));
      save_gnu_tree (gnat_subprog, NULL_TREE, false);
      save_gnu_tree (gnat_subprog, gnu_type, false);
      return;
    }

  tree gnu_subprog = get_gnu_tree (gnat_subprog);

  TREE_TYPE (gnu_subprog) = gnu_type;

  /* If GNAT_SUBPROG is an actual subprogram, GNU_SUBPROG is a FUNCTION_DECL
     and needs to be adjusted too.  */
  if (Ekind (gnat_subprog) != E_Subprogram_Type)
    {
      tree gnu_entity_name = get_entity_name (gnat_subprog);
      tree gnu_ext_name
	= gnu_ext_name_for_subprog (gnat_subprog, gnu_entity_name);

      DECL_ARGUMENTS (gnu_subprog) = gnu_param_list;
      finish_subprog_decl (gnu_subprog, gnu_ext_name, gnu_type);
    }
}

/* Update the GCC trees previously built for the profiles involving GNU_TYPE,
   a dummy type which appears in profiles.  */

void
update_profiles_with (tree gnu_type)
{
  struct tree_entity_vec_map in;
  in.base.from = gnu_type;
  struct tree_entity_vec_map *e = dummy_to_subprog_map->find (&in);
  gcc_assert (e);
  vec<Entity_Id, va_gc_atomic> *v = e->to;
  e->to = NULL;

  /* The flag needs to be reset before calling update_profile, in case
     associate_subprog_with_dummy_type is again invoked on GNU_TYPE.  */
  TYPE_DUMMY_IN_PROFILE_P (gnu_type) = 0;

  unsigned int i;
  Entity_Id *iter;
  FOR_EACH_VEC_ELT (*v, i, iter)
    update_profile (*iter);

  vec_free (v);
}

/* Return the GCC tree for GNAT_TYPE present in the profile of a subprogram.

   Ada 2012 (AI05-0151) says that incomplete types coming from a limited
   context may now appear as parameter and result types.  As a consequence,
   we may need to defer their translation until after a freeze node is seen
   or to the end of the current unit.  We also aim at handling temporarily
   incomplete types created by the usual delayed elaboration scheme.  */

static tree
gnat_to_gnu_profile_type (Entity_Id gnat_type)
{
  /* This is the same logic as the E_Access_Type case of gnat_to_gnu_entity
     so the rationale is exposed in that place.  These processings probably
     ought to be merged at some point.  */
  Entity_Id gnat_equiv = Gigi_Equivalent_Type (gnat_type);
  const bool is_from_limited_with
    = (Is_Incomplete_Type (gnat_equiv)
       && From_Limited_With (gnat_equiv));
  Entity_Id gnat_full_direct_first
    = (is_from_limited_with
       ? Non_Limited_View (gnat_equiv)
       : (Is_Incomplete_Or_Private_Type (gnat_equiv)
	  ? Full_View (gnat_equiv) : Empty));
  Entity_Id gnat_full_direct
    = ((is_from_limited_with
	&& Present (gnat_full_direct_first)
	&& Is_Private_Type (gnat_full_direct_first))
       ? Full_View (gnat_full_direct_first)
       : gnat_full_direct_first);
  Entity_Id gnat_full = Gigi_Equivalent_Type (gnat_full_direct);
  Entity_Id gnat_rep = Present (gnat_full) ? gnat_full : gnat_equiv;
  const bool in_main_unit = In_Extended_Main_Code_Unit (gnat_rep);
  tree gnu_type;

  if (Present (gnat_full) && present_gnu_tree (gnat_full))
    gnu_type = TREE_TYPE (get_gnu_tree (gnat_full));

  else if (is_from_limited_with
	   && ((!in_main_unit
	        && !present_gnu_tree (gnat_equiv)
		&& Present (gnat_full)
		&& (Is_Record_Type (gnat_full)
		    || Is_Array_Type (gnat_full)
		    || Is_Access_Type (gnat_full)))
	       || (in_main_unit && Present (Freeze_Node (gnat_rep)))))
    {
      gnu_type = make_dummy_type (gnat_equiv);

      if (!in_main_unit)
	{
	  struct incomplete *p = XNEW (struct incomplete);

	  p->old_type = gnu_type;
	  p->full_type = gnat_equiv;
	  p->next = defer_limited_with_list;
	  defer_limited_with_list = p;
	}
    }

  else if (type_annotate_only && No (gnat_equiv))
    gnu_type = void_type_node;

  else
    gnu_type = gnat_to_gnu_type (gnat_equiv);

  /* Access-to-unconstrained-array types need a special treatment.  */
  if (Is_Array_Type (gnat_rep) && !Is_Constrained (gnat_rep))
    {
      if (!TYPE_POINTER_TO (gnu_type))
	build_dummy_unc_pointer_types (gnat_equiv, gnu_type);
    }

  return gnu_type;
}

/* Return true if TYPE contains only integral data, recursively if need be.  */

static bool
type_contains_only_integral_data (tree type)
{
  switch (TREE_CODE (type))
    {
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
	if (!type_contains_only_integral_data (TREE_TYPE (field)))
	  return false;
      return true;

    case ARRAY_TYPE:
    case COMPLEX_TYPE:
      return type_contains_only_integral_data (TREE_TYPE (type));

    default:
      return INTEGRAL_TYPE_P (type);
    }

  gcc_unreachable ();
}

/* Return a GCC tree for a subprogram type corresponding to GNAT_SUBPROG.
   DEFINITION is true if this is for a subprogram being defined.  DEBUG_INFO_P
   is true if we need to write debug information for other types that we may
   create in the process.  Also set PARAM_LIST to the list of parameters.
   If GNAT_SUBPROG is bound to a GCC builtin, return the DECL for the builtin
   directly instead of its type.  */

static tree
gnat_to_gnu_subprog_type (Entity_Id gnat_subprog, bool definition,
			  bool debug_info_p, tree *param_list)
{
  const Entity_Kind kind = Ekind (gnat_subprog);
  const Entity_Id gnat_return_type = Etype (gnat_subprog);
  const bool method_p = is_cplusplus_method (gnat_subprog);
  const bool variadic = IN (Convention (gnat_subprog), Convention_C_Variadic);
  tree gnu_type = present_gnu_tree (gnat_subprog)
		  ? TREE_TYPE (get_gnu_tree (gnat_subprog)) : NULL_TREE;
  tree gnu_return_type;
  tree gnu_param_type_list = NULL_TREE;
  tree gnu_param_list = NULL_TREE;
  /* Non-null for subprograms containing parameters passed by copy-in copy-out
     (In Out or Out parameters not passed by reference), in which case it is
     the list of nodes used to specify the values of the In Out/Out parameters
     that are returned as a record upon procedure return.  The TREE_PURPOSE of
     an element of this list is a FIELD_DECL of the record and the TREE_VALUE
     is the PARM_DECL corresponding to that field.  This list will be saved in
     the TYPE_CI_CO_LIST field of the FUNCTION_TYPE node we create.  */
  tree gnu_cico_list = NULL_TREE;
  tree gnu_cico_return_type = NULL_TREE;
  tree gnu_cico_field_list = NULL_TREE;
  bool gnu_cico_only_integral_type = true;
  /* Although the semantics of "pure" units in Ada essentially match those of
     "const" in GNU C, the semantics of the Is_Pure flag in GNAT do not say
     anything about access to global memory, that's why it needs to be mapped
     to "pure" instead of "const" in GNU C.  The property is orthogonal to the
     "nothrow" property only if the EH circuitry is explicit in the internal
     representation of the middle-end: if we are to completely hide the EH
     circuitry from it, we need to declare that calls to pure Ada subprograms
     that can throw have side effects, since they can trigger an "abnormal"
     transfer of control; therefore they cannot be "pure" in the GCC sense.  */
  bool pure_flag = Is_Pure (gnat_subprog);
  bool return_by_direct_ref_p = false;
  bool return_by_invisi_ref_p = false;
  bool incomplete_profile_p = false;

  /* Look into the return type and get its associated GCC tree if it is not
     void, and then compute various flags for the subprogram type.  But make
     sure not to do this processing multiple times.  */
  if (Ekind (gnat_return_type) == E_Void)
    gnu_return_type = void_type_node;

  else if (gnu_type
	   && FUNC_OR_METHOD_TYPE_P (gnu_type)
	   && !TYPE_IS_DUMMY_P (TREE_TYPE (gnu_type)))
    {
      gnu_return_type = TREE_TYPE (gnu_type);
      return_by_direct_ref_p = TYPE_RETURN_BY_DIRECT_REF_P (gnu_type);
      return_by_invisi_ref_p = TREE_ADDRESSABLE (gnu_type);
    }

  else
    {
      /* For foreign convention/intrinsic subprograms, return System.Address
	 as void * or equivalent; this comprises GCC builtins.  */
      if ((Has_Foreign_Convention (gnat_subprog)
	   || Is_Intrinsic_Subprogram (gnat_subprog))
	  && Is_Descendant_Of_Address (Underlying_Type (gnat_return_type)))
	gnu_return_type = ptr_type_node;
      else
	gnu_return_type = gnat_to_gnu_profile_type (gnat_return_type);

      /* If this function returns by reference or on the secondary stack, make
	 the actual return type the reference type and make a note of that.  */
      if (Returns_By_Ref (gnat_subprog)
	  || Needs_Secondary_Stack (gnat_return_type)
	  || Is_Secondary_Stack_Thunk (gnat_subprog))
	{
	  gnu_return_type = build_reference_type (gnu_return_type);
	  return_by_direct_ref_p = true;
	}

      /* If the Mechanism is By_Reference, ensure this function uses the
	 target's by-invisible-reference mechanism, which may not be the
	 same as above (e.g. it might be passing an extra parameter).  */
      else if (kind == E_Function && Mechanism (gnat_subprog) == By_Reference)
	return_by_invisi_ref_p = true;

      /* Likewise, if the return type is itself By_Reference.  */
      else if (TYPE_IS_BY_REFERENCE_P (gnu_return_type))
	return_by_invisi_ref_p = true;

      /* If the type is a padded type and the underlying type would not be
	 passed by reference or the function has a foreign convention, return
	 the underlying type.  */
      else if (TYPE_IS_PADDING_P (gnu_return_type)
	       && (!default_pass_by_ref
		      (TREE_TYPE (TYPE_FIELDS (gnu_return_type)))
		   || Has_Foreign_Convention (gnat_subprog)))
	gnu_return_type = TREE_TYPE (TYPE_FIELDS (gnu_return_type));

      /* If the return type is unconstrained, it must have a maximum size.
	 Use the padded type as the effective return type.  And ensure the
	 function uses the target's by-invisible-reference mechanism to
	 avoid copying too much data when it returns.  */
      if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_return_type)))
	{
	  tree orig_type = gnu_return_type;
	  tree max_return_size = max_size (TYPE_SIZE (gnu_return_type), true);

	  /* If the size overflows to 0, set it to an arbitrary positive
	     value so that assignments in the type are preserved.  Their
	     actual size is independent of this positive value.  */
	  if (TREE_CODE (max_return_size) == INTEGER_CST
	      && TREE_OVERFLOW (max_return_size)
	      && integer_zerop (max_return_size))
	    {
	      max_return_size = copy_node (bitsize_unit_node);
	      TREE_OVERFLOW (max_return_size) = 1;
	    }

	  gnu_return_type = maybe_pad_type (gnu_return_type, max_return_size,
					    0, gnat_subprog, false, definition,
					    true);

	  /* Declare it now since it will never be declared otherwise.  This
	     is necessary to ensure that its subtrees are properly marked.  */
	  if (gnu_return_type != orig_type
	      && !DECL_P (TYPE_NAME (gnu_return_type)))
	    create_type_decl (TYPE_NAME (gnu_return_type), gnu_return_type,
			      true, debug_info_p, gnat_subprog);

	  return_by_invisi_ref_p = true;
	}

      /* If the return type has a size that overflows, we usually cannot have
	 a function that returns that type.  This usage doesn't really make
	 sense anyway, so issue an error here.  */
      if (!return_by_invisi_ref_p
	  && TYPE_SIZE_UNIT (gnu_return_type)
	  && TREE_CODE (TYPE_SIZE_UNIT (gnu_return_type)) == INTEGER_CST
	  && !valid_constant_size_p (TYPE_SIZE_UNIT (gnu_return_type)))
	{
	  post_error ("cannot return type whose size overflows", gnat_subprog);
	  gnu_return_type = copy_type (gnu_return_type);
	  TYPE_SIZE (gnu_return_type) = bitsize_zero_node;
	  TYPE_SIZE_UNIT (gnu_return_type) = size_zero_node;
	}

      /* If the return type is incomplete, there are 2 cases: if the function
	 returns by reference, then the return type is only linked indirectly
	 in the profile, so the profile can be seen as complete since it need
	 not be further modified, only the reference types need be adjusted;
	 otherwise the profile is incomplete and need be adjusted too.  */
      if (TYPE_IS_DUMMY_P (gnu_return_type))
	{
	  associate_subprog_with_dummy_type (gnat_subprog, gnu_return_type);
	  incomplete_profile_p = true;
	}

      if (kind == E_Function)
	Set_Mechanism (gnat_subprog, return_by_direct_ref_p
				     || return_by_invisi_ref_p
				     ? By_Reference : By_Copy);
    }

  /* A procedure (something that doesn't return anything) shouldn't be
     considered pure since there would be no reason for calling such a
     subprogram.  Note that procedures with Out (or In Out) parameters
     have already been converted into a function with a return type.
     Similarly, if the function returns an unconstrained type, then the
     function will allocate the return value on the secondary stack and
     thus calls to it cannot be CSE'ed, lest the stack be reclaimed.  */
  if (VOID_TYPE_P (gnu_return_type) || return_by_direct_ref_p)
    pure_flag = false;

  /* Loop over the parameters and get their associated GCC tree.  While doing
     this, build a copy-in copy-out structure if we need one.  */
  Entity_Id gnat_param;
  int num;
  for (gnat_param = First_Formal_With_Extras (gnat_subprog), num = 0;
       Present (gnat_param);
       gnat_param = Next_Formal_With_Extras (gnat_param), num++)
    {
      const bool mech_is_by_ref
	= Mechanism (gnat_param) == By_Reference
	  && !(num == 0 && Is_Valued_Procedure (gnat_subprog));
      tree gnu_param_name = get_entity_name (gnat_param);
      tree gnu_param, gnu_param_type;
      bool cico = false;

      /* For a variadic C function, do not build unnamed parameters.  */
      if (variadic
	  && num == (Convention (gnat_subprog) - Convention_C_Variadic_0))
	break;

      /* Fetch an existing parameter with complete type and reuse it.  But we
	 didn't save the CICO property so we can only do it for In parameters
	 or parameters passed by reference.  */
      if ((Ekind (gnat_param) == E_In_Parameter || mech_is_by_ref)
	  && present_gnu_tree (gnat_param)
	  && (gnu_param = get_gnu_tree (gnat_param))
	  && !TYPE_IS_DUMMY_P (TREE_TYPE (gnu_param)))
	{
	  DECL_CHAIN (gnu_param) = NULL_TREE;
	  gnu_param_type = TREE_TYPE (gnu_param);
	}

      /* Otherwise translate the parameter type and act accordingly.  */
      else
	{
	  Entity_Id gnat_param_type = Etype (gnat_param);

	  /* For foreign convention/intrinsic subprograms, pass System.Address
	     as void * or equivalent; this comprises GCC builtins.  */
	  if ((Has_Foreign_Convention (gnat_subprog)
	       || Is_Intrinsic_Subprogram (gnat_subprog))
	      && Is_Descendant_Of_Address (Underlying_Type (gnat_param_type)))
	    gnu_param_type = ptr_type_node;
	  else
	    gnu_param_type = gnat_to_gnu_profile_type (gnat_param_type);

	  /* If the parameter type is incomplete, there are 2 cases: if it is
	     passed by reference, then the type is only linked indirectly in
	     the profile, so the profile can be seen as complete since it need
	     not be further modified, only the reference type need be adjusted;
	     otherwise the profile is incomplete and need be adjusted too.  */
	  if (TYPE_IS_DUMMY_P (gnu_param_type))
	    {
	      Node_Id gnat_decl;

	      if (mech_is_by_ref
		  || (TYPE_REFERENCE_TO (gnu_param_type)
		      && TYPE_IS_FAT_POINTER_P
			 (TYPE_REFERENCE_TO (gnu_param_type)))
		  || TYPE_IS_BY_REFERENCE_P (gnu_param_type))
		{
		  gnu_param_type = build_reference_type (gnu_param_type);
		  gnu_param
		    = create_param_decl (gnu_param_name, gnu_param_type);
		  TREE_READONLY (gnu_param) = 1;
		  DECL_BY_REF_P (gnu_param) = 1;
		  DECL_POINTS_TO_READONLY_P (gnu_param)
		    = (Ekind (gnat_param) == E_In_Parameter
		       && !Address_Taken (gnat_param));
		  Set_Mechanism (gnat_param, By_Reference);
		  Sloc_to_locus (Sloc (gnat_param),
				 &DECL_SOURCE_LOCATION (gnu_param));
		}

	      /* ??? This is a kludge to support null procedures in spec taking
		 a parameter with an untagged incomplete type coming from a
		 limited context.  The front-end creates a body without knowing
		 anything about the non-limited view, which is illegal Ada and
		 cannot be supported.  Create a parameter with a fake type.  */
	      else if (kind == E_Procedure
		       && (gnat_decl = Parent (gnat_subprog))
		       && Nkind (gnat_decl) == N_Procedure_Specification
		       && Null_Present (gnat_decl)
		       && Is_Incomplete_Type (gnat_param_type))
		gnu_param = create_param_decl (gnu_param_name, ptr_type_node);

	      else
		{
		  /* Build a minimal PARM_DECL without DECL_ARG_TYPE so that
		     Call_to_gnu will stop if it encounters the PARM_DECL.  */
		  gnu_param
		    = build_decl (input_location, PARM_DECL, gnu_param_name,
				  gnu_param_type);
		  associate_subprog_with_dummy_type (gnat_subprog,
						     gnu_param_type);
		  incomplete_profile_p = true;
		}
	    }

	  /* Otherwise build the parameter declaration normally.  */
	  else
	    {
	      gnu_param
		= gnat_to_gnu_param (gnat_param, gnu_param_type, num == 0,
				     gnat_subprog, &cico);

	      /* We are returned either a PARM_DECL or a type if no parameter
		 needs to be passed; in either case, adjust the type.  */
	      if (DECL_P (gnu_param))
		gnu_param_type = TREE_TYPE (gnu_param);
	      else
		{
		  gnu_param_type = gnu_param;
		  gnu_param = NULL_TREE;
		}
	    }
	}

      /* If we have a GCC tree for the parameter, register it.  */
      save_gnu_tree (gnat_param, NULL_TREE, false);
      if (gnu_param)
	{
	  gnu_param_type_list
	    = tree_cons (NULL_TREE, gnu_param_type, gnu_param_type_list);
	  DECL_CHAIN (gnu_param) = gnu_param_list;
	  gnu_param_list = gnu_param;
	  save_gnu_tree (gnat_param, gnu_param, false);

	  /* A pure function in the Ada sense which takes an access parameter
	     may modify memory through it and thus cannot be considered pure
	     in the GCC sense, unless it's access-to-function.  Likewise it if
	     takes a by-ref In Out or Out parameter.  But if it takes a by-ref
	     In parameter, then it may only read memory through it and can be
	     considered pure in the GCC sense.  */
	  if (pure_flag
	      && ((POINTER_TYPE_P (gnu_param_type)
		   && TREE_CODE (TREE_TYPE (gnu_param_type)) != FUNCTION_TYPE)
		  || TYPE_IS_FAT_POINTER_P (gnu_param_type)))
	    pure_flag = DECL_POINTS_TO_READONLY_P (gnu_param);
	}

      /* If the parameter uses the copy-in copy-out mechanism, allocate a field
	 for it in the return type and register the association.  */
      if (cico && !incomplete_profile_p)
	{
	  if (!gnu_cico_list)
	    {
	      gnu_cico_return_type = make_node (RECORD_TYPE);

	      /* If this is a function, we also need a field for the
		 return value to be placed.  */
	      if (!VOID_TYPE_P (gnu_return_type))
		{
		  tree gnu_field
		    = create_field_decl (get_identifier ("RETVAL"),
				         gnu_return_type,
				         gnu_cico_return_type, NULL_TREE,
				         NULL_TREE, 0, 0);
		  Sloc_to_locus (Sloc (gnat_subprog),
			         &DECL_SOURCE_LOCATION (gnu_field));
		  gnu_cico_field_list = gnu_field;
		  gnu_cico_list
		    = tree_cons (gnu_field, void_type_node, NULL_TREE);
		  if (!type_contains_only_integral_data (gnu_return_type))
		    gnu_cico_only_integral_type = false;
		}

	      TYPE_NAME (gnu_cico_return_type) = get_identifier ("RETURN");
	      /* Set a default alignment to speed up accesses.  But we should
		 not increase the size of the structure too much, lest it does
		 not fit in return registers anymore.  */
	      SET_TYPE_ALIGN (gnu_cico_return_type,
			      get_mode_alignment (ptr_mode));
	    }

	  tree gnu_field
	    = create_field_decl (gnu_param_name, gnu_param_type,
				 gnu_cico_return_type, NULL_TREE, NULL_TREE,
				 0, 0);
	  Sloc_to_locus (Sloc (gnat_param),
			 &DECL_SOURCE_LOCATION (gnu_field));
	  DECL_CHAIN (gnu_field) = gnu_cico_field_list;
	  gnu_cico_field_list = gnu_field;
	  gnu_cico_list = tree_cons (gnu_field, gnu_param, gnu_cico_list);
	  if (!type_contains_only_integral_data (gnu_param_type))
	    gnu_cico_only_integral_type = false;
	}
    }

  /* If the subprogram uses the copy-in copy-out mechanism, possibly adjust
     and finish up the return type.  */
  if (gnu_cico_list && !incomplete_profile_p)
    {
      /* If we have a CICO list but it has only one entry, we convert
	 this function into a function that returns this object.  */
      if (list_length (gnu_cico_list) == 1)
	gnu_cico_return_type = TREE_TYPE (TREE_PURPOSE (gnu_cico_list));

      /* Do not finalize the return type if the subprogram is stubbed
	 since structures are incomplete for the back-end.  */
      else if (Convention (gnat_subprog) != Convention_Stubbed)
	{
	  finish_record_type (gnu_cico_return_type,
			      nreverse (gnu_cico_field_list),
			      0, false);

	  /* Try to promote the mode if the return type is fully returned
	     in integer registers, again to speed up accesses.  */
	  if (TYPE_MODE (gnu_cico_return_type) == BLKmode
	      && gnu_cico_only_integral_type
	      && !targetm.calls.return_in_memory (gnu_cico_return_type,
						  NULL_TREE))
	    {
	      unsigned int size
		= TREE_INT_CST_LOW (TYPE_SIZE (gnu_cico_return_type));
	      unsigned int i = BITS_PER_UNIT;
	      scalar_int_mode mode;

	      while (i < size)
		i <<= 1;
	      if (int_mode_for_size (i, 0).exists (&mode))
		{
		  SET_TYPE_MODE (gnu_cico_return_type, mode);
		  SET_TYPE_ALIGN (gnu_cico_return_type,
				  GET_MODE_ALIGNMENT (mode));
		  TYPE_SIZE (gnu_cico_return_type)
		    = bitsize_int (GET_MODE_BITSIZE (mode));
		  TYPE_SIZE_UNIT (gnu_cico_return_type)
		    = size_int (GET_MODE_SIZE (mode));
		}
	    }

	  /* But demote the mode if the return type is partly returned in FP
	     registers to avoid creating problematic paradoxical subregs.
	     Note that we need to cater to historical 32-bit architectures
	     that incorrectly use the mode to select the return mechanism.  */
	  else if (INTEGRAL_MODE_P (TYPE_MODE (gnu_cico_return_type))
		   && !gnu_cico_only_integral_type
		   && BITS_PER_WORD >= 64
		   && !targetm.calls.return_in_memory (gnu_cico_return_type,
						       NULL_TREE))
	    SET_TYPE_MODE (gnu_cico_return_type, BLKmode);

	  if (debug_info_p)
	    rest_of_record_type_compilation (gnu_cico_return_type);
	}

      gnu_return_type = gnu_cico_return_type;
    }

  /* The lists have been built in reverse.  */
  gnu_param_type_list = nreverse (gnu_param_type_list);
  if (!variadic)
    gnu_param_type_list = chainon (gnu_param_type_list, void_list_node);
  gnu_param_list = nreverse (gnu_param_list);
  gnu_cico_list = nreverse (gnu_cico_list);

  /* Turn imported C++ constructors into their callable form as done in the
     front-end, i.e. add the "this" pointer and void the return type.  */
  if (method_p
      && Is_Constructor (gnat_subprog)
      && !VOID_TYPE_P (gnu_return_type))
    {
      tree gnu_param_type
	= build_pointer_type (gnat_to_gnu_profile_type (gnat_return_type));
      tree gnu_param_name = get_identifier (Get_Name_String (Name_uInit));
      tree gnu_param
	= build_decl (input_location, PARM_DECL, gnu_param_name,
		      gnu_param_type);
      gnu_param_type_list
	= tree_cons (NULL_TREE, gnu_param_type, gnu_param_type_list);
      DECL_CHAIN (gnu_param) = gnu_param_list;
      gnu_param_list = gnu_param;
      gnu_return_type = void_type_node;
    }

  /* If the profile is incomplete, we only set the (temporary) return and
     parameter types; otherwise, we build the full type.  In either case,
     we reuse an already existing GCC tree that we built previously here.  */
  if (incomplete_profile_p)
    {
      if (gnu_type && FUNC_OR_METHOD_TYPE_P (gnu_type))
	;
      else
	gnu_type = make_node (method_p ? METHOD_TYPE : FUNCTION_TYPE);
      TREE_TYPE (gnu_type) = gnu_return_type;
      TYPE_ARG_TYPES (gnu_type) = gnu_param_type_list;
      TYPE_RETURN_BY_DIRECT_REF_P (gnu_type) = return_by_direct_ref_p;
      TREE_ADDRESSABLE (gnu_type) = return_by_invisi_ref_p;
    }
  else
    {
      if (gnu_type && FUNC_OR_METHOD_TYPE_P (gnu_type))
	{
	  TREE_TYPE (gnu_type) = gnu_return_type;
	  TYPE_ARG_TYPES (gnu_type) = gnu_param_type_list;
	  if (method_p)
	    {
	      tree gnu_basetype = TREE_TYPE (TREE_VALUE (gnu_param_type_list));
	      TYPE_METHOD_BASETYPE (gnu_type)
		= TYPE_MAIN_VARIANT (gnu_basetype);
	    }
	  TYPE_CI_CO_LIST (gnu_type) = gnu_cico_list;
	  TYPE_RETURN_BY_DIRECT_REF_P (gnu_type) = return_by_direct_ref_p;
	  TREE_ADDRESSABLE (gnu_type) = return_by_invisi_ref_p;
	  TYPE_CANONICAL (gnu_type) = gnu_type;
	  layout_type (gnu_type);
	}
      else
	{
	  if (method_p)
	    {
	      tree gnu_basetype = TREE_TYPE (TREE_VALUE (gnu_param_type_list));
	      gnu_type
		= build_method_type_directly (gnu_basetype, gnu_return_type,
					      TREE_CHAIN (gnu_param_type_list));
	    }
	  else
	    gnu_type
	      = build_function_type (gnu_return_type, gnu_param_type_list);

	  /* GNU_TYPE may be shared since GCC hashes types.  Unshare it if it
	     has a different TYPE_CI_CO_LIST or flags.  */
	  if (!fntype_same_flags_p (gnu_type, gnu_cico_list,
				    return_by_direct_ref_p,
				    return_by_invisi_ref_p))
	    {
	      gnu_type = copy_type (gnu_type);
	      TYPE_CI_CO_LIST (gnu_type) = gnu_cico_list;
	      TYPE_RETURN_BY_DIRECT_REF_P (gnu_type) = return_by_direct_ref_p;
	      TREE_ADDRESSABLE (gnu_type) = return_by_invisi_ref_p;
	    }
	}

      if (pure_flag)
	gnu_type = change_qualified_type (gnu_type, TYPE_QUAL_RESTRICT);

      if (No_Return (gnat_subprog))
	gnu_type = change_qualified_type (gnu_type, TYPE_QUAL_VOLATILE);

      /* If this subprogram is expectedly bound to a GCC builtin, fetch the
	 corresponding DECL node and check the parameter association.  */
      if (Is_Intrinsic_Subprogram (gnat_subprog)
	  && Present (Interface_Name (gnat_subprog)))
	{
	  tree gnu_ext_name = create_concat_name (gnat_subprog, NULL);
	  tree gnu_builtin_decl = builtin_decl_for (gnu_ext_name);

	  /* If we have a builtin DECL for that function, use it.  Check if
	     the profiles are compatible and warn if they are not.  Note that
	     the checker is expected to post diagnostics in this case.  */
	  if (gnu_builtin_decl)
	    {
	      if (fndecl_built_in_p (gnu_builtin_decl, BUILT_IN_NORMAL))
		{
		  const enum built_in_function fncode
		    = DECL_FUNCTION_CODE (gnu_builtin_decl);

		  switch (fncode)
		  {
		    case BUILT_IN_SYNC_FETCH_AND_ADD_N:
		    case BUILT_IN_SYNC_FETCH_AND_SUB_N:
		    case BUILT_IN_SYNC_FETCH_AND_OR_N:
		    case BUILT_IN_SYNC_FETCH_AND_AND_N:
		    case BUILT_IN_SYNC_FETCH_AND_XOR_N:
		    case BUILT_IN_SYNC_FETCH_AND_NAND_N:
		    case BUILT_IN_SYNC_ADD_AND_FETCH_N:
		    case BUILT_IN_SYNC_SUB_AND_FETCH_N:
		    case BUILT_IN_SYNC_OR_AND_FETCH_N:
		    case BUILT_IN_SYNC_AND_AND_FETCH_N:
		    case BUILT_IN_SYNC_XOR_AND_FETCH_N:
		    case BUILT_IN_SYNC_NAND_AND_FETCH_N:
		    case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_N:
		    case BUILT_IN_SYNC_LOCK_TEST_AND_SET_N:
		    case BUILT_IN_ATOMIC_EXCHANGE_N:
		    case BUILT_IN_ATOMIC_LOAD_N:
		    case BUILT_IN_ATOMIC_ADD_FETCH_N:
		    case BUILT_IN_ATOMIC_SUB_FETCH_N:
		    case BUILT_IN_ATOMIC_AND_FETCH_N:
		    case BUILT_IN_ATOMIC_NAND_FETCH_N:
		    case BUILT_IN_ATOMIC_XOR_FETCH_N:
		    case BUILT_IN_ATOMIC_OR_FETCH_N:
		    case BUILT_IN_ATOMIC_FETCH_ADD_N:
		    case BUILT_IN_ATOMIC_FETCH_SUB_N:
		    case BUILT_IN_ATOMIC_FETCH_AND_N:
		    case BUILT_IN_ATOMIC_FETCH_NAND_N:
		    case BUILT_IN_ATOMIC_FETCH_XOR_N:
		    case BUILT_IN_ATOMIC_FETCH_OR_N:
		      /* This is a generic builtin overloaded on its return
			 type, so do type resolution based on it.  */
		      if (!VOID_TYPE_P (gnu_return_type)
			  && type_for_atomic_builtin_p (gnu_return_type))
			gnu_builtin_decl
			  = resolve_atomic_builtin (fncode, gnu_return_type);
		      else
			{
			  post_error
			    ("??cannot import type-generic 'G'C'C builtin!",
			     gnat_subprog);
			  post_error
			    ("\\?use a supported result type",
			     gnat_subprog);
			  gnu_builtin_decl = NULL_TREE;
			}
		      break;

		    case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
		      /* This is a generic builtin overloaded on its third
			 parameter type, so do type resolution based on it.  */
		      if (list_length (gnu_param_type_list) >= 4
			  && type_for_atomic_builtin_p
			       (list_third (gnu_param_type_list)))
			gnu_builtin_decl
			  = resolve_atomic_builtin
			      (fncode, list_third (gnu_param_type_list));
		      else
			{
			  post_error
			    ("??cannot import type-generic 'G'C'C builtin!",
			     gnat_subprog);
			  post_error
			    ("\\?use a supported third parameter type",
			     gnat_subprog);
			  gnu_builtin_decl = NULL_TREE;
			}
		      break;

		    case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
		    case BUILT_IN_SYNC_LOCK_RELEASE_N:
		    case BUILT_IN_ATOMIC_STORE_N:
		      post_error
			("??unsupported type-generic 'G'C'C builtin!",
			 gnat_subprog);
		      gnu_builtin_decl = NULL_TREE;
		      break;

		    default:
		      break;
		  }
		}

	      if (gnu_builtin_decl)
		{
		  const intrin_binding_t inb
		    = { gnat_subprog, gnu_type, TREE_TYPE (gnu_builtin_decl) };

		  if (!intrin_profiles_compatible_p (&inb))
		    post_error
		      ("??profile of& doesn''t match the builtin it binds!",
		       gnat_subprog);

		  return gnu_builtin_decl;
		}
	    }

	  /* Inability to find the builtin DECL most often indicates a genuine
	     mistake, but imports of unregistered intrinsics are sometimes used
	     on purpose to allow hooking in alternate bodies; we post a warning
	     conditioned on Wshadow in this case, to let developers be notified
	     on demand without risking false positives with common default sets
	     of options.  */
	  if (warn_shadow)
	    post_error ("'G'C'C builtin not found for&!??", gnat_subprog);
	}
    }

  *param_list = gnu_param_list;

  return gnu_type;
}

/* Return the external name for GNAT_SUBPROG given its entity name.  */

static tree
gnu_ext_name_for_subprog (Entity_Id gnat_subprog, tree gnu_entity_name)
{
  tree gnu_ext_name = create_concat_name (gnat_subprog, NULL);

  /* If there was no specified Interface_Name and the external and
     internal names of the subprogram are the same, only use the
     internal name to allow disambiguation of nested subprograms.  */
  if (No (Interface_Name (gnat_subprog)) && gnu_ext_name == gnu_entity_name)
    gnu_ext_name = NULL_TREE;

  return gnu_ext_name;
}

/* Set TYPE_NONALIASED_COMPONENT on an array type built by means of
   build_nonshared_array_type.  */

static void
set_nonaliased_component_on_array_type (tree type)
{
  TYPE_NONALIASED_COMPONENT (type) = 1;
  if (TYPE_CANONICAL (type))
    TYPE_NONALIASED_COMPONENT (TYPE_CANONICAL (type)) = 1;
}

/* Set TYPE_REVERSE_STORAGE_ORDER on an array type built by means of
   build_nonshared_array_type.  */

static void
set_reverse_storage_order_on_array_type (tree type)
{
  TYPE_REVERSE_STORAGE_ORDER (type) = 1;
  if (TYPE_CANONICAL (type))
    TYPE_REVERSE_STORAGE_ORDER (TYPE_CANONICAL (type)) = 1;
}

/* Return true if DISCR1 and DISCR2 represent the same discriminant.  */

static bool
same_discriminant_p (Entity_Id discr1, Entity_Id discr2)
{
  while (Present (Corresponding_Discriminant (discr1)))
    discr1 = Corresponding_Discriminant (discr1);

  while (Present (Corresponding_Discriminant (discr2)))
    discr2 = Corresponding_Discriminant (discr2);

  return
    Original_Record_Component (discr1) == Original_Record_Component (discr2);
}

/* Return true if the array type GNU_TYPE, which represents a dimension of
   GNAT_TYPE, has a non-aliased component in the back-end sense.  */

static bool
array_type_has_nonaliased_component (tree gnu_type, Entity_Id gnat_type)
{
  /* If the array type has an aliased component in the front-end sense,
     then it also has an aliased component in the back-end sense.  */
  if (Has_Aliased_Components (gnat_type))
    return false;

  /* If this is a derived type, then it has a non-aliased component if
     and only if its parent type also has one.  */
  if (Is_Derived_Type (gnat_type))
    {
      tree gnu_parent_type = gnat_to_gnu_type (Etype (gnat_type));
      if (TREE_CODE (gnu_parent_type) == UNCONSTRAINED_ARRAY_TYPE)
	gnu_parent_type
	  = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_parent_type))));
      return TYPE_NONALIASED_COMPONENT (gnu_parent_type);
    }

  /* For a multi-dimensional array type, find the component type.  */
  while (TREE_CODE (TREE_TYPE (gnu_type)) == ARRAY_TYPE
	 && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type)))
    gnu_type = TREE_TYPE (gnu_type);

  /* Consider that an array of pointers has an aliased component, which is
     sort of logical and helps with Taft Amendment types in LTO mode.  */
  if (POINTER_TYPE_P (TREE_TYPE (gnu_type)))
    return false;

  /* Otherwise, rely exclusively on properties of the element type.  */
  return type_for_nonaliased_component_p (TREE_TYPE (gnu_type));
}

/* Return true if GNAT_ADDRESS is a value known at compile-time.  */

static bool
compile_time_known_address_p (Node_Id gnat_address)
{
  /* Handle reference to a constant.  */
  if (Is_Entity_Name (gnat_address)
      && Ekind (Entity (gnat_address)) == E_Constant)
    {
      gnat_address = Constant_Value (Entity (gnat_address));
      if (No (gnat_address))
	return false;
    }

  /* Catch System'To_Address.  */
  if (Nkind (gnat_address) == N_Unchecked_Type_Conversion)
    gnat_address = Expression (gnat_address);

  return Compile_Time_Known_Value (gnat_address);
}

/* Return true if GNAT_INDIC, a N_Subtype_Indication node for the index of a
   FLB, cannot yield superflat objects, i.e. if the inequality HB >= LB - 1
   is true for these objects.  LB and HB are the low and high bounds.  */

static bool
flb_cannot_be_superflat (Node_Id gnat_indic)
{
  const Entity_Id gnat_type = Entity (Subtype_Mark (gnat_indic));
  const Entity_Id gnat_subtype = Etype (gnat_indic);
  Node_Id gnat_scalar_range, gnat_lb, gnat_hb;
  tree gnu_lb, gnu_hb, gnu_lb_minus_one;

  /* This is a FLB so LB is fixed.  */
  if ((Ekind (gnat_subtype) == E_Signed_Integer_Subtype
       || Ekind (gnat_subtype) == E_Modular_Integer_Subtype)
      && (gnat_scalar_range = Scalar_Range (gnat_subtype)))
    {
      gnat_lb = Low_Bound (gnat_scalar_range);
      gcc_assert (Nkind (gnat_lb) == N_Integer_Literal);
    }
  else
    return false;

  /* The low bound of the type is a lower bound for HB.  */
  if ((Ekind (gnat_type) == E_Signed_Integer_Subtype
       || Ekind (gnat_type) == E_Modular_Integer_Subtype)
      && (gnat_scalar_range = Scalar_Range (gnat_type)))
    {
      gnat_hb = Low_Bound (gnat_scalar_range);
      gcc_assert (Nkind (gnat_hb) == N_Integer_Literal);
    }
  else
    return false;

  /* We need at least a signed 64-bit type to catch most cases.  */
  gnu_lb = UI_To_gnu (Intval (gnat_lb), sbitsizetype);
  gnu_hb = UI_To_gnu (Intval (gnat_hb), sbitsizetype);
  if (TREE_OVERFLOW (gnu_lb) || TREE_OVERFLOW (gnu_hb))
    return false;

  /* If the low bound is the smallest integer, nothing can be smaller.  */
  gnu_lb_minus_one = size_binop (MINUS_EXPR, gnu_lb, sbitsize_one_node);
  if (TREE_OVERFLOW (gnu_lb_minus_one))
    return true;

  return !tree_int_cst_lt (gnu_hb, gnu_lb_minus_one);
}

/* Return true if GNAT_RANGE, a N_Range node, cannot be superflat, i.e. if the
   inequality HB >= LB - 1 is true.  LB and HB are the low and high bounds.  */

static bool
range_cannot_be_superflat (Node_Id gnat_range)
{
  Node_Id gnat_lb = Low_Bound (gnat_range), gnat_hb = High_Bound (gnat_range);
  Node_Id gnat_scalar_range;
  tree gnu_lb, gnu_hb, gnu_lb_minus_one;

  /* This is the easy case.  */
  if (Cannot_Be_Superflat (gnat_range))
    return true;

  /* If the low bound is not constant, take the worst case by finding an upper
     bound for its type, repeatedly if need be.  */
  while (Nkind (gnat_lb) != N_Integer_Literal
	 && (Ekind (Etype (gnat_lb)) == E_Signed_Integer_Subtype
	     || Ekind (Etype (gnat_lb)) == E_Modular_Integer_Subtype)
	 && (gnat_scalar_range = Scalar_Range (Etype (gnat_lb)))
	 && (Nkind (gnat_scalar_range) == N_Signed_Integer_Type_Definition
	     || Nkind (gnat_scalar_range) == N_Range))
    gnat_lb = High_Bound (gnat_scalar_range);

  /* If the high bound is not constant, take the worst case by finding a lower
     bound for its type, repeatedly if need be.  */
  while (Nkind (gnat_hb) != N_Integer_Literal
	 && (Ekind (Etype (gnat_hb)) == E_Signed_Integer_Subtype
	     || Ekind (Etype (gnat_hb)) == E_Modular_Integer_Subtype)
	 && (gnat_scalar_range = Scalar_Range (Etype (gnat_hb)))
	 && (Nkind (gnat_scalar_range) == N_Signed_Integer_Type_Definition
	     || Nkind (gnat_scalar_range) == N_Range))
    gnat_hb = Low_Bound (gnat_scalar_range);

  /* If we have failed to find constant bounds, punt.  */
  if (Nkind (gnat_lb) != N_Integer_Literal
      || Nkind (gnat_hb) != N_Integer_Literal)
    return false;

  /* We need at least a signed 64-bit type to catch most cases.  */
  gnu_lb = UI_To_gnu (Intval (gnat_lb), sbitsizetype);
  gnu_hb = UI_To_gnu (Intval (gnat_hb), sbitsizetype);
  if (TREE_OVERFLOW (gnu_lb) || TREE_OVERFLOW (gnu_hb))
    return false;

  /* If the low bound is the smallest integer, nothing can be smaller.  */
  gnu_lb_minus_one = size_binop (MINUS_EXPR, gnu_lb, sbitsize_one_node);
  if (TREE_OVERFLOW (gnu_lb_minus_one))
    return true;

  return !tree_int_cst_lt (gnu_hb, gnu_lb_minus_one);
}

/* Return true if GNU_EXPR is (essentially) the address of a CONSTRUCTOR.  */

static bool
constructor_address_p (tree gnu_expr)
{
  while (CONVERT_EXPR_P (gnu_expr)
	 || TREE_CODE (gnu_expr) == NON_LVALUE_EXPR)
    gnu_expr = TREE_OPERAND (gnu_expr, 0);

  return (TREE_CODE (gnu_expr) == ADDR_EXPR
	  && TREE_CODE (TREE_OPERAND (gnu_expr, 0)) == CONSTRUCTOR);
}

/* Return true if the size in units represented by GNU_SIZE can be handled by
   an allocation.  If STATIC_P is true, consider only what can be done with a
   static allocation.  */

static bool
allocatable_size_p (tree gnu_size, bool static_p)
{
  /* We can allocate a fixed size if it is a valid for the middle-end.  */
  if (TREE_CODE (gnu_size) == INTEGER_CST)
    return valid_constant_size_p (gnu_size);

  /* We can allocate a variable size if this isn't a static allocation.  */
  else
    return !static_p;
}

/* Return true if GNU_EXPR needs a conversion to GNU_TYPE when used as the
   initial value of an object of GNU_TYPE.  */

static bool
initial_value_needs_conversion (tree gnu_type, tree gnu_expr)
{
  /* Do not convert if the object's type is unconstrained because this would
     generate useless evaluations of the CONSTRUCTOR to compute the size.  */
  if (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
      || CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
    return false;

  /* Do not convert if the object's type is a padding record whose field is of
     self-referential size because we want to copy only the actual data.  */
  if (type_is_padding_self_referential (gnu_type))
    return false;

  /* Do not convert a call to a function that returns with variable size since
     we want to use the return slot optimization in this case.  */
  if (TREE_CODE (gnu_expr) == CALL_EXPR
      && return_type_with_variable_size_p (TREE_TYPE (gnu_expr)))
    return false;

  /* Do not convert to a record type with a variant part from a record type
     without one, to keep the object simpler.  */
  if (TREE_CODE (gnu_type) == RECORD_TYPE
      && TREE_CODE (TREE_TYPE (gnu_expr)) == RECORD_TYPE
      && get_variant_part (gnu_type)
      && !get_variant_part (TREE_TYPE (gnu_expr)))
    return false;

  /* In all the other cases, convert the expression to the object's type.  */
  return true;
}

/* Add the contribution of [MIN, MAX] to the current number of elements N_ELEM
   of an array type and return the result, or NULL_TREE if it overflowed.  */

static tree
update_n_elem (tree n_elem, tree min, tree max)
{
  /* First deal with the empty case.  */
  if (TREE_CODE (min) == INTEGER_CST
      && TREE_CODE (max) == INTEGER_CST
      && tree_int_cst_lt (max, min))
    return size_zero_node;

  min = convert (sizetype, min);
  max = convert (sizetype, max);

  /* Compute the number of elements in this dimension.  */
  tree this_n_elem
    = size_binop (PLUS_EXPR, size_one_node, size_binop (MINUS_EXPR, max, min));

  if (TREE_CODE (this_n_elem) == INTEGER_CST && TREE_OVERFLOW (this_n_elem))
    return NULL_TREE;

  /* Multiply the current number of elements by the result.  */
  n_elem = size_binop (MULT_EXPR, n_elem, this_n_elem);

  if (TREE_CODE (n_elem) == INTEGER_CST && TREE_OVERFLOW (n_elem))
    return NULL_TREE;

  return n_elem;
}

/* Given GNAT_ENTITY, elaborate all expressions that are required to
   be elaborated at the point of its definition, but do nothing else.  */

void
elaborate_entity (Entity_Id gnat_entity)
{
  switch (Ekind (gnat_entity))
    {
    case E_Signed_Integer_Subtype:
    case E_Modular_Integer_Subtype:
    case E_Enumeration_Subtype:
    case E_Ordinary_Fixed_Point_Subtype:
    case E_Decimal_Fixed_Point_Subtype:
    case E_Floating_Point_Subtype:
      {
	Node_Id gnat_lb = Type_Low_Bound (gnat_entity);
	Node_Id gnat_hb = Type_High_Bound (gnat_entity);

	/* ??? Tests to avoid Constraint_Error in static expressions
	   are needed until after the front stops generating bogus
	   conversions on bounds of real types.  */
	if (!Raises_Constraint_Error (gnat_lb))
	  elaborate_expression (gnat_lb, gnat_entity, "L", true, false,
				Needs_Debug_Info (gnat_entity));
	if (!Raises_Constraint_Error (gnat_hb))
	  elaborate_expression (gnat_hb, gnat_entity, "U", true, false,
				Needs_Debug_Info (gnat_entity));
      break;
      }

    case E_Record_Subtype:
    case E_Private_Subtype:
    case E_Limited_Private_Subtype:
    case E_Record_Subtype_With_Private:
      if (Has_Discriminants (gnat_entity) && Is_Constrained (gnat_entity))
	{
	  Node_Id gnat_discriminant_expr;
	  Entity_Id gnat_field;

	  for (gnat_field
	       = First_Discriminant (Implementation_Base_Type (gnat_entity)),
	       gnat_discriminant_expr
	       = First_Elmt (Discriminant_Constraint (gnat_entity));
	       Present (gnat_field);
	       gnat_field = Next_Discriminant (gnat_field),
	       gnat_discriminant_expr = Next_Elmt (gnat_discriminant_expr))
	    /* Ignore access discriminants.  */
	    if (!Is_Access_Type (Etype (Node (gnat_discriminant_expr))))
	      elaborate_expression (Node (gnat_discriminant_expr),
				    gnat_entity, get_entity_char (gnat_field),
				    true, false, false);
	}
      break;

    }
}

/* Prepend to ATTR_LIST an entry for an attribute with provided TYPE,
   NAME, ARGS and ERROR_POINT.  */

static void
prepend_one_attribute (struct attrib **attr_list,
		       enum attrib_type attrib_type,
		       tree attr_name,
		       tree attr_args,
		       Node_Id attr_error_point)
{
  struct attrib * attr = (struct attrib *) xmalloc (sizeof (struct attrib));

  attr->type = attrib_type;
  attr->name = attr_name;
  attr->args = attr_args;
  attr->error_point = attr_error_point;

  attr->next = *attr_list;
  *attr_list = attr;
}

/* Prepend to ATTR_LIST an entry for an attribute provided by GNAT_PRAGMA.  */

static void
prepend_one_attribute_pragma (struct attrib **attr_list, Node_Id gnat_pragma)
{
  const Node_Id gnat_arg = First (Pragma_Argument_Associations (gnat_pragma));
  Node_Id gnat_next_arg = Next (gnat_arg);
  tree gnu_arg1 = NULL_TREE, gnu_arg_list = NULL_TREE;
  enum attrib_type etype;

  /* Map the pragma at hand.  Skip if this isn't one we know how to handle.  */
  switch (Get_Pragma_Id (Chars (Pragma_Identifier (gnat_pragma))))
    {
    case Pragma_Linker_Alias:
      etype = ATTR_LINK_ALIAS;
      break;

    case Pragma_Linker_Constructor:
      etype = ATTR_LINK_CONSTRUCTOR;
      break;

    case Pragma_Linker_Destructor:
      etype = ATTR_LINK_DESTRUCTOR;
      break;

    case Pragma_Linker_Section:
      etype = ATTR_LINK_SECTION;
      break;

    case Pragma_Machine_Attribute:
      etype = ATTR_MACHINE_ATTRIBUTE;
      break;

    case Pragma_Thread_Local_Storage:
      etype = ATTR_THREAD_LOCAL_STORAGE;
      break;

    case Pragma_Weak_External:
      etype = ATTR_WEAK_EXTERNAL;
      break;

    default:
      return;
    }

  /* See what arguments we have and turn them into GCC trees for attribute
     handlers.  The first one is always expected to be a string meant to be
     turned into an identifier.  The next ones are all static expressions,
     among which strings meant to be turned into an identifier, except for
     a couple of specific attributes that require raw strings.  */
  if (Present (gnat_next_arg))
    {
      gnu_arg1 = gnat_to_gnu (Expression (gnat_next_arg));
      gcc_assert (TREE_CODE (gnu_arg1) == STRING_CST);

      const char *const p = TREE_STRING_POINTER (gnu_arg1);
      const bool string_args
	= strcmp (p, "simd") == 0
	  || strcmp (p, "target") == 0
	  || strcmp (p, "target_clones") == 0;
      gnu_arg1 = get_identifier (p);
      if (IDENTIFIER_LENGTH (gnu_arg1) == 0)
	return;
      gnat_next_arg = Next (gnat_next_arg);

      while (Present (gnat_next_arg))
	{
	  tree gnu_arg = gnat_to_gnu (Expression (gnat_next_arg));
	  if (TREE_CODE (gnu_arg) == STRING_CST && !string_args)
	    gnu_arg = get_identifier (TREE_STRING_POINTER (gnu_arg));
	  gnu_arg_list
	    = chainon (gnu_arg_list, build_tree_list (NULL_TREE, gnu_arg));
	  gnat_next_arg = Next (gnat_next_arg);
	}
    }

  prepend_one_attribute (attr_list, etype, gnu_arg1, gnu_arg_list,
			 Present (Next (gnat_arg))
			 ? Expression (Next (gnat_arg)) : gnat_pragma);
}

/* Prepend to ATTR_LIST the list of attributes for GNAT_ENTITY, if any.  */

static void
prepend_attributes (struct attrib **attr_list, Entity_Id gnat_entity)
{
  Node_Id gnat_temp;

  /* Attributes are stored as Representation Item pragmas.  */
  for (gnat_temp = First_Rep_Item (gnat_entity);
       Present (gnat_temp);
       gnat_temp = Next_Rep_Item (gnat_temp))
    if (Nkind (gnat_temp) == N_Pragma)
      prepend_one_attribute_pragma (attr_list, gnat_temp);
}

/* Given a GNAT tree GNAT_EXPR, for an expression which is a value within a
   type definition (either a bound or a discriminant value) for GNAT_ENTITY,
   return the GCC tree to use for that expression.  S is the suffix to use
   if a variable needs to be created and DEFINITION is true if this is done
   for a definition of GNAT_ENTITY.  If NEED_VALUE is true, we need a result;
   otherwise, we are just elaborating the expression for side-effects.  If
   NEED_FOR_DEBUG is true, we need a variable for debugging purposes even
   if it isn't needed for code generation.  */

static tree
elaborate_expression (Node_Id gnat_expr, Entity_Id gnat_entity, const char *s,
		      bool definition, bool need_value, bool need_for_debug)
{
  tree gnu_expr;

  /* If we already elaborated this expression (e.g. it was involved
     in the definition of a private type), use the old value.  */
  if (present_gnu_tree (gnat_expr))
    return get_gnu_tree (gnat_expr);

  /* If we don't need a value and this is static or a discriminant,
     we don't need to do anything.  */
  if (!need_value
      && (Compile_Time_Known_Value (gnat_expr)
	  || (Nkind (gnat_expr) == N_Identifier
	      && Ekind (Entity (gnat_expr)) == E_Discriminant)))
    return NULL_TREE;

  /* If it's a static expression, we don't need a variable for debugging.  */
  if (need_for_debug && Compile_Time_Known_Value (gnat_expr))
    need_for_debug = false;

  /* Otherwise, convert this tree to its GCC equivalent and elaborate it.  */
  gnu_expr = elaborate_expression_1 (gnat_to_gnu (gnat_expr), gnat_entity, s,
				     definition, need_for_debug);

  /* Save the expression in case we try to elaborate this entity again.  Since
     it's not a DECL, don't check it.  Don't save if it's a discriminant.  */
  if (!CONTAINS_PLACEHOLDER_P (gnu_expr))
    save_gnu_tree (gnat_expr, gnu_expr, true);

  return need_value ? gnu_expr : error_mark_node;
}

/* Similar, but take a GNU expression and always return a result.  */

static tree
elaborate_expression_1 (tree gnu_expr, Entity_Id gnat_entity, const char *s,
			bool definition, bool need_for_debug)
{
  const bool expr_public_p = Is_Public (gnat_entity);
  const bool expr_global_p = expr_public_p || global_bindings_p ();
  bool expr_variable_p, use_variable;

  /* If GNU_EXPR contains a placeholder, just return it.  We rely on the fact
     that an expression cannot contain both a discriminant and a variable.  */
  if (CONTAINS_PLACEHOLDER_P (gnu_expr))
    return gnu_expr;

  /* If GNU_EXPR is neither a constant nor based on a read-only variable, make
     a variable that is initialized to contain the expression when the package
     containing the definition is elaborated.  If this entity is defined at top
     level, replace the expression by the variable; otherwise use a SAVE_EXPR
     if this is necessary.  */
  if (TREE_CONSTANT (gnu_expr))
    expr_variable_p = false;
  else
    {
      /* Skip any conversions and simple constant arithmetics to see if the
	 expression is based on a read-only variable.  */
      tree inner = remove_conversions (gnu_expr, true);

      inner = skip_simple_constant_arithmetic (inner);

      if (handled_component_p (inner))
	inner = get_inner_constant_reference (inner);

      expr_variable_p
	= !(inner
	    && VAR_P (inner)
	    && (TREE_READONLY (inner) || DECL_READONLY_ONCE_ELAB (inner)));
    }

  /* We only need to use the variable if we are in a global context since GCC
     can do the right thing in the local case.  However, when not optimizing,
     use it for bounds of loop iteration scheme to avoid code duplication.  */
  use_variable = expr_variable_p
		 && (expr_global_p
		     || (!optimize
		         && definition
			 && Is_Itype (gnat_entity)
			 && Nkind (Associated_Node_For_Itype (gnat_entity))
			    == N_Loop_Parameter_Specification));

  /* If the GNAT encodings are not used, we don't need a variable for debug
     info purposes if the expression is a constant or another variable, but
     we must be careful because we do not generate debug info for external
     variables so DECL_IGNORED_P is not stable across units.  */
  if (need_for_debug
      && gnat_encodings != DWARF_GNAT_ENCODINGS_ALL
      && (TREE_CONSTANT (gnu_expr)
	  || (!expr_public_p
	      && DECL_P (gnu_expr)
	      && !DECL_IGNORED_P (gnu_expr))))
    need_for_debug = false;

  /* Now create it, possibly only for debugging purposes.  */
  if (use_variable || need_for_debug)
    {
      /* The following variable creation can happen when processing the body
	 of subprograms that are defined outside of the extended main unit and
	 inlined.  In this case, we are not at the global scope, and thus the
	 new variable must not be tagged "external", as we used to do here as
	 soon as DEFINITION was false.  And note that we test Needs_Debug_Info
	 here instead of NEED_FOR_DEBUG because, once the variable is created,
	 whether or not debug information is generated for it is orthogonal to
	 the reason why it was created in the first place.  */
      tree gnu_decl
	= create_var_decl (create_concat_name (gnat_entity, s), NULL_TREE,
			   TREE_TYPE (gnu_expr), gnu_expr, true,
			   expr_public_p, !definition && expr_global_p,
			   expr_global_p, false, true,
			   Needs_Debug_Info (gnat_entity),
			   NULL, gnat_entity, false);

      /* Using this variable for debug (if need_for_debug is true) requires
	 a proper location.  The back-end will compute a location for this
	 variable only if the variable is used by the generated code.
	 Returning the variable ensures the caller will use it in generated
	 code.  Note that there is no need for a location if the debug info
	 contains an integer constant.  */
      if (use_variable || (need_for_debug && !TREE_CONSTANT (gnu_expr)))
	return gnu_decl;
    }

  return expr_variable_p ? gnat_save_expr (gnu_expr) : gnu_expr;
}

/* Similar, but take an alignment factor and make it explicit in the tree.  */

static tree
elaborate_expression_2 (tree gnu_expr, Entity_Id gnat_entity, const char *s,
			bool definition, bool need_for_debug, unsigned int align)
{
  tree unit_align = size_int (align / BITS_PER_UNIT);
  return
    size_binop (MULT_EXPR,
		elaborate_expression_1 (size_binop (EXACT_DIV_EXPR,
						    gnu_expr,
						    unit_align),
					gnat_entity, s, definition,
					need_for_debug),
		unit_align);
}

/* Structure to hold internal data for elaborate_reference.  */

struct er_data
{
  Entity_Id entity;
  bool definition;
  unsigned int n;
};

/* Wrapper function around elaborate_expression_1 for elaborate_reference.  */

static tree
elaborate_reference_1 (tree ref, void *data)
{
  struct er_data *er = (struct er_data *)data;
  char suffix[16];

  /* This is what elaborate_expression_1 does if NEED_DEBUG is false.  */
  if (TREE_CONSTANT (ref))
    return ref;

  /* If this is a COMPONENT_REF of a fat pointer, elaborate the entire fat
     pointer.  This may be more efficient, but will also allow us to more
     easily find the match for the PLACEHOLDER_EXPR.  */
  if (TREE_CODE (ref) == COMPONENT_REF
      && TYPE_IS_FAT_POINTER_P (TREE_TYPE (TREE_OPERAND (ref, 0))))
    return build3 (COMPONENT_REF, TREE_TYPE (ref),
		   elaborate_reference_1 (TREE_OPERAND (ref, 0), data),
		   TREE_OPERAND (ref, 1), NULL_TREE);

  /* If this is the displacement of a pointer, elaborate the pointer and then
     displace the result.  The actual purpose here is to drop the location on
     the expression, which may be problematic if replicated on references.  */
  if (TREE_CODE (ref) == POINTER_PLUS_EXPR
      && TREE_CODE (TREE_OPERAND (ref, 1)) == INTEGER_CST)
    return build2 (POINTER_PLUS_EXPR, TREE_TYPE (ref),
		   elaborate_reference_1 (TREE_OPERAND (ref, 0), data),
		   TREE_OPERAND (ref, 1));

  sprintf (suffix, "EXP%d", ++er->n);
  return
    elaborate_expression_1 (ref, er->entity, suffix, er->definition, false);
}

/* Elaborate the reference REF to be used as renamed object for GNAT_ENTITY.
   DEFINITION is true if this is done for a definition of GNAT_ENTITY and
   INIT is set to the first arm of a COMPOUND_EXPR present in REF, if any.  */

static tree
elaborate_reference (tree ref, Entity_Id gnat_entity, bool definition,
		     tree *init)
{
  struct er_data er = { gnat_entity, definition, 0 };
  return gnat_rewrite_reference (ref, elaborate_reference_1, &er, init);
}

/* Given a GNU tree and a GNAT list of choices, generate an expression to test
   the value passed against the list of choices.  */

static tree
choices_to_gnu (tree gnu_operand, Node_Id gnat_choices)
{
  tree gnu_result = boolean_false_node, gnu_type;

  gnu_operand = maybe_character_value (gnu_operand);
  gnu_type = TREE_TYPE (gnu_operand);

  for (Node_Id gnat_choice = First (gnat_choices);
       Present (gnat_choice);
       gnat_choice = Next (gnat_choice))
    {
      tree gnu_low = NULL_TREE, gnu_high = NULL_TREE;
      tree gnu_test;

      switch (Nkind (gnat_choice))
	{
	case N_Range:
	  gnu_low = gnat_to_gnu (Low_Bound (gnat_choice));
	  gnu_high = gnat_to_gnu (High_Bound (gnat_choice));
	  break;

	case N_Subtype_Indication:
	  gnu_low = gnat_to_gnu (Low_Bound (Range_Expression
					    (Constraint (gnat_choice))));
	  gnu_high = gnat_to_gnu (High_Bound (Range_Expression
					      (Constraint (gnat_choice))));
	  break;

	case N_Identifier:
	case N_Expanded_Name:
	  /* This represents either a subtype range or a static value of
	     some kind; Ekind says which.  */
	  if (Is_Type (Entity (gnat_choice)))
	    {
	      tree gnu_type = get_unpadded_type (Entity (gnat_choice));

	      gnu_low = TYPE_MIN_VALUE (gnu_type);
	      gnu_high = TYPE_MAX_VALUE (gnu_type);
	      break;
	    }

	  /* ... fall through ... */

	case N_Character_Literal:
	case N_Integer_Literal:
	  gnu_low = gnat_to_gnu (gnat_choice);
	  break;

	case N_Others_Choice:
	  break;

	default:
	  gcc_unreachable ();
	}

      /* Everything should be folded into constants at this point.  */
      gcc_assert (!gnu_low  || TREE_CODE (gnu_low)  == INTEGER_CST);
      gcc_assert (!gnu_high || TREE_CODE (gnu_high) == INTEGER_CST);

      if (gnu_low && TREE_TYPE (gnu_low) != gnu_type)
	gnu_low = convert (gnu_type, gnu_low);
      if (gnu_high && TREE_TYPE (gnu_high) != gnu_type)
	gnu_high = convert (gnu_type, gnu_high);

      if (gnu_low && gnu_high)
	gnu_test
	  = build_binary_op (TRUTH_ANDIF_EXPR, boolean_type_node,
			     build_binary_op (GE_EXPR, boolean_type_node,
					      gnu_operand, gnu_low, true),
			     build_binary_op (LE_EXPR, boolean_type_node,
					      gnu_operand, gnu_high, true),
			     true);
      else if (gnu_low == boolean_true_node
	       && TREE_TYPE (gnu_operand) == boolean_type_node)
	gnu_test = gnu_operand;
      else if (gnu_low)
	gnu_test
	  = build_binary_op (EQ_EXPR, boolean_type_node, gnu_operand, gnu_low,
			     true);
      else
	gnu_test = boolean_true_node;

      if (gnu_result == boolean_false_node)
	gnu_result = gnu_test;
      else
	gnu_result
	  = build_binary_op (TRUTH_ORIF_EXPR, boolean_type_node, gnu_result,
			     gnu_test, true);
    }

  return gnu_result;
}

/* Adjust PACKED setting as passed to gnat_to_gnu_field for a field of
   type FIELD_TYPE to be placed in RECORD_TYPE.  Return the result.  */

static int
adjust_packed (tree field_type, tree record_type, int packed)
{
  /* If the field is an array of variable size, we'd better not pack it because
     this would misalign it and, therefore, probably cause large temporarie to
     be created in case we need to take its address.  See addressable_p and the
     notes on the addressability issues for further details.  */
  if (TREE_CODE (field_type) == ARRAY_TYPE
      && type_has_variable_size (field_type))
    return 0;

  /* In the other cases, we can honor the packing.  */
  if (packed)
    return packed;

  /* If the alignment of the record is specified and the field type
     is over-aligned, request Storage_Unit alignment for the field.  */
  if (TYPE_ALIGN (record_type)
      && TYPE_ALIGN (field_type) > TYPE_ALIGN (record_type))
    return -1;

  /* Likewise if the maximum alignment of the record is specified.  */
  if (TYPE_MAX_ALIGN (record_type)
      && TYPE_ALIGN (field_type) > TYPE_MAX_ALIGN (record_type))
    return -1;

  return 0;
}

/* Return a GCC tree for a field corresponding to GNAT_FIELD to be
   placed in GNU_RECORD_TYPE.

   PACKED is 1 if the enclosing record is packed or -1 if the enclosing
   record has Component_Alignment of Storage_Unit.

   DEFINITION is true if this field is for a record being defined.

   DEBUG_INFO_P is true if we need to write debug information for types
   that we may create in the process.  */

static tree
gnat_to_gnu_field (Entity_Id gnat_field, tree gnu_record_type, int packed,
		   bool definition, bool debug_info_p)
{
  const Node_Id gnat_clause = Component_Clause (gnat_field);
  const Entity_Id gnat_record_type = Underlying_Type (Scope (gnat_field));
  const Entity_Id gnat_field_type = Etype (gnat_field);
  tree gnu_field_type = gnat_to_gnu_type (gnat_field_type);
  tree gnu_field_id = get_entity_name (gnat_field);
  const bool is_aliased = Is_Aliased (gnat_field);
  const bool is_full_access
    = (Is_Full_Access (gnat_field) || Is_Full_Access (gnat_field_type));
  const bool is_independent
    = (Is_Independent (gnat_field) || Is_Independent (gnat_field_type));
  const bool is_volatile
    = (Treat_As_Volatile (gnat_field) || Treat_As_Volatile (gnat_field_type));
  const bool is_by_ref = TYPE_IS_BY_REFERENCE_P (gnu_field_type);
  const bool is_strict_alignment = Strict_Alignment (gnat_field_type);
  /* We used to consider that volatile fields also require strict alignment,
     but that was an interpolation and would cause us to reject a pragma
     volatile on a packed record type containing boolean components, while
     there is no basis to do so in the RM.  In such cases, the writes will
     involve load-modify-store sequences, but that's OK for volatile.  The
     only constraint is the implementation advice whereby only the bits of
     the components should be accessed if they both start and end on byte
     boundaries, but that should be guaranteed by the GCC memory model.
     Note that we have some redundancies (is_full_access => is_independent,
     is_aliased => is_independent and is_by_ref => is_strict_alignment)
     so the following formula is sufficient.  */
  const bool needs_strict_alignment = (is_independent || is_strict_alignment);
  const char *field_s, *size_s;
  tree gnu_field, gnu_size, gnu_pos;
  bool is_bitfield;

  /* Force the type of the Not_Handled_By_Others field to be that of the
     field in struct Exception_Data declared in raise.h instead of using
     the declared boolean type.  We need to do that because there is no
     easy way to make use of a C compatible boolean type for the latter.  */
  if (gnu_field_id == not_handled_by_others_name_id
      && gnu_field_type == boolean_type_node)
    gnu_field_type = char_type_node;

  /* The qualifier to be used in messages.  */
  if (is_aliased)
    field_s = "aliased&";
  else if (is_full_access)
    {
      if (Is_Volatile_Full_Access (gnat_field)
	  || Is_Volatile_Full_Access (gnat_field_type))
	field_s = "volatile full access&";
      else
	field_s = "atomic&";
    }
  else if (is_independent)
    field_s = "independent&";
  else if (is_by_ref)
    field_s = "& with by-reference type";
  else if (is_strict_alignment)
    field_s = "& with aliased part";
  else
    field_s = "&";

  /* The message to be used for incompatible size.  */
  if (is_aliased || is_full_access)
    size_s = "size for %s must be ^";
  else if (field_s)
    size_s = "size for %s too small{, minimum allowed is ^}";

  /* If a field requires strict alignment, we cannot pack it (RM 13.2(7)).  */
  if (needs_strict_alignment)
    packed = 0;
  else
    packed = adjust_packed (gnu_field_type, gnu_record_type, packed);

  /* If a size is specified, use it.  Otherwise, if the record type is packed,
     use the official RM size.  See "Handling of Type'Size Values" in Einfo
     for further details.  */
  if (Present (gnat_clause) || Known_Esize (gnat_field))
    gnu_size = validate_size (Esize (gnat_field), gnu_field_type, gnat_field,
			      FIELD_DECL, false, true, size_s, field_s);
  else if (packed == 1)
    {
      gnu_size = rm_size (gnu_field_type);
      if (TREE_CODE (gnu_size) != INTEGER_CST)
	gnu_size = NULL_TREE;
    }
  else
    gnu_size = NULL_TREE;

  /* Likewise for the position.  */
  if (Present (gnat_clause))
    {
      gnu_pos = UI_To_gnu (Component_Bit_Offset (gnat_field), bitsizetype);
      is_bitfield = !value_factor_p (gnu_pos, BITS_PER_UNIT);
    }

  /* If the record has rep clauses and this is the tag field, make a rep
     clause for it as well.  */
  else if (Has_Specified_Layout (gnat_record_type)
	   && Chars (gnat_field) == Name_uTag)
    {
      gnu_pos = bitsize_zero_node;
      gnu_size = TYPE_SIZE (gnu_field_type);
      is_bitfield = false;
    }

  else
    {
      gnu_pos = NULL_TREE;
      is_bitfield = false;
    }

  /* If the field's type is a fixed-size record that does not require strict
     alignment, and the record is packed or we have a position specified for
     the field that makes it a bitfield or we have a specified size that is
     smaller than that of the field's type, then see if we can get either an
     integral mode form of the field's type or a smaller form.  If we can,
     consider that a size was specified for the field if there wasn't one
     already, so we know to make it a bitfield and avoid making things wider.

     Changing to an integral mode form is useful when the record is packed as
     we can then place the field at a non-byte-aligned position and so achieve
     tighter packing.  This is in addition required if the field shares a byte
     with another field and the front-end lets the back-end handle the access
     to the field, because GCC cannot handle non-byte-aligned BLKmode fields.

     Changing to a smaller form is required if the specified size is smaller
     than that of the field's type and the type contains sub-fields that are
     padded, in order to avoid generating accesses to these sub-fields that
     are wider than the field.

     We avoid the transformation if it is not required or potentially useful,
     as it might entail an increase of the field's alignment and have ripple
     effects on the outer record type.  A typical case is a field known to be
     byte-aligned and not to share a byte with another field.  */
  if (!needs_strict_alignment
      && RECORD_OR_UNION_TYPE_P (gnu_field_type)
      && !TYPE_FAT_POINTER_P (gnu_field_type)
      && tree_fits_uhwi_p (TYPE_SIZE (gnu_field_type))
      && (packed == 1
	  || is_bitfield
	  || (gnu_size
	      && tree_int_cst_lt (gnu_size, TYPE_SIZE (gnu_field_type)))))
    {
      tree gnu_packable_type
	= make_packable_type (gnu_field_type, true, is_bitfield ? 1 : 0);
      if (gnu_packable_type != gnu_field_type)
	{
	  gnu_field_type = gnu_packable_type;
	  if (!gnu_size)
	    gnu_size = rm_size (gnu_field_type);
	}
    }

  /* Now check if the type of the field allows atomic access.  */
  if (Is_Full_Access (gnat_field))
    {
      const unsigned int align
	= promote_object_alignment (gnu_field_type, NULL_TREE, gnat_field);
      if (align > 0)
	gnu_field_type
	  = maybe_pad_type (gnu_field_type, NULL_TREE, align, gnat_field,
			    false, definition, true);
      check_ok_for_atomic_type (gnu_field_type, gnat_field, false);
    }

  /* If a position is specified, check that it is valid.  */
  if (gnu_pos)
    {
      Entity_Id gnat_parent = Parent_Subtype (gnat_record_type);

      /* Ensure the position doesn't overlap with the parent subtype if there
	 is one.  It would be impossible to build CONSTRUCTORs and accessing
	 the parent could clobber the component in the extension if directly
	 done.  We accept it with -gnatd.K for the sake of compatibility.  */
      if (Present (gnat_parent)
	  && !(Debug_Flag_Dot_KK && Is_Fully_Repped_Tagged_Type (gnat_parent)))
	{
	  tree gnu_parent = gnat_to_gnu_type (gnat_parent);

	  if (TREE_CODE (TYPE_SIZE (gnu_parent)) == INTEGER_CST
	      && tree_int_cst_lt (gnu_pos, TYPE_SIZE (gnu_parent)))
	    post_error_ne_tree
	      ("position for& must be beyond parent{, minimum allowed is ^}",
	       Position (gnat_clause), gnat_field, TYPE_SIZE_UNIT (gnu_parent));
	}

      /* If this field needs strict alignment, make sure that the record is
	 sufficiently aligned and that the position and size are consistent
	 with the type.  But don't do it if we are just annotating types and
	 the field's type is tagged, since tagged types aren't fully laid out
	 in this mode.  Also, note that atomic implies volatile so the inner
	 test sequences ordering is significant here.  */
      if (needs_strict_alignment
	  && !(type_annotate_only && Is_Tagged_Type (gnat_field_type)))
	{
	  const unsigned int type_align = TYPE_ALIGN (gnu_field_type);

	  if (TYPE_ALIGN (gnu_record_type)
	      && TYPE_ALIGN (gnu_record_type) < type_align)
	    SET_TYPE_ALIGN (gnu_record_type, type_align);

	  /* If the position is not a multiple of the storage unit, then error
	     out and reset the position.  */
	  if (!integer_zerop (size_binop (TRUNC_MOD_EXPR, gnu_pos,
					  bitsize_unit_node)))
	    {
	      char s[128];
	      snprintf (s, sizeof (s), "position for %s must be "
			"multiple of Storage_Unit", field_s);
	      post_error_ne (s, First_Bit (gnat_clause), gnat_field);
	      gnu_pos = NULL_TREE;
	    }

	  /* If the position is not a multiple of the alignment of the type,
	     then error out and reset the position.  */
	  else if (type_align > BITS_PER_UNIT
		   && !integer_zerop (size_binop (TRUNC_MOD_EXPR, gnu_pos,
						  bitsize_int (type_align))))
	    {
	      char s[128];
              snprintf (s, sizeof (s), "position for %s must be multiple of ^",
			field_s);
	      post_error_ne_num (s, First_Bit (gnat_clause), gnat_field,
				 type_align / BITS_PER_UNIT);
	      post_error_ne_num ("\\because alignment of its type& is ^",
				 First_Bit (gnat_clause), Etype (gnat_field),
				 type_align / BITS_PER_UNIT);
	      gnu_pos = NULL_TREE;
	    }

	  if (gnu_size)
	    {
	      tree type_size = TYPE_SIZE (gnu_field_type);
	      int cmp;

	      /* If the size is not a multiple of the storage unit, then error
		 out and reset the size.  */
	      if (!integer_zerop (size_binop (TRUNC_MOD_EXPR, gnu_size,
					      bitsize_unit_node)))
		{
		  char s[128];
		  snprintf (s, sizeof (s), "size for %s must be "
			    "multiple of Storage_Unit", field_s);
		  post_error_ne (s, Last_Bit (gnat_clause), gnat_field);
		  gnu_size = NULL_TREE;
		}

	      /* If the size is lower than that of the type, or greater for
		 atomic and aliased, then error out and reset the size.  */
	      else if ((cmp = tree_int_cst_compare (gnu_size, type_size)) < 0
		       || (cmp > 0 && (is_aliased || is_full_access)))
		{
		  char s[128];
		  snprintf (s, sizeof (s), size_s, field_s);
		  post_error_ne_tree (s, Last_Bit (gnat_clause), gnat_field,
				      type_size);
		  gnu_size = NULL_TREE;
		}
	    }
	}
    }

  else
    {
      /* If we are packing the record and the field is BLKmode, round the
	 size up to a byte boundary.  */
      if (packed && TYPE_MODE (gnu_field_type) == BLKmode && gnu_size)
	gnu_size = round_up (gnu_size, BITS_PER_UNIT);
    }

  /* We need to make the size the maximum for the type if it is
     self-referential and an unconstrained type.  In that case, we can't
     pack the field since we can't make a copy to align it.  */
  if (TREE_CODE (gnu_field_type) == RECORD_TYPE
      && !gnu_size
      && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_field_type))
      && !Is_Constrained (Underlying_Type (gnat_field_type)))
    {
      gnu_size = max_size (TYPE_SIZE (gnu_field_type), true);
      packed = 0;
    }

  /* If a size is specified, adjust the field's type to it.  */
  if (gnu_size)
    {
      tree orig_field_type;

      /* If the field's type is justified modular, we would need to remove
	 the wrapper to (better) meet the layout requirements.  However we
	 can do so only if the field is not aliased to preserve the unique
	 layout, if it has the same storage order as the enclosing record
	 and if the prescribed size is not greater than that of the packed
	 array to preserve the justification.  */
      if (!needs_strict_alignment
	  && TREE_CODE (gnu_field_type) == RECORD_TYPE
	  && TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
	  && TYPE_REVERSE_STORAGE_ORDER (gnu_field_type)
	     == Reverse_Storage_Order (gnat_record_type)
	  && tree_int_cst_compare (gnu_size, TYPE_ADA_SIZE (gnu_field_type))
	       <= 0)
	gnu_field_type = TREE_TYPE (TYPE_FIELDS (gnu_field_type));

      /* Similarly if the field's type is a misaligned integral type, but
	 there is no restriction on the size as there is no justification.  */
      if (!needs_strict_alignment
	  && TYPE_IS_PADDING_P (gnu_field_type)
	  && INTEGRAL_TYPE_P (TREE_TYPE (TYPE_FIELDS (gnu_field_type))))
	gnu_field_type = TREE_TYPE (TYPE_FIELDS (gnu_field_type));

      orig_field_type = gnu_field_type;
      gnu_field_type
	= make_type_from_size (gnu_field_type, gnu_size,
			       Has_Biased_Representation (gnat_field));

      /* If the type has been extended, we may need to cap the alignment.  */
      if (!needs_strict_alignment
	  && gnu_field_type != orig_field_type
	  && tree_int_cst_lt (TYPE_SIZE (orig_field_type), gnu_size))
	packed = adjust_packed (gnu_field_type, gnu_record_type, packed);

      orig_field_type = gnu_field_type;
      gnu_field_type = maybe_pad_type (gnu_field_type, gnu_size, 0, gnat_field,
				       false, definition, true);

      /* If a padding record was made, declare it now since it will never be
	 declared otherwise.  This is necessary to ensure that its subtrees
	 are properly marked.  */
      if (gnu_field_type != orig_field_type
	  && !DECL_P (TYPE_NAME (gnu_field_type)))
	create_type_decl (TYPE_NAME (gnu_field_type), gnu_field_type, true,
			  debug_info_p, gnat_field);
    }

  /* Otherwise (or if there was an error), don't specify a position.  */
  else
    gnu_pos = NULL_TREE;

  /* If the field's type is a padded type made for a scalar field of a record
     type with reverse storage order, we need to propagate the reverse storage
     order to the padding type since it is the innermost enclosing aggregate
     type around the scalar.  */
  if (TYPE_IS_PADDING_P (gnu_field_type)
      && TYPE_REVERSE_STORAGE_ORDER (gnu_record_type)
      && Is_Scalar_Type (gnat_field_type))
    gnu_field_type = set_reverse_storage_order_on_pad_type (gnu_field_type);

  gcc_assert (TREE_CODE (gnu_field_type) != RECORD_TYPE
	      || !TYPE_CONTAINS_TEMPLATE_P (gnu_field_type));

  /* Now create the decl for the field.  */
  gnu_field
    = create_field_decl (gnu_field_id, gnu_field_type, gnu_record_type,
			 gnu_size, gnu_pos, packed, is_aliased);
  Sloc_to_locus (Sloc (gnat_field), &DECL_SOURCE_LOCATION (gnu_field));
  DECL_ALIASED_P (gnu_field) = is_aliased;
  TREE_SIDE_EFFECTS (gnu_field) = TREE_THIS_VOLATILE (gnu_field) = is_volatile;

  /* If this is a discriminant, then we treat it specially: first, we set its
     index number for the back-annotation; second, we record whether it cannot
     be changed once it has been set for the computation of loop invariants;
     third, we make it addressable in order for the optimizer to more easily
     see that it cannot be modified by assignments to the other fields of the
     record (see create_field_decl for a more detailed explanation), which is
     crucial to hoist the offset and size computations of dynamic fields.  */
  if (Ekind (gnat_field) == E_Discriminant)
    {
      DECL_DISCRIMINANT_NUMBER (gnu_field)
	= UI_To_gnu (Discriminant_Number (gnat_field), integer_type_node);
      DECL_INVARIANT_P (gnu_field)
	= No (Discriminant_Default_Value (gnat_field));
      DECL_NONADDRESSABLE_P (gnu_field) = 0;
    }

  return gnu_field;
}

/* Return true if at least one member of COMPONENT_LIST needs strict
   alignment.  */

static bool
components_need_strict_alignment (Node_Id component_list)
{
  Node_Id component_decl;

  for (component_decl = First_Non_Pragma (Component_Items (component_list));
       Present (component_decl);
       component_decl = Next_Non_Pragma (component_decl))
    {
      Entity_Id gnat_field = Defining_Entity (component_decl);

      if (Is_Independent (gnat_field) || Is_Independent (Etype (gnat_field)))
	return true;

      if (Strict_Alignment (Etype (gnat_field)))
	return true;
    }

  return false;
}

/* Return true if FIELD is an artificial field.  */

static bool
field_is_artificial (tree field)
{
  /* These fields are generated by the front-end proper.  */
  if (IDENTIFIER_POINTER (DECL_NAME (field)) [0] == '_')
    return true;

  /* These fields are generated by gigi.  */
  if (DECL_INTERNAL_P (field))
    return true;

  return false;
}

/* Return true if FIELD is a non-artificial field with self-referential
   size.  */

static bool
field_has_self_size (tree field)
{
  if (field_is_artificial (field))
    return false;

  if (DECL_SIZE (field) && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
    return false;

  return CONTAINS_PLACEHOLDER_P (TYPE_SIZE (TREE_TYPE (field)));
}

/* Return true if FIELD is a non-artificial field with variable size.  */

static bool
field_has_variable_size (tree field)
{
  if (field_is_artificial (field))
    return false;

  if (DECL_SIZE (field) && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
    return false;

  return TREE_CODE (TYPE_SIZE (TREE_TYPE (field))) != INTEGER_CST;
}

/* qsort comparer for the bit positions of two record components.  */

static int
compare_field_bitpos (const void *rt1, const void *rt2)
{
  const_tree const field1 = * (const_tree const *) rt1;
  const_tree const field2 = * (const_tree const *) rt2;
  const int ret
    = tree_int_cst_compare (bit_position (field1), bit_position (field2));

  return ret ? ret : (int) (DECL_UID (field1) - DECL_UID (field2));
}

/* Sort the LIST of fields in reverse order of increasing position.  */

static tree
reverse_sort_field_list (tree list)
{
  const int len = list_length (list);
  tree *field_arr = XALLOCAVEC (tree, len);

  for (int i = 0; list; list = DECL_CHAIN (list), i++)
    field_arr[i] = list;

  qsort (field_arr, len, sizeof (tree), compare_field_bitpos);

  for (int i = 0; i < len; i++)
    {
      DECL_CHAIN (field_arr[i]) = list;
      list = field_arr[i];
    }

  return list;
}

/* Reverse function from gnat_to_gnu_field: return the GNAT field present in
   either GNAT_COMPONENT_LIST or the discriminants of GNAT_RECORD_TYPE, and
   corresponding to the GNU tree GNU_FIELD.  */

static Entity_Id
gnu_field_to_gnat (tree gnu_field, Node_Id gnat_component_list,
		   Entity_Id gnat_record_type)
{
  Entity_Id gnat_component_decl, gnat_field;

  if (Present (Component_Items (gnat_component_list)))
    for (gnat_component_decl
	   = First_Non_Pragma (Component_Items (gnat_component_list));
	 Present (gnat_component_decl);
	 gnat_component_decl = Next_Non_Pragma (gnat_component_decl))
      {
	gnat_field = Defining_Entity (gnat_component_decl);
	if (gnat_to_gnu_field_decl (gnat_field) == gnu_field)
	  return gnat_field;
      }

  if (Has_Discriminants (gnat_record_type))
    for (gnat_field = First_Stored_Discriminant (gnat_record_type);
	 Present (gnat_field);
	 gnat_field = Next_Stored_Discriminant (gnat_field))
      if (gnat_to_gnu_field_decl (gnat_field) == gnu_field)
	return gnat_field;

  return Empty;
}

/* Issue a warning for the problematic placement of GNU_FIELD present in
   either GNAT_COMPONENT_LIST or the discriminants of GNAT_RECORD_TYPE.
   IN_VARIANT is true if GNAT_COMPONENT_LIST is the list of a variant.
   DO_REORDER is true if fields of GNAT_RECORD_TYPE are being reordered.  */

static void
warn_on_field_placement (tree gnu_field, Node_Id gnat_component_list,
			 Entity_Id gnat_record_type, bool in_variant,
			 bool do_reorder)
{
  if (!Comes_From_Source (gnat_record_type))
    return;

  Entity_Id gnat_field
    = gnu_field_to_gnat (gnu_field, gnat_component_list, gnat_record_type);
  gcc_assert (Present (gnat_field));

  const char *msg1
    = in_variant
      ? "?.q?variant layout may cause performance issues"
      : "?.q?record layout may cause performance issues";
  const char *msg2
    = Ekind (gnat_field) == E_Discriminant
      ? "?.q?discriminant & whose length is not multiple of a byte"
      : field_has_self_size (gnu_field)
	? "?.q?component & whose length depends on a discriminant"
	: field_has_variable_size (gnu_field)
	  ? "?.q?component & whose length is not fixed"
	  : "?.q?component & whose length is not multiple of a byte";
  const char *msg3
    = do_reorder
      ? "?.q?comes too early and was moved down"
      : "?.q?comes too early and ought to be moved down";

  post_error (msg1, gnat_field);
  post_error_ne (msg2, gnat_field, gnat_field);
  post_error (msg3, gnat_field);
}

/* Likewise but for every field present on GNU_FIELD_LIST.  */

static void
warn_on_list_placement (tree gnu_field_list, Node_Id gnat_component_list,
		        Entity_Id gnat_record_type, bool in_variant,
		        bool do_reorder)
{
  for (tree gnu_tmp = gnu_field_list; gnu_tmp; gnu_tmp = DECL_CHAIN (gnu_tmp))
    warn_on_field_placement (gnu_tmp, gnat_component_list, gnat_record_type,
			     in_variant, do_reorder);
}

/* Structure holding information for a given variant.  */
typedef struct vinfo
{
  /* The record type of the variant.  */
  tree type;

  /* The name of the variant.  */
  tree name;

  /* The qualifier of the variant.  */
  tree qual;

  /* Whether the variant has a rep clause.  */
  bool has_rep;

  /* Whether the variant is packed.  */
  bool packed;

} vinfo_t;

/* Translate and chain GNAT_COMPONENT_LIST present in GNAT_RECORD_TYPE to
   GNU_FIELD_LIST, set the result as the field list of GNU_RECORD_TYPE and
   finish it up.  Return true if GNU_RECORD_TYPE has a rep clause that affects
   the layout (see below).  When called from gnat_to_gnu_entity during the
   processing of a record definition, the GCC node for the parent, if any,
   will be the single field of GNU_RECORD_TYPE and the GCC nodes for the
   discriminants will be on GNU_FIELD_LIST.  The other call to this function
   is a recursive call for the component list of a variant and, in this case,
   GNU_FIELD_LIST is empty.  Note that GNAT_COMPONENT_LIST may be Empty.

   PACKED is 1 if this is for a packed record or -1 if this is for a record
   with Component_Alignment of Storage_Unit.

   DEFINITION is true if we are defining this record type.

   CANCEL_ALIGNMENT is true if the alignment should be zeroed before laying
   out the record.  This means the alignment only serves to force fields to
   be bitfields, but not to require the record to be that aligned.  This is
   used for variants.

   ALL_REP is true if a rep clause is present for all the fields.

   UNCHECKED_UNION is true if we are building this type for a record with a
   Pragma Unchecked_Union.

   ARTIFICIAL is true if this is a type that was generated by the compiler.

   DEBUG_INFO is true if we need to write debug information about the type.

   IN_VARIANT is true if the componennt list is that of a variant.

   FIRST_FREE_POS, if nonzero, is the first (lowest) free field position in
   the outer record type down to this variant level.  It is nonzero only if
   all the fields down to this level have a rep clause and ALL_REP is false.

   P_GNU_REP_LIST, if nonzero, is a pointer to a list to which each field
   with a rep clause is to be added; in this case, that is all that should
   be done with such fields and the return value will be false.  */

static bool
components_to_record (Node_Id gnat_component_list, Entity_Id gnat_record_type,
		      tree gnu_field_list, tree gnu_record_type, int packed,
		      bool definition, bool cancel_alignment, bool all_rep,
		      bool unchecked_union, bool artificial, bool debug_info,
		      bool in_variant, tree first_free_pos,
		      tree *p_gnu_rep_list)
{
  const bool needs_xv_encodings
    = debug_info && gnat_encodings == DWARF_GNAT_ENCODINGS_ALL;
  bool all_rep_and_size = all_rep && TYPE_SIZE (gnu_record_type);
  bool variants_have_rep = all_rep;
  bool layout_with_rep = false;
  bool has_non_packed_fixed_size_field = false;
  bool has_self_field = false;
  bool has_aliased_after_self_field = false;
  Entity_Id gnat_component_decl, gnat_variant_part;
  tree gnu_field, gnu_next, gnu_last;
  tree gnu_variant_part = NULL_TREE;
  tree gnu_rep_list = NULL_TREE;

  /* For each component referenced in a component declaration create a GCC
     field and add it to the list, skipping pragmas in the GNAT list.  */
  gnu_last = tree_last (gnu_field_list);
  if (Present (gnat_component_list)
      && (Present (Component_Items (gnat_component_list))))
    for (gnat_component_decl
	   = First_Non_Pragma (Component_Items (gnat_component_list));
	 Present (gnat_component_decl);
	 gnat_component_decl = Next_Non_Pragma (gnat_component_decl))
      {
	Entity_Id gnat_field = Defining_Entity (gnat_component_decl);
	Name_Id gnat_name = Chars (gnat_field);

	/* If present, the _Parent field must have been created as the single
	   field of the record type.  Put it before any other fields.  */
	if (gnat_name == Name_uParent)
	  {
	    gnu_field = TYPE_FIELDS (gnu_record_type);
	    gnu_field_list = chainon (gnu_field_list, gnu_field);
	  }
	else
	  {
	    gnu_field = gnat_to_gnu_field (gnat_field, gnu_record_type, packed,
					   definition, debug_info);

	    /* If this is the _Tag field, put it before any other fields.  */
	    if (gnat_name == Name_uTag)
	      gnu_field_list = chainon (gnu_field_list, gnu_field);

	    /* If this is the _Controller field, put it before the other
	       fields except for the _Tag or _Parent field.  */
	    else if (gnat_name == Name_uController && gnu_last)
	      {
		DECL_CHAIN (gnu_field) = DECL_CHAIN (gnu_last);
		DECL_CHAIN (gnu_last) = gnu_field;
	      }

	    /* If this is a regular field, put it after the other fields.  */
	    else
	      {
		DECL_CHAIN (gnu_field) = gnu_field_list;
		gnu_field_list = gnu_field;
		if (!gnu_last)
		  gnu_last = gnu_field;

		/* And record information for the final layout.  */
		if (field_has_self_size (gnu_field))
		  has_self_field = true;
		else if (has_self_field && DECL_ALIASED_P (gnu_field))
		  has_aliased_after_self_field = true;
		else if (!DECL_FIELD_OFFSET (gnu_field)
			 && !DECL_PACKED (gnu_field)
			 && !field_has_variable_size (gnu_field))
		  has_non_packed_fixed_size_field = true;
	      }
	  }

	save_gnu_tree (gnat_field, gnu_field, false);
      }

  /* At the end of the component list there may be a variant part.  */
  if (Present (gnat_component_list))
    gnat_variant_part = Variant_Part (gnat_component_list);
  else
    gnat_variant_part = Empty;

  /* We create a QUAL_UNION_TYPE for the variant part since the variants are
     mutually exclusive and should go in the same memory.  To do this we need
     to treat each variant as a record whose elements are created from the
     component list for the variant.  So here we create the records from the
     lists for the variants and put them all into the QUAL_UNION_TYPE.
     If this is an Unchecked_Union, we make a UNION_TYPE instead or
     use GNU_RECORD_TYPE if there are no fields so far.  */
  if (Present (gnat_variant_part))
    {
      Node_Id gnat_discr = Name (gnat_variant_part), variant;
      tree gnu_discr = gnat_to_gnu (gnat_discr);
      tree gnu_name = TYPE_IDENTIFIER (gnu_record_type);
      tree gnu_var_name
	= concat_name (get_identifier (Get_Name_String (Chars (gnat_discr))),
		       "XVN");
      tree gnu_union_name
	= concat_name (gnu_name, IDENTIFIER_POINTER (gnu_var_name));
      tree gnu_union_type;
      tree this_first_free_pos, gnu_variant_list = NULL_TREE;
      bool union_field_needs_strict_alignment = false;
      bool innermost_variant_level = true;
      auto_vec <vinfo_t, 16> variant_types;
      vinfo_t *gnu_variant;
      unsigned int variants_align = 0;
      unsigned int i;

      /* Reuse the enclosing union if this is an Unchecked_Union whose fields
	 are all in the variant part, to match the layout of C unions.  There
	 is an associated check below.  */
      if (TREE_CODE (gnu_record_type) == UNION_TYPE)
	gnu_union_type = gnu_record_type;
      else
	{
	  gnu_union_type
	    = make_node (unchecked_union ? UNION_TYPE : QUAL_UNION_TYPE);

	  TYPE_NAME (gnu_union_type) = gnu_union_name;
	  SET_TYPE_ALIGN (gnu_union_type, 0);
	  TYPE_PACKED (gnu_union_type) = TYPE_PACKED (gnu_record_type);
	  TYPE_REVERSE_STORAGE_ORDER (gnu_union_type)
	    = TYPE_REVERSE_STORAGE_ORDER (gnu_record_type);
	}

      /* If all the fields down to this level have a rep clause, find out
	 whether all the fields at this level also have one.  If so, then
	 compute the new first free position to be passed downward.  */
      this_first_free_pos = first_free_pos;
      if (this_first_free_pos)
	{
	  for (gnu_field = gnu_field_list;
	       gnu_field;
	       gnu_field = DECL_CHAIN (gnu_field))
	    if (DECL_FIELD_OFFSET (gnu_field))
	      {
		tree pos = bit_position (gnu_field);
		if (!tree_int_cst_lt (pos, this_first_free_pos))
		  this_first_free_pos
		    = size_binop (PLUS_EXPR, pos, DECL_SIZE (gnu_field));
	      }
	    else
	      {
		this_first_free_pos = NULL_TREE;
		break;
	      }
	}

      /* For an unchecked union with a fixed part, we need to compute whether
	 we are at the innermost level of the variant part.  */
      if (unchecked_union && gnu_field_list)
	for (variant = First_Non_Pragma (Variants (gnat_variant_part));
	     Present (variant);
	     variant = Next_Non_Pragma (variant))
	  if (Present (Component_List (variant))
	      && Present (Variant_Part (Component_List (variant))))
	    {
	      innermost_variant_level = false;
	      break;
	    }

      /* We build the variants in two passes.  The bulk of the work is done in
	 the first pass, that is to say translating the GNAT nodes, building
	 the container types and computing the associated properties.  However
	 we cannot finish up the container types during this pass because we
	 don't know where the variant part will be placed until the end.  */
      for (variant = First_Non_Pragma (Variants (gnat_variant_part));
	   Present (variant);
	   variant = Next_Non_Pragma (variant))
	{
	  tree gnu_variant_type = make_node (RECORD_TYPE);
	  tree gnu_inner_name, gnu_qual;
	  bool has_rep;
	  int field_packed;
	  vinfo_t vinfo;

	  Get_Variant_Encoding (variant);
	  gnu_inner_name = get_identifier_with_length (Name_Buffer, Name_Len);
	  TYPE_NAME (gnu_variant_type)
	    = concat_name (gnu_union_name,
			   IDENTIFIER_POINTER (gnu_inner_name));

	  /* Set the alignment of the inner type in case we need to make
	     inner objects into bitfields, but then clear it out so the
	     record actually gets only the alignment required.  */
	  SET_TYPE_ALIGN (gnu_variant_type, TYPE_ALIGN (gnu_record_type));
	  TYPE_PACKED (gnu_variant_type) = TYPE_PACKED (gnu_record_type);
	  TYPE_REVERSE_STORAGE_ORDER (gnu_variant_type)
	    = TYPE_REVERSE_STORAGE_ORDER (gnu_record_type);

	  /* Similarly, if the outer record has a size specified and all
	     the fields have a rep clause, we can propagate the size.  */
	  if (all_rep_and_size)
	    {
	      TYPE_SIZE (gnu_variant_type) = TYPE_SIZE (gnu_record_type);
	      TYPE_SIZE_UNIT (gnu_variant_type)
		= TYPE_SIZE_UNIT (gnu_record_type);
	    }

	  /* Add the fields into the record type for the variant but note that
	     we aren't sure to really use it at this point, see below.  In the
	     case of an unchecked union with a fixed part, we force the fields
	     with a rep clause present in the innermost variant to be moved to
	     the outer variant, so as to flatten the rep-ed layout as much as
	     possible, the reason being that we cannot do any flattening when
	     a subtype statically selects a variant later on, for example for
	     an aggregate.  */
	  has_rep
	    = components_to_record (Component_List (variant), gnat_record_type,
				    NULL_TREE, gnu_variant_type, packed,
				    definition, !all_rep_and_size, all_rep,
				    unchecked_union, true, needs_xv_encodings,
				    true, this_first_free_pos,
				    (all_rep || this_first_free_pos)
				    && !(unchecked_union
				         && gnu_field_list
					 && innermost_variant_level)
				    ? NULL : &gnu_rep_list);

	  /* Translate the qualifier and annotate the GNAT node.  */
	  gnu_qual = choices_to_gnu (gnu_discr, Discrete_Choices (variant));
	  Set_Present_Expr (variant, annotate_value (gnu_qual));

	  /* Deal with packedness like in gnat_to_gnu_field.  */
	  if (components_need_strict_alignment (Component_List (variant)))
	    {
	      field_packed = 0;
	      union_field_needs_strict_alignment = true;
	    }
	  else
	    field_packed
	      = adjust_packed (gnu_variant_type, gnu_record_type, packed);

	  /* Push this variant onto the stack for the second pass.  */
	  vinfo.type = gnu_variant_type;
	  vinfo.name = gnu_inner_name;
	  vinfo.qual = gnu_qual;
	  vinfo.has_rep = has_rep;
	  vinfo.packed = field_packed;
	  variant_types.safe_push (vinfo);

	  /* Compute the global properties that will determine the placement of
	     the variant part.  */
	  variants_have_rep |= has_rep;
	  if (!field_packed && TYPE_ALIGN (gnu_variant_type) > variants_align)
	    variants_align = TYPE_ALIGN (gnu_variant_type);
	}

      /* Round up the first free position to the alignment of the variant part
	 for the variants without rep clause.  This will guarantee a consistent
	 layout independently of the placement of the variant part.  */
      if (variants_have_rep && variants_align > 0 && this_first_free_pos)
	this_first_free_pos = round_up (this_first_free_pos, variants_align);

      /* In the second pass, the container types are adjusted if necessary and
	 finished up, then the corresponding fields of the variant part are
	 built with their qualifier, unless this is an unchecked union.  */
      FOR_EACH_VEC_ELT (variant_types, i, gnu_variant)
	{
	  tree gnu_variant_type = gnu_variant->type;
	  tree gnu_field_list = TYPE_FIELDS (gnu_variant_type);

	  /* If this is an Unchecked_Union whose fields are all in the variant
	     part and we have a single field with no representation clause or
	     placed at offset zero, use the field directly to match the layout
	     of C unions.  */
	  if (TREE_CODE (gnu_record_type) == UNION_TYPE
	      && gnu_field_list
	      && !DECL_CHAIN (gnu_field_list)
	      && (!DECL_FIELD_OFFSET (gnu_field_list)
		  || integer_zerop (bit_position (gnu_field_list))))
	    {
	      gnu_field = gnu_field_list;
	      DECL_CONTEXT (gnu_field) = gnu_record_type;
	    }
	  else
	    {
	      /* Finalize the variant type now.  We used to throw away empty
		 record types but we no longer do that because we need them to
		 generate complete debug info for the variant; otherwise, the
		 union type definition will be lacking the fields associated
		 with these empty variants.  */
	      if (gnu_field_list && variants_have_rep && !gnu_variant->has_rep)
		{
		  /* The variant part will be at offset 0 so we need to ensure
		     that the fields are laid out starting from the first free
		     position at this level.  */
		  tree gnu_rep_type = make_node (RECORD_TYPE);
		  tree gnu_rep_part;
		  TYPE_REVERSE_STORAGE_ORDER (gnu_rep_type)
		    = TYPE_REVERSE_STORAGE_ORDER (gnu_variant_type);
		  finish_record_type (gnu_rep_type, NULL_TREE, 0, debug_info);
		  gnu_rep_part
		    = create_rep_part (gnu_rep_type, gnu_variant_type,
				       this_first_free_pos);
		  DECL_CHAIN (gnu_rep_part) = gnu_field_list;
		  gnu_field_list = gnu_rep_part;
		  finish_record_type (gnu_variant_type, gnu_field_list, 0,
				      false);
		}

	      if (debug_info)
		rest_of_record_type_compilation (gnu_variant_type);
	      create_type_decl (TYPE_NAME (gnu_variant_type), gnu_variant_type,
				true, needs_xv_encodings, gnat_component_list);

	      gnu_field
		= create_field_decl (gnu_variant->name, gnu_variant_type,
				     gnu_union_type,
				     all_rep_and_size
				     ? TYPE_SIZE (gnu_variant_type) : 0,
				     variants_have_rep ? bitsize_zero_node : 0,
				     gnu_variant->packed, 0);

	      DECL_INTERNAL_P (gnu_field) = 1;

	      if (!unchecked_union)
		DECL_QUALIFIER (gnu_field) = gnu_variant->qual;
	    }

	  DECL_CHAIN (gnu_field) = gnu_variant_list;
	  gnu_variant_list = gnu_field;
	}

      /* Only make the QUAL_UNION_TYPE if there are non-empty variants.  */
      if (gnu_variant_list)
	{
	  int union_field_packed;

	  if (all_rep_and_size)
	    {
	      TYPE_SIZE (gnu_union_type) = TYPE_SIZE (gnu_record_type);
	      TYPE_SIZE_UNIT (gnu_union_type)
		= TYPE_SIZE_UNIT (gnu_record_type);
	    }

	  finish_record_type (gnu_union_type, nreverse (gnu_variant_list),
			      all_rep_and_size ? 1 : 0, needs_xv_encodings);

	  /* If GNU_UNION_TYPE is our record type, this means that we must have
	     an Unchecked_Union whose fields are all in the variant part.  Now
	     verify that and, if so, just return.  */
	  if (gnu_union_type == gnu_record_type)
	    {
	      gcc_assert (unchecked_union
			  && !gnu_field_list
			  && !gnu_rep_list);
	      return variants_have_rep;
	    }

	  create_type_decl (TYPE_NAME (gnu_union_type), gnu_union_type, true,
			    needs_xv_encodings, gnat_component_list);

	  /* Deal with packedness like in gnat_to_gnu_field.  */
	  if (union_field_needs_strict_alignment)
	    union_field_packed = 0;
	  else
	    union_field_packed
	      = adjust_packed (gnu_union_type, gnu_record_type, packed);

	  gnu_variant_part
	    = create_field_decl (gnu_var_name, gnu_union_type, gnu_record_type,
				 all_rep_and_size
				 ? TYPE_SIZE (gnu_union_type) : 0,
				 variants_have_rep ? bitsize_zero_node : 0,
				 union_field_packed, 0);

	  DECL_INTERNAL_P (gnu_variant_part) = 1;
	}
    }

  /* Scan GNU_FIELD_LIST and see if any fields have rep clauses.  If they do,
     pull them out and put them onto the appropriate list.

     Similarly, pull out the fields with zero size and no rep clause, as they
     would otherwise modify the layout and thus very likely run afoul of the
     Ada semantics, which are different from those of C here.

     Finally, if there is an aliased field placed in the list after fields
     with self-referential size, pull out the latter in the same way.

     Optionally, if the reordering mechanism is enabled, pull out the fields
     with self-referential size, variable size and fixed size not a multiple
     of a byte, so that they don't cause the regular fields to be either at
     self-referential/variable offset or misaligned.  Note, in the latter
     case, that this can only happen in packed record types so the alignment
     is effectively capped to the byte for the whole record.  But we don't
     do it for packed record types if not all fixed-size fiels can be packed
     and for non-packed record types if pragma Optimize_Alignment (Space) is
     specified, because this can prevent alignment gaps from being filled.

     Optionally, if the layout warning is enabled, keep track of the above 4
     different kinds of fields and issue a warning if some of them would be
     (or are being) reordered by the reordering mechanism.

     ??? If we reorder fields, the debugging information will be affected and
     the debugger print fields in a different order from the source code.  */
  const bool do_reorder
    = (Convention (gnat_record_type) == Convention_Ada
       && !No_Reordering (gnat_record_type)
       && !(Is_Packed (gnat_record_type)
	    ? has_non_packed_fixed_size_field
	    : Optimize_Alignment_Space (gnat_record_type))
       && !Debug_Flag_Dot_R);
  const bool w_reorder
    = (Convention (gnat_record_type) == Convention_Ada
       && Get_Warn_On_Questionable_Layout ()
       && !(No_Reordering (gnat_record_type) && GNAT_Mode));
  tree gnu_zero_list = NULL_TREE;
  tree gnu_self_list = NULL_TREE;
  tree gnu_var_list = NULL_TREE;
  tree gnu_bitp_list = NULL_TREE;
  tree gnu_tmp_bitp_list = NULL_TREE;
  unsigned int tmp_bitp_size = 0;
  unsigned int last_reorder_field_type = -1;
  unsigned int tmp_last_reorder_field_type = -1;

#define MOVE_FROM_FIELD_LIST_TO(LIST)	\
  do {					\
    if (gnu_last)			\
      DECL_CHAIN (gnu_last) = gnu_next;	\
    else				\
      gnu_field_list = gnu_next;	\
					\
    DECL_CHAIN (gnu_field) = (LIST);	\
    (LIST) = gnu_field;			\
  } while (0)

  gnu_last = NULL_TREE;
  for (gnu_field = gnu_field_list; gnu_field; gnu_field = gnu_next)
    {
      gnu_next = DECL_CHAIN (gnu_field);

      if (DECL_FIELD_OFFSET (gnu_field))
	{
	  MOVE_FROM_FIELD_LIST_TO (gnu_rep_list);
	  continue;
	}

      if (DECL_SIZE (gnu_field) && integer_zerop (DECL_SIZE (gnu_field)))
	{
	  DECL_SIZE_UNIT (gnu_field) = size_zero_node;
	  DECL_FIELD_OFFSET (gnu_field) = size_zero_node;
	  SET_DECL_OFFSET_ALIGN (gnu_field, BIGGEST_ALIGNMENT);
	  DECL_FIELD_BIT_OFFSET (gnu_field) = bitsize_zero_node;
	  if (DECL_ALIASED_P (gnu_field))
	    SET_TYPE_ALIGN (gnu_record_type,
			    MAX (TYPE_ALIGN (gnu_record_type),
				 TYPE_ALIGN (TREE_TYPE (gnu_field))));
	  MOVE_FROM_FIELD_LIST_TO (gnu_zero_list);
	  continue;
	}

      if (has_aliased_after_self_field && field_has_self_size (gnu_field))
	{
	  MOVE_FROM_FIELD_LIST_TO (gnu_self_list);
	  continue;
	}

      /* We don't need further processing in default mode.  */
      if (!w_reorder && !do_reorder)
	{
	  gnu_last = gnu_field;
	  continue;
	}

      if (field_has_self_size (gnu_field))
	{
	  if (w_reorder)
	    {
	      if (last_reorder_field_type < 4)
		warn_on_field_placement (gnu_field, gnat_component_list,
					 gnat_record_type, in_variant,
					 do_reorder);
	      else
		last_reorder_field_type = 4;
	    }

	  if (do_reorder)
	    {
	      MOVE_FROM_FIELD_LIST_TO (gnu_self_list);
	      continue;
	    }
	}

      else if (field_has_variable_size (gnu_field))
	{
	  if (w_reorder)
	    {
	      if (last_reorder_field_type < 3)
		warn_on_field_placement (gnu_field, gnat_component_list,
					 gnat_record_type, in_variant,
					 do_reorder);
	      else
		last_reorder_field_type = 3;
	    }

	  if (do_reorder)
	    {
	      MOVE_FROM_FIELD_LIST_TO (gnu_var_list);
	      continue;
	    }
	}

      else
	{
	  /* If the field has no size, then it cannot be bit-packed.  */
	  const unsigned int bitp_size
	    = DECL_SIZE (gnu_field)
	      ? TREE_INT_CST_LOW (DECL_SIZE (gnu_field)) % BITS_PER_UNIT
	      : 0;

	  /* If the field is bit-packed, we move it to a temporary list that
	     contains the contiguously preceding bit-packed fields, because
	     we want to be able to put them back if the misalignment happens
	     to cancel itself after several bit-packed fields.  */
	  if (bitp_size != 0)
	    {
	      tmp_bitp_size = (tmp_bitp_size + bitp_size) % BITS_PER_UNIT;

	      if (last_reorder_field_type != 2)
		{
		  tmp_last_reorder_field_type = last_reorder_field_type;
		  last_reorder_field_type = 2;
		}

	      if (do_reorder)
		{
		  MOVE_FROM_FIELD_LIST_TO (gnu_tmp_bitp_list);
		  continue;
		}
	    }

	  /* No more bit-packed fields, move the existing ones to the end or
	     put them back at their original location.  */
	  else if (last_reorder_field_type == 2 || gnu_tmp_bitp_list)
	    {
	      last_reorder_field_type = 1;

	      if (tmp_bitp_size != 0)
		{
		  if (w_reorder && tmp_last_reorder_field_type < 2)
		    {
		      if (gnu_tmp_bitp_list)
			warn_on_list_placement (gnu_tmp_bitp_list,
						gnat_component_list,
						gnat_record_type, in_variant,
						do_reorder);
		      else
			warn_on_field_placement (gnu_last,
						 gnat_component_list,
						 gnat_record_type, in_variant,
						 do_reorder);
		    }

		  if (do_reorder)
		    gnu_bitp_list = chainon (gnu_tmp_bitp_list, gnu_bitp_list);

		  gnu_tmp_bitp_list = NULL_TREE;
		  tmp_bitp_size = 0;
		}
	      else
		{
		  /* Rechain the temporary list in front of GNU_FIELD.  */
		  tree gnu_bitp_field = gnu_field;
		  while (gnu_tmp_bitp_list)
		    {
		      tree gnu_bitp_next = DECL_CHAIN (gnu_tmp_bitp_list);
		      DECL_CHAIN (gnu_tmp_bitp_list) = gnu_bitp_field;
		      if (gnu_last)
			DECL_CHAIN (gnu_last) = gnu_tmp_bitp_list;
		      else
			gnu_field_list = gnu_tmp_bitp_list;
		      gnu_bitp_field = gnu_tmp_bitp_list;
		      gnu_tmp_bitp_list = gnu_bitp_next;
		    }
		}
	    }

	  else
	    last_reorder_field_type = 1;
	}

      gnu_last = gnu_field;
    }

#undef MOVE_FROM_FIELD_LIST_TO

  gnu_field_list = nreverse (gnu_field_list);

  /* If permitted, we reorder the fields as follows:

      1) all (groups of) fields whose length is fixed and multiple of a byte,
      2) the remaining fields whose length is fixed and not multiple of a byte,
      3) the remaining fields whose length doesn't depend on discriminants,
      4) all fields whose length depends on discriminants,
      5) the variant part,

     within the record and within each variant recursively.  */

  if (w_reorder)
    {
      /* If we have pending bit-packed fields, warn if they would be moved
	 to after regular fields.  */
      if (last_reorder_field_type == 2
	  && tmp_bitp_size != 0
	  && tmp_last_reorder_field_type < 2)
	{
	  if (gnu_tmp_bitp_list)
	    warn_on_list_placement (gnu_tmp_bitp_list,
				    gnat_component_list, gnat_record_type,
				    in_variant, do_reorder);
	  else
	    warn_on_field_placement (gnu_field_list,
				     gnat_component_list, gnat_record_type,
				     in_variant, do_reorder);
	}
    }

  if (do_reorder)
    {
      /* If we have pending bit-packed fields on the temporary list, we put
	 them either on the bit-packed list or back on the regular list.  */
      if (gnu_tmp_bitp_list)
	{
	  if (tmp_bitp_size != 0)
	    gnu_bitp_list = chainon (gnu_tmp_bitp_list, gnu_bitp_list);
	  else
	    gnu_field_list = chainon (gnu_tmp_bitp_list, gnu_field_list);
	}

      gnu_field_list
	= chainon (gnu_field_list,
		   chainon (gnu_bitp_list,
			    chainon (gnu_var_list, gnu_self_list)));
    }

  /* Otherwise, if there is an aliased field placed after a field whose length
     depends on discriminants, we put all the fields of the latter sort, last.
     We need to do this in case an object of this record type is mutable.  */
  else if (has_aliased_after_self_field)
    gnu_field_list = chainon (gnu_field_list, gnu_self_list);

  /* If P_REP_LIST is nonzero, this means that we are asked to move the fields
     in our REP list to the previous level because this level needs them in
     order to do a correct layout, i.e. avoid having overlapping fields.  */
  if (p_gnu_rep_list && gnu_rep_list)
    *p_gnu_rep_list = chainon (*p_gnu_rep_list, gnu_rep_list);

  /* Deal with the case of an extension of a record type with variable size and
     partial rep clause, for which the _Parent field is forced at offset 0 and
     has variable size.  Note that we cannot do it if the field has fixed size
     because we rely on the presence of the REP part built below to trigger the
     reordering of the fields in a derived record type when all the fields have
     a fixed position.  */
  else if (gnu_rep_list
	   && !DECL_CHAIN (gnu_rep_list)
	   && TREE_CODE (DECL_SIZE (gnu_rep_list)) != INTEGER_CST
	   && !variants_have_rep
	   && first_free_pos
	   && integer_zerop (first_free_pos)
	   && integer_zerop (bit_position (gnu_rep_list)))
    {
      DECL_CHAIN (gnu_rep_list) = gnu_field_list;
      gnu_field_list = gnu_rep_list;
      gnu_rep_list = NULL_TREE;
    }

  /* Otherwise, sort the fields by bit position and put them into their own
     record, before the others, if we also have fields without rep clause.  */
  else if (gnu_rep_list)
    {
      tree gnu_parent, gnu_rep_type;

      /* If all the fields have a rep clause, we can do a flat layout.  */
      layout_with_rep = !gnu_field_list
			&& (!gnu_variant_part || variants_have_rep);

      /* Same as above but the extension itself has a rep clause, in which case
	 we need to set aside the _Parent field to lay out the REP part.  */
      if (TREE_CODE (DECL_SIZE (gnu_rep_list)) != INTEGER_CST
	  && !layout_with_rep
	  && !variants_have_rep
	  && first_free_pos
	  && integer_zerop (first_free_pos)
	  && integer_zerop (bit_position (gnu_rep_list)))
	{
	  gnu_parent = gnu_rep_list;
	  gnu_rep_list = DECL_CHAIN (gnu_rep_list);
	}
      else
	gnu_parent = NULL_TREE;

      gnu_rep_type
	= layout_with_rep ? gnu_record_type : make_node (RECORD_TYPE);

      /* Sort the fields in order of increasing bit position.  */
      const int len = list_length (gnu_rep_list);
      tree *gnu_arr = XALLOCAVEC (tree, len);

      gnu_field = gnu_rep_list;
      for (int i = 0; i < len; i++)
	{
	  gnu_arr[i] = gnu_field;
	  gnu_field = DECL_CHAIN (gnu_field);
	}

      qsort (gnu_arr, len, sizeof (tree), compare_field_bitpos);

      gnu_rep_list = NULL_TREE;
      for (int i = len - 1; i >= 0; i--)
	{
	  DECL_CHAIN (gnu_arr[i]) = gnu_rep_list;
	  gnu_rep_list = gnu_arr[i];
	  DECL_CONTEXT (gnu_arr[i]) = gnu_rep_type;
	}

      /* Do the layout of the REP part, if any.  */
      if (layout_with_rep)
	gnu_field_list = gnu_rep_list;
      else
	{
	  TYPE_NAME (gnu_rep_type)
	    = create_concat_name (gnat_record_type, "REP");
	  TYPE_REVERSE_STORAGE_ORDER (gnu_rep_type)
	    = TYPE_REVERSE_STORAGE_ORDER (gnu_record_type);
	  finish_record_type (gnu_rep_type, gnu_rep_list, 1, false);

	  /* If FIRST_FREE_POS is nonzero, we need to ensure that the fields
	     without rep clause are laid out starting from this position.
	     Therefore, we force it as a minimal size on the REP part.  */
	  tree gnu_rep_part
	    = create_rep_part (gnu_rep_type, gnu_record_type, first_free_pos);

	  /* If this is an extension, put back the _Parent field as the first
	     field of the REP part at offset 0 and update its layout.  */
	  if (gnu_parent)
	    {
	      const unsigned int align = DECL_ALIGN (gnu_parent);
	      DECL_CHAIN (gnu_parent) = TYPE_FIELDS (gnu_rep_type);
	      TYPE_FIELDS (gnu_rep_type) = gnu_parent;
	      DECL_CONTEXT (gnu_parent) = gnu_rep_type;
	      if (align > TYPE_ALIGN (gnu_rep_type))
		{
		  SET_TYPE_ALIGN (gnu_rep_type, align);
		  TYPE_SIZE (gnu_rep_type)
		    = round_up (TYPE_SIZE (gnu_rep_type), align);
		  TYPE_SIZE_UNIT (gnu_rep_type)
		    = round_up (TYPE_SIZE_UNIT (gnu_rep_type), align);
		  SET_DECL_ALIGN (gnu_rep_part, align);
		}
	    }

	  if (debug_info)
	    rest_of_record_type_compilation (gnu_rep_type);

	  /* Chain the REP part at the beginning of the field list.  */
	  DECL_CHAIN (gnu_rep_part) = gnu_field_list;
	  gnu_field_list = gnu_rep_part;
	}
    }

  /* Chain the variant part at the end of the field list.  */
  if (gnu_variant_part)
    gnu_field_list = chainon (gnu_field_list, gnu_variant_part);

  if (cancel_alignment)
    SET_TYPE_ALIGN (gnu_record_type, 0);

  TYPE_ARTIFICIAL (gnu_record_type) = artificial;

  finish_record_type (gnu_record_type, gnu_field_list, layout_with_rep ? 1 : 0,
		      debug_info && !in_variant);

  /* Chain the fields with zero size at the beginning of the field list.  */
  if (gnu_zero_list)
    TYPE_FIELDS (gnu_record_type)
      = chainon (gnu_zero_list, TYPE_FIELDS (gnu_record_type));

  return (gnu_rep_list && !p_gnu_rep_list) || variants_have_rep;
}

/* Given GNU_SIZE, a GCC tree representing a size, return a Uint to be
   placed into an Esize, Component_Bit_Offset, or Component_Size value
   in the GNAT tree.  */

static Uint
annotate_value (tree gnu_size)
{
  static int var_count = 0;
  TCode tcode;
  Node_Ref_Or_Val ops[3] = { No_Uint, No_Uint, No_Uint };
  struct tree_int_map in;

  /* See if we've already saved the value for this node.  */
  if (EXPR_P (gnu_size) || DECL_P (gnu_size))
    {
      struct tree_int_map *e;

      in.base.from = gnu_size;
      e = annotate_value_cache->find (&in);

      if (e)
	return (Node_Ref_Or_Val) e->to;
    }
  else
    in.base.from = NULL_TREE;

  /* If we do not return inside this switch, TCODE will be set to the
     code to be used in a call to Create_Node.  */
  switch (TREE_CODE (gnu_size))
    {
    case INTEGER_CST:
      /* For negative values, build NEGATE_EXPR of the opposite.  Such values
	 can appear for discriminants in expressions for variants.  */
      if (tree_int_cst_sgn (gnu_size) < 0)
	{
	  tree t = wide_int_to_tree (sizetype, -wi::to_wide (gnu_size));
	  tcode = Negate_Expr;
	  ops[0] = UI_From_gnu (t);
	}
      else
	return TREE_OVERFLOW (gnu_size) ? No_Uint : UI_From_gnu (gnu_size);
      break;

    case COMPONENT_REF:
      /* The only case we handle here is a simple discriminant reference.  */
      if (DECL_DISCRIMINANT_NUMBER (TREE_OPERAND (gnu_size, 1)))
	{
	  tree ref = gnu_size;
	  gnu_size = TREE_OPERAND (ref, 1);

	  /* Climb up the chain of successive extensions, if any.  */
	  while (TREE_CODE (TREE_OPERAND (ref, 0)) == COMPONENT_REF
		 && DECL_NAME (TREE_OPERAND (TREE_OPERAND (ref, 0), 1))
		    == parent_name_id)
	    ref = TREE_OPERAND (ref, 0);

	  if (TREE_CODE (TREE_OPERAND (ref, 0)) == PLACEHOLDER_EXPR)
	    {
	      /* Fall through to common processing as a FIELD_DECL.  */
	      tcode = Discrim_Val;
	      ops[0] = UI_From_gnu (DECL_DISCRIMINANT_NUMBER (gnu_size));
	    }
	  else
	    return No_Uint;
	}
      else
	return No_Uint;
      break;

    case VAR_DECL:
      tcode = Dynamic_Val;
      ops[0] = UI_From_Int (++var_count);
      break;

    CASE_CONVERT:
    case NON_LVALUE_EXPR:
      return annotate_value (TREE_OPERAND (gnu_size, 0));

      /* Now just list the operations we handle.  */
    case COND_EXPR:		tcode = Cond_Expr; break;
    case MINUS_EXPR:		tcode = Minus_Expr; break;
    case TRUNC_DIV_EXPR:	tcode = Trunc_Div_Expr; break;
    case CEIL_DIV_EXPR:		tcode = Ceil_Div_Expr; break;
    case FLOOR_DIV_EXPR:	tcode = Floor_Div_Expr; break;
    case TRUNC_MOD_EXPR:	tcode = Trunc_Mod_Expr; break;
    case CEIL_MOD_EXPR:		tcode = Ceil_Mod_Expr; break;
    case FLOOR_MOD_EXPR:	tcode = Floor_Mod_Expr; break;
    case EXACT_DIV_EXPR:	tcode = Exact_Div_Expr; break;
    case NEGATE_EXPR:		tcode = Negate_Expr; break;
    case MIN_EXPR:		tcode = Min_Expr; break;
    case MAX_EXPR:		tcode = Max_Expr; break;
    case ABS_EXPR:		tcode = Abs_Expr; break;
    case TRUTH_ANDIF_EXPR:
    case TRUTH_AND_EXPR:	tcode = Truth_And_Expr; break;
    case TRUTH_ORIF_EXPR:
    case TRUTH_OR_EXPR:		tcode = Truth_Or_Expr; break;
    case TRUTH_XOR_EXPR:	tcode = Truth_Xor_Expr; break;
    case TRUTH_NOT_EXPR:	tcode = Truth_Not_Expr; break;
    case LT_EXPR:		tcode = Lt_Expr; break;
    case LE_EXPR:		tcode = Le_Expr; break;
    case GT_EXPR:		tcode = Gt_Expr; break;
    case GE_EXPR:		tcode = Ge_Expr; break;
    case EQ_EXPR:		tcode = Eq_Expr; break;
    case NE_EXPR:		tcode = Ne_Expr; break;

    case PLUS_EXPR:
      /* Turn addition of negative constant into subtraction.  */
      if (TREE_CODE (TREE_OPERAND (gnu_size, 1)) == INTEGER_CST
	  && tree_int_cst_sign_bit (TREE_OPERAND (gnu_size, 1)))
	{
	  tcode = Minus_Expr;
	  wide_int wop1 = -wi::to_wide (TREE_OPERAND (gnu_size, 1));
	  ops[1] = annotate_value (wide_int_to_tree (sizetype, wop1));
	  break;
	}

      /* ... fall through ... */

    case MULT_EXPR:
      tcode = (TREE_CODE (gnu_size) == MULT_EXPR ? Mult_Expr : Plus_Expr);
      /* Fold conversions from bytes to bits into inner operations.  */
      if (TREE_CODE (TREE_OPERAND (gnu_size, 1)) == INTEGER_CST
	  && CONVERT_EXPR_P (TREE_OPERAND (gnu_size, 0)))
	{
	  tree inner_op = TREE_OPERAND (TREE_OPERAND (gnu_size, 0), 0);
	  if (TREE_CODE (inner_op) == TREE_CODE (gnu_size)
	      && TREE_CODE (TREE_OPERAND (inner_op, 1)) == INTEGER_CST)
	    {
	      ops[0] = annotate_value (TREE_OPERAND (inner_op, 0));
	      tree inner_op_op1 = TREE_OPERAND (inner_op, 1);
	      tree gnu_size_op1 = TREE_OPERAND (gnu_size, 1);
	      widest_int op1;
	      if (TREE_CODE (gnu_size) == MULT_EXPR)
		op1 = (wi::to_widest (inner_op_op1)
		       * wi::to_widest (gnu_size_op1));
	      else
		{
		  op1 = (wi::to_widest (inner_op_op1)
			 + wi::to_widest (gnu_size_op1));
		  if (wi::zext (op1, TYPE_PRECISION (sizetype)) == 0)
		    return ops[0];
		}
	      ops[1] = annotate_value (wide_int_to_tree (sizetype, op1));
	    }
	}
      break;

    case BIT_AND_EXPR:
      tcode = Bit_And_Expr;
      /* For negative values in sizetype, build NEGATE_EXPR of the opposite.
	 Such values can appear in expressions with aligning patterns.  */
      if (TREE_CODE (TREE_OPERAND (gnu_size, 1)) == INTEGER_CST)
	{
	  wide_int wop1 = -wi::to_wide (TREE_OPERAND (gnu_size, 1));
	  tree op1 = wide_int_to_tree (sizetype, wop1);
	  ops[1] = annotate_value (build1 (NEGATE_EXPR, sizetype, op1));
	}
      break;

    case CALL_EXPR:
      /* In regular mode, inline back only if symbolic annotation is requested
	 in order to avoid memory explosion on big discriminated record types.
	 But not in ASIS mode, as symbolic annotation is required for DDA.  */
      if (List_Representation_Info >= 3 || type_annotate_only)
	{
	  tree t = maybe_inline_call_in_expr (gnu_size);
	  return t ? annotate_value (t) : No_Uint;
	}
      else
	return Uint_Minus_1;

    default:
      return No_Uint;
    }

  /* Now get each of the operands that's relevant for this code.  If any
     cannot be expressed as a repinfo node, say we can't.  */
  for (int i = 0; i < TREE_CODE_LENGTH (TREE_CODE (gnu_size)); i++)
    if (ops[i] == No_Uint)
      {
	ops[i] = annotate_value (TREE_OPERAND (gnu_size, i));
	if (ops[i] == No_Uint)
	  return No_Uint;
      }

  Node_Ref_Or_Val ret = Create_Node (tcode, ops[0], ops[1], ops[2]);

  /* Save the result in the cache.  */
  if (in.base.from)
    {
      struct tree_int_map **h;
      /* We can't assume the hash table data hasn't moved since the initial
	 look up, so we have to search again.  Allocating and inserting an
	 entry at that point would be an alternative, but then we'd better
	 discard the entry if we decided not to cache it.  */
      h = annotate_value_cache->find_slot (&in, INSERT);
      gcc_assert (!*h);
      *h = ggc_alloc<tree_int_map> ();
      (*h)->base.from = in.base.from;
      (*h)->to = ret;
    }

  return ret;
}

/* Given GNAT_ENTITY, an object (constant, variable, parameter, exception)
   and GNU_TYPE, its corresponding GCC type, set Esize and Alignment to the
   size and alignment used by Gigi.  Prefer SIZE over TYPE_SIZE if non-null.
   BY_REF is true if the object is used by reference.  */

void
annotate_object (Entity_Id gnat_entity, tree gnu_type, tree size, bool by_ref)
{
  if (by_ref)
    {
      if (TYPE_IS_FAT_POINTER_P (gnu_type))
	gnu_type = TYPE_UNCONSTRAINED_ARRAY (gnu_type);
      else
	gnu_type = TREE_TYPE (gnu_type);
    }

  if (!Known_Esize (gnat_entity))
    {
      if (TREE_CODE (gnu_type) == RECORD_TYPE
	  && TYPE_CONTAINS_TEMPLATE_P (gnu_type))
	size = TYPE_SIZE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_type))));
      else if (!size)
	size = TYPE_SIZE (gnu_type);

      if (size)
	Set_Esize (gnat_entity, No_Uint_To_0 (annotate_value (size)));
    }

  if (!Known_Alignment (gnat_entity))
    Set_Alignment (gnat_entity,
		   UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT));
}

/* Return first element of field list whose TREE_PURPOSE is the same as ELEM.
   Return NULL_TREE if there is no such element in the list.  */

static tree
purpose_member_field (const_tree elem, tree list)
{
  while (list)
    {
      tree field = TREE_PURPOSE (list);
      if (SAME_FIELD_P (field, elem))
	return list;
      list = TREE_CHAIN (list);
    }
  return NULL_TREE;
}

/* Given GNAT_ENTITY, a record type, and GNU_TYPE, its corresponding GCC type,
   set Component_Bit_Offset and Esize of the components to the position and
   size used by Gigi.  */

static void
annotate_rep (Entity_Id gnat_entity, tree gnu_type)
{
  /* For an extension, the inherited components have not been translated because
     they are fetched from the _Parent component on the fly.  */
  const bool is_extension
    = Is_Tagged_Type (gnat_entity) && Is_Derived_Type (gnat_entity);

  /* We operate by first making a list of all fields and their position (we
     can get the size easily) and then update all the sizes in the tree.  */
  tree gnu_list
    = build_position_list (gnu_type, false, size_zero_node, bitsize_zero_node,
			   BIGGEST_ALIGNMENT, NULL_TREE);

  for (Entity_Id gnat_field = First_Entity (gnat_entity);
       Present (gnat_field);
       gnat_field = Next_Entity (gnat_field))
    if ((Ekind (gnat_field) == E_Component
	 && (is_extension || present_gnu_tree (gnat_field)))
	|| (Ekind (gnat_field) == E_Discriminant
	    && !Is_Unchecked_Union (Scope (gnat_field))))
      {
	tree t = purpose_member_field (gnat_to_gnu_field_decl (gnat_field),
				       gnu_list);
	if (t)
	  {
	    tree offset = TREE_VEC_ELT (TREE_VALUE (t), 0);
	    tree bit_offset = TREE_VEC_ELT (TREE_VALUE (t), 2);

	    /* If we are just annotating types and the type is tagged, the tag
	       and the parent components are not generated by the front-end so
	       we need to add the appropriate offset to each component without
	       representation clause.  */
	    if (type_annotate_only
		&& Is_Tagged_Type (gnat_entity)
		&& No (Component_Clause (gnat_field)))
	      {
		tree parent_bit_offset;

		/* For a component appearing in the current extension, the
		   offset is the size of the parent.  */
		if (Is_Derived_Type (gnat_entity)
		    && Original_Record_Component (gnat_field) == gnat_field)
		  parent_bit_offset
		    = UI_To_gnu (Esize (Etype (Base_Type (gnat_entity))),
				 bitsizetype);
		else
		  parent_bit_offset = bitsize_int (POINTER_SIZE);

		if (TYPE_FIELDS (gnu_type))
		  parent_bit_offset
		    = round_up (parent_bit_offset,
				DECL_ALIGN (TYPE_FIELDS (gnu_type)));

		offset
		  = size_binop (PLUS_EXPR, offset,
				fold_convert (sizetype,
					      size_binop (TRUNC_DIV_EXPR,
							  parent_bit_offset,
							  bitsize_unit_node)));
	      }

	    /* If the field has a variable offset, also compute the normalized
	       position since it's easier to do on trees here than to deduce
	       it from the annotated expression of Component_Bit_Offset.  */
	    if (TREE_CODE (offset) != INTEGER_CST)
	      {
		normalize_offset (&offset, &bit_offset, BITS_PER_UNIT);
		Set_Normalized_Position (gnat_field,
					 annotate_value (offset));
		Set_Normalized_First_Bit (gnat_field,
					  annotate_value (bit_offset));
	      }

	    Set_Component_Bit_Offset
	      (gnat_field,
	       annotate_value (bit_from_pos (offset, bit_offset)));

	    Set_Esize
	      (gnat_field,
	       No_Uint_To_0 (annotate_value (DECL_SIZE (TREE_PURPOSE (t)))));
	  }
	else if (is_extension)
	  {
	    /* If there is no entry, this is an inherited component whose
	       position is the same as in the parent type.  */
	    Entity_Id gnat_orig = Original_Record_Component (gnat_field);

	    /* If we are just annotating types, discriminants renaming those of
	       the parent have no entry so deal with them specifically.  */
	    if (type_annotate_only
		&& gnat_orig == gnat_field
		&& Ekind (gnat_field) == E_Discriminant)
	      gnat_orig = Corresponding_Discriminant (gnat_field);

	    if (Known_Normalized_Position (gnat_orig))
	      {
		Set_Normalized_Position (gnat_field,
					 Normalized_Position (gnat_orig));
		Set_Normalized_First_Bit (gnat_field,
					  Normalized_First_Bit (gnat_orig));
	      }

	    Set_Component_Bit_Offset (gnat_field,
				      Component_Bit_Offset (gnat_orig));

	    Set_Esize (gnat_field, Esize (gnat_orig));
	  }
      }
}

/* Scan all fields in GNU_TYPE and return a TREE_LIST where TREE_PURPOSE is
   the FIELD_DECL and TREE_VALUE a TREE_VEC containing the byte position, the
   value to be placed into DECL_OFFSET_ALIGN and the bit position.  The list
   of fields is flattened, except for variant parts if DO_NOT_FLATTEN_VARIANT
   is set to true.  GNU_POS is to be added to the position, GNU_BITPOS to the
   bit position, OFFSET_ALIGN is the present offset alignment.  GNU_LIST is a
   pre-existing list to be chained to the newly created entries.  */

static tree
build_position_list (tree gnu_type, bool do_not_flatten_variant, tree gnu_pos,
		     tree gnu_bitpos, unsigned int offset_align, tree gnu_list)
{
  tree gnu_field;

  for (gnu_field = TYPE_FIELDS (gnu_type);
       gnu_field;
       gnu_field = DECL_CHAIN (gnu_field))
    {
      tree gnu_our_bitpos = size_binop (PLUS_EXPR, gnu_bitpos,
					DECL_FIELD_BIT_OFFSET (gnu_field));
      tree gnu_our_offset = size_binop (PLUS_EXPR, gnu_pos,
					DECL_FIELD_OFFSET (gnu_field));
      unsigned int our_offset_align
	= MIN (offset_align, DECL_OFFSET_ALIGN (gnu_field));
      tree v = make_tree_vec (3);

      TREE_VEC_ELT (v, 0) = gnu_our_offset;
      TREE_VEC_ELT (v, 1) = size_int (our_offset_align);
      TREE_VEC_ELT (v, 2) = gnu_our_bitpos;
      gnu_list = tree_cons (gnu_field, v, gnu_list);

      /* Recurse on internal fields, flattening the nested fields except for
	 those in the variant part, if requested.  */
      if (DECL_INTERNAL_P (gnu_field))
	{
	  tree gnu_field_type = TREE_TYPE (gnu_field);
	  if (do_not_flatten_variant
	      && TREE_CODE (gnu_field_type) == QUAL_UNION_TYPE)
	    gnu_list
	      = build_position_list (gnu_field_type, do_not_flatten_variant,
				     size_zero_node, bitsize_zero_node,
				     BIGGEST_ALIGNMENT, gnu_list);
	  else
	    gnu_list
	      = build_position_list (gnu_field_type, do_not_flatten_variant,
				     gnu_our_offset, gnu_our_bitpos,
				     our_offset_align, gnu_list);
	}
    }

  return gnu_list;
}

/* Return a list describing the substitutions needed to reflect the
   discriminant substitutions from GNAT_TYPE to GNAT_SUBTYPE.  They can
   be in any order.  The values in an element of the list are in the form
   of operands to SUBSTITUTE_IN_EXPR.  DEFINITION is true if this is for
   a definition of GNAT_SUBTYPE.  */

static vec<subst_pair>
build_subst_list (Entity_Id gnat_subtype, Entity_Id gnat_type, bool definition)
{
  vec<subst_pair> gnu_list = vNULL;
  Entity_Id gnat_discrim;
  Node_Id gnat_constr;

  for (gnat_discrim = First_Stored_Discriminant (gnat_type),
       gnat_constr = First_Elmt (Stored_Constraint (gnat_subtype));
       Present (gnat_discrim);
       gnat_discrim = Next_Stored_Discriminant (gnat_discrim),
       gnat_constr = Next_Elmt (gnat_constr))
    /* Ignore access discriminants.  */
    if (!Is_Access_Type (Etype (Node (gnat_constr))))
      {
	tree gnu_field = gnat_to_gnu_field_decl (gnat_discrim);
	tree replacement
	  = elaborate_expression (Node (gnat_constr), gnat_subtype,
				  get_entity_char (gnat_discrim),
				  definition, true, false);
	/* If this is a definition, we need to make sure that the SAVE_EXPRs
	   are instantiated on every possibly path in size computations.  */
	if (definition && TREE_CODE (replacement) == SAVE_EXPR)
	  add_stmt (replacement);
	replacement = convert (TREE_TYPE (gnu_field), replacement);
	subst_pair s = { gnu_field, replacement };
	gnu_list.safe_push (s);
      }

  return gnu_list;
}

/* Scan all fields in {GNU_QUAL_UNION_TYPE,GNAT_VARIANT_PART} and return a list
   describing the variants of GNU_QUAL_UNION_TYPE that are still relevant after
   applying the substitutions described in SUBST_LIST.  GNU_LIST is an existing
   list to be prepended to the newly created entries.  */

static vec<variant_desc>
build_variant_list (tree gnu_qual_union_type, Node_Id gnat_variant_part,
		    vec<subst_pair> subst_list, vec<variant_desc> gnu_list)
{
  Node_Id gnat_variant;
  tree gnu_field;

  for (gnu_field = TYPE_FIELDS (gnu_qual_union_type),
       gnat_variant
	= Present (gnat_variant_part)
	  ? First_Non_Pragma (Variants (gnat_variant_part))
	  : Empty;
       gnu_field;
       gnu_field = DECL_CHAIN (gnu_field),
       gnat_variant
	= Present (gnat_variant_part)
	  ? Next_Non_Pragma (gnat_variant)
	  : Empty)
    {
      tree qual = DECL_QUALIFIER (gnu_field);
      unsigned int i;
      subst_pair *s;

      FOR_EACH_VEC_ELT (subst_list, i, s)
	qual = SUBSTITUTE_IN_EXPR (qual, s->discriminant, s->replacement);

      /* If the new qualifier is not unconditionally false, its variant may
	 still be accessed.  */
      if (!integer_zerop (qual))
	{
	  tree variant_type = TREE_TYPE (gnu_field), variant_subpart;
	  variant_desc v
	    = { variant_type, gnu_field, qual, NULL_TREE, NULL_TREE };

	  gnu_list.safe_push (v);

	  /* Annotate the GNAT node if present.  */
	  if (Present (gnat_variant))
	    Set_Present_Expr (gnat_variant, annotate_value (qual));

	  /* Recurse on the variant subpart of the variant, if any.  */
	  variant_subpart = get_variant_part (variant_type);
	  if (variant_subpart)
	    gnu_list
	      = build_variant_list (TREE_TYPE (variant_subpart),
				    Present (gnat_variant)
				    ? Variant_Part
				      (Component_List (gnat_variant))
				    : Empty,
				    subst_list,
				    gnu_list);

	  /* If the new qualifier is unconditionally true, the subsequent
	     variants cannot be accessed.  */
	  if (integer_onep (qual))
	    break;
	}
    }

  return gnu_list;
}

/* If SIZE has overflowed, return the maximum valid size, which is the upper
   bound of the signed sizetype in bits, rounded down to ALIGN.  Otherwise
   return SIZE unmodified.  */

static tree
maybe_saturate_size (tree size, unsigned int align)
{
  if (TREE_CODE (size) == INTEGER_CST && TREE_OVERFLOW (size))
    {
      size
	= size_binop (MULT_EXPR,
		      fold_convert (bitsizetype, TYPE_MAX_VALUE (ssizetype)),
		      build_int_cst (bitsizetype, BITS_PER_UNIT));
      size = round_down (size, align);
    }

  return size;
}

/* UINT_SIZE is a Uint giving the specified size for an object of GNU_TYPE
   corresponding to GNAT_OBJECT.  If the size is valid, return an INTEGER_CST
   corresponding to its value.  Otherwise, return NULL_TREE.  KIND is set to
   VAR_DECL if we are specifying the size of an object, TYPE_DECL for the
   size of a type, and FIELD_DECL for the size of a field.  COMPONENT_P is
   true if we are being called to process the Component_Size of GNAT_OBJECT;
   this is used only for error messages.  ZERO_OK is true if a size of zero
   is permitted; if ZERO_OK is false, it means that a size of zero should be
   treated as an unspecified size.  S1 and S2 are used for error messages.  */

static tree
validate_size (Uint uint_size, tree gnu_type, Entity_Id gnat_object,
	       enum tree_code kind, bool component_p, bool zero_ok,
	       const char *s1, const char *s2)
{
  Node_Id gnat_error_node;
  tree old_size, size;

  /* Return 0 if no size was specified.  */
  if (uint_size == No_Uint)
    return NULL_TREE;

  /* Ignore a negative size since that corresponds to our back-annotation.  */
  if (UI_Lt (uint_size, Uint_0))
    return NULL_TREE;

  /* Find the node to use for error messages.  */
  if ((Ekind (gnat_object) == E_Component
       || Ekind (gnat_object) == E_Discriminant)
      && Present (Component_Clause (gnat_object)))
    gnat_error_node = Last_Bit (Component_Clause (gnat_object));
  else if (Present (Size_Clause (gnat_object)))
    gnat_error_node = Expression (Size_Clause (gnat_object));
  else if (Has_Object_Size_Clause (gnat_object))
    gnat_error_node = Expression (Object_Size_Clause (gnat_object));
  else
    gnat_error_node = gnat_object;

  /* Get the size as an INTEGER_CST.  Issue an error if a size was specified
     but cannot be represented in bitsizetype.  */
  size = UI_To_gnu (uint_size, bitsizetype);
  if (TREE_OVERFLOW (size))
    {
      if (component_p)
	post_error_ne ("component size for& is too large", gnat_error_node,
		       gnat_object);
      else
	post_error_ne ("size for& is too large", gnat_error_node,
		       gnat_object);
      return NULL_TREE;
    }

  /* Ignore a zero size if it is not permitted.  */
  if (!zero_ok && integer_zerop (size))
    return NULL_TREE;

  /* The size of objects is always a multiple of a byte.  */
  if (kind == VAR_DECL
      && !integer_zerop (size_binop (TRUNC_MOD_EXPR, size, bitsize_unit_node)))
    {
      if (component_p)
	post_error_ne ("component size for& must be multiple of Storage_Unit",
		       gnat_error_node, gnat_object);
      else
	post_error_ne ("size for& must be multiple of Storage_Unit",
		       gnat_error_node, gnat_object);
      return NULL_TREE;
    }

  /* If this is an integral type or a bit-packed array type, the front-end has
     already verified the size, so we need not do it again (which would mean
     checking against the bounds).  However, if this is an aliased object, it
     may not be smaller than the type of the object.  */
  if ((INTEGRAL_TYPE_P (gnu_type) || BIT_PACKED_ARRAY_TYPE_P (gnu_type))
      && !(kind == VAR_DECL && Is_Aliased (gnat_object)))
    return size;

  /* If the object is a record that contains a template, add the size of the
     template to the specified size.  */
  if (TREE_CODE (gnu_type) == RECORD_TYPE
      && TYPE_CONTAINS_TEMPLATE_P (gnu_type))
    size = size_binop (PLUS_EXPR, DECL_SIZE (TYPE_FIELDS (gnu_type)), size);

  old_size = (kind == VAR_DECL ? TYPE_SIZE (gnu_type) : rm_size (gnu_type));

  /* If the old size is self-referential, get the maximum size.  */
  if (CONTAINS_PLACEHOLDER_P (old_size))
    old_size = max_size (old_size, true);

  /* If this is an access type or a fat pointer, the minimum size is that given
     by the smallest integral mode that's valid for pointers.  */
  if (TREE_CODE (gnu_type) == POINTER_TYPE || TYPE_IS_FAT_POINTER_P (gnu_type))
    {
      scalar_int_mode p_mode = NARROWEST_INT_MODE;
      while (!targetm.valid_pointer_mode (p_mode))
	p_mode = GET_MODE_WIDER_MODE (p_mode).require ();
      old_size = bitsize_int (GET_MODE_BITSIZE (p_mode));
    }

  /* Issue an error either if the default size of the object isn't a constant
     or if the new size is smaller than it.  */
  if (TREE_CODE (old_size) != INTEGER_CST
      || (!TREE_OVERFLOW (old_size) && tree_int_cst_lt (size, old_size)))
    {
      char buf[128];
      const char *s;

      if (s1 && s2)
	{
	  snprintf (buf, sizeof (buf), s1, s2);
	  s = buf;
	}
      else if (component_p)
	s = "component size for& too small{, minimum allowed is ^}";
      else
	s = "size for& too small{, minimum allowed is ^}";

      post_error_ne_tree (s, gnat_error_node, gnat_object, old_size);

      return NULL_TREE;
    }

  return size;
}

/* Similarly, but both validate and process a value of RM size.  This routine
   is only called for types.  */

static void
set_rm_size (Uint uint_size, tree gnu_type, Entity_Id gnat_entity)
{
  Node_Id gnat_attr_node;
  tree old_size, size;

  /* Do nothing if no size was specified.  */
  if (uint_size == No_Uint)
    return;

  /* Only issue an error if a Value_Size clause was explicitly given for the
     entity; otherwise, we'd be duplicating an error on the Size clause.  */
  gnat_attr_node
    = Get_Attribute_Definition_Clause (gnat_entity, Attr_Value_Size);
  if (Present (gnat_attr_node) && Entity (gnat_attr_node) != gnat_entity)
    gnat_attr_node = Empty;

  /* Get the size as an INTEGER_CST.  Issue an error if a size was specified
     but cannot be represented in bitsizetype.  */
  size = UI_To_gnu (uint_size, bitsizetype);
  if (TREE_OVERFLOW (size))
    {
      if (Present (gnat_attr_node))
	post_error_ne ("Value_Size for& is too large", gnat_attr_node,
		       gnat_entity);
      return;
    }

  /* Ignore a zero size unless a Value_Size clause exists, or a size clause
     exists, or this is an integer type, in which case the front-end will
     have always set it.  */
  if (No (gnat_attr_node)
      && integer_zerop (size)
      && !Has_Size_Clause (gnat_entity)
      && !Is_Discrete_Or_Fixed_Point_Type (gnat_entity))
    return;

  old_size = rm_size (gnu_type);

  /* If the old size is self-referential, get the maximum size.  */
  if (CONTAINS_PLACEHOLDER_P (old_size))
    old_size = max_size (old_size, true);

  /* Issue an error either if the old size of the object isn't a constant or
     if the new size is smaller than it.  The front-end has already verified
     this for scalar and bit-packed array types.  */
  if (TREE_CODE (old_size) != INTEGER_CST
      || TREE_OVERFLOW (old_size)
      || (AGGREGATE_TYPE_P (gnu_type)
	  && !BIT_PACKED_ARRAY_TYPE_P (gnu_type)
	  && !(TYPE_IS_PADDING_P (gnu_type)
	       && BIT_PACKED_ARRAY_TYPE_P (TREE_TYPE (TYPE_FIELDS (gnu_type))))
	  && tree_int_cst_lt (size, old_size)))
    {
      if (Present (gnat_attr_node))
	post_error_ne_tree
	  ("Value_Size for& too small{, minimum allowed is ^}",
	   gnat_attr_node, gnat_entity, old_size);
      return;
    }

  /* Otherwise, set the RM size proper for integral types...  */
  if ((TREE_CODE (gnu_type) == INTEGER_TYPE
       && Is_Discrete_Or_Fixed_Point_Type (gnat_entity))
      || (TREE_CODE (gnu_type) == ENUMERAL_TYPE
	  || TREE_CODE (gnu_type) == BOOLEAN_TYPE))
    SET_TYPE_RM_SIZE (gnu_type, size);

  /* ...or the Ada size for record and union types.  */
  else if (RECORD_OR_UNION_TYPE_P (gnu_type)
	   && !TYPE_FAT_POINTER_P (gnu_type))
    SET_TYPE_ADA_SIZE (gnu_type, size);
}

/* ALIGNMENT is a Uint giving the alignment specified for GNAT_ENTITY,
   a type or object whose present alignment is ALIGN.  If this alignment is
   valid, return it.  Otherwise, give an error and return ALIGN.  */

static unsigned int
validate_alignment (Uint alignment, Entity_Id gnat_entity, unsigned int align)
{
  unsigned int max_allowed_alignment = get_target_maximum_allowed_alignment ();
  unsigned int new_align;
  Node_Id gnat_error_node;

  /* Don't worry about checking alignment if alignment was not specified
     by the source program and we already posted an error for this entity.  */
  if (Error_Posted (gnat_entity) && !Has_Alignment_Clause (gnat_entity))
    return align;

  /* Post the error on the alignment clause if any.  Note, for the implicit
     base type of an array type, the alignment clause is on the first
     subtype.  */
  if (Present (Alignment_Clause (gnat_entity)))
    gnat_error_node = Expression (Alignment_Clause (gnat_entity));

  else if (Is_Itype (gnat_entity)
           && Is_Array_Type (gnat_entity)
           && Etype (gnat_entity) == gnat_entity
           && Present (Alignment_Clause (First_Subtype (gnat_entity))))
    gnat_error_node =
      Expression (Alignment_Clause (First_Subtype (gnat_entity)));

  else
    gnat_error_node = gnat_entity;

  /* Within GCC, an alignment is an integer, so we must make sure a value is
     specified that fits in that range.  Also, there is an upper bound to
     alignments we can support/allow.  */
  if (!UI_Is_In_Int_Range (alignment)
      || ((new_align = UI_To_Int (alignment)) > max_allowed_alignment))
    post_error_ne_num ("largest supported alignment for& is ^",
		       gnat_error_node, gnat_entity, max_allowed_alignment);
  else if (!(Present (Alignment_Clause (gnat_entity))
	     && From_At_Mod (Alignment_Clause (gnat_entity)))
	   && new_align * BITS_PER_UNIT < align)
    {
      unsigned int double_align;
      bool is_capped_double, align_clause;

      /* If the default alignment of "double" or larger scalar types is
	 specifically capped and the new alignment is above the cap, do
	 not post an error and change the alignment only if there is an
	 alignment clause; this makes it possible to have the associated
	 GCC type overaligned by default for performance reasons.  */
      if ((double_align = double_float_alignment) > 0)
	{
	  Entity_Id gnat_type
	    = Is_Type (gnat_entity) ? gnat_entity : Etype (gnat_entity);
	  is_capped_double
	    = is_double_float_or_array (gnat_type, &align_clause);
	}
      else if ((double_align = double_scalar_alignment) > 0)
	{
	  Entity_Id gnat_type
	    = Is_Type (gnat_entity) ? gnat_entity : Etype (gnat_entity);
	  is_capped_double
	    = is_double_scalar_or_array (gnat_type, &align_clause);
	}
      else
	is_capped_double = align_clause = false;

      if (is_capped_double && new_align >= double_align)
	{
	  if (align_clause)
	    align = new_align * BITS_PER_UNIT;
	}
      else
	{
	  if (is_capped_double)
	    align = double_align * BITS_PER_UNIT;

	  post_error_ne_num ("alignment for& must be at least ^",
			     gnat_error_node, gnat_entity,
			     align / BITS_PER_UNIT);
	}
    }
  else
    {
      new_align = (new_align > 0 ? new_align * BITS_PER_UNIT : 1);
      if (new_align > align)
	align = new_align;
    }

  return align;
}

/* Promote the alignment of GNU_TYPE for an object with GNU_SIZE corresponding
   to GNAT_ENTITY.  Return a positive value on success or zero on failure.  */

static unsigned int
promote_object_alignment (tree gnu_type, tree gnu_size, Entity_Id gnat_entity)
{
  unsigned int align, size_cap, align_cap;

  /* No point in promoting the alignment if this doesn't prevent BLKmode access
     to the object, in particular block copy, as this will for example disable
     the NRV optimization for it.  No point in jumping through all the hoops
     needed in order to support BIGGEST_ALIGNMENT if we don't really have to.
     So we cap to the smallest alignment that corresponds to a known efficient
     memory access pattern, except for a full access entity.  */
  if (Is_Full_Access (gnat_entity))
    {
      size_cap = UINT_MAX;
      align_cap = BIGGEST_ALIGNMENT;
    }
  else
    {
      size_cap = MAX_FIXED_MODE_SIZE;
      align_cap = get_mode_alignment (ptr_mode);
    }

  if (!gnu_size)
    gnu_size = TYPE_SIZE (gnu_type);

  /* Do the promotion within the above limits.  */
  if (!tree_fits_uhwi_p (gnu_size)
      || compare_tree_int (gnu_size, size_cap) > 0)
    align = 0;
  else if (compare_tree_int (gnu_size, align_cap) > 0)
    align = align_cap;
  else
    align = ceil_pow2 (tree_to_uhwi (gnu_size));

  /* But make sure not to under-align the object.  */
  if (align <= TYPE_ALIGN (gnu_type))
    align = 0;

   /* And honor the minimum valid atomic alignment, if any.  */
#ifdef MINIMUM_ATOMIC_ALIGNMENT
  else if (align < MINIMUM_ATOMIC_ALIGNMENT)
    align = MINIMUM_ATOMIC_ALIGNMENT;
#endif

  return align;
}

/* Return whether GNAT_ENTITY is a simple constant, i.e. it represents only
   its value and reading it has no side effects.  */

bool
simple_constant_p (Entity_Id gnat_entity)
{
  return Ekind (gnat_entity) == E_Constant
	 && Present (Constant_Value (gnat_entity))
	 && !No_Initialization (gnat_entity)
	 && No (Address_Clause (gnat_entity))
	 && No (Renamed_Object (gnat_entity));
}

/* Verify that TYPE is something we can implement atomically.  If not, issue
   an error for GNAT_ENTITY.  COMPONENT_P is true if we are being called to
   process a component type.  */

static void
check_ok_for_atomic_type (tree type, Entity_Id gnat_entity, bool component_p)
{
  Node_Id gnat_error_point = gnat_entity;
  Node_Id gnat_node;
  machine_mode mode;
  enum mode_class mclass;
  unsigned int align;
  tree size;

  /* If this is an anonymous base type, nothing to check, the error will be
     reported on the source type if need be.  */
  if (!Comes_From_Source (gnat_entity))
    return;

  mode = TYPE_MODE (type);
  mclass = GET_MODE_CLASS (mode);
  align = TYPE_ALIGN (type);
  size = TYPE_SIZE (type);

  /* Consider all aligned floating-point types atomic and any aligned types
     that are represented by integers no wider than a machine word.  */
  scalar_int_mode int_mode;
  if ((mclass == MODE_FLOAT
       || (is_a <scalar_int_mode> (mode, &int_mode)
	   && GET_MODE_BITSIZE (int_mode) <= BITS_PER_WORD))
      && align >= GET_MODE_ALIGNMENT (mode))
    return;

  /* For the moment, also allow anything that has an alignment equal to its
     size and which is smaller than a word.  */
  if (size
      && TREE_CODE (size) == INTEGER_CST
      && compare_tree_int (size, align) == 0
      && align <= BITS_PER_WORD)
    return;

  for (gnat_node = First_Rep_Item (gnat_entity);
       Present (gnat_node);
       gnat_node = Next_Rep_Item (gnat_node))
    if (Nkind (gnat_node) == N_Pragma)
      {
	unsigned char pragma_id
	  = Get_Pragma_Id (Chars (Pragma_Identifier (gnat_node)));

	if ((pragma_id == Pragma_Atomic && !component_p)
	    || (pragma_id == Pragma_Atomic_Components && component_p))
	  {
	    gnat_error_point = First (Pragma_Argument_Associations (gnat_node));
	    break;
	  }
      }

  if (component_p)
    post_error_ne ("atomic access to component of & cannot be guaranteed",
		   gnat_error_point, gnat_entity);
  else if (Is_Volatile_Full_Access (gnat_entity))
    post_error_ne ("volatile full access to & cannot be guaranteed",
		   gnat_error_point, gnat_entity);
  else
    post_error_ne ("atomic access to & cannot be guaranteed",
		   gnat_error_point, gnat_entity);
}

/* Return true if TYPE is suitable for a type-generic atomic builtin.  */

static bool
type_for_atomic_builtin_p (tree type)
{
  const enum machine_mode mode = TYPE_MODE (type);
  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
    return true;

  scalar_int_mode imode;
  if (is_a <scalar_int_mode> (mode, &imode) && GET_MODE_SIZE (imode) <= 16)
    return true;

  return false;
}

/* Return the GCC atomic builtin based on CODE and sized for TYPE.  */

static tree
resolve_atomic_builtin (enum built_in_function code, tree type)
{
  const unsigned int size = resolve_atomic_size (type);
  code = (enum built_in_function) ((int) code + exact_log2 (size) + 1);

  return builtin_decl_implicit (code);
}

/* Helper for intrin_profiles_compatible_p, to perform compatibility checks
   on the Ada/builtin argument lists for the INB binding.  */

static bool
intrin_arglists_compatible_p (const intrin_binding_t *inb)
{
  function_args_iterator ada_iter, btin_iter;

  function_args_iter_init (&ada_iter, inb->ada_fntype);
  function_args_iter_init (&btin_iter, inb->btin_fntype);

  /* Sequence position of the last argument we checked.  */
  int argpos = 0;

  while (true)
    {
      tree ada_type = function_args_iter_cond (&ada_iter);
      tree btin_type = function_args_iter_cond (&btin_iter);

      /* If we've exhausted both lists simultaneously, we're done.  */
      if (!ada_type && !btin_type)
	break;

      /* If the internal builtin uses a variable list, accept anything.  */
      if (!btin_type)
	break;

      /* If we're done with the Ada args and not with the internal builtin
	 args, or the other way around, complain.  */
      if (ada_type == void_type_node && btin_type != void_type_node)
	{
	  post_error ("??Ada parameter list too short!", inb->gnat_entity);
	  return false;
	}

      if (btin_type == void_type_node && ada_type != void_type_node)
	{
	  post_error_ne_num ("??Ada parameter list too long ('> ^)!",
			     inb->gnat_entity, inb->gnat_entity, argpos);
	  return false;
	}

      /* Otherwise, check that types match for the current argument.  */
      argpos++;
      if (!types_compatible_p (ada_type, btin_type))
	{
	  /* For vector builtins, issue an error to avoid an ICE.  */
	  if (VECTOR_TYPE_P (btin_type))
	    post_error_ne_num
	      ("intrinsic binding type mismatch on parameter ^",
	       inb->gnat_entity, inb->gnat_entity, argpos);
	  else
	    post_error_ne_num
	      ("??intrinsic binding type mismatch on parameter ^!",
	       inb->gnat_entity, inb->gnat_entity, argpos);
	  return false;
	}


      function_args_iter_next (&ada_iter);
      function_args_iter_next (&btin_iter);
    }

  return true;
}

/* Helper for intrin_profiles_compatible_p, to perform compatibility checks
   on the Ada/builtin return values for the INB binding.  */

static bool
intrin_return_compatible_p (const intrin_binding_t *inb)
{
  tree ada_return_type = TREE_TYPE (inb->ada_fntype);
  tree btin_return_type = TREE_TYPE (inb->btin_fntype);

  /* Accept function imported as procedure, common and convenient.  */
  if (VOID_TYPE_P (ada_return_type) && !VOID_TYPE_P (btin_return_type))
    return true;

  /* Check return types compatibility otherwise.  Note that this
     handles void/void as well.  */
  if (!types_compatible_p (btin_return_type, ada_return_type))
    {
      /* For vector builtins, issue an error to avoid an ICE.  */
      if (VECTOR_TYPE_P (btin_return_type))
	post_error ("intrinsic binding type mismatch on result",
		    inb->gnat_entity);
      else
	post_error ("??intrinsic binding type mismatch on result",
		    inb->gnat_entity);
      return false;
    }

  return true;
}

/* Check and return whether the Ada and gcc builtin profiles bound by INB are
   compatible.  Issue relevant warnings when they are not.

   This is intended as a light check to diagnose the most obvious cases, not
   as a full fledged type compatibility predicate.  It is the programmer's
   responsibility to ensure correctness of the Ada declarations in Imports,
   especially when binding straight to a compiler internal.  */

static bool
intrin_profiles_compatible_p (const intrin_binding_t *inb)
{
  /* Check compatibility on return values and argument lists, each responsible
     for posting warnings as appropriate.  Ensure use of the proper sloc for
     this purpose.  */

  bool arglists_compatible_p, return_compatible_p;
  location_t saved_location = input_location;

  Sloc_to_locus (Sloc (inb->gnat_entity), &input_location);

  return_compatible_p = intrin_return_compatible_p (inb);
  arglists_compatible_p = intrin_arglists_compatible_p (inb);

  input_location = saved_location;

  return return_compatible_p && arglists_compatible_p;
}

/* Return a FIELD_DECL node modeled on OLD_FIELD.  FIELD_TYPE is its type
   and RECORD_TYPE is the type of the parent.  If SIZE is nonzero, it is the
   specified size for this field.  POS_LIST is a position list describing
   the layout of OLD_FIELD and SUBST_LIST a substitution list to be applied
   to this layout.  */

static tree
create_field_decl_from (tree old_field, tree field_type, tree record_type,
			tree size, tree pos_list,
			vec<subst_pair> subst_list)
{
  tree t = TREE_VALUE (purpose_member (old_field, pos_list));
  tree pos = TREE_VEC_ELT (t, 0), bitpos = TREE_VEC_ELT (t, 2);
  unsigned int offset_align = tree_to_uhwi (TREE_VEC_ELT (t, 1));
  tree new_pos, new_field;
  unsigned int i;
  subst_pair *s;

  if (CONTAINS_PLACEHOLDER_P (pos))
    FOR_EACH_VEC_ELT (subst_list, i, s)
      pos = SUBSTITUTE_IN_EXPR (pos, s->discriminant, s->replacement);

  /* If the position is now a constant, we can set it as the position of the
     field when we make it.  Otherwise, we need to deal with it specially.  */
  if (TREE_CONSTANT (pos))
    new_pos = bit_from_pos (pos, bitpos);
  else
    new_pos = NULL_TREE;

  new_field
    = create_field_decl (DECL_NAME (old_field), field_type, record_type,
			 size, new_pos, DECL_PACKED (old_field),
			 !DECL_NONADDRESSABLE_P (old_field));

  if (!new_pos)
    {
      normalize_offset (&pos, &bitpos, offset_align);
      /* Finalize the position.  */
      DECL_FIELD_OFFSET (new_field) = variable_size (pos);
      DECL_FIELD_BIT_OFFSET (new_field) = bitpos;
      SET_DECL_OFFSET_ALIGN (new_field, offset_align);
      DECL_SIZE (new_field) = size;
      DECL_SIZE_UNIT (new_field)
	= convert (sizetype,
		   size_binop (CEIL_DIV_EXPR, size, bitsize_unit_node));
      layout_decl (new_field, DECL_OFFSET_ALIGN (new_field));
    }

  DECL_INTERNAL_P (new_field) = DECL_INTERNAL_P (old_field);
  SET_DECL_ORIGINAL_FIELD_TO_FIELD (new_field, old_field);
  DECL_DISCRIMINANT_NUMBER (new_field) = DECL_DISCRIMINANT_NUMBER (old_field);
  TREE_THIS_VOLATILE (new_field) = TREE_THIS_VOLATILE (old_field);

  return new_field;
}

/* Create the REP part of RECORD_TYPE with REP_TYPE.  If MIN_SIZE is nonzero,
   it is the minimal size the REP_PART must have.  */

static tree
create_rep_part (tree rep_type, tree record_type, tree min_size)
{
  tree field;

  if (min_size && !tree_int_cst_lt (TYPE_SIZE (rep_type), min_size))
    min_size = NULL_TREE;

  field = create_field_decl (get_identifier ("REP"), rep_type, record_type,
			     min_size, NULL_TREE, 0, 1);
  DECL_INTERNAL_P (field) = 1;

  return field;
}

/* Return the REP part of RECORD_TYPE, if any.  Otherwise return NULL.  */

static tree
get_rep_part (tree record_type)
{
  tree field = TYPE_FIELDS (record_type);

  /* The REP part is the first field, internal, another record, and its name
     starts with an 'R'.  */
  if (field
      && DECL_INTERNAL_P (field)
      && TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
      && IDENTIFIER_POINTER (DECL_NAME (field)) [0] == 'R')
    return field;

  return NULL_TREE;
}

/* Return the variant part of RECORD_TYPE, if any.  Otherwise return NULL.  */

tree
get_variant_part (tree record_type)
{
  tree field;

  /* The variant part is the only internal field that is a qualified union.  */
  for (field = TYPE_FIELDS (record_type); field; field = DECL_CHAIN (field))
    if (DECL_INTERNAL_P (field)
	&& TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE)
      return field;

  return NULL_TREE;
}

/* Return a new variant part modeled on OLD_VARIANT_PART.  VARIANT_LIST is
   the list of variants to be used and RECORD_TYPE is the type of the parent.
   POS_LIST is a position list describing the layout of fields present in
   OLD_VARIANT_PART and SUBST_LIST a substitution list to be applied to this
   layout.  DEBUG_INFO_P is true if we need to write debug information.  */

static tree
create_variant_part_from (tree old_variant_part,
			  vec<variant_desc> variant_list,
			  tree record_type, tree pos_list,
			  vec<subst_pair> subst_list,
			  bool debug_info_p)
{
  tree offset = DECL_FIELD_OFFSET (old_variant_part);
  tree old_union_type = TREE_TYPE (old_variant_part);
  tree new_union_type, new_variant_part;
  tree union_field_list = NULL_TREE;
  variant_desc *v;
  unsigned int i;

  /* First create the type of the variant part from that of the old one.  */
  new_union_type = make_node (QUAL_UNION_TYPE);
  TYPE_NAME (new_union_type)
    = concat_name (TYPE_NAME (record_type),
		   IDENTIFIER_POINTER (DECL_NAME (old_variant_part)));

  /* If the position of the variant part is constant, subtract it from the
     size of the type of the parent to get the new size.  This manual CSE
     reduces the code size when not optimizing.  */
  if (TREE_CODE (offset) == INTEGER_CST
      && TYPE_SIZE (record_type)
      && TYPE_SIZE_UNIT (record_type))
    {
      tree bitpos = DECL_FIELD_BIT_OFFSET (old_variant_part);
      tree first_bit = bit_from_pos (offset, bitpos);
      TYPE_SIZE (new_union_type)
	= size_binop (MINUS_EXPR, TYPE_SIZE (record_type), first_bit);
      TYPE_SIZE_UNIT (new_union_type)
	= size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (record_type),
		      byte_from_pos (offset, bitpos));
      SET_TYPE_ADA_SIZE (new_union_type,
			 size_binop (MINUS_EXPR, TYPE_ADA_SIZE (record_type),
 				     first_bit));
      SET_TYPE_ALIGN (new_union_type, TYPE_ALIGN (old_union_type));
      relate_alias_sets (new_union_type, old_union_type, ALIAS_SET_COPY);
    }
  else
    copy_and_substitute_in_size (new_union_type, old_union_type, subst_list);

  /* Now finish up the new variants and populate the union type.  */
  FOR_EACH_VEC_ELT_REVERSE (variant_list, i, v)
    {
      tree old_field = v->field, new_field;
      tree old_variant, old_variant_subpart, new_variant, field_list;

      /* Skip variants that don't belong to this nesting level.  */
      if (DECL_CONTEXT (old_field) != old_union_type)
	continue;

      /* Retrieve the list of fields already added to the new variant.  */
      new_variant = v->new_type;
      field_list = TYPE_FIELDS (new_variant);

      /* If the old variant had a variant subpart, we need to create a new
	 variant subpart and add it to the field list.  */
      old_variant = v->type;
      old_variant_subpart = get_variant_part (old_variant);
      if (old_variant_subpart)
	{
	  tree new_variant_subpart
	    = create_variant_part_from (old_variant_subpart, variant_list,
					new_variant, pos_list, subst_list,
					debug_info_p);
	  DECL_CHAIN (new_variant_subpart) = field_list;
	  field_list = new_variant_subpart;
	}

      /* Finish up the new variant and create the field.  */
      finish_record_type (new_variant, nreverse (field_list), 2, debug_info_p);
      create_type_decl (TYPE_NAME (new_variant), new_variant, true,
			debug_info_p, Empty);

      new_field
	= create_field_decl_from (old_field, new_variant, new_union_type,
				  TYPE_SIZE (new_variant),
				  pos_list, subst_list);
      DECL_QUALIFIER (new_field) = v->qual;
      DECL_INTERNAL_P (new_field) = 1;
      DECL_CHAIN (new_field) = union_field_list;
      union_field_list = new_field;
    }

  /* Finish up the union type and create the variant part.  Note that we don't
     reverse the field list because VARIANT_LIST has been traversed in reverse
     order.  */
  finish_record_type (new_union_type, union_field_list, 2, debug_info_p);
  create_type_decl (TYPE_NAME (new_union_type), new_union_type, true,
		    debug_info_p, Empty);

  new_variant_part
    = create_field_decl_from (old_variant_part, new_union_type, record_type,
			      TYPE_SIZE (new_union_type),
			      pos_list, subst_list);
  DECL_INTERNAL_P (new_variant_part) = 1;

  /* With multiple discriminants it is possible for an inner variant to be
     statically selected while outer ones are not; in this case, the list
     of fields of the inner variant is not flattened and we end up with a
     qualified union with a single member.  Drop the useless container.  */
  if (!DECL_CHAIN (union_field_list))
    {
      DECL_CONTEXT (union_field_list) = record_type;
      DECL_FIELD_OFFSET (union_field_list)
	= DECL_FIELD_OFFSET (new_variant_part);
      DECL_FIELD_BIT_OFFSET (union_field_list)
	= DECL_FIELD_BIT_OFFSET (new_variant_part);
      SET_DECL_OFFSET_ALIGN (union_field_list,
			     DECL_OFFSET_ALIGN (new_variant_part));
      new_variant_part = union_field_list;
    }

  return new_variant_part;
}

/* Copy the size (and alignment and alias set) from OLD_TYPE to NEW_TYPE,
   which are both RECORD_TYPE, after applying the substitutions described
   in SUBST_LIST.  */

static void
copy_and_substitute_in_size (tree new_type, tree old_type,
			     vec<subst_pair> subst_list)
{
  unsigned int i;
  subst_pair *s;

  TYPE_SIZE (new_type) = TYPE_SIZE (old_type);
  TYPE_SIZE_UNIT (new_type) = TYPE_SIZE_UNIT (old_type);
  SET_TYPE_ADA_SIZE (new_type, TYPE_ADA_SIZE (old_type));
  SET_TYPE_ALIGN (new_type, TYPE_ALIGN (old_type));
  relate_alias_sets (new_type, old_type, ALIAS_SET_COPY);

  if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (new_type)))
    FOR_EACH_VEC_ELT (subst_list, i, s)
      TYPE_SIZE (new_type)
	= SUBSTITUTE_IN_EXPR (TYPE_SIZE (new_type),
			      s->discriminant, s->replacement);

  if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (new_type)))
    FOR_EACH_VEC_ELT (subst_list, i, s)
      TYPE_SIZE_UNIT (new_type)
	= SUBSTITUTE_IN_EXPR (TYPE_SIZE_UNIT (new_type),
			      s->discriminant, s->replacement);

  if (CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (new_type)))
    FOR_EACH_VEC_ELT (subst_list, i, s)
      SET_TYPE_ADA_SIZE
	(new_type, SUBSTITUTE_IN_EXPR (TYPE_ADA_SIZE (new_type),
				       s->discriminant, s->replacement));

  /* Finalize the size.  */
  TYPE_SIZE (new_type) = variable_size (TYPE_SIZE (new_type));
  TYPE_SIZE_UNIT (new_type) = variable_size (TYPE_SIZE_UNIT (new_type));
}

/* Return true if DISC is a stored discriminant of RECORD_TYPE.  */

static inline bool
is_stored_discriminant (Entity_Id discr, Entity_Id record_type)
{
  if (Is_Unchecked_Union (record_type))
    return false;
  else if (Is_Tagged_Type (record_type))
    return No (Corresponding_Discriminant (discr));
  else if (Ekind (record_type) == E_Record_Type)
    return Original_Record_Component (discr) == discr;
  else
    return true;
}

/* Copy the layout from {GNAT,GNU}_OLD_TYPE to {GNAT,GNU}_NEW_TYPE, which are
   both record types, after applying the substitutions described in SUBST_LIST.
   DEBUG_INFO_P is true if we need to write debug information for NEW_TYPE.  */

static void
copy_and_substitute_in_layout (Entity_Id gnat_new_type,
			       Entity_Id gnat_old_type,
			       tree gnu_new_type,
			       tree gnu_old_type,
			       vec<subst_pair> subst_list,
			       bool debug_info_p)
{
  const bool is_subtype = (Ekind (gnat_new_type) == E_Record_Subtype);
  tree gnu_field_list = NULL_TREE;
  tree gnu_variable_field_list = NULL_TREE;
  bool selected_variant;
  vec<variant_desc> gnu_variant_list;

  /* Look for REP and variant parts in the old type.  */
  tree gnu_rep_part = get_rep_part (gnu_old_type);
  tree gnu_variant_part = get_variant_part (gnu_old_type);

  /* If there is a variant part, we must compute whether the constraints
     statically select a particular variant.  If so, we simply drop the
     qualified union and flatten the list of fields.  Otherwise we will
     build a new qualified union for the variants that are still relevant.  */
  if (gnu_variant_part)
    {
      const Node_Id gnat_decl = Declaration_Node (gnat_new_type);
      variant_desc *v;
      unsigned int i;

      gnu_variant_list
	= build_variant_list (TREE_TYPE (gnu_variant_part),
			      is_subtype
			      ? Empty
			      : Variant_Part
				(Component_List (Type_Definition (gnat_decl))),
			      subst_list,
			      vNULL);

      /* If all the qualifiers are unconditionally true, the innermost variant
	 is statically selected.  */
      selected_variant = true;
      FOR_EACH_VEC_ELT (gnu_variant_list, i, v)
	if (!integer_onep (v->qual))
	  {
	    selected_variant = false;
	    break;
	  }

      /* Otherwise, create the new variants.  */
      if (!selected_variant)
	FOR_EACH_VEC_ELT (gnu_variant_list, i, v)
	  {
	    tree old_variant = v->type;
	    tree new_variant = make_node (RECORD_TYPE);
	    tree suffix
	      = concat_name (DECL_NAME (gnu_variant_part),
			     IDENTIFIER_POINTER (DECL_NAME (v->field)));
	    TYPE_NAME (new_variant)
	      = concat_name (TYPE_NAME (gnu_new_type),
			     IDENTIFIER_POINTER (suffix));
	    TYPE_REVERSE_STORAGE_ORDER (new_variant)
	      = TYPE_REVERSE_STORAGE_ORDER (gnu_new_type);
	    copy_and_substitute_in_size (new_variant, old_variant, subst_list);
	    v->new_type = new_variant;
	  }
    }
  else
    {
      gnu_variant_list.create (0);
      selected_variant = false;
    }

  /* Make a list of fields and their position in the old type.  */
  tree gnu_pos_list
    = build_position_list (gnu_old_type,
			   gnu_variant_list.exists () && !selected_variant,
			   size_zero_node, bitsize_zero_node,
			   BIGGEST_ALIGNMENT, NULL_TREE);

  /* Now go down every component in the new type and compute its size and
     position from those of the component in the old type and the stored
     constraints of the new type.  */
  Entity_Id gnat_field, gnat_old_field;
  for (gnat_field = First_Entity (gnat_new_type);
       Present (gnat_field);
       gnat_field = Next_Entity (gnat_field))
    if ((Ekind (gnat_field) == E_Component
	 || (Ekind (gnat_field) == E_Discriminant
	     && is_stored_discriminant (gnat_field, gnat_new_type)))
        && (gnat_old_field = is_subtype
			     ? Original_Record_Component (gnat_field)
			     : Corresponding_Record_Component (gnat_field))
	&& Underlying_Type (Scope (gnat_old_field)) == gnat_old_type
	&& present_gnu_tree (gnat_old_field))
      {
	Name_Id gnat_name = Chars (gnat_field);
	tree gnu_old_field = get_gnu_tree (gnat_old_field);
	if (TREE_CODE (gnu_old_field) == COMPONENT_REF)
	  gnu_old_field = TREE_OPERAND (gnu_old_field, 1);
        tree gnu_context = DECL_CONTEXT (gnu_old_field);
	tree gnu_field, gnu_field_type, gnu_size, gnu_pos;
	tree gnu_cont_type, gnu_last = NULL_TREE;
	variant_desc *v = NULL;

	/* If the type is the same, retrieve the GCC type from the
	   old field to take into account possible adjustments.  */
	if (Etype (gnat_field) == Etype (gnat_old_field))
	  gnu_field_type = TREE_TYPE (gnu_old_field);
	else
	  gnu_field_type = gnat_to_gnu_type (Etype (gnat_field));

	/* If there was a component clause, the field types must be the same
	   for the old and new types, so copy the data from the old field to
	   avoid recomputation here.  Also if the field is justified modular
	   and the optimization in gnat_to_gnu_field was applied.  */
	if (Present (Component_Clause (gnat_old_field))
	    || (TREE_CODE (gnu_field_type) == RECORD_TYPE
		&& TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
		&& TREE_TYPE (TYPE_FIELDS (gnu_field_type))
		   == TREE_TYPE (gnu_old_field)))
	  {
	    gnu_size = DECL_SIZE (gnu_old_field);
	    gnu_field_type = TREE_TYPE (gnu_old_field);
	  }

	/* If the old field was packed and of constant size, we have to get the
	   old size here as it might differ from what the Etype conveys and the
	   latter might overlap with the following field.  Try to arrange the
	   type for possible better packing along the way.  */
	else if (DECL_PACKED (gnu_old_field)
		 && TREE_CODE (DECL_SIZE (gnu_old_field)) == INTEGER_CST)
	  {
	    gnu_size = DECL_SIZE (gnu_old_field);
	    if (RECORD_OR_UNION_TYPE_P (gnu_field_type)
		&& !TYPE_FAT_POINTER_P (gnu_field_type)
		&& tree_fits_uhwi_p (TYPE_SIZE (gnu_field_type)))
	      gnu_field_type = make_packable_type (gnu_field_type, true, 0);
	  }

	else
	  gnu_size = TYPE_SIZE (gnu_field_type);

	/* If the context of the old field is the old type or its REP part,
	   put the field directly in the new type; otherwise look up the
	   context in the variant list and put the field either in the new
	   type if there is a selected variant or in one new variant.  */
	if (gnu_context == gnu_old_type
	    || (gnu_rep_part && gnu_context == TREE_TYPE (gnu_rep_part)))
	  gnu_cont_type = gnu_new_type;
	else
	  {
	    unsigned int i;
	    tree rep_part;

	    FOR_EACH_VEC_ELT (gnu_variant_list, i, v)
	      if (gnu_context == v->type
		  || ((rep_part = get_rep_part (v->type))
		      && gnu_context == TREE_TYPE (rep_part)))
		break;

	    if (v)
	      gnu_cont_type = selected_variant ? gnu_new_type : v->new_type;
	    else
	      /* The front-end may pass us zombie components if it fails to
		 recognize that a constrain statically selects a particular
		 variant.  Discard them.  */
	      continue;
	  }

	/* Now create the new field modeled on the old one.  */
	gnu_field
	  = create_field_decl_from (gnu_old_field, gnu_field_type,
				    gnu_cont_type, gnu_size,
				    gnu_pos_list, subst_list);
	gnu_pos = DECL_FIELD_OFFSET (gnu_field);

	/* If the context is a variant, put it in the new variant directly.  */
	if (gnu_cont_type != gnu_new_type)
	  {
	    if (TREE_CODE (gnu_pos) == INTEGER_CST)
	      {
		DECL_CHAIN (gnu_field) = TYPE_FIELDS (gnu_cont_type);
		TYPE_FIELDS (gnu_cont_type) = gnu_field;
	      }
	    else
	      {
		DECL_CHAIN (gnu_field) = v->aux;
		v->aux = gnu_field;
	      }
	  }

	/* To match the layout crafted in components_to_record, if this is
	   the _Tag or _Parent field, put it before any other fields.  */
	else if (gnat_name == Name_uTag || gnat_name == Name_uParent)
	  gnu_field_list = chainon (gnu_field_list, gnu_field);

	/* Similarly, if this is the _Controller field, put it before the
	   other fields except for the _Tag or _Parent field.  */
	else if (gnat_name == Name_uController && gnu_last)
	  {
	    DECL_CHAIN (gnu_field) = DECL_CHAIN (gnu_last);
	    DECL_CHAIN (gnu_last) = gnu_field;
	  }

	/* Otherwise, put it after the other fields.  */
	else
	  {
	    if (TREE_CODE (gnu_pos) == INTEGER_CST)
	      {
		DECL_CHAIN (gnu_field) = gnu_field_list;
		gnu_field_list = gnu_field;
		if (!gnu_last)
		  gnu_last = gnu_field;
	      }
	    else
	      {
		DECL_CHAIN (gnu_field) = gnu_variable_field_list;
		gnu_variable_field_list = gnu_field;
	      }
	  }

	/* For a stored discriminant in a derived type, replace the field.  */
	if (!is_subtype && Ekind (gnat_field) == E_Discriminant)
	  {
	    tree gnu_ref = get_gnu_tree (gnat_field);
	    TREE_OPERAND (gnu_ref, 1) = gnu_field;
	  }
	else
	  save_gnu_tree (gnat_field, gnu_field, false);
      }

  /* Put the fields with fixed position in order of increasing position.  */
  if (gnu_field_list)
    gnu_field_list = reverse_sort_field_list (gnu_field_list);

  /* Put the fields with variable position at the end.  */
  if (gnu_variable_field_list)
    gnu_field_list = chainon (gnu_variable_field_list, gnu_field_list);

  /* If there is a variant list and no selected variant, we need to create the
     nest of variant parts from the old nest.  */
  if (gnu_variant_list.exists () && !selected_variant)
    {
      variant_desc *v;
      unsigned int i;

      /* Same processing as above for the fields of each variant.  */
      FOR_EACH_VEC_ELT (gnu_variant_list, i, v)
	{
	  if (TYPE_FIELDS (v->new_type))
	    TYPE_FIELDS (v->new_type)
	      = reverse_sort_field_list (TYPE_FIELDS (v->new_type));
	  if (v->aux)
	    TYPE_FIELDS (v->new_type)
	      = chainon (v->aux, TYPE_FIELDS (v->new_type));
	}

      tree new_variant_part
	= create_variant_part_from (gnu_variant_part, gnu_variant_list,
				    gnu_new_type, gnu_pos_list,
				    subst_list, debug_info_p);
      DECL_CHAIN (new_variant_part) = gnu_field_list;
      gnu_field_list = new_variant_part;
    }

  gnu_variant_list.release ();
  subst_list.release ();

  /* If NEW_TYPE is a subtype, it inherits all the attributes from OLD_TYPE.
     Otherwise sizes and alignment must be computed independently.  */
  finish_record_type (gnu_new_type, nreverse (gnu_field_list),
		      is_subtype ? 2 : 1, debug_info_p);

  /* Now go through the entities again looking for itypes that we have not yet
     elaborated (e.g. Etypes of fields that have Original_Components).  */
  for (Entity_Id gnat_field = First_Entity (gnat_new_type);
       Present (gnat_field);
       gnat_field = Next_Entity (gnat_field))
    if ((Ekind (gnat_field) == E_Component
	 || Ekind (gnat_field) == E_Discriminant)
	&& Is_Itype (Etype (gnat_field))
	&& !present_gnu_tree (Etype (gnat_field)))
      gnat_to_gnu_entity (Etype (gnat_field), NULL_TREE, false);
}

/* Associate to the implementation type of a packed array type specified by
   GNU_TYPE, which is the translation of GNAT_ENTITY, the original array type
   if it has been translated.  This association is a parallel type for GNAT
   encodings or a debug type for standard DWARF.  Note that for standard DWARF,
   we also want to get the original type name and therefore we return it.  */

static tree
associate_original_type_to_packed_array (tree gnu_type, Entity_Id gnat_entity)
{
  const Entity_Id gnat_original_array_type
    = Underlying_Type (Original_Array_Type (gnat_entity));
  tree gnu_original_array_type;

  if (!present_gnu_tree (gnat_original_array_type))
    return NULL_TREE;

  gnu_original_array_type = gnat_to_gnu_type (gnat_original_array_type);

  if (TYPE_IS_DUMMY_P (gnu_original_array_type))
    return NULL_TREE;

  gcc_assert (TYPE_IMPL_PACKED_ARRAY_P (gnu_type));

  if (gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
    {
      add_parallel_type (gnu_type, gnu_original_array_type);
      return NULL_TREE;
    }
  else
    {
      SET_TYPE_ORIGINAL_PACKED_ARRAY (gnu_type, gnu_original_array_type);

      tree original_name = TYPE_NAME (gnu_original_array_type);
      if (TREE_CODE (original_name) == TYPE_DECL)
	original_name = DECL_NAME (original_name);
      return original_name;
    }
}

/* Given a type T, a FIELD_DECL F, and a replacement value R, return an
   equivalent type with adjusted size expressions where all occurrences
   of references to F in a PLACEHOLDER_EXPR have been replaced by R.

   The function doesn't update the layout of the type, i.e. it assumes
   that the substitution is purely formal.  That's why the replacement
   value R must itself contain a PLACEHOLDER_EXPR.  */

tree
substitute_in_type (tree t, tree f, tree r)
{
  tree nt;

  gcc_assert (CONTAINS_PLACEHOLDER_P (r));

  switch (TREE_CODE (t))
    {
    case INTEGER_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case REAL_TYPE:

      /* First the domain types of arrays.  */
      if (CONTAINS_PLACEHOLDER_P (TYPE_GCC_MIN_VALUE (t))
	  || CONTAINS_PLACEHOLDER_P (TYPE_GCC_MAX_VALUE (t)))
	{
	  tree low = SUBSTITUTE_IN_EXPR (TYPE_GCC_MIN_VALUE (t), f, r);
	  tree high = SUBSTITUTE_IN_EXPR (TYPE_GCC_MAX_VALUE (t), f, r);

	  if (low == TYPE_GCC_MIN_VALUE (t) && high == TYPE_GCC_MAX_VALUE (t))
	    return t;

	  nt = copy_type (t);
	  TYPE_GCC_MIN_VALUE (nt) = low;
	  TYPE_GCC_MAX_VALUE (nt) = high;

	  if (TREE_CODE (t) == INTEGER_TYPE && TYPE_INDEX_TYPE (t))
	    SET_TYPE_INDEX_TYPE
	      (nt, substitute_in_type (TYPE_INDEX_TYPE (t), f, r));

	  return nt;
	}

      /* Then the subtypes.  */
      if (CONTAINS_PLACEHOLDER_P (TYPE_RM_MIN_VALUE (t))
	  || CONTAINS_PLACEHOLDER_P (TYPE_RM_MAX_VALUE (t)))
	{
	  tree low = SUBSTITUTE_IN_EXPR (TYPE_RM_MIN_VALUE (t), f, r);
	  tree high = SUBSTITUTE_IN_EXPR (TYPE_RM_MAX_VALUE (t), f, r);

	  if (low == TYPE_RM_MIN_VALUE (t) && high == TYPE_RM_MAX_VALUE (t))
	    return t;

	  nt = copy_type (t);
	  SET_TYPE_RM_MIN_VALUE (nt, low);
	  SET_TYPE_RM_MAX_VALUE (nt, high);

	  return nt;
	}

      return t;

    case COMPLEX_TYPE:
      nt = substitute_in_type (TREE_TYPE (t), f, r);
      if (nt == TREE_TYPE (t))
	return t;

      return build_complex_type (nt);

    case FUNCTION_TYPE:
    case METHOD_TYPE:
      /* These should never show up here.  */
      gcc_unreachable ();

    case ARRAY_TYPE:
      {
	tree component = substitute_in_type (TREE_TYPE (t), f, r);
	tree domain = substitute_in_type (TYPE_DOMAIN (t), f, r);

	if (component == TREE_TYPE (t) && domain == TYPE_DOMAIN (t))
	  return t;

	nt = build_nonshared_array_type (component, domain);
	SET_TYPE_ALIGN (nt, TYPE_ALIGN (t));
	TYPE_USER_ALIGN (nt) = TYPE_USER_ALIGN (t);
	SET_TYPE_MODE (nt, TYPE_MODE (t));
	TYPE_SIZE (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE (t), f, r);
	TYPE_SIZE_UNIT (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE_UNIT (t), f, r);
	TYPE_MULTI_ARRAY_P (nt) = TYPE_MULTI_ARRAY_P (t);
	TYPE_CONVENTION_FORTRAN_P (nt) = TYPE_CONVENTION_FORTRAN_P (t);
	if (TYPE_REVERSE_STORAGE_ORDER (t))
	  set_reverse_storage_order_on_array_type (nt);
	if (TYPE_NONALIASED_COMPONENT (t))
	  set_nonaliased_component_on_array_type (nt);
	return nt;
      }

    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	bool changed_field = false;
	tree field;

	/* Start out with no fields, make new fields, and chain them
	   in.  If we haven't actually changed the type of any field,
	   discard everything we've done and return the old type.  */
	nt = copy_type (t);
	TYPE_FIELDS (nt) = NULL_TREE;

	for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
	  {
	    tree new_field = copy_node (field), new_n;

	    new_n = substitute_in_type (TREE_TYPE (field), f, r);
	    if (new_n != TREE_TYPE (field))
	      {
		TREE_TYPE (new_field) = new_n;
		changed_field = true;
	      }

	    new_n = SUBSTITUTE_IN_EXPR (DECL_FIELD_OFFSET (field), f, r);
	    if (new_n != DECL_FIELD_OFFSET (field))
	      {
		DECL_FIELD_OFFSET (new_field) = new_n;
		changed_field = true;
	      }

	    /* Do the substitution inside the qualifier, if any.  */
	    if (TREE_CODE (t) == QUAL_UNION_TYPE)
	      {
		new_n = SUBSTITUTE_IN_EXPR (DECL_QUALIFIER (field), f, r);
		if (new_n != DECL_QUALIFIER (field))
		  {
		    DECL_QUALIFIER (new_field) = new_n;
		    changed_field = true;
		  }
	      }

	    DECL_CONTEXT (new_field) = nt;
	    SET_DECL_ORIGINAL_FIELD_TO_FIELD (new_field, field);

	    DECL_CHAIN (new_field) = TYPE_FIELDS (nt);
	    TYPE_FIELDS (nt) = new_field;
	  }

	if (!changed_field)
	  return t;

	TYPE_FIELDS (nt) = nreverse (TYPE_FIELDS (nt));
	TYPE_SIZE (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE (t), f, r);
	TYPE_SIZE_UNIT (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE_UNIT (t), f, r);
	SET_TYPE_ADA_SIZE (nt, SUBSTITUTE_IN_EXPR (TYPE_ADA_SIZE (t), f, r));
	return nt;
      }

    default:
      return t;
    }
}

/* Return the RM size of GNU_TYPE.  This is the actual number of bits
   needed to represent the object.  */

tree
rm_size (tree gnu_type)
{
  /* For integral types, we store the RM size explicitly.  */
  if (INTEGRAL_TYPE_P (gnu_type) && TYPE_RM_SIZE (gnu_type))
    return TYPE_RM_SIZE (gnu_type);

  /* If the type contains a template, return the padded size of the template
     plus the RM size of the actual data.  */
  if (TREE_CODE (gnu_type) == RECORD_TYPE
      && TYPE_CONTAINS_TEMPLATE_P (gnu_type))
    return
      size_binop (PLUS_EXPR,
		  bit_position (DECL_CHAIN (TYPE_FIELDS (gnu_type))),
		  rm_size (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_type)))));

  /* For record or union types, we store the size explicitly.  */
  if (RECORD_OR_UNION_TYPE_P (gnu_type)
      && !TYPE_FAT_POINTER_P (gnu_type)
      && TYPE_ADA_SIZE (gnu_type))
    return TYPE_ADA_SIZE (gnu_type);

  /* For other types, this is just the size.  */
  return TYPE_SIZE (gnu_type);
}

/* Return the name to be used for GNAT_ENTITY.  If a type, create a
   fully-qualified name, possibly with type information encoding.
   Otherwise, return the name.  */

static const char *
get_entity_char (Entity_Id gnat_entity)
{
  Get_Encoded_Name (gnat_entity);
  return ggc_strdup (Name_Buffer);
}

tree
get_entity_name (Entity_Id gnat_entity)
{
  Get_Encoded_Name (gnat_entity);
  return get_identifier_with_length (Name_Buffer, Name_Len);
}

/* Return an identifier representing the external name to be used for
   GNAT_ENTITY.  If SUFFIX is specified, the name is followed by "___"
   and the specified suffix.  */

tree
create_concat_name (Entity_Id gnat_entity, const char *suffix)
{
  const Entity_Kind kind = Ekind (gnat_entity);
  const bool has_suffix = (suffix != NULL);
  String_Template temp = {1, has_suffix ? (int) strlen (suffix) : 0};
  String_Pointer sp = {suffix, &temp};

  Get_External_Name (gnat_entity, has_suffix, sp);

  /* A variable using the Stdcall convention lives in a DLL.  We adjust
     its name to use the jump table, the _imp__NAME contains the address
     for the NAME variable.  */
  if ((kind == E_Variable || kind == E_Constant)
      && Has_Stdcall_Convention (gnat_entity))
    {
      const int len = strlen (STDCALL_PREFIX) + Name_Len;
      char *new_name = (char *) alloca (len + 1);
      strcpy (new_name, STDCALL_PREFIX);
      strcat (new_name, Name_Buffer);
      return get_identifier_with_length (new_name, len);
    }

  return get_identifier_with_length (Name_Buffer, Name_Len);
}

/* Given GNU_NAME, an IDENTIFIER_NODE containing a name and SUFFIX, a
   string, return a new IDENTIFIER_NODE that is the concatenation of
   the name followed by "___" and the specified suffix.  */

tree
concat_name (tree gnu_name, const char *suffix)
{
  const int len = IDENTIFIER_LENGTH (gnu_name) + 3 + strlen (suffix);
  char *new_name = (char *) alloca (len + 1);
  strcpy (new_name, IDENTIFIER_POINTER (gnu_name));
  strcat (new_name, "___");
  strcat (new_name, suffix);
  return get_identifier_with_length (new_name, len);
}

/* Initialize the data structures of the decl.cc module.  */

void
init_gnat_decl (void)
{
  /* Initialize the cache of annotated values.  */
  annotate_value_cache = hash_table<value_annotation_hasher>::create_ggc (512);

  /* Initialize the association of dummy types with subprograms.  */
  dummy_to_subprog_map = hash_table<dummy_type_hasher>::create_ggc (512);
}

/* Destroy the data structures of the decl.cc module.  */

void
destroy_gnat_decl (void)
{
  /* Destroy the cache of annotated values.  */
  annotate_value_cache->empty ();
  annotate_value_cache = NULL;

  /* Destroy the association of dummy types with subprograms.  */
  dummy_to_subprog_map->empty ();
  dummy_to_subprog_map = NULL;
}

#include "gt-ada-decl.h"