1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- F R E E Z E --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch7; use Exp_Ch7;
with Exp_Pakd; use Exp_Pakd;
with Exp_Util; use Exp_Util;
with Exp_Tss; use Exp_Tss;
with Layout; use Layout;
with Lib.Xref; use Lib.Xref;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem; use Sem;
with Sem_Cat; use Sem_Cat;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch7; use Sem_Ch7;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Urealp; use Urealp;
package body Freeze is
-----------------------
-- Local Subprograms --
-----------------------
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
-- Typ is a type that is being frozen. If no size clause is given,
-- but a default Esize has been computed, then this default Esize is
-- adjusted up if necessary to be consistent with a given alignment,
-- but never to a value greater than Long_Long_Integer'Size. This
-- is used for all discrete types and for fixed-point types.
procedure Build_And_Analyze_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id;
After : in out Node_Id);
-- Build body for a renaming declaration, insert in tree and analyze
procedure Check_Address_Clause (E : Entity_Id);
-- Apply legality checks to address clauses for object declarations,
-- at the point the object is frozen.
procedure Check_Strict_Alignment (E : Entity_Id);
-- E is a base type. If E is tagged or has a component that is aliased
-- or tagged or contains something this is aliased or tagged, set
-- Strict_Alignment.
procedure Check_Unsigned_Type (E : Entity_Id);
pragma Inline (Check_Unsigned_Type);
-- If E is a fixed-point or discrete type, then all the necessary work
-- to freeze it is completed except for possible setting of the flag
-- Is_Unsigned_Type, which is done by this procedure. The call has no
-- effect if the entity E is not a discrete or fixed-point type.
procedure Freeze_And_Append
(Ent : Entity_Id;
Loc : Source_Ptr;
Result : in out List_Id);
-- Freezes Ent using Freeze_Entity, and appends the resulting list of
-- nodes to Result, modifying Result from No_List if necessary.
procedure Freeze_Enumeration_Type (Typ : Entity_Id);
-- Freeze enumeration type. The Esize field is set as processing
-- proceeds (i.e. set by default when the type is declared and then
-- adjusted by rep clauses. What this procedure does is to make sure
-- that if a foreign convention is specified, and no specific size
-- is given, then the size must be at least Integer'Size.
procedure Freeze_Static_Object (E : Entity_Id);
-- If an object is frozen which has Is_Statically_Allocated set, then
-- all referenced types must also be marked with this flag. This routine
-- is in charge of meeting this requirement for the object entity E.
procedure Freeze_Subprogram (E : Entity_Id);
-- Perform freezing actions for a subprogram (create extra formals,
-- and set proper default mechanism values). Note that this routine
-- is not called for internal subprograms, for which neither of these
-- actions is needed (or desirable, we do not want for example to have
-- these extra formals present in initialization procedures, where they
-- would serve no purpose). In this call E is either a subprogram or
-- a subprogram type (i.e. an access to a subprogram).
function Is_Fully_Defined (T : Entity_Id) return Boolean;
-- True if T is not private and has no private components, or has a full
-- view. Used to determine whether the designated type of an access type
-- should be frozen when the access type is frozen. This is done when an
-- allocator is frozen, or an expression that may involve attributes of
-- the designated type. Otherwise freezing the access type does not freeze
-- the designated type.
procedure Process_Default_Expressions
(E : Entity_Id;
After : in out Node_Id);
-- This procedure is called for each subprogram to complete processing
-- of default expressions at the point where all types are known to be
-- frozen. The expressions must be analyzed in full, to make sure that
-- all error processing is done (they have only been pre-analyzed). If
-- the expression is not an entity or literal, its analysis may generate
-- code which must not be executed. In that case we build a function
-- body to hold that code. This wrapper function serves no other purpose
-- (it used to be called to evaluate the default, but now the default is
-- inlined at each point of call).
procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
-- Typ is a record or array type that is being frozen. This routine
-- sets the default component alignment from the scope stack values
-- if the alignment is otherwise not specified.
procedure Check_Debug_Info_Needed (T : Entity_Id);
-- As each entity is frozen, this routine is called to deal with the
-- setting of Debug_Info_Needed for the entity. This flag is set if
-- the entity comes from source, or if we are in Debug_Generated_Code
-- mode or if the -gnatdV debug flag is set. However, it never sets
-- the flag if Debug_Info_Off is set.
procedure Set_Debug_Info_Needed (T : Entity_Id);
-- Sets the Debug_Info_Needed flag on entity T if not already set, and
-- also on any entities that are needed by T (for an object, the type
-- of the object is needed, and for a type, the subsidiary types are
-- needed -- see body for details). Never has any effect on T if the
-- Debug_Info_Off flag is set.
procedure Undelay_Type (T : Entity_Id);
-- T is a type of a component that we know to be an Itype.
-- We don't want this to have a Freeze_Node, so ensure it doesn't.
-- Do the same for any Full_View or Corresponding_Record_Type.
procedure Warn_Overlay
(Expr : Node_Id;
Typ : Entity_Id;
Nam : Node_Id);
-- Expr is the expression for an address clause for entity Nam whose type
-- is Typ. If Typ has a default initialization, and there is no explicit
-- initialization in the source declaration, check whether the address
-- clause might cause overlaying of an entity, and emit a warning on the
-- side effect that the initialization will cause.
-------------------------------
-- Adjust_Esize_For_Alignment --
-------------------------------
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
Align : Uint;
begin
if Known_Esize (Typ) and then Known_Alignment (Typ) then
Align := Alignment_In_Bits (Typ);
if Align > Esize (Typ)
and then Align <= Standard_Long_Long_Integer_Size
then
Set_Esize (Typ, Align);
end if;
end if;
end Adjust_Esize_For_Alignment;
------------------------------------
-- Build_And_Analyze_Renamed_Body --
------------------------------------
procedure Build_And_Analyze_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id;
After : in out Node_Id)
is
Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
begin
Insert_After (After, Body_Node);
Mark_Rewrite_Insertion (Body_Node);
Analyze (Body_Node);
After := Body_Node;
end Build_And_Analyze_Renamed_Body;
------------------------
-- Build_Renamed_Body --
------------------------
function Build_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (New_S);
-- We use for the source location of the renamed body, the location
-- of the spec entity. It might seem more natural to use the location
-- of the renaming declaration itself, but that would be wrong, since
-- then the body we create would look as though it was created far
-- too late, and this could cause problems with elaboration order
-- analysis, particularly in connection with instantiations.
N : constant Node_Id := Unit_Declaration_Node (New_S);
Nam : constant Node_Id := Name (N);
Old_S : Entity_Id;
Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
Actuals : List_Id := No_List;
Call_Node : Node_Id;
Call_Name : Node_Id;
Body_Node : Node_Id;
Formal : Entity_Id;
O_Formal : Entity_Id;
Param_Spec : Node_Id;
begin
-- Determine the entity being renamed, which is the target of the
-- call statement. If the name is an explicit dereference, this is
-- a renaming of a subprogram type rather than a subprogram. The
-- name itself is fully analyzed.
if Nkind (Nam) = N_Selected_Component then
Old_S := Entity (Selector_Name (Nam));
elsif Nkind (Nam) = N_Explicit_Dereference then
Old_S := Etype (Nam);
elsif Nkind (Nam) = N_Indexed_Component then
if Is_Entity_Name (Prefix (Nam)) then
Old_S := Entity (Prefix (Nam));
else
Old_S := Entity (Selector_Name (Prefix (Nam)));
end if;
elsif Nkind (Nam) = N_Character_Literal then
Old_S := Etype (New_S);
else
Old_S := Entity (Nam);
end if;
if Is_Entity_Name (Nam) then
-- If the renamed entity is a predefined operator, retain full
-- name to ensure its visibility.
if Ekind (Old_S) = E_Operator
and then Nkind (Nam) = N_Expanded_Name
then
Call_Name := New_Copy (Name (N));
else
Call_Name := New_Reference_To (Old_S, Loc);
end if;
else
Call_Name := New_Copy (Name (N));
-- The original name may have been overloaded, but
-- is fully resolved now.
Set_Is_Overloaded (Call_Name, False);
end if;
-- For simple renamings, subsequent calls can be expanded directly
-- as called to the renamed entity. The body must be generated in
-- any case for calls they may appear elsewhere.
if (Ekind (Old_S) = E_Function
or else Ekind (Old_S) = E_Procedure)
and then Nkind (Decl) = N_Subprogram_Declaration
then
Set_Body_To_Inline (Decl, Old_S);
end if;
-- The body generated for this renaming is an internal artifact, and
-- does not constitute a freeze point for the called entity.
Set_Must_Not_Freeze (Call_Name);
Formal := First_Formal (Defining_Entity (Decl));
if Present (Formal) then
Actuals := New_List;
while Present (Formal) loop
Append (New_Reference_To (Formal, Loc), Actuals);
Next_Formal (Formal);
end loop;
end if;
-- If the renamed entity is an entry, inherit its profile. For
-- other renamings as bodies, both profiles must be subtype
-- conformant, so it is not necessary to replace the profile given
-- in the declaration. However, default values that are aggregates
-- are rewritten when partially analyzed, so we recover the original
-- aggregate to insure that subsequent conformity checking works.
-- Similarly, if the default expression was constant-folded, recover
-- the original expression.
Formal := First_Formal (Defining_Entity (Decl));
if Present (Formal) then
O_Formal := First_Formal (Old_S);
Param_Spec := First (Parameter_Specifications (Spec));
while Present (Formal) loop
if Is_Entry (Old_S) then
if Nkind (Parameter_Type (Param_Spec)) /=
N_Access_Definition
then
Set_Etype (Formal, Etype (O_Formal));
Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
end if;
elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
or else Nkind (Original_Node (Default_Value (O_Formal))) /=
Nkind (Default_Value (O_Formal))
then
Set_Expression (Param_Spec,
New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
end if;
Next_Formal (Formal);
Next_Formal (O_Formal);
Next (Param_Spec);
end loop;
end if;
-- If the renamed entity is a function, the generated body contains a
-- return statement. Otherwise, build a procedure call. If the entity is
-- an entry, subsequent analysis of the call will transform it into the
-- proper entry or protected operation call. If the renamed entity is
-- a character literal, return it directly.
if Ekind (Old_S) = E_Function
or else Ekind (Old_S) = E_Operator
or else (Ekind (Old_S) = E_Subprogram_Type
and then Etype (Old_S) /= Standard_Void_Type)
then
Call_Node :=
Make_Return_Statement (Loc,
Expression =>
Make_Function_Call (Loc,
Name => Call_Name,
Parameter_Associations => Actuals));
elsif Ekind (Old_S) = E_Enumeration_Literal then
Call_Node :=
Make_Return_Statement (Loc,
Expression => New_Occurrence_Of (Old_S, Loc));
elsif Nkind (Nam) = N_Character_Literal then
Call_Node :=
Make_Return_Statement (Loc,
Expression => Call_Name);
else
Call_Node :=
Make_Procedure_Call_Statement (Loc,
Name => Call_Name,
Parameter_Associations => Actuals);
end if;
-- Create entities for subprogram body and formals
Set_Defining_Unit_Name (Spec,
Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
Param_Spec := First (Parameter_Specifications (Spec));
while Present (Param_Spec) loop
Set_Defining_Identifier (Param_Spec,
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier (Param_Spec))));
Next (Param_Spec);
end loop;
Body_Node :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Call_Node)));
if Nkind (Decl) /= N_Subprogram_Declaration then
Rewrite (N,
Make_Subprogram_Declaration (Loc,
Specification => Specification (N)));
end if;
-- Link the body to the entity whose declaration it completes. If
-- the body is analyzed when the renamed entity is frozen, it may be
-- necessary to restore the proper scope (see package Exp_Ch13).
if Nkind (N) = N_Subprogram_Renaming_Declaration
and then Present (Corresponding_Spec (N))
then
Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
else
Set_Corresponding_Spec (Body_Node, New_S);
end if;
return Body_Node;
end Build_Renamed_Body;
--------------------------
-- Check_Address_Clause --
--------------------------
procedure Check_Address_Clause (E : Entity_Id) is
Addr : constant Node_Id := Address_Clause (E);
Expr : Node_Id;
Decl : constant Node_Id := Declaration_Node (E);
Typ : constant Entity_Id := Etype (E);
begin
if Present (Addr) then
Expr := Expression (Addr);
-- If we have no initialization of any kind, then we don't
-- need to place any restrictions on the address clause, because
-- the object will be elaborated after the address clause is
-- evaluated. This happens if the declaration has no initial
-- expression, or the type has no implicit initialization, or
-- the object is imported.
-- The same holds for all initialized scalar types and all
-- access types. Packed bit arrays of size up to 64 are
-- represented using a modular type with an initialization
-- (to zero) and can be processed like other initialized
-- scalar types.
-- If the type is controlled, code to attach the object to a
-- finalization chain is generated at the point of declaration,
-- and therefore the elaboration of the object cannot be delayed:
-- the address expression must be a constant.
if (No (Expression (Decl))
and then not Controlled_Type (Typ)
and then
(not Has_Non_Null_Base_Init_Proc (Typ)
or else Is_Imported (E)))
or else
(Present (Expression (Decl))
and then Is_Scalar_Type (Typ))
or else
Is_Access_Type (Typ)
or else
(Is_Bit_Packed_Array (Typ)
and then
Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
then
null;
-- Otherwise, we require the address clause to be constant
-- because the call to the initialization procedure (or the
-- attach code) has to happen at the point of the declaration.
else
Check_Constant_Address_Clause (Expr, E);
Set_Has_Delayed_Freeze (E, False);
end if;
if not Error_Posted (Expr)
and then not Controlled_Type (Typ)
then
Warn_Overlay (Expr, Typ, Name (Addr));
end if;
end if;
end Check_Address_Clause;
-----------------------------
-- Check_Compile_Time_Size --
-----------------------------
procedure Check_Compile_Time_Size (T : Entity_Id) is
procedure Set_Small_Size (T : Entity_Id; S : Uint);
-- Sets the compile time known size (32 bits or less) in the Esize
-- field, of T checking for a size clause that was given which attempts
-- to give a smaller size.
function Size_Known (T : Entity_Id) return Boolean;
-- Recursive function that does all the work
function Static_Discriminated_Components (T : Entity_Id) return Boolean;
-- If T is a constrained subtype, its size is not known if any of its
-- discriminant constraints is not static and it is not a null record.
-- The test is conservative and doesn't check that the components are
-- in fact constrained by non-static discriminant values. Could be made
-- more precise ???
--------------------
-- Set_Small_Size --
--------------------
procedure Set_Small_Size (T : Entity_Id; S : Uint) is
begin
if S > 32 then
return;
elsif Has_Size_Clause (T) then
if RM_Size (T) < S then
Error_Msg_Uint_1 := S;
Error_Msg_NE
("size for & is too small, minimum is ^",
Size_Clause (T), T);
elsif Unknown_Esize (T) then
Set_Esize (T, S);
end if;
-- Set sizes if not set already
else
if Unknown_Esize (T) then
Set_Esize (T, S);
end if;
if Unknown_RM_Size (T) then
Set_RM_Size (T, S);
end if;
end if;
end Set_Small_Size;
----------------
-- Size_Known --
----------------
function Size_Known (T : Entity_Id) return Boolean is
Index : Entity_Id;
Comp : Entity_Id;
Ctyp : Entity_Id;
Low : Node_Id;
High : Node_Id;
begin
if Size_Known_At_Compile_Time (T) then
return True;
elsif Is_Scalar_Type (T)
or else Is_Task_Type (T)
then
return not Is_Generic_Type (T);
elsif Is_Array_Type (T) then
if Ekind (T) = E_String_Literal_Subtype then
Set_Small_Size (T, Component_Size (T)
* String_Literal_Length (T));
return True;
elsif not Is_Constrained (T) then
return False;
-- Don't do any recursion on type with error posted, since
-- we may have a malformed type that leads us into a loop
elsif Error_Posted (T) then
return False;
elsif not Size_Known (Component_Type (T)) then
return False;
end if;
-- Check for all indexes static, and also compute possible
-- size (in case it is less than 32 and may be packable).
declare
Esiz : Uint := Component_Size (T);
Dim : Uint;
begin
Index := First_Index (T);
while Present (Index) loop
if Nkind (Index) = N_Range then
Get_Index_Bounds (Index, Low, High);
elsif Error_Posted (Scalar_Range (Etype (Index))) then
return False;
else
Low := Type_Low_Bound (Etype (Index));
High := Type_High_Bound (Etype (Index));
end if;
if not Compile_Time_Known_Value (Low)
or else not Compile_Time_Known_Value (High)
or else Etype (Index) = Any_Type
then
return False;
else
Dim := Expr_Value (High) - Expr_Value (Low) + 1;
if Dim >= 0 then
Esiz := Esiz * Dim;
else
Esiz := Uint_0;
end if;
end if;
Next_Index (Index);
end loop;
Set_Small_Size (T, Esiz);
return True;
end;
elsif Is_Access_Type (T) then
return True;
elsif Is_Private_Type (T)
and then not Is_Generic_Type (T)
and then Present (Underlying_Type (T))
then
-- Don't do any recursion on type with error posted, since
-- we may have a malformed type that leads us into a loop
if Error_Posted (T) then
return False;
else
return Size_Known (Underlying_Type (T));
end if;
elsif Is_Record_Type (T) then
-- A class-wide type is never considered to have a known size
if Is_Class_Wide_Type (T) then
return False;
-- A subtype of a variant record must not have non-static
-- discriminanted components.
elsif T /= Base_Type (T)
and then not Static_Discriminated_Components (T)
then
return False;
-- Don't do any recursion on type with error posted, since
-- we may have a malformed type that leads us into a loop
elsif Error_Posted (T) then
return False;
end if;
-- Now look at the components of the record
declare
-- The following two variables are used to keep track of
-- the size of packed records if we can tell the size of
-- the packed record in the front end. Packed_Size_Known
-- is True if so far we can figure out the size. It is
-- initialized to True for a packed record, unless the
-- record has discriminants. The reason we eliminate the
-- discriminated case is that we don't know the way the
-- back end lays out discriminated packed records. If
-- Packed_Size_Known is True, then Packed_Size is the
-- size in bits so far.
Packed_Size_Known : Boolean :=
Is_Packed (T)
and then not Has_Discriminants (T);
Packed_Size : Uint := Uint_0;
begin
-- Test for variant part present
if Has_Discriminants (T)
and then Present (Parent (T))
and then Nkind (Parent (T)) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Parent (T))) =
N_Record_Definition
and then not Null_Present (Type_Definition (Parent (T)))
and then Present (Variant_Part
(Component_List (Type_Definition (Parent (T)))))
then
-- If variant part is present, and type is unconstrained,
-- then we must have defaulted discriminants, or a size
-- clause must be present for the type, or else the size
-- is definitely not known at compile time.
if not Is_Constrained (T)
and then
No (Discriminant_Default_Value
(First_Discriminant (T)))
and then Unknown_Esize (T)
then
return False;
end if;
end if;
-- Loop through components
Comp := First_Entity (T);
while Present (Comp) loop
if Ekind (Comp) = E_Component
or else
Ekind (Comp) = E_Discriminant
then
Ctyp := Etype (Comp);
-- We do not know the packed size if there is a
-- component clause present (we possibly could,
-- but this would only help in the case of a record
-- with partial rep clauses. That's because in the
-- case of full rep clauses, the size gets figured
-- out anyway by a different circuit).
if Present (Component_Clause (Comp)) then
Packed_Size_Known := False;
end if;
-- We need to identify a component that is an array
-- where the index type is an enumeration type with
-- non-standard representation, and some bound of the
-- type depends on a discriminant.
-- This is because gigi computes the size by doing a
-- substituation of the appropriate discriminant value
-- in the size expression for the base type, and gigi
-- is not clever enough to evaluate the resulting
-- expression (which involves a call to rep_to_pos)
-- at compile time.
-- It would be nice if gigi would either recognize that
-- this expression can be computed at compile time, or
-- alternatively figured out the size from the subtype
-- directly, where all the information is at hand ???
if Is_Array_Type (Etype (Comp))
and then Present (Packed_Array_Type (Etype (Comp)))
then
declare
Ocomp : constant Entity_Id :=
Original_Record_Component (Comp);
OCtyp : constant Entity_Id := Etype (Ocomp);
Ind : Node_Id;
Indtyp : Entity_Id;
Lo, Hi : Node_Id;
begin
Ind := First_Index (OCtyp);
while Present (Ind) loop
Indtyp := Etype (Ind);
if Is_Enumeration_Type (Indtyp)
and then Has_Non_Standard_Rep (Indtyp)
then
Lo := Type_Low_Bound (Indtyp);
Hi := Type_High_Bound (Indtyp);
if Is_Entity_Name (Lo)
and then
Ekind (Entity (Lo)) = E_Discriminant
then
return False;
elsif Is_Entity_Name (Hi)
and then
Ekind (Entity (Hi)) = E_Discriminant
then
return False;
end if;
end if;
Next_Index (Ind);
end loop;
end;
end if;
-- Clearly size of record is not known if the size of
-- one of the components is not known.
if not Size_Known (Ctyp) then
return False;
end if;
-- Accumulate packed size if possible
if Packed_Size_Known then
-- We can only deal with elementary types, since for
-- non-elementary components, alignment enters into
-- the picture, and we don't know enough to handle
-- proper alignment in this context. Packed arrays
-- count as elementary if the representation is a
-- modular type.
if Is_Elementary_Type (Ctyp)
or else (Is_Array_Type (Ctyp)
and then
Present (Packed_Array_Type (Ctyp))
and then
Is_Modular_Integer_Type
(Packed_Array_Type (Ctyp)))
then
-- If RM_Size is known and static, then we can
-- keep accumulating the packed size.
if Known_Static_RM_Size (Ctyp) then
-- A little glitch, to be removed sometime ???
-- gigi does not understand zero sizes yet.
if RM_Size (Ctyp) = Uint_0 then
Packed_Size_Known := False;
-- Normal case where we can keep accumulating
-- the packed array size.
else
Packed_Size := Packed_Size + RM_Size (Ctyp);
end if;
-- If we have a field whose RM_Size is not known
-- then we can't figure out the packed size here.
else
Packed_Size_Known := False;
end if;
-- If we have a non-elementary type we can't figure
-- out the packed array size (alignment issues).
else
Packed_Size_Known := False;
end if;
end if;
end if;
Next_Entity (Comp);
end loop;
if Packed_Size_Known then
Set_Small_Size (T, Packed_Size);
end if;
return True;
end;
else
return False;
end if;
end Size_Known;
-------------------------------------
-- Static_Discriminated_Components --
-------------------------------------
function Static_Discriminated_Components
(T : Entity_Id) return Boolean
is
Constraint : Elmt_Id;
begin
if Has_Discriminants (T)
and then Present (Discriminant_Constraint (T))
and then Present (First_Component (T))
then
Constraint := First_Elmt (Discriminant_Constraint (T));
while Present (Constraint) loop
if not Compile_Time_Known_Value (Node (Constraint)) then
return False;
end if;
Next_Elmt (Constraint);
end loop;
end if;
return True;
end Static_Discriminated_Components;
-- Start of processing for Check_Compile_Time_Size
begin
Set_Size_Known_At_Compile_Time (T, Size_Known (T));
end Check_Compile_Time_Size;
-----------------------------
-- Check_Debug_Info_Needed --
-----------------------------
procedure Check_Debug_Info_Needed (T : Entity_Id) is
begin
if Needs_Debug_Info (T) or else Debug_Info_Off (T) then
return;
elsif Comes_From_Source (T)
or else Debug_Generated_Code
or else Debug_Flag_VV
then
Set_Debug_Info_Needed (T);
end if;
end Check_Debug_Info_Needed;
----------------------------
-- Check_Strict_Alignment --
----------------------------
procedure Check_Strict_Alignment (E : Entity_Id) is
Comp : Entity_Id;
begin
if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
Set_Strict_Alignment (E);
elsif Is_Array_Type (E) then
Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
elsif Is_Record_Type (E) then
if Is_Limited_Record (E) then
Set_Strict_Alignment (E);
return;
end if;
Comp := First_Component (E);
while Present (Comp) loop
if not Is_Type (Comp)
and then (Strict_Alignment (Etype (Comp))
or else Is_Aliased (Comp))
then
Set_Strict_Alignment (E);
return;
end if;
Next_Component (Comp);
end loop;
end if;
end Check_Strict_Alignment;
-------------------------
-- Check_Unsigned_Type --
-------------------------
procedure Check_Unsigned_Type (E : Entity_Id) is
Ancestor : Entity_Id;
Lo_Bound : Node_Id;
Btyp : Entity_Id;
begin
if not Is_Discrete_Or_Fixed_Point_Type (E) then
return;
end if;
-- Do not attempt to analyze case where range was in error
if Error_Posted (Scalar_Range (E)) then
return;
end if;
-- The situation that is non trivial is something like
-- subtype x1 is integer range -10 .. +10;
-- subtype x2 is x1 range 0 .. V1;
-- subtype x3 is x2 range V2 .. V3;
-- subtype x4 is x3 range V4 .. V5;
-- where Vn are variables. Here the base type is signed, but we still
-- know that x4 is unsigned because of the lower bound of x2.
-- The only way to deal with this is to look up the ancestor chain
Ancestor := E;
loop
if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
return;
end if;
Lo_Bound := Type_Low_Bound (Ancestor);
if Compile_Time_Known_Value (Lo_Bound) then
if Expr_Rep_Value (Lo_Bound) >= 0 then
Set_Is_Unsigned_Type (E, True);
end if;
return;
else
Ancestor := Ancestor_Subtype (Ancestor);
-- If no ancestor had a static lower bound, go to base type
if No (Ancestor) then
-- Note: the reason we still check for a compile time known
-- value for the base type is that at least in the case of
-- generic formals, we can have bounds that fail this test,
-- and there may be other cases in error situations.
Btyp := Base_Type (E);
if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
return;
end if;
Lo_Bound := Type_Low_Bound (Base_Type (E));
if Compile_Time_Known_Value (Lo_Bound)
and then Expr_Rep_Value (Lo_Bound) >= 0
then
Set_Is_Unsigned_Type (E, True);
end if;
return;
end if;
end if;
end loop;
end Check_Unsigned_Type;
-----------------------------
-- Expand_Atomic_Aggregate --
-----------------------------
procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (E);
New_N : Node_Id;
Temp : Entity_Id;
begin
if (Nkind (Parent (E)) = N_Object_Declaration
or else Nkind (Parent (E)) = N_Assignment_Statement)
and then Comes_From_Source (Parent (E))
and then Nkind (E) = N_Aggregate
then
Temp :=
Make_Defining_Identifier (Loc,
New_Internal_Name ('T'));
New_N :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (E));
Insert_Before (Parent (E), New_N);
Analyze (New_N);
Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
-- To prevent the temporary from being constant-folded (which
-- would lead to the same piecemeal assignment on the original
-- target) indicate to the back-end that the temporary is a
-- variable with real storage. See description of this flag
-- in Einfo, and the notes on N_Assignment_Statement and
-- N_Object_Declaration in Sinfo.
Set_Is_True_Constant (Temp, False);
end if;
end Expand_Atomic_Aggregate;
----------------
-- Freeze_All --
----------------
-- Note: the easy coding for this procedure would be to just build a
-- single list of freeze nodes and then insert them and analyze them
-- all at once. This won't work, because the analysis of earlier freeze
-- nodes may recursively freeze types which would otherwise appear later
-- on in the freeze list. So we must analyze and expand the freeze nodes
-- as they are generated.
procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
Loc : constant Source_Ptr := Sloc (After);
E : Entity_Id;
Decl : Node_Id;
procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
-- This is the internal recursive routine that does freezing of
-- entities (but NOT the analysis of default expressions, which
-- should not be recursive, we don't want to analyze those till
-- we are sure that ALL the types are frozen).
--------------------
-- Freeze_All_Ent --
--------------------
procedure Freeze_All_Ent
(From : Entity_Id;
After : in out Node_Id)
is
E : Entity_Id;
Flist : List_Id;
Lastn : Node_Id;
procedure Process_Flist;
-- If freeze nodes are present, insert and analyze, and reset
-- cursor for next insertion.
-------------------
-- Process_Flist --
-------------------
procedure Process_Flist is
begin
if Is_Non_Empty_List (Flist) then
Lastn := Next (After);
Insert_List_After_And_Analyze (After, Flist);
if Present (Lastn) then
After := Prev (Lastn);
else
After := Last (List_Containing (After));
end if;
end if;
end Process_Flist;
-- Start or processing for Freeze_All_Ent
begin
E := From;
while Present (E) loop
-- If the entity is an inner package which is not a package
-- renaming, then its entities must be frozen at this point.
-- Note that such entities do NOT get frozen at the end of
-- the nested package itself (only library packages freeze).
-- Same is true for task declarations, where anonymous records
-- created for entry parameters must be frozen.
if Ekind (E) = E_Package
and then No (Renamed_Object (E))
and then not Is_Child_Unit (E)
and then not Is_Frozen (E)
then
New_Scope (E);
Install_Visible_Declarations (E);
Install_Private_Declarations (E);
Freeze_All (First_Entity (E), After);
End_Package_Scope (E);
elsif Ekind (E) in Task_Kind
and then
(Nkind (Parent (E)) = N_Task_Type_Declaration
or else
Nkind (Parent (E)) = N_Single_Task_Declaration)
then
New_Scope (E);
Freeze_All (First_Entity (E), After);
End_Scope;
-- For a derived tagged type, we must ensure that all the
-- primitive operations of the parent have been frozen, so
-- that their addresses will be in the parent's dispatch table
-- at the point it is inherited.
elsif Ekind (E) = E_Record_Type
and then Is_Tagged_Type (E)
and then Is_Tagged_Type (Etype (E))
and then Is_Derived_Type (E)
then
declare
Prim_List : constant Elist_Id :=
Primitive_Operations (Etype (E));
Prim : Elmt_Id;
Subp : Entity_Id;
begin
Prim := First_Elmt (Prim_List);
while Present (Prim) loop
Subp := Node (Prim);
if Comes_From_Source (Subp)
and then not Is_Frozen (Subp)
then
Flist := Freeze_Entity (Subp, Loc);
Process_Flist;
end if;
Next_Elmt (Prim);
end loop;
end;
end if;
if not Is_Frozen (E) then
Flist := Freeze_Entity (E, Loc);
Process_Flist;
end if;
-- If an incomplete type is still not frozen, this may be
-- a premature freezing because of a body declaration that
-- follows. Indicate where the freezing took place.
-- If the freezing is caused by the end of the current
-- declarative part, it is a Taft Amendment type, and there
-- is no error.
if not Is_Frozen (E)
and then Ekind (E) = E_Incomplete_Type
then
declare
Bod : constant Node_Id := Next (After);
begin
if (Nkind (Bod) = N_Subprogram_Body
or else Nkind (Bod) = N_Entry_Body
or else Nkind (Bod) = N_Package_Body
or else Nkind (Bod) = N_Protected_Body
or else Nkind (Bod) = N_Task_Body
or else Nkind (Bod) in N_Body_Stub)
and then
List_Containing (After) = List_Containing (Parent (E))
then
Error_Msg_Sloc := Sloc (Next (After));
Error_Msg_NE
("type& is frozen# before its full declaration",
Parent (E), E);
end if;
end;
end if;
Next_Entity (E);
end loop;
end Freeze_All_Ent;
-- Start of processing for Freeze_All
begin
Freeze_All_Ent (From, After);
-- Now that all types are frozen, we can deal with default expressions
-- that require us to build a default expression functions. This is the
-- point at which such functions are constructed (after all types that
-- might be used in such expressions have been frozen).
-- We also add finalization chains to access types whose designated
-- types are controlled. This is normally done when freezing the type,
-- but this misses recursive type definitions where the later members
-- of the recursion introduce controlled components (e.g. 5624-001).
-- Loop through entities
E := From;
while Present (E) loop
if Is_Subprogram (E) then
if not Default_Expressions_Processed (E) then
Process_Default_Expressions (E, After);
end if;
if not Has_Completion (E) then
Decl := Unit_Declaration_Node (E);
if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
Build_And_Analyze_Renamed_Body (Decl, E, After);
elsif Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
and then
Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
= N_Subprogram_Renaming_Declaration
then
Build_And_Analyze_Renamed_Body
(Decl, Corresponding_Body (Decl), After);
end if;
end if;
elsif Ekind (E) in Task_Kind
and then
(Nkind (Parent (E)) = N_Task_Type_Declaration
or else
Nkind (Parent (E)) = N_Single_Task_Declaration)
then
declare
Ent : Entity_Id;
begin
Ent := First_Entity (E);
while Present (Ent) loop
if Is_Entry (Ent)
and then not Default_Expressions_Processed (Ent)
then
Process_Default_Expressions (Ent, After);
end if;
Next_Entity (Ent);
end loop;
end;
elsif Is_Access_Type (E)
and then Comes_From_Source (E)
and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
and then Controlled_Type (Designated_Type (E))
and then No (Associated_Final_Chain (E))
then
Build_Final_List (Parent (E), E);
end if;
Next_Entity (E);
end loop;
end Freeze_All;
-----------------------
-- Freeze_And_Append --
-----------------------
procedure Freeze_And_Append
(Ent : Entity_Id;
Loc : Source_Ptr;
Result : in out List_Id)
is
L : constant List_Id := Freeze_Entity (Ent, Loc);
begin
if Is_Non_Empty_List (L) then
if Result = No_List then
Result := L;
else
Append_List (L, Result);
end if;
end if;
end Freeze_And_Append;
-------------------
-- Freeze_Before --
-------------------
procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
begin
if Is_Non_Empty_List (Freeze_Nodes) then
Insert_Actions (N, Freeze_Nodes);
end if;
end Freeze_Before;
-------------------
-- Freeze_Entity --
-------------------
function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
Test_E : Entity_Id := E;
Comp : Entity_Id;
F_Node : Node_Id;
Result : List_Id;
Indx : Node_Id;
Formal : Entity_Id;
Atype : Entity_Id;
procedure Check_Current_Instance (Comp_Decl : Node_Id);
-- Check that an Access or Unchecked_Access attribute with a prefix
-- which is the current instance type can only be applied when the type
-- is limited.
function After_Last_Declaration return Boolean;
-- If Loc is a freeze_entity that appears after the last declaration
-- in the scope, inhibit error messages on late completion.
procedure Freeze_Record_Type (Rec : Entity_Id);
-- Freeze each component, handle some representation clauses, and freeze
-- primitive operations if this is a tagged type.
----------------------------
-- After_Last_Declaration --
----------------------------
function After_Last_Declaration return Boolean is
Spec : constant Node_Id := Parent (Current_Scope);
begin
if Nkind (Spec) = N_Package_Specification then
if Present (Private_Declarations (Spec)) then
return Loc >= Sloc (Last (Private_Declarations (Spec)));
elsif Present (Visible_Declarations (Spec)) then
return Loc >= Sloc (Last (Visible_Declarations (Spec)));
else
return False;
end if;
else
return False;
end if;
end After_Last_Declaration;
----------------------------
-- Check_Current_Instance --
----------------------------
procedure Check_Current_Instance (Comp_Decl : Node_Id) is
function Process (N : Node_Id) return Traverse_Result;
-- Process routine to apply check to given node
-------------
-- Process --
-------------
function Process (N : Node_Id) return Traverse_Result is
begin
case Nkind (N) is
when N_Attribute_Reference =>
if (Attribute_Name (N) = Name_Access
or else
Attribute_Name (N) = Name_Unchecked_Access)
and then Is_Entity_Name (Prefix (N))
and then Is_Type (Entity (Prefix (N)))
and then Entity (Prefix (N)) = E
then
Error_Msg_N
("current instance must be a limited type", Prefix (N));
return Abandon;
else
return OK;
end if;
when others => return OK;
end case;
end Process;
procedure Traverse is new Traverse_Proc (Process);
-- Start of processing for Check_Current_Instance
begin
Traverse (Comp_Decl);
end Check_Current_Instance;
------------------------
-- Freeze_Record_Type --
------------------------
procedure Freeze_Record_Type (Rec : Entity_Id) is
Comp : Entity_Id;
IR : Node_Id;
Junk : Boolean;
ADC : Node_Id;
Prev : Entity_Id;
Unplaced_Component : Boolean := False;
-- Set True if we find at least one component with no component
-- clause (used to warn about useless Pack pragmas).
Placed_Component : Boolean := False;
-- Set True if we find at least one component with a component
-- clause (used to warn about useless Bit_Order pragmas).
procedure Check_Itype (Desig : Entity_Id);
-- If the component subtype is an access to a constrained subtype
-- of an already frozen type, make the subtype frozen as well. It
-- might otherwise be frozen in the wrong scope, and a freeze node
-- on subtype has no effect.
-----------------
-- Check_Itype --
-----------------
procedure Check_Itype (Desig : Entity_Id) is
begin
if not Is_Frozen (Desig)
and then Is_Frozen (Base_Type (Desig))
then
Set_Is_Frozen (Desig);
-- In addition, add an Itype_Reference to ensure that the
-- access subtype is elaborated early enough. This cannot
-- be done if the subtype may depend on discriminants.
if Ekind (Comp) = E_Component
and then Is_Itype (Etype (Comp))
and then not Has_Discriminants (Rec)
then
IR := Make_Itype_Reference (Sloc (Comp));
Set_Itype (IR, Desig);
if No (Result) then
Result := New_List (IR);
else
Append (IR, Result);
end if;
end if;
end if;
end Check_Itype;
-- Start of processing for Freeze_Record_Type
begin
-- If this is a subtype of a controlled type, declared without
-- a constraint, the _controller may not appear in the component
-- list if the parent was not frozen at the point of subtype
-- declaration. Inherit the _controller component now.
if Rec /= Base_Type (Rec)
and then Has_Controlled_Component (Rec)
then
if Nkind (Parent (Rec)) = N_Subtype_Declaration
and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
then
Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
-- If this is an internal type without a declaration, as for
-- record component, the base type may not yet be frozen, and its
-- controller has not been created. Add an explicit freeze node
-- for the itype, so it will be frozen after the base type. This
-- freeze node is used to communicate with the expander, in order
-- to create the controller for the enclosing record, and it is
-- deleted afterwards (see exp_ch3). It must not be created when
-- expansion is off, because it might appear in the wrong context
-- for the back end.
elsif Is_Itype (Rec)
and then Has_Delayed_Freeze (Base_Type (Rec))
and then
Nkind (Associated_Node_For_Itype (Rec)) =
N_Component_Declaration
and then Expander_Active
then
Ensure_Freeze_Node (Rec);
end if;
end if;
-- Freeze components and embedded subtypes
Comp := First_Entity (Rec);
Prev := Empty;
while Present (Comp) loop
-- First handle the (real) component case
if Ekind (Comp) = E_Component
or else Ekind (Comp) = E_Discriminant
then
declare
CC : constant Node_Id := Component_Clause (Comp);
begin
-- Freezing a record type freezes the type of each of its
-- components. However, if the type of the component is
-- part of this record, we do not want or need a separate
-- Freeze_Node. Note that Is_Itype is wrong because that's
-- also set in private type cases. We also can't check for
-- the Scope being exactly Rec because of private types and
-- record extensions.
if Is_Itype (Etype (Comp))
and then Is_Record_Type (Underlying_Type
(Scope (Etype (Comp))))
then
Undelay_Type (Etype (Comp));
end if;
Freeze_And_Append (Etype (Comp), Loc, Result);
-- Check for error of component clause given for variable
-- sized type. We have to delay this test till this point,
-- since the component type has to be frozen for us to know
-- if it is variable length. We omit this test in a generic
-- context, it will be applied at instantiation time.
if Present (CC) then
Placed_Component := True;
if Inside_A_Generic then
null;
elsif not Size_Known_At_Compile_Time
(Underlying_Type (Etype (Comp)))
then
Error_Msg_N
("component clause not allowed for variable " &
"length component", CC);
end if;
else
Unplaced_Component := True;
end if;
-- Case of component requires byte alignment
if Must_Be_On_Byte_Boundary (Etype (Comp)) then
-- Set the enclosing record to also require byte align
Set_Must_Be_On_Byte_Boundary (Rec);
-- Check for component clause that is inconsistent
-- with the required byte boundary alignment.
if Present (CC)
and then Normalized_First_Bit (Comp) mod
System_Storage_Unit /= 0
then
Error_Msg_N
("component & must be byte aligned",
Component_Name (Component_Clause (Comp)));
end if;
end if;
-- If component clause is present, then deal with the
-- non-default bit order case. We cannot do this before
-- the freeze point, because there is no required order
-- for the component clause and the bit_order clause.
-- We only do this processing for the base type, and in
-- fact that's important, since otherwise if there are
-- record subtypes, we could reverse the bits once for
-- each subtype, which would be incorrect.
if Present (CC)
and then Reverse_Bit_Order (Rec)
and then Ekind (E) = E_Record_Type
then
declare
CFB : constant Uint := Component_Bit_Offset (Comp);
CSZ : constant Uint := Esize (Comp);
CLC : constant Node_Id := Component_Clause (Comp);
Pos : constant Node_Id := Position (CLC);
FB : constant Node_Id := First_Bit (CLC);
Storage_Unit_Offset : constant Uint :=
CFB / System_Storage_Unit;
Start_Bit : constant Uint :=
CFB mod System_Storage_Unit;
begin
-- Cases where field goes over storage unit boundary
if Start_Bit + CSZ > System_Storage_Unit then
-- Allow multi-byte field but generate warning
if Start_Bit mod System_Storage_Unit = 0
and then CSZ mod System_Storage_Unit = 0
then
Error_Msg_N
("multi-byte field specified with non-standard"
& " Bit_Order?", CLC);
if Bytes_Big_Endian then
Error_Msg_N
("bytes are not reversed "
& "(component is big-endian)?", CLC);
else
Error_Msg_N
("bytes are not reversed "
& "(component is little-endian)?", CLC);
end if;
-- Do not allow non-contiguous field
else
Error_Msg_N
("attempt to specify non-contiguous field"
& " not permitted", CLC);
Error_Msg_N
("\(caused by non-standard Bit_Order "
& "specified)", CLC);
end if;
-- Case where field fits in one storage unit
else
-- Give warning if suspicious component clause
if Intval (FB) >= System_Storage_Unit then
Error_Msg_N
("?Bit_Order clause does not affect " &
"byte ordering", Pos);
Error_Msg_Uint_1 :=
Intval (Pos) + Intval (FB) /
System_Storage_Unit;
Error_Msg_N
("?position normalized to ^ before bit " &
"order interpreted", Pos);
end if;
-- Here is where we fix up the Component_Bit_Offset
-- value to account for the reverse bit order.
-- Some examples of what needs to be done are:
-- First_Bit .. Last_Bit Component_Bit_Offset
-- old new old new
-- 0 .. 0 7 .. 7 0 7
-- 0 .. 1 6 .. 7 0 6
-- 0 .. 2 5 .. 7 0 5
-- 0 .. 7 0 .. 7 0 4
-- 1 .. 1 6 .. 6 1 6
-- 1 .. 4 3 .. 6 1 3
-- 4 .. 7 0 .. 3 4 0
-- The general rule is that the first bit is
-- is obtained by subtracting the old ending bit
-- from storage_unit - 1.
Set_Component_Bit_Offset
(Comp,
(Storage_Unit_Offset * System_Storage_Unit) +
(System_Storage_Unit - 1) -
(Start_Bit + CSZ - 1));
Set_Normalized_First_Bit
(Comp,
Component_Bit_Offset (Comp) mod
System_Storage_Unit);
end if;
end;
end if;
end;
end if;
-- If the component is an Itype with Delayed_Freeze and is either
-- a record or array subtype and its base type has not yet been
-- frozen, we must remove this from the entity list of this
-- record and put it on the entity list of the scope of its base
-- type. Note that we know that this is not the type of a
-- component since we cleared Has_Delayed_Freeze for it in the
-- previous loop. Thus this must be the Designated_Type of an
-- access type, which is the type of a component.
if Is_Itype (Comp)
and then Is_Type (Scope (Comp))
and then Is_Composite_Type (Comp)
and then Base_Type (Comp) /= Comp
and then Has_Delayed_Freeze (Comp)
and then not Is_Frozen (Base_Type (Comp))
then
declare
Will_Be_Frozen : Boolean := False;
S : Entity_Id := Scope (Rec);
begin
-- We have a pretty bad kludge here. Suppose Rec is a
-- subtype being defined in a subprogram that's created
-- as part of the freezing of Rec'Base. In that case,
-- we know that Comp'Base must have already been frozen by
-- the time we get to elaborate this because Gigi doesn't
-- elaborate any bodies until it has elaborated all of the
-- declarative part. But Is_Frozen will not be set at this
-- point because we are processing code in lexical order.
-- We detect this case by going up the Scope chain of
-- Rec and seeing if we have a subprogram scope before
-- reaching the top of the scope chain or that of Comp'Base.
-- If we do, then mark that Comp'Base will actually be
-- frozen. If so, we merely undelay it.
while Present (S) loop
if Is_Subprogram (S) then
Will_Be_Frozen := True;
exit;
elsif S = Scope (Base_Type (Comp)) then
exit;
end if;
S := Scope (S);
end loop;
if Will_Be_Frozen then
Undelay_Type (Comp);
else
if Present (Prev) then
Set_Next_Entity (Prev, Next_Entity (Comp));
else
Set_First_Entity (Rec, Next_Entity (Comp));
end if;
-- Insert in entity list of scope of base type (which
-- must be an enclosing scope, because still unfrozen).
Append_Entity (Comp, Scope (Base_Type (Comp)));
end if;
end;
-- If the component is an access type with an allocator as
-- default value, the designated type will be frozen by the
-- corresponding expression in init_proc. In order to place the
-- freeze node for the designated type before that for the
-- current record type, freeze it now.
-- Same process if the component is an array of access types,
-- initialized with an aggregate. If the designated type is
-- private, it cannot contain allocators, and it is premature to
-- freeze the type, so we check for this as well.
elsif Is_Access_Type (Etype (Comp))
and then Present (Parent (Comp))
and then Present (Expression (Parent (Comp)))
and then Nkind (Expression (Parent (Comp))) = N_Allocator
then
declare
Alloc : constant Node_Id := Expression (Parent (Comp));
begin
-- If component is pointer to a classwide type, freeze
-- the specific type in the expression being allocated.
-- The expression may be a subtype indication, in which
-- case freeze the subtype mark.
if Is_Class_Wide_Type (Designated_Type (Etype (Comp))) then
if Is_Entity_Name (Expression (Alloc)) then
Freeze_And_Append
(Entity (Expression (Alloc)), Loc, Result);
elsif
Nkind (Expression (Alloc)) = N_Subtype_Indication
then
Freeze_And_Append
(Entity (Subtype_Mark (Expression (Alloc))),
Loc, Result);
end if;
elsif Is_Itype (Designated_Type (Etype (Comp))) then
Check_Itype (Designated_Type (Etype (Comp)));
else
Freeze_And_Append
(Designated_Type (Etype (Comp)), Loc, Result);
end if;
end;
elsif Is_Access_Type (Etype (Comp))
and then Is_Itype (Designated_Type (Etype (Comp)))
then
Check_Itype (Designated_Type (Etype (Comp)));
elsif Is_Array_Type (Etype (Comp))
and then Is_Access_Type (Component_Type (Etype (Comp)))
and then Present (Parent (Comp))
and then Nkind (Parent (Comp)) = N_Component_Declaration
and then Present (Expression (Parent (Comp)))
and then Nkind (Expression (Parent (Comp))) = N_Aggregate
and then Is_Fully_Defined
(Designated_Type (Component_Type (Etype (Comp))))
then
Freeze_And_Append
(Designated_Type
(Component_Type (Etype (Comp))), Loc, Result);
end if;
Prev := Comp;
Next_Entity (Comp);
end loop;
-- Check for useless pragma Bit_Order
if not Placed_Component and then Reverse_Bit_Order (Rec) then
ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
Error_Msg_N ("?Bit_Order specification has no effect", ADC);
Error_Msg_N ("\?since no component clauses were specified", ADC);
end if;
-- Check for useless pragma Pack when all components placed. We only
-- do this check for record types, not subtypes, since a subtype may
-- have all its components placed, and it still makes perfectly good
-- sense to pack other subtypes or the parent type.
if Ekind (Rec) = E_Record_Type
and then Is_Packed (Rec)
and then not Unplaced_Component
then
-- Reset packed status. Probably not necessary, but we do it
-- so that there is no chance of the back end doing something
-- strange with this redundant indication of packing.
Set_Is_Packed (Rec, False);
-- Give warning if redundant constructs warnings on
if Warn_On_Redundant_Constructs then
Error_Msg_N
("?pragma Pack has no effect, no unplaced components",
Get_Rep_Pragma (Rec, Name_Pack));
end if;
end if;
-- If this is the record corresponding to a remote type, freeze the
-- remote type here since that is what we are semantically freezing.
-- This prevents the freeze node for that type in an inner scope.
-- Also, Check for controlled components and unchecked unions.
-- Finally, enforce the restriction that access attributes with a
-- current instance prefix can only apply to limited types.
if Ekind (Rec) = E_Record_Type then
if Present (Corresponding_Remote_Type (Rec)) then
Freeze_And_Append
(Corresponding_Remote_Type (Rec), Loc, Result);
end if;
Comp := First_Component (Rec);
while Present (Comp) loop
if Has_Controlled_Component (Etype (Comp))
or else (Chars (Comp) /= Name_uParent
and then Is_Controlled (Etype (Comp)))
or else (Is_Protected_Type (Etype (Comp))
and then Present
(Corresponding_Record_Type (Etype (Comp)))
and then Has_Controlled_Component
(Corresponding_Record_Type (Etype (Comp))))
then
Set_Has_Controlled_Component (Rec);
exit;
end if;
if Has_Unchecked_Union (Etype (Comp)) then
Set_Has_Unchecked_Union (Rec);
end if;
if Has_Per_Object_Constraint (Comp)
and then not Is_Limited_Type (Rec)
then
-- Scan component declaration for likely misuses of current
-- instance, either in a constraint or a default expression.
Check_Current_Instance (Parent (Comp));
end if;
Next_Component (Comp);
end loop;
end if;
Set_Component_Alignment_If_Not_Set (Rec);
-- For first subtypes, check if there are any fixed-point fields with
-- component clauses, where we must check the size. This is not done
-- till the freeze point, since for fixed-point types, we do not know
-- the size until the type is frozen. Similar processing applies to
-- bit packed arrays.
if Is_First_Subtype (Rec) then
Comp := First_Component (Rec);
while Present (Comp) loop
if Present (Component_Clause (Comp))
and then (Is_Fixed_Point_Type (Etype (Comp))
or else
Is_Bit_Packed_Array (Etype (Comp)))
then
Check_Size
(Component_Name (Component_Clause (Comp)),
Etype (Comp),
Esize (Comp),
Junk);
end if;
Next_Component (Comp);
end loop;
end if;
end Freeze_Record_Type;
-- Start of processing for Freeze_Entity
begin
-- We are going to test for various reasons why this entity need not be
-- frozen here, but in the case of an Itype that's defined within a
-- record, that test actually applies to the record.
if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
Test_E := Scope (E);
elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
and then Is_Record_Type (Underlying_Type (Scope (E)))
then
Test_E := Underlying_Type (Scope (E));
end if;
-- Do not freeze if already frozen since we only need one freeze node
if Is_Frozen (E) then
return No_List;
-- It is improper to freeze an external entity within a generic because
-- its freeze node will appear in a non-valid context. The entity will
-- be frozen in the proper scope after the current generic is analyzed.
elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
return No_List;
-- Do not freeze a global entity within an inner scope created during
-- expansion. A call to subprogram E within some internal procedure
-- (a stream attribute for example) might require freezing E, but the
-- freeze node must appear in the same declarative part as E itself.
-- The two-pass elaboration mechanism in gigi guarantees that E will
-- be frozen before the inner call is elaborated. We exclude constants
-- from this test, because deferred constants may be frozen early, and
-- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram
-- comes from source, or is a generic instance, then the freeze point
-- is the one mandated by the language. and we freze the entity.
elsif In_Open_Scopes (Scope (Test_E))
and then Scope (Test_E) /= Current_Scope
and then Ekind (Test_E) /= E_Constant
then
declare
S : Entity_Id := Current_Scope;
begin
while Present (S) loop
if Is_Overloadable (S) then
if Comes_From_Source (S)
or else Is_Generic_Instance (S)
then
exit;
else
return No_List;
end if;
end if;
S := Scope (S);
end loop;
end;
-- Similarly, an inlined instance body may make reference to global
-- entities, but these references cannot be the proper freezing point
-- for them, and the the absence of inlining freezing will take place
-- in their own scope. Normally instance bodies are analyzed after
-- the enclosing compilation, and everything has been frozen at the
-- proper place, but with front-end inlining an instance body is
-- compiled before the end of the enclosing scope, and as a result
-- out-of-order freezing must be prevented.
elsif Front_End_Inlining
and then In_Instance_Body
and then Present (Scope (Test_E))
then
declare
S : Entity_Id := Scope (Test_E);
begin
while Present (S) loop
if Is_Generic_Instance (S) then
exit;
else
S := Scope (S);
end if;
end loop;
if No (S) then
return No_List;
end if;
end;
end if;
-- Here to freeze the entity
Result := No_List;
Set_Is_Frozen (E);
-- Case of entity being frozen is other than a type
if not Is_Type (E) then
-- If entity is exported or imported and does not have an external
-- name, now is the time to provide the appropriate default name.
-- Skip this if the entity is stubbed, since we don't need a name
-- for any stubbed routine.
if (Is_Imported (E) or else Is_Exported (E))
and then No (Interface_Name (E))
and then Convention (E) /= Convention_Stubbed
then
Set_Encoded_Interface_Name
(E, Get_Default_External_Name (E));
-- Special processing for atomic objects appearing in object decls
elsif Is_Atomic (E)
and then Nkind (Parent (E)) = N_Object_Declaration
and then Present (Expression (Parent (E)))
then
declare
Expr : constant Node_Id := Expression (Parent (E));
begin
-- If expression is an aggregate, assign to a temporary to
-- ensure that the actual assignment is done atomically rather
-- than component-wise (the assignment to the temp may be done
-- component-wise, but that is harmless.
if Nkind (Expr) = N_Aggregate then
Expand_Atomic_Aggregate (Expr, Etype (E));
-- If the expression is a reference to a record or array object
-- entity, then reset Is_True_Constant to False so that the
-- compiler will not optimize away the intermediate object,
-- which we need in this case for the same reason (to ensure
-- that the actual assignment is atomic, rather than
-- component-wise).
elsif Is_Entity_Name (Expr)
and then (Is_Record_Type (Etype (Expr))
or else
Is_Array_Type (Etype (Expr)))
then
Set_Is_True_Constant (Entity (Expr), False);
end if;
end;
end if;
-- For a subprogram, freeze all parameter types and also the return
-- type (RM 13.14(14)). However skip this for internal subprograms.
-- This is also the point where any extra formal parameters are
-- created since we now know whether the subprogram will use
-- a foreign convention.
if Is_Subprogram (E) then
if not Is_Internal (E) then
declare
F_Type : Entity_Id;
Warn_Node : Node_Id;
function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean;
-- Determines if given type entity is a fat pointer type
-- used as an argument type or return type to a subprogram
-- with C or C++ convention set.
--------------------------
-- Is_Fat_C_Access_Type --
--------------------------
function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is
begin
return (Convention (E) = Convention_C
or else
Convention (E) = Convention_CPP)
and then Is_Access_Type (T)
and then Esize (T) > Ttypes.System_Address_Size;
end Is_Fat_C_Ptr_Type;
begin
-- Loop through formals
Formal := First_Formal (E);
while Present (Formal) loop
F_Type := Etype (Formal);
Freeze_And_Append (F_Type, Loc, Result);
if Is_Private_Type (F_Type)
and then Is_Private_Type (Base_Type (F_Type))
and then No (Full_View (Base_Type (F_Type)))
and then not Is_Generic_Type (F_Type)
and then not Is_Derived_Type (F_Type)
then
-- If the type of a formal is incomplete, subprogram
-- is being frozen prematurely. Within an instance
-- (but not within a wrapper package) this is an
-- an artifact of our need to regard the end of an
-- instantiation as a freeze point. Otherwise it is
-- a definite error.
-- and then not Is_Wrapper_Package (Current_Scope) ???
if In_Instance then
Set_Is_Frozen (E, False);
return No_List;
elsif not After_Last_Declaration then
Error_Msg_Node_1 := F_Type;
Error_Msg
("type& must be fully defined before this point",
Loc);
end if;
end if;
-- Check bad use of fat C pointer
if Warn_On_Export_Import and then
Is_Fat_C_Ptr_Type (F_Type)
then
Error_Msg_Qual_Level := 1;
Error_Msg_N
("?type of & does not correspond to C pointer",
Formal);
Error_Msg_Qual_Level := 0;
end if;
-- Check for unconstrained array in exported foreign
-- convention case.
if Convention (E) in Foreign_Convention
and then not Is_Imported (E)
and then Is_Array_Type (F_Type)
and then not Is_Constrained (F_Type)
and then Warn_On_Export_Import
then
Error_Msg_Qual_Level := 1;
-- If this is an inherited operation, place the
-- warning on the derived type declaration, rather
-- than on the original subprogram.
if Nkind (Original_Node (Parent (E))) =
N_Full_Type_Declaration
then
Warn_Node := Parent (E);
if Formal = First_Formal (E) then
Error_Msg_NE
("?in inherited operation&", Warn_Node, E);
end if;
else
Warn_Node := Formal;
end if;
Error_Msg_NE
("?type of argument& is unconstrained array",
Warn_Node, Formal);
Error_Msg_NE
("?foreign caller must pass bounds explicitly",
Warn_Node, Formal);
Error_Msg_Qual_Level := 0;
end if;
-- Ada 2005 (AI-326): Check wrong use of tag incomplete
-- types with unknown discriminants. For example:
-- type T (<>) is tagged;
-- procedure P (X : access T); -- ERROR
-- procedure P (X : T); -- ERROR
if not From_With_Type (F_Type) then
if Is_Access_Type (F_Type) then
F_Type := Designated_Type (F_Type);
end if;
if Ekind (F_Type) = E_Incomplete_Type
and then Is_Tagged_Type (F_Type)
and then not Is_Class_Wide_Type (F_Type)
and then No (Full_View (F_Type))
and then Unknown_Discriminants_Present
(Parent (F_Type))
and then No (Stored_Constraint (F_Type))
then
Error_Msg_N
("(Ada 2005): invalid use of unconstrained tagged"
& " incomplete type", E);
elsif Ekind (F_Type) = E_Subprogram_Type then
Freeze_And_Append (F_Type, Loc, Result);
end if;
end if;
Next_Formal (Formal);
end loop;
-- Check return type
if Ekind (E) = E_Function then
Freeze_And_Append (Etype (E), Loc, Result);
if Warn_On_Export_Import
and then Is_Fat_C_Ptr_Type (Etype (E))
then
Error_Msg_N
("?return type of& does not correspond to C pointer",
E);
elsif Is_Array_Type (Etype (E))
and then not Is_Constrained (Etype (E))
and then not Is_Imported (E)
and then Convention (E) in Foreign_Convention
and then Warn_On_Export_Import
then
Error_Msg_N
("?foreign convention function& should not " &
"return unconstrained array", E);
-- Ada 2005 (AI-326): Check wrong use of tagged
-- incomplete type
--
-- type T is tagged;
-- function F (X : Boolean) return T; -- ERROR
elsif Ekind (Etype (E)) = E_Incomplete_Type
and then Is_Tagged_Type (Etype (E))
and then No (Full_View (Etype (E)))
then
Error_Msg_N
("(Ada 2005): invalid use of tagged incomplete type",
E);
end if;
end if;
end;
end if;
-- Must freeze its parent first if it is a derived subprogram
if Present (Alias (E)) then
Freeze_And_Append (Alias (E), Loc, Result);
end if;
-- If the return type requires a transient scope, and we are on
-- a target allowing functions to return with a depressed stack
-- pointer, then we mark the function as requiring this treatment.
if Ekind (E) = E_Function
and then Functions_Return_By_DSP_On_Target
and then Requires_Transient_Scope (Etype (E))
then
Set_Function_Returns_With_DSP (E);
end if;
if not Is_Internal (E) then
Freeze_Subprogram (E);
end if;
-- Here for other than a subprogram or type
else
-- If entity has a type, and it is not a generic unit, then
-- freeze it first (RM 13.14(10))
if Present (Etype (E))
and then Ekind (E) /= E_Generic_Function
then
Freeze_And_Append (Etype (E), Loc, Result);
end if;
-- Special processing for objects created by object declaration
if Nkind (Declaration_Node (E)) = N_Object_Declaration then
-- For object created by object declaration, perform required
-- categorization (preelaborate and pure) checks. Defer these
-- checks to freeze time since pragma Import inhibits default
-- initialization and thus pragma Import affects these checks.
Validate_Object_Declaration (Declaration_Node (E));
-- If there is an address clause, check it is valid
Check_Address_Clause (E);
-- For imported objects, set Is_Public unless there is also
-- an address clause, which means that there is no external
-- symbol needed for the Import (Is_Public may still be set
-- for other unrelated reasons). Note that we delayed this
-- processing till freeze time so that we can be sure not
-- to set the flag if there is an address clause. If there
-- is such a clause, then the only purpose of the import
-- pragma is to suppress implicit initialization.
if Is_Imported (E)
and then No (Address_Clause (E))
then
Set_Is_Public (E);
end if;
end if;
-- Check that a constant which has a pragma Volatile[_Components]
-- or Atomic[_Components] also has a pragma Import (RM C.6(13))
-- Note: Atomic[_Components] also sets Volatile[_Components]
if Ekind (E) = E_Constant
and then (Has_Volatile_Components (E) or else Is_Volatile (E))
and then not Is_Imported (E)
then
-- Make sure we actually have a pragma, and have not merely
-- inherited the indication from elsewhere (e.g. an address
-- clause, which is not good enough in RM terms!)
if Has_Rep_Pragma (E, Name_Atomic)
or else
Has_Rep_Pragma (E, Name_Atomic_Components)
then
Error_Msg_N
("stand alone atomic constant must be " &
"imported ('R'M 'C.6(13))", E);
elsif Has_Rep_Pragma (E, Name_Volatile)
or else
Has_Rep_Pragma (E, Name_Volatile_Components)
then
Error_Msg_N
("stand alone volatile constant must be " &
"imported ('R'M 'C.6(13))", E);
end if;
end if;
-- Static objects require special handling
if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
and then Is_Statically_Allocated (E)
then
Freeze_Static_Object (E);
end if;
-- Remaining step is to layout objects
if Ekind (E) = E_Variable
or else
Ekind (E) = E_Constant
or else
Ekind (E) = E_Loop_Parameter
or else
Is_Formal (E)
then
Layout_Object (E);
end if;
end if;
-- Case of a type or subtype being frozen
else
-- Check preelaborable initialization for full type completing a
-- private type for which pragma Preelaborable_Initialization given.
if Must_Have_Preelab_Init (E)
and then not Has_Preelaborable_Initialization (E)
then
Error_Msg_N
("full view of & does not have preelaborable initialization", E);
end if;
-- The type may be defined in a generic unit. This can occur when
-- freezing a generic function that returns the type (which is
-- defined in a parent unit). It is clearly meaningless to freeze
-- this type. However, if it is a subtype, its size may be determi-
-- nable and used in subsequent checks, so might as well try to
-- compute it.
if Present (Scope (E))
and then Is_Generic_Unit (Scope (E))
then
Check_Compile_Time_Size (E);
return No_List;
end if;
-- Deal with special cases of freezing for subtype
if E /= Base_Type (E) then
-- If ancestor subtype present, freeze that first.
-- Note that this will also get the base type frozen.
Atype := Ancestor_Subtype (E);
if Present (Atype) then
Freeze_And_Append (Atype, Loc, Result);
-- Otherwise freeze the base type of the entity before
-- freezing the entity itself, (RM 13.14(15)).
elsif E /= Base_Type (E) then
Freeze_And_Append (Base_Type (E), Loc, Result);
end if;
-- For a derived type, freeze its parent type first (RM 13.14(15))
elsif Is_Derived_Type (E) then
Freeze_And_Append (Etype (E), Loc, Result);
Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
end if;
-- For array type, freeze index types and component type first
-- before freezing the array (RM 13.14(15)).
if Is_Array_Type (E) then
declare
Ctyp : constant Entity_Id := Component_Type (E);
Pnod : Node_Id;
Non_Standard_Enum : Boolean := False;
-- Set true if any of the index types is an enumeration
-- type with a non-standard representation.
begin
Freeze_And_Append (Ctyp, Loc, Result);
Indx := First_Index (E);
while Present (Indx) loop
Freeze_And_Append (Etype (Indx), Loc, Result);
if Is_Enumeration_Type (Etype (Indx))
and then Has_Non_Standard_Rep (Etype (Indx))
then
Non_Standard_Enum := True;
end if;
Next_Index (Indx);
end loop;
-- Processing that is done only for base types
if Ekind (E) = E_Array_Type then
-- Propagate flags for component type
if Is_Controlled (Component_Type (E))
or else Has_Controlled_Component (Ctyp)
then
Set_Has_Controlled_Component (E);
end if;
if Has_Unchecked_Union (Component_Type (E)) then
Set_Has_Unchecked_Union (E);
end if;
-- If packing was requested or if the component size was set
-- explicitly, then see if bit packing is required. This
-- processing is only done for base types, since all the
-- representation aspects involved are type-related. This
-- is not just an optimization, if we start processing the
-- subtypes, they intefere with the settings on the base
-- type (this is because Is_Packed has a slightly different
-- meaning before and after freezing).
declare
Csiz : Uint;
Esiz : Uint;
begin
if (Is_Packed (E) or else Has_Pragma_Pack (E))
and then not Has_Atomic_Components (E)
and then Known_Static_RM_Size (Ctyp)
then
Csiz := UI_Max (RM_Size (Ctyp), 1);
elsif Known_Component_Size (E) then
Csiz := Component_Size (E);
elsif not Known_Static_Esize (Ctyp) then
Csiz := Uint_0;
else
Esiz := Esize (Ctyp);
-- We can set the component size if it is less than
-- 16, rounding it up to the next storage unit size.
if Esiz <= 8 then
Csiz := Uint_8;
elsif Esiz <= 16 then
Csiz := Uint_16;
else
Csiz := Uint_0;
end if;
-- Set component size up to match alignment if
-- it would otherwise be less than the alignment.
-- This deals with cases of types whose alignment
-- exceeds their sizes (padded types).
if Csiz /= 0 then
declare
A : constant Uint := Alignment_In_Bits (Ctyp);
begin
if Csiz < A then
Csiz := A;
end if;
end;
end if;
end if;
if 1 <= Csiz and then Csiz <= 64 then
-- We set the component size for all cases 1-64
Set_Component_Size (Base_Type (E), Csiz);
-- Check for base type of 8,16,32 bits, where the
-- subtype has a length one less than the base type
-- and is unsigned (e.g. Natural subtype of Integer)
-- In such cases, if a component size was not set
-- explicitly, then generate a warning.
if Has_Pragma_Pack (E)
and then not Has_Component_Size_Clause (E)
and then
(Csiz = 7 or else Csiz = 15 or else Csiz = 31)
and then Esize (Base_Type (Ctyp)) = Csiz + 1
then
Error_Msg_Uint_1 := Csiz;
Pnod :=
Get_Rep_Pragma (First_Subtype (E), Name_Pack);
if Present (Pnod) then
Error_Msg_N
("pragma Pack causes component size to be ^?",
Pnod);
Error_Msg_N
("\use Component_Size to set desired value",
Pnod);
end if;
end if;
-- Actual packing is not needed for 8,16,32,64
-- Also not needed for 24 if alignment is 1
if Csiz = 8
or else Csiz = 16
or else Csiz = 32
or else Csiz = 64
or else (Csiz = 24 and then Alignment (Ctyp) = 1)
then
-- Here the array was requested to be packed, but
-- the packing request had no effect, so Is_Packed
-- is reset.
-- Note: semantically this means that we lose
-- track of the fact that a derived type inherited
-- a pack pragma that was non-effective, but that
-- seems fine.
-- We regard a Pack pragma as a request to set a
-- representation characteristic, and this request
-- may be ignored.
Set_Is_Packed (Base_Type (E), False);
-- In all other cases, packing is indeed needed
else
Set_Has_Non_Standard_Rep (Base_Type (E));
Set_Is_Bit_Packed_Array (Base_Type (E));
Set_Is_Packed (Base_Type (E));
end if;
end if;
end;
-- Processing that is done only for subtypes
else
-- Acquire alignment from base type
if Unknown_Alignment (E) then
Set_Alignment (E, Alignment (Base_Type (E)));
end if;
end if;
-- For bit-packed arrays, check the size
if Is_Bit_Packed_Array (E)
and then Known_Esize (E)
then
declare
Discard : Boolean;
SizC : constant Node_Id := Size_Clause (E);
begin
-- It is not clear if it is possible to have no size
-- clause at this stage, but this is not worth worrying
-- about. Post the error on the entity name in the size
-- clause if present, else on the type entity itself.
if Present (SizC) then
Check_Size (Name (SizC), E, Esize (E), Discard);
else
Check_Size (E, E, Esize (E), Discard);
end if;
end;
end if;
-- Check one common case of a size given where the array
-- needs to be packed, but was not so the size cannot be
-- honored. This would of course be caught by the backend,
-- and indeed we don't catch all cases. The point is that
-- we can give a better error message in those cases that
-- we do catch with the circuitry here.
declare
Lo, Hi : Node_Id;
Ctyp : constant Entity_Id := Component_Type (E);
begin
if Present (Size_Clause (E))
and then Known_Static_Esize (E)
and then not Is_Bit_Packed_Array (E)
and then not Has_Pragma_Pack (E)
and then Number_Dimensions (E) = 1
and then not Has_Component_Size_Clause (E)
and then Known_Static_Esize (Ctyp)
then
Get_Index_Bounds (First_Index (E), Lo, Hi);
if Compile_Time_Known_Value (Lo)
and then Compile_Time_Known_Value (Hi)
and then Known_Static_RM_Size (Ctyp)
and then RM_Size (Ctyp) < 64
then
declare
Lov : constant Uint := Expr_Value (Lo);
Hiv : constant Uint := Expr_Value (Hi);
Len : constant Uint :=
UI_Max (Uint_0, Hiv - Lov + 1);
Rsiz : constant Uint := RM_Size (Ctyp);
-- What we are looking for here is the situation
-- where the Esize given would be exactly right
-- if there was a pragma Pack (resulting in the
-- component size being the same as the RM_Size).
-- Furthermore, the component type size must be
-- an odd size (not a multiple of storage unit)
begin
if Esize (E) = Len * Rsiz
and then Rsiz mod System_Storage_Unit /= 0
then
Error_Msg_NE
("size given for& too small",
Size_Clause (E), E);
Error_Msg_N
("\explicit pragma Pack is required",
Size_Clause (E));
end if;
end;
end if;
end if;
end;
-- If any of the index types was an enumeration type with
-- a non-standard rep clause, then we indicate that the
-- array type is always packed (even if it is not bit packed).
if Non_Standard_Enum then
Set_Has_Non_Standard_Rep (Base_Type (E));
Set_Is_Packed (Base_Type (E));
end if;
Set_Component_Alignment_If_Not_Set (E);
-- If the array is packed, we must create the packed array
-- type to be used to actually implement the type. This is
-- only needed for real array types (not for string literal
-- types, since they are present only for the front end).
if Is_Packed (E)
and then Ekind (E) /= E_String_Literal_Subtype
then
Create_Packed_Array_Type (E);
Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
-- Size information of packed array type is copied to the
-- array type, since this is really the representation.
Set_Size_Info (E, Packed_Array_Type (E));
Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
end if;
-- For non-packed arrays set the alignment of the array
-- to the alignment of the component type if it is unknown.
-- Skip this in the atomic case, since atomic arrays may
-- need larger alignments.
if not Is_Packed (E)
and then Unknown_Alignment (E)
and then Known_Alignment (Ctyp)
and then Known_Static_Component_Size (E)
and then Known_Static_Esize (Ctyp)
and then Esize (Ctyp) = Component_Size (E)
and then not Is_Atomic (E)
then
Set_Alignment (E, Alignment (Component_Type (E)));
end if;
end;
-- For a class-wide type, the corresponding specific type is
-- frozen as well (RM 13.14(15))
elsif Is_Class_Wide_Type (E) then
Freeze_And_Append (Root_Type (E), Loc, Result);
-- If the Class_Wide_Type is an Itype (when type is the anonymous
-- parent of a derived type) and it is a library-level entity,
-- generate an itype reference for it. Otherwise, its first
-- explicit reference may be in an inner scope, which will be
-- rejected by the back-end.
if Is_Itype (E)
and then Is_Compilation_Unit (Scope (E))
then
declare
Ref : constant Node_Id := Make_Itype_Reference (Loc);
begin
Set_Itype (Ref, E);
if No (Result) then
Result := New_List (Ref);
else
Append (Ref, Result);
end if;
end;
end if;
-- The equivalent type associated with a class-wide subtype
-- needs to be frozen to ensure that its layout is done.
-- Class-wide subtypes are currently only frozen on targets
-- requiring front-end layout (see New_Class_Wide_Subtype
-- and Make_CW_Equivalent_Type in exp_util.adb).
if Ekind (E) = E_Class_Wide_Subtype
and then Present (Equivalent_Type (E))
then
Freeze_And_Append (Equivalent_Type (E), Loc, Result);
end if;
-- For a record (sub)type, freeze all the component types (RM
-- 13.14(15). We test for E_Record_(sub)Type here, rather than
-- using Is_Record_Type, because we don't want to attempt the
-- freeze for the case of a private type with record extension
-- (we will do that later when the full type is frozen).
elsif Ekind (E) = E_Record_Type
or else Ekind (E) = E_Record_Subtype
then
Freeze_Record_Type (E);
-- For a concurrent type, freeze corresponding record type. This
-- does not correpond to any specific rule in the RM, but the
-- record type is essentially part of the concurrent type.
-- Freeze as well all local entities. This includes record types
-- created for entry parameter blocks, and whatever local entities
-- may appear in the private part.
elsif Is_Concurrent_Type (E) then
if Present (Corresponding_Record_Type (E)) then
Freeze_And_Append
(Corresponding_Record_Type (E), Loc, Result);
end if;
Comp := First_Entity (E);
while Present (Comp) loop
if Is_Type (Comp) then
Freeze_And_Append (Comp, Loc, Result);
elsif (Ekind (Comp)) /= E_Function then
if Is_Itype (Etype (Comp))
and then Underlying_Type (Scope (Etype (Comp))) = E
then
Undelay_Type (Etype (Comp));
end if;
Freeze_And_Append (Etype (Comp), Loc, Result);
end if;
Next_Entity (Comp);
end loop;
-- Private types are required to point to the same freeze node as
-- their corresponding full views. The freeze node itself has to
-- point to the partial view of the entity (because from the partial
-- view, we can retrieve the full view, but not the reverse).
-- However, in order to freeze correctly, we need to freeze the full
-- view. If we are freezing at the end of a scope (or within the
-- scope of the private type), the partial and full views will have
-- been swapped, the full view appears first in the entity chain and
-- the swapping mechanism ensures that the pointers are properly set
-- (on scope exit).
-- If we encounter the partial view before the full view (e.g. when
-- freezing from another scope), we freeze the full view, and then
-- set the pointers appropriately since we cannot rely on swapping to
-- fix things up (subtypes in an outer scope might not get swapped).
elsif Is_Incomplete_Or_Private_Type (E)
and then not Is_Generic_Type (E)
then
-- Case of full view present
if Present (Full_View (E)) then
-- If full view has already been frozen, then no further
-- processing is required
if Is_Frozen (Full_View (E)) then
Set_Has_Delayed_Freeze (E, False);
Set_Freeze_Node (E, Empty);
Check_Debug_Info_Needed (E);
-- Otherwise freeze full view and patch the pointers so that
-- the freeze node will elaborate both views in the back-end.
else
declare
Full : constant Entity_Id := Full_View (E);
begin
if Is_Private_Type (Full)
and then Present (Underlying_Full_View (Full))
then
Freeze_And_Append
(Underlying_Full_View (Full), Loc, Result);
end if;
Freeze_And_Append (Full, Loc, Result);
if Has_Delayed_Freeze (E) then
F_Node := Freeze_Node (Full);
if Present (F_Node) then
Set_Freeze_Node (E, F_Node);
Set_Entity (F_Node, E);
else
-- {Incomplete,Private}_Subtypes
-- with Full_Views constrained by discriminants
Set_Has_Delayed_Freeze (E, False);
Set_Freeze_Node (E, Empty);
end if;
end if;
end;
Check_Debug_Info_Needed (E);
end if;
-- AI-117 requires that the convention of a partial view be the
-- same as the convention of the full view. Note that this is a
-- recognized breach of privacy, but it's essential for logical
-- consistency of representation, and the lack of a rule in
-- RM95 was an oversight.
Set_Convention (E, Convention (Full_View (E)));
Set_Size_Known_At_Compile_Time (E,
Size_Known_At_Compile_Time (Full_View (E)));
-- Size information is copied from the full view to the
-- incomplete or private view for consistency
-- We skip this is the full view is not a type. This is very
-- strange of course, and can only happen as a result of
-- certain illegalities, such as a premature attempt to derive
-- from an incomplete type.
if Is_Type (Full_View (E)) then
Set_Size_Info (E, Full_View (E));
Set_RM_Size (E, RM_Size (Full_View (E)));
end if;
return Result;
-- Case of no full view present. If entity is derived or subtype,
-- it is safe to freeze, correctness depends on the frozen status
-- of parent. Otherwise it is either premature usage, or a Taft
-- amendment type, so diagnosis is at the point of use and the
-- type might be frozen later.
elsif E /= Base_Type (E)
or else Is_Derived_Type (E)
then
null;
else
Set_Is_Frozen (E, False);
return No_List;
end if;
-- For access subprogram, freeze types of all formals, the return
-- type was already frozen, since it is the Etype of the function.
elsif Ekind (E) = E_Subprogram_Type then
Formal := First_Formal (E);
while Present (Formal) loop
Freeze_And_Append (Etype (Formal), Loc, Result);
Next_Formal (Formal);
end loop;
-- If the return type requires a transient scope, and we are on
-- a target allowing functions to return with a depressed stack
-- pointer, then we mark the function as requiring this treatment.
if Functions_Return_By_DSP_On_Target
and then Requires_Transient_Scope (Etype (E))
then
Set_Function_Returns_With_DSP (E);
end if;
Freeze_Subprogram (E);
-- Ada 2005 (AI-326): Check wrong use of tag incomplete type
--
-- type T is tagged;
-- type Acc is access function (X : T) return T; -- ERROR
if Ekind (Etype (E)) = E_Incomplete_Type
and then Is_Tagged_Type (Etype (E))
and then No (Full_View (Etype (E)))
then
Error_Msg_N
("(Ada 2005): invalid use of tagged incomplete type", E);
end if;
-- For access to a protected subprogram, freeze the equivalent type
-- (however this is not set if we are not generating code or if this
-- is an anonymous type used just for resolution).
elsif Ekind (E) = E_Access_Protected_Subprogram_Type then
-- AI-326: Check wrong use of tagged incomplete types
-- type T is tagged;
-- type As3D is access protected
-- function (X : Float) return T; -- ERROR
declare
Etyp : Entity_Id;
begin
Etyp := Etype (Directly_Designated_Type (E));
if Is_Class_Wide_Type (Etyp) then
Etyp := Etype (Etyp);
end if;
if Ekind (Etyp) = E_Incomplete_Type
and then Is_Tagged_Type (Etyp)
and then No (Full_View (Etyp))
then
Error_Msg_N
("(Ada 2005): invalid use of tagged incomplete type", E);
end if;
end;
if Present (Equivalent_Type (E)) then
Freeze_And_Append (Equivalent_Type (E), Loc, Result);
end if;
end if;
-- Generic types are never seen by the back-end, and are also not
-- processed by the expander (since the expander is turned off for
-- generic processing), so we never need freeze nodes for them.
if Is_Generic_Type (E) then
return Result;
end if;
-- Some special processing for non-generic types to complete
-- representation details not known till the freeze point.
if Is_Fixed_Point_Type (E) then
Freeze_Fixed_Point_Type (E);
-- Some error checks required for ordinary fixed-point type. Defer
-- these till the freeze-point since we need the small and range
-- values. We only do these checks for base types
if Is_Ordinary_Fixed_Point_Type (E)
and then E = Base_Type (E)
then
if Small_Value (E) < Ureal_2_M_80 then
Error_Msg_Name_1 := Name_Small;
Error_Msg_N
("`&''%` is too small, minimum is 2.0'*'*(-80)", E);
elsif Small_Value (E) > Ureal_2_80 then
Error_Msg_Name_1 := Name_Small;
Error_Msg_N
("`&''%` is too large, maximum is 2.0'*'*80", E);
end if;
if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
Error_Msg_Name_1 := Name_First;
Error_Msg_N
("`&''%` is too small, minimum is -10.0'*'*36", E);
end if;
if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
Error_Msg_Name_1 := Name_Last;
Error_Msg_N
("`&''%` is too large, maximum is 10.0'*'*36", E);
end if;
end if;
elsif Is_Enumeration_Type (E) then
Freeze_Enumeration_Type (E);
elsif Is_Integer_Type (E) then
Adjust_Esize_For_Alignment (E);
elsif Is_Access_Type (E) then
-- Check restriction for standard storage pool
if No (Associated_Storage_Pool (E)) then
Check_Restriction (No_Standard_Storage_Pools, E);
end if;
-- Deal with error message for pure access type. This is not an
-- error in Ada 2005 if there is no pool (see AI-366).
if Is_Pure_Unit_Access_Type (E)
and then (Ada_Version < Ada_05
or else not No_Pool_Assigned (E))
then
Error_Msg_N ("named access type not allowed in pure unit", E);
end if;
end if;
-- Case of composite types
if Is_Composite_Type (E) then
-- AI-117 requires that all new primitives of a tagged type must
-- inherit the convention of the full view of the type. Inherited
-- and overriding operations are defined to inherit the convention
-- of their parent or overridden subprogram (also specified in
-- AI-117), which will have occurred earlier (in Derive_Subprogram
-- and New_Overloaded_Entity). Here we set the convention of
-- primitives that are still convention Ada, which will ensure
-- that any new primitives inherit the type's convention.
-- Class-wide types can have a foreign convention inherited from
-- their specific type, but are excluded from this since they
-- don't have any associated primitives.
if Is_Tagged_Type (E)
and then not Is_Class_Wide_Type (E)
and then Convention (E) /= Convention_Ada
then
declare
Prim_List : constant Elist_Id := Primitive_Operations (E);
Prim : Elmt_Id;
begin
Prim := First_Elmt (Prim_List);
while Present (Prim) loop
if Convention (Node (Prim)) = Convention_Ada then
Set_Convention (Node (Prim), Convention (E));
end if;
Next_Elmt (Prim);
end loop;
end;
end if;
end if;
-- Generate primitive operation references for a tagged type
if Is_Tagged_Type (E)
and then not Is_Class_Wide_Type (E)
then
declare
Prim_List : Elist_Id;
Prim : Elmt_Id;
Ent : Entity_Id;
Aux_E : Entity_Id;
begin
-- Handle subtypes
if Ekind (E) = E_Protected_Subtype
or else Ekind (E) = E_Task_Subtype
then
Aux_E := Etype (E);
else
Aux_E := E;
end if;
-- Ada 2005 (AI-345): In case of concurrent type generate
-- reference to the wrapper that allow us to dispatch calls
-- through their implemented abstract interface types.
-- The check for Present here is to protect against previously
-- reported critical errors.
if Is_Concurrent_Type (Aux_E)
and then Present (Corresponding_Record_Type (Aux_E))
then
pragma Assert (not Is_Empty_Elmt_List
(Abstract_Interfaces
(Corresponding_Record_Type (Aux_E))));
Prim_List := Primitive_Operations
(Corresponding_Record_Type (Aux_E));
else
Prim_List := Primitive_Operations (Aux_E);
end if;
-- Loop to generate references for primitive operations
if Present (Prim_List) then
Prim := First_Elmt (Prim_List);
while Present (Prim) loop
-- If the operation is derived, get the original for
-- cross-reference purposes (it is the original for
-- which we want the xref, and for which the comes
-- from source test needs to be performed).
Ent := Node (Prim);
while Present (Alias (Ent)) loop
Ent := Alias (Ent);
end loop;
Generate_Reference (E, Ent, 'p', Set_Ref => False);
Next_Elmt (Prim);
end loop;
end if;
end;
end if;
-- Now that all types from which E may depend are frozen, see if the
-- size is known at compile time, if it must be unsigned, or if
-- strict alignent is required
Check_Compile_Time_Size (E);
Check_Unsigned_Type (E);
if Base_Type (E) = E then
Check_Strict_Alignment (E);
end if;
-- Do not allow a size clause for a type which does not have a size
-- that is known at compile time
if Has_Size_Clause (E)
and then not Size_Known_At_Compile_Time (E)
then
-- Supress this message if errors posted on E, even if we are
-- in all errors mode, since this is often a junk message
if not Error_Posted (E) then
Error_Msg_N
("size clause not allowed for variable length type",
Size_Clause (E));
end if;
end if;
-- Remaining process is to set/verify the representation information,
-- in particular the size and alignment values. This processing is
-- not required for generic types, since generic types do not play
-- any part in code generation, and so the size and alignment values
-- for such types are irrelevant.
if Is_Generic_Type (E) then
return Result;
-- Otherwise we call the layout procedure
else
Layout_Type (E);
end if;
-- End of freeze processing for type entities
end if;
-- Here is where we logically freeze the current entity. If it has a
-- freeze node, then this is the point at which the freeze node is
-- linked into the result list.
if Has_Delayed_Freeze (E) then
-- If a freeze node is already allocated, use it, otherwise allocate
-- a new one. The preallocation happens in the case of anonymous base
-- types, where we preallocate so that we can set First_Subtype_Link.
-- Note that we reset the Sloc to the current freeze location.
if Present (Freeze_Node (E)) then
F_Node := Freeze_Node (E);
Set_Sloc (F_Node, Loc);
else
F_Node := New_Node (N_Freeze_Entity, Loc);
Set_Freeze_Node (E, F_Node);
Set_Access_Types_To_Process (F_Node, No_Elist);
Set_TSS_Elist (F_Node, No_Elist);
Set_Actions (F_Node, No_List);
end if;
Set_Entity (F_Node, E);
if Result = No_List then
Result := New_List (F_Node);
else
Append (F_Node, Result);
end if;
-- A final pass over record types with discriminants. If the type
-- has an incomplete declaration, there may be constrained access
-- subtypes declared elsewhere, which do not depend on the discrimi-
-- nants of the type, and which are used as component types (i.e.
-- the full view is a recursive type). The designated types of these
-- subtypes can only be elaborated after the type itself, and they
-- need an itype reference.
if Ekind (E) = E_Record_Type
and then Has_Discriminants (E)
then
declare
Comp : Entity_Id;
IR : Node_Id;
Typ : Entity_Id;
begin
Comp := First_Component (E);
while Present (Comp) loop
Typ := Etype (Comp);
if Ekind (Comp) = E_Component
and then Is_Access_Type (Typ)
and then Scope (Typ) /= E
and then Base_Type (Designated_Type (Typ)) = E
and then Is_Itype (Designated_Type (Typ))
then
IR := Make_Itype_Reference (Sloc (Comp));
Set_Itype (IR, Designated_Type (Typ));
Append (IR, Result);
end if;
Next_Component (Comp);
end loop;
end;
end if;
end if;
-- When a type is frozen, the first subtype of the type is frozen as
-- well (RM 13.14(15)). This has to be done after freezing the type,
-- since obviously the first subtype depends on its own base type.
if Is_Type (E) then
Freeze_And_Append (First_Subtype (E), Loc, Result);
-- If we just froze a tagged non-class wide record, then freeze the
-- corresponding class-wide type. This must be done after the tagged
-- type itself is frozen, because the class-wide type refers to the
-- tagged type which generates the class.
if Is_Tagged_Type (E)
and then not Is_Class_Wide_Type (E)
and then Present (Class_Wide_Type (E))
then
Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
end if;
end if;
Check_Debug_Info_Needed (E);
-- Special handling for subprograms
if Is_Subprogram (E) then
-- If subprogram has address clause then reset Is_Public flag, since
-- we do not want the backend to generate external references.
if Present (Address_Clause (E))
and then not Is_Library_Level_Entity (E)
then
Set_Is_Public (E, False);
-- If no address clause and not intrinsic, then for imported
-- subprogram in main unit, generate descriptor if we are in
-- Propagate_Exceptions mode.
elsif Propagate_Exceptions
and then Is_Imported (E)
and then not Is_Intrinsic_Subprogram (E)
and then Convention (E) /= Convention_Stubbed
then
if Result = No_List then
Result := Empty_List;
end if;
end if;
end if;
return Result;
end Freeze_Entity;
-----------------------------
-- Freeze_Enumeration_Type --
-----------------------------
procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
begin
if Has_Foreign_Convention (Typ)
and then not Has_Size_Clause (Typ)
and then Esize (Typ) < Standard_Integer_Size
then
Init_Esize (Typ, Standard_Integer_Size);
else
Adjust_Esize_For_Alignment (Typ);
end if;
end Freeze_Enumeration_Type;
-----------------------
-- Freeze_Expression --
-----------------------
procedure Freeze_Expression (N : Node_Id) is
In_Def_Exp : constant Boolean := In_Default_Expression;
Typ : Entity_Id;
Nam : Entity_Id;
Desig_Typ : Entity_Id;
P : Node_Id;
Parent_P : Node_Id;
Freeze_Outside : Boolean := False;
-- This flag is set true if the entity must be frozen outside the
-- current subprogram. This happens in the case of expander generated
-- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
-- not freeze all entities like other bodies, but which nevertheless
-- may reference entities that have to be frozen before the body and
-- obviously cannot be frozen inside the body.
function In_Exp_Body (N : Node_Id) return Boolean;
-- Given an N_Handled_Sequence_Of_Statements node N, determines whether
-- it is the handled statement sequence of an expander-generated
-- subprogram (init proc, or stream subprogram). If so, it returns
-- True, otherwise False.
-----------------
-- In_Exp_Body --
-----------------
function In_Exp_Body (N : Node_Id) return Boolean is
P : Node_Id;
begin
if Nkind (N) = N_Subprogram_Body then
P := N;
else
P := Parent (N);
end if;
if Nkind (P) /= N_Subprogram_Body then
return False;
else
P := Defining_Unit_Name (Specification (P));
if Nkind (P) = N_Defining_Identifier
and then (Is_Init_Proc (P) or else
Is_TSS (P, TSS_Stream_Input) or else
Is_TSS (P, TSS_Stream_Output) or else
Is_TSS (P, TSS_Stream_Read) or else
Is_TSS (P, TSS_Stream_Write))
then
return True;
else
return False;
end if;
end if;
end In_Exp_Body;
-- Start of processing for Freeze_Expression
begin
-- Immediate return if freezing is inhibited. This flag is set by the
-- analyzer to stop freezing on generated expressions that would cause
-- freezing if they were in the source program, but which are not
-- supposed to freeze, since they are created.
if Must_Not_Freeze (N) then
return;
end if;
-- If expression is non-static, then it does not freeze in a default
-- expression, see section "Handling of Default Expressions" in the
-- spec of package Sem for further details. Note that we have to
-- make sure that we actually have a real expression (if we have
-- a subtype indication, we can't test Is_Static_Expression!)
if In_Def_Exp
and then Nkind (N) in N_Subexpr
and then not Is_Static_Expression (N)
then
return;
end if;
-- Freeze type of expression if not frozen already
Typ := Empty;
if Nkind (N) in N_Has_Etype then
if not Is_Frozen (Etype (N)) then
Typ := Etype (N);
-- Base type may be an derived numeric type that is frozen at
-- the point of declaration, but first_subtype is still unfrozen.
elsif not Is_Frozen (First_Subtype (Etype (N))) then
Typ := First_Subtype (Etype (N));
end if;
end if;
-- For entity name, freeze entity if not frozen already. A special
-- exception occurs for an identifier that did not come from source.
-- We don't let such identifiers freeze a non-internal entity, i.e.
-- an entity that did come from source, since such an identifier was
-- generated by the expander, and cannot have any semantic effect on
-- the freezing semantics. For example, this stops the parameter of
-- an initialization procedure from freezing the variable.
if Is_Entity_Name (N)
and then not Is_Frozen (Entity (N))
and then (Nkind (N) /= N_Identifier
or else Comes_From_Source (N)
or else not Comes_From_Source (Entity (N)))
then
Nam := Entity (N);
else
Nam := Empty;
end if;
-- For an allocator freeze designated type if not frozen already
-- For an aggregate whose component type is an access type, freeze the
-- designated type now, so that its freeze does not appear within the
-- loop that might be created in the expansion of the aggregate. If the
-- designated type is a private type without full view, the expression
-- cannot contain an allocator, so the type is not frozen.
Desig_Typ := Empty;
case Nkind (N) is
when N_Allocator =>
Desig_Typ := Designated_Type (Etype (N));
when N_Aggregate =>
if Is_Array_Type (Etype (N))
and then Is_Access_Type (Component_Type (Etype (N)))
then
Desig_Typ := Designated_Type (Component_Type (Etype (N)));
end if;
when N_Selected_Component |
N_Indexed_Component |
N_Slice =>
if Is_Access_Type (Etype (Prefix (N))) then
Desig_Typ := Designated_Type (Etype (Prefix (N)));
end if;
when others =>
null;
end case;
if Desig_Typ /= Empty
and then (Is_Frozen (Desig_Typ)
or else (not Is_Fully_Defined (Desig_Typ)))
then
Desig_Typ := Empty;
end if;
-- All done if nothing needs freezing
if No (Typ)
and then No (Nam)
and then No (Desig_Typ)
then
return;
end if;
-- Loop for looking at the right place to insert the freeze nodes
-- exiting from the loop when it is appropriate to insert the freeze
-- node before the current node P.
-- Also checks some special exceptions to the freezing rules. These
-- cases result in a direct return, bypassing the freeze action.
P := N;
loop
Parent_P := Parent (P);
-- If we don't have a parent, then we are not in a well-formed tree.
-- This is an unusual case, but there are some legitimate situations
-- in which this occurs, notably when the expressions in the range of
-- a type declaration are resolved. We simply ignore the freeze
-- request in this case. Is this right ???
if No (Parent_P) then
return;
end if;
-- See if we have got to an appropriate point in the tree
case Nkind (Parent_P) is
-- A special test for the exception of (RM 13.14(8)) for the case
-- of per-object expressions (RM 3.8(18)) occurring in component
-- definition or a discrete subtype definition. Note that we test
-- for a component declaration which includes both cases we are
-- interested in, and furthermore the tree does not have explicit
-- nodes for either of these two constructs.
when N_Component_Declaration =>
-- The case we want to test for here is an identifier that is
-- a per-object expression, this is either a discriminant that
-- appears in a context other than the component declaration
-- or it is a reference to the type of the enclosing construct.
-- For either of these cases, we skip the freezing
if not In_Default_Expression
and then Nkind (N) = N_Identifier
and then (Present (Entity (N)))
then
-- We recognize the discriminant case by just looking for
-- a reference to a discriminant. It can only be one for
-- the enclosing construct. Skip freezing in this case.
if Ekind (Entity (N)) = E_Discriminant then
return;
-- For the case of a reference to the enclosing record,
-- (or task or protected type), we look for a type that
-- matches the current scope.
elsif Entity (N) = Current_Scope then
return;
end if;
end if;
-- If we have an enumeration literal that appears as the choice in
-- the aggregate of an enumeration representation clause, then
-- freezing does not occur (RM 13.14(10)).
when N_Enumeration_Representation_Clause =>
-- The case we are looking for is an enumeration literal
if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
and then Is_Enumeration_Type (Etype (N))
then
-- If enumeration literal appears directly as the choice,
-- do not freeze (this is the normal non-overloade case)
if Nkind (Parent (N)) = N_Component_Association
and then First (Choices (Parent (N))) = N
then
return;
-- If enumeration literal appears as the name of function
-- which is the choice, then also do not freeze. This
-- happens in the overloaded literal case, where the
-- enumeration literal is temporarily changed to a function
-- call for overloading analysis purposes.
elsif Nkind (Parent (N)) = N_Function_Call
and then
Nkind (Parent (Parent (N))) = N_Component_Association
and then
First (Choices (Parent (Parent (N)))) = Parent (N)
then
return;
end if;
end if;
-- Normally if the parent is a handled sequence of statements,
-- then the current node must be a statement, and that is an
-- appropriate place to insert a freeze node.
when N_Handled_Sequence_Of_Statements =>
-- An exception occurs when the sequence of statements is for
-- an expander generated body that did not do the usual freeze
-- all operation. In this case we usually want to freeze
-- outside this body, not inside it, and we skip past the
-- subprogram body that we are inside.
if In_Exp_Body (Parent_P) then
-- However, we *do* want to freeze at this point if we have
-- an entity to freeze, and that entity is declared *inside*
-- the body of the expander generated procedure. This case
-- is recognized by the scope of the type, which is either
-- the spec for some enclosing body, or (in the case of
-- init_procs, for which there are no separate specs) the
-- current scope.
declare
Subp : constant Node_Id := Parent (Parent_P);
Cspc : Entity_Id;
begin
if Nkind (Subp) = N_Subprogram_Body then
Cspc := Corresponding_Spec (Subp);
if (Present (Typ) and then Scope (Typ) = Cspc)
or else
(Present (Nam) and then Scope (Nam) = Cspc)
then
exit;
elsif Present (Typ)
and then Scope (Typ) = Current_Scope
and then Current_Scope = Defining_Entity (Subp)
then
exit;
end if;
end if;
end;
-- If not that exception to the exception, then this is
-- where we delay the freeze till outside the body.
Parent_P := Parent (Parent_P);
Freeze_Outside := True;
-- Here if normal case where we are in handled statement
-- sequence and want to do the insertion right there.
else
exit;
end if;
-- If parent is a body or a spec or a block, then the current node
-- is a statement or declaration and we can insert the freeze node
-- before it.
when N_Package_Specification |
N_Package_Body |
N_Subprogram_Body |
N_Task_Body |
N_Protected_Body |
N_Entry_Body |
N_Block_Statement => exit;
-- The expander is allowed to define types in any statements list,
-- so any of the following parent nodes also mark a freezing point
-- if the actual node is in a list of statements or declarations.
when N_Exception_Handler |
N_If_Statement |
N_Elsif_Part |
N_Case_Statement_Alternative |
N_Compilation_Unit_Aux |
N_Selective_Accept |
N_Accept_Alternative |
N_Delay_Alternative |
N_Conditional_Entry_Call |
N_Entry_Call_Alternative |
N_Triggering_Alternative |
N_Abortable_Part |
N_Freeze_Entity =>
exit when Is_List_Member (P);
-- Note: The N_Loop_Statement is a special case. A type that
-- appears in the source can never be frozen in a loop (this
-- occurs only because of a loop expanded by the expander), so we
-- keep on going. Otherwise we terminate the search. Same is true
-- of any entity which comes from source. (if they have predefined
-- type, that type does not appear to come from source, but the
-- entity should not be frozen here).
when N_Loop_Statement =>
exit when not Comes_From_Source (Etype (N))
and then (No (Nam) or else not Comes_From_Source (Nam));
-- For all other cases, keep looking at parents
when others =>
null;
end case;
-- We fall through the case if we did not yet find the proper
-- place in the free for inserting the freeze node, so climb!
P := Parent_P;
end loop;
-- If the expression appears in a record or an initialization procedure,
-- the freeze nodes are collected and attached to the current scope, to
-- be inserted and analyzed on exit from the scope, to insure that
-- generated entities appear in the correct scope. If the expression is
-- a default for a discriminant specification, the scope is still void.
-- The expression can also appear in the discriminant part of a private
-- or concurrent type.
-- If the expression appears in a constrained subcomponent of an
-- enclosing record declaration, the freeze nodes must be attached to
-- the outer record type so they can eventually be placed in the
-- enclosing declaration list.
-- The other case requiring this special handling is if we are in a
-- default expression, since in that case we are about to freeze a
-- static type, and the freeze scope needs to be the outer scope, not
-- the scope of the subprogram with the default parameter.
-- For default expressions in generic units, the Move_Freeze_Nodes
-- mechanism (see sem_ch12.adb) takes care of placing them at the proper
-- place, after the generic unit.
if (In_Def_Exp and not Inside_A_Generic)
or else Freeze_Outside
or else (Is_Type (Current_Scope)
and then (not Is_Concurrent_Type (Current_Scope)
or else not Has_Completion (Current_Scope)))
or else Ekind (Current_Scope) = E_Void
then
declare
Loc : constant Source_Ptr := Sloc (Current_Scope);
Freeze_Nodes : List_Id := No_List;
Pos : Int := Scope_Stack.Last;
begin
if Present (Desig_Typ) then
Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
end if;
if Present (Typ) then
Freeze_And_Append (Typ, Loc, Freeze_Nodes);
end if;
if Present (Nam) then
Freeze_And_Append (Nam, Loc, Freeze_Nodes);
end if;
-- The current scope may be that of a constrained component of
-- an enclosing record declaration, which is above the current
-- scope in the scope stack.
if Is_Record_Type (Scope (Current_Scope)) then
Pos := Pos - 1;
end if;
if Is_Non_Empty_List (Freeze_Nodes) then
if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
Freeze_Nodes;
else
Append_List (Freeze_Nodes, Scope_Stack.Table
(Pos).Pending_Freeze_Actions);
end if;
end if;
end;
return;
end if;
-- Now we have the right place to do the freezing. First, a special
-- adjustment, if we are in default expression analysis mode, these
-- freeze actions must not be thrown away (normally all inserted actions
-- are thrown away in this mode. However, the freeze actions are from
-- static expressions and one of the important reasons we are doing this
-- special analysis is to get these freeze actions. Therefore we turn
-- off the In_Default_Expression mode to propagate these freeze actions.
-- This also means they get properly analyzed and expanded.
In_Default_Expression := False;
-- Freeze the designated type of an allocator (RM 13.14(13))
if Present (Desig_Typ) then
Freeze_Before (P, Desig_Typ);
end if;
-- Freeze type of expression (RM 13.14(10)). Note that we took care of
-- the enumeration representation clause exception in the loop above.
if Present (Typ) then
Freeze_Before (P, Typ);
end if;
-- Freeze name if one is present (RM 13.14(11))
if Present (Nam) then
Freeze_Before (P, Nam);
end if;
In_Default_Expression := In_Def_Exp;
end Freeze_Expression;
-----------------------------
-- Freeze_Fixed_Point_Type --
-----------------------------
-- Certain fixed-point types and subtypes, including implicit base types
-- and declared first subtypes, have not yet set up a range. This is
-- because the range cannot be set until the Small and Size values are
-- known, and these are not known till the type is frozen.
-- To signal this case, Scalar_Range contains an unanalyzed syntactic range
-- whose bounds are unanalyzed real literals. This routine will recognize
-- this case, and transform this range node into a properly typed range
-- with properly analyzed and resolved values.
procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
Rng : constant Node_Id := Scalar_Range (Typ);
Lo : constant Node_Id := Low_Bound (Rng);
Hi : constant Node_Id := High_Bound (Rng);
Btyp : constant Entity_Id := Base_Type (Typ);
Brng : constant Node_Id := Scalar_Range (Btyp);
BLo : constant Node_Id := Low_Bound (Brng);
BHi : constant Node_Id := High_Bound (Brng);
Small : constant Ureal := Small_Value (Typ);
Loval : Ureal;
Hival : Ureal;
Atype : Entity_Id;
Actual_Size : Nat;
function Fsize (Lov, Hiv : Ureal) return Nat;
-- Returns size of type with given bounds. Also leaves these
-- bounds set as the current bounds of the Typ.
-----------
-- Fsize --
-----------
function Fsize (Lov, Hiv : Ureal) return Nat is
begin
Set_Realval (Lo, Lov);
Set_Realval (Hi, Hiv);
return Minimum_Size (Typ);
end Fsize;
-- Start of processing for Freeze_Fixed_Point_Type
begin
-- If Esize of a subtype has not previously been set, set it now
if Unknown_Esize (Typ) then
Atype := Ancestor_Subtype (Typ);
if Present (Atype) then
Set_Esize (Typ, Esize (Atype));
else
Set_Esize (Typ, Esize (Base_Type (Typ)));
end if;
end if;
-- Immediate return if the range is already analyzed. This means that
-- the range is already set, and does not need to be computed by this
-- routine.
if Analyzed (Rng) then
return;
end if;
-- Immediate return if either of the bounds raises Constraint_Error
if Raises_Constraint_Error (Lo)
or else Raises_Constraint_Error (Hi)
then
return;
end if;
Loval := Realval (Lo);
Hival := Realval (Hi);
-- Ordinary fixed-point case
if Is_Ordinary_Fixed_Point_Type (Typ) then
-- For the ordinary fixed-point case, we are allowed to fudge the
-- end-points up or down by small. Generally we prefer to fudge up,
-- i.e. widen the bounds for non-model numbers so that the end points
-- are included. However there are cases in which this cannot be
-- done, and indeed cases in which we may need to narrow the bounds.
-- The following circuit makes the decision.
-- Note: our terminology here is that Incl_EP means that the bounds
-- are widened by Small if necessary to include the end points, and
-- Excl_EP means that the bounds are narrowed by Small to exclude the
-- end-points if this reduces the size.
-- Note that in the Incl case, all we care about is including the
-- end-points. In the Excl case, we want to narrow the bounds as
-- much as permitted by the RM, to give the smallest possible size.
Fudge : declare
Loval_Incl_EP : Ureal;
Hival_Incl_EP : Ureal;
Loval_Excl_EP : Ureal;
Hival_Excl_EP : Ureal;
Size_Incl_EP : Nat;
Size_Excl_EP : Nat;
Model_Num : Ureal;
First_Subt : Entity_Id;
Actual_Lo : Ureal;
Actual_Hi : Ureal;
begin
-- First step. Base types are required to be symmetrical. Right
-- now, the base type range is a copy of the first subtype range.
-- This will be corrected before we are done, but right away we
-- need to deal with the case where both bounds are non-negative.
-- In this case, we set the low bound to the negative of the high
-- bound, to make sure that the size is computed to include the
-- required sign. Note that we do not need to worry about the
-- case of both bounds negative, because the sign will be dealt
-- with anyway. Furthermore we can't just go making such a bound
-- symmetrical, since in a twos-complement system, there is an
-- extra negative value which could not be accomodated on the
-- positive side.
if Typ = Btyp
and then not UR_Is_Negative (Loval)
and then Hival > Loval
then
Loval := -Hival;
Set_Realval (Lo, Loval);
end if;
-- Compute the fudged bounds. If the number is a model number,
-- then we do nothing to include it, but we are allowed to backoff
-- to the next adjacent model number when we exclude it. If it is
-- not a model number then we straddle the two values with the
-- model numbers on either side.
Model_Num := UR_Trunc (Loval / Small) * Small;
if Loval = Model_Num then
Loval_Incl_EP := Model_Num;
else
Loval_Incl_EP := Model_Num - Small;
end if;
-- The low value excluding the end point is Small greater, but
-- we do not do this exclusion if the low value is positive,
-- since it can't help the size and could actually hurt by
-- crossing the high bound.
if UR_Is_Negative (Loval_Incl_EP) then
Loval_Excl_EP := Loval_Incl_EP + Small;
else
Loval_Excl_EP := Loval_Incl_EP;
end if;
-- Similar processing for upper bound and high value
Model_Num := UR_Trunc (Hival / Small) * Small;
if Hival = Model_Num then
Hival_Incl_EP := Model_Num;
else
Hival_Incl_EP := Model_Num + Small;
end if;
if UR_Is_Positive (Hival_Incl_EP) then
Hival_Excl_EP := Hival_Incl_EP - Small;
else
Hival_Excl_EP := Hival_Incl_EP;
end if;
-- One further adjustment is needed. In the case of subtypes, we
-- cannot go outside the range of the base type, or we get
-- peculiarities, and the base type range is already set. This
-- only applies to the Incl values, since clearly the Excl values
-- are already as restricted as they are allowed to be.
if Typ /= Btyp then
Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
end if;
-- Get size including and excluding end points
Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
-- No need to exclude end-points if it does not reduce size
if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
Loval_Excl_EP := Loval_Incl_EP;
end if;
if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
Hival_Excl_EP := Hival_Incl_EP;
end if;
-- Now we set the actual size to be used. We want to use the
-- bounds fudged up to include the end-points but only if this
-- can be done without violating a specifically given size
-- size clause or causing an unacceptable increase in size.
-- Case of size clause given
if Has_Size_Clause (Typ) then
-- Use the inclusive size only if it is consistent with
-- the explicitly specified size.
if Size_Incl_EP <= RM_Size (Typ) then
Actual_Lo := Loval_Incl_EP;
Actual_Hi := Hival_Incl_EP;
Actual_Size := Size_Incl_EP;
-- If the inclusive size is too large, we try excluding
-- the end-points (will be caught later if does not work).
else
Actual_Lo := Loval_Excl_EP;
Actual_Hi := Hival_Excl_EP;
Actual_Size := Size_Excl_EP;
end if;
-- Case of size clause not given
else
-- If we have a base type whose corresponding first subtype
-- has an explicit size that is large enough to include our
-- end-points, then do so. There is no point in working hard
-- to get a base type whose size is smaller than the specified
-- size of the first subtype.
First_Subt := First_Subtype (Typ);
if Has_Size_Clause (First_Subt)
and then Size_Incl_EP <= Esize (First_Subt)
then
Actual_Size := Size_Incl_EP;
Actual_Lo := Loval_Incl_EP;
Actual_Hi := Hival_Incl_EP;
-- If excluding the end-points makes the size smaller and
-- results in a size of 8,16,32,64, then we take the smaller
-- size. For the 64 case, this is compulsory. For the other
-- cases, it seems reasonable. We like to include end points
-- if we can, but not at the expense of moving to the next
-- natural boundary of size.
elsif Size_Incl_EP /= Size_Excl_EP
and then
(Size_Excl_EP = 8 or else
Size_Excl_EP = 16 or else
Size_Excl_EP = 32 or else
Size_Excl_EP = 64)
then
Actual_Size := Size_Excl_EP;
Actual_Lo := Loval_Excl_EP;
Actual_Hi := Hival_Excl_EP;
-- Otherwise we can definitely include the end points
else
Actual_Size := Size_Incl_EP;
Actual_Lo := Loval_Incl_EP;
Actual_Hi := Hival_Incl_EP;
end if;
-- One pathological case: normally we never fudge a low bound
-- down, since it would seem to increase the size (if it has
-- any effect), but for ranges containing single value, or no
-- values, the high bound can be small too large. Consider:
-- type t is delta 2.0**(-14)
-- range 131072.0 .. 0;
-- That lower bound is *just* outside the range of 32 bits, and
-- does need fudging down in this case. Note that the bounds
-- will always have crossed here, since the high bound will be
-- fudged down if necessary, as in the case of:
-- type t is delta 2.0**(-14)
-- range 131072.0 .. 131072.0;
-- So we detect the situation by looking for crossed bounds,
-- and if the bounds are crossed, and the low bound is greater
-- than zero, we will always back it off by small, since this
-- is completely harmless.
if Actual_Lo > Actual_Hi then
if UR_Is_Positive (Actual_Lo) then
Actual_Lo := Loval_Incl_EP - Small;
Actual_Size := Fsize (Actual_Lo, Actual_Hi);
-- And of course, we need to do exactly the same parallel
-- fudge for flat ranges in the negative region.
elsif UR_Is_Negative (Actual_Hi) then
Actual_Hi := Hival_Incl_EP + Small;
Actual_Size := Fsize (Actual_Lo, Actual_Hi);
end if;
end if;
end if;
Set_Realval (Lo, Actual_Lo);
Set_Realval (Hi, Actual_Hi);
end Fudge;
-- For the decimal case, none of this fudging is required, since there
-- are no end-point problems in the decimal case (the end-points are
-- always included).
else
Actual_Size := Fsize (Loval, Hival);
end if;
-- At this stage, the actual size has been calculated and the proper
-- required bounds are stored in the low and high bounds.
if Actual_Size > 64 then
Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
Error_Msg_N
("size required (^) for type& too large, maximum is 64", Typ);
Actual_Size := 64;
end if;
-- Check size against explicit given size
if Has_Size_Clause (Typ) then
if Actual_Size > RM_Size (Typ) then
Error_Msg_Uint_1 := RM_Size (Typ);
Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
Error_Msg_NE
("size given (^) for type& too small, minimum is ^",
Size_Clause (Typ), Typ);
else
Actual_Size := UI_To_Int (Esize (Typ));
end if;
-- Increase size to next natural boundary if no size clause given
else
if Actual_Size <= 8 then
Actual_Size := 8;
elsif Actual_Size <= 16 then
Actual_Size := 16;
elsif Actual_Size <= 32 then
Actual_Size := 32;
else
Actual_Size := 64;
end if;
Init_Esize (Typ, Actual_Size);
Adjust_Esize_For_Alignment (Typ);
end if;
-- If we have a base type, then expand the bounds so that they extend to
-- the full width of the allocated size in bits, to avoid junk range
-- checks on intermediate computations.
if Base_Type (Typ) = Typ then
Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
end if;
-- Final step is to reanalyze the bounds using the proper type
-- and set the Corresponding_Integer_Value fields of the literals.
Set_Etype (Lo, Empty);
Set_Analyzed (Lo, False);
Analyze (Lo);
-- Resolve with universal fixed if the base type, and the base type if
-- it is a subtype. Note we can't resolve the base type with itself,
-- that would be a reference before definition.
if Typ = Btyp then
Resolve (Lo, Universal_Fixed);
else
Resolve (Lo, Btyp);
end if;
-- Set corresponding integer value for bound
Set_Corresponding_Integer_Value
(Lo, UR_To_Uint (Realval (Lo) / Small));
-- Similar processing for high bound
Set_Etype (Hi, Empty);
Set_Analyzed (Hi, False);
Analyze (Hi);
if Typ = Btyp then
Resolve (Hi, Universal_Fixed);
else
Resolve (Hi, Btyp);
end if;
Set_Corresponding_Integer_Value
(Hi, UR_To_Uint (Realval (Hi) / Small));
-- Set type of range to correspond to bounds
Set_Etype (Rng, Etype (Lo));
-- Set Esize to calculated size if not set already
if Unknown_Esize (Typ) then
Init_Esize (Typ, Actual_Size);
end if;
-- Set RM_Size if not already set. If already set, check value
declare
Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
begin
if RM_Size (Typ) /= Uint_0 then
if RM_Size (Typ) < Minsiz then
Error_Msg_Uint_1 := RM_Size (Typ);
Error_Msg_Uint_2 := Minsiz;
Error_Msg_NE
("size given (^) for type& too small, minimum is ^",
Size_Clause (Typ), Typ);
end if;
else
Set_RM_Size (Typ, Minsiz);
end if;
end;
end Freeze_Fixed_Point_Type;
------------------
-- Freeze_Itype --
------------------
procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
L : List_Id;
begin
Set_Has_Delayed_Freeze (T);
L := Freeze_Entity (T, Sloc (N));
if Is_Non_Empty_List (L) then
Insert_Actions (N, L);
end if;
end Freeze_Itype;
--------------------------
-- Freeze_Static_Object --
--------------------------
procedure Freeze_Static_Object (E : Entity_Id) is
Cannot_Be_Static : exception;
-- Exception raised if the type of a static object cannot be made
-- static. This happens if the type depends on non-global objects.
procedure Ensure_Expression_Is_SA (N : Node_Id);
-- Called to ensure that an expression used as part of a type definition
-- is statically allocatable, which means that the expression type is
-- statically allocatable, and the expression is either static, or a
-- reference to a library level constant.
procedure Ensure_Type_Is_SA (Typ : Entity_Id);
-- Called to mark a type as static, checking that it is possible
-- to set the type as static. If it is not possible, then the
-- exception Cannot_Be_Static is raised.
-----------------------------
-- Ensure_Expression_Is_SA --
-----------------------------
procedure Ensure_Expression_Is_SA (N : Node_Id) is
Ent : Entity_Id;
begin
Ensure_Type_Is_SA (Etype (N));
if Is_Static_Expression (N) then
return;
elsif Nkind (N) = N_Identifier then
Ent := Entity (N);
if Present (Ent)
and then Ekind (Ent) = E_Constant
and then Is_Library_Level_Entity (Ent)
then
return;
end if;
end if;
raise Cannot_Be_Static;
end Ensure_Expression_Is_SA;
-----------------------
-- Ensure_Type_Is_SA --
-----------------------
procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
N : Node_Id;
C : Entity_Id;
begin
-- If type is library level, we are all set
if Is_Library_Level_Entity (Typ) then
return;
end if;
-- We are also OK if the type already marked as statically allocated,
-- which means we processed it before.
if Is_Statically_Allocated (Typ) then
return;
end if;
-- Mark type as statically allocated
Set_Is_Statically_Allocated (Typ);
-- Check that it is safe to statically allocate this type
if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
Ensure_Expression_Is_SA (Type_High_Bound (Typ));
elsif Is_Array_Type (Typ) then
N := First_Index (Typ);
while Present (N) loop
Ensure_Type_Is_SA (Etype (N));
Next_Index (N);
end loop;
Ensure_Type_Is_SA (Component_Type (Typ));
elsif Is_Access_Type (Typ) then
if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
declare
F : Entity_Id;
T : constant Entity_Id := Etype (Designated_Type (Typ));
begin
if T /= Standard_Void_Type then
Ensure_Type_Is_SA (T);
end if;
F := First_Formal (Designated_Type (Typ));
while Present (F) loop
Ensure_Type_Is_SA (Etype (F));
Next_Formal (F);
end loop;
end;
else
Ensure_Type_Is_SA (Designated_Type (Typ));
end if;
elsif Is_Record_Type (Typ) then
C := First_Entity (Typ);
while Present (C) loop
if Ekind (C) = E_Discriminant
or else Ekind (C) = E_Component
then
Ensure_Type_Is_SA (Etype (C));
elsif Is_Type (C) then
Ensure_Type_Is_SA (C);
end if;
Next_Entity (C);
end loop;
elsif Ekind (Typ) = E_Subprogram_Type then
Ensure_Type_Is_SA (Etype (Typ));
C := First_Formal (Typ);
while Present (C) loop
Ensure_Type_Is_SA (Etype (C));
Next_Formal (C);
end loop;
else
raise Cannot_Be_Static;
end if;
end Ensure_Type_Is_SA;
-- Start of processing for Freeze_Static_Object
begin
Ensure_Type_Is_SA (Etype (E));
-- Reset True_Constant flag, since something strange is going on with
-- the scoping here, and our simple value tracing may not be sufficient
-- for this indication to be reliable. We kill the Constant_Value
-- and Last_Assignment indications for the same reason.
Set_Is_True_Constant (E, False);
Set_Current_Value (E, Empty);
if Ekind (E) = E_Variable then
Set_Last_Assignment (E, Empty);
end if;
exception
when Cannot_Be_Static =>
-- If the object that cannot be static is imported or exported,
-- then we give an error message saying that this object cannot
-- be imported or exported.
if Is_Imported (E) then
Error_Msg_N
("& cannot be imported (local type is not constant)", E);
-- Otherwise must be exported, something is wrong if compiler
-- is marking something as statically allocated which cannot be).
else pragma Assert (Is_Exported (E));
Error_Msg_N
("& cannot be exported (local type is not constant)", E);
end if;
end Freeze_Static_Object;
-----------------------
-- Freeze_Subprogram --
-----------------------
procedure Freeze_Subprogram (E : Entity_Id) is
Retype : Entity_Id;
F : Entity_Id;
begin
-- Subprogram may not have an address clause unless it is imported
if Present (Address_Clause (E)) then
if not Is_Imported (E) then
Error_Msg_N
("address clause can only be given " &
"for imported subprogram",
Name (Address_Clause (E)));
end if;
end if;
-- Reset the Pure indication on an imported subprogram unless an
-- explicit Pure_Function pragma was present. We do this because
-- otherwise it is an insidious error to call a non-pure function from
-- pure unit and have calls mysteriously optimized away. What happens
-- here is that the Import can bypass the normal check to ensure that
-- pure units call only pure subprograms.
if Is_Imported (E)
and then Is_Pure (E)
and then not Has_Pragma_Pure_Function (E)
then
Set_Is_Pure (E, False);
end if;
-- For non-foreign convention subprograms, this is where we create
-- the extra formals (for accessibility level and constrained bit
-- information). We delay this till the freeze point precisely so
-- that we know the convention!
if not Has_Foreign_Convention (E) then
Create_Extra_Formals (E);
Set_Mechanisms (E);
-- If this is convention Ada and a Valued_Procedure, that's odd
if Ekind (E) = E_Procedure
and then Is_Valued_Procedure (E)
and then Convention (E) = Convention_Ada
and then Warn_On_Export_Import
then
Error_Msg_N
("?Valued_Procedure has no effect for convention Ada", E);
Set_Is_Valued_Procedure (E, False);
end if;
-- Case of foreign convention
else
Set_Mechanisms (E);
-- For foreign conventions, warn about return of an
-- unconstrained array.
-- Note: we *do* allow a return by descriptor for the VMS case,
-- though here there is probably more to be done ???
if Ekind (E) = E_Function then
Retype := Underlying_Type (Etype (E));
-- If no return type, probably some other error, e.g. a
-- missing full declaration, so ignore.
if No (Retype) then
null;
-- If the return type is generic, we have emitted a warning
-- earlier on, and there is nothing else to check here. Specific
-- instantiations may lead to erroneous behavior.
elsif Is_Generic_Type (Etype (E)) then
null;
elsif Is_Array_Type (Retype)
and then not Is_Constrained (Retype)
and then Mechanism (E) not in Descriptor_Codes
and then Warn_On_Export_Import
then
Error_Msg_N
("?foreign convention function& should not return " &
"unconstrained array", E);
return;
end if;
end if;
-- If any of the formals for an exported foreign convention
-- subprogram have defaults, then emit an appropriate warning since
-- this is odd (default cannot be used from non-Ada code)
if Is_Exported (E) then
F := First_Formal (E);
while Present (F) loop
if Warn_On_Export_Import
and then Present (Default_Value (F))
then
Error_Msg_N
("?parameter cannot be defaulted in non-Ada call",
Default_Value (F));
end if;
Next_Formal (F);
end loop;
end if;
end if;
-- For VMS, descriptor mechanisms for parameters are allowed only
-- for imported subprograms.
if OpenVMS_On_Target then
if not Is_Imported (E) then
F := First_Formal (E);
while Present (F) loop
if Mechanism (F) in Descriptor_Codes then
Error_Msg_N
("descriptor mechanism for parameter not permitted", F);
Error_Msg_N
("\can only be used for imported subprogram", F);
end if;
Next_Formal (F);
end loop;
end if;
end if;
-- Pragma Inline_Always is disallowed for dispatching subprograms
-- because the address of such subprograms is saved in the dispatch
-- table to support dispatching calls, and dispatching calls cannot
-- be inlined. This is consistent with the restriction against using
-- 'Access or 'Address on an Inline_Always subprogram.
if Is_Dispatching_Operation (E) and then Is_Always_Inlined (E) then
Error_Msg_N
("pragma Inline_Always not allowed for dispatching subprograms", E);
end if;
end Freeze_Subprogram;
----------------------
-- Is_Fully_Defined --
----------------------
function Is_Fully_Defined (T : Entity_Id) return Boolean is
begin
if Ekind (T) = E_Class_Wide_Type then
return Is_Fully_Defined (Etype (T));
elsif Is_Array_Type (T) then
return Is_Fully_Defined (Component_Type (T));
elsif Is_Record_Type (T)
and not Is_Private_Type (T)
then
-- Verify that the record type has no components with private types
-- without completion.
declare
Comp : Entity_Id;
begin
Comp := First_Component (T);
while Present (Comp) loop
if not Is_Fully_Defined (Etype (Comp)) then
return False;
end if;
Next_Component (Comp);
end loop;
return True;
end;
else return not Is_Private_Type (T)
or else Present (Full_View (Base_Type (T)));
end if;
end Is_Fully_Defined;
---------------------------------
-- Process_Default_Expressions --
---------------------------------
procedure Process_Default_Expressions
(E : Entity_Id;
After : in out Node_Id)
is
Loc : constant Source_Ptr := Sloc (E);
Dbody : Node_Id;
Formal : Node_Id;
Dcopy : Node_Id;
Dnam : Entity_Id;
begin
Set_Default_Expressions_Processed (E);
-- A subprogram instance and its associated anonymous subprogram share
-- their signature. The default expression functions are defined in the
-- wrapper packages for the anonymous subprogram, and should not be
-- generated again for the instance.
if Is_Generic_Instance (E)
and then Present (Alias (E))
and then Default_Expressions_Processed (Alias (E))
then
return;
end if;
Formal := First_Formal (E);
while Present (Formal) loop
if Present (Default_Value (Formal)) then
-- We work with a copy of the default expression because we
-- do not want to disturb the original, since this would mess
-- up the conformance checking.
Dcopy := New_Copy_Tree (Default_Value (Formal));
-- The analysis of the expression may generate insert actions,
-- which of course must not be executed. We wrap those actions
-- in a procedure that is not called, and later on eliminated.
-- The following cases have no side-effects, and are analyzed
-- directly.
if Nkind (Dcopy) = N_Identifier
or else Nkind (Dcopy) = N_Expanded_Name
or else Nkind (Dcopy) = N_Integer_Literal
or else (Nkind (Dcopy) = N_Real_Literal
and then not Vax_Float (Etype (Dcopy)))
or else Nkind (Dcopy) = N_Character_Literal
or else Nkind (Dcopy) = N_String_Literal
or else Nkind (Dcopy) = N_Null
or else (Nkind (Dcopy) = N_Attribute_Reference
and then
Attribute_Name (Dcopy) = Name_Null_Parameter)
then
-- If there is no default function, we must still do a full
-- analyze call on the default value, to ensure that all error
-- checks are performed, e.g. those associated with static
-- evaluation. Note: this branch will always be taken if the
-- analyzer is turned off (but we still need the error checks).
-- Note: the setting of parent here is to meet the requirement
-- that we can only analyze the expression while attached to
-- the tree. Really the requirement is that the parent chain
-- be set, we don't actually need to be in the tree.
Set_Parent (Dcopy, Declaration_Node (Formal));
Analyze (Dcopy);
-- Default expressions are resolved with their own type if the
-- context is generic, to avoid anomalies with private types.
if Ekind (Scope (E)) = E_Generic_Package then
Resolve (Dcopy);
else
Resolve (Dcopy, Etype (Formal));
end if;
-- If that resolved expression will raise constraint error,
-- then flag the default value as raising constraint error.
-- This allows a proper error message on the calls.
if Raises_Constraint_Error (Dcopy) then
Set_Raises_Constraint_Error (Default_Value (Formal));
end if;
-- If the default is a parameterless call, we use the name of
-- the called function directly, and there is no body to build.
elsif Nkind (Dcopy) = N_Function_Call
and then No (Parameter_Associations (Dcopy))
then
null;
-- Else construct and analyze the body of a wrapper procedure
-- that contains an object declaration to hold the expression.
-- Given that this is done only to complete the analysis, it
-- simpler to build a procedure than a function which might
-- involve secondary stack expansion.
else
Dnam :=
Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
Dbody :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Dnam),
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc,
New_Internal_Name ('T')),
Object_Definition =>
New_Occurrence_Of (Etype (Formal), Loc),
Expression => New_Copy_Tree (Dcopy))),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List));
Set_Scope (Dnam, Scope (E));
Set_Assignment_OK (First (Declarations (Dbody)));
Set_Is_Eliminated (Dnam);
Insert_After (After, Dbody);
Analyze (Dbody);
After := Dbody;
end if;
end if;
Next_Formal (Formal);
end loop;
end Process_Default_Expressions;
----------------------------------------
-- Set_Component_Alignment_If_Not_Set --
----------------------------------------
procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
begin
-- Ignore if not base type, subtypes don't need anything
if Typ /= Base_Type (Typ) then
return;
end if;
-- Do not override existing representation
if Is_Packed (Typ) then
return;
elsif Has_Specified_Layout (Typ) then
return;
elsif Component_Alignment (Typ) /= Calign_Default then
return;
else
Set_Component_Alignment
(Typ, Scope_Stack.Table
(Scope_Stack.Last).Component_Alignment_Default);
end if;
end Set_Component_Alignment_If_Not_Set;
---------------------------
-- Set_Debug_Info_Needed --
---------------------------
procedure Set_Debug_Info_Needed (T : Entity_Id) is
begin
if No (T)
or else Needs_Debug_Info (T)
or else Debug_Info_Off (T)
then
return;
else
Set_Needs_Debug_Info (T);
end if;
if Is_Object (T) then
Set_Debug_Info_Needed (Etype (T));
elsif Is_Type (T) then
Set_Debug_Info_Needed (Etype (T));
if Is_Record_Type (T) then
declare
Ent : Entity_Id := First_Entity (T);
begin
while Present (Ent) loop
Set_Debug_Info_Needed (Ent);
Next_Entity (Ent);
end loop;
end;
elsif Is_Array_Type (T) then
Set_Debug_Info_Needed (Component_Type (T));
declare
Indx : Node_Id := First_Index (T);
begin
while Present (Indx) loop
Set_Debug_Info_Needed (Etype (Indx));
Indx := Next_Index (Indx);
end loop;
end;
if Is_Packed (T) then
Set_Debug_Info_Needed (Packed_Array_Type (T));
end if;
elsif Is_Access_Type (T) then
Set_Debug_Info_Needed (Directly_Designated_Type (T));
elsif Is_Private_Type (T) then
Set_Debug_Info_Needed (Full_View (T));
elsif Is_Protected_Type (T) then
Set_Debug_Info_Needed (Corresponding_Record_Type (T));
end if;
end if;
end Set_Debug_Info_Needed;
------------------
-- Undelay_Type --
------------------
procedure Undelay_Type (T : Entity_Id) is
begin
Set_Has_Delayed_Freeze (T, False);
Set_Freeze_Node (T, Empty);
-- Since we don't want T to have a Freeze_Node, we don't want its
-- Full_View or Corresponding_Record_Type to have one either.
-- ??? Fundamentally, this whole handling is a kludge. What we really
-- want is to be sure that for an Itype that's part of record R and is a
-- subtype of type T, that it's frozen after the later of the freeze
-- points of R and T. We have no way of doing that directly, so what we
-- do is force most such Itypes to be frozen as part of freezing R via
-- this procedure and only delay the ones that need to be delayed
-- (mostly the designated types of access types that are defined as part
-- of the record).
if Is_Private_Type (T)
and then Present (Full_View (T))
and then Is_Itype (Full_View (T))
and then Is_Record_Type (Scope (Full_View (T)))
then
Undelay_Type (Full_View (T));
end if;
if Is_Concurrent_Type (T)
and then Present (Corresponding_Record_Type (T))
and then Is_Itype (Corresponding_Record_Type (T))
and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
then
Undelay_Type (Corresponding_Record_Type (T));
end if;
end Undelay_Type;
------------------
-- Warn_Overlay --
------------------
procedure Warn_Overlay
(Expr : Node_Id;
Typ : Entity_Id;
Nam : Entity_Id)
is
Ent : constant Entity_Id := Entity (Nam);
-- The object to which the address clause applies
Init : Node_Id;
Old : Entity_Id := Empty;
Decl : Node_Id;
begin
-- No warning if address clause overlay warnings are off
if not Address_Clause_Overlay_Warnings then
return;
end if;
-- No warning if there is an explicit initialization
Init := Original_Node (Expression (Declaration_Node (Ent)));
if Present (Init) and then Comes_From_Source (Init) then
return;
end if;
-- We only give the warning for non-imported entities of a type for
-- which a non-null base init proc is defined (or for access types which
-- have implicit null initialization).
if Present (Expr)
and then (Has_Non_Null_Base_Init_Proc (Typ)
or else Is_Access_Type (Typ))
and then not Is_Imported (Ent)
then
if Nkind (Expr) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (Expr))
then
Old := Entity (Prefix (Expr));
elsif Is_Entity_Name (Expr)
and then Ekind (Entity (Expr)) = E_Constant
then
Decl := Declaration_Node (Entity (Expr));
if Nkind (Decl) = N_Object_Declaration
and then Present (Expression (Decl))
and then Nkind (Expression (Decl)) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (Expression (Decl)))
then
Old := Entity (Prefix (Expression (Decl)));
elsif Nkind (Expr) = N_Function_Call then
return;
end if;
-- A function call (most likely to To_Address) is probably not an
-- overlay, so skip warning. Ditto if the function call was inlined
-- and transformed into an entity.
elsif Nkind (Original_Node (Expr)) = N_Function_Call then
return;
end if;
Decl := Next (Parent (Expr));
-- If a pragma Import follows, we assume that it is for the current
-- target of the address clause, and skip the warning.
if Present (Decl)
and then Nkind (Decl) = N_Pragma
and then Chars (Decl) = Name_Import
then
return;
end if;
if Present (Old) then
Error_Msg_Node_2 := Old;
Error_Msg_N
("default initialization of & may modify &?",
Nam);
else
Error_Msg_N
("default initialization of & may modify overlaid storage?",
Nam);
end if;
-- Add friendly warning if initialization comes from a packed array
-- component.
if Is_Record_Type (Typ) then
declare
Comp : Entity_Id;
begin
Comp := First_Component (Typ);
while Present (Comp) loop
if Nkind (Parent (Comp)) = N_Component_Declaration
and then Present (Expression (Parent (Comp)))
then
exit;
elsif Is_Array_Type (Etype (Comp))
and then Present (Packed_Array_Type (Etype (Comp)))
then
Error_Msg_NE
("\packed array component& " &
"will be initialized to zero?",
Nam, Comp);
exit;
else
Next_Component (Comp);
end if;
end loop;
end;
end if;
Error_Msg_N
("\use pragma Import for & to " &
"suppress initialization ('R'M B.1(24))?",
Nam);
end if;
end Warn_Overlay;
end Freeze;
|