1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- F R E E Z E --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Contracts; use Contracts;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch7; use Exp_Ch7;
with Exp_Pakd; use Exp_Pakd;
with Exp_Util; use Exp_Util;
with Exp_Tss; use Exp_Tss;
with Ghost; use Ghost;
with Layout; use Layout;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Cat; use Sem_Cat;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch7; use Sem_Ch7;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Warnsw; use Warnsw;
package body Freeze is
-----------------------
-- Local Subprograms --
-----------------------
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
-- Typ is a type that is being frozen. If no size clause is given,
-- but a default Esize has been computed, then this default Esize is
-- adjusted up if necessary to be consistent with a given alignment,
-- but never to a value greater than Long_Long_Integer'Size. This
-- is used for all discrete types and for fixed-point types.
procedure Build_And_Analyze_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id;
After : in out Node_Id);
-- Build body for a renaming declaration, insert in tree and analyze
procedure Check_Address_Clause (E : Entity_Id);
-- Apply legality checks to address clauses for object declarations,
-- at the point the object is frozen. Also ensure any initialization is
-- performed only after the object has been frozen.
procedure Check_Component_Storage_Order
(Encl_Type : Entity_Id;
Comp : Entity_Id;
ADC : Node_Id;
Comp_ADC_Present : out Boolean);
-- For an Encl_Type that has a Scalar_Storage_Order attribute definition
-- clause, verify that the component type has an explicit and compatible
-- attribute/aspect. For arrays, Comp is Empty; for records, it is the
-- entity of the component under consideration. For an Encl_Type that
-- does not have a Scalar_Storage_Order attribute definition clause,
-- verify that the component also does not have such a clause.
-- ADC is the attribute definition clause if present (or Empty). On return,
-- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
-- attribute definition clause.
procedure Check_Debug_Info_Needed (T : Entity_Id);
-- As each entity is frozen, this routine is called to deal with the
-- setting of Debug_Info_Needed for the entity. This flag is set if
-- the entity comes from source, or if we are in Debug_Generated_Code
-- mode or if the -gnatdV debug flag is set. However, it never sets
-- the flag if Debug_Info_Off is set. This procedure also ensures that
-- subsidiary entities have the flag set as required.
procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
-- When an expression function is frozen by a use of it, the expression
-- itself is frozen. Check that the expression does not include references
-- to deferred constants without completion. We report this at the freeze
-- point of the function, to provide a better error message.
--
-- In most cases the expression itself is frozen by the time the function
-- itself is frozen, because the formals will be frozen by then. However,
-- Attribute references to outer types are freeze points for those types;
-- this routine generates the required freeze nodes for them.
procedure Check_Inherited_Conditions (R : Entity_Id);
-- For a tagged derived type, create wrappers for inherited operations
-- that have a class-wide condition, so it can be properly rewritten if
-- it involves calls to other overriding primitives.
procedure Check_Strict_Alignment (E : Entity_Id);
-- E is a base type. If E is tagged or has a component that is aliased
-- or tagged or contains something this is aliased or tagged, set
-- Strict_Alignment.
procedure Check_Unsigned_Type (E : Entity_Id);
pragma Inline (Check_Unsigned_Type);
-- If E is a fixed-point or discrete type, then all the necessary work
-- to freeze it is completed except for possible setting of the flag
-- Is_Unsigned_Type, which is done by this procedure. The call has no
-- effect if the entity E is not a discrete or fixed-point type.
procedure Freeze_And_Append
(Ent : Entity_Id;
N : Node_Id;
Result : in out List_Id);
-- Freezes Ent using Freeze_Entity, and appends the resulting list of
-- nodes to Result, modifying Result from No_List if necessary. N has
-- the same usage as in Freeze_Entity.
procedure Freeze_Enumeration_Type (Typ : Entity_Id);
-- Freeze enumeration type. The Esize field is set as processing
-- proceeds (i.e. set by default when the type is declared and then
-- adjusted by rep clauses. What this procedure does is to make sure
-- that if a foreign convention is specified, and no specific size
-- is given, then the size must be at least Integer'Size.
procedure Freeze_Static_Object (E : Entity_Id);
-- If an object is frozen which has Is_Statically_Allocated set, then
-- all referenced types must also be marked with this flag. This routine
-- is in charge of meeting this requirement for the object entity E.
procedure Freeze_Subprogram (E : Entity_Id);
-- Perform freezing actions for a subprogram (create extra formals,
-- and set proper default mechanism values). Note that this routine
-- is not called for internal subprograms, for which neither of these
-- actions is needed (or desirable, we do not want for example to have
-- these extra formals present in initialization procedures, where they
-- would serve no purpose). In this call E is either a subprogram or
-- a subprogram type (i.e. an access to a subprogram).
function Is_Fully_Defined (T : Entity_Id) return Boolean;
-- True if T is not private and has no private components, or has a full
-- view. Used to determine whether the designated type of an access type
-- should be frozen when the access type is frozen. This is done when an
-- allocator is frozen, or an expression that may involve attributes of
-- the designated type. Otherwise freezing the access type does not freeze
-- the designated type.
procedure Process_Default_Expressions
(E : Entity_Id;
After : in out Node_Id);
-- This procedure is called for each subprogram to complete processing of
-- default expressions at the point where all types are known to be frozen.
-- The expressions must be analyzed in full, to make sure that all error
-- processing is done (they have only been pre-analyzed). If the expression
-- is not an entity or literal, its analysis may generate code which must
-- not be executed. In that case we build a function body to hold that
-- code. This wrapper function serves no other purpose (it used to be
-- called to evaluate the default, but now the default is inlined at each
-- point of call).
procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
-- Typ is a record or array type that is being frozen. This routine sets
-- the default component alignment from the scope stack values if the
-- alignment is otherwise not specified.
procedure Set_SSO_From_Default (T : Entity_Id);
-- T is a record or array type that is being frozen. If it is a base type,
-- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
-- will be set appropriately. Note that an explicit occurrence of aspect
-- Scalar_Storage_Order or an explicit setting of this aspect with an
-- attribute definition clause occurs, then these two flags are reset in
-- any case, so call will have no effect.
procedure Undelay_Type (T : Entity_Id);
-- T is a type of a component that we know to be an Itype. We don't want
-- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
-- Full_View or Corresponding_Record_Type.
procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id);
-- Expr is the expression for an address clause for entity Nam whose type
-- is Typ. If Typ has a default initialization, and there is no explicit
-- initialization in the source declaration, check whether the address
-- clause might cause overlaying of an entity, and emit a warning on the
-- side effect that the initialization will cause.
-------------------------------
-- Adjust_Esize_For_Alignment --
-------------------------------
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
Align : Uint;
begin
if Known_Esize (Typ) and then Known_Alignment (Typ) then
Align := Alignment_In_Bits (Typ);
if Align > Esize (Typ)
and then Align <= Standard_Long_Long_Integer_Size
then
Set_Esize (Typ, Align);
end if;
end if;
end Adjust_Esize_For_Alignment;
------------------------------------
-- Build_And_Analyze_Renamed_Body --
------------------------------------
procedure Build_And_Analyze_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id;
After : in out Node_Id)
is
Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
Ent : constant Entity_Id := Defining_Entity (Decl);
Body_Node : Node_Id;
Renamed_Subp : Entity_Id;
begin
-- If the renamed subprogram is intrinsic, there is no need for a
-- wrapper body: we set the alias that will be called and expanded which
-- completes the declaration. This transformation is only legal if the
-- renamed entity has already been elaborated.
-- Note that it is legal for a renaming_as_body to rename an intrinsic
-- subprogram, as long as the renaming occurs before the new entity
-- is frozen (RM 8.5.4 (5)).
if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
and then Is_Entity_Name (Name (Body_Decl))
then
Renamed_Subp := Entity (Name (Body_Decl));
else
Renamed_Subp := Empty;
end if;
if Present (Renamed_Subp)
and then Is_Intrinsic_Subprogram (Renamed_Subp)
and then
(not In_Same_Source_Unit (Renamed_Subp, Ent)
or else Sloc (Renamed_Subp) < Sloc (Ent))
-- We can make the renaming entity intrinsic if the renamed function
-- has an interface name, or if it is one of the shift/rotate
-- operations known to the compiler.
and then
(Present (Interface_Name (Renamed_Subp))
or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
Name_Rotate_Right,
Name_Shift_Left,
Name_Shift_Right,
Name_Shift_Right_Arithmetic))
then
Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
if Present (Alias (Renamed_Subp)) then
Set_Alias (Ent, Alias (Renamed_Subp));
else
Set_Alias (Ent, Renamed_Subp);
end if;
Set_Is_Intrinsic_Subprogram (Ent);
Set_Has_Completion (Ent);
else
Body_Node := Build_Renamed_Body (Decl, New_S);
Insert_After (After, Body_Node);
Mark_Rewrite_Insertion (Body_Node);
Analyze (Body_Node);
After := Body_Node;
end if;
end Build_And_Analyze_Renamed_Body;
------------------------
-- Build_Renamed_Body --
------------------------
function Build_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (New_S);
-- We use for the source location of the renamed body, the location of
-- the spec entity. It might seem more natural to use the location of
-- the renaming declaration itself, but that would be wrong, since then
-- the body we create would look as though it was created far too late,
-- and this could cause problems with elaboration order analysis,
-- particularly in connection with instantiations.
N : constant Node_Id := Unit_Declaration_Node (New_S);
Nam : constant Node_Id := Name (N);
Old_S : Entity_Id;
Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
Actuals : List_Id := No_List;
Call_Node : Node_Id;
Call_Name : Node_Id;
Body_Node : Node_Id;
Formal : Entity_Id;
O_Formal : Entity_Id;
Param_Spec : Node_Id;
Pref : Node_Id := Empty;
-- If the renamed entity is a primitive operation given in prefix form,
-- the prefix is the target object and it has to be added as the first
-- actual in the generated call.
begin
-- Determine the entity being renamed, which is the target of the call
-- statement. If the name is an explicit dereference, this is a renaming
-- of a subprogram type rather than a subprogram. The name itself is
-- fully analyzed.
if Nkind (Nam) = N_Selected_Component then
Old_S := Entity (Selector_Name (Nam));
elsif Nkind (Nam) = N_Explicit_Dereference then
Old_S := Etype (Nam);
elsif Nkind (Nam) = N_Indexed_Component then
if Is_Entity_Name (Prefix (Nam)) then
Old_S := Entity (Prefix (Nam));
else
Old_S := Entity (Selector_Name (Prefix (Nam)));
end if;
elsif Nkind (Nam) = N_Character_Literal then
Old_S := Etype (New_S);
else
Old_S := Entity (Nam);
end if;
if Is_Entity_Name (Nam) then
-- If the renamed entity is a predefined operator, retain full name
-- to ensure its visibility.
if Ekind (Old_S) = E_Operator
and then Nkind (Nam) = N_Expanded_Name
then
Call_Name := New_Copy (Name (N));
else
Call_Name := New_Occurrence_Of (Old_S, Loc);
end if;
else
if Nkind (Nam) = N_Selected_Component
and then Present (First_Formal (Old_S))
and then
(Is_Controlling_Formal (First_Formal (Old_S))
or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
then
-- Retrieve the target object, to be added as a first actual
-- in the call.
Call_Name := New_Occurrence_Of (Old_S, Loc);
Pref := Prefix (Nam);
else
Call_Name := New_Copy (Name (N));
end if;
-- Original name may have been overloaded, but is fully resolved now
Set_Is_Overloaded (Call_Name, False);
end if;
-- For simple renamings, subsequent calls can be expanded directly as
-- calls to the renamed entity. The body must be generated in any case
-- for calls that may appear elsewhere. This is not done in the case
-- where the subprogram is an instantiation because the actual proper
-- body has not been built yet.
if Ekind_In (Old_S, E_Function, E_Procedure)
and then Nkind (Decl) = N_Subprogram_Declaration
and then not Is_Generic_Instance (Old_S)
then
Set_Body_To_Inline (Decl, Old_S);
end if;
-- Check whether the return type is a limited view. If the subprogram
-- is already frozen the generated body may have a non-limited view
-- of the type, that must be used, because it is the one in the spec
-- of the renaming declaration.
if Ekind (Old_S) = E_Function
and then Is_Entity_Name (Result_Definition (Spec))
then
declare
Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
begin
if Has_Non_Limited_View (Ret_Type) then
Set_Result_Definition
(Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
end if;
end;
end if;
-- The body generated for this renaming is an internal artifact, and
-- does not constitute a freeze point for the called entity.
Set_Must_Not_Freeze (Call_Name);
Formal := First_Formal (Defining_Entity (Decl));
if Present (Pref) then
declare
Pref_Type : constant Entity_Id := Etype (Pref);
Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
begin
-- The controlling formal may be an access parameter, or the
-- actual may be an access value, so adjust accordingly.
if Is_Access_Type (Pref_Type)
and then not Is_Access_Type (Form_Type)
then
Actuals := New_List
(Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
elsif Is_Access_Type (Form_Type)
and then not Is_Access_Type (Pref)
then
Actuals :=
New_List (
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Access,
Prefix => Relocate_Node (Pref)));
else
Actuals := New_List (Pref);
end if;
end;
elsif Present (Formal) then
Actuals := New_List;
else
Actuals := No_List;
end if;
if Present (Formal) then
while Present (Formal) loop
Append (New_Occurrence_Of (Formal, Loc), Actuals);
Next_Formal (Formal);
end loop;
end if;
-- If the renamed entity is an entry, inherit its profile. For other
-- renamings as bodies, both profiles must be subtype conformant, so it
-- is not necessary to replace the profile given in the declaration.
-- However, default values that are aggregates are rewritten when
-- partially analyzed, so we recover the original aggregate to insure
-- that subsequent conformity checking works. Similarly, if the default
-- expression was constant-folded, recover the original expression.
Formal := First_Formal (Defining_Entity (Decl));
if Present (Formal) then
O_Formal := First_Formal (Old_S);
Param_Spec := First (Parameter_Specifications (Spec));
while Present (Formal) loop
if Is_Entry (Old_S) then
if Nkind (Parameter_Type (Param_Spec)) /=
N_Access_Definition
then
Set_Etype (Formal, Etype (O_Formal));
Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
end if;
elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
or else Nkind (Original_Node (Default_Value (O_Formal))) /=
Nkind (Default_Value (O_Formal))
then
Set_Expression (Param_Spec,
New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
end if;
Next_Formal (Formal);
Next_Formal (O_Formal);
Next (Param_Spec);
end loop;
end if;
-- If the renamed entity is a function, the generated body contains a
-- return statement. Otherwise, build a procedure call. If the entity is
-- an entry, subsequent analysis of the call will transform it into the
-- proper entry or protected operation call. If the renamed entity is
-- a character literal, return it directly.
if Ekind (Old_S) = E_Function
or else Ekind (Old_S) = E_Operator
or else (Ekind (Old_S) = E_Subprogram_Type
and then Etype (Old_S) /= Standard_Void_Type)
then
Call_Node :=
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Function_Call (Loc,
Name => Call_Name,
Parameter_Associations => Actuals));
elsif Ekind (Old_S) = E_Enumeration_Literal then
Call_Node :=
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Old_S, Loc));
elsif Nkind (Nam) = N_Character_Literal then
Call_Node :=
Make_Simple_Return_Statement (Loc, Expression => Call_Name);
else
Call_Node :=
Make_Procedure_Call_Statement (Loc,
Name => Call_Name,
Parameter_Associations => Actuals);
end if;
-- Create entities for subprogram body and formals
Set_Defining_Unit_Name (Spec,
Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
Param_Spec := First (Parameter_Specifications (Spec));
while Present (Param_Spec) loop
Set_Defining_Identifier (Param_Spec,
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier (Param_Spec))));
Next (Param_Spec);
end loop;
Body_Node :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Call_Node)));
if Nkind (Decl) /= N_Subprogram_Declaration then
Rewrite (N,
Make_Subprogram_Declaration (Loc,
Specification => Specification (N)));
end if;
-- Link the body to the entity whose declaration it completes. If
-- the body is analyzed when the renamed entity is frozen, it may
-- be necessary to restore the proper scope (see package Exp_Ch13).
if Nkind (N) = N_Subprogram_Renaming_Declaration
and then Present (Corresponding_Spec (N))
then
Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
else
Set_Corresponding_Spec (Body_Node, New_S);
end if;
return Body_Node;
end Build_Renamed_Body;
--------------------------
-- Check_Address_Clause --
--------------------------
procedure Check_Address_Clause (E : Entity_Id) is
Addr : constant Node_Id := Address_Clause (E);
Typ : constant Entity_Id := Etype (E);
Decl : Node_Id;
Expr : Node_Id;
Init : Node_Id;
Lhs : Node_Id;
Tag_Assign : Node_Id;
begin
if Present (Addr) then
-- For a deferred constant, the initialization value is on full view
if Ekind (E) = E_Constant and then Present (Full_View (E)) then
Decl := Declaration_Node (Full_View (E));
else
Decl := Declaration_Node (E);
end if;
Expr := Expression (Addr);
if Needs_Constant_Address (Decl, Typ) then
Check_Constant_Address_Clause (Expr, E);
-- Has_Delayed_Freeze was set on E when the address clause was
-- analyzed, and must remain set because we want the address
-- clause to be elaborated only after any entity it references
-- has been elaborated.
end if;
-- If Rep_Clauses are to be ignored, remove address clause from
-- list attached to entity, because it may be illegal for gigi,
-- for example by breaking order of elaboration..
if Ignore_Rep_Clauses then
declare
Rep : Node_Id;
begin
Rep := First_Rep_Item (E);
if Rep = Addr then
Set_First_Rep_Item (E, Next_Rep_Item (Addr));
else
while Present (Rep)
and then Next_Rep_Item (Rep) /= Addr
loop
Rep := Next_Rep_Item (Rep);
end loop;
end if;
if Present (Rep) then
Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
end if;
end;
-- And now remove the address clause
Kill_Rep_Clause (Addr);
elsif not Error_Posted (Expr)
and then not Needs_Finalization (Typ)
then
Warn_Overlay (Expr, Typ, Name (Addr));
end if;
Init := Expression (Decl);
-- If a variable, or a non-imported constant, overlays a constant
-- object and has an initialization value, then the initialization
-- may end up writing into read-only memory. Detect the cases of
-- statically identical values and remove the initialization. In
-- the other cases, give a warning. We will give other warnings
-- later for the variable if it is assigned.
if (Ekind (E) = E_Variable
or else (Ekind (E) = E_Constant
and then not Is_Imported (E)))
and then Overlays_Constant (E)
and then Present (Init)
then
declare
O_Ent : Entity_Id;
Off : Boolean;
begin
Find_Overlaid_Entity (Addr, O_Ent, Off);
if Ekind (O_Ent) = E_Constant
and then Etype (O_Ent) = Typ
and then Present (Constant_Value (O_Ent))
and then Compile_Time_Compare
(Init,
Constant_Value (O_Ent),
Assume_Valid => True) = EQ
then
Set_No_Initialization (Decl);
return;
elsif Comes_From_Source (Init)
and then Address_Clause_Overlay_Warnings
then
Error_Msg_Sloc := Sloc (Addr);
Error_Msg_NE
("??constant& may be modified via address clause#",
Decl, O_Ent);
end if;
end;
end if;
-- Remove side effects from initial expression, except in the case of
-- limited build-in-place calls and aggregates, which have their own
-- expansion elsewhere. This exception is necessary to avoid copying
-- limited objects.
if Present (Init) and then not Is_Limited_View (Typ) then
-- Capture initialization value at point of declaration, and make
-- explicit assignment legal, because object may be a constant.
Remove_Side_Effects (Init);
Lhs := New_Occurrence_Of (E, Sloc (Decl));
Set_Assignment_OK (Lhs);
-- Move initialization to freeze actions, once the object has
-- been frozen and the address clause alignment check has been
-- performed.
Append_Freeze_Action (E,
Make_Assignment_Statement (Sloc (Decl),
Name => Lhs,
Expression => Expression (Decl)));
Set_No_Initialization (Decl);
-- If the object is tagged, check whether the tag must be
-- reassigned explicitly.
Tag_Assign := Make_Tag_Assignment (Decl);
if Present (Tag_Assign) then
Append_Freeze_Action (E, Tag_Assign);
end if;
end if;
end if;
end Check_Address_Clause;
-----------------------------
-- Check_Compile_Time_Size --
-----------------------------
procedure Check_Compile_Time_Size (T : Entity_Id) is
procedure Set_Small_Size (T : Entity_Id; S : Uint);
-- Sets the compile time known size (64 bits or less) in the RM_Size
-- field of T, checking for a size clause that was given which attempts
-- to give a smaller size.
function Size_Known (T : Entity_Id) return Boolean;
-- Recursive function that does all the work
function Static_Discriminated_Components (T : Entity_Id) return Boolean;
-- If T is a constrained subtype, its size is not known if any of its
-- discriminant constraints is not static and it is not a null record.
-- The test is conservative and doesn't check that the components are
-- in fact constrained by non-static discriminant values. Could be made
-- more precise ???
--------------------
-- Set_Small_Size --
--------------------
procedure Set_Small_Size (T : Entity_Id; S : Uint) is
begin
if S > 64 then
return;
-- Check for bad size clause given
elsif Has_Size_Clause (T) then
if RM_Size (T) < S then
Error_Msg_Uint_1 := S;
Error_Msg_NE
("size for& too small, minimum allowed is ^",
Size_Clause (T), T);
end if;
-- Set size if not set already
elsif Unknown_RM_Size (T) then
Set_RM_Size (T, S);
end if;
end Set_Small_Size;
----------------
-- Size_Known --
----------------
function Size_Known (T : Entity_Id) return Boolean is
Index : Entity_Id;
Comp : Entity_Id;
Ctyp : Entity_Id;
Low : Node_Id;
High : Node_Id;
begin
if Size_Known_At_Compile_Time (T) then
return True;
-- Always True for elementary types, even generic formal elementary
-- types. We used to return False in the latter case, but the size
-- is known at compile time, even in the template, we just do not
-- know the exact size but that's not the point of this routine.
elsif Is_Elementary_Type (T) or else Is_Task_Type (T) then
return True;
-- Array types
elsif Is_Array_Type (T) then
-- String literals always have known size, and we can set it
if Ekind (T) = E_String_Literal_Subtype then
Set_Small_Size
(T, Component_Size (T) * String_Literal_Length (T));
return True;
-- Unconstrained types never have known at compile time size
elsif not Is_Constrained (T) then
return False;
-- Don't do any recursion on type with error posted, since we may
-- have a malformed type that leads us into a loop.
elsif Error_Posted (T) then
return False;
-- Otherwise if component size unknown, then array size unknown
elsif not Size_Known (Component_Type (T)) then
return False;
end if;
-- Check for all indexes static, and also compute possible size
-- (in case it is not greater than 64 and may be packable).
declare
Size : Uint := Component_Size (T);
Dim : Uint;
begin
Index := First_Index (T);
while Present (Index) loop
if Nkind (Index) = N_Range then
Get_Index_Bounds (Index, Low, High);
elsif Error_Posted (Scalar_Range (Etype (Index))) then
return False;
else
Low := Type_Low_Bound (Etype (Index));
High := Type_High_Bound (Etype (Index));
end if;
if not Compile_Time_Known_Value (Low)
or else not Compile_Time_Known_Value (High)
or else Etype (Index) = Any_Type
then
return False;
else
Dim := Expr_Value (High) - Expr_Value (Low) + 1;
if Dim >= 0 then
Size := Size * Dim;
else
Size := Uint_0;
end if;
end if;
Next_Index (Index);
end loop;
Set_Small_Size (T, Size);
return True;
end;
-- For non-generic private types, go to underlying type if present
elsif Is_Private_Type (T)
and then not Is_Generic_Type (T)
and then Present (Underlying_Type (T))
then
-- Don't do any recursion on type with error posted, since we may
-- have a malformed type that leads us into a loop.
if Error_Posted (T) then
return False;
else
return Size_Known (Underlying_Type (T));
end if;
-- Record types
elsif Is_Record_Type (T) then
-- A class-wide type is never considered to have a known size
if Is_Class_Wide_Type (T) then
return False;
-- A subtype of a variant record must not have non-static
-- discriminated components.
elsif T /= Base_Type (T)
and then not Static_Discriminated_Components (T)
then
return False;
-- Don't do any recursion on type with error posted, since we may
-- have a malformed type that leads us into a loop.
elsif Error_Posted (T) then
return False;
end if;
-- Now look at the components of the record
declare
-- The following two variables are used to keep track of the
-- size of packed records if we can tell the size of the packed
-- record in the front end. Packed_Size_Known is True if so far
-- we can figure out the size. It is initialized to True for a
-- packed record, unless the record has discriminants or atomic
-- components or independent components.
-- The reason we eliminate the discriminated case is that
-- we don't know the way the back end lays out discriminated
-- packed records. If Packed_Size_Known is True, then
-- Packed_Size is the size in bits so far.
Packed_Size_Known : Boolean :=
Is_Packed (T)
and then not Has_Discriminants (T)
and then not Has_Atomic_Components (T)
and then not Has_Independent_Components (T);
Packed_Size : Uint := Uint_0;
-- Size in bits so far
begin
-- Test for variant part present
if Has_Discriminants (T)
and then Present (Parent (T))
and then Nkind (Parent (T)) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Parent (T))) =
N_Record_Definition
and then not Null_Present (Type_Definition (Parent (T)))
and then
Present (Variant_Part
(Component_List (Type_Definition (Parent (T)))))
then
-- If variant part is present, and type is unconstrained,
-- then we must have defaulted discriminants, or a size
-- clause must be present for the type, or else the size
-- is definitely not known at compile time.
if not Is_Constrained (T)
and then
No (Discriminant_Default_Value (First_Discriminant (T)))
and then Unknown_RM_Size (T)
then
return False;
end if;
end if;
-- Loop through components
Comp := First_Component_Or_Discriminant (T);
while Present (Comp) loop
Ctyp := Etype (Comp);
-- We do not know the packed size if there is a component
-- clause present (we possibly could, but this would only
-- help in the case of a record with partial rep clauses.
-- That's because in the case of full rep clauses, the
-- size gets figured out anyway by a different circuit).
if Present (Component_Clause (Comp)) then
Packed_Size_Known := False;
end if;
-- We do not know the packed size for an atomic/VFA type
-- or component, or an independent type or component, or a
-- by-reference type or aliased component (because packing
-- does not touch these).
if Is_Atomic_Or_VFA (Ctyp)
or else Is_Atomic_Or_VFA (Comp)
or else Is_Independent (Ctyp)
or else Is_Independent (Comp)
or else Is_By_Reference_Type (Ctyp)
or else Is_Aliased (Comp)
then
Packed_Size_Known := False;
end if;
-- We need to identify a component that is an array where
-- the index type is an enumeration type with non-standard
-- representation, and some bound of the type depends on a
-- discriminant.
-- This is because gigi computes the size by doing a
-- substitution of the appropriate discriminant value in
-- the size expression for the base type, and gigi is not
-- clever enough to evaluate the resulting expression (which
-- involves a call to rep_to_pos) at compile time.
-- It would be nice if gigi would either recognize that
-- this expression can be computed at compile time, or
-- alternatively figured out the size from the subtype
-- directly, where all the information is at hand ???
if Is_Array_Type (Etype (Comp))
and then Present (Packed_Array_Impl_Type (Etype (Comp)))
then
declare
Ocomp : constant Entity_Id :=
Original_Record_Component (Comp);
OCtyp : constant Entity_Id := Etype (Ocomp);
Ind : Node_Id;
Indtyp : Entity_Id;
Lo, Hi : Node_Id;
begin
Ind := First_Index (OCtyp);
while Present (Ind) loop
Indtyp := Etype (Ind);
if Is_Enumeration_Type (Indtyp)
and then Has_Non_Standard_Rep (Indtyp)
then
Lo := Type_Low_Bound (Indtyp);
Hi := Type_High_Bound (Indtyp);
if Is_Entity_Name (Lo)
and then Ekind (Entity (Lo)) = E_Discriminant
then
return False;
elsif Is_Entity_Name (Hi)
and then Ekind (Entity (Hi)) = E_Discriminant
then
return False;
end if;
end if;
Next_Index (Ind);
end loop;
end;
end if;
-- Clearly size of record is not known if the size of one of
-- the components is not known.
if not Size_Known (Ctyp) then
return False;
end if;
-- Accumulate packed size if possible
if Packed_Size_Known then
-- We can deal with elementary types, small packed arrays
-- if the representation is a modular type and also small
-- record types (if the size is not greater than 64, but
-- the condition is checked by Set_Small_Size).
if Is_Elementary_Type (Ctyp)
or else (Is_Array_Type (Ctyp)
and then Present
(Packed_Array_Impl_Type (Ctyp))
and then Is_Modular_Integer_Type
(Packed_Array_Impl_Type (Ctyp)))
or else Is_Record_Type (Ctyp)
then
-- If RM_Size is known and static, then we can keep
-- accumulating the packed size.
if Known_Static_RM_Size (Ctyp) then
Packed_Size := Packed_Size + RM_Size (Ctyp);
-- If we have a field whose RM_Size is not known then
-- we can't figure out the packed size here.
else
Packed_Size_Known := False;
end if;
-- For other types we can't figure out the packed size
else
Packed_Size_Known := False;
end if;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
if Packed_Size_Known then
Set_Small_Size (T, Packed_Size);
end if;
return True;
end;
-- All other cases, size not known at compile time
else
return False;
end if;
end Size_Known;
-------------------------------------
-- Static_Discriminated_Components --
-------------------------------------
function Static_Discriminated_Components
(T : Entity_Id) return Boolean
is
Constraint : Elmt_Id;
begin
if Has_Discriminants (T)
and then Present (Discriminant_Constraint (T))
and then Present (First_Component (T))
then
Constraint := First_Elmt (Discriminant_Constraint (T));
while Present (Constraint) loop
if not Compile_Time_Known_Value (Node (Constraint)) then
return False;
end if;
Next_Elmt (Constraint);
end loop;
end if;
return True;
end Static_Discriminated_Components;
-- Start of processing for Check_Compile_Time_Size
begin
Set_Size_Known_At_Compile_Time (T, Size_Known (T));
end Check_Compile_Time_Size;
-----------------------------------
-- Check_Component_Storage_Order --
-----------------------------------
procedure Check_Component_Storage_Order
(Encl_Type : Entity_Id;
Comp : Entity_Id;
ADC : Node_Id;
Comp_ADC_Present : out Boolean)
is
Comp_Base : Entity_Id;
Comp_ADC : Node_Id;
Encl_Base : Entity_Id;
Err_Node : Node_Id;
Component_Aliased : Boolean;
Comp_Byte_Aligned : Boolean := False;
-- Set for the record case, True if Comp is aligned on byte boundaries
-- (in which case it is allowed to have different storage order).
Comp_SSO_Differs : Boolean;
-- Set True when the component is a nested composite, and it does not
-- have the same scalar storage order as Encl_Type.
begin
-- Record case
if Present (Comp) then
Err_Node := Comp;
Comp_Base := Etype (Comp);
if Is_Tag (Comp) then
Comp_Byte_Aligned := True;
Component_Aliased := False;
else
-- If a component clause is present, check if the component starts
-- and ends on byte boundaries. Otherwise conservatively assume it
-- does so only in the case where the record is not packed.
if Present (Component_Clause (Comp)) then
Comp_Byte_Aligned :=
(Normalized_First_Bit (Comp) mod System_Storage_Unit = 0)
and then
(Esize (Comp) mod System_Storage_Unit = 0);
else
Comp_Byte_Aligned := not Is_Packed (Encl_Type);
end if;
Component_Aliased := Is_Aliased (Comp);
end if;
-- Array case
else
Err_Node := Encl_Type;
Comp_Base := Component_Type (Encl_Type);
Component_Aliased := Has_Aliased_Components (Encl_Type);
end if;
-- Note: the Reverse_Storage_Order flag is set on the base type, but
-- the attribute definition clause is attached to the first subtype.
-- Also, if the base type is incomplete or private, go to full view
-- if known
Encl_Base := Base_Type (Encl_Type);
if Present (Underlying_Type (Encl_Base)) then
Encl_Base := Underlying_Type (Encl_Base);
end if;
Comp_Base := Base_Type (Comp_Base);
if Present (Underlying_Type (Comp_Base)) then
Comp_Base := Underlying_Type (Comp_Base);
end if;
Comp_ADC :=
Get_Attribute_Definition_Clause
(First_Subtype (Comp_Base), Attribute_Scalar_Storage_Order);
Comp_ADC_Present := Present (Comp_ADC);
-- Case of record or array component: check storage order compatibility.
-- But, if the record has Complex_Representation, then it is treated as
-- a scalar in the back end so the storage order is irrelevant.
if (Is_Record_Type (Comp_Base)
and then not Has_Complex_Representation (Comp_Base))
or else Is_Array_Type (Comp_Base)
then
Comp_SSO_Differs :=
Reverse_Storage_Order (Encl_Base) /=
Reverse_Storage_Order (Comp_Base);
-- Parent and extension must have same storage order
if Present (Comp) and then Chars (Comp) = Name_uParent then
if Comp_SSO_Differs then
Error_Msg_N
("record extension must have same scalar storage order as "
& "parent", Err_Node);
end if;
-- If component and composite SSO differs, check that component
-- falls on byte boundaries and isn't bit packed.
elsif Comp_SSO_Differs then
-- Component SSO differs from enclosing composite:
-- Reject if composite is a bit-packed array, as it is rewritten
-- into an array of scalars.
if Is_Bit_Packed_Array (Encl_Base) then
Error_Msg_N
("type of packed array must have same scalar storage order "
& "as component", Err_Node);
-- Reject if not byte aligned
elsif Is_Record_Type (Encl_Base)
and then not Comp_Byte_Aligned
then
Error_Msg_N
("type of non-byte-aligned component must have same scalar "
& "storage order as enclosing composite", Err_Node);
-- Warn if specified only for the outer composite
elsif Present (ADC) and then No (Comp_ADC) then
Error_Msg_NE
("scalar storage order specified for & does not apply to "
& "component?", Err_Node, Encl_Base);
end if;
end if;
-- Enclosing type has explicit SSO: non-composite component must not
-- be aliased.
elsif Present (ADC) and then Component_Aliased then
Error_Msg_N
("aliased component not permitted for type with explicit "
& "Scalar_Storage_Order", Err_Node);
end if;
end Check_Component_Storage_Order;
-----------------------------
-- Check_Debug_Info_Needed --
-----------------------------
procedure Check_Debug_Info_Needed (T : Entity_Id) is
begin
if Debug_Info_Off (T) then
return;
elsif Comes_From_Source (T)
or else Debug_Generated_Code
or else Debug_Flag_VV
or else Needs_Debug_Info (T)
then
Set_Debug_Info_Needed (T);
end if;
end Check_Debug_Info_Needed;
-------------------------------
-- Check_Expression_Function --
-------------------------------
procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
function Find_Constant (Nod : Node_Id) return Traverse_Result;
-- Function to search for deferred constant
-------------------
-- Find_Constant --
-------------------
function Find_Constant (Nod : Node_Id) return Traverse_Result is
begin
-- When a constant is initialized with the result of a dispatching
-- call, the constant declaration is rewritten as a renaming of the
-- displaced function result. This scenario is not a premature use of
-- a constant even though the Has_Completion flag is not set.
if Is_Entity_Name (Nod)
and then Present (Entity (Nod))
and then Ekind (Entity (Nod)) = E_Constant
and then Scope (Entity (Nod)) = Current_Scope
and then Nkind (Declaration_Node (Entity (Nod))) =
N_Object_Declaration
and then not Is_Imported (Entity (Nod))
and then not Has_Completion (Entity (Nod))
and then not Is_Frozen (Entity (Nod))
then
Error_Msg_NE
("premature use of& in call or instance", N, Entity (Nod));
elsif Nkind (Nod) = N_Attribute_Reference then
Analyze (Prefix (Nod));
if Is_Entity_Name (Prefix (Nod))
and then Is_Type (Entity (Prefix (Nod)))
then
Freeze_Before (N, Entity (Prefix (Nod)));
end if;
end if;
return OK;
end Find_Constant;
procedure Check_Deferred is new Traverse_Proc (Find_Constant);
-- Local variables
Decl : Node_Id;
-- Start of processing for Check_Expression_Function
begin
Decl := Original_Node (Unit_Declaration_Node (Nam));
-- The subprogram body created for the expression function is not
-- itself a freeze point.
if Scope (Nam) = Current_Scope
and then Nkind (Decl) = N_Expression_Function
and then Nkind (N) /= N_Subprogram_Body
then
Check_Deferred (Expression (Decl));
end if;
end Check_Expression_Function;
--------------------------------
-- Check_Inherited_Conditions --
--------------------------------
procedure Check_Inherited_Conditions (R : Entity_Id) is
Prim_Ops : constant Elist_Id := Primitive_Operations (R);
Decls : List_Id;
Needs_Wrapper : Boolean;
Op_Node : Elmt_Id;
Par_Prim : Entity_Id;
Prim : Entity_Id;
procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id);
-- Build corresponding pragmas for an operation whose ancestor has
-- class-wide pre/postconditions. If the operation is inherited, the
-- pragmas force the creation of a wrapper for the inherited operation.
-- If the ancestor is being overridden, the pragmas are constructed only
-- to verify their legality, in case they contain calls to other
-- primitives that may haven been overridden.
---------------------------------------
-- Build_Inherited_Condition_Pragmas --
---------------------------------------
procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id) is
A_Post : Node_Id;
A_Pre : Node_Id;
New_Prag : Node_Id;
begin
A_Pre := Get_Class_Wide_Pragma (Par_Prim, Pragma_Precondition);
if Present (A_Pre) then
New_Prag := New_Copy_Tree (A_Pre);
Build_Class_Wide_Expression
(Prag => New_Prag,
Subp => Prim,
Par_Subp => Par_Prim,
Adjust_Sloc => False,
Needs_Wrapper => Needs_Wrapper);
if Needs_Wrapper
and then not Comes_From_Source (Subp)
and then Expander_Active
then
Append (New_Prag, Decls);
end if;
end if;
A_Post := Get_Class_Wide_Pragma (Par_Prim, Pragma_Postcondition);
if Present (A_Post) then
New_Prag := New_Copy_Tree (A_Post);
Build_Class_Wide_Expression
(Prag => New_Prag,
Subp => Prim,
Par_Subp => Par_Prim,
Adjust_Sloc => False,
Needs_Wrapper => Needs_Wrapper);
if Needs_Wrapper
and then not Comes_From_Source (Subp)
and then Expander_Active
then
Append (New_Prag, Decls);
end if;
end if;
end Build_Inherited_Condition_Pragmas;
-- Start of processing for Check_Inherited_Conditions
begin
Op_Node := First_Elmt (Prim_Ops);
while Present (Op_Node) loop
Prim := Node (Op_Node);
-- Map the overridden primitive to the overriding one. This takes
-- care of all overridings and is done only once.
if Present (Overridden_Operation (Prim))
and then Comes_From_Source (Prim)
then
Par_Prim := Overridden_Operation (Prim);
Update_Primitives_Mapping (Par_Prim, Prim);
end if;
Next_Elmt (Op_Node);
end loop;
-- Perform validity checks on the inherited conditions of overriding
-- operations, for conformance with LSP, and apply SPARK-specific
-- restrictions on inherited conditions.
Op_Node := First_Elmt (Prim_Ops);
while Present (Op_Node) loop
Prim := Node (Op_Node);
if Present (Overridden_Operation (Prim))
and then Comes_From_Source (Prim)
then
Par_Prim := Overridden_Operation (Prim);
-- Analyze the contract items of the overridden operation, before
-- they are rewritten as pragmas.
Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
-- In GNATprove mode this is where we can collect the inherited
-- conditions, because we do not create the Check pragmas that
-- normally convey the the modified class-wide conditions on
-- overriding operations.
if GNATprove_Mode then
Collect_Inherited_Class_Wide_Conditions (Prim);
-- Otherwise build the corresponding pragmas to check for legality
-- of the inherited condition.
else
Build_Inherited_Condition_Pragmas (Prim);
end if;
end if;
Next_Elmt (Op_Node);
end loop;
-- Now examine the inherited operations to check whether they require
-- a wrapper to handle inherited conditions that call other primitives,
-- so that LSP can be verified/enforced.
Op_Node := First_Elmt (Prim_Ops);
Needs_Wrapper := False;
while Present (Op_Node) loop
Decls := Empty_List;
Prim := Node (Op_Node);
if not Comes_From_Source (Prim) and then Present (Alias (Prim)) then
Par_Prim := Alias (Prim);
-- Analyze the contract items of the parent operation, and
-- determine whether a wrapper is needed. This is determined
-- when the condition is rewritten in sem_prag, using the
-- mapping between overridden and overriding operations built
-- in the loop above.
Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
Build_Inherited_Condition_Pragmas (Prim);
end if;
if Needs_Wrapper
and then not Is_Abstract_Subprogram (Par_Prim)
and then Expander_Active
then
-- We need to build a new primitive that overrides the inherited
-- one, and whose inherited expression has been updated above.
-- These expressions are the arguments of pragmas that are part
-- of the declarations of the wrapper. The wrapper holds a single
-- statement that is a call to the class-wide clone, where the
-- controlling actuals are conversions to the corresponding type
-- in the parent primitive:
-- procedure New_Prim (F1 : T1; ...);
-- procedure New_Prim (F1 : T1; ...) is
-- pragma Check (Precondition, Expr);
-- begin
-- Par_Prim_Clone (Par_Type (F1), ...);
-- end;
-- If the primitive is a function the statement is a return
-- statement with a call.
declare
Loc : constant Source_Ptr := Sloc (R);
Par_R : constant Node_Id := Parent (R);
New_Body : Node_Id;
New_Decl : Node_Id;
New_Spec : Node_Id;
begin
New_Spec := Build_Overriding_Spec (Par_Prim, R);
New_Decl :=
Make_Subprogram_Declaration (Loc,
Specification => New_Spec);
-- Insert the declaration and the body of the wrapper after
-- type declaration that generates inherited operation. For
-- a null procedure, the declaration implies a null body.
if Nkind (New_Spec) = N_Procedure_Specification
and then Null_Present (New_Spec)
then
Insert_After_And_Analyze (Par_R, New_Decl);
else
-- Build body as wrapper to a call to the already built
-- class-wide clone.
New_Body :=
Build_Class_Wide_Clone_Call
(Loc, Decls, Par_Prim, New_Spec);
Insert_List_After_And_Analyze
(Par_R, New_List (New_Decl, New_Body));
end if;
end;
Needs_Wrapper := False;
end if;
Next_Elmt (Op_Node);
end loop;
end Check_Inherited_Conditions;
----------------------------
-- Check_Strict_Alignment --
----------------------------
procedure Check_Strict_Alignment (E : Entity_Id) is
Comp : Entity_Id;
begin
if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
Set_Strict_Alignment (E);
elsif Is_Array_Type (E) then
Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
elsif Is_Record_Type (E) then
if Is_Limited_Record (E) then
Set_Strict_Alignment (E);
return;
end if;
Comp := First_Component (E);
while Present (Comp) loop
if not Is_Type (Comp)
and then (Strict_Alignment (Etype (Comp))
or else Is_Aliased (Comp))
then
Set_Strict_Alignment (E);
return;
end if;
Next_Component (Comp);
end loop;
end if;
end Check_Strict_Alignment;
-------------------------
-- Check_Unsigned_Type --
-------------------------
procedure Check_Unsigned_Type (E : Entity_Id) is
Ancestor : Entity_Id;
Lo_Bound : Node_Id;
Btyp : Entity_Id;
begin
if not Is_Discrete_Or_Fixed_Point_Type (E) then
return;
end if;
-- Do not attempt to analyze case where range was in error
if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
return;
end if;
-- The situation that is nontrivial is something like:
-- subtype x1 is integer range -10 .. +10;
-- subtype x2 is x1 range 0 .. V1;
-- subtype x3 is x2 range V2 .. V3;
-- subtype x4 is x3 range V4 .. V5;
-- where Vn are variables. Here the base type is signed, but we still
-- know that x4 is unsigned because of the lower bound of x2.
-- The only way to deal with this is to look up the ancestor chain
Ancestor := E;
loop
if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
return;
end if;
Lo_Bound := Type_Low_Bound (Ancestor);
if Compile_Time_Known_Value (Lo_Bound) then
if Expr_Rep_Value (Lo_Bound) >= 0 then
Set_Is_Unsigned_Type (E, True);
end if;
return;
else
Ancestor := Ancestor_Subtype (Ancestor);
-- If no ancestor had a static lower bound, go to base type
if No (Ancestor) then
-- Note: the reason we still check for a compile time known
-- value for the base type is that at least in the case of
-- generic formals, we can have bounds that fail this test,
-- and there may be other cases in error situations.
Btyp := Base_Type (E);
if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
return;
end if;
Lo_Bound := Type_Low_Bound (Base_Type (E));
if Compile_Time_Known_Value (Lo_Bound)
and then Expr_Rep_Value (Lo_Bound) >= 0
then
Set_Is_Unsigned_Type (E, True);
end if;
return;
end if;
end if;
end loop;
end Check_Unsigned_Type;
-----------------------------
-- Is_Atomic_VFA_Aggregate --
-----------------------------
function Is_Atomic_VFA_Aggregate (N : Node_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (N);
New_N : Node_Id;
Par : Node_Id;
Temp : Entity_Id;
Typ : Entity_Id;
begin
Par := Parent (N);
-- Array may be qualified, so find outer context
if Nkind (Par) = N_Qualified_Expression then
Par := Parent (Par);
end if;
if not Comes_From_Source (Par) then
return False;
end if;
case Nkind (Par) is
when N_Assignment_Statement =>
Typ := Etype (Name (Par));
if not Is_Atomic_Or_VFA (Typ)
and then not (Is_Entity_Name (Name (Par))
and then Is_Atomic_Or_VFA (Entity (Name (Par))))
then
return False;
end if;
when N_Object_Declaration =>
Typ := Etype (Defining_Identifier (Par));
if not Is_Atomic_Or_VFA (Typ)
and then not Is_Atomic_Or_VFA (Defining_Identifier (Par))
then
return False;
end if;
when others =>
return False;
end case;
Temp := Make_Temporary (Loc, 'T', N);
New_N :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (N));
Insert_Before (Par, New_N);
Analyze (New_N);
Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
return True;
end Is_Atomic_VFA_Aggregate;
-----------------------------------------------
-- Explode_Initialization_Compound_Statement --
-----------------------------------------------
procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
Init_Stmts : constant Node_Id := Initialization_Statements (E);
begin
if Present (Init_Stmts)
and then Nkind (Init_Stmts) = N_Compound_Statement
then
Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
-- Note that we rewrite Init_Stmts into a NULL statement, rather than
-- just removing it, because Freeze_All may rely on this particular
-- Node_Id still being present in the enclosing list to know where to
-- stop freezing.
Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
Set_Initialization_Statements (E, Empty);
end if;
end Explode_Initialization_Compound_Statement;
----------------
-- Freeze_All --
----------------
-- Note: the easy coding for this procedure would be to just build a
-- single list of freeze nodes and then insert them and analyze them
-- all at once. This won't work, because the analysis of earlier freeze
-- nodes may recursively freeze types which would otherwise appear later
-- on in the freeze list. So we must analyze and expand the freeze nodes
-- as they are generated.
procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
-- This is the internal recursive routine that does freezing of entities
-- (but NOT the analysis of default expressions, which should not be
-- recursive, we don't want to analyze those till we are sure that ALL
-- the types are frozen).
--------------------
-- Freeze_All_Ent --
--------------------
procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
E : Entity_Id;
Flist : List_Id;
Lastn : Node_Id;
procedure Process_Flist;
-- If freeze nodes are present, insert and analyze, and reset cursor
-- for next insertion.
-------------------
-- Process_Flist --
-------------------
procedure Process_Flist is
begin
if Is_Non_Empty_List (Flist) then
Lastn := Next (After);
Insert_List_After_And_Analyze (After, Flist);
if Present (Lastn) then
After := Prev (Lastn);
else
After := Last (List_Containing (After));
end if;
end if;
end Process_Flist;
-- Start of processing for Freeze_All_Ent
begin
E := From;
while Present (E) loop
-- If the entity is an inner package which is not a package
-- renaming, then its entities must be frozen at this point. Note
-- that such entities do NOT get frozen at the end of the nested
-- package itself (only library packages freeze).
-- Same is true for task declarations, where anonymous records
-- created for entry parameters must be frozen.
if Ekind (E) = E_Package
and then No (Renamed_Object (E))
and then not Is_Child_Unit (E)
and then not Is_Frozen (E)
then
Push_Scope (E);
Install_Visible_Declarations (E);
Install_Private_Declarations (E);
Freeze_All (First_Entity (E), After);
End_Package_Scope (E);
if Is_Generic_Instance (E)
and then Has_Delayed_Freeze (E)
then
Set_Has_Delayed_Freeze (E, False);
Expand_N_Package_Declaration (Unit_Declaration_Node (E));
end if;
elsif Ekind (E) in Task_Kind
and then Nkind_In (Parent (E), N_Single_Task_Declaration,
N_Task_Type_Declaration)
then
Push_Scope (E);
Freeze_All (First_Entity (E), After);
End_Scope;
-- For a derived tagged type, we must ensure that all the
-- primitive operations of the parent have been frozen, so that
-- their addresses will be in the parent's dispatch table at the
-- point it is inherited.
elsif Ekind (E) = E_Record_Type
and then Is_Tagged_Type (E)
and then Is_Tagged_Type (Etype (E))
and then Is_Derived_Type (E)
then
declare
Prim_List : constant Elist_Id :=
Primitive_Operations (Etype (E));
Prim : Elmt_Id;
Subp : Entity_Id;
begin
Prim := First_Elmt (Prim_List);
while Present (Prim) loop
Subp := Node (Prim);
if Comes_From_Source (Subp)
and then not Is_Frozen (Subp)
then
Flist := Freeze_Entity (Subp, After);
Process_Flist;
end if;
Next_Elmt (Prim);
end loop;
end;
end if;
if not Is_Frozen (E) then
Flist := Freeze_Entity (E, After);
Process_Flist;
-- If already frozen, and there are delayed aspects, this is where
-- we do the visibility check for these aspects (see Sem_Ch13 spec
-- for a description of how we handle aspect visibility).
elsif Has_Delayed_Aspects (E) then
-- Retrieve the visibility to the discriminants in order to
-- analyze properly the aspects.
Push_Scope_And_Install_Discriminants (E);
declare
Ritem : Node_Id;
begin
Ritem := First_Rep_Item (E);
while Present (Ritem) loop
if Nkind (Ritem) = N_Aspect_Specification
and then Entity (Ritem) = E
and then Is_Delayed_Aspect (Ritem)
then
Check_Aspect_At_End_Of_Declarations (Ritem);
end if;
Ritem := Next_Rep_Item (Ritem);
end loop;
end;
Uninstall_Discriminants_And_Pop_Scope (E);
end if;
-- If an incomplete type is still not frozen, this may be a
-- premature freezing because of a body declaration that follows.
-- Indicate where the freezing took place. Freezing will happen
-- if the body comes from source, but not if it is internally
-- generated, for example as the body of a type invariant.
-- If the freezing is caused by the end of the current declarative
-- part, it is a Taft Amendment type, and there is no error.
if not Is_Frozen (E)
and then Ekind (E) = E_Incomplete_Type
then
declare
Bod : constant Node_Id := Next (After);
begin
-- The presence of a body freezes all entities previously
-- declared in the current list of declarations, but this
-- does not apply if the body does not come from source.
-- A type invariant is transformed into a subprogram body
-- which is placed at the end of the private part of the
-- current package, but this body does not freeze incomplete
-- types that may be declared in this private part.
if (Nkind_In (Bod, N_Entry_Body,
N_Package_Body,
N_Protected_Body,
N_Subprogram_Body,
N_Task_Body)
or else Nkind (Bod) in N_Body_Stub)
and then
List_Containing (After) = List_Containing (Parent (E))
and then Comes_From_Source (Bod)
then
Error_Msg_Sloc := Sloc (Next (After));
Error_Msg_NE
("type& is frozen# before its full declaration",
Parent (E), E);
end if;
end;
end if;
Next_Entity (E);
end loop;
end Freeze_All_Ent;
-- Local variables
Decl : Node_Id;
E : Entity_Id;
Item : Entity_Id;
-- Start of processing for Freeze_All
begin
Freeze_All_Ent (From, After);
-- Now that all types are frozen, we can deal with default expressions
-- that require us to build a default expression functions. This is the
-- point at which such functions are constructed (after all types that
-- might be used in such expressions have been frozen).
-- For subprograms that are renaming_as_body, we create the wrapper
-- bodies as needed.
-- We also add finalization chains to access types whose designated
-- types are controlled. This is normally done when freezing the type,
-- but this misses recursive type definitions where the later members
-- of the recursion introduce controlled components.
-- Loop through entities
E := From;
while Present (E) loop
if Is_Subprogram (E) then
if not Default_Expressions_Processed (E) then
Process_Default_Expressions (E, After);
end if;
if not Has_Completion (E) then
Decl := Unit_Declaration_Node (E);
if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
if Error_Posted (Decl) then
Set_Has_Completion (E);
else
Build_And_Analyze_Renamed_Body (Decl, E, After);
end if;
elsif Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
and then
Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) =
N_Subprogram_Renaming_Declaration
then
Build_And_Analyze_Renamed_Body
(Decl, Corresponding_Body (Decl), After);
end if;
end if;
-- Freeze the default expressions of entries, entry families, and
-- protected subprograms.
elsif Is_Concurrent_Type (E) then
Item := First_Entity (E);
while Present (Item) loop
if (Is_Entry (Item) or else Is_Subprogram (Item))
and then not Default_Expressions_Processed (Item)
then
Process_Default_Expressions (Item, After);
end if;
Next_Entity (Item);
end loop;
end if;
-- Historical note: We used to create a finalization master for an
-- access type whose designated type is not controlled, but contains
-- private controlled compoments. This form of postprocessing is no
-- longer needed because the finalization master is now created when
-- the access type is frozen (see Exp_Ch3.Freeze_Type).
Next_Entity (E);
end loop;
end Freeze_All;
-----------------------
-- Freeze_And_Append --
-----------------------
procedure Freeze_And_Append
(Ent : Entity_Id;
N : Node_Id;
Result : in out List_Id)
is
L : constant List_Id := Freeze_Entity (Ent, N);
begin
if Is_Non_Empty_List (L) then
if Result = No_List then
Result := L;
else
Append_List (L, Result);
end if;
end if;
end Freeze_And_Append;
-------------------
-- Freeze_Before --
-------------------
procedure Freeze_Before
(N : Node_Id;
T : Entity_Id;
Do_Freeze_Profile : Boolean := True)
is
-- Freeze T, then insert the generated Freeze nodes before the node N.
-- Flag Freeze_Profile is used when T is an overloadable entity, and
-- indicates whether its profile should be frozen at the same time.
Freeze_Nodes : constant List_Id :=
Freeze_Entity (T, N, Do_Freeze_Profile);
Pack : constant Entity_Id := Scope (T);
begin
if Ekind (T) = E_Function then
Check_Expression_Function (N, T);
end if;
if Is_Non_Empty_List (Freeze_Nodes) then
-- If the entity is a type declared in an inner package, it may be
-- frozen by an outer declaration before the package itself is
-- frozen. Install the package scope to analyze the freeze nodes,
-- which may include generated subprograms such as predicate
-- functions, etc.
if Is_Type (T) and then From_Nested_Package (T) then
Push_Scope (Pack);
Install_Visible_Declarations (Pack);
Install_Private_Declarations (Pack);
Insert_Actions (N, Freeze_Nodes);
End_Package_Scope (Pack);
else
Insert_Actions (N, Freeze_Nodes);
end if;
end if;
end Freeze_Before;
-------------------
-- Freeze_Entity --
-------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
function Freeze_Entity
(E : Entity_Id;
N : Node_Id;
Do_Freeze_Profile : Boolean := True) return List_Id
is
Loc : constant Source_Ptr := Sloc (N);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
Atype : Entity_Id;
Comp : Entity_Id;
F_Node : Node_Id;
Formal : Entity_Id;
Indx : Node_Id;
Has_Default_Initialization : Boolean := False;
-- This flag gets set to true for a variable with default initialization
Result : List_Id := No_List;
-- List of freezing actions, left at No_List if none
Test_E : Entity_Id := E;
-- This could use a comment ???
procedure Add_To_Result (Fnod : Node_Id);
-- Add freeze action Fnod to list Result
function After_Last_Declaration return Boolean;
-- If Loc is a freeze_entity that appears after the last declaration
-- in the scope, inhibit error messages on late completion.
procedure Check_Current_Instance (Comp_Decl : Node_Id);
-- Check that an Access or Unchecked_Access attribute with a prefix
-- which is the current instance type can only be applied when the type
-- is limited.
procedure Check_Suspicious_Convention (Rec_Type : Entity_Id);
-- Give a warning for pragma Convention with language C or C++ applied
-- to a discriminated record type. This is suppressed for the unchecked
-- union case, since the whole point in this case is interface C. We
-- also do not generate this within instantiations, since we will have
-- generated a message on the template.
procedure Check_Suspicious_Modulus (Utype : Entity_Id);
-- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
-- integer literal without an explicit corresponding size clause. The
-- caller has checked that Utype is a modular integer type.
procedure Freeze_Array_Type (Arr : Entity_Id);
-- Freeze array type, including freezing index and component types
procedure Freeze_Object_Declaration (E : Entity_Id);
-- Perform checks and generate freeze node if needed for a constant or
-- variable declared by an object declaration.
function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
-- Create Freeze_Generic_Entity nodes for types declared in a generic
-- package. Recurse on inner generic packages.
function Freeze_Profile (E : Entity_Id) return Boolean;
-- Freeze formals and return type of subprogram. If some type in the
-- profile is incomplete and we are in an instance, freezing of the
-- entity will take place elsewhere, and the function returns False.
procedure Freeze_Record_Type (Rec : Entity_Id);
-- Freeze record type, including freezing component types, and freezing
-- primitive operations if this is a tagged type.
function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
-- Determine whether an arbitrary entity is subject to Boolean aspect
-- Import and its value is specified as True.
procedure Inherit_Freeze_Node
(Fnod : Node_Id;
Typ : Entity_Id);
-- Set type Typ's freeze node to refer to Fnode. This routine ensures
-- that any attributes attached to Typ's original node are preserved.
procedure Wrap_Imported_Subprogram (E : Entity_Id);
-- If E is an entity for an imported subprogram with pre/post-conditions
-- then this procedure will create a wrapper to ensure that proper run-
-- time checking of the pre/postconditions. See body for details.
-------------------
-- Add_To_Result --
-------------------
procedure Add_To_Result (Fnod : Node_Id) is
begin
-- The Ghost mode of the enclosing context is ignored, while the
-- entity being frozen is living. Insert the freezing action prior
-- to the start of the enclosing ignored Ghost region. As a result
-- the freezeing action will be preserved when the ignored Ghost
-- context is eliminated.
if Saved_GM = Ignore
and then Ghost_Mode /= Ignore
and then Present (Ignored_Ghost_Region)
then
Insert_Action (Ignored_Ghost_Region, Fnod);
-- Otherwise add the freezing action to the result list
else
Append_New_To (Result, Fnod);
end if;
end Add_To_Result;
----------------------------
-- After_Last_Declaration --
----------------------------
function After_Last_Declaration return Boolean is
Spec : constant Node_Id := Parent (Current_Scope);
begin
if Nkind (Spec) = N_Package_Specification then
if Present (Private_Declarations (Spec)) then
return Loc >= Sloc (Last (Private_Declarations (Spec)));
elsif Present (Visible_Declarations (Spec)) then
return Loc >= Sloc (Last (Visible_Declarations (Spec)));
else
return False;
end if;
else
return False;
end if;
end After_Last_Declaration;
----------------------------
-- Check_Current_Instance --
----------------------------
procedure Check_Current_Instance (Comp_Decl : Node_Id) is
function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
-- Determine whether Typ is compatible with the rules for aliased
-- views of types as defined in RM 3.10 in the various dialects.
function Process (N : Node_Id) return Traverse_Result;
-- Process routine to apply check to given node
-----------------------------
-- Is_Aliased_View_Of_Type --
-----------------------------
function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
Typ_Decl : constant Node_Id := Parent (Typ);
begin
-- Common case
if Nkind (Typ_Decl) = N_Full_Type_Declaration
and then Limited_Present (Type_Definition (Typ_Decl))
then
return True;
-- The following paragraphs describe what a legal aliased view of
-- a type is in the various dialects of Ada.
-- Ada 95
-- The current instance of a limited type, and a formal parameter
-- or generic formal object of a tagged type.
-- Ada 95 limited type
-- * Type with reserved word "limited"
-- * A protected or task type
-- * A composite type with limited component
elsif Ada_Version <= Ada_95 then
return Is_Limited_Type (Typ);
-- Ada 2005
-- The current instance of a limited tagged type, a protected
-- type, a task type, or a type that has the reserved word
-- "limited" in its full definition ... a formal parameter or
-- generic formal object of a tagged type.
-- Ada 2005 limited type
-- * Type with reserved word "limited", "synchronized", "task"
-- or "protected"
-- * A composite type with limited component
-- * A derived type whose parent is a non-interface limited type
elsif Ada_Version = Ada_2005 then
return
(Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
or else
(Is_Derived_Type (Typ)
and then not Is_Interface (Etype (Typ))
and then Is_Limited_Type (Etype (Typ)));
-- Ada 2012 and beyond
-- The current instance of an immutably limited type ... a formal
-- parameter or generic formal object of a tagged type.
-- Ada 2012 limited type
-- * Type with reserved word "limited", "synchronized", "task"
-- or "protected"
-- * A composite type with limited component
-- * A derived type whose parent is a non-interface limited type
-- * An incomplete view
-- Ada 2012 immutably limited type
-- * Explicitly limited record type
-- * Record extension with "limited" present
-- * Non-formal limited private type that is either tagged
-- or has at least one access discriminant with a default
-- expression
-- * Task type, protected type or synchronized interface
-- * Type derived from immutably limited type
else
return
Is_Immutably_Limited_Type (Typ)
or else Is_Incomplete_Type (Typ);
end if;
end Is_Aliased_View_Of_Type;
-------------
-- Process --
-------------
function Process (N : Node_Id) return Traverse_Result is
begin
case Nkind (N) is
when N_Attribute_Reference =>
if Nam_In (Attribute_Name (N), Name_Access,
Name_Unchecked_Access)
and then Is_Entity_Name (Prefix (N))
and then Is_Type (Entity (Prefix (N)))
and then Entity (Prefix (N)) = E
then
if Ada_Version < Ada_2012 then
Error_Msg_N
("current instance must be a limited type",
Prefix (N));
else
Error_Msg_N
("current instance must be an immutably limited "
& "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
end if;
return Abandon;
else
return OK;
end if;
when others =>
return OK;
end case;
end Process;
procedure Traverse is new Traverse_Proc (Process);
-- Local variables
Rec_Type : constant Entity_Id :=
Scope (Defining_Identifier (Comp_Decl));
-- Start of processing for Check_Current_Instance
begin
if not Is_Aliased_View_Of_Type (Rec_Type) then
Traverse (Comp_Decl);
end if;
end Check_Current_Instance;
---------------------------------
-- Check_Suspicious_Convention --
---------------------------------
procedure Check_Suspicious_Convention (Rec_Type : Entity_Id) is
begin
if Has_Discriminants (Rec_Type)
and then Is_Base_Type (Rec_Type)
and then not Is_Unchecked_Union (Rec_Type)
and then (Convention (Rec_Type) = Convention_C
or else
Convention (Rec_Type) = Convention_CPP)
and then Comes_From_Source (Rec_Type)
and then not In_Instance
and then not Has_Warnings_Off (Rec_Type)
then
declare
Cprag : constant Node_Id :=
Get_Rep_Pragma (Rec_Type, Name_Convention);
A2 : Node_Id;
begin
if Present (Cprag) then
A2 := Next (First (Pragma_Argument_Associations (Cprag)));
if Convention (Rec_Type) = Convention_C then
Error_Msg_N
("?x?discriminated record has no direct equivalent in "
& "C", A2);
else
Error_Msg_N
("?x?discriminated record has no direct equivalent in "
& "C++", A2);
end if;
Error_Msg_NE
("\?x?use of convention for type& is dubious",
A2, Rec_Type);
end if;
end;
end if;
end Check_Suspicious_Convention;
------------------------------
-- Check_Suspicious_Modulus --
------------------------------
procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
begin
if not Warn_On_Suspicious_Modulus_Value then
return;
end if;
if Nkind (Decl) = N_Full_Type_Declaration then
declare
Tdef : constant Node_Id := Type_Definition (Decl);
begin
if Nkind (Tdef) = N_Modular_Type_Definition then
declare
Modulus : constant Node_Id :=
Original_Node (Expression (Tdef));
begin
if Nkind (Modulus) = N_Integer_Literal then
declare
Modv : constant Uint := Intval (Modulus);
Sizv : constant Uint := RM_Size (Utype);
begin
-- First case, modulus and size are the same. This
-- happens if you have something like mod 32, with
-- an explicit size of 32, this is for sure a case
-- where the warning is given, since it is seems
-- very unlikely that someone would want e.g. a
-- five bit type stored in 32 bits. It is much
-- more likely they wanted a 32-bit type.
if Modv = Sizv then
null;
-- Second case, the modulus is 32 or 64 and no
-- size clause is present. This is a less clear
-- case for giving the warning, but in the case
-- of 32/64 (5-bit or 6-bit types) these seem rare
-- enough that it is a likely error (and in any
-- case using 2**5 or 2**6 in these cases seems
-- clearer. We don't include 8 or 16 here, simply
-- because in practice 3-bit and 4-bit types are
-- more common and too many false positives if
-- we warn in these cases.
elsif not Has_Size_Clause (Utype)
and then (Modv = Uint_32 or else Modv = Uint_64)
then
null;
-- No warning needed
else
return;
end if;
-- If we fall through, give warning
Error_Msg_Uint_1 := Modv;
Error_Msg_N
("?M?2 '*'*^' may have been intended here",
Modulus);
end;
end if;
end;
end if;
end;
end if;
end Check_Suspicious_Modulus;
-----------------------
-- Freeze_Array_Type --
-----------------------
procedure Freeze_Array_Type (Arr : Entity_Id) is
FS : constant Entity_Id := First_Subtype (Arr);
Ctyp : constant Entity_Id := Component_Type (Arr);
Clause : Entity_Id;
Non_Standard_Enum : Boolean := False;
-- Set true if any of the index types is an enumeration type with a
-- non-standard representation.
begin
Freeze_And_Append (Ctyp, N, Result);
Indx := First_Index (Arr);
while Present (Indx) loop
Freeze_And_Append (Etype (Indx), N, Result);
if Is_Enumeration_Type (Etype (Indx))
and then Has_Non_Standard_Rep (Etype (Indx))
then
Non_Standard_Enum := True;
end if;
Next_Index (Indx);
end loop;
-- Processing that is done only for base types
if Ekind (Arr) = E_Array_Type then
-- Deal with default setting of reverse storage order
Set_SSO_From_Default (Arr);
-- Propagate flags for component type
if Is_Controlled (Component_Type (Arr))
or else Has_Controlled_Component (Ctyp)
then
Set_Has_Controlled_Component (Arr);
end if;
if Has_Unchecked_Union (Component_Type (Arr)) then
Set_Has_Unchecked_Union (Arr);
end if;
-- The array type requires its own invariant procedure in order to
-- verify the component invariant over all elements. In GNATprove
-- mode, the component invariants are checked by other means. They
-- should not be added to the array type invariant procedure, so
-- that the procedure can be used to check the array type
-- invariants if any.
if Has_Invariants (Component_Type (Arr))
and then not GNATprove_Mode
then
Set_Has_Own_Invariants (Arr);
-- The array type is an implementation base type. Propagate the
-- same property to the first subtype.
if Is_Itype (Arr) then
Set_Has_Own_Invariants (First_Subtype (Arr));
end if;
end if;
-- Warn for pragma Pack overriding foreign convention
if Has_Foreign_Convention (Ctyp)
and then Has_Pragma_Pack (Arr)
then
declare
CN : constant Name_Id :=
Get_Convention_Name (Convention (Ctyp));
PP : constant Node_Id :=
Get_Pragma (First_Subtype (Arr), Pragma_Pack);
begin
if Present (PP) then
Error_Msg_Name_1 := CN;
Error_Msg_Sloc := Sloc (Arr);
Error_Msg_N
("pragma Pack affects convention % components #??", PP);
Error_Msg_Name_1 := CN;
Error_Msg_N
("\array components may not have % compatible "
& "representation??", PP);
end if;
end;
end if;
-- If packing was requested or if the component size was
-- set explicitly, then see if bit packing is required. This
-- processing is only done for base types, since all of the
-- representation aspects involved are type-related.
-- This is not just an optimization, if we start processing the
-- subtypes, they interfere with the settings on the base type
-- (this is because Is_Packed has a slightly different meaning
-- before and after freezing).
declare
Csiz : Uint;
Esiz : Uint;
begin
if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
and then Known_Static_RM_Size (Ctyp)
and then not Has_Component_Size_Clause (Arr)
then
Csiz := UI_Max (RM_Size (Ctyp), 1);
elsif Known_Component_Size (Arr) then
Csiz := Component_Size (Arr);
elsif not Known_Static_Esize (Ctyp) then
Csiz := Uint_0;
else
Esiz := Esize (Ctyp);
-- We can set the component size if it is less than 16,
-- rounding it up to the next storage unit size.
if Esiz <= 8 then
Csiz := Uint_8;
elsif Esiz <= 16 then
Csiz := Uint_16;
else
Csiz := Uint_0;
end if;
-- Set component size up to match alignment if it would
-- otherwise be less than the alignment. This deals with
-- cases of types whose alignment exceeds their size (the
-- padded type cases).
if Csiz /= 0 then
declare
A : constant Uint := Alignment_In_Bits (Ctyp);
begin
if Csiz < A then
Csiz := A;
end if;
end;
end if;
end if;
-- Case of component size that may result in bit packing
if 1 <= Csiz and then Csiz <= 64 then
declare
Ent : constant Entity_Id :=
First_Subtype (Arr);
Pack_Pragma : constant Node_Id :=
Get_Rep_Pragma (Ent, Name_Pack);
Comp_Size_C : constant Node_Id :=
Get_Attribute_Definition_Clause
(Ent, Attribute_Component_Size);
begin
-- Warn if we have pack and component size so that the
-- pack is ignored.
-- Note: here we must check for the presence of a
-- component size before checking for a Pack pragma to
-- deal with the case where the array type is a derived
-- type whose parent is currently private.
if Present (Comp_Size_C)
and then Has_Pragma_Pack (Ent)
and then Warn_On_Redundant_Constructs
then
Error_Msg_Sloc := Sloc (Comp_Size_C);
Error_Msg_NE
("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
Error_Msg_N
("\?r?explicit component size given#!", Pack_Pragma);
Set_Is_Packed (Base_Type (Ent), False);
Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
end if;
-- Set component size if not already set by a component
-- size clause.
if not Present (Comp_Size_C) then
Set_Component_Size (Arr, Csiz);
end if;
-- Check for base type of 8, 16, 32 bits, where an
-- unsigned subtype has a length one less than the
-- base type (e.g. Natural subtype of Integer).
-- In such cases, if a component size was not set
-- explicitly, then generate a warning.
if Has_Pragma_Pack (Arr)
and then not Present (Comp_Size_C)
and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
and then Esize (Base_Type (Ctyp)) = Csiz + 1
then
Error_Msg_Uint_1 := Csiz;
if Present (Pack_Pragma) then
Error_Msg_N
("??pragma Pack causes component size to be ^!",
Pack_Pragma);
Error_Msg_N
("\??use Component_Size to set desired value!",
Pack_Pragma);
end if;
end if;
-- Bit packing is never needed for 8, 16, 32, 64
if Addressable (Csiz) then
-- If the Esize of the component is known and equal to
-- the component size then even packing is not needed.
if Known_Static_Esize (Component_Type (Arr))
and then Esize (Component_Type (Arr)) = Csiz
then
-- Here the array was requested to be packed, but
-- the packing request had no effect whatsoever,
-- so flag Is_Packed is reset.
-- Note: semantically this means that we lose track
-- of the fact that a derived type inherited pragma
-- Pack that was non-effective, but that is fine.
-- We regard a Pack pragma as a request to set a
-- representation characteristic, and this request
-- may be ignored.
Set_Is_Packed (Base_Type (Arr), False);
Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
else
Set_Is_Packed (Base_Type (Arr), True);
Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
end if;
Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
-- Bit packing is not needed for multiples of the storage
-- unit if the type is composite because the back end can
-- byte pack composite types.
elsif Csiz mod System_Storage_Unit = 0
and then Is_Composite_Type (Ctyp)
then
Set_Is_Packed (Base_Type (Arr), True);
Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
-- In all other cases, bit packing is needed
else
Set_Is_Packed (Base_Type (Arr), True);
Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
end if;
end;
end if;
end;
-- Check for Aliased or Atomic_Components/Atomic/VFA with
-- unsuitable packing or explicit component size clause given.
if (Has_Aliased_Components (Arr)
or else Has_Atomic_Components (Arr)
or else Is_Atomic_Or_VFA (Ctyp))
and then
(Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
then
Alias_Atomic_Check : declare
procedure Complain_CS (T : String);
-- Outputs error messages for incorrect CS clause or pragma
-- Pack for aliased or atomic/VFA components (T is "aliased"
-- or "atomic/vfa");
-----------------
-- Complain_CS --
-----------------
procedure Complain_CS (T : String) is
begin
if Has_Component_Size_Clause (Arr) then
Clause :=
Get_Attribute_Definition_Clause
(FS, Attribute_Component_Size);
Error_Msg_N
("incorrect component size for "
& T & " components", Clause);
Error_Msg_Uint_1 := Esize (Ctyp);
Error_Msg_N
("\only allowed value is^", Clause);
else
Error_Msg_N
("cannot pack " & T & " components",
Get_Rep_Pragma (FS, Name_Pack));
end if;
end Complain_CS;
-- Start of processing for Alias_Atomic_Check
begin
-- If object size of component type isn't known, we cannot
-- be sure so we defer to the back end.
if not Known_Static_Esize (Ctyp) then
null;
-- Case where component size has no effect. First check for
-- object size of component type multiple of the storage
-- unit size.
elsif Esize (Ctyp) mod System_Storage_Unit = 0
-- OK in both packing case and component size case if RM
-- size is known and static and same as the object size.
and then
((Known_Static_RM_Size (Ctyp)
and then Esize (Ctyp) = RM_Size (Ctyp))
-- Or if we have an explicit component size clause and
-- the component size and object size are equal.
or else
(Has_Component_Size_Clause (Arr)
and then Component_Size (Arr) = Esize (Ctyp)))
then
null;
elsif Has_Aliased_Components (Arr) then
Complain_CS ("aliased");
elsif Has_Atomic_Components (Arr)
or else Is_Atomic (Ctyp)
then
Complain_CS ("atomic");
elsif Is_Volatile_Full_Access (Ctyp) then
Complain_CS ("volatile full access");
end if;
end Alias_Atomic_Check;
end if;
-- Check for Independent_Components/Independent with unsuitable
-- packing or explicit component size clause given.
if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
and then
(Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
then
begin
-- If object size of component type isn't known, we cannot
-- be sure so we defer to the back end.
if not Known_Static_Esize (Ctyp) then
null;
-- Case where component size has no effect. First check for
-- object size of component type multiple of the storage
-- unit size.
elsif Esize (Ctyp) mod System_Storage_Unit = 0
-- OK in both packing case and component size case if RM
-- size is known and multiple of the storage unit size.
and then
((Known_Static_RM_Size (Ctyp)
and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
-- Or if we have an explicit component size clause and
-- the component size is larger than the object size.
or else
(Has_Component_Size_Clause (Arr)
and then Component_Size (Arr) >= Esize (Ctyp)))
then
null;
else
if Has_Component_Size_Clause (Arr) then
Clause :=
Get_Attribute_Definition_Clause
(FS, Attribute_Component_Size);
Error_Msg_N
("incorrect component size for "
& "independent components", Clause);
Error_Msg_Uint_1 := Esize (Ctyp);
Error_Msg_N
("\minimum allowed is^", Clause);
else
Error_Msg_N
("cannot pack independent components",
Get_Rep_Pragma (FS, Name_Pack));
end if;
end if;
end;
end if;
-- Warn for case of atomic type
Clause := Get_Rep_Pragma (FS, Name_Atomic);
if Present (Clause)
and then not Addressable (Component_Size (FS))
then
Error_Msg_NE
("non-atomic components of type& may not be "
& "accessible by separate tasks??", Clause, Arr);
if Has_Component_Size_Clause (Arr) then
Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
(FS, Attribute_Component_Size));
Error_Msg_N ("\because of component size clause#??", Clause);
elsif Has_Pragma_Pack (Arr) then
Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
Error_Msg_N ("\because of pragma Pack#??", Clause);
end if;
end if;
-- Check for scalar storage order
declare
Dummy : Boolean;
begin
Check_Component_Storage_Order
(Encl_Type => Arr,
Comp => Empty,
ADC => Get_Attribute_Definition_Clause
(First_Subtype (Arr),
Attribute_Scalar_Storage_Order),
Comp_ADC_Present => Dummy);
end;
-- Processing that is done only for subtypes
else
-- Acquire alignment from base type
if Unknown_Alignment (Arr) then
Set_Alignment (Arr, Alignment (Base_Type (Arr)));
Adjust_Esize_Alignment (Arr);
end if;
end if;
-- Specific checks for bit-packed arrays
if Is_Bit_Packed_Array (Arr) then
-- Check number of elements for bit-packed arrays that come from
-- source and have compile time known ranges. The bit-packed
-- arrays circuitry does not support arrays with more than
-- Integer'Last + 1 elements, and when this restriction is
-- violated, causes incorrect data access.
-- For the case where this is not compile time known, a run-time
-- check should be generated???
if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
declare
Elmts : Uint;
Index : Node_Id;
Ilen : Node_Id;
Ityp : Entity_Id;
begin
Elmts := Uint_1;
Index := First_Index (Arr);
while Present (Index) loop
Ityp := Etype (Index);
-- Never generate an error if any index is of a generic
-- type. We will check this in instances.
if Is_Generic_Type (Ityp) then
Elmts := Uint_0;
exit;
end if;
Ilen :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Range_Length);
Analyze_And_Resolve (Ilen);
-- No attempt is made to check number of elements if not
-- compile time known.
if Nkind (Ilen) /= N_Integer_Literal then
Elmts := Uint_0;
exit;
end if;
Elmts := Elmts * Intval (Ilen);
Next_Index (Index);
end loop;
if Elmts > Intval (High_Bound
(Scalar_Range (Standard_Integer))) + 1
then
Error_Msg_N
("bit packed array type may not have "
& "more than Integer''Last+1 elements", Arr);
end if;
end;
end if;
-- Check size
if Known_RM_Size (Arr) then
declare
SizC : constant Node_Id := Size_Clause (Arr);
Discard : Boolean;
begin
-- It is not clear if it is possible to have no size clause
-- at this stage, but it is not worth worrying about. Post
-- error on the entity name in the size clause if present,
-- else on the type entity itself.
if Present (SizC) then
Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
else
Check_Size (Arr, Arr, RM_Size (Arr), Discard);
end if;
end;
end if;
end if;
-- If any of the index types was an enumeration type with a non-
-- standard rep clause, then we indicate that the array type is
-- always packed (even if it is not bit-packed).
if Non_Standard_Enum then
Set_Has_Non_Standard_Rep (Base_Type (Arr));
Set_Is_Packed (Base_Type (Arr));
end if;
Set_Component_Alignment_If_Not_Set (Arr);
-- If the array is packed and bit-packed or packed to eliminate holes
-- in the non-contiguous enumeration index types, we must create the
-- packed array type to be used to actually implement the type. This
-- is only needed for real array types (not for string literal types,
-- since they are present only for the front end).
if Is_Packed (Arr)
and then (Is_Bit_Packed_Array (Arr) or else Non_Standard_Enum)
and then Ekind (Arr) /= E_String_Literal_Subtype
then
Create_Packed_Array_Impl_Type (Arr);
Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
-- Make sure that we have the necessary routines to implement the
-- packing, and complain now if not. Note that we only test this
-- for constrained array types.
if Is_Constrained (Arr)
and then Is_Bit_Packed_Array (Arr)
and then Present (Packed_Array_Impl_Type (Arr))
and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
then
declare
CS : constant Uint := Component_Size (Arr);
RE : constant RE_Id := Get_Id (UI_To_Int (CS));
begin
if RE /= RE_Null
and then not RTE_Available (RE)
then
Error_Msg_CRT
("packing of " & UI_Image (CS) & "-bit components",
First_Subtype (Etype (Arr)));
-- Cancel the packing
Set_Is_Packed (Base_Type (Arr), False);
Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
Set_Packed_Array_Impl_Type (Arr, Empty);
goto Skip_Packed;
end if;
end;
end if;
-- Size information of packed array type is copied to the array
-- type, since this is really the representation. But do not
-- override explicit existing size values. If the ancestor subtype
-- is constrained the Packed_Array_Impl_Type will be inherited
-- from it, but the size may have been provided already, and
-- must not be overridden either.
if not Has_Size_Clause (Arr)
and then
(No (Ancestor_Subtype (Arr))
or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
then
Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
end if;
if not Has_Alignment_Clause (Arr) then
Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
end if;
end if;
<<Skip_Packed>>
-- For non-packed arrays set the alignment of the array to the
-- alignment of the component type if it is unknown. Skip this
-- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
if not Is_Packed (Arr)
and then Unknown_Alignment (Arr)
and then Known_Alignment (Ctyp)
and then Known_Static_Component_Size (Arr)
and then Known_Static_Esize (Ctyp)
and then Esize (Ctyp) = Component_Size (Arr)
and then not Is_Atomic_Or_VFA (Arr)
then
Set_Alignment (Arr, Alignment (Component_Type (Arr)));
end if;
-- A Ghost type cannot have a component of protected or task type
-- (SPARK RM 6.9(19)).
if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then
Error_Msg_N
("ghost array type & cannot have concurrent component type",
Arr);
end if;
end Freeze_Array_Type;
-------------------------------
-- Freeze_Object_Declaration --
-------------------------------
procedure Freeze_Object_Declaration (E : Entity_Id) is
procedure Check_Large_Modular_Array (Typ : Entity_Id);
-- Check that the size of array type Typ can be computed without
-- overflow, and generates a Storage_Error otherwise. This is only
-- relevant for array types whose index is a (mod 2**64) type, where
-- wrap-around arithmetic might yield a meaningless value for the
-- length of the array, or its corresponding attribute.
-------------------------------
-- Check_Large_Modular_Array --
-------------------------------
procedure Check_Large_Modular_Array (Typ : Entity_Id) is
Obj_Loc : constant Source_Ptr := Sloc (E);
Idx_Typ : Entity_Id;
begin
-- Nothing to do when expansion is disabled because this routine
-- generates a runtime check.
if not Expander_Active then
return;
-- Nothing to do for String literal subtypes because their index
-- cannot be a modular type.
elsif Ekind (Typ) = E_String_Literal_Subtype then
return;
-- Nothing to do for an imported object because the object will
-- be created on the exporting side.
elsif Is_Imported (E) then
return;
-- Nothing to do for unconstrained array types. This case arises
-- when the object declaration is illegal.
elsif not Is_Constrained (Typ) then
return;
end if;
Idx_Typ := Etype (First_Index (Typ));
-- To prevent arithmetic overflow with large values, we raise
-- Storage_Error under the following guard:
--
-- (Arr'Last / 2 - Arr'First / 2) > (2 ** 30)
--
-- This takes care of the boundary case, but it is preferable to
-- use a smaller limit, because even on 64-bit architectures an
-- array of more than 2 ** 30 bytes is likely to raise
-- Storage_Error.
if Is_Modular_Integer_Type (Idx_Typ)
and then RM_Size (Idx_Typ) = RM_Size (Standard_Long_Long_Integer)
then
Insert_Action (Declaration_Node (E),
Make_Raise_Storage_Error (Obj_Loc,
Condition =>
Make_Op_Ge (Obj_Loc,
Left_Opnd =>
Make_Op_Subtract (Obj_Loc,
Left_Opnd =>
Make_Op_Divide (Obj_Loc,
Left_Opnd =>
Make_Attribute_Reference (Obj_Loc,
Prefix =>
New_Occurrence_Of (Typ, Obj_Loc),
Attribute_Name => Name_Last),
Right_Opnd =>
Make_Integer_Literal (Obj_Loc, Uint_2)),
Right_Opnd =>
Make_Op_Divide (Obj_Loc,
Left_Opnd =>
Make_Attribute_Reference (Obj_Loc,
Prefix =>
New_Occurrence_Of (Typ, Obj_Loc),
Attribute_Name => Name_First),
Right_Opnd =>
Make_Integer_Literal (Obj_Loc, Uint_2))),
Right_Opnd =>
Make_Integer_Literal (Obj_Loc, (Uint_2 ** 30))),
Reason => SE_Object_Too_Large));
end if;
end Check_Large_Modular_Array;
-- Local variables
Typ : constant Entity_Id := Etype (E);
Def : Node_Id;
-- Start of processing for Freeze_Object_Declaration
begin
-- Abstract type allowed only for C++ imported variables or constants
-- Note: we inhibit this check for objects that do not come from
-- source because there is at least one case (the expansion of
-- x'Class'Input where x is abstract) where we legitimately
-- generate an abstract object.
if Is_Abstract_Type (Typ)
and then Comes_From_Source (Parent (E))
and then not (Is_Imported (E) and then Is_CPP_Class (Typ))
then
Def := Object_Definition (Parent (E));
Error_Msg_N ("type of object cannot be abstract", Def);
if Is_CPP_Class (Etype (E)) then
Error_Msg_NE ("\} may need a cpp_constructor", Def, Typ);
elsif Present (Expression (Parent (E))) then
Error_Msg_N -- CODEFIX
("\maybe a class-wide type was meant", Def);
end if;
end if;
-- For object created by object declaration, perform required
-- categorization (preelaborate and pure) checks. Defer these
-- checks to freeze time since pragma Import inhibits default
-- initialization and thus pragma Import affects these checks.
Validate_Object_Declaration (Declaration_Node (E));
-- If there is an address clause, check that it is valid and if need
-- be move initialization to the freeze node.
Check_Address_Clause (E);
-- Similar processing is needed for aspects that may affect object
-- layout, like Alignment, if there is an initialization expression.
-- We don't do this if there is a pragma Linker_Section, because it
-- would prevent the back end from statically initializing the
-- object; we don't want elaboration code in that case.
if Has_Delayed_Aspects (E)
and then Expander_Active
and then Is_Array_Type (Typ)
and then Present (Expression (Parent (E)))
and then No (Linker_Section_Pragma (E))
then
declare
Decl : constant Node_Id := Parent (E);
Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
begin
-- Capture initialization value at point of declaration, and
-- make explicit assignment legal, because object may be a
-- constant.
Remove_Side_Effects (Expression (Decl));
Set_Assignment_OK (Lhs);
-- Move initialization to freeze actions
Append_Freeze_Action (E,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Expression (Decl)));
Set_No_Initialization (Decl);
-- Set_Is_Frozen (E, False);
end;
end if;
-- Reset Is_True_Constant for non-constant aliased object. We
-- consider that the fact that a non-constant object is aliased may
-- indicate that some funny business is going on, e.g. an aliased
-- object is passed by reference to a procedure which captures the
-- address of the object, which is later used to assign a new value,
-- even though the compiler thinks that it is not modified. Such
-- code is highly dubious, but we choose to make it "work" for
-- non-constant aliased objects.
-- Note that we used to do this for all aliased objects, whether or
-- not constant, but this caused anomalies down the line because we
-- ended up with static objects that were not Is_True_Constant. Not
-- resetting Is_True_Constant for (aliased) constant objects ensures
-- that this anomaly never occurs.
-- However, we don't do that for internal entities. We figure that if
-- we deliberately set Is_True_Constant for an internal entity, e.g.
-- a dispatch table entry, then we mean it.
if Ekind (E) /= E_Constant
and then (Is_Aliased (E) or else Is_Aliased (Typ))
and then not Is_Internal_Name (Chars (E))
then
Set_Is_True_Constant (E, False);
end if;
-- If the object needs any kind of default initialization, an error
-- must be issued if No_Default_Initialization applies. The check
-- doesn't apply to imported objects, which are not ever default
-- initialized, and is why the check is deferred until freezing, at
-- which point we know if Import applies. Deferred constants are also
-- exempted from this test because their completion is explicit, or
-- through an import pragma.
if Ekind (E) = E_Constant and then Present (Full_View (E)) then
null;
elsif Comes_From_Source (E)
and then not Is_Imported (E)
and then not Has_Init_Expression (Declaration_Node (E))
and then
((Has_Non_Null_Base_Init_Proc (Typ)
and then not No_Initialization (Declaration_Node (E))
and then not Initialization_Suppressed (Typ))
or else
(Needs_Simple_Initialization (Typ)
and then not Is_Internal (E)))
then
Has_Default_Initialization := True;
Check_Restriction
(No_Default_Initialization, Declaration_Node (E));
end if;
-- Check that a Thread_Local_Storage variable does not have default
-- initialization, and any explicit initialization must either be the
-- null constant or a static constant.
if Has_Pragma_Thread_Local_Storage (E) then
declare
Decl : constant Node_Id := Declaration_Node (E);
begin
if Has_Default_Initialization
or else
(Has_Init_Expression (Decl)
and then
(No (Expression (Decl))
or else not
(Is_OK_Static_Expression (Expression (Decl))
or else Nkind (Expression (Decl)) = N_Null)))
then
Error_Msg_NE
("Thread_Local_Storage variable& is "
& "improperly initialized", Decl, E);
Error_Msg_NE
("\only allowed initialization is explicit "
& "NULL or static expression", Decl, E);
end if;
end;
end if;
-- For imported objects, set Is_Public unless there is also an
-- address clause, which means that there is no external symbol
-- needed for the Import (Is_Public may still be set for other
-- unrelated reasons). Note that we delayed this processing
-- till freeze time so that we can be sure not to set the flag
-- if there is an address clause. If there is such a clause,
-- then the only purpose of the Import pragma is to suppress
-- implicit initialization.
if Is_Imported (E) and then No (Address_Clause (E)) then
Set_Is_Public (E);
end if;
-- For source objects that are not Imported and are library level, if
-- no linker section pragma was given inherit the appropriate linker
-- section from the corresponding type.
if Comes_From_Source (E)
and then not Is_Imported (E)
and then Is_Library_Level_Entity (E)
and then No (Linker_Section_Pragma (E))
then
Set_Linker_Section_Pragma (E, Linker_Section_Pragma (Typ));
end if;
-- For convention C objects of an enumeration type, warn if the size
-- is not integer size and no explicit size given. Skip warning for
-- Boolean and Character, and assume programmer expects 8-bit sizes
-- for these cases.
if (Convention (E) = Convention_C
or else
Convention (E) = Convention_CPP)
and then Is_Enumeration_Type (Typ)
and then not Is_Character_Type (Typ)
and then not Is_Boolean_Type (Typ)
and then Esize (Typ) < Standard_Integer_Size
and then not Has_Size_Clause (E)
then
Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
Error_Msg_N
("??convention C enumeration object has size less than ^", E);
Error_Msg_N ("\??use explicit size clause to set size", E);
end if;
if Is_Array_Type (Typ) then
Check_Large_Modular_Array (Typ);
end if;
end Freeze_Object_Declaration;
-----------------------------
-- Freeze_Generic_Entities --
-----------------------------
function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
E : Entity_Id;
F : Node_Id;
Flist : List_Id;
begin
Flist := New_List;
E := First_Entity (Pack);
while Present (E) loop
if Is_Type (E) and then not Is_Generic_Type (E) then
F := Make_Freeze_Generic_Entity (Sloc (Pack));
Set_Entity (F, E);
Append_To (Flist, F);
elsif Ekind (E) = E_Generic_Package then
Append_List_To (Flist, Freeze_Generic_Entities (E));
end if;
Next_Entity (E);
end loop;
return Flist;
end Freeze_Generic_Entities;
--------------------
-- Freeze_Profile --
--------------------
function Freeze_Profile (E : Entity_Id) return Boolean is
F_Type : Entity_Id;
R_Type : Entity_Id;
Warn_Node : Node_Id;
begin
-- Loop through formals
Formal := First_Formal (E);
while Present (Formal) loop
F_Type := Etype (Formal);
-- AI05-0151: incomplete types can appear in a profile. By the
-- time the entity is frozen, the full view must be available,
-- unless it is a limited view.
if Is_Incomplete_Type (F_Type)
and then Present (Full_View (F_Type))
and then not From_Limited_With (F_Type)
then
F_Type := Full_View (F_Type);
Set_Etype (Formal, F_Type);
end if;
if not From_Limited_With (F_Type) then
Freeze_And_Append (F_Type, N, Result);
end if;
if Is_Private_Type (F_Type)
and then Is_Private_Type (Base_Type (F_Type))
and then No (Full_View (Base_Type (F_Type)))
and then not Is_Generic_Type (F_Type)
and then not Is_Derived_Type (F_Type)
then
-- If the type of a formal is incomplete, subprogram is being
-- frozen prematurely. Within an instance (but not within a
-- wrapper package) this is an artifact of our need to regard
-- the end of an instantiation as a freeze point. Otherwise it
-- is a definite error.
if In_Instance then
Set_Is_Frozen (E, False);
Result := No_List;
return False;
elsif not After_Last_Declaration
and then not Freezing_Library_Level_Tagged_Type
then
Error_Msg_Node_1 := F_Type;
Error_Msg
("type & must be fully defined before this point", Loc);
end if;
end if;
-- Check suspicious parameter for C function. These tests apply
-- only to exported/imported subprograms.
if Warn_On_Export_Import
and then Comes_From_Source (E)
and then (Convention (E) = Convention_C
or else
Convention (E) = Convention_CPP)
and then (Is_Imported (E) or else Is_Exported (E))
and then Convention (E) /= Convention (Formal)
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (F_Type)
and then not Has_Warnings_Off (Formal)
then
-- Qualify mention of formals with subprogram name
Error_Msg_Qual_Level := 1;
-- Check suspicious use of fat C pointer
if Is_Access_Type (F_Type)
and then Esize (F_Type) > Ttypes.System_Address_Size
then
Error_Msg_N
("?x?type of & does not correspond to C pointer!", Formal);
-- Check suspicious return of boolean
elsif Root_Type (F_Type) = Standard_Boolean
and then Convention (F_Type) = Convention_Ada
and then not Has_Warnings_Off (F_Type)
and then not Has_Size_Clause (F_Type)
then
Error_Msg_N
("& is an 8-bit Ada Boolean?x?", Formal);
Error_Msg_N
("\use appropriate corresponding type in C "
& "(e.g. char)?x?", Formal);
-- Check suspicious tagged type
elsif (Is_Tagged_Type (F_Type)
or else
(Is_Access_Type (F_Type)
and then Is_Tagged_Type (Designated_Type (F_Type))))
and then Convention (E) = Convention_C
then
Error_Msg_N
("?x?& involves a tagged type which does not "
& "correspond to any C type!", Formal);
-- Check wrong convention subprogram pointer
elsif Ekind (F_Type) = E_Access_Subprogram_Type
and then not Has_Foreign_Convention (F_Type)
then
Error_Msg_N
("?x?subprogram pointer & should "
& "have foreign convention!", Formal);
Error_Msg_Sloc := Sloc (F_Type);
Error_Msg_NE
("\?x?add Convention pragma to declaration of &#",
Formal, F_Type);
end if;
-- Turn off name qualification after message output
Error_Msg_Qual_Level := 0;
end if;
-- Check for unconstrained array in exported foreign convention
-- case.
if Has_Foreign_Convention (E)
and then not Is_Imported (E)
and then Is_Array_Type (F_Type)
and then not Is_Constrained (F_Type)
and then Warn_On_Export_Import
then
Error_Msg_Qual_Level := 1;
-- If this is an inherited operation, place the warning on
-- the derived type declaration, rather than on the original
-- subprogram.
if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
then
Warn_Node := Parent (E);
if Formal = First_Formal (E) then
Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
end if;
else
Warn_Node := Formal;
end if;
Error_Msg_NE ("?x?type of argument& is unconstrained array",
Warn_Node, Formal);
Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
Warn_Node, Formal);
Error_Msg_Qual_Level := 0;
end if;
if not From_Limited_With (F_Type) then
if Is_Access_Type (F_Type) then
F_Type := Designated_Type (F_Type);
end if;
-- If the formal is an anonymous_access_to_subprogram
-- freeze the subprogram type as well, to prevent
-- scope anomalies in gigi, because there is no other
-- clear point at which it could be frozen.
if Is_Itype (Etype (Formal))
and then Ekind (F_Type) = E_Subprogram_Type
then
Freeze_And_Append (F_Type, N, Result);
end if;
end if;
Next_Formal (Formal);
end loop;
-- Case of function: similar checks on return type
if Ekind (E) = E_Function then
-- Freeze return type
R_Type := Etype (E);
-- AI05-0151: the return type may have been incomplete at the
-- point of declaration. Replace it with the full view, unless the
-- current type is a limited view. In that case the full view is
-- in a different unit, and gigi finds the non-limited view after
-- the other unit is elaborated.
if Ekind (R_Type) = E_Incomplete_Type
and then Present (Full_View (R_Type))
and then not From_Limited_With (R_Type)
then
R_Type := Full_View (R_Type);
Set_Etype (E, R_Type);
end if;
Freeze_And_Append (R_Type, N, Result);
-- Check suspicious return type for C function
if Warn_On_Export_Import
and then (Convention (E) = Convention_C
or else
Convention (E) = Convention_CPP)
and then (Is_Imported (E) or else Is_Exported (E))
then
-- Check suspicious return of fat C pointer
if Is_Access_Type (R_Type)
and then Esize (R_Type) > Ttypes.System_Address_Size
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N
("?x?return type of& does not correspond to C pointer!",
E);
-- Check suspicious return of boolean
elsif Root_Type (R_Type) = Standard_Boolean
and then Convention (R_Type) = Convention_Ada
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
and then not Has_Size_Clause (R_Type)
then
declare
N : constant Node_Id :=
Result_Definition (Declaration_Node (E));
begin
Error_Msg_NE
("return type of & is an 8-bit Ada Boolean?x?", N, E);
Error_Msg_NE
("\use appropriate corresponding type in C "
& "(e.g. char)?x?", N, E);
end;
-- Check suspicious return tagged type
elsif (Is_Tagged_Type (R_Type)
or else (Is_Access_Type (R_Type)
and then
Is_Tagged_Type
(Designated_Type (R_Type))))
and then Convention (E) = Convention_C
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N ("?x?return type of & does not "
& "correspond to C type!", E);
-- Check return of wrong convention subprogram pointer
elsif Ekind (R_Type) = E_Access_Subprogram_Type
and then not Has_Foreign_Convention (R_Type)
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N ("?x?& should return a foreign "
& "convention subprogram pointer", E);
Error_Msg_Sloc := Sloc (R_Type);
Error_Msg_NE
("\?x?add Convention pragma to declaration of& #",
E, R_Type);
end if;
end if;
-- Give warning for suspicious return of a result of an
-- unconstrained array type in a foreign convention function.
if Has_Foreign_Convention (E)
-- We are looking for a return of unconstrained array
and then Is_Array_Type (R_Type)
and then not Is_Constrained (R_Type)
-- Exclude imported routines, the warning does not belong on
-- the import, but rather on the routine definition.
and then not Is_Imported (E)
-- Check that general warning is enabled, and that it is not
-- suppressed for this particular case.
and then Warn_On_Export_Import
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N
("?x?foreign convention function& should not return "
& "unconstrained array!", E);
end if;
end if;
-- Check suspicious use of Import in pure unit (cases where the RM
-- allows calls to be omitted).
if Is_Imported (E)
-- It might be suspicious if the compilation unit has the Pure
-- aspect/pragma.
and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit))
-- The RM allows omission of calls only in the case of
-- library-level subprograms (see RM-10.2.1(18)).
and then Is_Library_Level_Entity (E)
-- Ignore internally generated entity. This happens in some cases
-- of subprograms in specs, where we generate an implied body.
and then Comes_From_Source (Import_Pragma (E))
-- Assume run-time knows what it is doing
and then not GNAT_Mode
-- Assume explicit Pure_Function means import is pure
and then not Has_Pragma_Pure_Function (E)
-- Don't need warning in relaxed semantics mode
and then not Relaxed_RM_Semantics
-- Assume convention Intrinsic is OK, since this is specialized.
-- This deals with the DEC unit current_exception.ads
and then Convention (E) /= Convention_Intrinsic
-- Assume that ASM interface knows what it is doing. This deals
-- with e.g. unsigned.ads in the AAMP back end.
and then Convention (E) /= Convention_Assembler
then
Error_Msg_N
("pragma Import in Pure unit??", Import_Pragma (E));
Error_Msg_NE
("\calls to & may be omitted (RM 10.2.1(18/3))??",
Import_Pragma (E), E);
end if;
return True;
end Freeze_Profile;
------------------------
-- Freeze_Record_Type --
------------------------
procedure Freeze_Record_Type (Rec : Entity_Id) is
ADC : Node_Id;
Comp : Entity_Id;
IR : Node_Id;
Prev : Entity_Id;
Junk : Boolean;
pragma Warnings (Off, Junk);
Aliased_Component : Boolean := False;
-- Set True if we find at least one component which is aliased. This
-- is used to prevent Implicit_Packing of the record, since packing
-- cannot modify the size of alignment of an aliased component.
All_Elem_Components : Boolean := True;
-- True if all components are of a type whose underlying type is
-- elementary.
All_Sized_Components : Boolean := True;
-- True if all components have a known RM_Size
All_Storage_Unit_Components : Boolean := True;
-- True if all components have an RM_Size that is a multiple of the
-- storage unit.
Elem_Component_Total_Esize : Uint := Uint_0;
-- Accumulates total Esize values of all elementary components. Used
-- for processing of Implicit_Packing.
Placed_Component : Boolean := False;
-- Set True if we find at least one component with a component
-- clause (used to warn about useless Bit_Order pragmas, and also
-- to detect cases where Implicit_Packing may have an effect).
Rec_Pushed : Boolean := False;
-- Set True if the record type scope Rec has been pushed on the scope
-- stack. Needed for the analysis of delayed aspects specified to the
-- components of Rec.
Sized_Component_Total_RM_Size : Uint := Uint_0;
-- Accumulates total RM_Size values of all sized components. Used
-- for processing of Implicit_Packing.
Sized_Component_Total_Round_RM_Size : Uint := Uint_0;
-- Accumulates total RM_Size values of all sized components, rounded
-- individually to a multiple of the storage unit.
SSO_ADC : Node_Id;
-- Scalar_Storage_Order attribute definition clause for the record
SSO_ADC_Component : Boolean := False;
-- Set True if we find at least one component whose type has a
-- Scalar_Storage_Order attribute definition clause.
Unplaced_Component : Boolean := False;
-- Set True if we find at least one component with no component
-- clause (used to warn about useless Pack pragmas).
function Check_Allocator (N : Node_Id) return Node_Id;
-- If N is an allocator, possibly wrapped in one or more level of
-- qualified expression(s), return the inner allocator node, else
-- return Empty.
procedure Check_Itype (Typ : Entity_Id);
-- If the component subtype is an access to a constrained subtype of
-- an already frozen type, make the subtype frozen as well. It might
-- otherwise be frozen in the wrong scope, and a freeze node on
-- subtype has no effect. Similarly, if the component subtype is a
-- regular (not protected) access to subprogram, set the anonymous
-- subprogram type to frozen as well, to prevent an out-of-scope
-- freeze node at some eventual point of call. Protected operations
-- are handled elsewhere.
procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
-- Make sure that all types mentioned in Discrete_Choices of the
-- variants referenceed by the Variant_Part VP are frozen. This is
-- a recursive routine to deal with nested variants.
---------------------
-- Check_Allocator --
---------------------
function Check_Allocator (N : Node_Id) return Node_Id is
Inner : Node_Id;
begin
Inner := N;
loop
if Nkind (Inner) = N_Allocator then
return Inner;
elsif Nkind (Inner) = N_Qualified_Expression then
Inner := Expression (Inner);
else
return Empty;
end if;
end loop;
end Check_Allocator;
-----------------
-- Check_Itype --
-----------------
procedure Check_Itype (Typ : Entity_Id) is
Desig : constant Entity_Id := Designated_Type (Typ);
begin
if not Is_Frozen (Desig)
and then Is_Frozen (Base_Type (Desig))
then
Set_Is_Frozen (Desig);
-- In addition, add an Itype_Reference to ensure that the
-- access subtype is elaborated early enough. This cannot be
-- done if the subtype may depend on discriminants.
if Ekind (Comp) = E_Component
and then Is_Itype (Etype (Comp))
and then not Has_Discriminants (Rec)
then
IR := Make_Itype_Reference (Sloc (Comp));
Set_Itype (IR, Desig);
Add_To_Result (IR);
end if;
elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
and then Convention (Desig) /= Convention_Protected
then
Set_Is_Frozen (Desig);
end if;
end Check_Itype;
------------------------------------
-- Freeze_Choices_In_Variant_Part --
------------------------------------
procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
pragma Assert (Nkind (VP) = N_Variant_Part);
Variant : Node_Id;
Choice : Node_Id;
CL : Node_Id;
begin
-- Loop through variants
Variant := First_Non_Pragma (Variants (VP));
while Present (Variant) loop
-- Loop through choices, checking that all types are frozen
Choice := First_Non_Pragma (Discrete_Choices (Variant));
while Present (Choice) loop
if Nkind (Choice) in N_Has_Etype
and then Present (Etype (Choice))
then
Freeze_And_Append (Etype (Choice), N, Result);
end if;
Next_Non_Pragma (Choice);
end loop;
-- Check for nested variant part to process
CL := Component_List (Variant);
if not Null_Present (CL) then
if Present (Variant_Part (CL)) then
Freeze_Choices_In_Variant_Part (Variant_Part (CL));
end if;
end if;
Next_Non_Pragma (Variant);
end loop;
end Freeze_Choices_In_Variant_Part;
-- Start of processing for Freeze_Record_Type
begin
-- Deal with delayed aspect specifications for components. The
-- analysis of the aspect is required to be delayed to the freeze
-- point, thus we analyze the pragma or attribute definition
-- clause in the tree at this point. We also analyze the aspect
-- specification node at the freeze point when the aspect doesn't
-- correspond to pragma/attribute definition clause.
Comp := First_Entity (Rec);
while Present (Comp) loop
if Ekind (Comp) = E_Component
and then Has_Delayed_Aspects (Comp)
then
if not Rec_Pushed then
Push_Scope (Rec);
Rec_Pushed := True;
-- The visibility to the discriminants must be restored in
-- order to properly analyze the aspects.
if Has_Discriminants (Rec) then
Install_Discriminants (Rec);
end if;
end if;
Analyze_Aspects_At_Freeze_Point (Comp);
end if;
Next_Entity (Comp);
end loop;
-- Pop the scope if Rec scope has been pushed on the scope stack
-- during the delayed aspect analysis process.
if Rec_Pushed then
if Has_Discriminants (Rec) then
Uninstall_Discriminants (Rec);
end if;
Pop_Scope;
end if;
-- Freeze components and embedded subtypes
Comp := First_Entity (Rec);
Prev := Empty;
while Present (Comp) loop
if Is_Aliased (Comp) then
Aliased_Component := True;
end if;
-- Handle the component and discriminant case
if Ekind_In (Comp, E_Component, E_Discriminant) then
declare
CC : constant Node_Id := Component_Clause (Comp);
begin
-- Freezing a record type freezes the type of each of its
-- components. However, if the type of the component is
-- part of this record, we do not want or need a separate
-- Freeze_Node. Note that Is_Itype is wrong because that's
-- also set in private type cases. We also can't check for
-- the Scope being exactly Rec because of private types and
-- record extensions.
if Is_Itype (Etype (Comp))
and then Is_Record_Type (Underlying_Type
(Scope (Etype (Comp))))
then
Undelay_Type (Etype (Comp));
end if;
Freeze_And_Append (Etype (Comp), N, Result);
-- Warn for pragma Pack overriding foreign convention
if Has_Foreign_Convention (Etype (Comp))
and then Has_Pragma_Pack (Rec)
-- Don't warn for aliased components, since override
-- cannot happen in that case.
and then not Is_Aliased (Comp)
then
declare
CN : constant Name_Id :=
Get_Convention_Name (Convention (Etype (Comp)));
PP : constant Node_Id :=
Get_Pragma (Rec, Pragma_Pack);
begin
if Present (PP) then
Error_Msg_Name_1 := CN;
Error_Msg_Sloc := Sloc (Comp);
Error_Msg_N
("pragma Pack affects convention % component#??",
PP);
Error_Msg_Name_1 := CN;
Error_Msg_NE
("\component & may not have % compatible "
& "representation??", PP, Comp);
end if;
end;
end if;
-- Check for error of component clause given for variable
-- sized type. We have to delay this test till this point,
-- since the component type has to be frozen for us to know
-- if it is variable length.
if Present (CC) then
Placed_Component := True;
-- We omit this test in a generic context, it will be
-- applied at instantiation time.
if Inside_A_Generic then
null;
-- Also omit this test in CodePeer mode, since we do not
-- have sufficient info on size and rep clauses.
elsif CodePeer_Mode then
null;
-- Omit check if component has a generic type. This can
-- happen in an instantiation within a generic in ASIS
-- mode, where we force freeze actions without full
-- expansion.
elsif Is_Generic_Type (Etype (Comp)) then
null;
-- Do the check
elsif not
Size_Known_At_Compile_Time
(Underlying_Type (Etype (Comp)))
then
Error_Msg_N
("component clause not allowed for variable " &
"length component", CC);
end if;
else
Unplaced_Component := True;
end if;
-- Case of component requires byte alignment
if Must_Be_On_Byte_Boundary (Etype (Comp)) then
-- Set the enclosing record to also require byte align
Set_Must_Be_On_Byte_Boundary (Rec);
-- Check for component clause that is inconsistent with
-- the required byte boundary alignment.
if Present (CC)
and then Normalized_First_Bit (Comp) mod
System_Storage_Unit /= 0
then
Error_Msg_N
("component & must be byte aligned",
Component_Name (Component_Clause (Comp)));
end if;
end if;
end;
end if;
-- Gather data for possible Implicit_Packing later. Note that at
-- this stage we might be dealing with a real component, or with
-- an implicit subtype declaration.
if Known_Static_RM_Size (Etype (Comp)) then
declare
Comp_Type : constant Entity_Id := Etype (Comp);
Comp_Size : constant Uint := RM_Size (Comp_Type);
SSU : constant Int := Ttypes.System_Storage_Unit;
begin
Sized_Component_Total_RM_Size :=
Sized_Component_Total_RM_Size + Comp_Size;
Sized_Component_Total_Round_RM_Size :=
Sized_Component_Total_Round_RM_Size +
(Comp_Size + SSU - 1) / SSU * SSU;
if Present (Underlying_Type (Comp_Type))
and then Is_Elementary_Type (Underlying_Type (Comp_Type))
then
Elem_Component_Total_Esize :=
Elem_Component_Total_Esize + Esize (Comp_Type);
else
All_Elem_Components := False;
if Comp_Size mod SSU /= 0 then
All_Storage_Unit_Components := False;
end if;
end if;
end;
else
All_Sized_Components := False;
end if;
-- If the component is an Itype with Delayed_Freeze and is either
-- a record or array subtype and its base type has not yet been
-- frozen, we must remove this from the entity list of this record
-- and put it on the entity list of the scope of its base type.
-- Note that we know that this is not the type of a component
-- since we cleared Has_Delayed_Freeze for it in the previous
-- loop. Thus this must be the Designated_Type of an access type,
-- which is the type of a component.
if Is_Itype (Comp)
and then Is_Type (Scope (Comp))
and then Is_Composite_Type (Comp)
and then Base_Type (Comp) /= Comp
and then Has_Delayed_Freeze (Comp)
and then not Is_Frozen (Base_Type (Comp))
then
declare
Will_Be_Frozen : Boolean := False;
S : Entity_Id;
begin
-- We have a difficult case to handle here. Suppose Rec is
-- subtype being defined in a subprogram that's created as
-- part of the freezing of Rec'Base. In that case, we know
-- that Comp'Base must have already been frozen by the time
-- we get to elaborate this because Gigi doesn't elaborate
-- any bodies until it has elaborated all of the declarative
-- part. But Is_Frozen will not be set at this point because
-- we are processing code in lexical order.
-- We detect this case by going up the Scope chain of Rec
-- and seeing if we have a subprogram scope before reaching
-- the top of the scope chain or that of Comp'Base. If we
-- do, then mark that Comp'Base will actually be frozen. If
-- so, we merely undelay it.
S := Scope (Rec);
while Present (S) loop
if Is_Subprogram (S) then
Will_Be_Frozen := True;
exit;
elsif S = Scope (Base_Type (Comp)) then
exit;
end if;
S := Scope (S);
end loop;
if Will_Be_Frozen then
Undelay_Type (Comp);
else
if Present (Prev) then
Link_Entities (Prev, Next_Entity (Comp));
else
Set_First_Entity (Rec, Next_Entity (Comp));
end if;
-- Insert in entity list of scope of base type (which
-- must be an enclosing scope, because still unfrozen).
Append_Entity (Comp, Scope (Base_Type (Comp)));
end if;
end;
-- If the component is an access type with an allocator as default
-- value, the designated type will be frozen by the corresponding
-- expression in init_proc. In order to place the freeze node for
-- the designated type before that for the current record type,
-- freeze it now.
-- Same process if the component is an array of access types,
-- initialized with an aggregate. If the designated type is
-- private, it cannot contain allocators, and it is premature
-- to freeze the type, so we check for this as well.
elsif Is_Access_Type (Etype (Comp))
and then Present (Parent (Comp))
and then Present (Expression (Parent (Comp)))
then
declare
Alloc : constant Node_Id :=
Check_Allocator (Expression (Parent (Comp)));
begin
if Present (Alloc) then
-- If component is pointer to a class-wide type, freeze
-- the specific type in the expression being allocated.
-- The expression may be a subtype indication, in which
-- case freeze the subtype mark.
if Is_Class_Wide_Type
(Designated_Type (Etype (Comp)))
then
if Is_Entity_Name (Expression (Alloc)) then
Freeze_And_Append
(Entity (Expression (Alloc)), N, Result);
elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
then
Freeze_And_Append
(Entity (Subtype_Mark (Expression (Alloc))),
N, Result);
end if;
elsif Is_Itype (Designated_Type (Etype (Comp))) then
Check_Itype (Etype (Comp));
else
Freeze_And_Append
(Designated_Type (Etype (Comp)), N, Result);
end if;
end if;
end;
elsif Is_Access_Type (Etype (Comp))
and then Is_Itype (Designated_Type (Etype (Comp)))
then
Check_Itype (Etype (Comp));
-- Freeze the designated type when initializing a component with
-- an aggregate in case the aggregate contains allocators.
-- type T is ...;
-- type T_Ptr is access all T;
-- type T_Array is array ... of T_Ptr;
-- type Rec is record
-- Comp : T_Array := (others => ...);
-- end record;
elsif Is_Array_Type (Etype (Comp))
and then Is_Access_Type (Component_Type (Etype (Comp)))
then
declare
Comp_Par : constant Node_Id := Parent (Comp);
Desig_Typ : constant Entity_Id :=
Designated_Type
(Component_Type (Etype (Comp)));
begin
-- The only case when this sort of freezing is not done is
-- when the designated type is class-wide and the root type
-- is the record owning the component. This scenario results
-- in a circularity because the class-wide type requires
-- primitives that have not been created yet as the root
-- type is in the process of being frozen.
-- type Rec is tagged;
-- type Rec_Ptr is access all Rec'Class;
-- type Rec_Array is array ... of Rec_Ptr;
-- type Rec is record
-- Comp : Rec_Array := (others => ...);
-- end record;
if Is_Class_Wide_Type (Desig_Typ)
and then Root_Type (Desig_Typ) = Rec
then
null;
elsif Is_Fully_Defined (Desig_Typ)
and then Present (Comp_Par)
and then Nkind (Comp_Par) = N_Component_Declaration
and then Present (Expression (Comp_Par))
and then Nkind (Expression (Comp_Par)) = N_Aggregate
then
Freeze_And_Append (Desig_Typ, N, Result);
end if;
end;
end if;
Prev := Comp;
Next_Entity (Comp);
end loop;
SSO_ADC :=
Get_Attribute_Definition_Clause
(Rec, Attribute_Scalar_Storage_Order);
-- If the record type has Complex_Representation, then it is treated
-- as a scalar in the back end so the storage order is irrelevant.
if Has_Complex_Representation (Rec) then
if Present (SSO_ADC) then
Error_Msg_N
("??storage order has no effect with Complex_Representation",
SSO_ADC);
end if;
else
-- Deal with default setting of reverse storage order
Set_SSO_From_Default (Rec);
-- Check consistent attribute setting on component types
declare
Comp_ADC_Present : Boolean;
begin
Comp := First_Component (Rec);
while Present (Comp) loop
Check_Component_Storage_Order
(Encl_Type => Rec,
Comp => Comp,
ADC => SSO_ADC,
Comp_ADC_Present => Comp_ADC_Present);
SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
Next_Component (Comp);
end loop;
end;
-- Now deal with reverse storage order/bit order issues
if Present (SSO_ADC) then
-- Check compatibility of Scalar_Storage_Order with Bit_Order,
-- if the former is specified.
if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
-- Note: report error on Rec, not on SSO_ADC, as ADC may
-- apply to some ancestor type.
Error_Msg_Sloc := Sloc (SSO_ADC);
Error_Msg_N
("scalar storage order for& specified# inconsistent with "
& "bit order", Rec);
end if;
-- Warn if there is a Scalar_Storage_Order attribute definition
-- clause but no component clause, no component that itself has
-- such an attribute definition, and no pragma Pack.
if not (Placed_Component
or else
SSO_ADC_Component
or else
Is_Packed (Rec))
then
Error_Msg_N
("??scalar storage order specified but no component "
& "clause", SSO_ADC);
end if;
end if;
end if;
-- Deal with Bit_Order aspect
ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
if Present (ADC) and then Base_Type (Rec) = Rec then
if not (Placed_Component
or else Present (SSO_ADC)
or else Is_Packed (Rec))
then
-- Warn if clause has no effect when no component clause is
-- present, but suppress warning if the Bit_Order is required
-- due to the presence of a Scalar_Storage_Order attribute.
Error_Msg_N
("??bit order specification has no effect", ADC);
Error_Msg_N
("\??since no component clauses were specified", ADC);
-- Here is where we do the processing to adjust component clauses
-- for reversed bit order, when not using reverse SSO. If an error
-- has been reported on Rec already (such as SSO incompatible with
-- bit order), don't bother adjusting as this may generate extra
-- noise.
elsif Reverse_Bit_Order (Rec)
and then not Reverse_Storage_Order (Rec)
and then not Error_Posted (Rec)
then
Adjust_Record_For_Reverse_Bit_Order (Rec);
-- Case where we have both an explicit Bit_Order and the same
-- Scalar_Storage_Order: leave record untouched, the back-end
-- will take care of required layout conversions.
else
null;
end if;
end if;
-- Complete error checking on record representation clause (e.g.
-- overlap of components). This is called after adjusting the
-- record for reverse bit order.
declare
RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
begin
if Present (RRC) then
Check_Record_Representation_Clause (RRC);
end if;
end;
-- Check for useless pragma Pack when all components placed. We only
-- do this check for record types, not subtypes, since a subtype may
-- have all its components placed, and it still makes perfectly good
-- sense to pack other subtypes or the parent type. We do not give
-- this warning if Optimize_Alignment is set to Space, since the
-- pragma Pack does have an effect in this case (it always resets
-- the alignment to one).
if Ekind (Rec) = E_Record_Type
and then Is_Packed (Rec)
and then not Unplaced_Component
and then Optimize_Alignment /= 'S'
then
-- Reset packed status. Probably not necessary, but we do it so
-- that there is no chance of the back end doing something strange
-- with this redundant indication of packing.
Set_Is_Packed (Rec, False);
-- Give warning if redundant constructs warnings on
if Warn_On_Redundant_Constructs then
Error_Msg_N -- CODEFIX
("??pragma Pack has no effect, no unplaced components",
Get_Rep_Pragma (Rec, Name_Pack));
end if;
end if;
-- If this is the record corresponding to a remote type, freeze the
-- remote type here since that is what we are semantically freezing.
-- This prevents the freeze node for that type in an inner scope.
if Ekind (Rec) = E_Record_Type then
if Present (Corresponding_Remote_Type (Rec)) then
Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
end if;
-- Check for controlled components, unchecked unions, and type
-- invariants.
Comp := First_Component (Rec);
while Present (Comp) loop
-- Do not set Has_Controlled_Component on a class-wide
-- equivalent type. See Make_CW_Equivalent_Type.
if not Is_Class_Wide_Equivalent_Type (Rec)
and then
(Has_Controlled_Component (Etype (Comp))
or else
(Chars (Comp) /= Name_uParent
and then Is_Controlled (Etype (Comp)))
or else
(Is_Protected_Type (Etype (Comp))
and then
Present (Corresponding_Record_Type (Etype (Comp)))
and then
Has_Controlled_Component
(Corresponding_Record_Type (Etype (Comp)))))
then
Set_Has_Controlled_Component (Rec);
end if;
if Has_Unchecked_Union (Etype (Comp)) then
Set_Has_Unchecked_Union (Rec);
end if;
-- The record type requires its own invariant procedure in
-- order to verify the invariant of each individual component.
-- Do not consider internal components such as _parent because
-- parent class-wide invariants are always inherited.
-- In GNATprove mode, the component invariants are checked by
-- other means. They should not be added to the record type
-- invariant procedure, so that the procedure can be used to
-- check the recordy type invariants if any.
if Comes_From_Source (Comp)
and then Has_Invariants (Etype (Comp))
and then not GNATprove_Mode
then
Set_Has_Own_Invariants (Rec);
end if;
-- Scan component declaration for likely misuses of current
-- instance, either in a constraint or a default expression.
if Has_Per_Object_Constraint (Comp) then
Check_Current_Instance (Parent (Comp));
end if;
Next_Component (Comp);
end loop;
end if;
-- Enforce the restriction that access attributes with a current
-- instance prefix can only apply to limited types. This comment
-- is floating here, but does not seem to belong here???
-- Set component alignment if not otherwise already set
Set_Component_Alignment_If_Not_Set (Rec);
-- For first subtypes, check if there are any fixed-point fields with
-- component clauses, where we must check the size. This is not done
-- till the freeze point since for fixed-point types, we do not know
-- the size until the type is frozen. Similar processing applies to
-- bit-packed arrays.
if Is_First_Subtype (Rec) then
Comp := First_Component (Rec);
while Present (Comp) loop
if Present (Component_Clause (Comp))
and then (Is_Fixed_Point_Type (Etype (Comp))
or else Is_Bit_Packed_Array (Etype (Comp)))
then
Check_Size
(Component_Name (Component_Clause (Comp)),
Etype (Comp),
Esize (Comp),
Junk);
end if;
Next_Component (Comp);
end loop;
end if;
-- See if Size is too small as is (and implicit packing might help)
if not Is_Packed (Rec)
-- No implicit packing if even one component is explicitly placed
and then not Placed_Component
-- Or even one component is aliased
and then not Aliased_Component
-- Must have size clause and all sized components
and then Has_Size_Clause (Rec)
and then All_Sized_Components
-- Do not try implicit packing on records with discriminants, too
-- complicated, especially in the variant record case.
and then not Has_Discriminants (Rec)
-- We want to implicitly pack if the specified size of the record
-- is less than the sum of the object sizes (no point in packing
-- if this is not the case), if we can compute it, i.e. if we have
-- only elementary components. Otherwise, we have at least one
-- composite component and we want to implicitly pack only if bit
-- packing is required for it, as we are sure in this case that
-- the back end cannot do the expected layout without packing.
and then
((All_Elem_Components
and then RM_Size (Rec) < Elem_Component_Total_Esize)
or else
(not All_Elem_Components
and then not All_Storage_Unit_Components
and then RM_Size (Rec) < Sized_Component_Total_Round_RM_Size))
-- And the total RM size cannot be greater than the specified size
-- since otherwise packing will not get us where we have to be.
and then Sized_Component_Total_RM_Size <= RM_Size (Rec)
-- Never do implicit packing in CodePeer or SPARK modes since
-- we don't do any packing in these modes, since this generates
-- over-complex code that confuses static analysis, and in
-- general, neither CodePeer not GNATprove care about the
-- internal representation of objects.
and then not (CodePeer_Mode or GNATprove_Mode)
then
-- If implicit packing enabled, do it
if Implicit_Packing then
Set_Is_Packed (Rec);
-- Otherwise flag the size clause
else
declare
Sz : constant Node_Id := Size_Clause (Rec);
begin
Error_Msg_NE -- CODEFIX
("size given for& too small", Sz, Rec);
Error_Msg_N -- CODEFIX
("\use explicit pragma Pack "
& "or use pragma Implicit_Packing", Sz);
end;
end if;
end if;
-- The following checks are relevant only when SPARK_Mode is on as
-- they are not standard Ada legality rules.
if SPARK_Mode = On then
-- A discriminated type cannot be effectively volatile
-- (SPARK RM 7.1.3(5)).
if Is_Effectively_Volatile (Rec) then
if Has_Discriminants (Rec) then
Error_Msg_N ("discriminated type & cannot be volatile", Rec);
end if;
-- A non-effectively volatile record type cannot contain
-- effectively volatile components (SPARK RM 7.1.3(6)).
else
Comp := First_Component (Rec);
while Present (Comp) loop
if Comes_From_Source (Comp)
and then Is_Effectively_Volatile (Etype (Comp))
then
Error_Msg_Name_1 := Chars (Rec);
Error_Msg_N
("component & of non-volatile type % cannot be "
& "volatile", Comp);
end if;
Next_Component (Comp);
end loop;
end if;
-- A type which does not yield a synchronized object cannot have
-- a component that yields a synchronized object (SPARK RM 9.5).
if not Yields_Synchronized_Object (Rec) then
Comp := First_Component (Rec);
while Present (Comp) loop
if Comes_From_Source (Comp)
and then Yields_Synchronized_Object (Etype (Comp))
then
Error_Msg_Name_1 := Chars (Rec);
Error_Msg_N
("component & of non-synchronized type % cannot be "
& "synchronized", Comp);
end if;
Next_Component (Comp);
end loop;
end if;
-- A Ghost type cannot have a component of protected or task type
-- (SPARK RM 6.9(19)).
if Is_Ghost_Entity (Rec) then
Comp := First_Component (Rec);
while Present (Comp) loop
if Comes_From_Source (Comp)
and then Is_Concurrent_Type (Etype (Comp))
then
Error_Msg_Name_1 := Chars (Rec);
Error_Msg_N
("component & of ghost type % cannot be concurrent",
Comp);
end if;
Next_Component (Comp);
end loop;
end if;
end if;
-- Make sure that if we have an iterator aspect, then we have
-- either Constant_Indexing or Variable_Indexing.
declare
Iterator_Aspect : Node_Id;
begin
Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element);
if No (Iterator_Aspect) then
Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator);
end if;
if Present (Iterator_Aspect) then
if Has_Aspect (Rec, Aspect_Constant_Indexing)
or else
Has_Aspect (Rec, Aspect_Variable_Indexing)
then
null;
else
Error_Msg_N
("Iterator_Element requires indexing aspect",
Iterator_Aspect);
end if;
end if;
end;
-- All done if not a full record definition
if Ekind (Rec) /= E_Record_Type then
return;
end if;
-- Finally we need to check the variant part to make sure that
-- all types within choices are properly frozen as part of the
-- freezing of the record type.
Check_Variant_Part : declare
D : constant Node_Id := Declaration_Node (Rec);
T : Node_Id;
C : Node_Id;
begin
-- Find component list
C := Empty;
if Nkind (D) = N_Full_Type_Declaration then
T := Type_Definition (D);
if Nkind (T) = N_Record_Definition then
C := Component_List (T);
elsif Nkind (T) = N_Derived_Type_Definition
and then Present (Record_Extension_Part (T))
then
C := Component_List (Record_Extension_Part (T));
end if;
end if;
-- Case of variant part present
if Present (C) and then Present (Variant_Part (C)) then
Freeze_Choices_In_Variant_Part (Variant_Part (C));
end if;
-- Note: we used to call Check_Choices here, but it is too early,
-- since predicated subtypes are frozen here, but their freezing
-- actions are in Analyze_Freeze_Entity, which has not been called
-- yet for entities frozen within this procedure, so we moved that
-- call to the Analyze_Freeze_Entity for the record type.
end Check_Variant_Part;
-- Check that all the primitives of an interface type are abstract
-- or null procedures.
if Is_Interface (Rec)
and then not Error_Posted (Parent (Rec))
then
declare
Elmt : Elmt_Id;
Subp : Entity_Id;
begin
Elmt := First_Elmt (Primitive_Operations (Rec));
while Present (Elmt) loop
Subp := Node (Elmt);
if not Is_Abstract_Subprogram (Subp)
-- Avoid reporting the error on inherited primitives
and then Comes_From_Source (Subp)
then
Error_Msg_Name_1 := Chars (Subp);
if Ekind (Subp) = E_Procedure then
if not Null_Present (Parent (Subp)) then
Error_Msg_N
("interface procedure % must be abstract or null",
Parent (Subp));
end if;
else
Error_Msg_N
("interface function % must be abstract",
Parent (Subp));
end if;
end if;
Next_Elmt (Elmt);
end loop;
end;
end if;
-- For a derived tagged type, check whether inherited primitives
-- might require a wrapper to handle class-wide conditions.
if Is_Tagged_Type (Rec) and then Is_Derived_Type (Rec) then
Check_Inherited_Conditions (Rec);
end if;
end Freeze_Record_Type;
-------------------------------
-- Has_Boolean_Aspect_Import --
-------------------------------
function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
Decl : constant Node_Id := Declaration_Node (E);
Asp : Node_Id;
Expr : Node_Id;
begin
if Has_Aspects (Decl) then
Asp := First (Aspect_Specifications (Decl));
while Present (Asp) loop
Expr := Expression (Asp);
-- The value of aspect Import is True when the expression is
-- either missing or it is explicitly set to True.
if Get_Aspect_Id (Asp) = Aspect_Import
and then (No (Expr)
or else (Compile_Time_Known_Value (Expr)
and then Is_True (Expr_Value (Expr))))
then
return True;
end if;
Next (Asp);
end loop;
end if;
return False;
end Has_Boolean_Aspect_Import;
-------------------------
-- Inherit_Freeze_Node --
-------------------------
procedure Inherit_Freeze_Node
(Fnod : Node_Id;
Typ : Entity_Id)
is
Typ_Fnod : constant Node_Id := Freeze_Node (Typ);
begin
Set_Freeze_Node (Typ, Fnod);
Set_Entity (Fnod, Typ);
-- The input type had an existing node. Propagate relevant attributes
-- from the old freeze node to the inherited freeze node.
-- ??? if both freeze nodes have attributes, would they differ?
if Present (Typ_Fnod) then
-- Attribute Access_Types_To_Process
if Present (Access_Types_To_Process (Typ_Fnod))
and then No (Access_Types_To_Process (Fnod))
then
Set_Access_Types_To_Process (Fnod,
Access_Types_To_Process (Typ_Fnod));
end if;
-- Attribute Actions
if Present (Actions (Typ_Fnod)) and then No (Actions (Fnod)) then
Set_Actions (Fnod, Actions (Typ_Fnod));
end if;
-- Attribute First_Subtype_Link
if Present (First_Subtype_Link (Typ_Fnod))
and then No (First_Subtype_Link (Fnod))
then
Set_First_Subtype_Link (Fnod, First_Subtype_Link (Typ_Fnod));
end if;
-- Attribute TSS_Elist
if Present (TSS_Elist (Typ_Fnod))
and then No (TSS_Elist (Fnod))
then
Set_TSS_Elist (Fnod, TSS_Elist (Typ_Fnod));
end if;
end if;
end Inherit_Freeze_Node;
------------------------------
-- Wrap_Imported_Subprogram --
------------------------------
-- The issue here is that our normal approach of checking preconditions
-- and postconditions does not work for imported procedures, since we
-- are not generating code for the body. To get around this we create
-- a wrapper, as shown by the following example:
-- procedure K (A : Integer);
-- pragma Import (C, K);
-- The spec is rewritten by removing the effects of pragma Import, but
-- leaving the convention unchanged, as though the source had said:
-- procedure K (A : Integer);
-- pragma Convention (C, K);
-- and we create a body, added to the entity K freeze actions, which
-- looks like:
-- procedure K (A : Integer) is
-- procedure K (A : Integer);
-- pragma Import (C, K);
-- begin
-- K (A);
-- end K;
-- Now the contract applies in the normal way to the outer procedure,
-- and the inner procedure has no contracts, so there is no problem
-- in just calling it to get the original effect.
-- In the case of a function, we create an appropriate return statement
-- for the subprogram body that calls the inner procedure.
procedure Wrap_Imported_Subprogram (E : Entity_Id) is
function Copy_Import_Pragma return Node_Id;
-- Obtain a copy of the Import_Pragma which belongs to subprogram E
------------------------
-- Copy_Import_Pragma --
------------------------
function Copy_Import_Pragma return Node_Id is
-- The subprogram should have an import pragma, otherwise it does
-- need a wrapper.
Prag : constant Node_Id := Import_Pragma (E);
pragma Assert (Present (Prag));
-- Save all semantic fields of the pragma
Save_Asp : constant Node_Id := Corresponding_Aspect (Prag);
Save_From : constant Boolean := From_Aspect_Specification (Prag);
Save_Prag : constant Node_Id := Next_Pragma (Prag);
Save_Rep : constant Node_Id := Next_Rep_Item (Prag);
Result : Node_Id;
begin
-- Reset all semantic fields. This avoids a potential infinite
-- loop when the pragma comes from an aspect as the duplication
-- will copy the aspect, then copy the corresponding pragma and
-- so on.
Set_Corresponding_Aspect (Prag, Empty);
Set_From_Aspect_Specification (Prag, False);
Set_Next_Pragma (Prag, Empty);
Set_Next_Rep_Item (Prag, Empty);
Result := Copy_Separate_Tree (Prag);
-- Restore the original semantic fields
Set_Corresponding_Aspect (Prag, Save_Asp);
Set_From_Aspect_Specification (Prag, Save_From);
Set_Next_Pragma (Prag, Save_Prag);
Set_Next_Rep_Item (Prag, Save_Rep);
return Result;
end Copy_Import_Pragma;
-- Local variables
Loc : constant Source_Ptr := Sloc (E);
CE : constant Name_Id := Chars (E);
Bod : Node_Id;
Forml : Entity_Id;
Parms : List_Id;
Prag : Node_Id;
Spec : Node_Id;
Stmt : Node_Id;
-- Start of processing for Wrap_Imported_Subprogram
begin
-- Nothing to do if not imported
if not Is_Imported (E) then
return;
-- Test enabling conditions for wrapping
elsif Is_Subprogram (E)
and then Present (Contract (E))
and then Present (Pre_Post_Conditions (Contract (E)))
and then not GNATprove_Mode
then
-- Here we do the wrap
-- Note on calls to Copy_Separate_Tree. The trees we are copying
-- here are fully analyzed, but we definitely want fully syntactic
-- unanalyzed trees in the body we construct, so that the analysis
-- generates the right visibility, and that is exactly what the
-- calls to Copy_Separate_Tree give us.
Prag := Copy_Import_Pragma;
-- Fix up spec so it is no longer imported and has convention Ada
Set_Has_Completion (E, False);
Set_Import_Pragma (E, Empty);
Set_Interface_Name (E, Empty);
Set_Is_Imported (E, False);
Set_Convention (E, Convention_Ada);
-- Grab the subprogram declaration and specification
Spec := Declaration_Node (E);
-- Build parameter list that we need
Parms := New_List;
Forml := First_Formal (E);
while Present (Forml) loop
Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
Next_Formal (Forml);
end loop;
-- Build the call
-- An imported function whose result type is anonymous access
-- creates a new anonymous access type when it is relocated into
-- the declarations of the body generated below. As a result, the
-- accessibility level of these two anonymous access types may not
-- be compatible even though they are essentially the same type.
-- Use an unchecked type conversion to reconcile this case. Note
-- that the conversion is safe because in the named access type
-- case, both the body and imported function utilize the same
-- type.
if Ekind_In (E, E_Function, E_Generic_Function) then
Stmt :=
Make_Simple_Return_Statement (Loc,
Expression =>
Unchecked_Convert_To (Etype (E),
Make_Function_Call (Loc,
Name => Make_Identifier (Loc, CE),
Parameter_Associations => Parms)));
else
Stmt :=
Make_Procedure_Call_Statement (Loc,
Name => Make_Identifier (Loc, CE),
Parameter_Associations => Parms);
end if;
-- Now build the body
Bod :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Separate_Tree (Spec),
Declarations => New_List (
Make_Subprogram_Declaration (Loc,
Specification => Copy_Separate_Tree (Spec)),
Prag),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Stmt),
End_Label => Make_Identifier (Loc, CE)));
-- Append the body to freeze result
Add_To_Result (Bod);
return;
-- Case of imported subprogram that does not get wrapped
else
-- Set Is_Public. All imported entities need an external symbol
-- created for them since they are always referenced from another
-- object file. Note this used to be set when we set Is_Imported
-- back in Sem_Prag, but now we delay it to this point, since we
-- don't want to set this flag if we wrap an imported subprogram.
Set_Is_Public (E);
end if;
end Wrap_Imported_Subprogram;
-- Start of processing for Freeze_Entity
begin
-- The entity being frozen may be subject to pragma Ghost. Set the mode
-- now to ensure that any nodes generated during freezing are properly
-- flagged as Ghost.
Set_Ghost_Mode (E);
-- We are going to test for various reasons why this entity need not be
-- frozen here, but in the case of an Itype that's defined within a
-- record, that test actually applies to the record.
if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
Test_E := Scope (E);
elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
and then Is_Record_Type (Underlying_Type (Scope (E)))
then
Test_E := Underlying_Type (Scope (E));
end if;
-- Do not freeze if already frozen since we only need one freeze node
if Is_Frozen (E) then
Result := No_List;
goto Leave;
elsif Ekind (E) = E_Generic_Package then
Result := Freeze_Generic_Entities (E);
goto Leave;
-- It is improper to freeze an external entity within a generic because
-- its freeze node will appear in a non-valid context. The entity will
-- be frozen in the proper scope after the current generic is analyzed.
-- However, aspects must be analyzed because they may be queried later
-- within the generic itself, and the corresponding pragma or attribute
-- definition has not been analyzed yet. After this, indicate that the
-- entity has no further delayed aspects, to prevent a later aspect
-- analysis out of the scope of the generic.
elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
if Has_Delayed_Aspects (E) then
Analyze_Aspects_At_Freeze_Point (E);
Set_Has_Delayed_Aspects (E, False);
end if;
Result := No_List;
goto Leave;
-- AI05-0213: A formal incomplete type does not freeze the actual. In
-- the instance, the same applies to the subtype renaming the actual.
elsif Is_Private_Type (E)
and then Is_Generic_Actual_Type (E)
and then No (Full_View (Base_Type (E)))
and then Ada_Version >= Ada_2012
then
Result := No_List;
goto Leave;
-- Formal subprograms are never frozen
elsif Is_Formal_Subprogram (E) then
Result := No_List;
goto Leave;
-- Generic types are never frozen as they lack delayed semantic checks
elsif Is_Generic_Type (E) then
Result := No_List;
goto Leave;
-- Do not freeze a global entity within an inner scope created during
-- expansion. A call to subprogram E within some internal procedure
-- (a stream attribute for example) might require freezing E, but the
-- freeze node must appear in the same declarative part as E itself.
-- The two-pass elaboration mechanism in gigi guarantees that E will
-- be frozen before the inner call is elaborated. We exclude constants
-- from this test, because deferred constants may be frozen early, and
-- must be diagnosed (e.g. in the case of a deferred constant being used
-- in a default expression). If the enclosing subprogram comes from
-- source, or is a generic instance, then the freeze point is the one
-- mandated by the language, and we freeze the entity. A subprogram that
-- is a child unit body that acts as a spec does not have a spec that
-- comes from source, but can only come from source.
elsif In_Open_Scopes (Scope (Test_E))
and then Scope (Test_E) /= Current_Scope
and then Ekind (Test_E) /= E_Constant
then
declare
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) loop
if Is_Overloadable (S) then
if Comes_From_Source (S)
or else Is_Generic_Instance (S)
or else Is_Child_Unit (S)
then
exit;
else
Result := No_List;
goto Leave;
end if;
end if;
S := Scope (S);
end loop;
end;
-- Similarly, an inlined instance body may make reference to global
-- entities, but these references cannot be the proper freezing point
-- for them, and in the absence of inlining freezing will take place in
-- their own scope. Normally instance bodies are analyzed after the
-- enclosing compilation, and everything has been frozen at the proper
-- place, but with front-end inlining an instance body is compiled
-- before the end of the enclosing scope, and as a result out-of-order
-- freezing must be prevented.
elsif Front_End_Inlining
and then In_Instance_Body
and then Present (Scope (Test_E))
then
declare
S : Entity_Id;
begin
S := Scope (Test_E);
while Present (S) loop
if Is_Generic_Instance (S) then
exit;
else
S := Scope (S);
end if;
end loop;
if No (S) then
Result := No_List;
goto Leave;
end if;
end;
end if;
-- Add checks to detect proper initialization of scalars that may appear
-- as subprogram parameters.
if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
Apply_Parameter_Validity_Checks (E);
end if;
-- Deal with delayed aspect specifications. The analysis of the aspect
-- is required to be delayed to the freeze point, thus we analyze the
-- pragma or attribute definition clause in the tree at this point. We
-- also analyze the aspect specification node at the freeze point when
-- the aspect doesn't correspond to pragma/attribute definition clause.
-- In addition, a derived type may have inherited aspects that were
-- delayed in the parent, so these must also be captured now.
if Has_Delayed_Aspects (E)
or else May_Inherit_Delayed_Rep_Aspects (E)
then
Analyze_Aspects_At_Freeze_Point (E);
end if;
-- Here to freeze the entity
Set_Is_Frozen (E);
-- Case of entity being frozen is other than a type
if not Is_Type (E) then
-- If entity is exported or imported and does not have an external
-- name, now is the time to provide the appropriate default name.
-- Skip this if the entity is stubbed, since we don't need a name
-- for any stubbed routine. For the case on intrinsics, if no
-- external name is specified, then calls will be handled in
-- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
-- external name is provided, then Expand_Intrinsic_Call leaves
-- calls in place for expansion by GIGI.
if (Is_Imported (E) or else Is_Exported (E))
and then No (Interface_Name (E))
and then Convention (E) /= Convention_Stubbed
and then Convention (E) /= Convention_Intrinsic
then
Set_Encoded_Interface_Name
(E, Get_Default_External_Name (E));
-- If entity is an atomic object appearing in a declaration and
-- the expression is an aggregate, assign it to a temporary to
-- ensure that the actual assignment is done atomically rather
-- than component-wise (the assignment to the temp may be done
-- component-wise, but that is harmless).
elsif Is_Atomic_Or_VFA (E)
and then Nkind (Parent (E)) = N_Object_Declaration
and then Present (Expression (Parent (E)))
and then Nkind (Expression (Parent (E))) = N_Aggregate
and then Is_Atomic_VFA_Aggregate (Expression (Parent (E)))
then
null;
end if;
-- Subprogram case
if Is_Subprogram (E) then
-- Check for needing to wrap imported subprogram
Wrap_Imported_Subprogram (E);
-- Freeze all parameter types and the return type (RM 13.14(14)).
-- However skip this for internal subprograms. This is also where
-- any extra formal parameters are created since we now know
-- whether the subprogram will use a foreign convention.
-- In Ada 2012, freezing a subprogram does not always freeze the
-- corresponding profile (see AI05-019). An attribute reference
-- is not a freezing point of the profile. Flag Do_Freeze_Profile
-- indicates whether the profile should be frozen now.
-- Other constructs that should not freeze ???
-- This processing doesn't apply to internal entities (see below)
if not Is_Internal (E) and then Do_Freeze_Profile then
if not Freeze_Profile (E) then
goto Leave;
end if;
end if;
-- Must freeze its parent first if it is a derived subprogram
if Present (Alias (E)) then
Freeze_And_Append (Alias (E), N, Result);
end if;
-- We don't freeze internal subprograms, because we don't normally
-- want addition of extra formals or mechanism setting to happen
-- for those. However we do pass through predefined dispatching
-- cases, since extra formals may be needed in some cases, such as
-- for the stream 'Input function (build-in-place formals).
if not Is_Internal (E)
or else Is_Predefined_Dispatching_Operation (E)
then
Freeze_Subprogram (E);
end if;
-- If warning on suspicious contracts then check for the case of
-- a postcondition other than False for a No_Return subprogram.
if No_Return (E)
and then Warn_On_Suspicious_Contract
and then Present (Contract (E))
then
declare
Prag : Node_Id := Pre_Post_Conditions (Contract (E));
Exp : Node_Id;
begin
while Present (Prag) loop
if Nam_In (Pragma_Name_Unmapped (Prag),
Name_Post,
Name_Postcondition,
Name_Refined_Post)
then
Exp :=
Expression
(First (Pragma_Argument_Associations (Prag)));
if Nkind (Exp) /= N_Identifier
or else Chars (Exp) /= Name_False
then
Error_Msg_NE
("useless postcondition, & is marked "
& "No_Return?T?", Exp, E);
end if;
end if;
Prag := Next_Pragma (Prag);
end loop;
end;
end if;
-- Here for other than a subprogram or type
else
-- If entity has a type, and it is not a generic unit, then
-- freeze it first (RM 13.14(10)).
if Present (Etype (E))
and then Ekind (E) /= E_Generic_Function
then
Freeze_And_Append (Etype (E), N, Result);
-- For an object of an anonymous array type, aspects on the
-- object declaration apply to the type itself. This is the
-- case for Atomic_Components, Volatile_Components, and
-- Independent_Components. In these cases analysis of the
-- generated pragma will mark the anonymous types accordingly,
-- and the object itself does not require a freeze node.
if Ekind (E) = E_Variable
and then Is_Itype (Etype (E))
and then Is_Array_Type (Etype (E))
and then Has_Delayed_Aspects (E)
then
Set_Has_Delayed_Aspects (E, False);
Set_Has_Delayed_Freeze (E, False);
Set_Freeze_Node (E, Empty);
end if;
end if;
-- Special processing for objects created by object declaration
if Nkind (Declaration_Node (E)) = N_Object_Declaration then
Freeze_Object_Declaration (E);
end if;
-- Check that a constant which has a pragma Volatile[_Components]
-- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
-- Note: Atomic[_Components] also sets Volatile[_Components]
if Ekind (E) = E_Constant
and then (Has_Volatile_Components (E) or else Is_Volatile (E))
and then not Is_Imported (E)
and then not Has_Boolean_Aspect_Import (E)
then
-- Make sure we actually have a pragma, and have not merely
-- inherited the indication from elsewhere (e.g. an address
-- clause, which is not good enough in RM terms).
if Has_Rep_Pragma (E, Name_Atomic)
or else
Has_Rep_Pragma (E, Name_Atomic_Components)
then
Error_Msg_N
("stand alone atomic constant must be " &
"imported (RM C.6(13))", E);
elsif Has_Rep_Pragma (E, Name_Volatile)
or else
Has_Rep_Pragma (E, Name_Volatile_Components)
then
Error_Msg_N
("stand alone volatile constant must be " &
"imported (RM C.6(13))", E);
end if;
end if;
-- Static objects require special handling
if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
and then Is_Statically_Allocated (E)
then
Freeze_Static_Object (E);
end if;
-- Remaining step is to layout objects
if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
or else Is_Formal (E)
then
Layout_Object (E);
end if;
-- For an object that does not have delayed freezing, and whose
-- initialization actions have been captured in a compound
-- statement, move them back now directly within the enclosing
-- statement sequence.
if Ekind_In (E, E_Constant, E_Variable)
and then not Has_Delayed_Freeze (E)
then
Explode_Initialization_Compound_Statement (E);
end if;
-- Do not generate a freeze node for a generic unit
if Is_Generic_Unit (E) then
Result := No_List;
goto Leave;
end if;
end if;
-- Case of a type or subtype being frozen
else
-- Verify several SPARK legality rules related to Ghost types now
-- that the type is frozen.
Check_Ghost_Type (E);
-- We used to check here that a full type must have preelaborable
-- initialization if it completes a private type specified with
-- pragma Preelaborable_Initialization, but that missed cases where
-- the types occur within a generic package, since the freezing
-- that occurs within a containing scope generally skips traversal
-- of a generic unit's declarations (those will be frozen within
-- instances). This check was moved to Analyze_Package_Specification.
-- The type may be defined in a generic unit. This can occur when
-- freezing a generic function that returns the type (which is
-- defined in a parent unit). It is clearly meaningless to freeze
-- this type. However, if it is a subtype, its size may be determi-
-- nable and used in subsequent checks, so might as well try to
-- compute it.
-- In Ada 2012, Freeze_Entities is also used in the front end to
-- trigger the analysis of aspect expressions, so in this case we
-- want to continue the freezing process.
-- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead
-- In_Generic_Scope (E)???
if Present (Scope (E))
and then Is_Generic_Unit (Scope (E))
and then
(not Has_Predicates (E)
and then not Has_Delayed_Freeze (E))
then
Check_Compile_Time_Size (E);
Result := No_List;
goto Leave;
end if;
-- Check for error of Type_Invariant'Class applied to an untagged
-- type (check delayed to freeze time when full type is available).
declare
Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
begin
if Present (Prag)
and then Class_Present (Prag)
and then not Is_Tagged_Type (E)
then
Error_Msg_NE
("Type_Invariant''Class cannot be specified for &", Prag, E);
Error_Msg_N
("\can only be specified for a tagged type", Prag);
end if;
end;
-- Deal with special cases of freezing for subtype
if E /= Base_Type (E) then
-- Before we do anything else, a specific test for the case of a
-- size given for an array where the array would need to be packed
-- in order for the size to be honored, but is not. This is the
-- case where implicit packing may apply. The reason we do this so
-- early is that, if we have implicit packing, the layout of the
-- base type is affected, so we must do this before we freeze the
-- base type.
-- We could do this processing only if implicit packing is enabled
-- since in all other cases, the error would be caught by the back
-- end. However, we choose to do the check even if we do not have
-- implicit packing enabled, since this allows us to give a more
-- useful error message (advising use of pragma Implicit_Packing
-- or pragma Pack).
if Is_Array_Type (E) then
declare
Ctyp : constant Entity_Id := Component_Type (E);
Rsiz : constant Uint := RM_Size (Ctyp);
SZ : constant Node_Id := Size_Clause (E);
Btyp : constant Entity_Id := Base_Type (E);
Lo : Node_Id;
Hi : Node_Id;
Indx : Node_Id;
Dim : Uint;
Num_Elmts : Uint := Uint_1;
-- Number of elements in array
begin
-- Check enabling conditions. These are straightforward
-- except for the test for a limited composite type. This
-- eliminates the rare case of a array of limited components
-- where there are issues of whether or not we can go ahead
-- and pack the array (since we can't freely pack and unpack
-- arrays if they are limited).
-- Note that we check the root type explicitly because the
-- whole point is we are doing this test before we have had
-- a chance to freeze the base type (and it is that freeze
-- action that causes stuff to be inherited).
-- The conditions on the size are identical to those used in
-- Freeze_Array_Type to set the Is_Packed flag.
if Has_Size_Clause (E)
and then Known_Static_RM_Size (E)
and then not Is_Packed (E)
and then not Has_Pragma_Pack (E)
and then not Has_Component_Size_Clause (E)
and then Known_Static_RM_Size (Ctyp)
and then Rsiz <= 64
and then not (Addressable (Rsiz)
and then Known_Static_Esize (Ctyp)
and then Esize (Ctyp) = Rsiz)
and then not (Rsiz mod System_Storage_Unit = 0
and then Is_Composite_Type (Ctyp))
and then not Is_Limited_Composite (E)
and then not Is_Packed (Root_Type (E))
and then not Has_Component_Size_Clause (Root_Type (E))
and then not (CodePeer_Mode or GNATprove_Mode)
then
-- Compute number of elements in array
Indx := First_Index (E);
while Present (Indx) loop
Get_Index_Bounds (Indx, Lo, Hi);
if not (Compile_Time_Known_Value (Lo)
and then
Compile_Time_Known_Value (Hi))
then
goto No_Implicit_Packing;
end if;
Dim := Expr_Value (Hi) - Expr_Value (Lo) + 1;
if Dim >= 0 then
Num_Elmts := Num_Elmts * Dim;
else
Num_Elmts := Uint_0;
end if;
Next_Index (Indx);
end loop;
-- What we are looking for here is the situation where
-- the RM_Size given would be exactly right if there was
-- a pragma Pack, resulting in the component size being
-- the RM_Size of the component type.
if RM_Size (E) = Num_Elmts * Rsiz then
-- For implicit packing mode, just set the component
-- size and Freeze_Array_Type will do the rest.
if Implicit_Packing then
Set_Component_Size (Btyp, Rsiz);
-- Otherwise give an error message
else
Error_Msg_NE
("size given for& too small", SZ, E);
Error_Msg_N -- CODEFIX
("\use explicit pragma Pack or use pragma "
& "Implicit_Packing", SZ);
end if;
end if;
end if;
end;
end if;
<<No_Implicit_Packing>>
-- If ancestor subtype present, freeze that first. Note that this
-- will also get the base type frozen. Need RM reference ???
Atype := Ancestor_Subtype (E);
if Present (Atype) then
Freeze_And_Append (Atype, N, Result);
-- No ancestor subtype present
else
-- See if we have a nearest ancestor that has a predicate.
-- That catches the case of derived type with a predicate.
-- Need RM reference here ???
Atype := Nearest_Ancestor (E);
if Present (Atype) and then Has_Predicates (Atype) then
Freeze_And_Append (Atype, N, Result);
end if;
-- Freeze base type before freezing the entity (RM 13.14(15))
if E /= Base_Type (E) then
Freeze_And_Append (Base_Type (E), N, Result);
end if;
end if;
-- A subtype inherits all the type-related representation aspects
-- from its parents (RM 13.1(8)).
Inherit_Aspects_At_Freeze_Point (E);
-- For a derived type, freeze its parent type first (RM 13.14(15))
elsif Is_Derived_Type (E) then
Freeze_And_Append (Etype (E), N, Result);
Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
-- A derived type inherits each type-related representation aspect
-- of its parent type that was directly specified before the
-- declaration of the derived type (RM 13.1(15)).
Inherit_Aspects_At_Freeze_Point (E);
end if;
-- Check for incompatible size and alignment for record type
if Warn_On_Size_Alignment
and then Is_Record_Type (E)
and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
-- If explicit Object_Size clause given assume that the programmer
-- knows what he is doing, and expects the compiler behavior.
and then not Has_Object_Size_Clause (E)
-- Check for size not a multiple of alignment
and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
then
declare
SC : constant Node_Id := Size_Clause (E);
AC : constant Node_Id := Alignment_Clause (E);
Loc : Node_Id;
Abits : constant Uint := Alignment (E) * System_Storage_Unit;
begin
if Present (SC) and then Present (AC) then
-- Give a warning
if Sloc (SC) > Sloc (AC) then
Loc := SC;
Error_Msg_NE
("?Z?size is not a multiple of alignment for &",
Loc, E);
Error_Msg_Sloc := Sloc (AC);
Error_Msg_Uint_1 := Alignment (E);
Error_Msg_N ("\?Z?alignment of ^ specified #", Loc);
else
Loc := AC;
Error_Msg_NE
("?Z?size is not a multiple of alignment for &",
Loc, E);
Error_Msg_Sloc := Sloc (SC);
Error_Msg_Uint_1 := RM_Size (E);
Error_Msg_N ("\?Z?size of ^ specified #", Loc);
end if;
Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
Error_Msg_N ("\?Z?Object_Size will be increased to ^", Loc);
end if;
end;
end if;
-- Array type
if Is_Array_Type (E) then
Freeze_Array_Type (E);
-- For a class-wide type, the corresponding specific type is
-- frozen as well (RM 13.14(15))
elsif Is_Class_Wide_Type (E) then
Freeze_And_Append (Root_Type (E), N, Result);
-- If the base type of the class-wide type is still incomplete,
-- the class-wide remains unfrozen as well. This is legal when
-- E is the formal of a primitive operation of some other type
-- which is being frozen.
if not Is_Frozen (Root_Type (E)) then
Set_Is_Frozen (E, False);
goto Leave;
end if;
-- The equivalent type associated with a class-wide subtype needs
-- to be frozen to ensure that its layout is done.
if Ekind (E) = E_Class_Wide_Subtype
and then Present (Equivalent_Type (E))
then
Freeze_And_Append (Equivalent_Type (E), N, Result);
end if;
-- Generate an itype reference for a library-level class-wide type
-- at the freeze point. Otherwise the first explicit reference to
-- the type may appear in an inner scope which will be rejected by
-- the back-end.
if Is_Itype (E)
and then Is_Compilation_Unit (Scope (E))
then
declare
Ref : constant Node_Id := Make_Itype_Reference (Loc);
begin
Set_Itype (Ref, E);
-- From a gigi point of view, a class-wide subtype derives
-- from its record equivalent type. As a result, the itype
-- reference must appear after the freeze node of the
-- equivalent type or gigi will reject the reference.
if Ekind (E) = E_Class_Wide_Subtype
and then Present (Equivalent_Type (E))
then
Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
else
Add_To_Result (Ref);
end if;
end;
end if;
-- For a record type or record subtype, freeze all component types
-- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
-- using Is_Record_Type, because we don't want to attempt the freeze
-- for the case of a private type with record extension (we will do
-- that later when the full type is frozen).
elsif Ekind_In (E, E_Record_Type, E_Record_Subtype) then
if not In_Generic_Scope (E) then
Freeze_Record_Type (E);
end if;
-- Report a warning if a discriminated record base type has a
-- convention with language C or C++ applied to it. This check is
-- done even within generic scopes (but not in instantiations),
-- which is why we don't do it as part of Freeze_Record_Type.
Check_Suspicious_Convention (E);
-- For a concurrent type, freeze corresponding record type. This does
-- not correspond to any specific rule in the RM, but the record type
-- is essentially part of the concurrent type. Also freeze all local
-- entities. This includes record types created for entry parameter
-- blocks and whatever local entities may appear in the private part.
elsif Is_Concurrent_Type (E) then
if Present (Corresponding_Record_Type (E)) then
Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
end if;
Comp := First_Entity (E);
while Present (Comp) loop
if Is_Type (Comp) then
Freeze_And_Append (Comp, N, Result);
elsif (Ekind (Comp)) /= E_Function then
-- The guard on the presence of the Etype seems to be needed
-- for some CodePeer (-gnatcC) cases, but not clear why???
if Present (Etype (Comp)) then
if Is_Itype (Etype (Comp))
and then Underlying_Type (Scope (Etype (Comp))) = E
then
Undelay_Type (Etype (Comp));
end if;
Freeze_And_Append (Etype (Comp), N, Result);
end if;
end if;
Next_Entity (Comp);
end loop;
-- Private types are required to point to the same freeze node as
-- their corresponding full views. The freeze node itself has to
-- point to the partial view of the entity (because from the partial
-- view, we can retrieve the full view, but not the reverse).
-- However, in order to freeze correctly, we need to freeze the full
-- view. If we are freezing at the end of a scope (or within the
-- scope) of the private type, the partial and full views will have
-- been swapped, the full view appears first in the entity chain and
-- the swapping mechanism ensures that the pointers are properly set
-- (on scope exit).
-- If we encounter the partial view before the full view (e.g. when
-- freezing from another scope), we freeze the full view, and then
-- set the pointers appropriately since we cannot rely on swapping to
-- fix things up (subtypes in an outer scope might not get swapped).
-- If the full view is itself private, the above requirements apply
-- to the underlying full view instead of the full view. But there is
-- no swapping mechanism for the underlying full view so we need to
-- set the pointers appropriately in both cases.
elsif Is_Incomplete_Or_Private_Type (E)
and then not Is_Generic_Type (E)
then
-- The construction of the dispatch table associated with library
-- level tagged types forces freezing of all the primitives of the
-- type, which may cause premature freezing of the partial view.
-- For example:
-- package Pkg is
-- type T is tagged private;
-- type DT is new T with private;
-- procedure Prim (X : in out T; Y : in out DT'Class);
-- private
-- type T is tagged null record;
-- Obj : T;
-- type DT is new T with null record;
-- end;
-- In this case the type will be frozen later by the usual
-- mechanism: an object declaration, an instantiation, or the
-- end of a declarative part.
if Is_Library_Level_Tagged_Type (E)
and then not Present (Full_View (E))
then
Set_Is_Frozen (E, False);
goto Leave;
-- Case of full view present
elsif Present (Full_View (E)) then
-- If full view has already been frozen, then no further
-- processing is required
if Is_Frozen (Full_View (E)) then
Set_Has_Delayed_Freeze (E, False);
Set_Freeze_Node (E, Empty);
-- Otherwise freeze full view and patch the pointers so that
-- the freeze node will elaborate both views in the back end.
-- However, if full view is itself private, freeze underlying
-- full view instead and patch the pointers so that the freeze
-- node will elaborate the three views in the back end.
else
declare
Full : Entity_Id := Full_View (E);
begin
if Is_Private_Type (Full)
and then Present (Underlying_Full_View (Full))
then
Full := Underlying_Full_View (Full);
end if;
Freeze_And_Append (Full, N, Result);
if Full /= Full_View (E)
and then Has_Delayed_Freeze (Full_View (E))
then
F_Node := Freeze_Node (Full);
if Present (F_Node) then
Inherit_Freeze_Node
(Fnod => F_Node,
Typ => Full_View (E));
else
Set_Has_Delayed_Freeze (Full_View (E), False);
Set_Freeze_Node (Full_View (E), Empty);
end if;
end if;
if Has_Delayed_Freeze (E) then
F_Node := Freeze_Node (Full_View (E));
if Present (F_Node) then
Inherit_Freeze_Node
(Fnod => F_Node,
Typ => E);
else
-- {Incomplete,Private}_Subtypes with Full_Views
-- constrained by discriminants.
Set_Has_Delayed_Freeze (E, False);
Set_Freeze_Node (E, Empty);
end if;
end if;
end;
end if;
Check_Debug_Info_Needed (E);
-- AI-117 requires that the convention of a partial view be the
-- same as the convention of the full view. Note that this is a
-- recognized breach of privacy, but it's essential for logical
-- consistency of representation, and the lack of a rule in
-- RM95 was an oversight.
Set_Convention (E, Convention (Full_View (E)));
Set_Size_Known_At_Compile_Time (E,
Size_Known_At_Compile_Time (Full_View (E)));
-- Size information is copied from the full view to the
-- incomplete or private view for consistency.
-- We skip this is the full view is not a type. This is very
-- strange of course, and can only happen as a result of
-- certain illegalities, such as a premature attempt to derive
-- from an incomplete type.
if Is_Type (Full_View (E)) then
Set_Size_Info (E, Full_View (E));
Set_RM_Size (E, RM_Size (Full_View (E)));
end if;
goto Leave;
-- Case of underlying full view present
elsif Is_Private_Type (E)
and then Present (Underlying_Full_View (E))
then
if not Is_Frozen (Underlying_Full_View (E)) then
Freeze_And_Append (Underlying_Full_View (E), N, Result);
end if;
-- Patch the pointers so that the freeze node will elaborate
-- both views in the back end.
if Has_Delayed_Freeze (E) then
F_Node := Freeze_Node (Underlying_Full_View (E));
if Present (F_Node) then
Inherit_Freeze_Node
(Fnod => F_Node,
Typ => E);
else
Set_Has_Delayed_Freeze (E, False);
Set_Freeze_Node (E, Empty);
end if;
end if;
Check_Debug_Info_Needed (E);
goto Leave;
-- Case of no full view present. If entity is derived or subtype,
-- it is safe to freeze, correctness depends on the frozen status
-- of parent. Otherwise it is either premature usage, or a Taft
-- amendment type, so diagnosis is at the point of use and the
-- type might be frozen later.
elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
null;
else
Set_Is_Frozen (E, False);
Result := No_List;
goto Leave;
end if;
-- For access subprogram, freeze types of all formals, the return
-- type was already frozen, since it is the Etype of the function.
-- Formal types can be tagged Taft amendment types, but otherwise
-- they cannot be incomplete.
elsif Ekind (E) = E_Subprogram_Type then
Formal := First_Formal (E);
while Present (Formal) loop
if Ekind (Etype (Formal)) = E_Incomplete_Type
and then No (Full_View (Etype (Formal)))
then
if Is_Tagged_Type (Etype (Formal)) then
null;
-- AI05-151: Incomplete types are allowed in access to
-- subprogram specifications.
elsif Ada_Version < Ada_2012 then
Error_Msg_NE
("invalid use of incomplete type&", E, Etype (Formal));
end if;
end if;
Freeze_And_Append (Etype (Formal), N, Result);
Next_Formal (Formal);
end loop;
Freeze_Subprogram (E);
-- For access to a protected subprogram, freeze the equivalent type
-- (however this is not set if we are not generating code or if this
-- is an anonymous type used just for resolution).
elsif Is_Access_Protected_Subprogram_Type (E) then
if Present (Equivalent_Type (E)) then
Freeze_And_Append (Equivalent_Type (E), N, Result);
end if;
end if;
-- Generic types are never seen by the back-end, and are also not
-- processed by the expander (since the expander is turned off for
-- generic processing), so we never need freeze nodes for them.
if Is_Generic_Type (E) then
goto Leave;
end if;
-- Some special processing for non-generic types to complete
-- representation details not known till the freeze point.
if Is_Fixed_Point_Type (E) then
Freeze_Fixed_Point_Type (E);
-- Some error checks required for ordinary fixed-point type. Defer
-- these till the freeze-point since we need the small and range
-- values. We only do these checks for base types
if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
if Small_Value (E) < Ureal_2_M_80 then
Error_Msg_Name_1 := Name_Small;
Error_Msg_N
("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
elsif Small_Value (E) > Ureal_2_80 then
Error_Msg_Name_1 := Name_Small;
Error_Msg_N
("`&''%` too large, maximum allowed is 2.0'*'*80", E);
end if;
if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
Error_Msg_Name_1 := Name_First;
Error_Msg_N
("`&''%` too small, minimum allowed is -10.0'*'*36", E);
end if;
if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
Error_Msg_Name_1 := Name_Last;
Error_Msg_N
("`&''%` too large, maximum allowed is 10.0'*'*36", E);
end if;
end if;
elsif Is_Enumeration_Type (E) then
Freeze_Enumeration_Type (E);
elsif Is_Integer_Type (E) then
Adjust_Esize_For_Alignment (E);
if Is_Modular_Integer_Type (E)
and then Warn_On_Suspicious_Modulus_Value
then
Check_Suspicious_Modulus (E);
end if;
-- The pool applies to named and anonymous access types, but not
-- to subprogram and to internal types generated for 'Access
-- references.
elsif Is_Access_Type (E)
and then not Is_Access_Subprogram_Type (E)
and then Ekind (E) /= E_Access_Attribute_Type
then
-- If a pragma Default_Storage_Pool applies, and this type has no
-- Storage_Pool or Storage_Size clause (which must have occurred
-- before the freezing point), then use the default. This applies
-- only to base types.
-- None of this applies to access to subprograms, for which there
-- are clearly no pools.
if Present (Default_Pool)
and then Is_Base_Type (E)
and then not Has_Storage_Size_Clause (E)
and then No (Associated_Storage_Pool (E))
then
-- Case of pragma Default_Storage_Pool (null)
if Nkind (Default_Pool) = N_Null then
Set_No_Pool_Assigned (E);
-- Case of pragma Default_Storage_Pool (storage_pool_NAME)
else
Set_Associated_Storage_Pool (E, Entity (Default_Pool));
end if;
end if;
-- Check restriction for standard storage pool
if No (Associated_Storage_Pool (E)) then
Check_Restriction (No_Standard_Storage_Pools, E);
end if;
-- Deal with error message for pure access type. This is not an
-- error in Ada 2005 if there is no pool (see AI-366).
if Is_Pure_Unit_Access_Type (E)
and then (Ada_Version < Ada_2005
or else not No_Pool_Assigned (E))
and then not Is_Generic_Unit (Scope (E))
then
Error_Msg_N ("named access type not allowed in pure unit", E);
if Ada_Version >= Ada_2005 then
Error_Msg_N
("\would be legal if Storage_Size of 0 given??", E);
elsif No_Pool_Assigned (E) then
Error_Msg_N
("\would be legal in Ada 2005??", E);
else
Error_Msg_N
("\would be legal in Ada 2005 if "
& "Storage_Size of 0 given??", E);
end if;
end if;
end if;
-- Case of composite types
if Is_Composite_Type (E) then
-- AI-117 requires that all new primitives of a tagged type must
-- inherit the convention of the full view of the type. Inherited
-- and overriding operations are defined to inherit the convention
-- of their parent or overridden subprogram (also specified in
-- AI-117), which will have occurred earlier (in Derive_Subprogram
-- and New_Overloaded_Entity). Here we set the convention of
-- primitives that are still convention Ada, which will ensure
-- that any new primitives inherit the type's convention. Class-
-- wide types can have a foreign convention inherited from their
-- specific type, but are excluded from this since they don't have
-- any associated primitives.
if Is_Tagged_Type (E)
and then not Is_Class_Wide_Type (E)
and then Convention (E) /= Convention_Ada
then
declare
Prim_List : constant Elist_Id := Primitive_Operations (E);
Prim : Elmt_Id;
begin
Prim := First_Elmt (Prim_List);
while Present (Prim) loop
if Convention (Node (Prim)) = Convention_Ada then
Set_Convention (Node (Prim), Convention (E));
end if;
Next_Elmt (Prim);
end loop;
end;
end if;
-- If the type is a simple storage pool type, then this is where
-- we attempt to locate and validate its Allocate, Deallocate, and
-- Storage_Size operations (the first is required, and the latter
-- two are optional). We also verify that the full type for a
-- private type is allowed to be a simple storage pool type.
if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
then
-- If the type is marked Has_Private_Declaration, then this is
-- a full type for a private type that was specified with the
-- pragma Simple_Storage_Pool_Type, and here we ensure that the
-- pragma is allowed for the full type (for example, it can't
-- be an array type, or a nonlimited record type).
if Has_Private_Declaration (E) then
if (not Is_Record_Type (E) or else not Is_Limited_View (E))
and then not Is_Private_Type (E)
then
Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
Error_Msg_N
("pragma% can only apply to full type that is an " &
"explicitly limited type", E);
end if;
end if;
Validate_Simple_Pool_Ops : declare
Pool_Type : Entity_Id renames E;
Address_Type : constant Entity_Id := RTE (RE_Address);
Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
procedure Validate_Simple_Pool_Op_Formal
(Pool_Op : Entity_Id;
Pool_Op_Formal : in out Entity_Id;
Expected_Mode : Formal_Kind;
Expected_Type : Entity_Id;
Formal_Name : String;
OK_Formal : in out Boolean);
-- Validate one formal Pool_Op_Formal of the candidate pool
-- operation Pool_Op. The formal must be of Expected_Type
-- and have mode Expected_Mode. OK_Formal will be set to
-- False if the formal doesn't match. If OK_Formal is False
-- on entry, then the formal will effectively be ignored
-- (because validation of the pool op has already failed).
-- Upon return, Pool_Op_Formal will be updated to the next
-- formal, if any.
procedure Validate_Simple_Pool_Operation
(Op_Name : Name_Id);
-- Search for and validate a simple pool operation with the
-- name Op_Name. If the name is Allocate, then there must be
-- exactly one such primitive operation for the simple pool
-- type. If the name is Deallocate or Storage_Size, then
-- there can be at most one such primitive operation. The
-- profile of the located primitive must conform to what
-- is expected for each operation.
------------------------------------
-- Validate_Simple_Pool_Op_Formal --
------------------------------------
procedure Validate_Simple_Pool_Op_Formal
(Pool_Op : Entity_Id;
Pool_Op_Formal : in out Entity_Id;
Expected_Mode : Formal_Kind;
Expected_Type : Entity_Id;
Formal_Name : String;
OK_Formal : in out Boolean)
is
begin
-- If OK_Formal is False on entry, then simply ignore
-- the formal, because an earlier formal has already
-- been flagged.
if not OK_Formal then
return;
-- If no formal is passed in, then issue an error for a
-- missing formal.
elsif not Present (Pool_Op_Formal) then
Error_Msg_NE
("simple storage pool op missing formal " &
Formal_Name & " of type&", Pool_Op, Expected_Type);
OK_Formal := False;
return;
end if;
if Etype (Pool_Op_Formal) /= Expected_Type then
-- If the pool type was expected for this formal, then
-- this will not be considered a candidate operation
-- for the simple pool, so we unset OK_Formal so that
-- the op and any later formals will be ignored.
if Expected_Type = Pool_Type then
OK_Formal := False;
return;
else
Error_Msg_NE
("wrong type for formal " & Formal_Name &
" of simple storage pool op; expected type&",
Pool_Op_Formal, Expected_Type);
end if;
end if;
-- Issue error if formal's mode is not the expected one
if Ekind (Pool_Op_Formal) /= Expected_Mode then
Error_Msg_N
("wrong mode for formal of simple storage pool op",
Pool_Op_Formal);
end if;
-- Advance to the next formal
Next_Formal (Pool_Op_Formal);
end Validate_Simple_Pool_Op_Formal;
------------------------------------
-- Validate_Simple_Pool_Operation --
------------------------------------
procedure Validate_Simple_Pool_Operation
(Op_Name : Name_Id)
is
Op : Entity_Id;
Found_Op : Entity_Id := Empty;
Formal : Entity_Id;
Is_OK : Boolean;
begin
pragma Assert
(Nam_In (Op_Name, Name_Allocate,
Name_Deallocate,
Name_Storage_Size));
Error_Msg_Name_1 := Op_Name;
-- For each homonym declared immediately in the scope
-- of the simple storage pool type, determine whether
-- the homonym is an operation of the pool type, and,
-- if so, check that its profile is as expected for
-- a simple pool operation of that name.
Op := Get_Name_Entity_Id (Op_Name);
while Present (Op) loop
if Ekind_In (Op, E_Function, E_Procedure)
and then Scope (Op) = Current_Scope
then
Formal := First_Entity (Op);
Is_OK := True;
-- The first parameter must be of the pool type
-- in order for the operation to qualify.
if Op_Name = Name_Storage_Size then
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_In_Parameter, Pool_Type,
"Pool", Is_OK);
else
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_In_Out_Parameter, Pool_Type,
"Pool", Is_OK);
end if;
-- If another operation with this name has already
-- been located for the type, then flag an error,
-- since we only allow the type to have a single
-- such primitive.
if Present (Found_Op) and then Is_OK then
Error_Msg_NE
("only one % operation allowed for " &
"simple storage pool type&", Op, Pool_Type);
end if;
-- In the case of Allocate and Deallocate, a formal
-- of type System.Address is required.
if Op_Name = Name_Allocate then
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_Out_Parameter,
Address_Type, "Storage_Address", Is_OK);
elsif Op_Name = Name_Deallocate then
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_In_Parameter,
Address_Type, "Storage_Address", Is_OK);
end if;
-- In the case of Allocate and Deallocate, formals
-- of type Storage_Count are required as the third
-- and fourth parameters.
if Op_Name /= Name_Storage_Size then
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_In_Parameter,
Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_In_Parameter,
Stg_Cnt_Type, "Alignment", Is_OK);
end if;
-- If no mismatched formals have been found (Is_OK)
-- and no excess formals are present, then this
-- operation has been validated, so record it.
if not Present (Formal) and then Is_OK then
Found_Op := Op;
end if;
end if;
Op := Homonym (Op);
end loop;
-- There must be a valid Allocate operation for the type,
-- so issue an error if none was found.
if Op_Name = Name_Allocate
and then not Present (Found_Op)
then
Error_Msg_N ("missing % operation for simple " &
"storage pool type", Pool_Type);
elsif Present (Found_Op) then
-- Simple pool operations can't be abstract
if Is_Abstract_Subprogram (Found_Op) then
Error_Msg_N
("simple storage pool operation must not be " &
"abstract", Found_Op);
end if;
-- The Storage_Size operation must be a function with
-- Storage_Count as its result type.
if Op_Name = Name_Storage_Size then
if Ekind (Found_Op) = E_Procedure then
Error_Msg_N
("% operation must be a function", Found_Op);
elsif Etype (Found_Op) /= Stg_Cnt_Type then
Error_Msg_NE
("wrong result type for%, expected type&",
Found_Op, Stg_Cnt_Type);
end if;
-- Allocate and Deallocate must be procedures
elsif Ekind (Found_Op) = E_Function then
Error_Msg_N
("% operation must be a procedure", Found_Op);
end if;
end if;
end Validate_Simple_Pool_Operation;
-- Start of processing for Validate_Simple_Pool_Ops
begin
Validate_Simple_Pool_Operation (Name_Allocate);
Validate_Simple_Pool_Operation (Name_Deallocate);
Validate_Simple_Pool_Operation (Name_Storage_Size);
end Validate_Simple_Pool_Ops;
end if;
end if;
-- Now that all types from which E may depend are frozen, see if the
-- size is known at compile time, if it must be unsigned, or if
-- strict alignment is required
Check_Compile_Time_Size (E);
Check_Unsigned_Type (E);
if Base_Type (E) = E then
Check_Strict_Alignment (E);
end if;
-- Do not allow a size clause for a type which does not have a size
-- that is known at compile time
if Has_Size_Clause (E)
and then not Size_Known_At_Compile_Time (E)
then
-- Suppress this message if errors posted on E, even if we are
-- in all errors mode, since this is often a junk message
if not Error_Posted (E) then
Error_Msg_N
("size clause not allowed for variable length type",
Size_Clause (E));
end if;
end if;
-- Now we set/verify the representation information, in particular
-- the size and alignment values. This processing is not required for
-- generic types, since generic types do not play any part in code
-- generation, and so the size and alignment values for such types
-- are irrelevant. Ditto for types declared within a generic unit,
-- which may have components that depend on generic parameters, and
-- that will be recreated in an instance.
if Inside_A_Generic then
null;
-- Otherwise we call the layout procedure
else
Layout_Type (E);
end if;
-- If this is an access to subprogram whose designated type is itself
-- a subprogram type, the return type of this anonymous subprogram
-- type must be decorated as well.
if Ekind (E) = E_Anonymous_Access_Subprogram_Type
and then Ekind (Designated_Type (E)) = E_Subprogram_Type
then
Layout_Type (Etype (Designated_Type (E)));
end if;
-- If the type has a Defaut_Value/Default_Component_Value aspect,
-- this is where we analye the expression (after the type is frozen,
-- since in the case of Default_Value, we are analyzing with the
-- type itself, and we treat Default_Component_Value similarly for
-- the sake of uniformity).
if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
declare
Nam : Name_Id;
Exp : Node_Id;
Typ : Entity_Id;
begin
if Is_Scalar_Type (E) then
Nam := Name_Default_Value;
Typ := E;
Exp := Default_Aspect_Value (Typ);
else
Nam := Name_Default_Component_Value;
Typ := Component_Type (E);
Exp := Default_Aspect_Component_Value (E);
end if;
Analyze_And_Resolve (Exp, Typ);
if Etype (Exp) /= Any_Type then
if not Is_OK_Static_Expression (Exp) then
Error_Msg_Name_1 := Nam;
Flag_Non_Static_Expr
("aspect% requires static expression", Exp);
end if;
end if;
end;
end if;
-- End of freeze processing for type entities
end if;
-- Here is where we logically freeze the current entity. If it has a
-- freeze node, then this is the point at which the freeze node is
-- linked into the result list.
if Has_Delayed_Freeze (E) then
-- If a freeze node is already allocated, use it, otherwise allocate
-- a new one. The preallocation happens in the case of anonymous base
-- types, where we preallocate so that we can set First_Subtype_Link.
-- Note that we reset the Sloc to the current freeze location.
if Present (Freeze_Node (E)) then
F_Node := Freeze_Node (E);
Set_Sloc (F_Node, Loc);
else
F_Node := New_Node (N_Freeze_Entity, Loc);
Set_Freeze_Node (E, F_Node);
Set_Access_Types_To_Process (F_Node, No_Elist);
Set_TSS_Elist (F_Node, No_Elist);
Set_Actions (F_Node, No_List);
end if;
Set_Entity (F_Node, E);
Add_To_Result (F_Node);
-- A final pass over record types with discriminants. If the type
-- has an incomplete declaration, there may be constrained access
-- subtypes declared elsewhere, which do not depend on the discrimi-
-- nants of the type, and which are used as component types (i.e.
-- the full view is a recursive type). The designated types of these
-- subtypes can only be elaborated after the type itself, and they
-- need an itype reference.
if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
declare
Comp : Entity_Id;
IR : Node_Id;
Typ : Entity_Id;
begin
Comp := First_Component (E);
while Present (Comp) loop
Typ := Etype (Comp);
if Ekind (Comp) = E_Component
and then Is_Access_Type (Typ)
and then Scope (Typ) /= E
and then Base_Type (Designated_Type (Typ)) = E
and then Is_Itype (Designated_Type (Typ))
then
IR := Make_Itype_Reference (Sloc (Comp));
Set_Itype (IR, Designated_Type (Typ));
Append (IR, Result);
end if;
Next_Component (Comp);
end loop;
end;
end if;
end if;
-- When a type is frozen, the first subtype of the type is frozen as
-- well (RM 13.14(15)). This has to be done after freezing the type,
-- since obviously the first subtype depends on its own base type.
if Is_Type (E) then
Freeze_And_Append (First_Subtype (E), N, Result);
-- If we just froze a tagged non-class wide record, then freeze the
-- corresponding class-wide type. This must be done after the tagged
-- type itself is frozen, because the class-wide type refers to the
-- tagged type which generates the class.
if Is_Tagged_Type (E)
and then not Is_Class_Wide_Type (E)
and then Present (Class_Wide_Type (E))
then
Freeze_And_Append (Class_Wide_Type (E), N, Result);
end if;
end if;
Check_Debug_Info_Needed (E);
-- Special handling for subprograms
if Is_Subprogram (E) then
-- If subprogram has address clause then reset Is_Public flag, since
-- we do not want the backend to generate external references.
if Present (Address_Clause (E))
and then not Is_Library_Level_Entity (E)
then
Set_Is_Public (E, False);
end if;
end if;
<<Leave>>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
return Result;
end Freeze_Entity;
-----------------------------
-- Freeze_Enumeration_Type --
-----------------------------
procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
begin
-- By default, if no size clause is present, an enumeration type with
-- Convention C is assumed to interface to a C enum and has integer
-- size, except for a boolean type because it is assumed to interface
-- to _Bool introduced in C99. This applies to types. For subtypes,
-- verify that its base type has no size clause either. Treat other
-- foreign conventions in the same way, and also make sure alignment
-- is set right.
if Has_Foreign_Convention (Typ)
and then not Is_Boolean_Type (Typ)
and then not Has_Size_Clause (Typ)
and then not Has_Size_Clause (Base_Type (Typ))
and then Esize (Typ) < Standard_Integer_Size
-- Don't do this if Short_Enums on target
and then not Target_Short_Enums
then
Init_Esize (Typ, Standard_Integer_Size);
Set_Alignment (Typ, Alignment (Standard_Integer));
-- Normal Ada case or size clause present or not Long_C_Enums on target
else
-- If the enumeration type interfaces to C, and it has a size clause
-- that specifies less than int size, it warrants a warning. The
-- user may intend the C type to be an enum or a char, so this is
-- not by itself an error that the Ada compiler can detect, but it
-- it is a worth a heads-up. For Boolean and Character types we
-- assume that the programmer has the proper C type in mind.
if Convention (Typ) = Convention_C
and then Has_Size_Clause (Typ)
and then Esize (Typ) /= Esize (Standard_Integer)
and then not Is_Boolean_Type (Typ)
and then not Is_Character_Type (Typ)
-- Don't do this if Short_Enums on target
and then not Target_Short_Enums
then
Error_Msg_N
("C enum types have the size of a C int??", Size_Clause (Typ));
end if;
Adjust_Esize_For_Alignment (Typ);
end if;
end Freeze_Enumeration_Type;
-----------------------
-- Freeze_Expression --
-----------------------
procedure Freeze_Expression (N : Node_Id) is
In_Spec_Exp : constant Boolean := In_Spec_Expression;
Typ : Entity_Id;
Nam : Entity_Id;
Desig_Typ : Entity_Id;
P : Node_Id;
Parent_P : Node_Id;
Freeze_Outside : Boolean := False;
-- This flag is set true if the entity must be frozen outside the
-- current subprogram. This happens in the case of expander generated
-- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
-- not freeze all entities like other bodies, but which nevertheless
-- may reference entities that have to be frozen before the body and
-- obviously cannot be frozen inside the body.
function Find_Aggregate_Component_Desig_Type return Entity_Id;
-- If the expression is an array aggregate, the type of the component
-- expressions is also frozen. If the component type is an access type
-- and the expressions include allocators, the designed type is frozen
-- as well.
function In_Expanded_Body (N : Node_Id) return Boolean;
-- Given an N_Handled_Sequence_Of_Statements node N, determines whether
-- it is the handled statement sequence of an expander-generated
-- subprogram (init proc, stream subprogram, or renaming as body).
-- If so, this is not a freezing context.
-----------------------------------------
-- Find_Aggregate_Component_Desig_Type --
-----------------------------------------
function Find_Aggregate_Component_Desig_Type return Entity_Id is
Assoc : Node_Id;
Exp : Node_Id;
begin
if Present (Expressions (N)) then
Exp := First (Expressions (N));
while Present (Exp) loop
if Nkind (Exp) = N_Allocator then
return Designated_Type (Component_Type (Etype (N)));
end if;
Next (Exp);
end loop;
end if;
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
if Nkind (Expression (Assoc)) = N_Allocator then
return Designated_Type (Component_Type (Etype (N)));
end if;
Next (Assoc);
end loop;
end if;
return Empty;
end Find_Aggregate_Component_Desig_Type;
----------------------
-- In_Expanded_Body --
----------------------
function In_Expanded_Body (N : Node_Id) return Boolean is
P : Node_Id;
Id : Entity_Id;
begin
if Nkind (N) = N_Subprogram_Body then
P := N;
else
P := Parent (N);
end if;
if Nkind (P) /= N_Subprogram_Body then
return False;
else
Id := Defining_Unit_Name (Specification (P));
-- The following are expander-created bodies, or bodies that
-- are not freeze points.
if Nkind (Id) = N_Defining_Identifier
and then (Is_Init_Proc (Id)
or else Is_TSS (Id, TSS_Stream_Input)
or else Is_TSS (Id, TSS_Stream_Output)
or else Is_TSS (Id, TSS_Stream_Read)
or else Is_TSS (Id, TSS_Stream_Write)
or else Nkind_In (Original_Node (P),
N_Subprogram_Renaming_Declaration,
N_Expression_Function))
then
return True;
else
return False;
end if;
end if;
end In_Expanded_Body;
-- Start of processing for Freeze_Expression
begin
-- Immediate return if freezing is inhibited. This flag is set by the
-- analyzer to stop freezing on generated expressions that would cause
-- freezing if they were in the source program, but which are not
-- supposed to freeze, since they are created.
if Must_Not_Freeze (N) then
return;
end if;
-- If expression is non-static, then it does not freeze in a default
-- expression, see section "Handling of Default Expressions" in the
-- spec of package Sem for further details. Note that we have to make
-- sure that we actually have a real expression (if we have a subtype
-- indication, we can't test Is_OK_Static_Expression). However, we
-- exclude the case of the prefix of an attribute of a static scalar
-- subtype from this early return, because static subtype attributes
-- should always cause freezing, even in default expressions, but
-- the attribute may not have been marked as static yet (because in
-- Resolve_Attribute, the call to Eval_Attribute follows the call of
-- Freeze_Expression on the prefix).
if In_Spec_Exp
and then Nkind (N) in N_Subexpr
and then not Is_OK_Static_Expression (N)
and then (Nkind (Parent (N)) /= N_Attribute_Reference
or else not (Is_Entity_Name (N)
and then Is_Type (Entity (N))
and then Is_OK_Static_Subtype (Entity (N))))
then
return;
end if;
-- Freeze type of expression if not frozen already
Typ := Empty;
if Nkind (N) in N_Has_Etype then
if not Is_Frozen (Etype (N)) then
Typ := Etype (N);
-- Base type may be an derived numeric type that is frozen at
-- the point of declaration, but first_subtype is still unfrozen.
elsif not Is_Frozen (First_Subtype (Etype (N))) then
Typ := First_Subtype (Etype (N));
end if;
end if;
-- For entity name, freeze entity if not frozen already. A special
-- exception occurs for an identifier that did not come from source.
-- We don't let such identifiers freeze a non-internal entity, i.e.
-- an entity that did come from source, since such an identifier was
-- generated by the expander, and cannot have any semantic effect on
-- the freezing semantics. For example, this stops the parameter of
-- an initialization procedure from freezing the variable.
if Is_Entity_Name (N)
and then not Is_Frozen (Entity (N))
and then (Nkind (N) /= N_Identifier
or else Comes_From_Source (N)
or else not Comes_From_Source (Entity (N)))
then
Nam := Entity (N);
if Present (Nam) and then Ekind (Nam) = E_Function then
Check_Expression_Function (N, Nam);
end if;
else
Nam := Empty;
end if;
-- For an allocator freeze designated type if not frozen already
-- For an aggregate whose component type is an access type, freeze the
-- designated type now, so that its freeze does not appear within the
-- loop that might be created in the expansion of the aggregate. If the
-- designated type is a private type without full view, the expression
-- cannot contain an allocator, so the type is not frozen.
-- For a function, we freeze the entity when the subprogram declaration
-- is frozen, but a function call may appear in an initialization proc.
-- before the declaration is frozen. We need to generate the extra
-- formals, if any, to ensure that the expansion of the call includes
-- the proper actuals. This only applies to Ada subprograms, not to
-- imported ones.
Desig_Typ := Empty;
case Nkind (N) is
when N_Allocator =>
Desig_Typ := Designated_Type (Etype (N));
when N_Aggregate =>
if Is_Array_Type (Etype (N))
and then Is_Access_Type (Component_Type (Etype (N)))
then
-- Check whether aggregate includes allocators.
Desig_Typ := Find_Aggregate_Component_Desig_Type;
end if;
when N_Indexed_Component
| N_Selected_Component
| N_Slice
=>
if Is_Access_Type (Etype (Prefix (N))) then
Desig_Typ := Designated_Type (Etype (Prefix (N)));
end if;
when N_Identifier =>
if Present (Nam)
and then Ekind (Nam) = E_Function
and then Nkind (Parent (N)) = N_Function_Call
and then Convention (Nam) = Convention_Ada
then
Create_Extra_Formals (Nam);
end if;
when others =>
null;
end case;
if Desig_Typ /= Empty
and then (Is_Frozen (Desig_Typ)
or else (not Is_Fully_Defined (Desig_Typ)))
then
Desig_Typ := Empty;
end if;
-- All done if nothing needs freezing
if No (Typ)
and then No (Nam)
and then No (Desig_Typ)
then
return;
end if;
-- Examine the enclosing context by climbing the parent chain. The
-- traversal serves two purposes - to detect scenarios where freezeing
-- is not needed and to find the proper insertion point for the freeze
-- nodes. Although somewhat similar to Insert_Actions, this traversal
-- is freezing semantics-sensitive. Inserting freeze nodes blindly in
-- the tree may result in types being frozen too early.
P := N;
loop
Parent_P := Parent (P);
-- If we don't have a parent, then we are not in a well-formed tree.
-- This is an unusual case, but there are some legitimate situations
-- in which this occurs, notably when the expressions in the range of
-- a type declaration are resolved. We simply ignore the freeze
-- request in this case. Is this right ???
if No (Parent_P) then
return;
end if;
-- See if we have got to an appropriate point in the tree
case Nkind (Parent_P) is
-- A special test for the exception of (RM 13.14(8)) for the case
-- of per-object expressions (RM 3.8(18)) occurring in component
-- definition or a discrete subtype definition. Note that we test
-- for a component declaration which includes both cases we are
-- interested in, and furthermore the tree does not have explicit
-- nodes for either of these two constructs.
when N_Component_Declaration =>
-- The case we want to test for here is an identifier that is
-- a per-object expression, this is either a discriminant that
-- appears in a context other than the component declaration
-- or it is a reference to the type of the enclosing construct.
-- For either of these cases, we skip the freezing
if not In_Spec_Expression
and then Nkind (N) = N_Identifier
and then (Present (Entity (N)))
then
-- We recognize the discriminant case by just looking for
-- a reference to a discriminant. It can only be one for
-- the enclosing construct. Skip freezing in this case.
if Ekind (Entity (N)) = E_Discriminant then
return;
-- For the case of a reference to the enclosing record,
-- (or task or protected type), we look for a type that
-- matches the current scope.
elsif Entity (N) = Current_Scope then
return;
end if;
end if;
-- If we have an enumeration literal that appears as the choice in
-- the aggregate of an enumeration representation clause, then
-- freezing does not occur (RM 13.14(10)).
when N_Enumeration_Representation_Clause =>
-- The case we are looking for is an enumeration literal
if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
and then Is_Enumeration_Type (Etype (N))
then
-- If enumeration literal appears directly as the choice,
-- do not freeze (this is the normal non-overloaded case)
if Nkind (Parent (N)) = N_Component_Association
and then First (Choices (Parent (N))) = N
then
return;
-- If enumeration literal appears as the name of function
-- which is the choice, then also do not freeze. This
-- happens in the overloaded literal case, where the
-- enumeration literal is temporarily changed to a function
-- call for overloading analysis purposes.
elsif Nkind (Parent (N)) = N_Function_Call
and then
Nkind (Parent (Parent (N))) = N_Component_Association
and then
First (Choices (Parent (Parent (N)))) = Parent (N)
then
return;
end if;
end if;
-- Normally if the parent is a handled sequence of statements,
-- then the current node must be a statement, and that is an
-- appropriate place to insert a freeze node.
when N_Handled_Sequence_Of_Statements =>
-- An exception occurs when the sequence of statements is for
-- an expander generated body that did not do the usual freeze
-- all operation. In this case we usually want to freeze
-- outside this body, not inside it, and we skip past the
-- subprogram body that we are inside.
if In_Expanded_Body (Parent_P) then
declare
Subp : constant Node_Id := Parent (Parent_P);
Spec : Entity_Id;
begin
-- Freeze the entity only when it is declared inside the
-- body of the expander generated procedure. This case
-- is recognized by the scope of the entity or its type,
-- which is either the spec for some enclosing body, or
-- (in the case of init_procs, for which there are no
-- separate specs) the current scope.
if Nkind (Subp) = N_Subprogram_Body then
Spec := Corresponding_Spec (Subp);
if (Present (Typ) and then Scope (Typ) = Spec)
or else
(Present (Nam) and then Scope (Nam) = Spec)
then
exit;
elsif Present (Typ)
and then Scope (Typ) = Current_Scope
and then Defining_Entity (Subp) = Current_Scope
then
exit;
end if;
end if;
-- An expression function may act as a completion of
-- a function declaration. As such, it can reference
-- entities declared between the two views:
-- Hidden []; -- 1
-- function F return ...;
-- private
-- function Hidden return ...;
-- function F return ... is (Hidden); -- 2
-- Refering to the example above, freezing the expression
-- of F (2) would place Hidden's freeze node (1) in the
-- wrong place. Avoid explicit freezing and let the usual
-- scenarios do the job - for example, reaching the end
-- of the private declarations, or a call to F.
if Nkind (Original_Node (Subp)) =
N_Expression_Function
then
null;
-- Freeze outside the body
else
Parent_P := Parent (Parent_P);
Freeze_Outside := True;
end if;
end;
-- Here if normal case where we are in handled statement
-- sequence and want to do the insertion right there.
else
exit;
end if;
-- If parent is a body or a spec or a block, then the current node
-- is a statement or declaration and we can insert the freeze node
-- before it.
when N_Block_Statement
| N_Entry_Body
| N_Package_Body
| N_Package_Specification
| N_Protected_Body
| N_Subprogram_Body
| N_Task_Body
=>
exit;
-- The expander is allowed to define types in any statements list,
-- so any of the following parent nodes also mark a freezing point
-- if the actual node is in a list of statements or declarations.
when N_Abortable_Part
| N_Accept_Alternative
| N_And_Then
| N_Case_Statement_Alternative
| N_Compilation_Unit_Aux
| N_Conditional_Entry_Call
| N_Delay_Alternative
| N_Elsif_Part
| N_Entry_Call_Alternative
| N_Exception_Handler
| N_Extended_Return_Statement
| N_Freeze_Entity
| N_If_Statement
| N_Or_Else
| N_Selective_Accept
| N_Triggering_Alternative
=>
exit when Is_List_Member (P);
-- Freeze nodes produced by an expression coming from the Actions
-- list of a N_Expression_With_Actions node must remain within the
-- Actions list. Inserting the freeze nodes further up the tree
-- may lead to use before declaration issues in the case of array
-- types.
when N_Expression_With_Actions =>
if Is_List_Member (P)
and then List_Containing (P) = Actions (Parent_P)
then
exit;
end if;
-- Note: N_Loop_Statement is a special case. A type that appears
-- in the source can never be frozen in a loop (this occurs only
-- because of a loop expanded by the expander), so we keep on
-- going. Otherwise we terminate the search. Same is true of any
-- entity which comes from source. (if they have predefined type,
-- that type does not appear to come from source, but the entity
-- should not be frozen here).
when N_Loop_Statement =>
exit when not Comes_From_Source (Etype (N))
and then (No (Nam) or else not Comes_From_Source (Nam));
-- For all other cases, keep looking at parents
when others =>
null;
end case;
-- We fall through the case if we did not yet find the proper
-- place in the free for inserting the freeze node, so climb.
P := Parent_P;
end loop;
-- If the expression appears in a record or an initialization procedure,
-- the freeze nodes are collected and attached to the current scope, to
-- be inserted and analyzed on exit from the scope, to insure that
-- generated entities appear in the correct scope. If the expression is
-- a default for a discriminant specification, the scope is still void.
-- The expression can also appear in the discriminant part of a private
-- or concurrent type.
-- If the expression appears in a constrained subcomponent of an
-- enclosing record declaration, the freeze nodes must be attached to
-- the outer record type so they can eventually be placed in the
-- enclosing declaration list.
-- The other case requiring this special handling is if we are in a
-- default expression, since in that case we are about to freeze a
-- static type, and the freeze scope needs to be the outer scope, not
-- the scope of the subprogram with the default parameter.
-- For default expressions and other spec expressions in generic units,
-- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
-- placing them at the proper place, after the generic unit.
if (In_Spec_Exp and not Inside_A_Generic)
or else Freeze_Outside
or else (Is_Type (Current_Scope)
and then (not Is_Concurrent_Type (Current_Scope)
or else not Has_Completion (Current_Scope)))
or else Ekind (Current_Scope) = E_Void
then
declare
N : constant Node_Id := Current_Scope;
Freeze_Nodes : List_Id := No_List;
Pos : Int := Scope_Stack.Last;
begin
if Present (Desig_Typ) then
Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
end if;
if Present (Typ) then
Freeze_And_Append (Typ, N, Freeze_Nodes);
end if;
if Present (Nam) then
Freeze_And_Append (Nam, N, Freeze_Nodes);
end if;
-- The current scope may be that of a constrained component of
-- an enclosing record declaration, or of a loop of an enclosing
-- quantified expression, which is above the current scope in the
-- scope stack. Indeed in the context of a quantified expression,
-- a scope is created and pushed above the current scope in order
-- to emulate the loop-like behavior of the quantified expression.
-- If the expression is within a top-level pragma, as for a pre-
-- condition on a library-level subprogram, nothing to do.
if not Is_Compilation_Unit (Current_Scope)
and then (Is_Record_Type (Scope (Current_Scope))
or else Nkind (Parent (Current_Scope)) =
N_Quantified_Expression)
then
Pos := Pos - 1;
end if;
if Is_Non_Empty_List (Freeze_Nodes) then
if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
Freeze_Nodes;
else
Append_List (Freeze_Nodes,
Scope_Stack.Table (Pos).Pending_Freeze_Actions);
end if;
end if;
end;
return;
end if;
-- Now we have the right place to do the freezing. First, a special
-- adjustment, if we are in spec-expression analysis mode, these freeze
-- actions must not be thrown away (normally all inserted actions are
-- thrown away in this mode. However, the freeze actions are from static
-- expressions and one of the important reasons we are doing this
-- special analysis is to get these freeze actions. Therefore we turn
-- off the In_Spec_Expression mode to propagate these freeze actions.
-- This also means they get properly analyzed and expanded.
In_Spec_Expression := False;
-- Freeze the designated type of an allocator (RM 13.14(13))
if Present (Desig_Typ) then
Freeze_Before (P, Desig_Typ);
end if;
-- Freeze type of expression (RM 13.14(10)). Note that we took care of
-- the enumeration representation clause exception in the loop above.
if Present (Typ) then
Freeze_Before (P, Typ);
end if;
-- Freeze name if one is present (RM 13.14(11))
if Present (Nam) then
Freeze_Before (P, Nam);
end if;
-- Restore In_Spec_Expression flag
In_Spec_Expression := In_Spec_Exp;
end Freeze_Expression;
-----------------------------
-- Freeze_Fixed_Point_Type --
-----------------------------
-- Certain fixed-point types and subtypes, including implicit base types
-- and declared first subtypes, have not yet set up a range. This is
-- because the range cannot be set until the Small and Size values are
-- known, and these are not known till the type is frozen.
-- To signal this case, Scalar_Range contains an unanalyzed syntactic range
-- whose bounds are unanalyzed real literals. This routine will recognize
-- this case, and transform this range node into a properly typed range
-- with properly analyzed and resolved values.
procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
Rng : constant Node_Id := Scalar_Range (Typ);
Lo : constant Node_Id := Low_Bound (Rng);
Hi : constant Node_Id := High_Bound (Rng);
Btyp : constant Entity_Id := Base_Type (Typ);
Brng : constant Node_Id := Scalar_Range (Btyp);
BLo : constant Node_Id := Low_Bound (Brng);
BHi : constant Node_Id := High_Bound (Brng);
Small : constant Ureal := Small_Value (Typ);
Loval : Ureal;
Hival : Ureal;
Atype : Entity_Id;
Orig_Lo : Ureal;
Orig_Hi : Ureal;
-- Save original bounds (for shaving tests)
Actual_Size : Nat;
-- Actual size chosen
function Fsize (Lov, Hiv : Ureal) return Nat;
-- Returns size of type with given bounds. Also leaves these
-- bounds set as the current bounds of the Typ.
-----------
-- Fsize --
-----------
function Fsize (Lov, Hiv : Ureal) return Nat is
begin
Set_Realval (Lo, Lov);
Set_Realval (Hi, Hiv);
return Minimum_Size (Typ);
end Fsize;
-- Start of processing for Freeze_Fixed_Point_Type
begin
-- The type, or its first subtype if we are freezing the anonymous
-- base, may have a delayed Small aspect. It must be analyzed now,
-- so that all characteristics of the type (size, bounds) can be
-- computed and validated in the call to Minimum_Size that follows.
if Has_Delayed_Aspects (First_Subtype (Typ)) then
Analyze_Aspects_At_Freeze_Point (First_Subtype (Typ));
Set_Has_Delayed_Aspects (First_Subtype (Typ), False);
end if;
-- If Esize of a subtype has not previously been set, set it now
if Unknown_Esize (Typ) then
Atype := Ancestor_Subtype (Typ);
if Present (Atype) then
Set_Esize (Typ, Esize (Atype));
else
Set_Esize (Typ, Esize (Base_Type (Typ)));
end if;
end if;
-- Immediate return if the range is already analyzed. This means that
-- the range is already set, and does not need to be computed by this
-- routine.
if Analyzed (Rng) then
return;
end if;
-- Immediate return if either of the bounds raises Constraint_Error
if Raises_Constraint_Error (Lo)
or else Raises_Constraint_Error (Hi)
then
return;
end if;
Loval := Realval (Lo);
Hival := Realval (Hi);
Orig_Lo := Loval;
Orig_Hi := Hival;
-- Ordinary fixed-point case
if Is_Ordinary_Fixed_Point_Type (Typ) then
-- For the ordinary fixed-point case, we are allowed to fudge the
-- end-points up or down by small. Generally we prefer to fudge up,
-- i.e. widen the bounds for non-model numbers so that the end points
-- are included. However there are cases in which this cannot be
-- done, and indeed cases in which we may need to narrow the bounds.
-- The following circuit makes the decision.
-- Note: our terminology here is that Incl_EP means that the bounds
-- are widened by Small if necessary to include the end points, and
-- Excl_EP means that the bounds are narrowed by Small to exclude the
-- end-points if this reduces the size.
-- Note that in the Incl case, all we care about is including the
-- end-points. In the Excl case, we want to narrow the bounds as
-- much as permitted by the RM, to give the smallest possible size.
Fudge : declare
Loval_Incl_EP : Ureal;
Hival_Incl_EP : Ureal;
Loval_Excl_EP : Ureal;
Hival_Excl_EP : Ureal;
Size_Incl_EP : Nat;
Size_Excl_EP : Nat;
Model_Num : Ureal;
First_Subt : Entity_Id;
Actual_Lo : Ureal;
Actual_Hi : Ureal;
begin
-- First step. Base types are required to be symmetrical. Right
-- now, the base type range is a copy of the first subtype range.
-- This will be corrected before we are done, but right away we
-- need to deal with the case where both bounds are non-negative.
-- In this case, we set the low bound to the negative of the high
-- bound, to make sure that the size is computed to include the
-- required sign. Note that we do not need to worry about the
-- case of both bounds negative, because the sign will be dealt
-- with anyway. Furthermore we can't just go making such a bound
-- symmetrical, since in a twos-complement system, there is an
-- extra negative value which could not be accommodated on the
-- positive side.
if Typ = Btyp
and then not UR_Is_Negative (Loval)
and then Hival > Loval
then
Loval := -Hival;
Set_Realval (Lo, Loval);
end if;
-- Compute the fudged bounds. If the number is a model number,
-- then we do nothing to include it, but we are allowed to backoff
-- to the next adjacent model number when we exclude it. If it is
-- not a model number then we straddle the two values with the
-- model numbers on either side.
Model_Num := UR_Trunc (Loval / Small) * Small;
if Loval = Model_Num then
Loval_Incl_EP := Model_Num;
else
Loval_Incl_EP := Model_Num - Small;
end if;
-- The low value excluding the end point is Small greater, but
-- we do not do this exclusion if the low value is positive,
-- since it can't help the size and could actually hurt by
-- crossing the high bound.
if UR_Is_Negative (Loval_Incl_EP) then
Loval_Excl_EP := Loval_Incl_EP + Small;
-- If the value went from negative to zero, then we have the
-- case where Loval_Incl_EP is the model number just below
-- zero, so we want to stick to the negative value for the
-- base type to maintain the condition that the size will
-- include signed values.
if Typ = Btyp
and then UR_Is_Zero (Loval_Excl_EP)
then
Loval_Excl_EP := Loval_Incl_EP;
end if;
else
Loval_Excl_EP := Loval_Incl_EP;
end if;
-- Similar processing for upper bound and high value
Model_Num := UR_Trunc (Hival / Small) * Small;
if Hival = Model_Num then
Hival_Incl_EP := Model_Num;
else
Hival_Incl_EP := Model_Num + Small;
end if;
if UR_Is_Positive (Hival_Incl_EP) then
Hival_Excl_EP := Hival_Incl_EP - Small;
else
Hival_Excl_EP := Hival_Incl_EP;
end if;
-- One further adjustment is needed. In the case of subtypes, we
-- cannot go outside the range of the base type, or we get
-- peculiarities, and the base type range is already set. This
-- only applies to the Incl values, since clearly the Excl values
-- are already as restricted as they are allowed to be.
if Typ /= Btyp then
Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
end if;
-- Get size including and excluding end points
Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
-- No need to exclude end-points if it does not reduce size
if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
Loval_Excl_EP := Loval_Incl_EP;
end if;
if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
Hival_Excl_EP := Hival_Incl_EP;
end if;
-- Now we set the actual size to be used. We want to use the
-- bounds fudged up to include the end-points but only if this
-- can be done without violating a specifically given size
-- size clause or causing an unacceptable increase in size.
-- Case of size clause given
if Has_Size_Clause (Typ) then
-- Use the inclusive size only if it is consistent with
-- the explicitly specified size.
if Size_Incl_EP <= RM_Size (Typ) then
Actual_Lo := Loval_Incl_EP;
Actual_Hi := Hival_Incl_EP;
Actual_Size := Size_Incl_EP;
-- If the inclusive size is too large, we try excluding
-- the end-points (will be caught later if does not work).
else
Actual_Lo := Loval_Excl_EP;
Actual_Hi := Hival_Excl_EP;
Actual_Size := Size_Excl_EP;
end if;
-- Case of size clause not given
else
-- If we have a base type whose corresponding first subtype
-- has an explicit size that is large enough to include our
-- end-points, then do so. There is no point in working hard
-- to get a base type whose size is smaller than the specified
-- size of the first subtype.
First_Subt := First_Subtype (Typ);
if Has_Size_Clause (First_Subt)
and then Size_Incl_EP <= Esize (First_Subt)
then
Actual_Size := Size_Incl_EP;
Actual_Lo := Loval_Incl_EP;
Actual_Hi := Hival_Incl_EP;
-- If excluding the end-points makes the size smaller and
-- results in a size of 8,16,32,64, then we take the smaller
-- size. For the 64 case, this is compulsory. For the other
-- cases, it seems reasonable. We like to include end points
-- if we can, but not at the expense of moving to the next
-- natural boundary of size.
elsif Size_Incl_EP /= Size_Excl_EP
and then Addressable (Size_Excl_EP)
then
Actual_Size := Size_Excl_EP;
Actual_Lo := Loval_Excl_EP;
Actual_Hi := Hival_Excl_EP;
-- Otherwise we can definitely include the end points
else
Actual_Size := Size_Incl_EP;
Actual_Lo := Loval_Incl_EP;
Actual_Hi := Hival_Incl_EP;
end if;
-- One pathological case: normally we never fudge a low bound
-- down, since it would seem to increase the size (if it has
-- any effect), but for ranges containing single value, or no
-- values, the high bound can be small too large. Consider:
-- type t is delta 2.0**(-14)
-- range 131072.0 .. 0;
-- That lower bound is *just* outside the range of 32 bits, and
-- does need fudging down in this case. Note that the bounds
-- will always have crossed here, since the high bound will be
-- fudged down if necessary, as in the case of:
-- type t is delta 2.0**(-14)
-- range 131072.0 .. 131072.0;
-- So we detect the situation by looking for crossed bounds,
-- and if the bounds are crossed, and the low bound is greater
-- than zero, we will always back it off by small, since this
-- is completely harmless.
if Actual_Lo > Actual_Hi then
if UR_Is_Positive (Actual_Lo) then
Actual_Lo := Loval_Incl_EP - Small;
Actual_Size := Fsize (Actual_Lo, Actual_Hi);
-- And of course, we need to do exactly the same parallel
-- fudge for flat ranges in the negative region.
elsif UR_Is_Negative (Actual_Hi) then
Actual_Hi := Hival_Incl_EP + Small;
Actual_Size := Fsize (Actual_Lo, Actual_Hi);
end if;
end if;
end if;
Set_Realval (Lo, Actual_Lo);
Set_Realval (Hi, Actual_Hi);
end Fudge;
-- For the decimal case, none of this fudging is required, since there
-- are no end-point problems in the decimal case (the end-points are
-- always included).
else
Actual_Size := Fsize (Loval, Hival);
end if;
-- At this stage, the actual size has been calculated and the proper
-- required bounds are stored in the low and high bounds.
if Actual_Size > 64 then
Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
Error_Msg_N
("size required (^) for type& too large, maximum allowed is 64",
Typ);
Actual_Size := 64;
end if;
-- Check size against explicit given size
if Has_Size_Clause (Typ) then
if Actual_Size > RM_Size (Typ) then
Error_Msg_Uint_1 := RM_Size (Typ);
Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
Error_Msg_NE
("size given (^) for type& too small, minimum allowed is ^",
Size_Clause (Typ), Typ);
else
Actual_Size := UI_To_Int (Esize (Typ));
end if;
-- Increase size to next natural boundary if no size clause given
else
if Actual_Size <= 8 then
Actual_Size := 8;
elsif Actual_Size <= 16 then
Actual_Size := 16;
elsif Actual_Size <= 32 then
Actual_Size := 32;
else
Actual_Size := 64;
end if;
Init_Esize (Typ, Actual_Size);
Adjust_Esize_For_Alignment (Typ);
end if;
-- If we have a base type, then expand the bounds so that they extend to
-- the full width of the allocated size in bits, to avoid junk range
-- checks on intermediate computations.
if Base_Type (Typ) = Typ then
Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
end if;
-- Final step is to reanalyze the bounds using the proper type
-- and set the Corresponding_Integer_Value fields of the literals.
Set_Etype (Lo, Empty);
Set_Analyzed (Lo, False);
Analyze (Lo);
-- Resolve with universal fixed if the base type, and the base type if
-- it is a subtype. Note we can't resolve the base type with itself,
-- that would be a reference before definition.
if Typ = Btyp then
Resolve (Lo, Universal_Fixed);
else
Resolve (Lo, Btyp);
end if;
-- Set corresponding integer value for bound
Set_Corresponding_Integer_Value
(Lo, UR_To_Uint (Realval (Lo) / Small));
-- Similar processing for high bound
Set_Etype (Hi, Empty);
Set_Analyzed (Hi, False);
Analyze (Hi);
if Typ = Btyp then
Resolve (Hi, Universal_Fixed);
else
Resolve (Hi, Btyp);
end if;
Set_Corresponding_Integer_Value
(Hi, UR_To_Uint (Realval (Hi) / Small));
-- Set type of range to correspond to bounds
Set_Etype (Rng, Etype (Lo));
-- Set Esize to calculated size if not set already
if Unknown_Esize (Typ) then
Init_Esize (Typ, Actual_Size);
end if;
-- Set RM_Size if not already set. If already set, check value
declare
Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
begin
if RM_Size (Typ) /= Uint_0 then
if RM_Size (Typ) < Minsiz then
Error_Msg_Uint_1 := RM_Size (Typ);
Error_Msg_Uint_2 := Minsiz;
Error_Msg_NE
("size given (^) for type& too small, minimum allowed is ^",
Size_Clause (Typ), Typ);
end if;
else
Set_RM_Size (Typ, Minsiz);
end if;
end;
-- Check for shaving
if Comes_From_Source (Typ) then
-- In SPARK mode the given bounds must be strictly representable
if SPARK_Mode = On then
if Orig_Lo < Expr_Value_R (Lo) then
Error_Msg_NE
("declared low bound of type & is outside type range",
Lo, Typ);
end if;
if Orig_Hi > Expr_Value_R (Hi) then
Error_Msg_NE
("declared high bound of type & is outside type range",
Hi, Typ);
end if;
else
if Orig_Lo < Expr_Value_R (Lo) then
Error_Msg_N
("declared low bound of type & is outside type range??", Typ);
Error_Msg_N
("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
end if;
if Orig_Hi > Expr_Value_R (Hi) then
Error_Msg_N
("declared high bound of type & is outside type range??",
Typ);
Error_Msg_N
("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
end if;
end if;
end if;
end Freeze_Fixed_Point_Type;
------------------
-- Freeze_Itype --
------------------
procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
L : List_Id;
begin
Set_Has_Delayed_Freeze (T);
L := Freeze_Entity (T, N);
if Is_Non_Empty_List (L) then
Insert_Actions (N, L);
end if;
end Freeze_Itype;
--------------------------
-- Freeze_Static_Object --
--------------------------
procedure Freeze_Static_Object (E : Entity_Id) is
Cannot_Be_Static : exception;
-- Exception raised if the type of a static object cannot be made
-- static. This happens if the type depends on non-global objects.
procedure Ensure_Expression_Is_SA (N : Node_Id);
-- Called to ensure that an expression used as part of a type definition
-- is statically allocatable, which means that the expression type is
-- statically allocatable, and the expression is either static, or a
-- reference to a library level constant.
procedure Ensure_Type_Is_SA (Typ : Entity_Id);
-- Called to mark a type as static, checking that it is possible
-- to set the type as static. If it is not possible, then the
-- exception Cannot_Be_Static is raised.
-----------------------------
-- Ensure_Expression_Is_SA --
-----------------------------
procedure Ensure_Expression_Is_SA (N : Node_Id) is
Ent : Entity_Id;
begin
Ensure_Type_Is_SA (Etype (N));
if Is_OK_Static_Expression (N) then
return;
elsif Nkind (N) = N_Identifier then
Ent := Entity (N);
if Present (Ent)
and then Ekind (Ent) = E_Constant
and then Is_Library_Level_Entity (Ent)
then
return;
end if;
end if;
raise Cannot_Be_Static;
end Ensure_Expression_Is_SA;
-----------------------
-- Ensure_Type_Is_SA --
-----------------------
procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
N : Node_Id;
C : Entity_Id;
begin
-- If type is library level, we are all set
if Is_Library_Level_Entity (Typ) then
return;
end if;
-- We are also OK if the type already marked as statically allocated,
-- which means we processed it before.
if Is_Statically_Allocated (Typ) then
return;
end if;
-- Mark type as statically allocated
Set_Is_Statically_Allocated (Typ);
-- Check that it is safe to statically allocate this type
if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
Ensure_Expression_Is_SA (Type_High_Bound (Typ));
elsif Is_Array_Type (Typ) then
N := First_Index (Typ);
while Present (N) loop
Ensure_Type_Is_SA (Etype (N));
Next_Index (N);
end loop;
Ensure_Type_Is_SA (Component_Type (Typ));
elsif Is_Access_Type (Typ) then
if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
declare
F : Entity_Id;
T : constant Entity_Id := Etype (Designated_Type (Typ));
begin
if T /= Standard_Void_Type then
Ensure_Type_Is_SA (T);
end if;
F := First_Formal (Designated_Type (Typ));
while Present (F) loop
Ensure_Type_Is_SA (Etype (F));
Next_Formal (F);
end loop;
end;
else
Ensure_Type_Is_SA (Designated_Type (Typ));
end if;
elsif Is_Record_Type (Typ) then
C := First_Entity (Typ);
while Present (C) loop
if Ekind (C) = E_Discriminant
or else Ekind (C) = E_Component
then
Ensure_Type_Is_SA (Etype (C));
elsif Is_Type (C) then
Ensure_Type_Is_SA (C);
end if;
Next_Entity (C);
end loop;
elsif Ekind (Typ) = E_Subprogram_Type then
Ensure_Type_Is_SA (Etype (Typ));
C := First_Formal (Typ);
while Present (C) loop
Ensure_Type_Is_SA (Etype (C));
Next_Formal (C);
end loop;
else
raise Cannot_Be_Static;
end if;
end Ensure_Type_Is_SA;
-- Start of processing for Freeze_Static_Object
begin
Ensure_Type_Is_SA (Etype (E));
exception
when Cannot_Be_Static =>
-- If the object that cannot be static is imported or exported, then
-- issue an error message saying that this object cannot be imported
-- or exported. If it has an address clause it is an overlay in the
-- current partition and the static requirement is not relevant.
-- Do not issue any error message when ignoring rep clauses.
if Ignore_Rep_Clauses then
null;
elsif Is_Imported (E) then
if No (Address_Clause (E)) then
Error_Msg_N
("& cannot be imported (local type is not constant)", E);
end if;
-- Otherwise must be exported, something is wrong if compiler
-- is marking something as statically allocated which cannot be).
else pragma Assert (Is_Exported (E));
Error_Msg_N
("& cannot be exported (local type is not constant)", E);
end if;
end Freeze_Static_Object;
-----------------------
-- Freeze_Subprogram --
-----------------------
procedure Freeze_Subprogram (E : Entity_Id) is
procedure Set_Profile_Convention (Subp_Id : Entity_Id);
-- Set the conventions of all anonymous access-to-subprogram formals and
-- result subtype of subprogram Subp_Id to the convention of Subp_Id.
----------------------------
-- Set_Profile_Convention --
----------------------------
procedure Set_Profile_Convention (Subp_Id : Entity_Id) is
Conv : constant Convention_Id := Convention (Subp_Id);
procedure Set_Type_Convention (Typ : Entity_Id);
-- Set the convention of anonymous access-to-subprogram type Typ and
-- its designated type to Conv.
-------------------------
-- Set_Type_Convention --
-------------------------
procedure Set_Type_Convention (Typ : Entity_Id) is
begin
-- Set the convention on both the anonymous access-to-subprogram
-- type and the subprogram type it points to because both types
-- participate in conformance-related checks.
if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
Set_Convention (Typ, Conv);
Set_Convention (Designated_Type (Typ), Conv);
end if;
end Set_Type_Convention;
-- Local variables
Formal : Entity_Id;
-- Start of processing for Set_Profile_Convention
begin
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
Set_Type_Convention (Etype (Formal));
Next_Formal (Formal);
end loop;
if Ekind (Subp_Id) = E_Function then
Set_Type_Convention (Etype (Subp_Id));
end if;
end Set_Profile_Convention;
-- Local variables
F : Entity_Id;
Retype : Entity_Id;
-- Start of processing for Freeze_Subprogram
begin
-- Subprogram may not have an address clause unless it is imported
if Present (Address_Clause (E)) then
if not Is_Imported (E) then
Error_Msg_N
("address clause can only be given for imported subprogram",
Name (Address_Clause (E)));
end if;
end if;
-- Reset the Pure indication on an imported subprogram unless an
-- explicit Pure_Function pragma was present or the subprogram is an
-- intrinsic. We do this because otherwise it is an insidious error
-- to call a non-pure function from pure unit and have calls
-- mysteriously optimized away. What happens here is that the Import
-- can bypass the normal check to ensure that pure units call only pure
-- subprograms.
-- The reason for the intrinsic exception is that in general, intrinsic
-- functions (such as shifts) are pure anyway. The only exceptions are
-- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
-- in any case, so no problem arises.
if Is_Imported (E)
and then Is_Pure (E)
and then not Has_Pragma_Pure_Function (E)
and then not Is_Intrinsic_Subprogram (E)
then
Set_Is_Pure (E, False);
end if;
-- We also reset the Pure indication on a subprogram with an Address
-- parameter, because the parameter may be used as a pointer and the
-- referenced data may change even if the address value does not.
-- Note that if the programmer gave an explicit Pure_Function pragma,
-- then we believe the programmer, and leave the subprogram Pure. We
-- also suppress this check on run-time files.
if Is_Pure (E)
and then Is_Subprogram (E)
and then not Has_Pragma_Pure_Function (E)
and then not Is_Internal_Unit (Current_Sem_Unit)
then
Check_Function_With_Address_Parameter (E);
end if;
-- Ensure that all anonymous access-to-subprogram types inherit the
-- convention of their related subprogram (RM 6.3.1 13.1/3). This is
-- not done for a defaulted convention Ada because those types also
-- default to Ada. Convention Protected must not be propagated when
-- the subprogram is an entry because this would be illegal. The only
-- way to force convention Protected on these kinds of types is to
-- include keyword "protected" in the access definition.
if Convention (E) /= Convention_Ada
and then Convention (E) /= Convention_Protected
then
Set_Profile_Convention (E);
end if;
-- For non-foreign convention subprograms, this is where we create
-- the extra formals (for accessibility level and constrained bit
-- information). We delay this till the freeze point precisely so
-- that we know the convention.
if not Has_Foreign_Convention (E) then
if No (Extra_Formals (E)) then
Create_Extra_Formals (E);
end if;
Set_Mechanisms (E);
-- If this is convention Ada and a Valued_Procedure, that's odd
if Ekind (E) = E_Procedure
and then Is_Valued_Procedure (E)
and then Convention (E) = Convention_Ada
and then Warn_On_Export_Import
then
Error_Msg_N
("??Valued_Procedure has no effect for convention Ada", E);
Set_Is_Valued_Procedure (E, False);
end if;
-- Case of foreign convention
else
Set_Mechanisms (E);
-- For foreign conventions, warn about return of unconstrained array
if Ekind (E) = E_Function then
Retype := Underlying_Type (Etype (E));
-- If no return type, probably some other error, e.g. a
-- missing full declaration, so ignore.
if No (Retype) then
null;
-- If the return type is generic, we have emitted a warning
-- earlier on, and there is nothing else to check here. Specific
-- instantiations may lead to erroneous behavior.
elsif Is_Generic_Type (Etype (E)) then
null;
-- Display warning if returning unconstrained array
elsif Is_Array_Type (Retype)
and then not Is_Constrained (Retype)
-- Check appropriate warning is enabled (should we check for
-- Warnings (Off) on specific entities here, probably so???)
and then Warn_On_Export_Import
then
Error_Msg_N
("?x?foreign convention function& should not return " &
"unconstrained array", E);
return;
end if;
end if;
-- If any of the formals for an exported foreign convention
-- subprogram have defaults, then emit an appropriate warning since
-- this is odd (default cannot be used from non-Ada code)
if Is_Exported (E) then
F := First_Formal (E);
while Present (F) loop
if Warn_On_Export_Import
and then Present (Default_Value (F))
then
Error_Msg_N
("?x?parameter cannot be defaulted in non-Ada call",
Default_Value (F));
end if;
Next_Formal (F);
end loop;
end if;
end if;
-- Pragma Inline_Always is disallowed for dispatching subprograms
-- because the address of such subprograms is saved in the dispatch
-- table to support dispatching calls, and dispatching calls cannot
-- be inlined. This is consistent with the restriction against using
-- 'Access or 'Address on an Inline_Always subprogram.
if Is_Dispatching_Operation (E)
and then Has_Pragma_Inline_Always (E)
then
Error_Msg_N
("pragma Inline_Always not allowed for dispatching subprograms", E);
end if;
-- Because of the implicit representation of inherited predefined
-- operators in the front-end, the overriding status of the operation
-- may be affected when a full view of a type is analyzed, and this is
-- not captured by the analysis of the corresponding type declaration.
-- Therefore the correctness of a not-overriding indicator must be
-- rechecked when the subprogram is frozen.
if Nkind (E) = N_Defining_Operator_Symbol
and then not Error_Posted (Parent (E))
then
Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
end if;
if Modify_Tree_For_C
and then Nkind (Parent (E)) = N_Function_Specification
and then Is_Array_Type (Etype (E))
and then Is_Constrained (Etype (E))
and then not Is_Unchecked_Conversion_Instance (E)
and then not Rewritten_For_C (E)
then
Build_Procedure_Form (Unit_Declaration_Node (E));
end if;
end Freeze_Subprogram;
----------------------
-- Is_Fully_Defined --
----------------------
function Is_Fully_Defined (T : Entity_Id) return Boolean is
begin
if Ekind (T) = E_Class_Wide_Type then
return Is_Fully_Defined (Etype (T));
elsif Is_Array_Type (T) then
return Is_Fully_Defined (Component_Type (T));
elsif Is_Record_Type (T)
and not Is_Private_Type (T)
then
-- Verify that the record type has no components with private types
-- without completion.
declare
Comp : Entity_Id;
begin
Comp := First_Component (T);
while Present (Comp) loop
if not Is_Fully_Defined (Etype (Comp)) then
return False;
end if;
Next_Component (Comp);
end loop;
return True;
end;
-- For the designated type of an access to subprogram, all types in
-- the profile must be fully defined.
elsif Ekind (T) = E_Subprogram_Type then
declare
F : Entity_Id;
begin
F := First_Formal (T);
while Present (F) loop
if not Is_Fully_Defined (Etype (F)) then
return False;
end if;
Next_Formal (F);
end loop;
return Is_Fully_Defined (Etype (T));
end;
else
return not Is_Private_Type (T)
or else Present (Full_View (Base_Type (T)));
end if;
end Is_Fully_Defined;
---------------------------------
-- Process_Default_Expressions --
---------------------------------
procedure Process_Default_Expressions
(E : Entity_Id;
After : in out Node_Id)
is
Loc : constant Source_Ptr := Sloc (E);
Dbody : Node_Id;
Formal : Node_Id;
Dcopy : Node_Id;
Dnam : Entity_Id;
begin
Set_Default_Expressions_Processed (E);
-- A subprogram instance and its associated anonymous subprogram share
-- their signature. The default expression functions are defined in the
-- wrapper packages for the anonymous subprogram, and should not be
-- generated again for the instance.
if Is_Generic_Instance (E)
and then Present (Alias (E))
and then Default_Expressions_Processed (Alias (E))
then
return;
end if;
Formal := First_Formal (E);
while Present (Formal) loop
if Present (Default_Value (Formal)) then
-- We work with a copy of the default expression because we
-- do not want to disturb the original, since this would mess
-- up the conformance checking.
Dcopy := New_Copy_Tree (Default_Value (Formal));
-- The analysis of the expression may generate insert actions,
-- which of course must not be executed. We wrap those actions
-- in a procedure that is not called, and later on eliminated.
-- The following cases have no side effects, and are analyzed
-- directly.
if Nkind (Dcopy) = N_Identifier
or else Nkind_In (Dcopy, N_Expanded_Name,
N_Integer_Literal,
N_Character_Literal,
N_String_Literal,
N_Real_Literal)
or else (Nkind (Dcopy) = N_Attribute_Reference
and then Attribute_Name (Dcopy) = Name_Null_Parameter)
or else Known_Null (Dcopy)
then
-- If there is no default function, we must still do a full
-- analyze call on the default value, to ensure that all error
-- checks are performed, e.g. those associated with static
-- evaluation. Note: this branch will always be taken if the
-- analyzer is turned off (but we still need the error checks).
-- Note: the setting of parent here is to meet the requirement
-- that we can only analyze the expression while attached to
-- the tree. Really the requirement is that the parent chain
-- be set, we don't actually need to be in the tree.
Set_Parent (Dcopy, Declaration_Node (Formal));
Analyze (Dcopy);
-- Default expressions are resolved with their own type if the
-- context is generic, to avoid anomalies with private types.
if Ekind (Scope (E)) = E_Generic_Package then
Resolve (Dcopy);
else
Resolve (Dcopy, Etype (Formal));
end if;
-- If that resolved expression will raise constraint error,
-- then flag the default value as raising constraint error.
-- This allows a proper error message on the calls.
if Raises_Constraint_Error (Dcopy) then
Set_Raises_Constraint_Error (Default_Value (Formal));
end if;
-- If the default is a parameterless call, we use the name of
-- the called function directly, and there is no body to build.
elsif Nkind (Dcopy) = N_Function_Call
and then No (Parameter_Associations (Dcopy))
then
null;
-- Else construct and analyze the body of a wrapper procedure
-- that contains an object declaration to hold the expression.
-- Given that this is done only to complete the analysis, it is
-- simpler to build a procedure than a function which might
-- involve secondary stack expansion.
else
Dnam := Make_Temporary (Loc, 'D');
Dbody :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Dnam),
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'T'),
Object_Definition =>
New_Occurrence_Of (Etype (Formal), Loc),
Expression => New_Copy_Tree (Dcopy))),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Empty_List));
Set_Scope (Dnam, Scope (E));
Set_Assignment_OK (First (Declarations (Dbody)));
Set_Is_Eliminated (Dnam);
Insert_After (After, Dbody);
Analyze (Dbody);
After := Dbody;
end if;
end if;
Next_Formal (Formal);
end loop;
end Process_Default_Expressions;
----------------------------------------
-- Set_Component_Alignment_If_Not_Set --
----------------------------------------
procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
begin
-- Ignore if not base type, subtypes don't need anything
if Typ /= Base_Type (Typ) then
return;
end if;
-- Do not override existing representation
if Is_Packed (Typ) then
return;
elsif Has_Specified_Layout (Typ) then
return;
elsif Component_Alignment (Typ) /= Calign_Default then
return;
else
Set_Component_Alignment
(Typ, Scope_Stack.Table
(Scope_Stack.Last).Component_Alignment_Default);
end if;
end Set_Component_Alignment_If_Not_Set;
--------------------------
-- Set_SSO_From_Default --
--------------------------
procedure Set_SSO_From_Default (T : Entity_Id) is
Reversed : Boolean;
begin
-- Set default SSO for an array or record base type, except in case of
-- a type extension (which always inherits the SSO of its parent type).
if Is_Base_Type (T)
and then (Is_Array_Type (T)
or else (Is_Record_Type (T)
and then not (Is_Tagged_Type (T)
and then Is_Derived_Type (T))))
then
Reversed :=
(Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
or else
(not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
-- For a record type, if bit order is specified explicitly,
-- then do not set SSO from default if not consistent. Note that
-- we do not want to look at a Bit_Order attribute definition
-- for a parent: if we were to inherit Bit_Order, then both
-- SSO_Set_*_By_Default flags would have been cleared already
-- (by Inherit_Aspects_At_Freeze_Point).
and then not
(Is_Record_Type (T)
and then
Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
and then Reverse_Bit_Order (T) /= Reversed)
then
-- If flags cause reverse storage order, then set the result. Note
-- that we would have ignored the pragma setting the non default
-- storage order in any case, hence the assertion at this point.
pragma Assert
(not Reversed or else Support_Nondefault_SSO_On_Target);
Set_Reverse_Storage_Order (T, Reversed);
-- For a record type, also set reversed bit order. Note: if a bit
-- order has been specified explicitly, then this is a no-op.
if Is_Record_Type (T) then
Set_Reverse_Bit_Order (T, Reversed);
end if;
end if;
end if;
end Set_SSO_From_Default;
------------------
-- Undelay_Type --
------------------
procedure Undelay_Type (T : Entity_Id) is
begin
Set_Has_Delayed_Freeze (T, False);
Set_Freeze_Node (T, Empty);
-- Since we don't want T to have a Freeze_Node, we don't want its
-- Full_View or Corresponding_Record_Type to have one either.
-- ??? Fundamentally, this whole handling is unpleasant. What we really
-- want is to be sure that for an Itype that's part of record R and is a
-- subtype of type T, that it's frozen after the later of the freeze
-- points of R and T. We have no way of doing that directly, so what we
-- do is force most such Itypes to be frozen as part of freezing R via
-- this procedure and only delay the ones that need to be delayed
-- (mostly the designated types of access types that are defined as part
-- of the record).
if Is_Private_Type (T)
and then Present (Full_View (T))
and then Is_Itype (Full_View (T))
and then Is_Record_Type (Scope (Full_View (T)))
then
Undelay_Type (Full_View (T));
end if;
if Is_Concurrent_Type (T)
and then Present (Corresponding_Record_Type (T))
and then Is_Itype (Corresponding_Record_Type (T))
and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
then
Undelay_Type (Corresponding_Record_Type (T));
end if;
end Undelay_Type;
------------------
-- Warn_Overlay --
------------------
procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Entity_Id) is
Ent : constant Entity_Id := Entity (Nam);
-- The object to which the address clause applies
Init : Node_Id;
Old : Entity_Id := Empty;
Decl : Node_Id;
begin
-- No warning if address clause overlay warnings are off
if not Address_Clause_Overlay_Warnings then
return;
end if;
-- No warning if there is an explicit initialization
Init := Original_Node (Expression (Declaration_Node (Ent)));
if Present (Init) and then Comes_From_Source (Init) then
return;
end if;
-- We only give the warning for non-imported entities of a type for
-- which a non-null base init proc is defined, or for objects of access
-- types with implicit null initialization, or when Normalize_Scalars
-- applies and the type is scalar or a string type (the latter being
-- tested for because predefined String types are initialized by inline
-- code rather than by an init_proc). Note that we do not give the
-- warning for Initialize_Scalars, since we suppressed initialization
-- in this case. Also, do not warn if Suppress_Initialization is set
-- either on the type, or on the object via pragma or aspect.
if Present (Expr)
and then not Is_Imported (Ent)
and then not Initialization_Suppressed (Typ)
and then not (Ekind (Ent) = E_Variable
and then Initialization_Suppressed (Ent))
and then (Has_Non_Null_Base_Init_Proc (Typ)
or else Is_Access_Type (Typ)
or else (Normalize_Scalars
and then (Is_Scalar_Type (Typ)
or else Is_String_Type (Typ))))
then
if Nkind (Expr) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (Expr))
then
Old := Entity (Prefix (Expr));
elsif Is_Entity_Name (Expr)
and then Ekind (Entity (Expr)) = E_Constant
then
Decl := Declaration_Node (Entity (Expr));
if Nkind (Decl) = N_Object_Declaration
and then Present (Expression (Decl))
and then Nkind (Expression (Decl)) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (Expression (Decl)))
then
Old := Entity (Prefix (Expression (Decl)));
elsif Nkind (Expr) = N_Function_Call then
return;
end if;
-- A function call (most likely to To_Address) is probably not an
-- overlay, so skip warning. Ditto if the function call was inlined
-- and transformed into an entity.
elsif Nkind (Original_Node (Expr)) = N_Function_Call then
return;
end if;
-- If a pragma Import follows, we assume that it is for the current
-- target of the address clause, and skip the warning. There may be
-- a source pragma or an aspect that specifies import and generates
-- the corresponding pragma. These will indicate that the entity is
-- imported and that is checked above so that the spurious warning
-- (generated when the entity is frozen) will be suppressed. The
-- pragma may be attached to the aspect, so it is not yet a list
-- member.
if Is_List_Member (Parent (Expr)) then
Decl := Next (Parent (Expr));
if Present (Decl)
and then Nkind (Decl) = N_Pragma
and then Pragma_Name (Decl) = Name_Import
then
return;
end if;
end if;
-- Otherwise give warning message
if Present (Old) then
Error_Msg_Node_2 := Old;
Error_Msg_N
("default initialization of & may modify &??",
Nam);
else
Error_Msg_N
("default initialization of & may modify overlaid storage??",
Nam);
end if;
-- Add friendly warning if initialization comes from a packed array
-- component.
if Is_Record_Type (Typ) then
declare
Comp : Entity_Id;
begin
Comp := First_Component (Typ);
while Present (Comp) loop
if Nkind (Parent (Comp)) = N_Component_Declaration
and then Present (Expression (Parent (Comp)))
then
exit;
elsif Is_Array_Type (Etype (Comp))
and then Present (Packed_Array_Impl_Type (Etype (Comp)))
then
Error_Msg_NE
("\packed array component& " &
"will be initialized to zero??",
Nam, Comp);
exit;
else
Next_Component (Comp);
end if;
end loop;
end;
end if;
Error_Msg_N
("\use pragma Import for & to " &
"suppress initialization (RM B.1(24))??",
Nam);
end if;
end Warn_Overlay;
end Freeze;
|