1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ U T I L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Casing; use Casing;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Aggr; use Exp_Aggr;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch11; use Exp_Ch11;
with Ghost; use Ghost;
with Inline; use Inline;
with Itypes; use Itypes;
with Lib; use Lib;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch12; use Sem_Ch12;
with Sem_Ch13; use Sem_Ch13;
with Sem_Disp; use Sem_Disp;
with Sem_Elab; use Sem_Elab;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Urealp; use Urealp;
with Validsw; use Validsw;
with GNAT.HTable;
package body Exp_Util is
---------------------------------------------------------
-- Handling of inherited class-wide pre/postconditions --
---------------------------------------------------------
-- Following AI12-0113, the expression for a class-wide condition is
-- transformed for a subprogram that inherits it, by replacing calls
-- to primitive operations of the original controlling type into the
-- corresponding overriding operations of the derived type. The following
-- hash table manages this mapping, and is expanded on demand whenever
-- such inherited expression needs to be constructed.
-- The mapping is also used to check whether an inherited operation has
-- a condition that depends on overridden operations. For such an
-- operation we must create a wrapper that is then treated as a normal
-- overriding. In SPARK mode such operations are illegal.
-- For a given root type there may be several type extensions with their
-- own overriding operations, so at various times a given operation of
-- the root will be mapped into different overridings. The root type is
-- also mapped into the current type extension to indicate that its
-- operations are mapped into the overriding operations of that current
-- type extension.
-- The contents of the map are as follows:
-- Key Value
-- Discriminant (Entity_Id) Discriminant (Entity_Id)
-- Discriminant (Entity_Id) Non-discriminant name (Entity_Id)
-- Discriminant (Entity_Id) Expression (Node_Id)
-- Primitive subprogram (Entity_Id) Primitive subprogram (Entity_Id)
-- Type (Entity_Id) Type (Entity_Id)
Type_Map_Size : constant := 511;
subtype Type_Map_Header is Integer range 0 .. Type_Map_Size - 1;
function Type_Map_Hash (Id : Entity_Id) return Type_Map_Header;
package Type_Map is new GNAT.HTable.Simple_HTable
(Header_Num => Type_Map_Header,
Key => Entity_Id,
Element => Node_Or_Entity_Id,
No_element => Empty,
Hash => Type_Map_Hash,
Equal => "=");
-----------------------
-- Local Subprograms --
-----------------------
function Build_Task_Array_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
Dyn : Boolean := False) return Node_Id;
-- Build function to generate the image string for a task that is an array
-- component, concatenating the images of each index. To avoid storage
-- leaks, the string is built with successive slice assignments. The flag
-- Dyn indicates whether this is called for the initialization procedure of
-- an array of tasks, or for the name of a dynamically created task that is
-- assigned to an indexed component.
function Build_Task_Image_Function
(Loc : Source_Ptr;
Decls : List_Id;
Stats : List_Id;
Res : Entity_Id) return Node_Id;
-- Common processing for Task_Array_Image and Task_Record_Image. Build
-- function body that computes image.
procedure Build_Task_Image_Prefix
(Loc : Source_Ptr;
Len : out Entity_Id;
Res : out Entity_Id;
Pos : out Entity_Id;
Prefix : Entity_Id;
Sum : Node_Id;
Decls : List_Id;
Stats : List_Id);
-- Common processing for Task_Array_Image and Task_Record_Image. Create
-- local variables and assign prefix of name to result string.
function Build_Task_Record_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Dyn : Boolean := False) return Node_Id;
-- Build function to generate the image string for a task that is a record
-- component. Concatenate name of variable with that of selector. The flag
-- Dyn indicates whether this is called for the initialization procedure of
-- record with task components, or for a dynamically created task that is
-- assigned to a selected component.
procedure Evaluate_Slice_Bounds (Slice : Node_Id);
-- Force evaluation of bounds of a slice, which may be given by a range
-- or by a subtype indication with or without a constraint.
function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean;
-- Determine whether pragma Default_Initial_Condition denoted by Prag has
-- an assertion expression that should be verified at run time.
function Make_CW_Equivalent_Type
(T : Entity_Id;
E : Node_Id) return Entity_Id;
-- T is a class-wide type entity, E is the initial expression node that
-- constrains T in case such as: " X: T := E" or "new T'(E)". This function
-- returns the entity of the Equivalent type and inserts on the fly the
-- necessary declaration such as:
--
-- type anon is record
-- _parent : Root_Type (T); constrained with E discriminants (if any)
-- Extension : String (1 .. expr to match size of E);
-- end record;
--
-- This record is compatible with any object of the class of T thanks to
-- the first field and has the same size as E thanks to the second.
function Make_Literal_Range
(Loc : Source_Ptr;
Literal_Typ : Entity_Id) return Node_Id;
-- Produce a Range node whose bounds are:
-- Low_Bound (Literal_Type) ..
-- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
-- this is used for expanding declarations like X : String := "sdfgdfg";
--
-- If the index type of the target array is not integer, we generate:
-- Low_Bound (Literal_Type) ..
-- Literal_Type'Val
-- (Literal_Type'Pos (Low_Bound (Literal_Type))
-- + (Length (Literal_Typ) -1))
function Make_Non_Empty_Check
(Loc : Source_Ptr;
N : Node_Id) return Node_Id;
-- Produce a boolean expression checking that the unidimensional array
-- node N is not empty.
function New_Class_Wide_Subtype
(CW_Typ : Entity_Id;
N : Node_Id) return Entity_Id;
-- Create an implicit subtype of CW_Typ attached to node N
function Requires_Cleanup_Actions
(L : List_Id;
Lib_Level : Boolean;
Nested_Constructs : Boolean) return Boolean;
-- Given a list L, determine whether it contains one of the following:
--
-- 1) controlled objects
-- 2) library-level tagged types
--
-- Lib_Level is True when the list comes from a construct at the library
-- level, and False otherwise. Nested_Constructs is True when any nested
-- packages declared in L must be processed, and False otherwise.
function Side_Effect_Free_Attribute (Name : Name_Id) return Boolean;
-- Return True if the evaluation of the given attribute is considered
-- side-effect free, independently of its prefix and expressions.
-------------------------------------
-- Activate_Atomic_Synchronization --
-------------------------------------
procedure Activate_Atomic_Synchronization (N : Node_Id) is
Msg_Node : Node_Id;
begin
case Nkind (Parent (N)) is
-- Check for cases of appearing in the prefix of a construct where we
-- don't need atomic synchronization for this kind of usage.
when
-- Nothing to do if we are the prefix of an attribute, since we
-- do not want an atomic sync operation for things like 'Size.
N_Attribute_Reference
-- The N_Reference node is like an attribute
| N_Reference
-- Nothing to do for a reference to a component (or components)
-- of a composite object. Only reads and updates of the object
-- as a whole require atomic synchronization (RM C.6 (15)).
| N_Indexed_Component
| N_Selected_Component
| N_Slice
=>
-- For all the above cases, nothing to do if we are the prefix
if Prefix (Parent (N)) = N then
return;
end if;
when others =>
null;
end case;
-- Nothing to do for the identifier in an object renaming declaration,
-- the renaming itself does not need atomic synchronization.
if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
return;
end if;
-- Go ahead and set the flag
Set_Atomic_Sync_Required (N);
-- Generate info message if requested
if Warn_On_Atomic_Synchronization then
case Nkind (N) is
when N_Identifier =>
Msg_Node := N;
when N_Expanded_Name
| N_Selected_Component
=>
Msg_Node := Selector_Name (N);
when N_Explicit_Dereference
| N_Indexed_Component
=>
Msg_Node := Empty;
when others =>
pragma Assert (False);
return;
end case;
if Present (Msg_Node) then
Error_Msg_N
("info: atomic synchronization set for &?N?", Msg_Node);
else
Error_Msg_N
("info: atomic synchronization set?N?", N);
end if;
end if;
end Activate_Atomic_Synchronization;
----------------------
-- Adjust_Condition --
----------------------
procedure Adjust_Condition (N : Node_Id) is
begin
if No (N) then
return;
end if;
declare
Loc : constant Source_Ptr := Sloc (N);
T : constant Entity_Id := Etype (N);
begin
-- Defend against a call where the argument has no type, or has a
-- type that is not Boolean. This can occur because of prior errors.
if No (T) or else not Is_Boolean_Type (T) then
return;
end if;
-- Apply validity checking if needed
if Validity_Checks_On and Validity_Check_Tests then
Ensure_Valid (N);
end if;
-- Immediate return if standard boolean, the most common case,
-- where nothing needs to be done.
if Base_Type (T) = Standard_Boolean then
return;
end if;
-- Case of zero/nonzero semantics or nonstandard enumeration
-- representation. In each case, we rewrite the node as:
-- ityp!(N) /= False'Enum_Rep
-- where ityp is an integer type with large enough size to hold any
-- value of type T.
if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
Rewrite (N,
Make_Op_Ne (Loc,
Left_Opnd =>
Unchecked_Convert_To
(Integer_Type_For (Esize (T), Uns => False), N),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Enum_Rep,
Prefix =>
New_Occurrence_Of (First_Literal (T), Loc))));
Analyze_And_Resolve (N, Standard_Boolean);
else
Rewrite (N, Convert_To (Standard_Boolean, N));
Analyze_And_Resolve (N, Standard_Boolean);
end if;
end;
end Adjust_Condition;
------------------------
-- Adjust_Result_Type --
------------------------
procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
begin
-- Ignore call if current type is not Standard.Boolean
if Etype (N) /= Standard_Boolean then
return;
end if;
-- If result is already of correct type, nothing to do. Note that
-- this will get the most common case where everything has a type
-- of Standard.Boolean.
if Base_Type (T) = Standard_Boolean then
return;
else
declare
KP : constant Node_Kind := Nkind (Parent (N));
begin
-- If result is to be used as a Condition in the syntax, no need
-- to convert it back, since if it was changed to Standard.Boolean
-- using Adjust_Condition, that is just fine for this usage.
if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
return;
-- If result is an operand of another logical operation, no need
-- to reset its type, since Standard.Boolean is just fine, and
-- such operations always do Adjust_Condition on their operands.
elsif KP in N_Op_Boolean
or else KP in N_Short_Circuit
or else KP = N_Op_Not
then
return;
-- Otherwise we perform a conversion from the current type, which
-- must be Standard.Boolean, to the desired type. Use the base
-- type to prevent spurious constraint checks that are extraneous
-- to the transformation. The type and its base have the same
-- representation, standard or otherwise.
else
Set_Analyzed (N);
Rewrite (N, Convert_To (Base_Type (T), N));
Analyze_And_Resolve (N, Base_Type (T));
end if;
end;
end if;
end Adjust_Result_Type;
--------------------------
-- Append_Freeze_Action --
--------------------------
procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
Fnode : Node_Id;
begin
Ensure_Freeze_Node (T);
Fnode := Freeze_Node (T);
if No (Actions (Fnode)) then
Set_Actions (Fnode, New_List (N));
else
Append (N, Actions (Fnode));
end if;
end Append_Freeze_Action;
---------------------------
-- Append_Freeze_Actions --
---------------------------
procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
Fnode : Node_Id;
begin
if No (L) then
return;
end if;
Ensure_Freeze_Node (T);
Fnode := Freeze_Node (T);
if No (Actions (Fnode)) then
Set_Actions (Fnode, L);
else
Append_List (L, Actions (Fnode));
end if;
end Append_Freeze_Actions;
--------------------------------------
-- Attr_Constrained_Statically_True --
--------------------------------------
function Attribute_Constrained_Static_Value (Pref : Node_Id) return Boolean
is
Ptyp : constant Entity_Id := Etype (Pref);
Formal_Ent : constant Entity_Id := Param_Entity (Pref);
function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean;
-- Ada 2005 (AI-363): Returns True if the object name Obj denotes a
-- view of an aliased object whose subtype is constrained.
---------------------------------
-- Is_Constrained_Aliased_View --
---------------------------------
function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean is
E : Entity_Id;
begin
if Is_Entity_Name (Obj) then
E := Entity (Obj);
if Present (Renamed_Object (E)) then
return Is_Constrained_Aliased_View (Renamed_Object (E));
else
return Is_Aliased (E) and then Is_Constrained (Etype (E));
end if;
else
return Is_Aliased_View (Obj)
and then
(Is_Constrained (Etype (Obj))
or else
(Nkind (Obj) = N_Explicit_Dereference
and then
not Object_Type_Has_Constrained_Partial_View
(Typ => Base_Type (Etype (Obj)),
Scop => Current_Scope)));
end if;
end Is_Constrained_Aliased_View;
-- Start of processing for Attribute_Constrained_Static_Value
begin
-- We are in a case where the attribute is known statically, and
-- implicit dereferences have been rewritten.
pragma Assert
(not (Present (Formal_Ent)
and then Ekind (Formal_Ent) /= E_Constant
and then Present (Extra_Constrained (Formal_Ent)))
and then
not (Is_Access_Type (Etype (Pref))
and then (not Is_Entity_Name (Pref)
or else Is_Object (Entity (Pref))))
and then
not (Nkind (Pref) = N_Identifier
and then Ekind (Entity (Pref)) = E_Variable
and then Present (Extra_Constrained (Entity (Pref)))));
if Is_Entity_Name (Pref) then
declare
Ent : constant Entity_Id := Entity (Pref);
Res : Boolean;
begin
-- (RM J.4) obsolescent cases
if Is_Type (Ent) then
-- Private type
if Is_Private_Type (Ent) then
Res := not Has_Discriminants (Ent)
or else Is_Constrained (Ent);
-- It not a private type, must be a generic actual type
-- that corresponded to a private type. We know that this
-- correspondence holds, since otherwise the reference
-- within the generic template would have been illegal.
else
if Is_Composite_Type (Underlying_Type (Ent)) then
Res := Is_Constrained (Ent);
else
Res := True;
end if;
end if;
else
-- If the prefix is not a variable or is aliased, then
-- definitely true; if it's a formal parameter without an
-- associated extra formal, then treat it as constrained.
-- Ada 2005 (AI-363): An aliased prefix must be known to be
-- constrained in order to set the attribute to True.
if not Is_Variable (Pref)
or else Present (Formal_Ent)
or else (Ada_Version < Ada_2005
and then Is_Aliased_View (Pref))
or else (Ada_Version >= Ada_2005
and then Is_Constrained_Aliased_View (Pref))
then
Res := True;
-- Variable case, look at type to see if it is constrained.
-- Note that the one case where this is not accurate (the
-- procedure formal case), has been handled above.
-- We use the Underlying_Type here (and below) in case the
-- type is private without discriminants, but the full type
-- has discriminants. This case is illegal, but we generate
-- it internally for passing to the Extra_Constrained
-- parameter.
else
-- In Ada 2012, test for case of a limited tagged type,
-- in which case the attribute is always required to
-- return True. The underlying type is tested, to make
-- sure we also return True for cases where there is an
-- unconstrained object with an untagged limited partial
-- view which has defaulted discriminants (such objects
-- always produce a False in earlier versions of
-- Ada). (Ada 2012: AI05-0214)
Res :=
Is_Constrained (Underlying_Type (Etype (Ent)))
or else
(Ada_Version >= Ada_2012
and then Is_Tagged_Type (Underlying_Type (Ptyp))
and then Is_Limited_Type (Ptyp));
end if;
end if;
return Res;
end;
-- Prefix is not an entity name. These are also cases where we can
-- always tell at compile time by looking at the form and type of the
-- prefix. If an explicit dereference of an object with constrained
-- partial view, this is unconstrained (Ada 2005: AI95-0363). If the
-- underlying type is a limited tagged type, then Constrained is
-- required to always return True (Ada 2012: AI05-0214).
else
return not Is_Variable (Pref)
or else
(Nkind (Pref) = N_Explicit_Dereference
and then
not Object_Type_Has_Constrained_Partial_View
(Typ => Base_Type (Ptyp),
Scop => Current_Scope))
or else Is_Constrained (Underlying_Type (Ptyp))
or else (Ada_Version >= Ada_2012
and then Is_Tagged_Type (Underlying_Type (Ptyp))
and then Is_Limited_Type (Ptyp));
end if;
end Attribute_Constrained_Static_Value;
------------------------------------
-- Build_Allocate_Deallocate_Proc --
------------------------------------
procedure Build_Allocate_Deallocate_Proc
(N : Node_Id;
Is_Allocate : Boolean)
is
function Find_Object (E : Node_Id) return Node_Id;
-- Given an arbitrary expression of an allocator, try to find an object
-- reference in it, otherwise return the original expression.
function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean;
-- Determine whether subprogram Subp denotes a custom allocate or
-- deallocate.
-----------------
-- Find_Object --
-----------------
function Find_Object (E : Node_Id) return Node_Id is
Expr : Node_Id;
begin
pragma Assert (Is_Allocate);
Expr := E;
loop
if Nkind (Expr) = N_Explicit_Dereference then
Expr := Prefix (Expr);
elsif Nkind (Expr) = N_Qualified_Expression then
Expr := Expression (Expr);
elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
-- When interface class-wide types are involved in allocation,
-- the expander introduces several levels of address arithmetic
-- to perform dispatch table displacement. In this scenario the
-- object appears as:
-- Tag_Ptr (Base_Address (<object>'Address))
-- Detect this case and utilize the whole expression as the
-- "object" since it now points to the proper dispatch table.
if Is_RTE (Etype (Expr), RE_Tag_Ptr) then
exit;
-- Continue to strip the object
else
Expr := Expression (Expr);
end if;
else
exit;
end if;
end loop;
return Expr;
end Find_Object;
---------------------------------
-- Is_Allocate_Deallocate_Proc --
---------------------------------
function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is
begin
-- Look for a subprogram body with only one statement which is a
-- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
if Ekind (Subp) = E_Procedure
and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body
then
declare
HSS : constant Node_Id :=
Handled_Statement_Sequence (Parent (Parent (Subp)));
Proc : Entity_Id;
begin
if Present (Statements (HSS))
and then Nkind (First (Statements (HSS))) =
N_Procedure_Call_Statement
then
Proc := Entity (Name (First (Statements (HSS))));
return
Is_RTE (Proc, RE_Allocate_Any_Controlled)
or else Is_RTE (Proc, RE_Deallocate_Any_Controlled);
end if;
end;
end if;
return False;
end Is_Allocate_Deallocate_Proc;
-- Local variables
Desig_Typ : Entity_Id;
Expr : Node_Id;
Needs_Fin : Boolean;
Pool_Id : Entity_Id;
Proc_To_Call : Node_Id := Empty;
Ptr_Typ : Entity_Id;
Use_Secondary_Stack_Pool : Boolean;
-- Start of processing for Build_Allocate_Deallocate_Proc
begin
-- Obtain the attributes of the allocation / deallocation
if Nkind (N) = N_Free_Statement then
Expr := Expression (N);
Ptr_Typ := Base_Type (Etype (Expr));
Proc_To_Call := Procedure_To_Call (N);
else
if Nkind (N) = N_Object_Declaration then
Expr := Expression (N);
else
Expr := N;
end if;
-- In certain cases an allocator with a qualified expression may
-- be relocated and used as the initialization expression of a
-- temporary:
-- before:
-- Obj : Ptr_Typ := new Desig_Typ'(...);
-- after:
-- Tmp : Ptr_Typ := new Desig_Typ'(...);
-- Obj : Ptr_Typ := Tmp;
-- Since the allocator is always marked as analyzed to avoid infinite
-- expansion, it will never be processed by this routine given that
-- the designated type needs finalization actions. Detect this case
-- and complete the expansion of the allocator.
if Nkind (Expr) = N_Identifier
and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator
then
Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True);
return;
end if;
-- The allocator may have been rewritten into something else in which
-- case the expansion performed by this routine does not apply.
if Nkind (Expr) /= N_Allocator then
return;
end if;
Ptr_Typ := Base_Type (Etype (Expr));
Proc_To_Call := Procedure_To_Call (Expr);
end if;
Pool_Id := Associated_Storage_Pool (Ptr_Typ);
Desig_Typ := Available_View (Designated_Type (Ptr_Typ));
-- Handle concurrent types
if Is_Concurrent_Type (Desig_Typ)
and then Present (Corresponding_Record_Type (Desig_Typ))
then
Desig_Typ := Corresponding_Record_Type (Desig_Typ);
end if;
Use_Secondary_Stack_Pool :=
Is_RTE (Pool_Id, RE_SS_Pool)
or else (Nkind (Expr) = N_Allocator
and then Is_RTE (Storage_Pool (Expr), RE_SS_Pool));
-- Do not process allocations / deallocations without a pool
if No (Pool_Id) then
return;
-- Do not process allocations on / deallocations from the secondary
-- stack, except for access types used to implement indirect temps.
elsif Use_Secondary_Stack_Pool
and then not Old_Attr_Util.Indirect_Temps
.Is_Access_Type_For_Indirect_Temp (Ptr_Typ)
then
return;
-- Optimize the case where we are using the default Global_Pool_Object,
-- and we don't need the heavy finalization machinery.
elsif Pool_Id = RTE (RE_Global_Pool_Object)
and then not Needs_Finalization (Desig_Typ)
then
return;
-- Do not replicate the machinery if the allocator / free has already
-- been expanded and has a custom Allocate / Deallocate.
elsif Present (Proc_To_Call)
and then Is_Allocate_Deallocate_Proc (Proc_To_Call)
then
return;
end if;
-- Finalization actions are required when the object to be allocated or
-- deallocated needs these actions and the associated access type is not
-- subject to pragma No_Heap_Finalization.
Needs_Fin :=
Needs_Finalization (Desig_Typ)
and then not No_Heap_Finalization (Ptr_Typ);
if Needs_Fin then
-- Do nothing if the access type may never allocate / deallocate
-- objects.
if No_Pool_Assigned (Ptr_Typ) then
return;
end if;
-- The allocation / deallocation of a controlled object must be
-- chained on / detached from a finalization master.
pragma Assert (Present (Finalization_Master (Ptr_Typ)));
-- The only other kind of allocation / deallocation supported by this
-- routine is on / from a subpool.
elsif Nkind (Expr) = N_Allocator
and then No (Subpool_Handle_Name (Expr))
then
return;
end if;
declare
Loc : constant Source_Ptr := Sloc (N);
Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L');
Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P');
Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
Actuals : List_Id;
Fin_Addr_Id : Entity_Id;
Fin_Mas_Act : Node_Id;
Fin_Mas_Id : Entity_Id;
Proc_To_Call : Entity_Id;
Subpool : Node_Id := Empty;
begin
-- Step 1: Construct all the actuals for the call to library routine
-- Allocate_Any_Controlled / Deallocate_Any_Controlled.
-- a) Storage pool
Actuals := New_List (New_Occurrence_Of (Pool_Id, Loc));
if Is_Allocate then
-- b) Subpool
if Nkind (Expr) = N_Allocator then
Subpool := Subpool_Handle_Name (Expr);
end if;
-- If a subpool is present it can be an arbitrary name, so make
-- the actual by copying the tree.
if Present (Subpool) then
Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc));
else
Append_To (Actuals, Make_Null (Loc));
end if;
-- c) Finalization master
if Needs_Fin then
Fin_Mas_Id := Finalization_Master (Ptr_Typ);
Fin_Mas_Act := New_Occurrence_Of (Fin_Mas_Id, Loc);
-- Handle the case where the master is actually a pointer to a
-- master. This case arises in build-in-place functions.
if Is_Access_Type (Etype (Fin_Mas_Id)) then
Append_To (Actuals, Fin_Mas_Act);
else
Append_To (Actuals,
Make_Attribute_Reference (Loc,
Prefix => Fin_Mas_Act,
Attribute_Name => Name_Unrestricted_Access));
end if;
else
Append_To (Actuals, Make_Null (Loc));
end if;
-- d) Finalize_Address
-- Primitive Finalize_Address is never generated in CodePeer mode
-- since it contains an Unchecked_Conversion.
if Needs_Fin and then not CodePeer_Mode then
Fin_Addr_Id := Finalize_Address (Desig_Typ);
pragma Assert (Present (Fin_Addr_Id));
Append_To (Actuals,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Fin_Addr_Id, Loc),
Attribute_Name => Name_Unrestricted_Access));
else
Append_To (Actuals, Make_Null (Loc));
end if;
end if;
-- e) Address
-- f) Storage_Size
-- g) Alignment
Append_To (Actuals, New_Occurrence_Of (Addr_Id, Loc));
Append_To (Actuals, New_Occurrence_Of (Size_Id, Loc));
if (Is_Allocate or else not Is_Class_Wide_Type (Desig_Typ))
and then not Use_Secondary_Stack_Pool
then
Append_To (Actuals, New_Occurrence_Of (Alig_Id, Loc));
-- For deallocation of class-wide types we obtain the value of
-- alignment from the Type Specific Record of the deallocated object.
-- This is needed because the frontend expansion of class-wide types
-- into equivalent types confuses the back end.
else
-- Generate:
-- Obj.all'Alignment
-- ... because 'Alignment applied to class-wide types is expanded
-- into the code that reads the value of alignment from the TSD
-- (see Expand_N_Attribute_Reference)
-- In the Use_Secondary_Stack_Pool case, Alig_Id is not
-- passed in and therefore must not be referenced.
Append_To (Actuals,
Unchecked_Convert_To (RTE (RE_Storage_Offset),
Make_Attribute_Reference (Loc,
Prefix =>
Make_Explicit_Dereference (Loc, Relocate_Node (Expr)),
Attribute_Name => Name_Alignment)));
end if;
-- h) Is_Controlled
if Needs_Fin then
Is_Controlled : declare
Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F');
Flag_Expr : Node_Id;
Param : Node_Id;
Pref : Node_Id;
Temp : Node_Id;
begin
if Is_Allocate then
Temp := Find_Object (Expression (Expr));
else
Temp := Expr;
end if;
-- Processing for allocations where the expression is a subtype
-- indication.
if Is_Allocate
and then Is_Entity_Name (Temp)
and then Is_Type (Entity (Temp))
then
Flag_Expr :=
New_Occurrence_Of
(Boolean_Literals
(Needs_Finalization (Entity (Temp))), Loc);
-- The allocation / deallocation of a class-wide object relies
-- on a runtime check to determine whether the object is truly
-- controlled or not. Depending on this check, the finalization
-- machinery will request or reclaim extra storage reserved for
-- a list header.
elsif Is_Class_Wide_Type (Desig_Typ) then
-- Detect a special case where interface class-wide types
-- are involved as the object appears as:
-- Tag_Ptr (Base_Address (<object>'Address))
-- The expression already yields the proper tag, generate:
-- Temp.all
if Is_RTE (Etype (Temp), RE_Tag_Ptr) then
Param :=
Make_Explicit_Dereference (Loc,
Prefix => Relocate_Node (Temp));
-- In the default case, obtain the tag of the object about
-- to be allocated / deallocated. Generate:
-- Temp'Tag
-- If the object is an unchecked conversion (typically to
-- an access to class-wide type), we must preserve the
-- conversion to ensure that the object is seen as tagged
-- in the code that follows.
else
Pref := Temp;
if Nkind (Parent (Pref)) = N_Unchecked_Type_Conversion
then
Pref := Parent (Pref);
end if;
Param :=
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Pref),
Attribute_Name => Name_Tag);
end if;
-- Generate:
-- Needs_Finalization (<Param>)
Flag_Expr :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
Parameter_Associations => New_List (Param));
-- Processing for generic actuals
elsif Is_Generic_Actual_Type (Desig_Typ) then
Flag_Expr :=
New_Occurrence_Of (Boolean_Literals
(Needs_Finalization (Base_Type (Desig_Typ))), Loc);
-- The object does not require any specialized checks, it is
-- known to be controlled.
else
Flag_Expr := New_Occurrence_Of (Standard_True, Loc);
end if;
-- Create the temporary which represents the finalization state
-- of the expression. Generate:
--
-- F : constant Boolean := <Flag_Expr>;
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Flag_Id,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc),
Expression => Flag_Expr));
Append_To (Actuals, New_Occurrence_Of (Flag_Id, Loc));
end Is_Controlled;
-- The object is not controlled
else
Append_To (Actuals, New_Occurrence_Of (Standard_False, Loc));
end if;
-- i) On_Subpool
if Is_Allocate then
Append_To (Actuals,
New_Occurrence_Of (Boolean_Literals (Present (Subpool)), Loc));
end if;
-- Step 2: Build a wrapper Allocate / Deallocate which internally
-- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
-- Select the proper routine to call
if Is_Allocate then
Proc_To_Call := RTE (RE_Allocate_Any_Controlled);
else
Proc_To_Call := RTE (RE_Deallocate_Any_Controlled);
end if;
-- Create a custom Allocate / Deallocate routine which has identical
-- profile to that of System.Storage_Pools.
declare
-- P : Root_Storage_Pool
function Pool_Param return Node_Id is (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Temporary (Loc, 'P'),
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc)));
-- A : [out] Address
function Address_Param return Node_Id is (
Make_Parameter_Specification (Loc,
Defining_Identifier => Addr_Id,
Out_Present => Is_Allocate,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Address), Loc)));
-- S : Storage_Count
function Size_Param return Node_Id is (
Make_Parameter_Specification (Loc,
Defining_Identifier => Size_Id,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Storage_Count), Loc)));
-- L : Storage_Count
function Alignment_Param return Node_Id is (
Make_Parameter_Specification (Loc,
Defining_Identifier => Alig_Id,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Storage_Count), Loc)));
Formal_Params : List_Id;
begin
if Use_Secondary_Stack_Pool then
-- Gigi expects a different profile in the Secondary_Stack_Pool
-- case. There must be no uses of the two missing formals
-- (i.e., Pool_Param and Alignment_Param) in this case.
Formal_Params := New_List (Address_Param, Size_Param);
else
Formal_Params := New_List (
Pool_Param, Address_Param, Size_Param, Alignment_Param);
end if;
Insert_Action (N,
Make_Subprogram_Body (Loc,
Specification =>
-- procedure Pnn
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => Formal_Params),
Declarations => No_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (Proc_To_Call, Loc),
Parameter_Associations => Actuals)))),
Suppress => All_Checks);
end;
-- The newly generated Allocate / Deallocate becomes the default
-- procedure to call when the back end processes the allocation /
-- deallocation.
if Is_Allocate then
Set_Procedure_To_Call (Expr, Proc_Id);
else
Set_Procedure_To_Call (N, Proc_Id);
end if;
end;
end Build_Allocate_Deallocate_Proc;
-------------------------------
-- Build_Abort_Undefer_Block --
-------------------------------
function Build_Abort_Undefer_Block
(Loc : Source_Ptr;
Stmts : List_Id;
Context : Node_Id) return Node_Id
is
Exceptions_OK : constant Boolean :=
not Restriction_Active (No_Exception_Propagation);
AUD : Entity_Id;
Blk : Node_Id;
Blk_Id : Entity_Id;
HSS : Node_Id;
begin
-- The block should be generated only when undeferring abort in the
-- context of a potential exception.
pragma Assert (Abort_Allowed and Exceptions_OK);
-- Generate:
-- begin
-- <Stmts>
-- at end
-- Abort_Undefer_Direct;
-- end;
AUD := RTE (RE_Abort_Undefer_Direct);
HSS :=
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts,
At_End_Proc => New_Occurrence_Of (AUD, Loc));
Blk :=
Make_Block_Statement (Loc,
Handled_Statement_Sequence => HSS);
Set_Is_Abort_Block (Blk);
Add_Block_Identifier (Blk, Blk_Id);
Expand_At_End_Handler (HSS, Blk_Id);
-- Present the Abort_Undefer_Direct function to the back end to inline
-- the call to the routine.
Add_Inlined_Body (AUD, Context);
return Blk;
end Build_Abort_Undefer_Block;
---------------------------------
-- Build_Class_Wide_Expression --
---------------------------------
procedure Build_Class_Wide_Expression
(Prag : Node_Id;
Subp : Entity_Id;
Par_Subp : Entity_Id;
Adjust_Sloc : Boolean;
Needs_Wrapper : out Boolean)
is
function Replace_Entity (N : Node_Id) return Traverse_Result;
-- Replace reference to formal of inherited operation or to primitive
-- operation of root type, with corresponding entity for derived type,
-- when constructing the class-wide condition of an overriding
-- subprogram.
--------------------
-- Replace_Entity --
--------------------
function Replace_Entity (N : Node_Id) return Traverse_Result is
New_E : Entity_Id;
begin
if Adjust_Sloc then
Adjust_Inherited_Pragma_Sloc (N);
end if;
if Nkind (N) = N_Identifier
and then Present (Entity (N))
and then
(Is_Formal (Entity (N)) or else Is_Subprogram (Entity (N)))
and then
(Nkind (Parent (N)) /= N_Attribute_Reference
or else Attribute_Name (Parent (N)) /= Name_Class)
then
-- The replacement does not apply to dispatching calls within the
-- condition, but only to calls whose static tag is that of the
-- parent type.
if Is_Subprogram (Entity (N))
and then Nkind (Parent (N)) = N_Function_Call
and then Present (Controlling_Argument (Parent (N)))
then
return OK;
end if;
-- Determine whether entity has a renaming
New_E := Type_Map.Get (Entity (N));
if Present (New_E) then
Rewrite (N, New_Occurrence_Of (New_E, Sloc (N)));
-- AI12-0166: a precondition for a protected operation
-- cannot include an internal call to a protected function
-- of the type. In the case of an inherited condition for an
-- overriding operation, both the operation and the function
-- are given by primitive wrappers.
-- Move this check to sem???
if Ekind (New_E) = E_Function
and then Is_Primitive_Wrapper (New_E)
and then Is_Primitive_Wrapper (Subp)
and then Scope (Subp) = Scope (New_E)
then
Error_Msg_Node_2 := Wrapped_Entity (Subp);
Error_Msg_NE
("internal call to& cannot appear in inherited "
& "precondition of protected operation&",
N, Wrapped_Entity (New_E));
end if;
-- If the entity is an overridden primitive and we are not
-- in GNATprove mode, we must build a wrapper for the current
-- inherited operation. If the reference is the prefix of an
-- attribute such as 'Result (or others ???) there is no need
-- for a wrapper: the condition is just rewritten in terms of
-- the inherited subprogram.
if Is_Subprogram (New_E)
and then Nkind (Parent (N)) /= N_Attribute_Reference
and then not GNATprove_Mode
then
Needs_Wrapper := True;
end if;
end if;
-- Check that there are no calls left to abstract operations if
-- the current subprogram is not abstract.
-- Move this check to sem???
if Nkind (Parent (N)) = N_Function_Call
and then N = Name (Parent (N))
then
if not Is_Abstract_Subprogram (Subp)
and then Is_Abstract_Subprogram (Entity (N))
then
Error_Msg_Sloc := Sloc (Current_Scope);
Error_Msg_Node_2 := Subp;
if Comes_From_Source (Subp) then
Error_Msg_NE
("cannot call abstract subprogram & in inherited "
& "condition for&#", Subp, Entity (N));
else
Error_Msg_NE
("cannot call abstract subprogram & in inherited "
& "condition for inherited&#", Subp, Entity (N));
end if;
-- In SPARK mode, reject an inherited condition for an
-- inherited operation if it contains a call to an overriding
-- operation, because this implies that the pre/postconditions
-- of the inherited operation have changed silently.
elsif SPARK_Mode = On
and then Warn_On_Suspicious_Contract
and then Present (Alias (Subp))
and then Present (New_E)
and then Comes_From_Source (New_E)
then
Error_Msg_N
("cannot modify inherited condition (SPARK RM 6.1.1(1))",
Parent (Subp));
Error_Msg_Sloc := Sloc (New_E);
Error_Msg_Node_2 := Subp;
Error_Msg_NE
("\overriding of&# forces overriding of&",
Parent (Subp), New_E);
end if;
end if;
-- Update type of function call node, which should be the same as
-- the function's return type.
if Is_Subprogram (Entity (N))
and then Nkind (Parent (N)) = N_Function_Call
then
Set_Etype (Parent (N), Etype (Entity (N)));
end if;
-- The whole expression will be reanalyzed
elsif Nkind (N) in N_Has_Etype then
Set_Analyzed (N, False);
end if;
return OK;
end Replace_Entity;
procedure Replace_Condition_Entities is
new Traverse_Proc (Replace_Entity);
-- Local variables
Par_Formal : Entity_Id;
Subp_Formal : Entity_Id;
-- Start of processing for Build_Class_Wide_Expression
begin
Needs_Wrapper := False;
-- Add mapping from old formals to new formals
Par_Formal := First_Formal (Par_Subp);
Subp_Formal := First_Formal (Subp);
while Present (Par_Formal) and then Present (Subp_Formal) loop
Type_Map.Set (Par_Formal, Subp_Formal);
Next_Formal (Par_Formal);
Next_Formal (Subp_Formal);
end loop;
Replace_Condition_Entities (Prag);
end Build_Class_Wide_Expression;
--------------------
-- Build_DIC_Call --
--------------------
function Build_DIC_Call
(Loc : Source_Ptr;
Obj_Id : Entity_Id;
Typ : Entity_Id) return Node_Id
is
Proc_Id : constant Entity_Id := DIC_Procedure (Typ);
Formal_Typ : constant Entity_Id := Etype (First_Formal (Proc_Id));
begin
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => New_List (
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Formal_Typ, Loc),
Expression => New_Occurrence_Of (Obj_Id, Loc))));
end Build_DIC_Call;
------------------------------
-- Build_DIC_Procedure_Body --
------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Build_DIC_Procedure_Body
(Typ : Entity_Id;
For_Freeze : Boolean := False)
is
procedure Add_DIC_Check
(DIC_Prag : Node_Id;
DIC_Expr : Node_Id;
Stmts : in out List_Id);
-- Subsidiary to all Add_xxx_DIC routines. Add a runtime check to verify
-- assertion expression DIC_Expr of pragma DIC_Prag. All generated code
-- is added to list Stmts.
procedure Add_Inherited_DIC
(DIC_Prag : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Stmts : in out List_Id);
-- Add a runtime check to verify the assertion expression of inherited
-- pragma DIC_Prag. Par_Typ is parent type, which is also the owner of
-- the DIC pragma. Deriv_Typ is the derived type inheriting the DIC
-- pragma. All generated code is added to list Stmts.
procedure Add_Inherited_Tagged_DIC
(DIC_Prag : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Stmts : in out List_Id);
-- Add a runtime check to verify assertion expression DIC_Expr of
-- inherited pragma DIC_Prag. This routine applies class-wide pre- and
-- postcondition-like runtime semantics to the check. Par_Typ is the
-- parent type whose DIC pragma is being inherited. Deriv_Typ is the
-- derived type inheriting the DIC pragma. All generated code is added
-- to list Stmts.
procedure Add_Own_DIC
(DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Stmts : in out List_Id);
-- Add a runtime check to verify the assertion expression of pragma
-- DIC_Prag. DIC_Typ is the owner of the DIC pragma. All generated code
-- is added to list Stmts.
-------------------
-- Add_DIC_Check --
-------------------
procedure Add_DIC_Check
(DIC_Prag : Node_Id;
DIC_Expr : Node_Id;
Stmts : in out List_Id)
is
Loc : constant Source_Ptr := Sloc (DIC_Prag);
Nam : constant Name_Id := Original_Aspect_Pragma_Name (DIC_Prag);
begin
-- The DIC pragma is ignored, nothing left to do
if Is_Ignored (DIC_Prag) then
null;
-- Otherwise the DIC expression must be checked at run time.
-- Generate:
-- pragma Check (<Nam>, <DIC_Expr>);
else
Append_New_To (Stmts,
Make_Pragma (Loc,
Pragma_Identifier =>
Make_Identifier (Loc, Name_Check),
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Nam)),
Make_Pragma_Argument_Association (Loc,
Expression => DIC_Expr))));
end if;
end Add_DIC_Check;
-----------------------
-- Add_Inherited_DIC --
-----------------------
procedure Add_Inherited_DIC
(DIC_Prag : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Stmts : in out List_Id)
is
Deriv_Proc : constant Entity_Id := DIC_Procedure (Deriv_Typ);
Deriv_Obj : constant Entity_Id := First_Entity (Deriv_Proc);
Par_Proc : constant Entity_Id := DIC_Procedure (Par_Typ);
Par_Obj : constant Entity_Id := First_Entity (Par_Proc);
Loc : constant Source_Ptr := Sloc (DIC_Prag);
begin
pragma Assert (Present (Deriv_Proc) and then Present (Par_Proc));
-- Verify the inherited DIC assertion expression by calling the DIC
-- procedure of the parent type.
-- Generate:
-- <Par_Typ>DIC (Par_Typ (_object));
Append_New_To (Stmts,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Par_Proc, Loc),
Parameter_Associations => New_List (
Convert_To
(Typ => Etype (Par_Obj),
Expr => New_Occurrence_Of (Deriv_Obj, Loc)))));
end Add_Inherited_DIC;
------------------------------
-- Add_Inherited_Tagged_DIC --
------------------------------
procedure Add_Inherited_Tagged_DIC
(DIC_Prag : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Stmts : in out List_Id)
is
Deriv_Proc : constant Entity_Id := DIC_Procedure (Deriv_Typ);
DIC_Args : constant List_Id :=
Pragma_Argument_Associations (DIC_Prag);
DIC_Arg : constant Node_Id := First (DIC_Args);
DIC_Expr : constant Node_Id := Expression_Copy (DIC_Arg);
Par_Proc : constant Entity_Id := DIC_Procedure (Par_Typ);
Expr : Node_Id;
begin
-- The processing of an inherited DIC assertion expression starts off
-- with a copy of the original parent expression where all references
-- to the parent type have already been replaced with references to
-- the _object formal parameter of the parent type's DIC procedure.
pragma Assert (Present (DIC_Expr));
Expr := New_Copy_Tree (DIC_Expr);
-- Perform the following substitutions:
-- * Replace a reference to the _object parameter of the parent
-- type's DIC procedure with a reference to the _object parameter
-- of the derived types' DIC procedure.
-- * Replace a reference to a discriminant of the parent type with
-- a suitable value from the point of view of the derived type.
-- * Replace a call to an overridden parent primitive with a call
-- to the overriding derived type primitive.
-- * Replace a call to an inherited parent primitive with a call to
-- the internally-generated inherited derived type primitive.
-- Note that primitives defined in the private part are automatically
-- handled by the overriding/inheritance mechanism and do not require
-- an extra replacement pass.
pragma Assert (Present (Deriv_Proc) and then Present (Par_Proc));
Replace_References
(Expr => Expr,
Par_Typ => Par_Typ,
Deriv_Typ => Deriv_Typ,
Par_Obj => First_Formal (Par_Proc),
Deriv_Obj => First_Formal (Deriv_Proc));
-- Once the DIC assertion expression is fully processed, add a check
-- to the statements of the DIC procedure.
Add_DIC_Check
(DIC_Prag => DIC_Prag,
DIC_Expr => Expr,
Stmts => Stmts);
end Add_Inherited_Tagged_DIC;
-----------------
-- Add_Own_DIC --
-----------------
procedure Add_Own_DIC
(DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Stmts : in out List_Id)
is
DIC_Args : constant List_Id :=
Pragma_Argument_Associations (DIC_Prag);
DIC_Arg : constant Node_Id := First (DIC_Args);
DIC_Asp : constant Node_Id := Corresponding_Aspect (DIC_Prag);
DIC_Expr : constant Node_Id := Get_Pragma_Arg (DIC_Arg);
DIC_Proc : constant Entity_Id := DIC_Procedure (DIC_Typ);
Obj_Id : constant Entity_Id := First_Formal (DIC_Proc);
-- Local variables
Typ_Decl : constant Node_Id := Declaration_Node (DIC_Typ);
Expr : Node_Id;
-- Start of processing for Add_Own_DIC
begin
pragma Assert (Present (DIC_Expr));
Expr := New_Copy_Tree (DIC_Expr);
-- Perform the following substitution:
-- * Replace the current instance of DIC_Typ with a reference to
-- the _object formal parameter of the DIC procedure.
Replace_Type_References
(Expr => Expr,
Typ => DIC_Typ,
Obj_Id => Obj_Id);
-- Preanalyze the DIC expression to detect errors and at the same
-- time capture the visibility of the proper package part.
Set_Parent (Expr, Typ_Decl);
Preanalyze_Assert_Expression (Expr, Any_Boolean);
-- Save a copy of the expression with all replacements and analysis
-- already taken place in case a derived type inherits the pragma.
-- The copy will be used as the foundation of the derived type's own
-- version of the DIC assertion expression.
if Is_Tagged_Type (DIC_Typ) then
Set_Expression_Copy (DIC_Arg, New_Copy_Tree (Expr));
end if;
-- If the pragma comes from an aspect specification, replace the
-- saved expression because all type references must be substituted
-- for the call to Preanalyze_Spec_Expression in Check_Aspect_At_xxx
-- routines.
if Present (DIC_Asp) then
Set_Entity (Identifier (DIC_Asp), New_Copy_Tree (Expr));
end if;
-- Once the DIC assertion expression is fully processed, add a check
-- to the statements of the DIC procedure.
Add_DIC_Check
(DIC_Prag => DIC_Prag,
DIC_Expr => Expr,
Stmts => Stmts);
end Add_Own_DIC;
-- Local variables
Loc : constant Source_Ptr := Sloc (Typ);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Dummy_1 : Entity_Id;
Dummy_2 : Entity_Id;
Proc_Body : Node_Id;
Proc_Body_Id : Entity_Id;
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Stmts : List_Id := No_List;
Build_Body : Boolean := False;
-- Flag set when the type requires a DIC procedure body to be built
Work_Typ : Entity_Id;
-- The working type
-- Start of processing for Build_DIC_Procedure_Body
begin
Work_Typ := Base_Type (Typ);
-- Do not process class-wide types as these are Itypes, but lack a first
-- subtype (see below).
if Is_Class_Wide_Type (Work_Typ) then
return;
-- Do not process the underlying full view of a private type. There is
-- no way to get back to the partial view, plus the body will be built
-- by the full view or the base type.
elsif Is_Underlying_Full_View (Work_Typ) then
return;
-- Use the first subtype when dealing with various base types
elsif Is_Itype (Work_Typ) then
Work_Typ := First_Subtype (Work_Typ);
-- The input denotes the corresponding record type of a protected or a
-- task type. Work with the concurrent type because the corresponding
-- record type may not be visible to clients of the type.
elsif Ekind (Work_Typ) = E_Record_Type
and then Is_Concurrent_Record_Type (Work_Typ)
then
Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
end if;
-- The working type may be subject to pragma Ghost. Set the mode now to
-- ensure that the DIC procedure is properly marked as Ghost.
Set_Ghost_Mode (Work_Typ);
-- The working type must be either define a DIC pragma of its own or
-- inherit one from a parent type.
pragma Assert (Has_DIC (Work_Typ));
-- Recover the type which defines the DIC pragma. This is either the
-- working type itself or a parent type when the pragma is inherited.
DIC_Typ := Find_DIC_Type (Work_Typ);
pragma Assert (Present (DIC_Typ));
DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition);
pragma Assert (Present (DIC_Prag));
-- Nothing to do if pragma DIC appears without an argument or its sole
-- argument is "null".
if not Is_Verifiable_DIC_Pragma (DIC_Prag) then
goto Leave;
end if;
-- The working type may lack a DIC procedure declaration. This may be
-- due to several reasons:
-- * The working type's own DIC pragma does not contain a verifiable
-- assertion expression. In this case there is no need to build a
-- DIC procedure because there is nothing to check.
-- * The working type derives from a parent type. In this case a DIC
-- procedure should be built only when the inherited DIC pragma has
-- a verifiable assertion expression.
Proc_Id := DIC_Procedure (Work_Typ);
-- Build a DIC procedure declaration when the working type derives from
-- a parent type.
if No (Proc_Id) then
Build_DIC_Procedure_Declaration (Work_Typ);
Proc_Id := DIC_Procedure (Work_Typ);
end if;
-- At this point there should be a DIC procedure declaration
pragma Assert (Present (Proc_Id));
Proc_Decl := Unit_Declaration_Node (Proc_Id);
-- Nothing to do if the DIC procedure already has a body
if Present (Corresponding_Body (Proc_Decl)) then
goto Leave;
end if;
-- Emulate the environment of the DIC procedure by installing its scope
-- and formal parameters.
Push_Scope (Proc_Id);
Install_Formals (Proc_Id);
-- The working type defines its own DIC pragma. Replace the current
-- instance of the working type with the formal of the DIC procedure.
-- Note that there is no need to consider inherited DIC pragmas from
-- parent types because the working type's DIC pragma "hides" all
-- inherited DIC pragmas.
if Has_Own_DIC (Work_Typ) then
pragma Assert (DIC_Typ = Work_Typ);
Add_Own_DIC
(DIC_Prag => DIC_Prag,
DIC_Typ => DIC_Typ,
Stmts => Stmts);
Build_Body := True;
-- Otherwise the working type inherits a DIC pragma from a parent type.
-- This processing is carried out when the type is frozen because the
-- state of all parent discriminants is known at that point. Note that
-- it is semantically sound to delay the creation of the DIC procedure
-- body till the freeze point. If the type has a DIC pragma of its own,
-- then the DIC procedure body would have already been constructed at
-- the end of the visible declarations and all parent DIC pragmas are
-- effectively "hidden" and irrelevant.
elsif For_Freeze then
pragma Assert (Has_Inherited_DIC (Work_Typ));
pragma Assert (DIC_Typ /= Work_Typ);
-- The working type is tagged. The verification of the assertion
-- expression is subject to the same semantics as class-wide pre-
-- and postconditions.
if Is_Tagged_Type (Work_Typ) then
Add_Inherited_Tagged_DIC
(DIC_Prag => DIC_Prag,
Par_Typ => DIC_Typ,
Deriv_Typ => Work_Typ,
Stmts => Stmts);
-- Otherwise the working type is not tagged. Verify the assertion
-- expression of the inherited DIC pragma by directly calling the
-- DIC procedure of the parent type.
else
Add_Inherited_DIC
(DIC_Prag => DIC_Prag,
Par_Typ => DIC_Typ,
Deriv_Typ => Work_Typ,
Stmts => Stmts);
end if;
Build_Body := True;
end if;
End_Scope;
if Build_Body then
-- Produce an empty completing body in the following cases:
-- * Assertions are disabled
-- * The DIC Assertion_Policy is Ignore
if No (Stmts) then
Stmts := New_List (Make_Null_Statement (Loc));
end if;
-- Generate:
-- procedure <Work_Typ>DIC (_object : <Work_Typ>) is
-- begin
-- <Stmts>
-- end <Work_Typ>DIC;
Proc_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Subprogram_Spec (Parent (Proc_Id)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts));
Proc_Body_Id := Defining_Entity (Proc_Body);
-- Perform minor decoration in case the body is not analyzed
Set_Ekind (Proc_Body_Id, E_Subprogram_Body);
Set_Etype (Proc_Body_Id, Standard_Void_Type);
Set_Scope (Proc_Body_Id, Current_Scope);
Set_SPARK_Pragma (Proc_Body_Id, SPARK_Pragma (Proc_Id));
Set_SPARK_Pragma_Inherited
(Proc_Body_Id, SPARK_Pragma_Inherited (Proc_Id));
-- Link both spec and body to avoid generating duplicates
Set_Corresponding_Body (Proc_Decl, Proc_Body_Id);
Set_Corresponding_Spec (Proc_Body, Proc_Id);
-- The body should not be inserted into the tree when the context
-- is a generic unit because it is not part of the template.
-- Note that the body must still be generated in order to resolve the
-- DIC assertion expression.
if Inside_A_Generic then
null;
-- Semi-insert the body into the tree for GNATprove by setting its
-- Parent field. This allows for proper upstream tree traversals.
elsif GNATprove_Mode then
Set_Parent (Proc_Body, Parent (Declaration_Node (Work_Typ)));
-- Otherwise the body is part of the freezing actions of the working
-- type.
else
Append_Freeze_Action (Work_Typ, Proc_Body);
end if;
end if;
<<Leave>>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
end Build_DIC_Procedure_Body;
-------------------------------------
-- Build_DIC_Procedure_Declaration --
-------------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Build_DIC_Procedure_Declaration (Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Typ_Decl : Node_Id;
CRec_Typ : Entity_Id;
-- The corresponding record type of Full_Typ
Full_Typ : Entity_Id;
-- The full view of working type
Obj_Id : Entity_Id;
-- The _object formal parameter of the DIC procedure
Priv_Typ : Entity_Id;
-- The partial view of working type
UFull_Typ : Entity_Id;
-- The underlying full view of Full_Typ
Work_Typ : Entity_Id;
-- The working type
begin
Work_Typ := Base_Type (Typ);
-- Do not process class-wide types as these are Itypes, but lack a first
-- subtype (see below).
if Is_Class_Wide_Type (Work_Typ) then
return;
-- Do not process the underlying full view of a private type. There is
-- no way to get back to the partial view, plus the body will be built
-- by the full view or the base type.
elsif Is_Underlying_Full_View (Work_Typ) then
return;
-- Use the first subtype when dealing with various base types
elsif Is_Itype (Work_Typ) then
Work_Typ := First_Subtype (Work_Typ);
-- The input denotes the corresponding record type of a protected or a
-- task type. Work with the concurrent type because the corresponding
-- record type may not be visible to clients of the type.
elsif Ekind (Work_Typ) = E_Record_Type
and then Is_Concurrent_Record_Type (Work_Typ)
then
Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
end if;
-- The working type may be subject to pragma Ghost. Set the mode now to
-- ensure that the DIC procedure is properly marked as Ghost.
Set_Ghost_Mode (Work_Typ);
-- The type must be either subject to a DIC pragma or inherit one from a
-- parent type.
pragma Assert (Has_DIC (Work_Typ));
-- Recover the type which defines the DIC pragma. This is either the
-- working type itself or a parent type when the pragma is inherited.
DIC_Typ := Find_DIC_Type (Work_Typ);
pragma Assert (Present (DIC_Typ));
DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition);
pragma Assert (Present (DIC_Prag));
-- Nothing to do if pragma DIC appears without an argument or its sole
-- argument is "null".
if not Is_Verifiable_DIC_Pragma (DIC_Prag) then
goto Leave;
-- Nothing to do if the type already has a DIC procedure
elsif Present (DIC_Procedure (Work_Typ)) then
goto Leave;
end if;
Proc_Id :=
Make_Defining_Identifier (Loc,
Chars =>
New_External_Name (Chars (Work_Typ), "Default_Initial_Condition"));
-- Perform minor decoration in case the declaration is not analyzed
Set_Ekind (Proc_Id, E_Procedure);
Set_Etype (Proc_Id, Standard_Void_Type);
Set_Is_DIC_Procedure (Proc_Id);
Set_Scope (Proc_Id, Current_Scope);
Set_SPARK_Pragma (Proc_Id, SPARK_Mode_Pragma);
Set_SPARK_Pragma_Inherited (Proc_Id);
Set_DIC_Procedure (Work_Typ, Proc_Id);
-- The DIC procedure requires debug info when the assertion expression
-- is subject to Source Coverage Obligations.
if Generate_SCO then
Set_Debug_Info_Needed (Proc_Id);
end if;
-- Obtain all views of the input type
Get_Views (Work_Typ, Priv_Typ, Full_Typ, UFull_Typ, CRec_Typ);
-- Associate the DIC procedure and various flags with all views
Propagate_DIC_Attributes (Priv_Typ, From_Typ => Work_Typ);
Propagate_DIC_Attributes (Full_Typ, From_Typ => Work_Typ);
Propagate_DIC_Attributes (UFull_Typ, From_Typ => Work_Typ);
Propagate_DIC_Attributes (CRec_Typ, From_Typ => Work_Typ);
-- The declaration of the DIC procedure must be inserted after the
-- declaration of the partial view as this allows for proper external
-- visibility.
if Present (Priv_Typ) then
Typ_Decl := Declaration_Node (Priv_Typ);
-- Derived types with the full view as parent do not have a partial
-- view. Insert the DIC procedure after the derived type.
else
Typ_Decl := Declaration_Node (Full_Typ);
end if;
-- The type should have a declarative node
pragma Assert (Present (Typ_Decl));
-- Create the formal parameter which emulates the variable-like behavior
-- of the type's current instance.
Obj_Id := Make_Defining_Identifier (Loc, Chars => Name_uObject);
-- Perform minor decoration in case the declaration is not analyzed
Set_Ekind (Obj_Id, E_In_Parameter);
Set_Etype (Obj_Id, Work_Typ);
Set_Scope (Obj_Id, Proc_Id);
Set_First_Entity (Proc_Id, Obj_Id);
Set_Last_Entity (Proc_Id, Obj_Id);
-- Generate:
-- procedure <Work_Typ>DIC (_object : <Work_Typ>);
Proc_Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Obj_Id,
Parameter_Type =>
New_Occurrence_Of (Work_Typ, Loc)))));
-- The declaration should not be inserted into the tree when the context
-- is a generic unit because it is not part of the template.
if Inside_A_Generic then
null;
-- Semi-insert the declaration into the tree for GNATprove by setting
-- its Parent field. This allows for proper upstream tree traversals.
elsif GNATprove_Mode then
Set_Parent (Proc_Decl, Parent (Typ_Decl));
-- Otherwise insert the declaration
else
Insert_After_And_Analyze (Typ_Decl, Proc_Decl);
end if;
<<Leave>>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
end Build_DIC_Procedure_Declaration;
------------------------------------
-- Build_Invariant_Procedure_Body --
------------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Build_Invariant_Procedure_Body
(Typ : Entity_Id;
Partial_Invariant : Boolean := False)
is
Loc : constant Source_Ptr := Sloc (Typ);
Pragmas_Seen : Elist_Id := No_Elist;
-- This list contains all invariant pragmas processed so far. The list
-- is used to avoid generating redundant invariant checks.
Produced_Check : Boolean := False;
-- This flag tracks whether the type has produced at least one invariant
-- check. The flag is used as a sanity check at the end of the routine.
-- NOTE: most of the routines in Build_Invariant_Procedure_Body are
-- intentionally unnested to avoid deep indentation of code.
-- NOTE: all Add_xxx_Invariants routines are reactive. In other words
-- they emit checks, loops (for arrays) and case statements (for record
-- variant parts) only when there are invariants to verify. This keeps
-- the body of the invariant procedure free of useless code.
procedure Add_Array_Component_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate an invariant check for each component of array type T.
-- Obj_Id denotes the entity of the _object formal parameter of the
-- invariant procedure. All created checks are added to list Checks.
procedure Add_Inherited_Invariants
(T : Entity_Id;
Priv_Typ : Entity_Id;
Full_Typ : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate an invariant check for each inherited class-wide invariant
-- coming from all parent types of type T. Priv_Typ and Full_Typ denote
-- the partial and full view of the parent type. Obj_Id denotes the
-- entity of the _object formal parameter of the invariant procedure.
-- All created checks are added to list Checks.
procedure Add_Interface_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate an invariant check for each inherited class-wide invariant
-- coming from all interfaces implemented by type T. Obj_Id denotes the
-- entity of the _object formal parameter of the invariant procedure.
-- All created checks are added to list Checks.
procedure Add_Invariant_Check
(Prag : Node_Id;
Expr : Node_Id;
Checks : in out List_Id;
Inherited : Boolean := False);
-- Subsidiary to all Add_xxx_Invariant routines. Add a runtime check to
-- verify assertion expression Expr of pragma Prag. All generated code
-- is added to list Checks. Flag Inherited should be set when the pragma
-- is inherited from a parent or interface type.
procedure Add_Own_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id;
Priv_Item : Node_Id := Empty);
-- Generate an invariant check for each invariant found for type T.
-- Obj_Id denotes the entity of the _object formal parameter of the
-- invariant procedure. All created checks are added to list Checks.
-- Priv_Item denotes the first rep item of the private type.
procedure Add_Parent_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate an invariant check for each inherited class-wide invariant
-- coming from all parent types of type T. Obj_Id denotes the entity of
-- the _object formal parameter of the invariant procedure. All created
-- checks are added to list Checks.
procedure Add_Record_Component_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate an invariant check for each component of record type T.
-- Obj_Id denotes the entity of the _object formal parameter of the
-- invariant procedure. All created checks are added to list Checks.
------------------------------------
-- Add_Array_Component_Invariants --
------------------------------------
procedure Add_Array_Component_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
Comp_Typ : constant Entity_Id := Component_Type (T);
Dims : constant Pos := Number_Dimensions (T);
procedure Process_Array_Component
(Indices : List_Id;
Comp_Checks : in out List_Id);
-- Generate an invariant check for an array component identified by
-- the indices in list Indices. All created checks are added to list
-- Comp_Checks.
procedure Process_One_Dimension
(Dim : Pos;
Indices : List_Id;
Dim_Checks : in out List_Id);
-- Generate a loop over the Nth dimension Dim of an array type. List
-- Indices contains all array indices for the dimension. All created
-- checks are added to list Dim_Checks.
-----------------------------
-- Process_Array_Component --
-----------------------------
procedure Process_Array_Component
(Indices : List_Id;
Comp_Checks : in out List_Id)
is
Proc_Id : Entity_Id;
begin
if Has_Invariants (Comp_Typ) then
-- In GNATprove mode, the component invariants are checked by
-- other means. They should not be added to the array type
-- invariant procedure, so that the procedure can be used to
-- check the array type invariants if any.
if GNATprove_Mode then
null;
else
Proc_Id := Invariant_Procedure (Base_Type (Comp_Typ));
-- The component type should have an invariant procedure
-- if it has invariants of its own or inherits class-wide
-- invariants from parent or interface types.
pragma Assert (Present (Proc_Id));
-- Generate:
-- <Comp_Typ>Invariant (_object (<Indices>));
-- The invariant procedure has a null body if assertions are
-- disabled or Assertion_Policy Ignore is in effect.
if not Has_Null_Body (Proc_Id) then
Append_New_To (Comp_Checks,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => New_List (
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Obj_Id, Loc),
Expressions => New_Copy_List (Indices)))));
end if;
end if;
Produced_Check := True;
end if;
end Process_Array_Component;
---------------------------
-- Process_One_Dimension --
---------------------------
procedure Process_One_Dimension
(Dim : Pos;
Indices : List_Id;
Dim_Checks : in out List_Id)
is
Comp_Checks : List_Id := No_List;
Index : Entity_Id;
begin
-- Generate the invariant checks for the array component after all
-- dimensions have produced their respective loops.
if Dim > Dims then
Process_Array_Component
(Indices => Indices,
Comp_Checks => Dim_Checks);
-- Otherwise create a loop for the current dimension
else
-- Create a new loop variable for each dimension
Index :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name ('I', Dim));
Append_To (Indices, New_Occurrence_Of (Index, Loc));
Process_One_Dimension
(Dim => Dim + 1,
Indices => Indices,
Dim_Checks => Comp_Checks);
-- Generate:
-- for I<Dim> in _object'Range (<Dim>) loop
-- <Comp_Checks>
-- end loop;
-- Note that the invariant procedure may have a null body if
-- assertions are disabled or Assertion_Policy Ignore is in
-- effect.
if Present (Comp_Checks) then
Append_New_To (Dim_Checks,
Make_Implicit_Loop_Statement (T,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => Index,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Obj_Id, Loc),
Attribute_Name => Name_Range,
Expressions => New_List (
Make_Integer_Literal (Loc, Dim))))),
Statements => Comp_Checks));
end if;
end if;
end Process_One_Dimension;
-- Start of processing for Add_Array_Component_Invariants
begin
Process_One_Dimension
(Dim => 1,
Indices => New_List,
Dim_Checks => Checks);
end Add_Array_Component_Invariants;
------------------------------
-- Add_Inherited_Invariants --
------------------------------
procedure Add_Inherited_Invariants
(T : Entity_Id;
Priv_Typ : Entity_Id;
Full_Typ : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
Deriv_Typ : Entity_Id;
Expr : Node_Id;
Prag : Node_Id;
Prag_Expr : Node_Id;
Prag_Expr_Arg : Node_Id;
Prag_Typ : Node_Id;
Prag_Typ_Arg : Node_Id;
Par_Proc : Entity_Id;
-- The "partial" invariant procedure of Par_Typ
Par_Typ : Entity_Id;
-- The suitable view of the parent type used in the substitution of
-- type attributes.
begin
if not Present (Priv_Typ) and then not Present (Full_Typ) then
return;
end if;
-- When the type inheriting the class-wide invariant is a concurrent
-- type, use the corresponding record type because it contains all
-- primitive operations of the concurrent type and allows for proper
-- substitution.
if Is_Concurrent_Type (T) then
Deriv_Typ := Corresponding_Record_Type (T);
else
Deriv_Typ := T;
end if;
pragma Assert (Present (Deriv_Typ));
-- Determine which rep item chain to use. Precedence is given to that
-- of the parent type's partial view since it usually carries all the
-- class-wide invariants.
if Present (Priv_Typ) then
Prag := First_Rep_Item (Priv_Typ);
else
Prag := First_Rep_Item (Full_Typ);
end if;
while Present (Prag) loop
if Nkind (Prag) = N_Pragma
and then Pragma_Name (Prag) = Name_Invariant
then
-- Nothing to do if the pragma was already processed
if Contains (Pragmas_Seen, Prag) then
return;
-- Nothing to do when the caller requests the processing of all
-- inherited class-wide invariants, but the pragma does not
-- fall in this category.
elsif not Class_Present (Prag) then
return;
end if;
-- Extract the arguments of the invariant pragma
Prag_Typ_Arg := First (Pragma_Argument_Associations (Prag));
Prag_Expr_Arg := Next (Prag_Typ_Arg);
Prag_Expr := Expression_Copy (Prag_Expr_Arg);
Prag_Typ := Get_Pragma_Arg (Prag_Typ_Arg);
-- The pragma applies to the partial view of the parent type
if Present (Priv_Typ)
and then Entity (Prag_Typ) = Priv_Typ
then
Par_Typ := Priv_Typ;
-- The pragma applies to the full view of the parent type
elsif Present (Full_Typ)
and then Entity (Prag_Typ) = Full_Typ
then
Par_Typ := Full_Typ;
-- Otherwise the pragma does not belong to the parent type and
-- should not be considered.
else
return;
end if;
-- Perform the following substitutions:
-- * Replace a reference to the _object parameter of the
-- parent type's partial invariant procedure with a
-- reference to the _object parameter of the derived
-- type's full invariant procedure.
-- * Replace a reference to a discriminant of the parent type
-- with a suitable value from the point of view of the
-- derived type.
-- * Replace a call to an overridden parent primitive with a
-- call to the overriding derived type primitive.
-- * Replace a call to an inherited parent primitive with a
-- call to the internally-generated inherited derived type
-- primitive.
Expr := New_Copy_Tree (Prag_Expr);
-- The parent type must have a "partial" invariant procedure
-- because class-wide invariants are captured exclusively by
-- it.
Par_Proc := Partial_Invariant_Procedure (Par_Typ);
pragma Assert (Present (Par_Proc));
Replace_References
(Expr => Expr,
Par_Typ => Par_Typ,
Deriv_Typ => Deriv_Typ,
Par_Obj => First_Formal (Par_Proc),
Deriv_Obj => Obj_Id);
Add_Invariant_Check (Prag, Expr, Checks, Inherited => True);
end if;
Next_Rep_Item (Prag);
end loop;
end Add_Inherited_Invariants;
------------------------------
-- Add_Interface_Invariants --
------------------------------
procedure Add_Interface_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
Iface_Elmt : Elmt_Id;
Ifaces : Elist_Id;
begin
-- Generate an invariant check for each class-wide invariant coming
-- from all interfaces implemented by type T.
if Is_Tagged_Type (T) then
Collect_Interfaces (T, Ifaces);
-- Process the class-wide invariants of all implemented interfaces
Iface_Elmt := First_Elmt (Ifaces);
while Present (Iface_Elmt) loop
-- The Full_Typ parameter is intentionally left Empty because
-- interfaces are treated as the partial view of a private type
-- in order to achieve uniformity with the general case.
Add_Inherited_Invariants
(T => T,
Priv_Typ => Node (Iface_Elmt),
Full_Typ => Empty,
Obj_Id => Obj_Id,
Checks => Checks);
Next_Elmt (Iface_Elmt);
end loop;
end if;
end Add_Interface_Invariants;
-------------------------
-- Add_Invariant_Check --
-------------------------
procedure Add_Invariant_Check
(Prag : Node_Id;
Expr : Node_Id;
Checks : in out List_Id;
Inherited : Boolean := False)
is
Args : constant List_Id := Pragma_Argument_Associations (Prag);
Nam : constant Name_Id := Original_Aspect_Pragma_Name (Prag);
Ploc : constant Source_Ptr := Sloc (Prag);
Str_Arg : constant Node_Id := Next (Next (First (Args)));
Assoc : List_Id;
Str : String_Id;
begin
-- The invariant is ignored, nothing left to do
if Is_Ignored (Prag) then
null;
-- Otherwise the invariant is checked. Build a pragma Check to verify
-- the expression at run time.
else
Assoc := New_List (
Make_Pragma_Argument_Association (Ploc,
Expression => Make_Identifier (Ploc, Nam)),
Make_Pragma_Argument_Association (Ploc,
Expression => Expr));
-- Handle the String argument (if any)
if Present (Str_Arg) then
Str := Strval (Get_Pragma_Arg (Str_Arg));
-- When inheriting an invariant, modify the message from
-- "failed invariant" to "failed inherited invariant".
if Inherited then
String_To_Name_Buffer (Str);
if Name_Buffer (1 .. 16) = "failed invariant" then
Insert_Str_In_Name_Buffer ("inherited ", 8);
Str := String_From_Name_Buffer;
end if;
end if;
Append_To (Assoc,
Make_Pragma_Argument_Association (Ploc,
Expression => Make_String_Literal (Ploc, Str)));
end if;
-- Generate:
-- pragma Check (<Nam>, <Expr>, <Str>);
Append_New_To (Checks,
Make_Pragma (Ploc,
Chars => Name_Check,
Pragma_Argument_Associations => Assoc));
end if;
-- Output an info message when inheriting an invariant and the
-- listing option is enabled.
if Inherited and Opt.List_Inherited_Aspects then
Error_Msg_Sloc := Sloc (Prag);
Error_Msg_N
("info: & inherits `Invariant''Class` aspect from #?L?", Typ);
end if;
-- Add the pragma to the list of processed pragmas
Append_New_Elmt (Prag, Pragmas_Seen);
Produced_Check := True;
end Add_Invariant_Check;
---------------------------
-- Add_Parent_Invariants --
---------------------------
procedure Add_Parent_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
Dummy_1 : Entity_Id;
Dummy_2 : Entity_Id;
Curr_Typ : Entity_Id;
-- The entity of the current type being examined
Full_Typ : Entity_Id;
-- The full view of Par_Typ
Par_Typ : Entity_Id;
-- The entity of the parent type
Priv_Typ : Entity_Id;
-- The partial view of Par_Typ
begin
-- Do not process array types because they cannot have true parent
-- types. This also prevents the generation of a duplicate invariant
-- check when the input type is an array base type because its Etype
-- denotes the first subtype, both of which share the same component
-- type.
if Is_Array_Type (T) then
return;
end if;
-- Climb the parent type chain
Curr_Typ := T;
loop
-- Do not consider subtypes as they inherit the invariants
-- from their base types.
Par_Typ := Base_Type (Etype (Curr_Typ));
-- Stop the climb once the root of the parent chain is
-- reached.
exit when Curr_Typ = Par_Typ;
-- Process the class-wide invariants of the parent type
Get_Views (Par_Typ, Priv_Typ, Full_Typ, Dummy_1, Dummy_2);
-- Process the elements of an array type
if Is_Array_Type (Full_Typ) then
Add_Array_Component_Invariants (Full_Typ, Obj_Id, Checks);
-- Process the components of a record type
elsif Ekind (Full_Typ) = E_Record_Type then
Add_Record_Component_Invariants (Full_Typ, Obj_Id, Checks);
end if;
Add_Inherited_Invariants
(T => T,
Priv_Typ => Priv_Typ,
Full_Typ => Full_Typ,
Obj_Id => Obj_Id,
Checks => Checks);
Curr_Typ := Par_Typ;
end loop;
end Add_Parent_Invariants;
------------------------
-- Add_Own_Invariants --
------------------------
procedure Add_Own_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id;
Priv_Item : Node_Id := Empty)
is
Expr : Node_Id;
Prag : Node_Id;
Prag_Asp : Node_Id;
Prag_Expr : Node_Id;
Prag_Expr_Arg : Node_Id;
Prag_Typ : Node_Id;
Prag_Typ_Arg : Node_Id;
begin
if not Present (T) then
return;
end if;
Prag := First_Rep_Item (T);
while Present (Prag) loop
if Nkind (Prag) = N_Pragma
and then Pragma_Name (Prag) = Name_Invariant
then
-- Stop the traversal of the rep item chain once a specific
-- item is encountered.
if Present (Priv_Item) and then Prag = Priv_Item then
exit;
end if;
-- Nothing to do if the pragma was already processed
if Contains (Pragmas_Seen, Prag) then
return;
end if;
-- Extract the arguments of the invariant pragma
Prag_Typ_Arg := First (Pragma_Argument_Associations (Prag));
Prag_Expr_Arg := Next (Prag_Typ_Arg);
Prag_Expr := Get_Pragma_Arg (Prag_Expr_Arg);
Prag_Typ := Get_Pragma_Arg (Prag_Typ_Arg);
Prag_Asp := Corresponding_Aspect (Prag);
-- Verify the pragma belongs to T, otherwise the pragma applies
-- to a parent type in which case it will be processed later by
-- Add_Parent_Invariants or Add_Interface_Invariants.
if Entity (Prag_Typ) /= T then
return;
end if;
Expr := New_Copy_Tree (Prag_Expr);
-- Substitute all references to type T with references to the
-- _object formal parameter.
Replace_Type_References (Expr, T, Obj_Id);
-- Preanalyze the invariant expression to detect errors and at
-- the same time capture the visibility of the proper package
-- part.
Set_Parent (Expr, Parent (Prag_Expr));
Preanalyze_Assert_Expression (Expr, Any_Boolean);
-- Save a copy of the expression when T is tagged to detect
-- errors and capture the visibility of the proper package part
-- for the generation of inherited type invariants.
if Is_Tagged_Type (T) then
Set_Expression_Copy (Prag_Expr_Arg, New_Copy_Tree (Expr));
end if;
-- If the pragma comes from an aspect specification, replace
-- the saved expression because all type references must be
-- substituted for the call to Preanalyze_Spec_Expression in
-- Check_Aspect_At_xxx routines.
if Present (Prag_Asp) then
Set_Entity (Identifier (Prag_Asp), New_Copy_Tree (Expr));
end if;
Add_Invariant_Check (Prag, Expr, Checks);
end if;
Next_Rep_Item (Prag);
end loop;
end Add_Own_Invariants;
-------------------------------------
-- Add_Record_Component_Invariants --
-------------------------------------
procedure Add_Record_Component_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
procedure Process_Component_List
(Comp_List : Node_Id;
CL_Checks : in out List_Id);
-- Generate invariant checks for all record components found in
-- component list Comp_List, including variant parts. All created
-- checks are added to list CL_Checks.
procedure Process_Record_Component
(Comp_Id : Entity_Id;
Comp_Checks : in out List_Id);
-- Generate an invariant check for a record component identified by
-- Comp_Id. All created checks are added to list Comp_Checks.
----------------------------
-- Process_Component_List --
----------------------------
procedure Process_Component_List
(Comp_List : Node_Id;
CL_Checks : in out List_Id)
is
Comp : Node_Id;
Var : Node_Id;
Var_Alts : List_Id := No_List;
Var_Checks : List_Id := No_List;
Var_Stmts : List_Id;
Produced_Variant_Check : Boolean := False;
-- This flag tracks whether the component has produced at least
-- one invariant check.
begin
-- Traverse the component items
Comp := First (Component_Items (Comp_List));
while Present (Comp) loop
if Nkind (Comp) = N_Component_Declaration then
-- Generate the component invariant check
Process_Record_Component
(Comp_Id => Defining_Entity (Comp),
Comp_Checks => CL_Checks);
end if;
Next (Comp);
end loop;
-- Traverse the variant part
if Present (Variant_Part (Comp_List)) then
Var := First (Variants (Variant_Part (Comp_List)));
while Present (Var) loop
Var_Checks := No_List;
-- Generate invariant checks for all components and variant
-- parts that qualify.
Process_Component_List
(Comp_List => Component_List (Var),
CL_Checks => Var_Checks);
-- The components of the current variant produced at least
-- one invariant check.
if Present (Var_Checks) then
Var_Stmts := Var_Checks;
Produced_Variant_Check := True;
-- Otherwise there are either no components with invariants,
-- assertions are disabled, or Assertion_Policy Ignore is in
-- effect.
else
Var_Stmts := New_List (Make_Null_Statement (Loc));
end if;
Append_New_To (Var_Alts,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices =>
New_Copy_List (Discrete_Choices (Var)),
Statements => Var_Stmts));
Next (Var);
end loop;
-- Create a case statement which verifies the invariant checks
-- of a particular component list depending on the discriminant
-- values only when there is at least one real invariant check.
if Produced_Variant_Check then
Append_New_To (CL_Checks,
Make_Case_Statement (Loc,
Expression =>
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Obj_Id, Loc),
Selector_Name =>
New_Occurrence_Of
(Entity (Name (Variant_Part (Comp_List))), Loc)),
Alternatives => Var_Alts));
end if;
end if;
end Process_Component_List;
------------------------------
-- Process_Record_Component --
------------------------------
procedure Process_Record_Component
(Comp_Id : Entity_Id;
Comp_Checks : in out List_Id)
is
Comp_Typ : constant Entity_Id := Etype (Comp_Id);
Proc_Id : Entity_Id;
Produced_Component_Check : Boolean := False;
-- This flag tracks whether the component has produced at least
-- one invariant check.
begin
-- Nothing to do for internal component _parent. Note that it is
-- not desirable to check whether the component comes from source
-- because protected type components are relocated to an internal
-- corresponding record, but still need processing.
if Chars (Comp_Id) = Name_uParent then
return;
end if;
-- Verify the invariant of the component. Note that an access
-- type may have an invariant when it acts as the full view of a
-- private type and the invariant appears on the partial view. In
-- this case verify the access value itself.
if Has_Invariants (Comp_Typ) then
-- In GNATprove mode, the component invariants are checked by
-- other means. They should not be added to the record type
-- invariant procedure, so that the procedure can be used to
-- check the record type invariants if any.
if GNATprove_Mode then
null;
else
Proc_Id := Invariant_Procedure (Base_Type (Comp_Typ));
-- The component type should have an invariant procedure
-- if it has invariants of its own or inherits class-wide
-- invariants from parent or interface types.
pragma Assert (Present (Proc_Id));
-- Generate:
-- <Comp_Typ>Invariant (T (_object).<Comp_Id>);
-- Note that the invariant procedure may have a null body if
-- assertions are disabled or Assertion_Policy Ignore is in
-- effect.
if not Has_Null_Body (Proc_Id) then
Append_New_To (Comp_Checks,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => New_List (
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To
(T, New_Occurrence_Of (Obj_Id, Loc)),
Selector_Name =>
New_Occurrence_Of (Comp_Id, Loc)))));
end if;
end if;
Produced_Check := True;
Produced_Component_Check := True;
end if;
if Produced_Component_Check and then Has_Unchecked_Union (T) then
Error_Msg_NE
("invariants cannot be checked on components of "
& "unchecked_union type &??", Comp_Id, T);
end if;
end Process_Record_Component;
-- Local variables
Comps : Node_Id;
Def : Node_Id;
-- Start of processing for Add_Record_Component_Invariants
begin
-- An untagged derived type inherits the components of its parent
-- type. In order to avoid creating redundant invariant checks, do
-- not process the components now. Instead wait until the ultimate
-- parent of the untagged derivation chain is reached.
if not Is_Untagged_Derivation (T) then
Def := Type_Definition (Parent (T));
if Nkind (Def) = N_Derived_Type_Definition then
Def := Record_Extension_Part (Def);
end if;
pragma Assert (Nkind (Def) = N_Record_Definition);
Comps := Component_List (Def);
if Present (Comps) then
Process_Component_List
(Comp_List => Comps,
CL_Checks => Checks);
end if;
end if;
end Add_Record_Component_Invariants;
-- Local variables
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
Dummy : Entity_Id;
Priv_Item : Node_Id;
Proc_Body : Node_Id;
Proc_Body_Id : Entity_Id;
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Stmts : List_Id := No_List;
CRec_Typ : Entity_Id := Empty;
-- The corresponding record type of Full_Typ
Full_Proc : Entity_Id := Empty;
-- The entity of the "full" invariant procedure
Full_Typ : Entity_Id := Empty;
-- The full view of the working type
Obj_Id : Entity_Id := Empty;
-- The _object formal parameter of the invariant procedure
Part_Proc : Entity_Id := Empty;
-- The entity of the "partial" invariant procedure
Priv_Typ : Entity_Id := Empty;
-- The partial view of the working type
Work_Typ : Entity_Id := Empty;
-- The working type
-- Start of processing for Build_Invariant_Procedure_Body
begin
Work_Typ := Typ;
-- Do not process the underlying full view of a private type. There is
-- no way to get back to the partial view, plus the body will be built
-- by the full view or the base type.
if Is_Underlying_Full_View (Work_Typ) then
return;
-- The input type denotes the implementation base type of a constrained
-- array type. Work with the first subtype as all invariant pragmas are
-- on its rep item chain.
elsif Ekind (Work_Typ) = E_Array_Type and then Is_Itype (Work_Typ) then
Work_Typ := First_Subtype (Work_Typ);
-- The input type denotes the corresponding record type of a protected
-- or task type. Work with the concurrent type because the corresponding
-- record type may not be visible to clients of the type.
elsif Ekind (Work_Typ) = E_Record_Type
and then Is_Concurrent_Record_Type (Work_Typ)
then
Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
end if;
-- The working type may be subject to pragma Ghost. Set the mode now to
-- ensure that the invariant procedure is properly marked as Ghost.
Set_Ghost_Mode (Work_Typ);
-- The type must either have invariants of its own, inherit class-wide
-- invariants from parent types or interfaces, or be an array or record
-- type whose components have invariants.
pragma Assert (Has_Invariants (Work_Typ));
-- Interfaces are treated as the partial view of a private type in order
-- to achieve uniformity with the general case.
if Is_Interface (Work_Typ) then
Priv_Typ := Work_Typ;
-- Otherwise obtain both views of the type
else
Get_Views (Work_Typ, Priv_Typ, Full_Typ, Dummy, CRec_Typ);
end if;
-- The caller requests a body for the partial invariant procedure
if Partial_Invariant then
Full_Proc := Invariant_Procedure (Work_Typ);
Proc_Id := Partial_Invariant_Procedure (Work_Typ);
-- The "full" invariant procedure body was already created
if Present (Full_Proc)
and then Present
(Corresponding_Body (Unit_Declaration_Node (Full_Proc)))
then
-- This scenario happens only when the type is an untagged
-- derivation from a private parent and the underlying full
-- view was processed before the partial view.
pragma Assert
(Is_Untagged_Private_Derivation (Priv_Typ, Full_Typ));
-- Nothing to do because the processing of the underlying full
-- view already checked the invariants of the partial view.
goto Leave;
end if;
-- Create a declaration for the "partial" invariant procedure if it
-- is not available.
if No (Proc_Id) then
Build_Invariant_Procedure_Declaration
(Typ => Work_Typ,
Partial_Invariant => True);
Proc_Id := Partial_Invariant_Procedure (Work_Typ);
end if;
-- The caller requests a body for the "full" invariant procedure
else
Proc_Id := Invariant_Procedure (Work_Typ);
Part_Proc := Partial_Invariant_Procedure (Work_Typ);
-- Create a declaration for the "full" invariant procedure if it is
-- not available.
if No (Proc_Id) then
Build_Invariant_Procedure_Declaration (Work_Typ);
Proc_Id := Invariant_Procedure (Work_Typ);
end if;
end if;
-- At this point there should be an invariant procedure declaration
pragma Assert (Present (Proc_Id));
Proc_Decl := Unit_Declaration_Node (Proc_Id);
-- Nothing to do if the invariant procedure already has a body
if Present (Corresponding_Body (Proc_Decl)) then
goto Leave;
end if;
-- Emulate the environment of the invariant procedure by installing its
-- scope and formal parameters. Note that this is not needed, but having
-- the scope installed helps with the detection of invariant-related
-- errors.
Push_Scope (Proc_Id);
Install_Formals (Proc_Id);
Obj_Id := First_Formal (Proc_Id);
pragma Assert (Present (Obj_Id));
-- The "partial" invariant procedure verifies the invariants of the
-- partial view only.
if Partial_Invariant then
pragma Assert (Present (Priv_Typ));
Add_Own_Invariants
(T => Priv_Typ,
Obj_Id => Obj_Id,
Checks => Stmts);
-- Otherwise the "full" invariant procedure verifies the invariants of
-- the full view, all array or record components, as well as class-wide
-- invariants inherited from parent types or interfaces. In addition, it
-- indirectly verifies the invariants of the partial view by calling the
-- "partial" invariant procedure.
else
pragma Assert (Present (Full_Typ));
-- Check the invariants of the partial view by calling the "partial"
-- invariant procedure. Generate:
-- <Work_Typ>Partial_Invariant (_object);
if Present (Part_Proc) then
Append_New_To (Stmts,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Part_Proc, Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Obj_Id, Loc))));
Produced_Check := True;
end if;
Priv_Item := Empty;
-- Derived subtypes do not have a partial view
if Present (Priv_Typ) then
-- The processing of the "full" invariant procedure intentionally
-- skips the partial view because a) this may result in changes of
-- visibility and b) lead to duplicate checks. However, when the
-- full view is the underlying full view of an untagged derived
-- type whose parent type is private, partial invariants appear on
-- the rep item chain of the partial view only.
-- package Pack_1 is
-- type Root ... is private;
-- private
-- <full view of Root>
-- end Pack_1;
-- with Pack_1;
-- package Pack_2 is
-- type Child is new Pack_1.Root with Type_Invariant => ...;
-- <underlying full view of Child>
-- end Pack_2;
-- As a result, the processing of the full view must also consider
-- all invariants of the partial view.
if Is_Untagged_Private_Derivation (Priv_Typ, Full_Typ) then
null;
-- Otherwise the invariants of the partial view are ignored
else
-- Note that the rep item chain is shared between the partial
-- and full views of a type. To avoid processing the invariants
-- of the partial view, signal the logic to stop when the first
-- rep item of the partial view has been reached.
Priv_Item := First_Rep_Item (Priv_Typ);
-- Ignore the invariants of the partial view by eliminating the
-- view.
Priv_Typ := Empty;
end if;
end if;
-- Process the invariants of the full view and in certain cases those
-- of the partial view. This also handles any invariants on array or
-- record components.
Add_Own_Invariants
(T => Priv_Typ,
Obj_Id => Obj_Id,
Checks => Stmts,
Priv_Item => Priv_Item);
Add_Own_Invariants
(T => Full_Typ,
Obj_Id => Obj_Id,
Checks => Stmts,
Priv_Item => Priv_Item);
-- Process the elements of an array type
if Is_Array_Type (Full_Typ) then
Add_Array_Component_Invariants (Full_Typ, Obj_Id, Stmts);
-- Process the components of a record type
elsif Ekind (Full_Typ) = E_Record_Type then
Add_Record_Component_Invariants (Full_Typ, Obj_Id, Stmts);
-- Process the components of a corresponding record
elsif Present (CRec_Typ) then
Add_Record_Component_Invariants (CRec_Typ, Obj_Id, Stmts);
end if;
-- Process the inherited class-wide invariants of all parent types.
-- This also handles any invariants on record components.
Add_Parent_Invariants (Full_Typ, Obj_Id, Stmts);
-- Process the inherited class-wide invariants of all implemented
-- interface types.
Add_Interface_Invariants (Full_Typ, Obj_Id, Stmts);
end if;
End_Scope;
-- At this point there should be at least one invariant check. If this
-- is not the case, then the invariant-related flags were not properly
-- set, or there is a missing invariant procedure on one of the array
-- or record components.
pragma Assert (Produced_Check);
-- Account for the case where assertions are disabled or all invariant
-- checks are subject to Assertion_Policy Ignore. Produce a completing
-- empty body.
if No (Stmts) then
Stmts := New_List (Make_Null_Statement (Loc));
end if;
-- Generate:
-- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>) is
-- begin
-- <Stmts>
-- end <Work_Typ>[Partial_]Invariant;
Proc_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Subprogram_Spec (Parent (Proc_Id)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts));
Proc_Body_Id := Defining_Entity (Proc_Body);
-- Perform minor decoration in case the body is not analyzed
Set_Ekind (Proc_Body_Id, E_Subprogram_Body);
Set_Etype (Proc_Body_Id, Standard_Void_Type);
Set_Scope (Proc_Body_Id, Current_Scope);
-- Link both spec and body to avoid generating duplicates
Set_Corresponding_Body (Proc_Decl, Proc_Body_Id);
Set_Corresponding_Spec (Proc_Body, Proc_Id);
-- The body should not be inserted into the tree when the context is
-- a generic unit because it is not part of the template. Note
-- that the body must still be generated in order to resolve the
-- invariants.
if Inside_A_Generic then
null;
-- Semi-insert the body into the tree for GNATprove by setting its
-- Parent field. This allows for proper upstream tree traversals.
elsif GNATprove_Mode then
Set_Parent (Proc_Body, Parent (Declaration_Node (Work_Typ)));
-- Otherwise the body is part of the freezing actions of the type
else
Append_Freeze_Action (Work_Typ, Proc_Body);
end if;
<<Leave>>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
end Build_Invariant_Procedure_Body;
-------------------------------------------
-- Build_Invariant_Procedure_Declaration --
-------------------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Build_Invariant_Procedure_Declaration
(Typ : Entity_Id;
Partial_Invariant : Boolean := False)
is
Loc : constant Source_Ptr := Sloc (Typ);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Proc_Nam : Name_Id;
Typ_Decl : Node_Id;
CRec_Typ : Entity_Id;
-- The corresponding record type of Full_Typ
Full_Typ : Entity_Id;
-- The full view of working type
Obj_Id : Entity_Id;
-- The _object formal parameter of the invariant procedure
Obj_Typ : Entity_Id;
-- The type of the _object formal parameter
Priv_Typ : Entity_Id;
-- The partial view of working type
UFull_Typ : Entity_Id;
-- The underlying full view of Full_Typ
Work_Typ : Entity_Id;
-- The working type
begin
Work_Typ := Typ;
-- The input type denotes the implementation base type of a constrained
-- array type. Work with the first subtype as all invariant pragmas are
-- on its rep item chain.
if Ekind (Work_Typ) = E_Array_Type and then Is_Itype (Work_Typ) then
Work_Typ := First_Subtype (Work_Typ);
-- The input denotes the corresponding record type of a protected or a
-- task type. Work with the concurrent type because the corresponding
-- record type may not be visible to clients of the type.
elsif Ekind (Work_Typ) = E_Record_Type
and then Is_Concurrent_Record_Type (Work_Typ)
then
Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
end if;
-- The working type may be subject to pragma Ghost. Set the mode now to
-- ensure that the invariant procedure is properly marked as Ghost.
Set_Ghost_Mode (Work_Typ);
-- The type must either have invariants of its own, inherit class-wide
-- invariants from parent or interface types, or be an array or record
-- type whose components have invariants.
pragma Assert (Has_Invariants (Work_Typ));
-- Nothing to do if the type already has a "partial" invariant procedure
if Partial_Invariant then
if Present (Partial_Invariant_Procedure (Work_Typ)) then
goto Leave;
end if;
-- Nothing to do if the type already has a "full" invariant procedure
elsif Present (Invariant_Procedure (Work_Typ)) then
goto Leave;
end if;
-- The caller requests the declaration of the "partial" invariant
-- procedure.
if Partial_Invariant then
Proc_Nam := New_External_Name (Chars (Work_Typ), "Partial_Invariant");
-- Otherwise the caller requests the declaration of the "full" invariant
-- procedure.
else
Proc_Nam := New_External_Name (Chars (Work_Typ), "Invariant");
end if;
Proc_Id := Make_Defining_Identifier (Loc, Chars => Proc_Nam);
-- Perform minor decoration in case the declaration is not analyzed
Set_Ekind (Proc_Id, E_Procedure);
Set_Etype (Proc_Id, Standard_Void_Type);
Set_Scope (Proc_Id, Current_Scope);
if Partial_Invariant then
Set_Is_Partial_Invariant_Procedure (Proc_Id);
Set_Partial_Invariant_Procedure (Work_Typ, Proc_Id);
else
Set_Is_Invariant_Procedure (Proc_Id);
Set_Invariant_Procedure (Work_Typ, Proc_Id);
end if;
-- The invariant procedure requires debug info when the invariants are
-- subject to Source Coverage Obligations.
if Generate_SCO then
Set_Debug_Info_Needed (Proc_Id);
end if;
-- Obtain all views of the input type
Get_Views (Work_Typ, Priv_Typ, Full_Typ, UFull_Typ, CRec_Typ);
-- Associate the invariant procedure and various flags with all views
Propagate_Invariant_Attributes (Priv_Typ, From_Typ => Work_Typ);
Propagate_Invariant_Attributes (Full_Typ, From_Typ => Work_Typ);
Propagate_Invariant_Attributes (UFull_Typ, From_Typ => Work_Typ);
Propagate_Invariant_Attributes (CRec_Typ, From_Typ => Work_Typ);
-- The declaration of the invariant procedure is inserted after the
-- declaration of the partial view as this allows for proper external
-- visibility.
if Present (Priv_Typ) then
Typ_Decl := Declaration_Node (Priv_Typ);
-- Anonymous arrays in object declarations have no explicit declaration
-- so use the related object declaration as the insertion point.
elsif Is_Itype (Work_Typ) and then Is_Array_Type (Work_Typ) then
Typ_Decl := Associated_Node_For_Itype (Work_Typ);
-- Derived types with the full view as parent do not have a partial
-- view. Insert the invariant procedure after the derived type.
else
Typ_Decl := Declaration_Node (Full_Typ);
end if;
-- The type should have a declarative node
pragma Assert (Present (Typ_Decl));
-- Create the formal parameter which emulates the variable-like behavior
-- of the current type instance.
Obj_Id := Make_Defining_Identifier (Loc, Chars => Name_uObject);
-- When generating an invariant procedure declaration for an abstract
-- type (including interfaces), use the class-wide type as the _object
-- type. This has several desirable effects:
-- * The invariant procedure does not become a primitive of the type.
-- This eliminates the need to either special case the treatment of
-- invariant procedures, or to make it a predefined primitive and
-- force every derived type to potentially provide an empty body.
-- * The invariant procedure does not need to be declared as abstract.
-- This allows for a proper body, which in turn avoids redundant
-- processing of the same invariants for types with multiple views.
-- * The class-wide type allows for calls to abstract primitives
-- within a nonabstract subprogram. The calls are treated as
-- dispatching and require additional processing when they are
-- remapped to call primitives of derived types. See routine
-- Replace_References for details.
if Is_Abstract_Type (Work_Typ) then
Obj_Typ := Class_Wide_Type (Work_Typ);
else
Obj_Typ := Work_Typ;
end if;
-- Perform minor decoration in case the declaration is not analyzed
Set_Ekind (Obj_Id, E_In_Parameter);
Set_Etype (Obj_Id, Obj_Typ);
Set_Scope (Obj_Id, Proc_Id);
Set_First_Entity (Proc_Id, Obj_Id);
Set_Last_Entity (Proc_Id, Obj_Id);
-- Generate:
-- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>);
Proc_Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Obj_Id,
Parameter_Type => New_Occurrence_Of (Obj_Typ, Loc)))));
-- The declaration should not be inserted into the tree when the context
-- is a generic unit because it is not part of the template.
if Inside_A_Generic then
null;
-- Semi-insert the declaration into the tree for GNATprove by setting
-- its Parent field. This allows for proper upstream tree traversals.
elsif GNATprove_Mode then
Set_Parent (Proc_Decl, Parent (Typ_Decl));
-- Otherwise insert the declaration
else
pragma Assert (Present (Typ_Decl));
Insert_After_And_Analyze (Typ_Decl, Proc_Decl);
end if;
<<Leave>>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
end Build_Invariant_Procedure_Declaration;
--------------------------
-- Build_Procedure_Form --
--------------------------
procedure Build_Procedure_Form (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Subp : constant Entity_Id := Defining_Entity (N);
Func_Formal : Entity_Id;
Proc_Formals : List_Id;
Proc_Decl : Node_Id;
begin
-- No action needed if this transformation was already done, or in case
-- of subprogram renaming declarations.
if Nkind (Specification (N)) = N_Procedure_Specification
or else Nkind (N) = N_Subprogram_Renaming_Declaration
then
return;
end if;
-- Ditto when dealing with an expression function, where both the
-- original expression and the generated declaration end up being
-- expanded here.
if Rewritten_For_C (Subp) then
return;
end if;
Proc_Formals := New_List;
-- Create a list of formal parameters with the same types as the
-- function.
Func_Formal := First_Formal (Subp);
while Present (Func_Formal) loop
Append_To (Proc_Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars (Func_Formal)),
Parameter_Type =>
New_Occurrence_Of (Etype (Func_Formal), Loc)));
Next_Formal (Func_Formal);
end loop;
-- Add an extra out parameter to carry the function result
Name_Len := 6;
Name_Buffer (1 .. Name_Len) := "RESULT";
Append_To (Proc_Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars => Name_Find),
Out_Present => True,
Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
-- The new procedure declaration is inserted immediately after the
-- function declaration. The processing in Build_Procedure_Body_Form
-- relies on this order.
Proc_Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc, Chars (Subp)),
Parameter_Specifications => Proc_Formals));
Insert_After_And_Analyze (Unit_Declaration_Node (Subp), Proc_Decl);
-- Entity of procedure must remain invisible so that it does not
-- overload subsequent references to the original function.
Set_Is_Immediately_Visible (Defining_Entity (Proc_Decl), False);
-- Mark the function as having a procedure form and link the function
-- and its internally built procedure.
Set_Rewritten_For_C (Subp);
Set_Corresponding_Procedure (Subp, Defining_Entity (Proc_Decl));
Set_Corresponding_Function (Defining_Entity (Proc_Decl), Subp);
end Build_Procedure_Form;
------------------------
-- Build_Runtime_Call --
------------------------
function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
begin
-- If entity is not available, we can skip making the call (this avoids
-- junk duplicated error messages in a number of cases).
if not RTE_Available (RE) then
return Make_Null_Statement (Loc);
else
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (RE), Loc));
end if;
end Build_Runtime_Call;
------------------------
-- Build_SS_Mark_Call --
------------------------
function Build_SS_Mark_Call
(Loc : Source_Ptr;
Mark : Entity_Id) return Node_Id
is
begin
-- Generate:
-- Mark : constant Mark_Id := SS_Mark;
return
Make_Object_Declaration (Loc,
Defining_Identifier => Mark,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Mark_Id), Loc),
Expression =>
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_SS_Mark), Loc)));
end Build_SS_Mark_Call;
---------------------------
-- Build_SS_Release_Call --
---------------------------
function Build_SS_Release_Call
(Loc : Source_Ptr;
Mark : Entity_Id) return Node_Id
is
begin
-- Generate:
-- SS_Release (Mark);
return
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_SS_Release), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Mark, Loc)));
end Build_SS_Release_Call;
----------------------------
-- Build_Task_Array_Image --
----------------------------
-- This function generates the body for a function that constructs the
-- image string for a task that is an array component. The function is
-- local to the init proc for the array type, and is called for each one
-- of the components. The constructed image has the form of an indexed
-- component, whose prefix is the outer variable of the array type.
-- The n-dimensional array type has known indexes Index, Index2...
-- Id_Ref is an indexed component form created by the enclosing init proc.
-- Its successive indexes are Val1, Val2, ... which are the loop variables
-- in the loops that call the individual task init proc on each component.
-- The generated function has the following structure:
-- function F return String is
-- Pref : string renames Task_Name;
-- T1 : String := Index1'Image (Val1);
-- ...
-- Tn : String := indexn'image (Valn);
-- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
-- -- Len includes commas and the end parentheses.
-- Res : String (1..Len);
-- Pos : Integer := Pref'Length;
--
-- begin
-- Res (1 .. Pos) := Pref;
-- Pos := Pos + 1;
-- Res (Pos) := '(';
-- Pos := Pos + 1;
-- Res (Pos .. Pos + T1'Length - 1) := T1;
-- Pos := Pos + T1'Length;
-- Res (Pos) := '.';
-- Pos := Pos + 1;
-- ...
-- Res (Pos .. Pos + Tn'Length - 1) := Tn;
-- Res (Len) := ')';
--
-- return Res;
-- end F;
--
-- Needless to say, multidimensional arrays of tasks are rare enough that
-- the bulkiness of this code is not really a concern.
function Build_Task_Array_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
Dyn : Boolean := False) return Node_Id
is
Dims : constant Nat := Number_Dimensions (A_Type);
-- Number of dimensions for array of tasks
Temps : array (1 .. Dims) of Entity_Id;
-- Array of temporaries to hold string for each index
Indx : Node_Id;
-- Index expression
Len : Entity_Id;
-- Total length of generated name
Pos : Entity_Id;
-- Running index for substring assignments
Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
-- Name of enclosing variable, prefix of resulting name
Res : Entity_Id;
-- String to hold result
Val : Node_Id;
-- Value of successive indexes
Sum : Node_Id;
-- Expression to compute total size of string
T : Entity_Id;
-- Entity for name at one index position
Decls : constant List_Id := New_List;
Stats : constant List_Id := New_List;
begin
-- For a dynamic task, the name comes from the target variable. For a
-- static one it is a formal of the enclosing init proc.
if Dyn then
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pref,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pref,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Name => Make_Identifier (Loc, Name_uTask_Name)));
end if;
Indx := First_Index (A_Type);
Val := First (Expressions (Id_Ref));
for J in 1 .. Dims loop
T := Make_Temporary (Loc, 'T');
Temps (J) := T;
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => T,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Image,
Prefix => New_Occurrence_Of (Etype (Indx), Loc),
Expressions => New_List (New_Copy_Tree (Val)))));
Next_Index (Indx);
Next (Val);
end loop;
Sum := Make_Integer_Literal (Loc, Dims + 1);
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Pref, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
for J in 1 .. Dims loop
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Temps (J), Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
end loop;
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => UI_From_Int (Character'Pos ('(')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
for J in 1 .. Dims loop
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Pos, Loc),
High_Bound =>
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Temps (J), Loc),
Expressions =>
New_List (Make_Integer_Literal (Loc, 1)))),
Right_Opnd => Make_Integer_Literal (Loc, 1)))),
Expression => New_Occurrence_Of (Temps (J), Loc)));
if J < Dims then
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Temps (J), Loc),
Expressions =>
New_List (Make_Integer_Literal (Loc, 1))))));
Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => UI_From_Int (Character'Pos (',')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
end if;
end loop;
Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Len, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => UI_From_Int (Character'Pos (')')))));
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
end Build_Task_Array_Image;
----------------------------
-- Build_Task_Image_Decls --
----------------------------
function Build_Task_Image_Decls
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
In_Init_Proc : Boolean := False) return List_Id
is
Decls : constant List_Id := New_List;
T_Id : Entity_Id := Empty;
Decl : Node_Id;
Expr : Node_Id := Empty;
Fun : Node_Id := Empty;
Is_Dyn : constant Boolean :=
Nkind (Parent (Id_Ref)) = N_Assignment_Statement
and then
Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
begin
-- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
-- generate a dummy declaration only.
if Restriction_Active (No_Implicit_Heap_Allocations)
or else Global_Discard_Names
then
T_Id := Make_Temporary (Loc, 'J');
Name_Len := 0;
return
New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => T_Id,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
if Nkind (Id_Ref) = N_Identifier
or else Nkind (Id_Ref) = N_Defining_Identifier
then
-- For a simple variable, the image of the task is built from
-- the name of the variable. To avoid possible conflict with the
-- anonymous type created for a single protected object, add a
-- numeric suffix.
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Id_Ref), 'T', 1));
Get_Name_String (Chars (Id_Ref));
Expr :=
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer);
elsif Nkind (Id_Ref) = N_Selected_Component then
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
elsif Nkind (Id_Ref) = N_Indexed_Component then
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (A_Type), 'N'));
Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
end if;
end if;
if Present (Fun) then
Append (Fun, Decls);
Expr := Make_Function_Call (Loc,
Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
if not In_Init_Proc then
Set_Uses_Sec_Stack (Defining_Entity (Fun));
end if;
end if;
Decl := Make_Object_Declaration (Loc,
Defining_Identifier => T_Id,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Constant_Present => True,
Expression => Expr);
Append (Decl, Decls);
return Decls;
end Build_Task_Image_Decls;
-------------------------------
-- Build_Task_Image_Function --
-------------------------------
function Build_Task_Image_Function
(Loc : Source_Ptr;
Decls : List_Id;
Stats : List_Id;
Res : Entity_Id) return Node_Id
is
Spec : Node_Id;
begin
Append_To (Stats,
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Res, Loc)));
Spec := Make_Function_Specification (Loc,
Defining_Unit_Name => Make_Temporary (Loc, 'F'),
Result_Definition => New_Occurrence_Of (Standard_String, Loc));
-- Calls to 'Image use the secondary stack, which must be cleaned up
-- after the task name is built.
return Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
end Build_Task_Image_Function;
-----------------------------
-- Build_Task_Image_Prefix --
-----------------------------
procedure Build_Task_Image_Prefix
(Loc : Source_Ptr;
Len : out Entity_Id;
Res : out Entity_Id;
Pos : out Entity_Id;
Prefix : Entity_Id;
Sum : Node_Id;
Decls : List_Id;
Stats : List_Id)
is
begin
Len := Make_Temporary (Loc, 'L', Sum);
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Len,
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
Expression => Sum));
Res := Make_Temporary (Loc, 'R');
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Res,
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints =>
New_List (
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound => New_Occurrence_Of (Len, Loc)))))));
-- Indicate that the result is an internal temporary, so it does not
-- receive a bogus initialization when declaration is expanded. This
-- is both efficient, and prevents anomalies in the handling of
-- dynamic objects on the secondary stack.
Set_Is_Internal (Res);
Pos := Make_Temporary (Loc, 'P');
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pos,
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
-- Pos := Prefix'Length;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Prefix, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1)))));
-- Res (1 .. Pos) := Prefix;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound => New_Occurrence_Of (Pos, Loc))),
Expression => New_Occurrence_Of (Prefix, Loc)));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
end Build_Task_Image_Prefix;
-----------------------------
-- Build_Task_Record_Image --
-----------------------------
function Build_Task_Record_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Dyn : Boolean := False) return Node_Id
is
Len : Entity_Id;
-- Total length of generated name
Pos : Entity_Id;
-- Index into result
Res : Entity_Id;
-- String to hold result
Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
-- Name of enclosing variable, prefix of resulting name
Sum : Node_Id;
-- Expression to compute total size of string
Sel : Entity_Id;
-- Entity for selector name
Decls : constant List_Id := New_List;
Stats : constant List_Id := New_List;
begin
-- For a dynamic task, the name comes from the target variable. For a
-- static one it is a formal of the enclosing init proc.
if Dyn then
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pref,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pref,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Name => Make_Identifier (Loc, Name_uTask_Name)));
end if;
Sel := Make_Temporary (Loc, 'S');
Get_Name_String (Chars (Selector_Name (Id_Ref)));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Sel,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Pref, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
-- Res (Pos) := '.';
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value =>
UI_From_Int (Character'Pos ('.')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
-- Res (Pos .. Len) := Selector;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Pos, Loc),
High_Bound => New_Occurrence_Of (Len, Loc))),
Expression => New_Occurrence_Of (Sel, Loc)));
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
end Build_Task_Record_Image;
---------------------------------------
-- Build_Transient_Object_Statements --
---------------------------------------
procedure Build_Transient_Object_Statements
(Obj_Decl : Node_Id;
Fin_Call : out Node_Id;
Hook_Assign : out Node_Id;
Hook_Clear : out Node_Id;
Hook_Decl : out Node_Id;
Ptr_Decl : out Node_Id;
Finalize_Obj : Boolean := True)
is
Loc : constant Source_Ptr := Sloc (Obj_Decl);
Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
Desig_Typ : Entity_Id;
Hook_Expr : Node_Id;
Hook_Id : Entity_Id;
Obj_Ref : Node_Id;
Ptr_Typ : Entity_Id;
begin
-- Recover the type of the object
Desig_Typ := Obj_Typ;
if Is_Access_Type (Desig_Typ) then
Desig_Typ := Available_View (Designated_Type (Desig_Typ));
end if;
-- Create an access type which provides a reference to the transient
-- object. Generate:
-- type Ptr_Typ is access all Desig_Typ;
Ptr_Typ := Make_Temporary (Loc, 'A');
Set_Ekind (Ptr_Typ, E_General_Access_Type);
Set_Directly_Designated_Type (Ptr_Typ, Desig_Typ);
Ptr_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ptr_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc)));
-- Create a temporary check which acts as a hook to the transient
-- object. Generate:
-- Hook : Ptr_Typ := null;
Hook_Id := Make_Temporary (Loc, 'T');
Set_Ekind (Hook_Id, E_Variable);
Set_Etype (Hook_Id, Ptr_Typ);
Hook_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Hook_Id,
Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
Expression => Make_Null (Loc));
-- Mark the temporary as a hook. This signals the machinery in
-- Build_Finalizer to recognize this special case.
Set_Status_Flag_Or_Transient_Decl (Hook_Id, Obj_Decl);
-- Hook the transient object to the temporary. Generate:
-- Hook := Ptr_Typ (Obj_Id);
-- <or>
-- Hool := Obj_Id'Unrestricted_Access;
if Is_Access_Type (Obj_Typ) then
Hook_Expr :=
Unchecked_Convert_To (Ptr_Typ, New_Occurrence_Of (Obj_Id, Loc));
else
Hook_Expr :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Obj_Id, Loc),
Attribute_Name => Name_Unrestricted_Access);
end if;
Hook_Assign :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Hook_Id, Loc),
Expression => Hook_Expr);
-- Crear the hook prior to finalizing the object. Generate:
-- Hook := null;
Hook_Clear :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Hook_Id, Loc),
Expression => Make_Null (Loc));
-- Finalize the object. Generate:
-- [Deep_]Finalize (Obj_Ref[.all]);
if Finalize_Obj then
Obj_Ref := New_Occurrence_Of (Obj_Id, Loc);
if Is_Access_Type (Obj_Typ) then
Obj_Ref := Make_Explicit_Dereference (Loc, Obj_Ref);
Set_Etype (Obj_Ref, Desig_Typ);
end if;
Fin_Call :=
Make_Final_Call
(Obj_Ref => Obj_Ref,
Typ => Desig_Typ);
-- Otherwise finalize the hook. Generate:
-- [Deep_]Finalize (Hook.all);
else
Fin_Call :=
Make_Final_Call (
Obj_Ref =>
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Hook_Id, Loc)),
Typ => Desig_Typ);
end if;
end Build_Transient_Object_Statements;
-----------------------------
-- Check_Float_Op_Overflow --
-----------------------------
procedure Check_Float_Op_Overflow (N : Node_Id) is
begin
-- Return if no check needed
if not Is_Floating_Point_Type (Etype (N))
or else not (Do_Overflow_Check (N) and then Check_Float_Overflow)
-- In CodePeer_Mode, rely on the overflow check flag being set instead
-- and do not expand the code for float overflow checking.
or else CodePeer_Mode
then
return;
end if;
-- Otherwise we replace the expression by
-- do Tnn : constant ftype := expression;
-- constraint_error when not Tnn'Valid;
-- in Tnn;
declare
Loc : constant Source_Ptr := Sloc (N);
Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
Typ : constant Entity_Id := Etype (N);
begin
-- Turn off the Do_Overflow_Check flag, since we are doing that work
-- right here. We also set the node as analyzed to prevent infinite
-- recursion from repeating the operation in the expansion.
Set_Do_Overflow_Check (N, False);
Set_Analyzed (N, True);
-- Do the rewrite to include the check
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Tnn,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Constant_Present => True,
Expression => Relocate_Node (N)),
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Not (Loc,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Tnn, Loc),
Attribute_Name => Name_Valid)),
Reason => CE_Overflow_Check_Failed)),
Expression => New_Occurrence_Of (Tnn, Loc)));
Analyze_And_Resolve (N, Typ);
end;
end Check_Float_Op_Overflow;
----------------------------------
-- Component_May_Be_Bit_Aligned --
----------------------------------
function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
UT : Entity_Id;
begin
-- If no component clause, then everything is fine, since the back end
-- never misaligns from byte boundaries by default, even if there is a
-- pragma Pack for the record.
if No (Comp) or else No (Component_Clause (Comp)) then
return False;
end if;
UT := Underlying_Type (Etype (Comp));
-- It is only array and record types that cause trouble
if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then
return False;
-- If we know that we have a small (at most the maximum integer size)
-- record or bit-packed array, then everything is fine, since the back
-- end can handle these cases correctly.
elsif Esize (Comp) <= System_Max_Integer_Size
and then (Is_Record_Type (UT) or else Is_Bit_Packed_Array (UT))
then
return False;
-- Otherwise if the component is not byte aligned, we know we have the
-- nasty unaligned case.
elsif Normalized_First_Bit (Comp) /= Uint_0
or else Esize (Comp) mod System_Storage_Unit /= Uint_0
then
return True;
-- If we are large and byte aligned, then OK at this level
else
return False;
end if;
end Component_May_Be_Bit_Aligned;
-------------------------------
-- Convert_To_Actual_Subtype --
-------------------------------
procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
Act_ST : Entity_Id;
begin
Act_ST := Get_Actual_Subtype (Exp);
if Act_ST = Etype (Exp) then
return;
else
Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Act_ST);
end if;
end Convert_To_Actual_Subtype;
-----------------------------------
-- Corresponding_Runtime_Package --
-----------------------------------
function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean;
-- Return True if protected type T has one entry and the maximum queue
-- length is one.
--------------------------------
-- Has_One_Entry_And_No_Queue --
--------------------------------
function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean is
Item : Entity_Id;
Is_First : Boolean := True;
begin
Item := First_Entity (T);
while Present (Item) loop
if Is_Entry (Item) then
-- The protected type has more than one entry
if not Is_First then
return False;
end if;
-- The queue length is not one
if not Restriction_Active (No_Entry_Queue)
and then Get_Max_Queue_Length (Item) /= Uint_1
then
return False;
end if;
Is_First := False;
end if;
Next_Entity (Item);
end loop;
return True;
end Has_One_Entry_And_No_Queue;
-- Local variables
Pkg_Id : RTU_Id := RTU_Null;
-- Start of processing for Corresponding_Runtime_Package
begin
pragma Assert (Is_Concurrent_Type (Typ));
if Is_Protected_Type (Typ) then
if Has_Entries (Typ)
-- A protected type without entries that covers an interface and
-- overrides the abstract routines with protected procedures is
-- considered equivalent to a protected type with entries in the
-- context of dispatching select statements. It is sufficient to
-- check for the presence of an interface list in the declaration
-- node to recognize this case.
or else Present (Interface_List (Parent (Typ)))
-- Protected types with interrupt handlers (when not using a
-- restricted profile) are also considered equivalent to
-- protected types with entries. The types which are used
-- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection)
-- are derived from Protection_Entries.
or else (Has_Attach_Handler (Typ) and then not Restricted_Profile)
or else Has_Interrupt_Handler (Typ)
then
if Abort_Allowed
or else Restriction_Active (No_Select_Statements) = False
or else not Has_One_Entry_And_No_Queue (Typ)
or else (Has_Attach_Handler (Typ)
and then not Restricted_Profile)
then
Pkg_Id := System_Tasking_Protected_Objects_Entries;
else
Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
end if;
else
Pkg_Id := System_Tasking_Protected_Objects;
end if;
end if;
return Pkg_Id;
end Corresponding_Runtime_Package;
-----------------------------------
-- Current_Sem_Unit_Declarations --
-----------------------------------
function Current_Sem_Unit_Declarations return List_Id is
U : Node_Id := Unit (Cunit (Current_Sem_Unit));
Decls : List_Id;
begin
-- If the current unit is a package body, locate the visible
-- declarations of the package spec.
if Nkind (U) = N_Package_Body then
U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
end if;
if Nkind (U) = N_Package_Declaration then
U := Specification (U);
Decls := Visible_Declarations (U);
if No (Decls) then
Decls := New_List;
Set_Visible_Declarations (U, Decls);
end if;
else
Decls := Declarations (U);
if No (Decls) then
Decls := New_List;
Set_Declarations (U, Decls);
end if;
end if;
return Decls;
end Current_Sem_Unit_Declarations;
-----------------------
-- Duplicate_Subexpr --
-----------------------
function Duplicate_Subexpr
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False) return Node_Id
is
begin
Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
return New_Copy_Tree (Exp);
end Duplicate_Subexpr;
---------------------------------
-- Duplicate_Subexpr_No_Checks --
---------------------------------
function Duplicate_Subexpr_No_Checks
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False;
Related_Id : Entity_Id := Empty;
Is_Low_Bound : Boolean := False;
Is_High_Bound : Boolean := False) return Node_Id
is
New_Exp : Node_Id;
begin
Remove_Side_Effects
(Exp => Exp,
Name_Req => Name_Req,
Renaming_Req => Renaming_Req,
Related_Id => Related_Id,
Is_Low_Bound => Is_Low_Bound,
Is_High_Bound => Is_High_Bound);
New_Exp := New_Copy_Tree (Exp);
Remove_Checks (New_Exp);
return New_Exp;
end Duplicate_Subexpr_No_Checks;
-----------------------------------
-- Duplicate_Subexpr_Move_Checks --
-----------------------------------
function Duplicate_Subexpr_Move_Checks
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False) return Node_Id
is
New_Exp : Node_Id;
begin
Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
New_Exp := New_Copy_Tree (Exp);
Remove_Checks (Exp);
return New_Exp;
end Duplicate_Subexpr_Move_Checks;
-------------------------
-- Enclosing_Init_Proc --
-------------------------
function Enclosing_Init_Proc return Entity_Id is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Is_Init_Proc (S) then
return S;
else
S := Scope (S);
end if;
end loop;
return Empty;
end Enclosing_Init_Proc;
--------------------
-- Ensure_Defined --
--------------------
procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
IR : Node_Id;
begin
-- An itype reference must only be created if this is a local itype, so
-- that gigi can elaborate it on the proper objstack.
if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then
IR := Make_Itype_Reference (Sloc (N));
Set_Itype (IR, Typ);
Insert_Action (N, IR);
end if;
end Ensure_Defined;
--------------------
-- Entry_Names_OK --
--------------------
function Entry_Names_OK return Boolean is
begin
return
not Restricted_Profile
and then not Global_Discard_Names
and then not Restriction_Active (No_Implicit_Heap_Allocations)
and then not Restriction_Active (No_Local_Allocators);
end Entry_Names_OK;
-------------------
-- Evaluate_Name --
-------------------
procedure Evaluate_Name (Nam : Node_Id) is
begin
case Nkind (Nam) is
-- For an aggregate, force its evaluation
when N_Aggregate =>
Force_Evaluation (Nam);
-- For an attribute reference or an indexed component, evaluate the
-- prefix, which is itself a name, recursively, and then force the
-- evaluation of all the subscripts (or attribute expressions).
when N_Attribute_Reference
| N_Indexed_Component
=>
Evaluate_Name (Prefix (Nam));
declare
E : Node_Id;
begin
E := First (Expressions (Nam));
while Present (E) loop
Force_Evaluation (E);
if Is_Rewrite_Substitution (E) then
Set_Do_Range_Check
(E, Do_Range_Check (Original_Node (E)));
end if;
Next (E);
end loop;
end;
-- For an explicit dereference, we simply force the evaluation of
-- the name expression. The dereference provides a value that is the
-- address for the renamed object, and it is precisely this value
-- that we want to preserve.
when N_Explicit_Dereference =>
Force_Evaluation (Prefix (Nam));
-- For a function call, we evaluate the call; same for an operator
when N_Function_Call
| N_Op
=>
Force_Evaluation (Nam);
-- For a qualified expression, we evaluate the expression
when N_Qualified_Expression =>
Evaluate_Name (Expression (Nam));
-- For a selected component, we simply evaluate the prefix
when N_Selected_Component =>
Evaluate_Name (Prefix (Nam));
-- For a slice, we evaluate the prefix, as for the indexed component
-- case and then, if there is a range present, either directly or as
-- the constraint of a discrete subtype indication, we evaluate the
-- two bounds of this range.
when N_Slice =>
Evaluate_Name (Prefix (Nam));
Evaluate_Slice_Bounds (Nam);
-- For a type conversion, the expression of the conversion must be
-- the name of an object, and we simply need to evaluate this name.
when N_Type_Conversion =>
Evaluate_Name (Expression (Nam));
-- The remaining cases are direct name and character literal. In all
-- these cases, we do nothing, since we want to reevaluate each time
-- the renamed object is used. ??? There are more remaining cases, at
-- least in the GNATprove_Mode, where this routine is called in more
-- contexts than in GNAT.
when others =>
null;
end case;
end Evaluate_Name;
---------------------------
-- Evaluate_Slice_Bounds --
---------------------------
procedure Evaluate_Slice_Bounds (Slice : Node_Id) is
DR : constant Node_Id := Discrete_Range (Slice);
Constr : Node_Id;
Rexpr : Node_Id;
begin
if Nkind (DR) = N_Range then
Force_Evaluation (Low_Bound (DR));
Force_Evaluation (High_Bound (DR));
elsif Nkind (DR) = N_Subtype_Indication then
Constr := Constraint (DR);
if Nkind (Constr) = N_Range_Constraint then
Rexpr := Range_Expression (Constr);
Force_Evaluation (Low_Bound (Rexpr));
Force_Evaluation (High_Bound (Rexpr));
end if;
end if;
end Evaluate_Slice_Bounds;
---------------------
-- Evolve_And_Then --
---------------------
procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
begin
if No (Cond) then
Cond := Cond1;
else
Cond :=
Make_And_Then (Sloc (Cond1),
Left_Opnd => Cond,
Right_Opnd => Cond1);
end if;
end Evolve_And_Then;
--------------------
-- Evolve_Or_Else --
--------------------
procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
begin
if No (Cond) then
Cond := Cond1;
else
Cond :=
Make_Or_Else (Sloc (Cond1),
Left_Opnd => Cond,
Right_Opnd => Cond1);
end if;
end Evolve_Or_Else;
-----------------------------------------
-- Expand_Static_Predicates_In_Choices --
-----------------------------------------
procedure Expand_Static_Predicates_In_Choices (N : Node_Id) is
pragma Assert (Nkind (N) in N_Case_Statement_Alternative | N_Variant);
Choices : constant List_Id := Discrete_Choices (N);
Choice : Node_Id;
Next_C : Node_Id;
P : Node_Id;
C : Node_Id;
begin
Choice := First (Choices);
while Present (Choice) loop
Next_C := Next (Choice);
-- Check for name of subtype with static predicate
if Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
and then Has_Predicates (Entity (Choice))
then
-- Loop through entries in predicate list, converting to choices
-- and inserting in the list before the current choice. Note that
-- if the list is empty, corresponding to a False predicate, then
-- no choices are inserted.
P := First (Static_Discrete_Predicate (Entity (Choice)));
while Present (P) loop
-- If low bound and high bounds are equal, copy simple choice
if Expr_Value (Low_Bound (P)) = Expr_Value (High_Bound (P)) then
C := New_Copy (Low_Bound (P));
-- Otherwise copy a range
else
C := New_Copy (P);
end if;
-- Change Sloc to referencing choice (rather than the Sloc of
-- the predicate declaration element itself).
Set_Sloc (C, Sloc (Choice));
Insert_Before (Choice, C);
Next (P);
end loop;
-- Delete the predicated entry
Remove (Choice);
end if;
-- Move to next choice to check
Choice := Next_C;
end loop;
Set_Has_SP_Choice (N, False);
end Expand_Static_Predicates_In_Choices;
------------------------------
-- Expand_Subtype_From_Expr --
------------------------------
-- This function is applicable for both static and dynamic allocation of
-- objects which are constrained by an initial expression. Basically it
-- transforms an unconstrained subtype indication into a constrained one.
-- The expression may also be transformed in certain cases in order to
-- avoid multiple evaluation. In the static allocation case, the general
-- scheme is:
-- Val : T := Expr;
-- is transformed into
-- Val : Constrained_Subtype_Of_T := Maybe_Modified_Expr;
--
-- Here are the main cases :
--
-- <if Expr is a Slice>
-- Val : T ([Index_Subtype (Expr)]) := Expr;
--
-- <elsif Expr is a String Literal>
-- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
--
-- <elsif Expr is Constrained>
-- subtype T is Type_Of_Expr
-- Val : T := Expr;
--
-- <elsif Expr is an entity_name>
-- Val : T (constraints taken from Expr) := Expr;
--
-- <else>
-- type Axxx is access all T;
-- Rval : Axxx := Expr'ref;
-- Val : T (constraints taken from Rval) := Rval.all;
-- ??? note: when the Expression is allocated in the secondary stack
-- we could use it directly instead of copying it by declaring
-- Val : T (...) renames Rval.all
procedure Expand_Subtype_From_Expr
(N : Node_Id;
Unc_Type : Entity_Id;
Subtype_Indic : Node_Id;
Exp : Node_Id;
Related_Id : Entity_Id := Empty)
is
Loc : constant Source_Ptr := Sloc (N);
Exp_Typ : constant Entity_Id := Etype (Exp);
T : Entity_Id;
begin
-- In general we cannot build the subtype if expansion is disabled,
-- because internal entities may not have been defined. However, to
-- avoid some cascaded errors, we try to continue when the expression is
-- an array (or string), because it is safe to compute the bounds. It is
-- in fact required to do so even in a generic context, because there
-- may be constants that depend on the bounds of a string literal, both
-- standard string types and more generally arrays of characters.
-- In GNATprove mode, these extra subtypes are not needed, unless Exp is
-- a static expression. In that case, the subtype will be constrained
-- while the original type might be unconstrained, so expanding the type
-- is necessary both for passing legality checks in GNAT and for precise
-- analysis in GNATprove.
if GNATprove_Mode and then not Is_Static_Expression (Exp) then
return;
end if;
if not Expander_Active
and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp)))
then
return;
end if;
if Nkind (Exp) = N_Slice then
declare
Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
begin
Rewrite (Subtype_Indic,
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List
(New_Occurrence_Of (Slice_Type, Loc)))));
-- This subtype indication may be used later for constraint checks
-- we better make sure that if a variable was used as a bound of
-- the original slice, its value is frozen.
Evaluate_Slice_Bounds (Exp);
end;
elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
Rewrite (Subtype_Indic,
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
Make_Literal_Range (Loc,
Literal_Typ => Exp_Typ)))));
-- If the type of the expression is an internally generated type it
-- may not be necessary to create a new subtype. However there are two
-- exceptions: references to the current instances, and aliased array
-- object declarations for which the back end has to create a template.
elsif Is_Constrained (Exp_Typ)
and then not Is_Class_Wide_Type (Unc_Type)
and then
(Nkind (N) /= N_Object_Declaration
or else not Is_Entity_Name (Expression (N))
or else not Comes_From_Source (Entity (Expression (N)))
or else not Is_Array_Type (Exp_Typ)
or else not Aliased_Present (N))
then
if Is_Itype (Exp_Typ) then
-- Within an initialization procedure, a selected component
-- denotes a component of the enclosing record, and it appears as
-- an actual in a call to its own initialization procedure. If
-- this component depends on the outer discriminant, we must
-- generate the proper actual subtype for it.
if Nkind (Exp) = N_Selected_Component
and then Within_Init_Proc
then
declare
Decl : constant Node_Id :=
Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
begin
if Present (Decl) then
Insert_Action (N, Decl);
T := Defining_Identifier (Decl);
else
T := Exp_Typ;
end if;
end;
-- No need to generate a new subtype
else
T := Exp_Typ;
end if;
else
T := Make_Temporary (Loc, 'T');
Insert_Action (N,
Make_Subtype_Declaration (Loc,
Defining_Identifier => T,
Subtype_Indication => New_Occurrence_Of (Exp_Typ, Loc)));
-- This type is marked as an itype even though it has an explicit
-- declaration since otherwise Is_Generic_Actual_Type can get
-- set, resulting in the generation of spurious errors. (See
-- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
Set_Is_Itype (T);
Set_Associated_Node_For_Itype (T, Exp);
end if;
Rewrite (Subtype_Indic, New_Occurrence_Of (T, Loc));
-- Nothing needs to be done for private types with unknown discriminants
-- if the underlying type is not an unconstrained composite type or it
-- is an unchecked union.
elsif Is_Private_Type (Unc_Type)
and then Has_Unknown_Discriminants (Unc_Type)
and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
or else Is_Constrained (Underlying_Type (Unc_Type))
or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
then
null;
-- Case of derived type with unknown discriminants where the parent type
-- also has unknown discriminants.
elsif Is_Record_Type (Unc_Type)
and then not Is_Class_Wide_Type (Unc_Type)
and then Has_Unknown_Discriminants (Unc_Type)
and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
then
-- Nothing to be done if no underlying record view available
-- If this is a limited type derived from a type with unknown
-- discriminants, do not expand either, so that subsequent expansion
-- of the call can add build-in-place parameters to call.
if No (Underlying_Record_View (Unc_Type))
or else Is_Limited_Type (Unc_Type)
then
null;
-- Otherwise use the Underlying_Record_View to create the proper
-- constrained subtype for an object of a derived type with unknown
-- discriminants.
else
Remove_Side_Effects (Exp);
Rewrite (Subtype_Indic,
Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
end if;
-- Renamings of class-wide interface types require no equivalent
-- constrained type declarations because we only need to reference
-- the tag component associated with the interface. The same is
-- presumably true for class-wide types in general, so this test
-- is broadened to include all class-wide renamings, which also
-- avoids cases of unbounded recursion in Remove_Side_Effects.
-- (Is this really correct, or are there some cases of class-wide
-- renamings that require action in this procedure???)
elsif Present (N)
and then Nkind (N) = N_Object_Renaming_Declaration
and then Is_Class_Wide_Type (Unc_Type)
then
null;
-- In Ada 95 nothing to be done if the type of the expression is limited
-- because in this case the expression cannot be copied, and its use can
-- only be by reference.
-- In Ada 2005 the context can be an object declaration whose expression
-- is a function that returns in place. If the nominal subtype has
-- unknown discriminants, the call still provides constraints on the
-- object, and we have to create an actual subtype from it.
-- If the type is class-wide, the expression is dynamically tagged and
-- we do not create an actual subtype either. Ditto for an interface.
-- For now this applies only if the type is immutably limited, and the
-- function being called is build-in-place. This will have to be revised
-- when build-in-place functions are generalized to other types.
elsif Is_Limited_View (Exp_Typ)
and then
(Is_Class_Wide_Type (Exp_Typ)
or else Is_Interface (Exp_Typ)
or else not Has_Unknown_Discriminants (Exp_Typ)
or else not Is_Composite_Type (Unc_Type))
then
null;
-- For limited objects initialized with build in place function calls,
-- nothing to be done; otherwise we prematurely introduce an N_Reference
-- node in the expression initializing the object, which breaks the
-- circuitry that detects and adds the additional arguments to the
-- called function.
elsif Is_Build_In_Place_Function_Call (Exp) then
null;
else
Remove_Side_Effects (Exp);
Rewrite (Subtype_Indic,
Make_Subtype_From_Expr (Exp, Unc_Type, Related_Id));
end if;
end Expand_Subtype_From_Expr;
---------------------------------------------
-- Expression_Contains_Primitives_Calls_Of --
---------------------------------------------
function Expression_Contains_Primitives_Calls_Of
(Expr : Node_Id;
Typ : Entity_Id) return Boolean
is
U_Typ : constant Entity_Id := Unique_Entity (Typ);
Calls_OK : Boolean := False;
-- This flag is set to True when expression Expr contains at least one
-- call to a nondispatching primitive function of Typ.
function Search_Primitive_Calls (N : Node_Id) return Traverse_Result;
-- Search for nondispatching calls to primitive functions of type Typ
----------------------------
-- Search_Primitive_Calls --
----------------------------
function Search_Primitive_Calls (N : Node_Id) return Traverse_Result is
Disp_Typ : Entity_Id;
Subp : Entity_Id;
begin
-- Detect a function call that could denote a nondispatching
-- primitive of the input type.
if Nkind (N) = N_Function_Call
and then Is_Entity_Name (Name (N))
then
Subp := Entity (Name (N));
-- Do not consider function calls with a controlling argument, as
-- those are always dispatching calls.
if Is_Dispatching_Operation (Subp)
and then No (Controlling_Argument (N))
then
Disp_Typ := Find_Dispatching_Type (Subp);
-- To qualify as a suitable primitive, the dispatching type of
-- the function must be the input type.
if Present (Disp_Typ)
and then Unique_Entity (Disp_Typ) = U_Typ
then
Calls_OK := True;
-- There is no need to continue the traversal, as one such
-- call suffices.
return Abandon;
end if;
end if;
end if;
return OK;
end Search_Primitive_Calls;
procedure Search_Calls is new Traverse_Proc (Search_Primitive_Calls);
-- Start of processing for Expression_Contains_Primitives_Calls_Of_Type
begin
Search_Calls (Expr);
return Calls_OK;
end Expression_Contains_Primitives_Calls_Of;
----------------------
-- Finalize_Address --
----------------------
function Finalize_Address (Typ : Entity_Id) return Entity_Id is
Btyp : constant Entity_Id := Base_Type (Typ);
Utyp : Entity_Id := Typ;
begin
-- Handle protected class-wide or task class-wide types
if Is_Class_Wide_Type (Utyp) then
if Is_Concurrent_Type (Root_Type (Utyp)) then
Utyp := Root_Type (Utyp);
elsif Is_Private_Type (Root_Type (Utyp))
and then Present (Full_View (Root_Type (Utyp)))
and then Is_Concurrent_Type (Full_View (Root_Type (Utyp)))
then
Utyp := Full_View (Root_Type (Utyp));
end if;
end if;
-- Handle private types
if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then
Utyp := Full_View (Utyp);
end if;
-- Handle protected and task types
if Is_Concurrent_Type (Utyp)
and then Present (Corresponding_Record_Type (Utyp))
then
Utyp := Corresponding_Record_Type (Utyp);
end if;
Utyp := Underlying_Type (Base_Type (Utyp));
-- Deal with untagged derivation of private views. If the parent is
-- now known to be protected, the finalization routine is the one
-- defined on the corresponding record of the ancestor (corresponding
-- records do not automatically inherit operations, but maybe they
-- should???)
if Is_Untagged_Derivation (Btyp) then
if Is_Protected_Type (Btyp) then
Utyp := Corresponding_Record_Type (Root_Type (Btyp));
else
Utyp := Underlying_Type (Root_Type (Btyp));
if Is_Protected_Type (Utyp) then
Utyp := Corresponding_Record_Type (Utyp);
end if;
end if;
end if;
-- If the underlying_type is a subtype, we are dealing with the
-- completion of a private type. We need to access the base type and
-- generate a conversion to it.
if Utyp /= Base_Type (Utyp) then
pragma Assert (Is_Private_Type (Typ));
Utyp := Base_Type (Utyp);
end if;
-- When dealing with an internally built full view for a type with
-- unknown discriminants, use the original record type.
if Is_Underlying_Record_View (Utyp) then
Utyp := Etype (Utyp);
end if;
return TSS (Utyp, TSS_Finalize_Address);
end Finalize_Address;
------------------------
-- Find_Interface_ADT --
------------------------
function Find_Interface_ADT
(T : Entity_Id;
Iface : Entity_Id) return Elmt_Id
is
ADT : Elmt_Id;
Typ : Entity_Id := T;
begin
pragma Assert (Is_Interface (Iface));
-- Handle private types
if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
end if;
-- Handle access types
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Handle task and protected types implementing interfaces
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
pragma Assert
(not Is_Class_Wide_Type (Typ)
and then Ekind (Typ) /= E_Incomplete_Type);
if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
return First_Elmt (Access_Disp_Table (Typ));
else
ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
while Present (ADT)
and then Present (Related_Type (Node (ADT)))
and then Related_Type (Node (ADT)) /= Iface
and then not Is_Ancestor (Iface, Related_Type (Node (ADT)),
Use_Full_View => True)
loop
Next_Elmt (ADT);
end loop;
pragma Assert (Present (Related_Type (Node (ADT))));
return ADT;
end if;
end Find_Interface_ADT;
------------------------
-- Find_Interface_Tag --
------------------------
function Find_Interface_Tag
(T : Entity_Id;
Iface : Entity_Id) return Entity_Id
is
AI_Tag : Entity_Id := Empty;
Found : Boolean := False;
Typ : Entity_Id := T;
procedure Find_Tag (Typ : Entity_Id);
-- Internal subprogram used to recursively climb to the ancestors
--------------
-- Find_Tag --
--------------
procedure Find_Tag (Typ : Entity_Id) is
AI_Elmt : Elmt_Id;
AI : Node_Id;
begin
-- This routine does not handle the case in which the interface is an
-- ancestor of Typ. That case is handled by the enclosing subprogram.
pragma Assert (Typ /= Iface);
-- Climb to the root type handling private types
if Present (Full_View (Etype (Typ))) then
if Full_View (Etype (Typ)) /= Typ then
Find_Tag (Full_View (Etype (Typ)));
end if;
elsif Etype (Typ) /= Typ then
Find_Tag (Etype (Typ));
end if;
-- Traverse the list of interfaces implemented by the type
if not Found
and then Present (Interfaces (Typ))
and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
then
-- Skip the tag associated with the primary table
AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
pragma Assert (Present (AI_Tag));
AI_Elmt := First_Elmt (Interfaces (Typ));
while Present (AI_Elmt) loop
AI := Node (AI_Elmt);
if AI = Iface
or else Is_Ancestor (Iface, AI, Use_Full_View => True)
then
Found := True;
return;
end if;
AI_Tag := Next_Tag_Component (AI_Tag);
Next_Elmt (AI_Elmt);
end loop;
end if;
end Find_Tag;
-- Start of processing for Find_Interface_Tag
begin
pragma Assert (Is_Interface (Iface));
-- Handle access types
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Handle class-wide types
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
-- Handle private types
if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
end if;
-- Handle entities from the limited view
if Ekind (Typ) = E_Incomplete_Type then
pragma Assert (Present (Non_Limited_View (Typ)));
Typ := Non_Limited_View (Typ);
end if;
-- Handle task and protected types implementing interfaces
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
-- If the interface is an ancestor of the type, then it shared the
-- primary dispatch table.
if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
return First_Tag_Component (Typ);
-- Otherwise we need to search for its associated tag component
else
Find_Tag (Typ);
return AI_Tag;
end if;
end Find_Interface_Tag;
---------------------------
-- Find_Optional_Prim_Op --
---------------------------
function Find_Optional_Prim_Op
(T : Entity_Id; Name : Name_Id) return Entity_Id
is
Prim : Elmt_Id;
Typ : Entity_Id := T;
Op : Entity_Id;
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
Typ := Underlying_Type (Typ);
-- Loop through primitive operations
Prim := First_Elmt (Primitive_Operations (Typ));
while Present (Prim) loop
Op := Node (Prim);
-- We can retrieve primitive operations by name if it is an internal
-- name. For equality we must check that both of its operands have
-- the same type, to avoid confusion with user-defined equalities
-- than may have a asymmetric signature.
exit when Chars (Op) = Name
and then
(Name /= Name_Op_Eq
or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op)));
Next_Elmt (Prim);
end loop;
return Node (Prim); -- Empty if not found
end Find_Optional_Prim_Op;
---------------------------
-- Find_Optional_Prim_Op --
---------------------------
function Find_Optional_Prim_Op
(T : Entity_Id;
Name : TSS_Name_Type) return Entity_Id
is
Inher_Op : Entity_Id := Empty;
Own_Op : Entity_Id := Empty;
Prim_Elmt : Elmt_Id;
Prim_Id : Entity_Id;
Typ : Entity_Id := T;
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
Typ := Underlying_Type (Typ);
-- This search is based on the assertion that the dispatching version
-- of the TSS routine always precedes the real primitive.
Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
while Present (Prim_Elmt) loop
Prim_Id := Node (Prim_Elmt);
if Is_TSS (Prim_Id, Name) then
if Present (Alias (Prim_Id)) then
Inher_Op := Prim_Id;
else
Own_Op := Prim_Id;
end if;
end if;
Next_Elmt (Prim_Elmt);
end loop;
if Present (Own_Op) then
return Own_Op;
elsif Present (Inher_Op) then
return Inher_Op;
else
return Empty;
end if;
end Find_Optional_Prim_Op;
------------------
-- Find_Prim_Op --
------------------
function Find_Prim_Op
(T : Entity_Id; Name : Name_Id) return Entity_Id
is
Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name);
begin
if No (Result) then
raise Program_Error;
end if;
return Result;
end Find_Prim_Op;
------------------
-- Find_Prim_Op --
------------------
function Find_Prim_Op
(T : Entity_Id;
Name : TSS_Name_Type) return Entity_Id
is
Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name);
begin
if No (Result) then
raise Program_Error;
end if;
return Result;
end Find_Prim_Op;
----------------------------
-- Find_Protection_Object --
----------------------------
function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
S : Entity_Id;
begin
S := Scop;
while Present (S) loop
if Ekind (S) in E_Entry | E_Entry_Family | E_Function | E_Procedure
and then Present (Protection_Object (S))
then
return Protection_Object (S);
end if;
S := Scope (S);
end loop;
-- If we do not find a Protection object in the scope chain, then
-- something has gone wrong, most likely the object was never created.
raise Program_Error;
end Find_Protection_Object;
--------------------------
-- Find_Protection_Type --
--------------------------
function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is
Comp : Entity_Id;
Typ : Entity_Id := Conc_Typ;
begin
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
-- Since restriction violations are not considered serious errors, the
-- expander remains active, but may leave the corresponding record type
-- malformed. In such cases, component _object is not available so do
-- not look for it.
if not Analyzed (Typ) then
return Empty;
end if;
Comp := First_Component (Typ);
while Present (Comp) loop
if Chars (Comp) = Name_uObject then
return Base_Type (Etype (Comp));
end if;
Next_Component (Comp);
end loop;
-- The corresponding record of a protected type should always have an
-- _object field.
raise Program_Error;
end Find_Protection_Type;
-----------------------
-- Find_Hook_Context --
-----------------------
function Find_Hook_Context (N : Node_Id) return Node_Id is
Par : Node_Id;
Top : Node_Id;
Wrapped_Node : Node_Id;
-- Note: if we are in a transient scope, we want to reuse it as
-- the context for actions insertion, if possible. But if N is itself
-- part of the stored actions for the current transient scope,
-- then we need to insert at the appropriate (inner) location in
-- the not as an action on Node_To_Be_Wrapped.
In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N);
begin
-- When the node is inside a case/if expression, the lifetime of any
-- temporary controlled object is extended. Find a suitable insertion
-- node by locating the topmost case or if expressions.
if In_Cond_Expr then
Par := N;
Top := N;
while Present (Par) loop
if Nkind (Original_Node (Par)) in
N_Case_Expression | N_If_Expression
then
Top := Par;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
-- The topmost case or if expression is now recovered, but it may
-- still not be the correct place to add generated code. Climb to
-- find a parent that is part of a declarative or statement list,
-- and is not a list of actuals in a call.
Par := Top;
while Present (Par) loop
if Is_List_Member (Par)
and then Nkind (Par) not in N_Component_Association
| N_Discriminant_Association
| N_Parameter_Association
| N_Pragma_Argument_Association
and then Nkind (Parent (Par)) not in N_Function_Call
| N_Procedure_Call_Statement
| N_Entry_Call_Statement
then
return Par;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
return Par;
else
Par := N;
while Present (Par) loop
-- Keep climbing past various operators
if Nkind (Parent (Par)) in N_Op
or else Nkind (Parent (Par)) in N_And_Then | N_Or_Else
then
Par := Parent (Par);
else
exit;
end if;
end loop;
Top := Par;
-- The node may be located in a pragma in which case return the
-- pragma itself:
-- pragma Precondition (... and then Ctrl_Func_Call ...);
-- Similar case occurs when the node is related to an object
-- declaration or assignment:
-- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
-- Another case to consider is when the node is part of a return
-- statement:
-- return ... and then Ctrl_Func_Call ...;
-- Another case is when the node acts as a formal in a procedure
-- call statement:
-- Proc (... and then Ctrl_Func_Call ...);
if Scope_Is_Transient then
Wrapped_Node := Node_To_Be_Wrapped;
else
Wrapped_Node := Empty;
end if;
while Present (Par) loop
if Par = Wrapped_Node
or else Nkind (Par) in N_Assignment_Statement
| N_Object_Declaration
| N_Pragma
| N_Procedure_Call_Statement
| N_Simple_Return_Statement
then
return Par;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
-- Return the topmost short circuit operator
return Top;
end if;
end Find_Hook_Context;
------------------------------
-- Following_Address_Clause --
------------------------------
function Following_Address_Clause (D : Node_Id) return Node_Id is
Id : constant Entity_Id := Defining_Identifier (D);
Result : Node_Id;
Par : Node_Id;
function Check_Decls (D : Node_Id) return Node_Id;
-- This internal function differs from the main function in that it
-- gets called to deal with a following package private part, and
-- it checks declarations starting with D (the main function checks
-- declarations following D). If D is Empty, then Empty is returned.
-----------------
-- Check_Decls --
-----------------
function Check_Decls (D : Node_Id) return Node_Id is
Decl : Node_Id;
begin
Decl := D;
while Present (Decl) loop
if Nkind (Decl) = N_At_Clause
and then Chars (Identifier (Decl)) = Chars (Id)
then
return Decl;
elsif Nkind (Decl) = N_Attribute_Definition_Clause
and then Chars (Decl) = Name_Address
and then Chars (Name (Decl)) = Chars (Id)
then
return Decl;
end if;
Next (Decl);
end loop;
-- Otherwise not found, return Empty
return Empty;
end Check_Decls;
-- Start of processing for Following_Address_Clause
begin
-- If parser detected no address clause for the identifier in question,
-- then the answer is a quick NO, without the need for a search.
if not Get_Name_Table_Boolean1 (Chars (Id)) then
return Empty;
end if;
-- Otherwise search current declarative unit
Result := Check_Decls (Next (D));
if Present (Result) then
return Result;
end if;
-- Check for possible package private part following
Par := Parent (D);
if Nkind (Par) = N_Package_Specification
and then Visible_Declarations (Par) = List_Containing (D)
and then Present (Private_Declarations (Par))
then
-- Private part present, check declarations there
return Check_Decls (First (Private_Declarations (Par)));
else
-- No private part, clause not found, return Empty
return Empty;
end if;
end Following_Address_Clause;
----------------------
-- Force_Evaluation --
----------------------
procedure Force_Evaluation
(Exp : Node_Id;
Name_Req : Boolean := False;
Related_Id : Entity_Id := Empty;
Is_Low_Bound : Boolean := False;
Is_High_Bound : Boolean := False;
Mode : Force_Evaluation_Mode := Relaxed)
is
begin
Remove_Side_Effects
(Exp => Exp,
Name_Req => Name_Req,
Variable_Ref => True,
Renaming_Req => False,
Related_Id => Related_Id,
Is_Low_Bound => Is_Low_Bound,
Is_High_Bound => Is_High_Bound,
Check_Side_Effects =>
Is_Static_Expression (Exp)
or else Mode = Relaxed);
end Force_Evaluation;
---------------------------------
-- Fully_Qualified_Name_String --
---------------------------------
function Fully_Qualified_Name_String
(E : Entity_Id;
Append_NUL : Boolean := True) return String_Id
is
procedure Internal_Full_Qualified_Name (E : Entity_Id);
-- Compute recursively the qualified name without NUL at the end, adding
-- it to the currently started string being generated
----------------------------------
-- Internal_Full_Qualified_Name --
----------------------------------
procedure Internal_Full_Qualified_Name (E : Entity_Id) is
Ent : Entity_Id;
begin
-- Deal properly with child units
if Nkind (E) = N_Defining_Program_Unit_Name then
Ent := Defining_Identifier (E);
else
Ent := E;
end if;
-- Compute qualification recursively (only "Standard" has no scope)
if Present (Scope (Scope (Ent))) then
Internal_Full_Qualified_Name (Scope (Ent));
Store_String_Char (Get_Char_Code ('.'));
end if;
-- Every entity should have a name except some expanded blocks
-- don't bother about those.
if Chars (Ent) = No_Name then
return;
end if;
-- Generates the entity name in upper case
Get_Decoded_Name_String (Chars (Ent));
Set_All_Upper_Case;
Store_String_Chars (Name_Buffer (1 .. Name_Len));
return;
end Internal_Full_Qualified_Name;
-- Start of processing for Full_Qualified_Name
begin
Start_String;
Internal_Full_Qualified_Name (E);
if Append_NUL then
Store_String_Char (Get_Char_Code (ASCII.NUL));
end if;
return End_String;
end Fully_Qualified_Name_String;
---------------------------------
-- Get_Current_Value_Condition --
---------------------------------
-- Note: the implementation of this procedure is very closely tied to the
-- implementation of Set_Current_Value_Condition. In the Get procedure, we
-- interpret Current_Value fields set by the Set procedure, so the two
-- procedures need to be closely coordinated.
procedure Get_Current_Value_Condition
(Var : Node_Id;
Op : out Node_Kind;
Val : out Node_Id)
is
Loc : constant Source_Ptr := Sloc (Var);
Ent : constant Entity_Id := Entity (Var);
procedure Process_Current_Value_Condition
(N : Node_Id;
S : Boolean);
-- N is an expression which holds either True (S = True) or False (S =
-- False) in the condition. This procedure digs out the expression and
-- if it refers to Ent, sets Op and Val appropriately.
-------------------------------------
-- Process_Current_Value_Condition --
-------------------------------------
procedure Process_Current_Value_Condition
(N : Node_Id;
S : Boolean)
is
Cond : Node_Id;
Prev_Cond : Node_Id;
Sens : Boolean;
begin
Cond := N;
Sens := S;
loop
Prev_Cond := Cond;
-- Deal with NOT operators, inverting sense
while Nkind (Cond) = N_Op_Not loop
Cond := Right_Opnd (Cond);
Sens := not Sens;
end loop;
-- Deal with conversions, qualifications, and expressions with
-- actions.
while Nkind (Cond) in N_Type_Conversion
| N_Qualified_Expression
| N_Expression_With_Actions
loop
Cond := Expression (Cond);
end loop;
exit when Cond = Prev_Cond;
end loop;
-- Deal with AND THEN and AND cases
if Nkind (Cond) in N_And_Then | N_Op_And then
-- Don't ever try to invert a condition that is of the form of an
-- AND or AND THEN (since we are not doing sufficiently general
-- processing to allow this).
if Sens = False then
Op := N_Empty;
Val := Empty;
return;
end if;
-- Recursively process AND and AND THEN branches
Process_Current_Value_Condition (Left_Opnd (Cond), True);
if Op /= N_Empty then
return;
end if;
Process_Current_Value_Condition (Right_Opnd (Cond), True);
return;
-- Case of relational operator
elsif Nkind (Cond) in N_Op_Compare then
Op := Nkind (Cond);
-- Invert sense of test if inverted test
if Sens = False then
case Op is
when N_Op_Eq => Op := N_Op_Ne;
when N_Op_Ne => Op := N_Op_Eq;
when N_Op_Lt => Op := N_Op_Ge;
when N_Op_Gt => Op := N_Op_Le;
when N_Op_Le => Op := N_Op_Gt;
when N_Op_Ge => Op := N_Op_Lt;
when others => raise Program_Error;
end case;
end if;
-- Case of entity op value
if Is_Entity_Name (Left_Opnd (Cond))
and then Ent = Entity (Left_Opnd (Cond))
and then Compile_Time_Known_Value (Right_Opnd (Cond))
then
Val := Right_Opnd (Cond);
-- Case of value op entity
elsif Is_Entity_Name (Right_Opnd (Cond))
and then Ent = Entity (Right_Opnd (Cond))
and then Compile_Time_Known_Value (Left_Opnd (Cond))
then
Val := Left_Opnd (Cond);
-- We are effectively swapping operands
case Op is
when N_Op_Eq => null;
when N_Op_Ne => null;
when N_Op_Lt => Op := N_Op_Gt;
when N_Op_Gt => Op := N_Op_Lt;
when N_Op_Le => Op := N_Op_Ge;
when N_Op_Ge => Op := N_Op_Le;
when others => raise Program_Error;
end case;
else
Op := N_Empty;
end if;
return;
elsif Nkind (Cond) in N_Type_Conversion
| N_Qualified_Expression
| N_Expression_With_Actions
then
Cond := Expression (Cond);
-- Case of Boolean variable reference, return as though the
-- reference had said var = True.
else
if Is_Entity_Name (Cond) and then Ent = Entity (Cond) then
Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
if Sens = False then
Op := N_Op_Ne;
else
Op := N_Op_Eq;
end if;
end if;
end if;
end Process_Current_Value_Condition;
-- Start of processing for Get_Current_Value_Condition
begin
Op := N_Empty;
Val := Empty;
-- Immediate return, nothing doing, if this is not an object
if not Is_Object (Ent) then
return;
end if;
-- Otherwise examine current value
declare
CV : constant Node_Id := Current_Value (Ent);
Sens : Boolean;
Stm : Node_Id;
begin
-- If statement. Condition is known true in THEN section, known False
-- in any ELSIF or ELSE part, and unknown outside the IF statement.
if Nkind (CV) = N_If_Statement then
-- Before start of IF statement
if Loc < Sloc (CV) then
return;
-- After end of IF statement
elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
return;
end if;
-- At this stage we know that we are within the IF statement, but
-- unfortunately, the tree does not record the SLOC of the ELSE so
-- we cannot use a simple SLOC comparison to distinguish between
-- the then/else statements, so we have to climb the tree.
declare
N : Node_Id;
begin
N := Parent (Var);
while Parent (N) /= CV loop
N := Parent (N);
-- If we fall off the top of the tree, then that's odd, but
-- perhaps it could occur in some error situation, and the
-- safest response is simply to assume that the outcome of
-- the condition is unknown. No point in bombing during an
-- attempt to optimize things.
if No (N) then
return;
end if;
end loop;
-- Now we have N pointing to a node whose parent is the IF
-- statement in question, so now we can tell if we are within
-- the THEN statements.
if Is_List_Member (N)
and then List_Containing (N) = Then_Statements (CV)
then
Sens := True;
-- If the variable reference does not come from source, we
-- cannot reliably tell whether it appears in the else part.
-- In particular, if it appears in generated code for a node
-- that requires finalization, it may be attached to a list
-- that has not been yet inserted into the code. For now,
-- treat it as unknown.
elsif not Comes_From_Source (N) then
return;
-- Otherwise we must be in ELSIF or ELSE part
else
Sens := False;
end if;
end;
-- ELSIF part. Condition is known true within the referenced
-- ELSIF, known False in any subsequent ELSIF or ELSE part,
-- and unknown before the ELSE part or after the IF statement.
elsif Nkind (CV) = N_Elsif_Part then
-- if the Elsif_Part had condition_actions, the elsif has been
-- rewritten as a nested if, and the original elsif_part is
-- detached from the tree, so there is no way to obtain useful
-- information on the current value of the variable.
-- Can this be improved ???
if No (Parent (CV)) then
return;
end if;
Stm := Parent (CV);
-- If the tree has been otherwise rewritten there is nothing
-- else to be done either.
if Nkind (Stm) /= N_If_Statement then
return;
end if;
-- Before start of ELSIF part
if Loc < Sloc (CV) then
return;
-- After end of IF statement
elsif Loc >= Sloc (Stm) +
Text_Ptr (UI_To_Int (End_Span (Stm)))
then
return;
end if;
-- Again we lack the SLOC of the ELSE, so we need to climb the
-- tree to see if we are within the ELSIF part in question.
declare
N : Node_Id;
begin
N := Parent (Var);
while Parent (N) /= Stm loop
N := Parent (N);
-- If we fall off the top of the tree, then that's odd, but
-- perhaps it could occur in some error situation, and the
-- safest response is simply to assume that the outcome of
-- the condition is unknown. No point in bombing during an
-- attempt to optimize things.
if No (N) then
return;
end if;
end loop;
-- Now we have N pointing to a node whose parent is the IF
-- statement in question, so see if is the ELSIF part we want.
-- the THEN statements.
if N = CV then
Sens := True;
-- Otherwise we must be in subsequent ELSIF or ELSE part
else
Sens := False;
end if;
end;
-- Iteration scheme of while loop. The condition is known to be
-- true within the body of the loop.
elsif Nkind (CV) = N_Iteration_Scheme then
declare
Loop_Stmt : constant Node_Id := Parent (CV);
begin
-- Before start of body of loop
if Loc < Sloc (Loop_Stmt) then
return;
-- After end of LOOP statement
elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
return;
-- We are within the body of the loop
else
Sens := True;
end if;
end;
-- All other cases of Current_Value settings
else
return;
end if;
-- If we fall through here, then we have a reportable condition, Sens
-- is True if the condition is true and False if it needs inverting.
Process_Current_Value_Condition (Condition (CV), Sens);
end;
end Get_Current_Value_Condition;
-----------------------
-- Get_Index_Subtype --
-----------------------
function Get_Index_Subtype (N : Node_Id) return Node_Id is
P_Type : Entity_Id := Etype (Prefix (N));
Indx : Node_Id;
J : Int;
begin
if Is_Access_Type (P_Type) then
P_Type := Designated_Type (P_Type);
end if;
if No (Expressions (N)) then
J := 1;
else
J := UI_To_Int (Expr_Value (First (Expressions (N))));
end if;
Indx := First_Index (P_Type);
while J > 1 loop
Next_Index (Indx);
J := J - 1;
end loop;
return Etype (Indx);
end Get_Index_Subtype;
---------------------
-- Get_Stream_Size --
---------------------
function Get_Stream_Size (E : Entity_Id) return Uint is
begin
-- If we have a Stream_Size clause for this type use it
if Has_Stream_Size_Clause (E) then
return Static_Integer (Expression (Stream_Size_Clause (E)));
-- Otherwise the Stream_Size if the size of the type
else
return Esize (E);
end if;
end Get_Stream_Size;
---------------------------
-- Has_Access_Constraint --
---------------------------
function Has_Access_Constraint (E : Entity_Id) return Boolean is
Disc : Entity_Id;
T : constant Entity_Id := Etype (E);
begin
if Has_Per_Object_Constraint (E) and then Has_Discriminants (T) then
Disc := First_Discriminant (T);
while Present (Disc) loop
if Is_Access_Type (Etype (Disc)) then
return True;
end if;
Next_Discriminant (Disc);
end loop;
return False;
else
return False;
end if;
end Has_Access_Constraint;
--------------------
-- Homonym_Number --
--------------------
function Homonym_Number (Subp : Entity_Id) return Pos is
Hom : Entity_Id := Homonym (Subp);
Count : Pos := 1;
begin
while Present (Hom) loop
if Scope (Hom) = Scope (Subp) then
Count := Count + 1;
end if;
Hom := Homonym (Hom);
end loop;
return Count;
end Homonym_Number;
-----------------------------------
-- In_Library_Level_Package_Body --
-----------------------------------
function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is
begin
-- First determine whether the entity appears at the library level, then
-- look at the containing unit.
if Is_Library_Level_Entity (Id) then
declare
Container : constant Node_Id := Cunit (Get_Source_Unit (Id));
begin
return Nkind (Unit (Container)) = N_Package_Body;
end;
end if;
return False;
end In_Library_Level_Package_Body;
------------------------------
-- In_Unconditional_Context --
------------------------------
function In_Unconditional_Context (Node : Node_Id) return Boolean is
P : Node_Id;
begin
P := Node;
while Present (P) loop
case Nkind (P) is
when N_Subprogram_Body => return True;
when N_If_Statement => return False;
when N_Loop_Statement => return False;
when N_Case_Statement => return False;
when others => P := Parent (P);
end case;
end loop;
return False;
end In_Unconditional_Context;
-------------------
-- Insert_Action --
-------------------
procedure Insert_Action
(Assoc_Node : Node_Id;
Ins_Action : Node_Id;
Spec_Expr_OK : Boolean := False)
is
begin
if Present (Ins_Action) then
Insert_Actions
(Assoc_Node => Assoc_Node,
Ins_Actions => New_List (Ins_Action),
Spec_Expr_OK => Spec_Expr_OK);
end if;
end Insert_Action;
-- Version with check(s) suppressed
procedure Insert_Action
(Assoc_Node : Node_Id;
Ins_Action : Node_Id;
Suppress : Check_Id;
Spec_Expr_OK : Boolean := False)
is
begin
Insert_Actions
(Assoc_Node => Assoc_Node,
Ins_Actions => New_List (Ins_Action),
Suppress => Suppress,
Spec_Expr_OK => Spec_Expr_OK);
end Insert_Action;
-------------------------
-- Insert_Action_After --
-------------------------
procedure Insert_Action_After
(Assoc_Node : Node_Id;
Ins_Action : Node_Id)
is
begin
Insert_Actions_After (Assoc_Node, New_List (Ins_Action));
end Insert_Action_After;
--------------------
-- Insert_Actions --
--------------------
procedure Insert_Actions
(Assoc_Node : Node_Id;
Ins_Actions : List_Id;
Spec_Expr_OK : Boolean := False)
is
N : Node_Id;
P : Node_Id;
Wrapped_Node : Node_Id := Empty;
begin
if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
return;
end if;
-- Insert the action when the context is "Handling of Default and Per-
-- Object Expressions" only when requested by the caller.
if Spec_Expr_OK then
null;
-- Ignore insert of actions from inside default expression (or other
-- similar "spec expression") in the special spec-expression analyze
-- mode. Any insertions at this point have no relevance, since we are
-- only doing the analyze to freeze the types of any static expressions.
-- See section "Handling of Default and Per-Object Expressions" in the
-- spec of package Sem for further details.
elsif In_Spec_Expression then
return;
end if;
-- If the action derives from stuff inside a record, then the actions
-- are attached to the current scope, to be inserted and analyzed on
-- exit from the scope. The reason for this is that we may also be
-- generating freeze actions at the same time, and they must eventually
-- be elaborated in the correct order.
if Is_Record_Type (Current_Scope)
and then not Is_Frozen (Current_Scope)
then
if No (Scope_Stack.Table
(Scope_Stack.Last).Pending_Freeze_Actions)
then
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
Ins_Actions;
else
Append_List
(Ins_Actions,
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
end if;
return;
end if;
-- We now intend to climb up the tree to find the right point to
-- insert the actions. We start at Assoc_Node, unless this node is a
-- subexpression in which case we start with its parent. We do this for
-- two reasons. First it speeds things up. Second, if Assoc_Node is
-- itself one of the special nodes like N_And_Then, then we assume that
-- an initial request to insert actions for such a node does not expect
-- the actions to get deposited in the node for later handling when the
-- node is expanded, since clearly the node is being dealt with by the
-- caller. Note that in the subexpression case, N is always the child we
-- came from.
-- N_Raise_xxx_Error is an annoying special case, it is a statement
-- if it has type Standard_Void_Type, and a subexpression otherwise.
-- Procedure calls, and similarly procedure attribute references, are
-- also statements.
if Nkind (Assoc_Node) in N_Subexpr
and then (Nkind (Assoc_Node) not in N_Raise_xxx_Error
or else Etype (Assoc_Node) /= Standard_Void_Type)
and then Nkind (Assoc_Node) /= N_Procedure_Call_Statement
and then (Nkind (Assoc_Node) /= N_Attribute_Reference
or else not Is_Procedure_Attribute_Name
(Attribute_Name (Assoc_Node)))
then
N := Assoc_Node;
P := Parent (Assoc_Node);
-- Nonsubexpression case. Note that N is initially Empty in this case
-- (N is only guaranteed non-Empty in the subexpr case).
else
N := Empty;
P := Assoc_Node;
end if;
-- Capture root of the transient scope
if Scope_Is_Transient then
Wrapped_Node := Node_To_Be_Wrapped;
end if;
loop
pragma Assert (Present (P));
-- Make sure that inserted actions stay in the transient scope
if Present (Wrapped_Node) and then N = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
return;
end if;
case Nkind (P) is
-- Case of right operand of AND THEN or OR ELSE. Put the actions
-- in the Actions field of the right operand. They will be moved
-- out further when the AND THEN or OR ELSE operator is expanded.
-- Nothing special needs to be done for the left operand since
-- in that case the actions are executed unconditionally.
when N_Short_Circuit =>
if N = Right_Opnd (P) then
-- We are now going to either append the actions to the
-- actions field of the short-circuit operation. We will
-- also analyze the actions now.
-- This analysis is really too early, the proper thing would
-- be to just park them there now, and only analyze them if
-- we find we really need them, and to it at the proper
-- final insertion point. However attempting to this proved
-- tricky, so for now we just kill current values before and
-- after the analyze call to make sure we avoid peculiar
-- optimizations from this out of order insertion.
Kill_Current_Values;
-- If P has already been expanded, we can't park new actions
-- on it, so we need to expand them immediately, introducing
-- an Expression_With_Actions. N can't be an expression
-- with actions, or else then the actions would have been
-- inserted at an inner level.
if Analyzed (P) then
pragma Assert (Nkind (N) /= N_Expression_With_Actions);
Rewrite (N,
Make_Expression_With_Actions (Sloc (N),
Actions => Ins_Actions,
Expression => Relocate_Node (N)));
Analyze_And_Resolve (N);
elsif Present (Actions (P)) then
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
else
Set_Actions (P, Ins_Actions);
Analyze_List (Actions (P));
end if;
Kill_Current_Values;
return;
end if;
-- Then or Else dependent expression of an if expression. Add
-- actions to Then_Actions or Else_Actions field as appropriate.
-- The actions will be moved further out when the if is expanded.
when N_If_Expression =>
declare
ThenX : constant Node_Id := Next (First (Expressions (P)));
ElseX : constant Node_Id := Next (ThenX);
begin
-- If the enclosing expression is already analyzed, as
-- is the case for nested elaboration checks, insert the
-- conditional further out.
if Analyzed (P) then
null;
-- Actions belong to the then expression, temporarily place
-- them as Then_Actions of the if expression. They will be
-- moved to the proper place later when the if expression
-- is expanded.
elsif N = ThenX then
if Present (Then_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Then_Actions (P)), Ins_Actions);
else
Set_Then_Actions (P, Ins_Actions);
Analyze_List (Then_Actions (P));
end if;
return;
-- Actions belong to the else expression, temporarily place
-- them as Else_Actions of the if expression. They will be
-- moved to the proper place later when the if expression
-- is expanded.
elsif N = ElseX then
if Present (Else_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Else_Actions (P)), Ins_Actions);
else
Set_Else_Actions (P, Ins_Actions);
Analyze_List (Else_Actions (P));
end if;
return;
-- Actions belong to the condition. In this case they are
-- unconditionally executed, and so we can continue the
-- search for the proper insert point.
else
null;
end if;
end;
-- Alternative of case expression, we place the action in the
-- Actions field of the case expression alternative, this will
-- be handled when the case expression is expanded.
when N_Case_Expression_Alternative =>
if Present (Actions (P)) then
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
else
Set_Actions (P, Ins_Actions);
Analyze_List (Actions (P));
end if;
return;
-- Case of appearing within an Expressions_With_Actions node. When
-- the new actions come from the expression of the expression with
-- actions, they must be added to the existing actions. The other
-- alternative is when the new actions are related to one of the
-- existing actions of the expression with actions, and should
-- never reach here: if actions are inserted on a statement
-- within the Actions of an expression with actions, or on some
-- subexpression of such a statement, then the outermost proper
-- insertion point is right before the statement, and we should
-- never climb up as far as the N_Expression_With_Actions itself.
when N_Expression_With_Actions =>
if N = Expression (P) then
if Is_Empty_List (Actions (P)) then
Append_List_To (Actions (P), Ins_Actions);
Analyze_List (Actions (P));
else
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
end if;
return;
else
raise Program_Error;
end if;
-- Case of appearing in the condition of a while expression or
-- elsif. We insert the actions into the Condition_Actions field.
-- They will be moved further out when the while loop or elsif
-- is analyzed.
when N_Elsif_Part
| N_Iteration_Scheme
=>
if N = Condition (P) then
if Present (Condition_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Condition_Actions (P)), Ins_Actions);
else
Set_Condition_Actions (P, Ins_Actions);
-- Set the parent of the insert actions explicitly. This
-- is not a syntactic field, but we need the parent field
-- set, in particular so that freeze can understand that
-- it is dealing with condition actions, and properly
-- insert the freezing actions.
Set_Parent (Ins_Actions, P);
Analyze_List (Condition_Actions (P));
end if;
return;
end if;
-- Statements, declarations, pragmas, representation clauses
when
-- Statements
N_Procedure_Call_Statement
| N_Statement_Other_Than_Procedure_Call
-- Pragmas
| N_Pragma
-- Representation_Clause
| N_At_Clause
| N_Attribute_Definition_Clause
| N_Enumeration_Representation_Clause
| N_Record_Representation_Clause
-- Declarations
| N_Abstract_Subprogram_Declaration
| N_Entry_Body
| N_Exception_Declaration
| N_Exception_Renaming_Declaration
| N_Expression_Function
| N_Formal_Abstract_Subprogram_Declaration
| N_Formal_Concrete_Subprogram_Declaration
| N_Formal_Object_Declaration
| N_Formal_Type_Declaration
| N_Full_Type_Declaration
| N_Function_Instantiation
| N_Generic_Function_Renaming_Declaration
| N_Generic_Package_Declaration
| N_Generic_Package_Renaming_Declaration
| N_Generic_Procedure_Renaming_Declaration
| N_Generic_Subprogram_Declaration
| N_Implicit_Label_Declaration
| N_Incomplete_Type_Declaration
| N_Number_Declaration
| N_Object_Declaration
| N_Object_Renaming_Declaration
| N_Package_Body
| N_Package_Body_Stub
| N_Package_Declaration
| N_Package_Instantiation
| N_Package_Renaming_Declaration
| N_Private_Extension_Declaration
| N_Private_Type_Declaration
| N_Procedure_Instantiation
| N_Protected_Body
| N_Protected_Body_Stub
| N_Single_Task_Declaration
| N_Subprogram_Body
| N_Subprogram_Body_Stub
| N_Subprogram_Declaration
| N_Subprogram_Renaming_Declaration
| N_Subtype_Declaration
| N_Task_Body
| N_Task_Body_Stub
-- Use clauses can appear in lists of declarations
| N_Use_Package_Clause
| N_Use_Type_Clause
-- Freeze entity behaves like a declaration or statement
| N_Freeze_Entity
| N_Freeze_Generic_Entity
=>
-- Do not insert here if the item is not a list member (this
-- happens for example with a triggering statement, and the
-- proper approach is to insert before the entire select).
if not Is_List_Member (P) then
null;
-- Do not insert if parent of P is an N_Component_Association
-- node (i.e. we are in the context of an N_Aggregate or
-- N_Extension_Aggregate node. In this case we want to insert
-- before the entire aggregate.
elsif Nkind (Parent (P)) = N_Component_Association then
null;
-- Do not insert if the parent of P is either an N_Variant node
-- or an N_Record_Definition node, meaning in either case that
-- P is a member of a component list, and that therefore the
-- actions should be inserted outside the complete record
-- declaration.
elsif Nkind (Parent (P)) in N_Variant | N_Record_Definition then
null;
-- Do not insert freeze nodes within the loop generated for
-- an aggregate, because they may be elaborated too late for
-- subsequent use in the back end: within a package spec the
-- loop is part of the elaboration procedure and is only
-- elaborated during the second pass.
-- If the loop comes from source, or the entity is local to the
-- loop itself it must remain within.
elsif Nkind (Parent (P)) = N_Loop_Statement
and then not Comes_From_Source (Parent (P))
and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
and then
Scope (Entity (First (Ins_Actions))) /= Current_Scope
then
null;
-- Otherwise we can go ahead and do the insertion
elsif P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
return;
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
return;
end if;
-- the expansion of Task and protected type declarations can
-- create declarations for temporaries which, like other actions
-- are inserted and analyzed before the current declaraation.
-- However, the current scope is the synchronized type, and
-- for unnesting it is critical that the proper scope for these
-- generated entities be the enclosing one.
when N_Task_Type_Declaration
| N_Protected_Type_Declaration =>
Push_Scope (Scope (Current_Scope));
Insert_List_Before_And_Analyze (P, Ins_Actions);
Pop_Scope;
return;
-- A special case, N_Raise_xxx_Error can act either as a statement
-- or a subexpression. We tell the difference by looking at the
-- Etype. It is set to Standard_Void_Type in the statement case.
when N_Raise_xxx_Error =>
if Etype (P) = Standard_Void_Type then
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
end if;
return;
-- In the subexpression case, keep climbing
else
null;
end if;
-- If a component association appears within a loop created for
-- an array aggregate, attach the actions to the association so
-- they can be subsequently inserted within the loop. For other
-- component associations insert outside of the aggregate. For
-- an association that will generate a loop, its Loop_Actions
-- attribute is already initialized (see exp_aggr.adb).
-- The list of Loop_Actions can in turn generate additional ones,
-- that are inserted before the associated node. If the associated
-- node is outside the aggregate, the new actions are collected
-- at the end of the Loop_Actions, to respect the order in which
-- they are to be elaborated.
when N_Component_Association
| N_Iterated_Component_Association
| N_Iterated_Element_Association
=>
if Nkind (Parent (P)) = N_Aggregate
and then Present (Loop_Actions (P))
then
if Is_Empty_List (Loop_Actions (P)) then
Set_Loop_Actions (P, Ins_Actions);
Analyze_List (Ins_Actions);
else
declare
Decl : Node_Id;
begin
-- Check whether these actions were generated by a
-- declaration that is part of the Loop_Actions for
-- the component_association.
Decl := Assoc_Node;
while Present (Decl) loop
exit when Parent (Decl) = P
and then Is_List_Member (Decl)
and then
List_Containing (Decl) = Loop_Actions (P);
Decl := Parent (Decl);
end loop;
if Present (Decl) then
Insert_List_Before_And_Analyze
(Decl, Ins_Actions);
else
Insert_List_After_And_Analyze
(Last (Loop_Actions (P)), Ins_Actions);
end if;
end;
end if;
return;
else
null;
end if;
-- Special case: an attribute denoting a procedure call
when N_Attribute_Reference =>
if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
end if;
return;
-- In the subexpression case, keep climbing
else
null;
end if;
-- Special case: a marker
when N_Call_Marker
| N_Variable_Reference_Marker
=>
if Is_List_Member (P) then
Insert_List_Before_And_Analyze (P, Ins_Actions);
return;
end if;
-- A contract node should not belong to the tree
when N_Contract =>
raise Program_Error;
-- For all other node types, keep climbing tree
when N_Abortable_Part
| N_Accept_Alternative
| N_Access_Definition
| N_Access_Function_Definition
| N_Access_Procedure_Definition
| N_Access_To_Object_Definition
| N_Aggregate
| N_Allocator
| N_Aspect_Specification
| N_Case_Expression
| N_Case_Statement_Alternative
| N_Character_Literal
| N_Compilation_Unit
| N_Compilation_Unit_Aux
| N_Component_Clause
| N_Component_Declaration
| N_Component_Definition
| N_Component_List
| N_Constrained_Array_Definition
| N_Decimal_Fixed_Point_Definition
| N_Defining_Character_Literal
| N_Defining_Identifier
| N_Defining_Operator_Symbol
| N_Defining_Program_Unit_Name
| N_Delay_Alternative
| N_Delta_Aggregate
| N_Delta_Constraint
| N_Derived_Type_Definition
| N_Designator
| N_Digits_Constraint
| N_Discriminant_Association
| N_Discriminant_Specification
| N_Empty
| N_Entry_Body_Formal_Part
| N_Entry_Call_Alternative
| N_Entry_Declaration
| N_Entry_Index_Specification
| N_Enumeration_Type_Definition
| N_Error
| N_Exception_Handler
| N_Expanded_Name
| N_Explicit_Dereference
| N_Extension_Aggregate
| N_Floating_Point_Definition
| N_Formal_Decimal_Fixed_Point_Definition
| N_Formal_Derived_Type_Definition
| N_Formal_Discrete_Type_Definition
| N_Formal_Floating_Point_Definition
| N_Formal_Modular_Type_Definition
| N_Formal_Ordinary_Fixed_Point_Definition
| N_Formal_Package_Declaration
| N_Formal_Private_Type_Definition
| N_Formal_Incomplete_Type_Definition
| N_Formal_Signed_Integer_Type_Definition
| N_Function_Call
| N_Function_Specification
| N_Generic_Association
| N_Handled_Sequence_Of_Statements
| N_Identifier
| N_In
| N_Index_Or_Discriminant_Constraint
| N_Indexed_Component
| N_Integer_Literal
| N_Iterator_Specification
| N_Itype_Reference
| N_Label
| N_Loop_Parameter_Specification
| N_Mod_Clause
| N_Modular_Type_Definition
| N_Not_In
| N_Null
| N_Op_Abs
| N_Op_Add
| N_Op_And
| N_Op_Concat
| N_Op_Divide
| N_Op_Eq
| N_Op_Expon
| N_Op_Ge
| N_Op_Gt
| N_Op_Le
| N_Op_Lt
| N_Op_Minus
| N_Op_Mod
| N_Op_Multiply
| N_Op_Ne
| N_Op_Not
| N_Op_Or
| N_Op_Plus
| N_Op_Rem
| N_Op_Rotate_Left
| N_Op_Rotate_Right
| N_Op_Shift_Left
| N_Op_Shift_Right
| N_Op_Shift_Right_Arithmetic
| N_Op_Subtract
| N_Op_Xor
| N_Operator_Symbol
| N_Ordinary_Fixed_Point_Definition
| N_Others_Choice
| N_Package_Specification
| N_Parameter_Association
| N_Parameter_Specification
| N_Pop_Constraint_Error_Label
| N_Pop_Program_Error_Label
| N_Pop_Storage_Error_Label
| N_Pragma_Argument_Association
| N_Procedure_Specification
| N_Protected_Definition
| N_Push_Constraint_Error_Label
| N_Push_Program_Error_Label
| N_Push_Storage_Error_Label
| N_Qualified_Expression
| N_Quantified_Expression
| N_Raise_Expression
| N_Range
| N_Range_Constraint
| N_Real_Literal
| N_Real_Range_Specification
| N_Record_Definition
| N_Reference
| N_SCIL_Dispatch_Table_Tag_Init
| N_SCIL_Dispatching_Call
| N_SCIL_Membership_Test
| N_Selected_Component
| N_Signed_Integer_Type_Definition
| N_Single_Protected_Declaration
| N_Slice
| N_String_Literal
| N_Subtype_Indication
| N_Subunit
| N_Target_Name
| N_Task_Definition
| N_Terminate_Alternative
| N_Triggering_Alternative
| N_Type_Conversion
| N_Unchecked_Expression
| N_Unchecked_Type_Conversion
| N_Unconstrained_Array_Definition
| N_Unused_At_End
| N_Unused_At_Start
| N_Variant
| N_Variant_Part
| N_Validate_Unchecked_Conversion
| N_With_Clause
=>
null;
end case;
-- If we fall through above tests, keep climbing tree
N := P;
if Nkind (Parent (N)) = N_Subunit then
-- This is the proper body corresponding to a stub. Insertion must
-- be done at the point of the stub, which is in the declarative
-- part of the parent unit.
P := Corresponding_Stub (Parent (N));
else
P := Parent (N);
end if;
end loop;
end Insert_Actions;
-- Version with check(s) suppressed
procedure Insert_Actions
(Assoc_Node : Node_Id;
Ins_Actions : List_Id;
Suppress : Check_Id;
Spec_Expr_OK : Boolean := False)
is
begin
if Suppress = All_Checks then
declare
Sva : constant Suppress_Array := Scope_Suppress.Suppress;
begin
Scope_Suppress.Suppress := (others => True);
Insert_Actions (Assoc_Node, Ins_Actions, Spec_Expr_OK);
Scope_Suppress.Suppress := Sva;
end;
else
declare
Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
begin
Scope_Suppress.Suppress (Suppress) := True;
Insert_Actions (Assoc_Node, Ins_Actions, Spec_Expr_OK);
Scope_Suppress.Suppress (Suppress) := Svg;
end;
end if;
end Insert_Actions;
--------------------------
-- Insert_Actions_After --
--------------------------
procedure Insert_Actions_After
(Assoc_Node : Node_Id;
Ins_Actions : List_Id)
is
begin
if Scope_Is_Transient and then Assoc_Node = Node_To_Be_Wrapped then
Store_After_Actions_In_Scope (Ins_Actions);
else
Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
end if;
end Insert_Actions_After;
------------------------
-- Insert_Declaration --
------------------------
procedure Insert_Declaration (N : Node_Id; Decl : Node_Id) is
P : Node_Id;
begin
pragma Assert (Nkind (N) in N_Subexpr);
-- Climb until we find a procedure or a package
P := N;
loop
pragma Assert (Present (Parent (P)));
P := Parent (P);
if Is_List_Member (P) then
exit when Nkind (Parent (P)) in
N_Package_Specification | N_Subprogram_Body;
-- Special handling for handled sequence of statements, we must
-- insert in the statements not the exception handlers!
if Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements then
P := First (Statements (Parent (P)));
exit;
end if;
end if;
end loop;
-- Now do the insertion
Insert_Before (P, Decl);
Analyze (Decl);
end Insert_Declaration;
---------------------------------
-- Insert_Library_Level_Action --
---------------------------------
procedure Insert_Library_Level_Action (N : Node_Id) is
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
begin
Push_Scope (Cunit_Entity (Current_Sem_Unit));
-- And not Main_Unit as previously. If the main unit is a body,
-- the scope needed to analyze the actions is the entity of the
-- corresponding declaration.
if No (Actions (Aux)) then
Set_Actions (Aux, New_List (N));
else
Append (N, Actions (Aux));
end if;
Analyze (N);
Pop_Scope;
end Insert_Library_Level_Action;
----------------------------------
-- Insert_Library_Level_Actions --
----------------------------------
procedure Insert_Library_Level_Actions (L : List_Id) is
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
begin
if Is_Non_Empty_List (L) then
Push_Scope (Cunit_Entity (Main_Unit));
-- ??? should this be Current_Sem_Unit instead of Main_Unit?
if No (Actions (Aux)) then
Set_Actions (Aux, L);
Analyze_List (L);
else
Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
end if;
Pop_Scope;
end if;
end Insert_Library_Level_Actions;
----------------------
-- Inside_Init_Proc --
----------------------
function Inside_Init_Proc return Boolean is
Proc : constant Entity_Id := Enclosing_Init_Proc;
begin
return Proc /= Empty;
end Inside_Init_Proc;
----------------------
-- Integer_Type_For --
----------------------
function Integer_Type_For (S : Uint; Uns : Boolean) return Entity_Id is
begin
pragma Assert (S <= System_Max_Integer_Size);
-- This is the canonical 32-bit type
if S <= Standard_Integer_Size then
if Uns then
return Standard_Unsigned;
else
return Standard_Integer;
end if;
-- This is the canonical 64-bit type
elsif S <= Standard_Long_Long_Integer_Size then
if Uns then
return Standard_Long_Long_Unsigned;
else
return Standard_Long_Long_Integer;
end if;
-- This is the canonical 128-bit type
elsif S <= Standard_Long_Long_Long_Integer_Size then
if Uns then
return Standard_Long_Long_Long_Unsigned;
else
return Standard_Long_Long_Long_Integer;
end if;
else
raise Program_Error;
end if;
end Integer_Type_For;
----------------------------
-- Is_All_Null_Statements --
----------------------------
function Is_All_Null_Statements (L : List_Id) return Boolean is
Stm : Node_Id;
begin
Stm := First (L);
while Present (Stm) loop
if Nkind (Stm) /= N_Null_Statement then
return False;
end if;
Next (Stm);
end loop;
return True;
end Is_All_Null_Statements;
--------------------------------------------------
-- Is_Displacement_Of_Object_Or_Function_Result --
--------------------------------------------------
function Is_Displacement_Of_Object_Or_Function_Result
(Obj_Id : Entity_Id) return Boolean
is
function Is_Controlled_Function_Call (N : Node_Id) return Boolean;
-- Determine whether node N denotes a controlled function call
function Is_Controlled_Indexing (N : Node_Id) return Boolean;
-- Determine whether node N denotes a generalized indexing form which
-- involves a controlled result.
function Is_Displace_Call (N : Node_Id) return Boolean;
-- Determine whether node N denotes a call to Ada.Tags.Displace
function Is_Source_Object (N : Node_Id) return Boolean;
-- Determine whether a particular node denotes a source object
function Strip (N : Node_Id) return Node_Id;
-- Examine arbitrary node N by stripping various indirections and return
-- the "real" node.
---------------------------------
-- Is_Controlled_Function_Call --
---------------------------------
function Is_Controlled_Function_Call (N : Node_Id) return Boolean is
Expr : Node_Id;
begin
-- When a function call appears in Object.Operation format, the
-- original representation has several possible forms depending on
-- the availability and form of actual parameters:
-- Obj.Func N_Selected_Component
-- Obj.Func (Actual) N_Indexed_Component
-- Obj.Func (Formal => Actual) N_Function_Call, whose Name is an
-- N_Selected_Component
Expr := Original_Node (N);
loop
if Nkind (Expr) = N_Function_Call then
Expr := Name (Expr);
-- "Obj.Func (Actual)" case
elsif Nkind (Expr) = N_Indexed_Component then
Expr := Prefix (Expr);
-- "Obj.Func" or "Obj.Func (Formal => Actual) case
elsif Nkind (Expr) = N_Selected_Component then
Expr := Selector_Name (Expr);
else
exit;
end if;
end loop;
return
Nkind (Expr) in N_Has_Entity
and then Present (Entity (Expr))
and then Ekind (Entity (Expr)) = E_Function
and then Needs_Finalization (Etype (Entity (Expr)));
end Is_Controlled_Function_Call;
----------------------------
-- Is_Controlled_Indexing --
----------------------------
function Is_Controlled_Indexing (N : Node_Id) return Boolean is
Expr : constant Node_Id := Original_Node (N);
begin
return
Nkind (Expr) = N_Indexed_Component
and then Present (Generalized_Indexing (Expr))
and then Needs_Finalization (Etype (Expr));
end Is_Controlled_Indexing;
----------------------
-- Is_Displace_Call --
----------------------
function Is_Displace_Call (N : Node_Id) return Boolean is
Call : constant Node_Id := Strip (N);
begin
return
Present (Call)
and then Nkind (Call) = N_Function_Call
and then Nkind (Name (Call)) in N_Has_Entity
and then Is_RTE (Entity (Name (Call)), RE_Displace);
end Is_Displace_Call;
----------------------
-- Is_Source_Object --
----------------------
function Is_Source_Object (N : Node_Id) return Boolean is
Obj : constant Node_Id := Strip (N);
begin
return
Present (Obj)
and then Comes_From_Source (Obj)
and then Nkind (Obj) in N_Has_Entity
and then Is_Object (Entity (Obj));
end Is_Source_Object;
-----------
-- Strip --
-----------
function Strip (N : Node_Id) return Node_Id is
Result : Node_Id;
begin
Result := N;
loop
if Nkind (Result) = N_Explicit_Dereference then
Result := Prefix (Result);
elsif Nkind (Result) in
N_Type_Conversion | N_Unchecked_Type_Conversion
then
Result := Expression (Result);
else
exit;
end if;
end loop;
return Result;
end Strip;
-- Local variables
Obj_Decl : constant Node_Id := Declaration_Node (Obj_Id);
Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
Orig_Decl : constant Node_Id := Original_Node (Obj_Decl);
Orig_Expr : Node_Id;
-- Start of processing for Is_Displacement_Of_Object_Or_Function_Result
begin
-- Case 1:
-- Obj : CW_Type := Function_Call (...);
-- is rewritten into:
-- Temp : ... := Function_Call (...)'reference;
-- Obj : CW_Type renames (... Ada.Tags.Displace (Temp));
-- where the return type of the function and the class-wide type require
-- dispatch table pointer displacement.
-- Case 2:
-- Obj : CW_Type := Container (...);
-- is rewritten into:
-- Temp : ... := Function_Call (Container, ...)'reference;
-- Obj : CW_Type renames (... Ada.Tags.Displace (Temp));
-- where the container element type and the class-wide type require
-- dispatch table pointer dispacement.
-- Case 3:
-- Obj : CW_Type := Src_Obj;
-- is rewritten into:
-- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
-- where the type of the source object and the class-wide type require
-- dispatch table pointer displacement.
if Nkind (Obj_Decl) = N_Object_Renaming_Declaration
and then Is_Class_Wide_Type (Obj_Typ)
and then Is_Displace_Call (Renamed_Object (Obj_Id))
and then Nkind (Orig_Decl) = N_Object_Declaration
and then Comes_From_Source (Orig_Decl)
then
Orig_Expr := Expression (Orig_Decl);
return
Is_Controlled_Function_Call (Orig_Expr)
or else Is_Controlled_Indexing (Orig_Expr)
or else Is_Source_Object (Orig_Expr);
end if;
return False;
end Is_Displacement_Of_Object_Or_Function_Result;
------------------------------
-- Is_Finalizable_Transient --
------------------------------
function Is_Finalizable_Transient
(Decl : Node_Id;
Rel_Node : Node_Id) return Boolean
is
Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is initialized either
-- by a function call which returns an access type or simply renames
-- another pointer.
function Initialized_By_Aliased_BIP_Func_Call
(Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is initialized by a
-- build-in-place function call where the BIPalloc parameter is of
-- value 1 and BIPaccess is not null. This case creates an aliasing
-- between the returned value and the value denoted by BIPaccess.
function Is_Aliased
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean;
-- Determine whether transient object Trans_Id has been renamed or
-- aliased through 'reference in the statement list starting from
-- First_Stmt.
function Is_Allocated (Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is allocated on the heap
function Is_Iterated_Container
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean;
-- Determine whether transient object Trans_Id denotes a container which
-- is in the process of being iterated in the statement list starting
-- from First_Stmt.
---------------------------
-- Initialized_By_Access --
---------------------------
function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Expression (Parent (Trans_Id));
begin
return
Present (Expr)
and then Nkind (Expr) /= N_Reference
and then Is_Access_Type (Etype (Expr));
end Initialized_By_Access;
------------------------------------------
-- Initialized_By_Aliased_BIP_Func_Call --
------------------------------------------
function Initialized_By_Aliased_BIP_Func_Call
(Trans_Id : Entity_Id) return Boolean
is
Call : Node_Id := Expression (Parent (Trans_Id));
begin
-- Build-in-place calls usually appear in 'reference format
if Nkind (Call) = N_Reference then
Call := Prefix (Call);
end if;
Call := Unqual_Conv (Call);
if Is_Build_In_Place_Function_Call (Call) then
declare
Access_Nam : Name_Id := No_Name;
Access_OK : Boolean := False;
Actual : Node_Id;
Alloc_Nam : Name_Id := No_Name;
Alloc_OK : Boolean := False;
Formal : Node_Id;
Func_Id : Entity_Id;
Param : Node_Id;
begin
-- Examine all parameter associations of the function call
Param := First (Parameter_Associations (Call));
while Present (Param) loop
if Nkind (Param) = N_Parameter_Association
and then Nkind (Selector_Name (Param)) = N_Identifier
then
Actual := Explicit_Actual_Parameter (Param);
Formal := Selector_Name (Param);
-- Construct the names of formals BIPaccess and BIPalloc
-- using the function name retrieved from an arbitrary
-- formal.
if Access_Nam = No_Name
and then Alloc_Nam = No_Name
and then Present (Entity (Formal))
then
Func_Id := Scope (Entity (Formal));
Access_Nam :=
New_External_Name (Chars (Func_Id),
BIP_Formal_Suffix (BIP_Object_Access));
Alloc_Nam :=
New_External_Name (Chars (Func_Id),
BIP_Formal_Suffix (BIP_Alloc_Form));
end if;
-- A match for BIPaccess => Temp has been found
if Chars (Formal) = Access_Nam
and then Nkind (Actual) /= N_Null
then
Access_OK := True;
end if;
-- A match for BIPalloc => 1 has been found
if Chars (Formal) = Alloc_Nam
and then Nkind (Actual) = N_Integer_Literal
and then Intval (Actual) = Uint_1
then
Alloc_OK := True;
end if;
end if;
Next (Param);
end loop;
return Access_OK and Alloc_OK;
end;
end if;
return False;
end Initialized_By_Aliased_BIP_Func_Call;
----------------
-- Is_Aliased --
----------------
function Is_Aliased
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean
is
function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id;
-- Given an object renaming declaration, retrieve the entity of the
-- renamed name. Return Empty if the renamed name is anything other
-- than a variable or a constant.
-------------------------
-- Find_Renamed_Object --
-------------------------
function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id is
Ren_Obj : Node_Id := Empty;
function Find_Object (N : Node_Id) return Traverse_Result;
-- Try to detect an object which is either a constant or a
-- variable.
-----------------
-- Find_Object --
-----------------
function Find_Object (N : Node_Id) return Traverse_Result is
begin
-- Stop the search once a constant or a variable has been
-- detected.
if Nkind (N) = N_Identifier
and then Present (Entity (N))
and then Ekind (Entity (N)) in E_Constant | E_Variable
then
Ren_Obj := Entity (N);
return Abandon;
end if;
return OK;
end Find_Object;
procedure Search is new Traverse_Proc (Find_Object);
-- Local variables
Typ : constant Entity_Id := Etype (Defining_Identifier (Ren_Decl));
-- Start of processing for Find_Renamed_Object
begin
-- Actions related to dispatching calls may appear as renamings of
-- tags. Do not process this type of renaming because it does not
-- use the actual value of the object.
if not Is_RTE (Typ, RE_Tag_Ptr) then
Search (Name (Ren_Decl));
end if;
return Ren_Obj;
end Find_Renamed_Object;
-- Local variables
Expr : Node_Id;
Ren_Obj : Entity_Id;
Stmt : Node_Id;
-- Start of processing for Is_Aliased
begin
-- A controlled transient object is not considered aliased when it
-- appears inside an expression_with_actions node even when there are
-- explicit aliases of it:
-- do
-- Trans_Id : Ctrl_Typ ...; -- transient object
-- Alias : ... := Trans_Id; -- object is aliased
-- Val : constant Boolean :=
-- ... Alias ...; -- aliasing ends
-- <finalize Trans_Id> -- object safe to finalize
-- in Val end;
-- Expansion ensures that all aliases are encapsulated in the actions
-- list and do not leak to the expression by forcing the evaluation
-- of the expression.
if Nkind (Rel_Node) = N_Expression_With_Actions then
return False;
-- Otherwise examine the statements after the controlled transient
-- object and look for various forms of aliasing.
else
Stmt := First_Stmt;
while Present (Stmt) loop
if Nkind (Stmt) = N_Object_Declaration then
Expr := Expression (Stmt);
-- Aliasing of the form:
-- Obj : ... := Trans_Id'reference;
if Present (Expr)
and then Nkind (Expr) = N_Reference
and then Nkind (Prefix (Expr)) = N_Identifier
and then Entity (Prefix (Expr)) = Trans_Id
then
return True;
end if;
elsif Nkind (Stmt) = N_Object_Renaming_Declaration then
Ren_Obj := Find_Renamed_Object (Stmt);
-- Aliasing of the form:
-- Obj : ... renames ... Trans_Id ...;
if Present (Ren_Obj) and then Ren_Obj = Trans_Id then
return True;
end if;
end if;
Next (Stmt);
end loop;
return False;
end if;
end Is_Aliased;
------------------
-- Is_Allocated --
------------------
function Is_Allocated (Trans_Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Expression (Parent (Trans_Id));
begin
return
Is_Access_Type (Etype (Trans_Id))
and then Present (Expr)
and then Nkind (Expr) = N_Allocator;
end Is_Allocated;
---------------------------
-- Is_Iterated_Container --
---------------------------
function Is_Iterated_Container
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean
is
Aspect : Node_Id;
Call : Node_Id;
Iter : Entity_Id;
Param : Node_Id;
Stmt : Node_Id;
Typ : Entity_Id;
begin
-- It is not possible to iterate over containers in non-Ada 2012 code
if Ada_Version < Ada_2012 then
return False;
end if;
Typ := Etype (Trans_Id);
-- Handle access type created for secondary stack use
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Look for aspect Default_Iterator. It may be part of a type
-- declaration for a container, or inherited from a base type
-- or parent type.
Aspect := Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator);
if Present (Aspect) then
Iter := Entity (Aspect);
-- Examine the statements following the container object and
-- look for a call to the default iterate routine where the
-- first parameter is the transient. Such a call appears as:
-- It : Access_To_CW_Iterator :=
-- Iterate (Tran_Id.all, ...)'reference;
Stmt := First_Stmt;
while Present (Stmt) loop
-- Detect an object declaration which is initialized by a
-- secondary stack function call.
if Nkind (Stmt) = N_Object_Declaration
and then Present (Expression (Stmt))
and then Nkind (Expression (Stmt)) = N_Reference
and then Nkind (Prefix (Expression (Stmt))) = N_Function_Call
then
Call := Prefix (Expression (Stmt));
-- The call must invoke the default iterate routine of
-- the container and the transient object must appear as
-- the first actual parameter. Skip any calls whose names
-- are not entities.
if Is_Entity_Name (Name (Call))
and then Entity (Name (Call)) = Iter
and then Present (Parameter_Associations (Call))
then
Param := First (Parameter_Associations (Call));
if Nkind (Param) = N_Explicit_Dereference
and then Entity (Prefix (Param)) = Trans_Id
then
return True;
end if;
end if;
end if;
Next (Stmt);
end loop;
end if;
return False;
end Is_Iterated_Container;
-- Local variables
Desig : Entity_Id := Obj_Typ;
-- Start of processing for Is_Finalizable_Transient
begin
-- Handle access types
if Is_Access_Type (Desig) then
Desig := Available_View (Designated_Type (Desig));
end if;
return
Ekind (Obj_Id) in E_Constant | E_Variable
and then Needs_Finalization (Desig)
and then Requires_Transient_Scope (Desig)
and then Nkind (Rel_Node) /= N_Simple_Return_Statement
-- Do not consider a transient object that was already processed
and then not Is_Finalized_Transient (Obj_Id)
-- Do not consider renamed or 'reference-d transient objects because
-- the act of renaming extends the object's lifetime.
and then not Is_Aliased (Obj_Id, Decl)
-- Do not consider transient objects allocated on the heap since
-- they are attached to a finalization master.
and then not Is_Allocated (Obj_Id)
-- If the transient object is a pointer, check that it is not
-- initialized by a function that returns a pointer or acts as a
-- renaming of another pointer.
and then
(not Is_Access_Type (Obj_Typ)
or else not Initialized_By_Access (Obj_Id))
-- Do not consider transient objects which act as indirect aliases
-- of build-in-place function results.
and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id)
-- Do not consider conversions of tags to class-wide types
and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
-- Do not consider iterators because those are treated as normal
-- controlled objects and are processed by the usual finalization
-- machinery. This avoids the double finalization of an iterator.
and then not Is_Iterator (Desig)
-- Do not consider containers in the context of iterator loops. Such
-- transient objects must exist for as long as the loop is around,
-- otherwise any operation carried out by the iterator will fail.
and then not Is_Iterated_Container (Obj_Id, Decl);
end Is_Finalizable_Transient;
---------------------------------
-- Is_Fully_Repped_Tagged_Type --
---------------------------------
function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
U : constant Entity_Id := Underlying_Type (T);
Comp : Entity_Id;
begin
if No (U) or else not Is_Tagged_Type (U) then
return False;
elsif Has_Discriminants (U) then
return False;
elsif not Has_Specified_Layout (U) then
return False;
end if;
-- Here we have a tagged type, see if it has any component (other than
-- tag and parent) with no component_clause. If so, we return False.
Comp := First_Component (U);
while Present (Comp) loop
if not Is_Tag (Comp)
and then Chars (Comp) /= Name_uParent
and then No (Component_Clause (Comp))
then
return False;
else
Next_Component (Comp);
end if;
end loop;
-- All components have clauses
return True;
end Is_Fully_Repped_Tagged_Type;
----------------------------------
-- Is_Library_Level_Tagged_Type --
----------------------------------
function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
begin
return Is_Tagged_Type (Typ) and then Is_Library_Level_Entity (Typ);
end Is_Library_Level_Tagged_Type;
--------------------------
-- Is_Non_BIP_Func_Call --
--------------------------
function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is
begin
-- The expected call is of the format
--
-- Func_Call'reference
return
Nkind (Expr) = N_Reference
and then Nkind (Prefix (Expr)) = N_Function_Call
and then not Is_Build_In_Place_Function_Call (Prefix (Expr));
end Is_Non_BIP_Func_Call;
----------------------------------
-- Is_Possibly_Unaligned_Object --
----------------------------------
function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
T : constant Entity_Id := Etype (N);
begin
-- If renamed object, apply test to underlying object
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
end if;
-- Tagged and controlled types and aliased types are always aligned, as
-- are concurrent types.
if Is_Aliased (T)
or else Has_Controlled_Component (T)
or else Is_Concurrent_Type (T)
or else Is_Tagged_Type (T)
or else Is_Controlled (T)
then
return False;
end if;
-- If this is an element of a packed array, may be unaligned
if Is_Ref_To_Bit_Packed_Array (N) then
return True;
end if;
-- Case of indexed component reference: test whether prefix is unaligned
if Nkind (N) = N_Indexed_Component then
return Is_Possibly_Unaligned_Object (Prefix (N));
-- Case of selected component reference
elsif Nkind (N) = N_Selected_Component then
declare
P : constant Node_Id := Prefix (N);
C : constant Entity_Id := Entity (Selector_Name (N));
M : Nat;
S : Nat;
begin
-- If component reference is for an array with nonstatic bounds,
-- then it is always aligned: we can only process unaligned arrays
-- with static bounds (more precisely compile time known bounds).
if Is_Array_Type (T)
and then not Compile_Time_Known_Bounds (T)
then
return False;
end if;
-- If component is aliased, it is definitely properly aligned
if Is_Aliased (C) then
return False;
end if;
-- If component is for a type implemented as a scalar, and the
-- record is packed, and the component is other than the first
-- component of the record, then the component may be unaligned.
if Is_Packed (Etype (P))
and then Represented_As_Scalar (Etype (C))
and then First_Entity (Scope (C)) /= C
then
return True;
end if;
-- Compute maximum possible alignment for T
-- If alignment is known, then that settles things
if Known_Alignment (T) then
M := UI_To_Int (Alignment (T));
-- If alignment is not known, tentatively set max alignment
else
M := Ttypes.Maximum_Alignment;
-- We can reduce this if the Esize is known since the default
-- alignment will never be more than the smallest power of 2
-- that does not exceed this Esize value.
if Known_Esize (T) then
S := UI_To_Int (Esize (T));
while (M / 2) >= S loop
M := M / 2;
end loop;
end if;
end if;
-- The following code is historical, it used to be present but it
-- is too cautious, because the front-end does not know the proper
-- default alignments for the target. Also, if the alignment is
-- not known, the front end can't know in any case. If a copy is
-- needed, the back-end will take care of it. This whole section
-- including this comment can be removed later ???
-- If the component reference is for a record that has a specified
-- alignment, and we either know it is too small, or cannot tell,
-- then the component may be unaligned.
-- What is the following commented out code ???
-- if Known_Alignment (Etype (P))
-- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
-- and then M > Alignment (Etype (P))
-- then
-- return True;
-- end if;
-- Case of component clause present which may specify an
-- unaligned position.
if Present (Component_Clause (C)) then
-- Otherwise we can do a test to make sure that the actual
-- start position in the record, and the length, are both
-- consistent with the required alignment. If not, we know
-- that we are unaligned.
declare
Align_In_Bits : constant Nat := M * System_Storage_Unit;
Comp : Entity_Id;
begin
Comp := C;
-- For a component inherited in a record extension, the
-- clause is inherited but position and size are not set.
if Is_Base_Type (Etype (P))
and then Is_Tagged_Type (Etype (P))
and then Present (Original_Record_Component (Comp))
then
Comp := Original_Record_Component (Comp);
end if;
if Component_Bit_Offset (Comp) mod Align_In_Bits /= 0
or else Esize (Comp) mod Align_In_Bits /= 0
then
return True;
end if;
end;
end if;
-- Otherwise, for a component reference, test prefix
return Is_Possibly_Unaligned_Object (P);
end;
-- If not a component reference, must be aligned
else
return False;
end if;
end Is_Possibly_Unaligned_Object;
---------------------------------
-- Is_Possibly_Unaligned_Slice --
---------------------------------
function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
begin
-- Go to renamed object
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
end if;
-- The reference must be a slice
if Nkind (N) /= N_Slice then
return False;
end if;
-- If it is a slice, then look at the array type being sliced
declare
Sarr : constant Node_Id := Prefix (N);
-- Prefix of the slice, i.e. the array being sliced
Styp : constant Entity_Id := Etype (Prefix (N));
-- Type of the array being sliced
Pref : Node_Id;
Ptyp : Entity_Id;
begin
-- The problems arise if the array object that is being sliced
-- is a component of a record or array, and we cannot guarantee
-- the alignment of the array within its containing object.
-- To investigate this, we look at successive prefixes to see
-- if we have a worrisome indexed or selected component.
Pref := Sarr;
loop
-- Case of array is part of an indexed component reference
if Nkind (Pref) = N_Indexed_Component then
Ptyp := Etype (Prefix (Pref));
-- The only problematic case is when the array is packed, in
-- which case we really know nothing about the alignment of
-- individual components.
if Is_Bit_Packed_Array (Ptyp) then
return True;
end if;
-- Case of array is part of a selected component reference
elsif Nkind (Pref) = N_Selected_Component then
Ptyp := Etype (Prefix (Pref));
-- We are definitely in trouble if the record in question
-- has an alignment, and either we know this alignment is
-- inconsistent with the alignment of the slice, or we don't
-- know what the alignment of the slice should be. But this
-- really matters only if the target has strict alignment.
if Target_Strict_Alignment
and then Known_Alignment (Ptyp)
and then (Unknown_Alignment (Styp)
or else Alignment (Styp) > Alignment (Ptyp))
then
return True;
end if;
-- We are in potential trouble if the record type is packed.
-- We could special case when we know that the array is the
-- first component, but that's not such a simple case ???
if Is_Packed (Ptyp) then
return True;
end if;
-- We are in trouble if there is a component clause, and
-- either we do not know the alignment of the slice, or
-- the alignment of the slice is inconsistent with the
-- bit position specified by the component clause.
declare
Field : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Present (Component_Clause (Field))
and then
(Unknown_Alignment (Styp)
or else
(Component_Bit_Offset (Field) mod
(System_Storage_Unit * Alignment (Styp))) /= 0)
then
return True;
end if;
end;
-- For cases other than selected or indexed components we know we
-- are OK, since no issues arise over alignment.
else
return False;
end if;
-- We processed an indexed component or selected component
-- reference that looked safe, so keep checking prefixes.
Pref := Prefix (Pref);
end loop;
end;
end Is_Possibly_Unaligned_Slice;
-------------------------------
-- Is_Related_To_Func_Return --
-------------------------------
function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Related_Expression (Id);
begin
-- In the case of a function with a class-wide result that returns
-- a call to a function with a specific result, we introduce a
-- type conversion for the return expression. We do not want that
-- type conversion to influence the result of this function.
return
Present (Expr)
and then Nkind (Unqual_Conv (Expr)) = N_Explicit_Dereference
and then Nkind (Parent (Expr)) = N_Simple_Return_Statement;
end Is_Related_To_Func_Return;
--------------------------------
-- Is_Ref_To_Bit_Packed_Array --
--------------------------------
function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
Result : Boolean;
Expr : Node_Id;
begin
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
end if;
if Nkind (N) in N_Indexed_Component | N_Selected_Component then
if Is_Bit_Packed_Array (Etype (Prefix (N))) then
Result := True;
else
Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
end if;
if Result and then Nkind (N) = N_Indexed_Component then
Expr := First (Expressions (N));
while Present (Expr) loop
Force_Evaluation (Expr);
Next (Expr);
end loop;
end if;
return Result;
else
return False;
end if;
end Is_Ref_To_Bit_Packed_Array;
--------------------------------
-- Is_Ref_To_Bit_Packed_Slice --
--------------------------------
function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
begin
if Nkind (N) = N_Type_Conversion then
return Is_Ref_To_Bit_Packed_Slice (Expression (N));
elsif Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
elsif Nkind (N) = N_Slice
and then Is_Bit_Packed_Array (Etype (Prefix (N)))
then
return True;
elsif Nkind (N) in N_Indexed_Component | N_Selected_Component then
return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
else
return False;
end if;
end Is_Ref_To_Bit_Packed_Slice;
-----------------------
-- Is_Renamed_Object --
-----------------------
function Is_Renamed_Object (N : Node_Id) return Boolean is
Pnod : constant Node_Id := Parent (N);
Kind : constant Node_Kind := Nkind (Pnod);
begin
if Kind = N_Object_Renaming_Declaration then
return True;
elsif Kind in N_Indexed_Component | N_Selected_Component then
return Is_Renamed_Object (Pnod);
else
return False;
end if;
end Is_Renamed_Object;
--------------------------------------
-- Is_Secondary_Stack_BIP_Func_Call --
--------------------------------------
function Is_Secondary_Stack_BIP_Func_Call (Expr : Node_Id) return Boolean is
Actual : Node_Id;
Call : Node_Id := Expr;
Formal : Node_Id;
Param : Node_Id;
begin
-- Build-in-place calls usually appear in 'reference format. Note that
-- the accessibility check machinery may add an extra 'reference due to
-- side effect removal.
while Nkind (Call) = N_Reference loop
Call := Prefix (Call);
end loop;
Call := Unqual_Conv (Call);
if Is_Build_In_Place_Function_Call (Call) then
-- Examine all parameter associations of the function call
Param := First (Parameter_Associations (Call));
while Present (Param) loop
if Nkind (Param) = N_Parameter_Association then
Formal := Selector_Name (Param);
Actual := Explicit_Actual_Parameter (Param);
-- A match for BIPalloc => 2 has been found
if Is_Build_In_Place_Entity (Formal)
and then BIP_Suffix_Kind (Formal) = BIP_Alloc_Form
and then Nkind (Actual) = N_Integer_Literal
and then Intval (Actual) = Uint_2
then
return True;
end if;
end if;
Next (Param);
end loop;
end if;
return False;
end Is_Secondary_Stack_BIP_Func_Call;
-------------------------------------
-- Is_Tag_To_Class_Wide_Conversion --
-------------------------------------
function Is_Tag_To_Class_Wide_Conversion
(Obj_Id : Entity_Id) return Boolean
is
Expr : constant Node_Id := Expression (Parent (Obj_Id));
begin
return
Is_Class_Wide_Type (Etype (Obj_Id))
and then Present (Expr)
and then Nkind (Expr) = N_Unchecked_Type_Conversion
and then Etype (Expression (Expr)) = RTE (RE_Tag);
end Is_Tag_To_Class_Wide_Conversion;
----------------------------
-- Is_Untagged_Derivation --
----------------------------
function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
begin
return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
or else
(Is_Private_Type (T) and then Present (Full_View (T))
and then not Is_Tagged_Type (Full_View (T))
and then Is_Derived_Type (Full_View (T))
and then Etype (Full_View (T)) /= T);
end Is_Untagged_Derivation;
------------------------------------
-- Is_Untagged_Private_Derivation --
------------------------------------
function Is_Untagged_Private_Derivation
(Priv_Typ : Entity_Id;
Full_Typ : Entity_Id) return Boolean
is
begin
return
Present (Priv_Typ)
and then Is_Untagged_Derivation (Priv_Typ)
and then Is_Private_Type (Etype (Priv_Typ))
and then Present (Full_Typ)
and then Is_Itype (Full_Typ);
end Is_Untagged_Private_Derivation;
------------------------------
-- Is_Verifiable_DIC_Pragma --
------------------------------
function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean is
Args : constant List_Id := Pragma_Argument_Associations (Prag);
begin
-- To qualify as verifiable, a DIC pragma must have a non-null argument
return
Present (Args)
and then Nkind (Get_Pragma_Arg (First (Args))) /= N_Null;
end Is_Verifiable_DIC_Pragma;
---------------------------
-- Is_Volatile_Reference --
---------------------------
function Is_Volatile_Reference (N : Node_Id) return Boolean is
begin
-- Only source references are to be treated as volatile, internally
-- generated stuff cannot have volatile external effects.
if not Comes_From_Source (N) then
return False;
-- Never true for reference to a type
elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
return False;
-- Never true for a compile time known constant
elsif Compile_Time_Known_Value (N) then
return False;
-- True if object reference with volatile type
elsif Is_Volatile_Object (N) then
return True;
-- True if reference to volatile entity
elsif Is_Entity_Name (N) then
return Treat_As_Volatile (Entity (N));
-- True for slice of volatile array
elsif Nkind (N) = N_Slice then
return Is_Volatile_Reference (Prefix (N));
-- True if volatile component
elsif Nkind (N) in N_Indexed_Component | N_Selected_Component then
if (Is_Entity_Name (Prefix (N))
and then Has_Volatile_Components (Entity (Prefix (N))))
or else (Present (Etype (Prefix (N)))
and then Has_Volatile_Components (Etype (Prefix (N))))
then
return True;
else
return Is_Volatile_Reference (Prefix (N));
end if;
-- Otherwise false
else
return False;
end if;
end Is_Volatile_Reference;
--------------------
-- Kill_Dead_Code --
--------------------
procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
W : Boolean := Warn;
-- Set False if warnings suppressed
begin
if Present (N) then
Remove_Warning_Messages (N);
-- Update the internal structures of the ABE mechanism in case the
-- dead node is an elaboration scenario.
Kill_Elaboration_Scenario (N);
-- Generate warning if appropriate
if W then
-- We suppress the warning if this code is under control of an
-- if statement, whose condition is a simple identifier, and
-- either we are in an instance, or warnings off is set for this
-- identifier. The reason for killing it in the instance case is
-- that it is common and reasonable for code to be deleted in
-- instances for various reasons.
-- Could we use Is_Statically_Unevaluated here???
if Nkind (Parent (N)) = N_If_Statement then
declare
C : constant Node_Id := Condition (Parent (N));
begin
if Nkind (C) = N_Identifier
and then
(In_Instance
or else (Present (Entity (C))
and then Has_Warnings_Off (Entity (C))))
then
W := False;
end if;
end;
end if;
-- Generate warning if not suppressed
if W then
Error_Msg_F
("?t?this code can never be executed and has been deleted!",
N);
end if;
end if;
-- Recurse into block statements and bodies to process declarations
-- and statements.
if Nkind (N) = N_Block_Statement
or else Nkind (N) = N_Subprogram_Body
or else Nkind (N) = N_Package_Body
then
Kill_Dead_Code (Declarations (N), False);
Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
if Nkind (N) = N_Subprogram_Body then
Set_Is_Eliminated (Defining_Entity (N));
end if;
elsif Nkind (N) = N_Package_Declaration then
Kill_Dead_Code (Visible_Declarations (Specification (N)));
Kill_Dead_Code (Private_Declarations (Specification (N)));
-- ??? After this point, Delete_Tree has been called on all
-- declarations in Specification (N), so references to entities
-- therein look suspicious.
declare
E : Entity_Id := First_Entity (Defining_Entity (N));
begin
while Present (E) loop
if Ekind (E) = E_Operator then
Set_Is_Eliminated (E);
end if;
Next_Entity (E);
end loop;
end;
-- Recurse into composite statement to kill individual statements in
-- particular instantiations.
elsif Nkind (N) = N_If_Statement then
Kill_Dead_Code (Then_Statements (N));
Kill_Dead_Code (Elsif_Parts (N));
Kill_Dead_Code (Else_Statements (N));
elsif Nkind (N) = N_Loop_Statement then
Kill_Dead_Code (Statements (N));
elsif Nkind (N) = N_Case_Statement then
declare
Alt : Node_Id;
begin
Alt := First (Alternatives (N));
while Present (Alt) loop
Kill_Dead_Code (Statements (Alt));
Next (Alt);
end loop;
end;
elsif Nkind (N) = N_Case_Statement_Alternative then
Kill_Dead_Code (Statements (N));
-- Deal with dead instances caused by deleting instantiations
elsif Nkind (N) in N_Generic_Instantiation then
Remove_Dead_Instance (N);
end if;
end if;
end Kill_Dead_Code;
-- Case where argument is a list of nodes to be killed
procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
N : Node_Id;
W : Boolean;
begin
W := Warn;
if Is_Non_Empty_List (L) then
N := First (L);
while Present (N) loop
Kill_Dead_Code (N, W);
W := False;
Next (N);
end loop;
end if;
end Kill_Dead_Code;
------------------------
-- Known_Non_Negative --
------------------------
function Known_Non_Negative (Opnd : Node_Id) return Boolean is
begin
if Is_OK_Static_Expression (Opnd) and then Expr_Value (Opnd) >= 0 then
return True;
else
declare
Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
begin
return
Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
end;
end if;
end Known_Non_Negative;
-----------------------------
-- Make_CW_Equivalent_Type --
-----------------------------
-- Create a record type used as an equivalent of any member of the class
-- which takes its size from exp.
-- Generate the following code:
-- type Equiv_T is record
-- _parent : T (List of discriminant constraints taken from Exp);
-- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
-- end Equiv_T;
--
-- ??? Note that this type does not guarantee same alignment as all
-- derived types
--
-- Note: for the freezing circuitry, this looks like a record extension,
-- and so we need to make sure that the scalar storage order is the same
-- as that of the parent type. (This does not change anything for the
-- representation of the extension part.)
function Make_CW_Equivalent_Type
(T : Entity_Id;
E : Node_Id) return Entity_Id
is
Loc : constant Source_Ptr := Sloc (E);
Root_Typ : constant Entity_Id := Root_Type (T);
Root_Utyp : constant Entity_Id := Underlying_Type (Root_Typ);
List_Def : constant List_Id := Empty_List;
Comp_List : constant List_Id := New_List;
Equiv_Type : Entity_Id;
Range_Type : Entity_Id;
Str_Type : Entity_Id;
Constr_Root : Entity_Id;
Sizexpr : Node_Id;
begin
-- If the root type is already constrained, there are no discriminants
-- in the expression.
if not Has_Discriminants (Root_Typ)
or else Is_Constrained (Root_Typ)
then
Constr_Root := Root_Typ;
-- At this point in the expansion, nonlimited view of the type
-- must be available, otherwise the error will be reported later.
if From_Limited_With (Constr_Root)
and then Present (Non_Limited_View (Constr_Root))
then
Constr_Root := Non_Limited_View (Constr_Root);
end if;
else
Constr_Root := Make_Temporary (Loc, 'R');
-- subtype cstr__n is T (List of discr constraints taken from Exp)
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Constr_Root,
Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ)));
end if;
-- Generate the range subtype declaration
Range_Type := Make_Temporary (Loc, 'G');
if not Is_Interface (Root_Typ) then
-- subtype rg__xx is
-- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
Sizexpr :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
Attribute_Name => Name_Size),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Constr_Root, Loc),
Attribute_Name => Name_Object_Size));
else
-- subtype rg__xx is
-- Storage_Offset range 1 .. Expr'size / Storage_Unit
Sizexpr :=
Make_Attribute_Reference (Loc,
Prefix =>
OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
Attribute_Name => Name_Size);
end if;
Set_Paren_Count (Sizexpr, 1);
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Range_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Offset), Loc),
Constraint => Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound =>
Make_Op_Divide (Loc,
Left_Opnd => Sizexpr,
Right_Opnd => Make_Integer_Literal (Loc,
Intval => System_Storage_Unit)))))));
-- subtype str__nn is Storage_Array (rg__x);
Str_Type := Make_Temporary (Loc, 'S');
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Str_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Array), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints =>
New_List (New_Occurrence_Of (Range_Type, Loc))))));
-- type Equiv_T is record
-- [ _parent : Tnn; ]
-- E : Str_Type;
-- end Equiv_T;
Equiv_Type := Make_Temporary (Loc, 'T');
Set_Ekind (Equiv_Type, E_Record_Type);
Set_Parent_Subtype (Equiv_Type, Constr_Root);
-- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
-- treatment for this type. In particular, even though _parent's type
-- is a controlled type or contains controlled components, we do not
-- want to set Has_Controlled_Component on it to avoid making it gain
-- an unwanted _controller component.
Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
-- A class-wide equivalent type does not require initialization
Set_Suppress_Initialization (Equiv_Type);
if not Is_Interface (Root_Typ) then
Append_To (Comp_List,
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uParent),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Occurrence_Of (Constr_Root, Loc))));
Set_Reverse_Storage_Order
(Equiv_Type, Reverse_Storage_Order (Base_Type (Root_Utyp)));
Set_Reverse_Bit_Order
(Equiv_Type, Reverse_Bit_Order (Base_Type (Root_Utyp)));
end if;
Append_To (Comp_List,
Make_Component_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'C'),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Occurrence_Of (Str_Type, Loc))));
Append_To (List_Def,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Equiv_Type,
Type_Definition =>
Make_Record_Definition (Loc,
Component_List =>
Make_Component_List (Loc,
Component_Items => Comp_List,
Variant_Part => Empty))));
-- Suppress all checks during the analysis of the expanded code to avoid
-- the generation of spurious warnings under ZFP run-time.
Insert_Actions (E, List_Def, Suppress => All_Checks);
return Equiv_Type;
end Make_CW_Equivalent_Type;
-------------------------
-- Make_Invariant_Call --
-------------------------
function Make_Invariant_Call (Expr : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (Expr);
Typ : constant Entity_Id := Base_Type (Etype (Expr));
pragma Assert (Has_Invariants (Typ));
Proc_Id : constant Entity_Id := Invariant_Procedure (Typ);
pragma Assert (Present (Proc_Id));
begin
-- The invariant procedure has a null body if assertions are disabled or
-- Assertion_Policy Ignore is in effect. In that case, generate a null
-- statement instead of a call to the invariant procedure.
if Has_Null_Body (Proc_Id) then
return Make_Null_Statement (Loc);
else
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => New_List (Relocate_Node (Expr)));
end if;
end Make_Invariant_Call;
------------------------
-- Make_Literal_Range --
------------------------
function Make_Literal_Range
(Loc : Source_Ptr;
Literal_Typ : Entity_Id) return Node_Id
is
Lo : constant Node_Id :=
New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
Index : constant Entity_Id := Etype (Lo);
Length_Expr : constant Node_Id :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Intval => String_Literal_Length (Literal_Typ)),
Right_Opnd => Make_Integer_Literal (Loc, 1));
Hi : Node_Id;
begin
Set_Analyzed (Lo, False);
if Is_Integer_Type (Index) then
Hi :=
Make_Op_Add (Loc,
Left_Opnd => New_Copy_Tree (Lo),
Right_Opnd => Length_Expr);
else
Hi :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Val,
Prefix => New_Occurrence_Of (Index, Loc),
Expressions => New_List (
Make_Op_Add (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (Index, Loc),
Expressions => New_List (New_Copy_Tree (Lo))),
Right_Opnd => Length_Expr)));
end if;
return
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi);
end Make_Literal_Range;
--------------------------
-- Make_Non_Empty_Check --
--------------------------
function Make_Non_Empty_Check
(Loc : Source_Ptr;
N : Node_Id) return Node_Id
is
begin
return
Make_Op_Ne (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
Right_Opnd =>
Make_Integer_Literal (Loc, 0));
end Make_Non_Empty_Check;
-------------------------
-- Make_Predicate_Call --
-------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
function Make_Predicate_Call
(Typ : Entity_Id;
Expr : Node_Id;
Mem : Boolean := False) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Expr);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
Call : Node_Id;
Func_Id : Entity_Id;
begin
Func_Id := Predicate_Function (Typ);
pragma Assert (Present (Func_Id));
-- The related type may be subject to pragma Ghost. Set the mode now to
-- ensure that the call is properly marked as Ghost.
Set_Ghost_Mode (Typ);
-- Call special membership version if requested and available
if Mem and then Present (Predicate_Function_M (Typ)) then
Func_Id := Predicate_Function_M (Typ);
end if;
-- Case of calling normal predicate function
-- If the type is tagged, the expression may be class-wide, in which
-- case it has to be converted to its root type, given that the
-- generated predicate function is not dispatching. The conversion is
-- type-safe and does not need validation, which matters when private
-- extensions are involved.
if Is_Tagged_Type (Typ) then
Call :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Id, Loc),
Parameter_Associations =>
New_List (OK_Convert_To (Typ, Relocate_Node (Expr))));
else
Call :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Id, Loc),
Parameter_Associations => New_List (Relocate_Node (Expr)));
end if;
Restore_Ghost_Region (Saved_GM, Saved_IGR);
return Call;
end Make_Predicate_Call;
--------------------------
-- Make_Predicate_Check --
--------------------------
function Make_Predicate_Check
(Typ : Entity_Id;
Expr : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Expr);
procedure Add_Failure_Expression (Args : List_Id);
-- Add the failure expression of pragma Predicate_Failure (if any) to
-- list Args.
----------------------------
-- Add_Failure_Expression --
----------------------------
procedure Add_Failure_Expression (Args : List_Id) is
function Failure_Expression return Node_Id;
pragma Inline (Failure_Expression);
-- Find aspect or pragma Predicate_Failure that applies to type Typ
-- and return its expression. Return Empty if no such annotation is
-- available.
function Is_OK_PF_Aspect (Asp : Node_Id) return Boolean;
pragma Inline (Is_OK_PF_Aspect);
-- Determine whether aspect Asp is a suitable Predicate_Failure
-- aspect that applies to type Typ.
function Is_OK_PF_Pragma (Prag : Node_Id) return Boolean;
pragma Inline (Is_OK_PF_Pragma);
-- Determine whether pragma Prag is a suitable Predicate_Failure
-- pragma that applies to type Typ.
procedure Replace_Subtype_Reference (N : Node_Id);
-- Replace the current instance of type Typ denoted by N with
-- expression Expr.
------------------------
-- Failure_Expression --
------------------------
function Failure_Expression return Node_Id is
Item : Node_Id;
begin
-- The management of the rep item chain involves "inheritance" of
-- parent type chains. If a parent [sub]type is already subject to
-- pragma Predicate_Failure, then the pragma will also appear in
-- the chain of the child [sub]type, which in turn may possess a
-- pragma of its own. Avoid order-dependent issues by inspecting
-- the rep item chain directly. Note that routine Get_Pragma may
-- return a parent pragma.
Item := First_Rep_Item (Typ);
while Present (Item) loop
-- Predicate_Failure appears as an aspect
if Nkind (Item) = N_Aspect_Specification
and then Is_OK_PF_Aspect (Item)
then
return Expression (Item);
-- Predicate_Failure appears as a pragma
elsif Nkind (Item) = N_Pragma
and then Is_OK_PF_Pragma (Item)
then
return
Get_Pragma_Arg
(Next (First (Pragma_Argument_Associations (Item))));
end if;
Next_Rep_Item (Item);
end loop;
return Empty;
end Failure_Expression;
---------------------
-- Is_OK_PF_Aspect --
---------------------
function Is_OK_PF_Aspect (Asp : Node_Id) return Boolean is
begin
-- To qualify, the aspect must apply to the type subjected to the
-- predicate check.
return
Chars (Identifier (Asp)) = Name_Predicate_Failure
and then Present (Entity (Asp))
and then Entity (Asp) = Typ;
end Is_OK_PF_Aspect;
---------------------
-- Is_OK_PF_Pragma --
---------------------
function Is_OK_PF_Pragma (Prag : Node_Id) return Boolean is
Args : constant List_Id := Pragma_Argument_Associations (Prag);
Typ_Arg : Node_Id;
begin
-- Nothing to do when the pragma does not denote Predicate_Failure
if Pragma_Name (Prag) /= Name_Predicate_Failure then
return False;
-- Nothing to do when the pragma lacks arguments, in which case it
-- is illegal.
elsif No (Args) or else Is_Empty_List (Args) then
return False;
end if;
Typ_Arg := Get_Pragma_Arg (First (Args));
-- To qualify, the local name argument of the pragma must denote
-- the type subjected to the predicate check.
return
Is_Entity_Name (Typ_Arg)
and then Present (Entity (Typ_Arg))
and then Entity (Typ_Arg) = Typ;
end Is_OK_PF_Pragma;
--------------------------------
-- Replace_Subtype_Reference --
--------------------------------
procedure Replace_Subtype_Reference (N : Node_Id) is
begin
Rewrite (N, New_Copy_Tree (Expr));
end Replace_Subtype_Reference;
procedure Replace_Subtype_References is
new Replace_Type_References_Generic (Replace_Subtype_Reference);
-- Local variables
PF_Expr : constant Node_Id := Failure_Expression;
Expr : Node_Id;
-- Start of processing for Add_Failure_Expression
begin
if Present (PF_Expr) then
-- Replace any occurrences of the current instance of the type
-- with the object subjected to the predicate check.
Expr := New_Copy_Tree (PF_Expr);
Replace_Subtype_References (Expr, Typ);
-- The failure expression appears as the third argument of the
-- Check pragma.
Append_To (Args,
Make_Pragma_Argument_Association (Loc,
Expression => Expr));
end if;
end Add_Failure_Expression;
-- Local variables
Args : List_Id;
Nam : Name_Id;
-- Start of processing for Make_Predicate_Check
begin
-- If predicate checks are suppressed, then return a null statement. For
-- this call, we check only the scope setting. If the caller wants to
-- check a specific entity's setting, they must do it manually.
if Predicate_Checks_Suppressed (Empty) then
return Make_Null_Statement (Loc);
end if;
-- Do not generate a check within stream functions and the like.
if not Predicate_Check_In_Scope (Expr) then
return Make_Null_Statement (Loc);
end if;
-- Compute proper name to use, we need to get this right so that the
-- right set of check policies apply to the Check pragma we are making.
if Has_Dynamic_Predicate_Aspect (Typ) then
Nam := Name_Dynamic_Predicate;
elsif Has_Static_Predicate_Aspect (Typ) then
Nam := Name_Static_Predicate;
else
Nam := Name_Predicate;
end if;
Args := New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Nam)),
Make_Pragma_Argument_Association (Loc,
Expression => Make_Predicate_Call (Typ, Expr)));
-- If the subtype is subject to pragma Predicate_Failure, add the
-- failure expression as an additional parameter.
Add_Failure_Expression (Args);
return
Make_Pragma (Loc,
Chars => Name_Check,
Pragma_Argument_Associations => Args);
end Make_Predicate_Check;
----------------------------
-- Make_Subtype_From_Expr --
----------------------------
-- 1. If Expr is an unconstrained array expression, creates
-- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
-- 2. If Expr is a unconstrained discriminated type expression, creates
-- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
-- 3. If Expr is class-wide, creates an implicit class-wide subtype
function Make_Subtype_From_Expr
(E : Node_Id;
Unc_Typ : Entity_Id;
Related_Id : Entity_Id := Empty) return Node_Id
is
List_Constr : constant List_Id := New_List;
Loc : constant Source_Ptr := Sloc (E);
D : Entity_Id;
Full_Exp : Node_Id;
Full_Subtyp : Entity_Id;
High_Bound : Entity_Id;
Index_Typ : Entity_Id;
Low_Bound : Entity_Id;
Priv_Subtyp : Entity_Id;
Utyp : Entity_Id;
begin
if Is_Private_Type (Unc_Typ)
and then Has_Unknown_Discriminants (Unc_Typ)
then
-- The caller requests a unique external name for both the private
-- and the full subtype.
if Present (Related_Id) then
Full_Subtyp :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Related_Id), 'C'));
Priv_Subtyp :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Related_Id), 'P'));
else
Full_Subtyp := Make_Temporary (Loc, 'C');
Priv_Subtyp := Make_Temporary (Loc, 'P');
end if;
-- Prepare the subtype completion. Use the base type to find the
-- underlying type because the type may be a generic actual or an
-- explicit subtype.
Utyp := Underlying_Type (Base_Type (Unc_Typ));
Full_Exp :=
Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E));
Set_Parent (Full_Exp, Parent (E));
Insert_Action (E,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Full_Subtyp,
Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
-- Define the dummy private subtype
Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
Set_Scope (Priv_Subtyp, Full_Subtyp);
Set_Is_Constrained (Priv_Subtyp);
Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
Set_Is_Itype (Priv_Subtyp);
Set_Associated_Node_For_Itype (Priv_Subtyp, E);
if Is_Tagged_Type (Priv_Subtyp) then
Set_Class_Wide_Type
(Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
Set_Direct_Primitive_Operations (Priv_Subtyp,
Direct_Primitive_Operations (Unc_Typ));
end if;
Set_Full_View (Priv_Subtyp, Full_Subtyp);
return New_Occurrence_Of (Priv_Subtyp, Loc);
elsif Is_Array_Type (Unc_Typ) then
Index_Typ := First_Index (Unc_Typ);
for J in 1 .. Number_Dimensions (Unc_Typ) loop
-- Capture the bounds of each index constraint in case the context
-- is an object declaration of an unconstrained type initialized
-- by a function call:
-- Obj : Unconstr_Typ := Func_Call;
-- This scenario requires secondary scope management and the index
-- constraint cannot depend on the temporary used to capture the
-- result of the function call.
-- SS_Mark;
-- Temp : Unconstr_Typ_Ptr := Func_Call'reference;
-- subtype S is Unconstr_Typ (Temp.all'First .. Temp.all'Last);
-- Obj : S := Temp.all;
-- SS_Release; -- Temp is gone at this point, bounds of S are
-- -- non existent.
-- Generate:
-- Low_Bound : constant Base_Type (Index_Typ) := E'First (J);
Low_Bound := Make_Temporary (Loc, 'B');
Insert_Action (E,
Make_Object_Declaration (Loc,
Defining_Identifier => Low_Bound,
Object_Definition =>
New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
Constant_Present => True,
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J)))));
-- Generate:
-- High_Bound : constant Base_Type (Index_Typ) := E'Last (J);
High_Bound := Make_Temporary (Loc, 'B');
Insert_Action (E,
Make_Object_Declaration (Loc,
Defining_Identifier => High_Bound,
Object_Definition =>
New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
Constant_Present => True,
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J)))));
Append_To (List_Constr,
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Low_Bound, Loc),
High_Bound => New_Occurrence_Of (High_Bound, Loc)));
Next_Index (Index_Typ);
end loop;
elsif Is_Class_Wide_Type (Unc_Typ) then
declare
CW_Subtype : Entity_Id;
EQ_Typ : Entity_Id := Empty;
begin
-- A class-wide equivalent type is not needed on VM targets
-- because the VM back-ends handle the class-wide object
-- initialization itself (and doesn't need or want the
-- additional intermediate type to handle the assignment).
if Expander_Active and then Tagged_Type_Expansion then
-- If this is the class-wide type of a completion that is a
-- record subtype, set the type of the class-wide type to be
-- the full base type, for use in the expanded code for the
-- equivalent type. Should this be done earlier when the
-- completion is analyzed ???
if Is_Private_Type (Etype (Unc_Typ))
and then
Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype
then
Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ))));
end if;
EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
end if;
CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
Set_Equivalent_Type (CW_Subtype, EQ_Typ);
Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
return New_Occurrence_Of (CW_Subtype, Loc);
end;
-- Indefinite record type with discriminants
else
D := First_Discriminant (Unc_Typ);
while Present (D) loop
Append_To (List_Constr,
Make_Selected_Component (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Selector_Name => New_Occurrence_Of (D, Loc)));
Next_Discriminant (D);
end loop;
end if;
return
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Unc_Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => List_Constr));
end Make_Subtype_From_Expr;
-----------------------------
-- Make_Variant_Comparison --
-----------------------------
function Make_Variant_Comparison
(Loc : Source_Ptr;
Mode : Name_Id;
Curr_Val : Node_Id;
Old_Val : Node_Id) return Node_Id
is
begin
if Mode = Name_Increases then
return Make_Op_Gt (Loc, Curr_Val, Old_Val);
else pragma Assert (Mode = Name_Decreases);
return Make_Op_Lt (Loc, Curr_Val, Old_Val);
end if;
end Make_Variant_Comparison;
---------------
-- Map_Types --
---------------
procedure Map_Types (Parent_Type : Entity_Id; Derived_Type : Entity_Id) is
-- NOTE: Most of the routines in Map_Types are intentionally unnested to
-- avoid deep indentation of code.
-- NOTE: Routines which deal with discriminant mapping operate on the
-- [underlying/record] full view of various types because those views
-- contain all discriminants and stored constraints.
procedure Add_Primitive (Prim : Entity_Id; Par_Typ : Entity_Id);
-- Subsidiary to Map_Primitives. Find a primitive in the inheritance or
-- overriding chain starting from Prim whose dispatching type is parent
-- type Par_Typ and add a mapping between the result and primitive Prim.
function Ancestor_Primitive (Subp : Entity_Id) return Entity_Id;
-- Subsidiary to Map_Primitives. Return the next ancestor primitive in
-- the inheritance or overriding chain of subprogram Subp. Return Empty
-- if no such primitive is available.
function Build_Chain
(Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id) return Elist_Id;
-- Subsidiary to Map_Discriminants. Recreate the derivation chain from
-- parent type Par_Typ leading down towards derived type Deriv_Typ. The
-- list has the form:
--
-- head tail
-- v v
-- <Ancestor_N> -> <Ancestor_N-1> -> <Ancestor_1> -> Deriv_Typ
--
-- Note that Par_Typ is not part of the resulting derivation chain
function Discriminated_View (Typ : Entity_Id) return Entity_Id;
-- Return the view of type Typ which could potentially contains either
-- the discriminants or stored constraints of the type.
function Find_Discriminant_Value
(Discr : Entity_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Typ_Elmt : Elmt_Id) return Node_Or_Entity_Id;
-- Subsidiary to Map_Discriminants. Find the value of discriminant Discr
-- in the derivation chain starting from parent type Par_Typ leading to
-- derived type Deriv_Typ. The returned value is one of the following:
--
-- * An entity which is either a discriminant or a nondiscriminant
-- name, and renames/constraints Discr.
--
-- * An expression which constraints Discr
--
-- Typ_Elmt is an element of the derivation chain created by routine
-- Build_Chain and denotes the current ancestor being examined.
procedure Map_Discriminants
(Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id);
-- Map each discriminant of type Par_Typ to a meaningful constraint
-- from the point of view of type Deriv_Typ.
procedure Map_Primitives (Par_Typ : Entity_Id; Deriv_Typ : Entity_Id);
-- Map each primitive of type Par_Typ to a corresponding primitive of
-- type Deriv_Typ.
-------------------
-- Add_Primitive --
-------------------
procedure Add_Primitive (Prim : Entity_Id; Par_Typ : Entity_Id) is
Par_Prim : Entity_Id;
begin
-- Inspect the inheritance chain through the Alias attribute and the
-- overriding chain through the Overridden_Operation looking for an
-- ancestor primitive with the appropriate dispatching type.
Par_Prim := Prim;
while Present (Par_Prim) loop
exit when Find_Dispatching_Type (Par_Prim) = Par_Typ;
Par_Prim := Ancestor_Primitive (Par_Prim);
end loop;
-- Create a mapping of the form:
-- parent type primitive -> derived type primitive
if Present (Par_Prim) then
Type_Map.Set (Par_Prim, Prim);
end if;
end Add_Primitive;
------------------------
-- Ancestor_Primitive --
------------------------
function Ancestor_Primitive (Subp : Entity_Id) return Entity_Id is
Inher_Prim : constant Entity_Id := Alias (Subp);
Over_Prim : constant Entity_Id := Overridden_Operation (Subp);
begin
-- The current subprogram overrides an ancestor primitive
if Present (Over_Prim) then
return Over_Prim;
-- The current subprogram is an internally generated alias of an
-- inherited ancestor primitive.
elsif Present (Inher_Prim) then
return Inher_Prim;
-- Otherwise the current subprogram is the root of the inheritance or
-- overriding chain.
else
return Empty;
end if;
end Ancestor_Primitive;
-----------------
-- Build_Chain --
-----------------
function Build_Chain
(Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id) return Elist_Id
is
Anc_Typ : Entity_Id;
Chain : Elist_Id;
Curr_Typ : Entity_Id;
begin
Chain := New_Elmt_List;
-- Add the derived type to the derivation chain
Prepend_Elmt (Deriv_Typ, Chain);
-- Examine all ancestors starting from the derived type climbing
-- towards parent type Par_Typ.
Curr_Typ := Deriv_Typ;
loop
-- Handle the case where the current type is a record which
-- derives from a subtype.
-- subtype Sub_Typ is Par_Typ ...
-- type Deriv_Typ is Sub_Typ ...
if Ekind (Curr_Typ) = E_Record_Type
and then Present (Parent_Subtype (Curr_Typ))
then
Anc_Typ := Parent_Subtype (Curr_Typ);
-- Handle the case where the current type is a record subtype of
-- another subtype.
-- subtype Sub_Typ1 is Par_Typ ...
-- subtype Sub_Typ2 is Sub_Typ1 ...
elsif Ekind (Curr_Typ) = E_Record_Subtype
and then Present (Cloned_Subtype (Curr_Typ))
then
Anc_Typ := Cloned_Subtype (Curr_Typ);
-- Otherwise use the direct parent type
else
Anc_Typ := Etype (Curr_Typ);
end if;
-- Use the first subtype when dealing with itypes
if Is_Itype (Anc_Typ) then
Anc_Typ := First_Subtype (Anc_Typ);
end if;
-- Work with the view which contains the discriminants and stored
-- constraints.
Anc_Typ := Discriminated_View (Anc_Typ);
-- Stop the climb when either the parent type has been reached or
-- there are no more ancestors left to examine.
exit when Anc_Typ = Curr_Typ or else Anc_Typ = Par_Typ;
Prepend_Unique_Elmt (Anc_Typ, Chain);
Curr_Typ := Anc_Typ;
end loop;
return Chain;
end Build_Chain;
------------------------
-- Discriminated_View --
------------------------
function Discriminated_View (Typ : Entity_Id) return Entity_Id is
T : Entity_Id;
begin
T := Typ;
-- Use the [underlying] full view when dealing with private types
-- because the view contains all inherited discriminants or stored
-- constraints.
if Is_Private_Type (T) then
if Present (Underlying_Full_View (T)) then
T := Underlying_Full_View (T);
elsif Present (Full_View (T)) then
T := Full_View (T);
end if;
end if;
-- Use the underlying record view when the type is an extenstion of
-- a parent type with unknown discriminants because the view contains
-- all inherited discriminants or stored constraints.
if Ekind (T) = E_Record_Type
and then Present (Underlying_Record_View (T))
then
T := Underlying_Record_View (T);
end if;
return T;
end Discriminated_View;
-----------------------------
-- Find_Discriminant_Value --
-----------------------------
function Find_Discriminant_Value
(Discr : Entity_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Typ_Elmt : Elmt_Id) return Node_Or_Entity_Id
is
Discr_Pos : constant Uint := Discriminant_Number (Discr);
Typ : constant Entity_Id := Node (Typ_Elmt);
function Find_Constraint_Value
(Constr : Node_Or_Entity_Id) return Node_Or_Entity_Id;
-- Given constraint Constr, find what it denotes. This is either:
--
-- * An entity which is either a discriminant or a name
--
-- * An expression
---------------------------
-- Find_Constraint_Value --
---------------------------
function Find_Constraint_Value
(Constr : Node_Or_Entity_Id) return Node_Or_Entity_Id
is
begin
if Nkind (Constr) in N_Entity then
-- The constraint denotes a discriminant of the curren type
-- which renames the ancestor discriminant:
-- vv
-- type Typ (D1 : ...; DN : ...) is
-- new Anc (Discr => D1) with ...
-- ^^
if Ekind (Constr) = E_Discriminant then
-- The discriminant belongs to derived type Deriv_Typ. This
-- is the final value for the ancestor discriminant as the
-- derivations chain has been fully exhausted.
if Typ = Deriv_Typ then
return Constr;
-- Otherwise the discriminant may be renamed or constrained
-- at a lower level. Continue looking down the derivation
-- chain.
else
return
Find_Discriminant_Value
(Discr => Constr,
Par_Typ => Par_Typ,
Deriv_Typ => Deriv_Typ,
Typ_Elmt => Next_Elmt (Typ_Elmt));
end if;
-- Otherwise the constraint denotes a reference to some name
-- which results in a Girder discriminant:
-- vvvv
-- Name : ...;
-- type Typ (D1 : ...; DN : ...) is
-- new Anc (Discr => Name) with ...
-- ^^^^
-- Return the name as this is the proper constraint of the
-- discriminant.
else
return Constr;
end if;
-- The constraint denotes a reference to a name
elsif Is_Entity_Name (Constr) then
return Find_Constraint_Value (Entity (Constr));
-- Otherwise the current constraint is an expression which yields
-- a Girder discriminant:
-- type Typ (D1 : ...; DN : ...) is
-- new Anc (Discr => <expression>) with ...
-- ^^^^^^^^^^
-- Return the expression as this is the proper constraint of the
-- discriminant.
else
return Constr;
end if;
end Find_Constraint_Value;
-- Local variables
Constrs : constant Elist_Id := Stored_Constraint (Typ);
Constr_Elmt : Elmt_Id;
Pos : Uint;
Typ_Discr : Entity_Id;
-- Start of processing for Find_Discriminant_Value
begin
-- The algorithm for finding the value of a discriminant works as
-- follows. First, it recreates the derivation chain from Par_Typ
-- to Deriv_Typ as a list:
-- Par_Typ (shown for completeness)
-- v
-- Ancestor_N <-- head of chain
-- v
-- Ancestor_1
-- v
-- Deriv_Typ <-- tail of chain
-- The algorithm then traces the fate of a parent discriminant down
-- the derivation chain. At each derivation level, the discriminant
-- may be either inherited or constrained.
-- 1) Discriminant is inherited: there are two cases, depending on
-- which type is inheriting.
-- 1.1) Deriv_Typ is inheriting:
-- type Ancestor (D_1 : ...) is tagged ...
-- type Deriv_Typ is new Ancestor ...
-- In this case the inherited discriminant is the final value of
-- the parent discriminant because the end of the derivation chain
-- has been reached.
-- 1.2) Some other type is inheriting:
-- type Ancestor_1 (D_1 : ...) is tagged ...
-- type Ancestor_2 is new Ancestor_1 ...
-- In this case the algorithm continues to trace the fate of the
-- inherited discriminant down the derivation chain because it may
-- be further inherited or constrained.
-- 2) Discriminant is constrained: there are three cases, depending
-- on what the constraint is.
-- 2.1) The constraint is another discriminant (aka renaming):
-- type Ancestor_1 (D_1 : ...) is tagged ...
-- type Ancestor_2 (D_2 : ...) is new Ancestor_1 (D_1 => D_2) ...
-- In this case the constraining discriminant becomes the one to
-- track down the derivation chain. The algorithm already knows
-- that D_2 constrains D_1, therefore if the algorithm finds the
-- value of D_2, then this would also be the value for D_1.
-- 2.2) The constraint is a name (aka Girder):
-- Name : ...
-- type Ancestor_1 (D_1 : ...) is tagged ...
-- type Ancestor_2 is new Ancestor_1 (D_1 => Name) ...
-- In this case the name is the final value of D_1 because the
-- discriminant cannot be further constrained.
-- 2.3) The constraint is an expression (aka Girder):
-- type Ancestor_1 (D_1 : ...) is tagged ...
-- type Ancestor_2 is new Ancestor_1 (D_1 => 1 + 2) ...
-- Similar to 2.2, the expression is the final value of D_1
Pos := Uint_1;
-- When a derived type constrains its parent type, all constaints
-- appear in the Stored_Constraint list. Examine the list looking
-- for a positional match.
if Present (Constrs) then
Constr_Elmt := First_Elmt (Constrs);
while Present (Constr_Elmt) loop
-- The position of the current constraint matches that of the
-- ancestor discriminant.
if Pos = Discr_Pos then
return Find_Constraint_Value (Node (Constr_Elmt));
end if;
Next_Elmt (Constr_Elmt);
Pos := Pos + 1;
end loop;
-- Otherwise the derived type does not constraint its parent type in
-- which case it inherits the parent discriminants.
else
Typ_Discr := First_Discriminant (Typ);
while Present (Typ_Discr) loop
-- The position of the current discriminant matches that of the
-- ancestor discriminant.
if Pos = Discr_Pos then
return Find_Constraint_Value (Typ_Discr);
end if;
Next_Discriminant (Typ_Discr);
Pos := Pos + 1;
end loop;
end if;
-- A discriminant must always have a corresponding value. This is
-- either another discriminant, a name, or an expression. If this
-- point is reached, them most likely the derivation chain employs
-- the wrong views of types.
pragma Assert (False);
return Empty;
end Find_Discriminant_Value;
-----------------------
-- Map_Discriminants --
-----------------------
procedure Map_Discriminants
(Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id)
is
Deriv_Chain : constant Elist_Id := Build_Chain (Par_Typ, Deriv_Typ);
Discr : Entity_Id;
Discr_Val : Node_Or_Entity_Id;
begin
-- Examine each discriminant of parent type Par_Typ and find a
-- suitable value for it from the point of view of derived type
-- Deriv_Typ.
if Has_Discriminants (Par_Typ) then
Discr := First_Discriminant (Par_Typ);
while Present (Discr) loop
Discr_Val :=
Find_Discriminant_Value
(Discr => Discr,
Par_Typ => Par_Typ,
Deriv_Typ => Deriv_Typ,
Typ_Elmt => First_Elmt (Deriv_Chain));
-- Create a mapping of the form:
-- parent type discriminant -> value
Type_Map.Set (Discr, Discr_Val);
Next_Discriminant (Discr);
end loop;
end if;
end Map_Discriminants;
--------------------
-- Map_Primitives --
--------------------
procedure Map_Primitives (Par_Typ : Entity_Id; Deriv_Typ : Entity_Id) is
Deriv_Prim : Entity_Id;
Par_Prim : Entity_Id;
Par_Prims : Elist_Id;
Prim_Elmt : Elmt_Id;
begin
-- Inspect the primitives of the derived type and determine whether
-- they relate to the primitives of the parent type. If there is a
-- meaningful relation, create a mapping of the form:
-- parent type primitive -> perived type primitive
if Present (Direct_Primitive_Operations (Deriv_Typ)) then
Prim_Elmt := First_Elmt (Direct_Primitive_Operations (Deriv_Typ));
while Present (Prim_Elmt) loop
Deriv_Prim := Node (Prim_Elmt);
if Is_Subprogram (Deriv_Prim)
and then Find_Dispatching_Type (Deriv_Prim) = Deriv_Typ
then
Add_Primitive (Deriv_Prim, Par_Typ);
end if;
Next_Elmt (Prim_Elmt);
end loop;
end if;
-- If the parent operation is an interface operation, the overriding
-- indicator is not present. Instead, we get from the interface
-- operation the primitive of the current type that implements it.
if Is_Interface (Par_Typ) then
Par_Prims := Collect_Primitive_Operations (Par_Typ);
if Present (Par_Prims) then
Prim_Elmt := First_Elmt (Par_Prims);
while Present (Prim_Elmt) loop
Par_Prim := Node (Prim_Elmt);
Deriv_Prim :=
Find_Primitive_Covering_Interface (Deriv_Typ, Par_Prim);
if Present (Deriv_Prim) then
Type_Map.Set (Par_Prim, Deriv_Prim);
end if;
Next_Elmt (Prim_Elmt);
end loop;
end if;
end if;
end Map_Primitives;
-- Start of processing for Map_Types
begin
-- Nothing to do if there are no types to work with
if No (Parent_Type) or else No (Derived_Type) then
return;
-- Nothing to do if the mapping already exists
elsif Type_Map.Get (Parent_Type) = Derived_Type then
return;
-- Nothing to do if both types are not tagged. Note that untagged types
-- do not have primitive operations and their discriminants are already
-- handled by gigi.
elsif not Is_Tagged_Type (Parent_Type)
or else not Is_Tagged_Type (Derived_Type)
then
return;
end if;
-- Create a mapping of the form
-- parent type -> derived type
-- to prevent any subsequent attempts to produce the same relations
Type_Map.Set (Parent_Type, Derived_Type);
-- Create mappings of the form
-- parent type discriminant -> derived type discriminant
-- <or>
-- parent type discriminant -> constraint
-- Note that mapping of discriminants breaks privacy because it needs to
-- work with those views which contains the discriminants and any stored
-- constraints.
Map_Discriminants
(Par_Typ => Discriminated_View (Parent_Type),
Deriv_Typ => Discriminated_View (Derived_Type));
-- Create mappings of the form
-- parent type primitive -> derived type primitive
Map_Primitives
(Par_Typ => Parent_Type,
Deriv_Typ => Derived_Type);
end Map_Types;
----------------------------
-- Matching_Standard_Type --
----------------------------
function Matching_Standard_Type (Typ : Entity_Id) return Entity_Id is
pragma Assert (Is_Scalar_Type (Typ));
Siz : constant Uint := Esize (Typ);
begin
-- Floating-point cases
if Is_Floating_Point_Type (Typ) then
if Siz <= Esize (Standard_Short_Float) then
return Standard_Short_Float;
elsif Siz <= Esize (Standard_Float) then
return Standard_Float;
elsif Siz <= Esize (Standard_Long_Float) then
return Standard_Long_Float;
elsif Siz <= Esize (Standard_Long_Long_Float) then
return Standard_Long_Long_Float;
else
raise Program_Error;
end if;
-- Integer cases (includes fixed-point types)
-- Unsigned integer cases (includes normal enumeration types)
else
return Small_Integer_Type_For (Siz, Is_Unsigned_Type (Typ));
end if;
end Matching_Standard_Type;
-----------------------------
-- May_Generate_Large_Temp --
-----------------------------
-- At the current time, the only types that we return False for (i.e. where
-- we decide we know they cannot generate large temps) are ones where we
-- know the size is 256 bits or less at compile time, and we are still not
-- doing a thorough job on arrays and records ???
function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
begin
if not Size_Known_At_Compile_Time (Typ) then
return False;
elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
return False;
elsif Is_Array_Type (Typ)
and then Present (Packed_Array_Impl_Type (Typ))
then
return May_Generate_Large_Temp (Packed_Array_Impl_Type (Typ));
-- We could do more here to find other small types ???
else
return True;
end if;
end May_Generate_Large_Temp;
--------------------------------------------
-- Needs_Conditional_Null_Excluding_Check --
--------------------------------------------
function Needs_Conditional_Null_Excluding_Check
(Typ : Entity_Id) return Boolean
is
begin
return
Is_Array_Type (Typ) and then Can_Never_Be_Null (Component_Type (Typ));
end Needs_Conditional_Null_Excluding_Check;
----------------------------
-- Needs_Constant_Address --
----------------------------
function Needs_Constant_Address
(Decl : Node_Id;
Typ : Entity_Id) return Boolean
is
begin
-- If we have no initialization of any kind, then we don't need to place
-- any restrictions on the address clause, because the object will be
-- elaborated after the address clause is evaluated. This happens if the
-- declaration has no initial expression, or the type has no implicit
-- initialization, or the object is imported.
-- The same holds for all initialized scalar types and all access types.
-- Packed bit array types of size up to the maximum integer size are
-- represented using a modular type with an initialization (to zero) and
-- can be processed like other initialized scalar types.
-- If the type is controlled, code to attach the object to a
-- finalization chain is generated at the point of declaration, and
-- therefore the elaboration of the object cannot be delayed: the
-- address expression must be a constant.
if No (Expression (Decl))
and then not Needs_Finalization (Typ)
and then
(not Has_Non_Null_Base_Init_Proc (Typ)
or else Is_Imported (Defining_Identifier (Decl)))
then
return False;
elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ))
or else Is_Access_Type (Typ)
or else
(Is_Bit_Packed_Array (Typ)
and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)))
then
return False;
else
-- Otherwise, we require the address clause to be constant because
-- the call to the initialization procedure (or the attach code) has
-- to happen at the point of the declaration.
-- Actually the IP call has been moved to the freeze actions anyway,
-- so maybe we can relax this restriction???
return True;
end if;
end Needs_Constant_Address;
----------------------------
-- New_Class_Wide_Subtype --
----------------------------
function New_Class_Wide_Subtype
(CW_Typ : Entity_Id;
N : Node_Id) return Entity_Id
is
Res : constant Entity_Id := Create_Itype (E_Void, N);
-- Capture relevant attributes of the class-wide subtype which must be
-- restored after the copy.
Res_Chars : constant Name_Id := Chars (Res);
Res_Is_CGE : constant Boolean := Is_Checked_Ghost_Entity (Res);
Res_Is_IGE : constant Boolean := Is_Ignored_Ghost_Entity (Res);
Res_Is_IGN : constant Boolean := Is_Ignored_Ghost_Node (Res);
Res_Scope : constant Entity_Id := Scope (Res);
begin
Copy_Node (CW_Typ, Res);
-- Restore the relevant attributes of the class-wide subtype
Set_Chars (Res, Res_Chars);
Set_Is_Checked_Ghost_Entity (Res, Res_Is_CGE);
Set_Is_Ignored_Ghost_Entity (Res, Res_Is_IGE);
Set_Is_Ignored_Ghost_Node (Res, Res_Is_IGN);
Set_Scope (Res, Res_Scope);
-- Decorate the class-wide subtype
Set_Associated_Node_For_Itype (Res, N);
Set_Comes_From_Source (Res, False);
Set_Ekind (Res, E_Class_Wide_Subtype);
Set_Etype (Res, Base_Type (CW_Typ));
Set_Freeze_Node (Res, Empty);
Set_Is_Frozen (Res, False);
Set_Is_Itype (Res);
Set_Is_Public (Res, False);
Set_Next_Entity (Res, Empty);
Set_Prev_Entity (Res, Empty);
Set_Sloc (Res, Sloc (N));
Set_Public_Status (Res);
return Res;
end New_Class_Wide_Subtype;
--------------------------------
-- Non_Limited_Designated_Type --
---------------------------------
function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
Desig : constant Entity_Id := Designated_Type (T);
begin
if Has_Non_Limited_View (Desig) then
return Non_Limited_View (Desig);
else
return Desig;
end if;
end Non_Limited_Designated_Type;
-----------------------------------
-- OK_To_Do_Constant_Replacement --
-----------------------------------
function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
ES : constant Entity_Id := Scope (E);
CS : Entity_Id;
begin
-- Do not replace statically allocated objects, because they may be
-- modified outside the current scope.
if Is_Statically_Allocated (E) then
return False;
-- Do not replace aliased or volatile objects, since we don't know what
-- else might change the value.
elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
return False;
-- Debug flag -gnatdM disconnects this optimization
elsif Debug_Flag_MM then
return False;
-- Otherwise check scopes
else
CS := Current_Scope;
loop
-- If we are in right scope, replacement is safe
if CS = ES then
return True;
-- Packages do not affect the determination of safety
elsif Ekind (CS) = E_Package then
exit when CS = Standard_Standard;
CS := Scope (CS);
-- Blocks do not affect the determination of safety
elsif Ekind (CS) = E_Block then
CS := Scope (CS);
-- Loops do not affect the determination of safety. Note that we
-- kill all current values on entry to a loop, so we are just
-- talking about processing within a loop here.
elsif Ekind (CS) = E_Loop then
CS := Scope (CS);
-- Otherwise, the reference is dubious, and we cannot be sure that
-- it is safe to do the replacement.
else
exit;
end if;
end loop;
return False;
end if;
end OK_To_Do_Constant_Replacement;
------------------------------------
-- Possible_Bit_Aligned_Component --
------------------------------------
function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
begin
-- Do not process an unanalyzed node because it is not yet decorated and
-- most checks performed below will fail.
if not Analyzed (N) then
return False;
end if;
-- There are never alignment issues in CodePeer mode
if CodePeer_Mode then
return False;
end if;
case Nkind (N) is
-- Case of indexed component
when N_Indexed_Component =>
declare
P : constant Node_Id := Prefix (N);
Ptyp : constant Entity_Id := Etype (P);
begin
-- If we know the component size and it is not larger than the
-- maximum integer size, then we are OK. The back end does the
-- assignment of small misaligned objects correctly.
if Known_Static_Component_Size (Ptyp)
and then Component_Size (Ptyp) <= System_Max_Integer_Size
then
return False;
-- Otherwise, we need to test the prefix, to see if we are
-- indexing from a possibly unaligned component.
else
return Possible_Bit_Aligned_Component (P);
end if;
end;
-- Case of selected component
when N_Selected_Component =>
declare
P : constant Node_Id := Prefix (N);
Comp : constant Entity_Id := Entity (Selector_Name (N));
begin
-- This is the crucial test: if the component itself causes
-- trouble, then we can stop and return True.
if Component_May_Be_Bit_Aligned (Comp) then
return True;
-- Otherwise, we need to test the prefix, to see if we are
-- selecting from a possibly unaligned component.
else
return Possible_Bit_Aligned_Component (P);
end if;
end;
-- For a slice, test the prefix, if that is possibly misaligned,
-- then for sure the slice is.
when N_Slice =>
return Possible_Bit_Aligned_Component (Prefix (N));
-- For an unchecked conversion, check whether the expression may
-- be bit aligned.
when N_Unchecked_Type_Conversion =>
return Possible_Bit_Aligned_Component (Expression (N));
-- If we have none of the above, it means that we have fallen off the
-- top testing prefixes recursively, and we now have a stand alone
-- object, where we don't have a problem, unless this is a renaming,
-- in which case we need to look into the renamed object.
when others =>
if Is_Entity_Name (N)
and then Present (Renamed_Object (Entity (N)))
then
return
Possible_Bit_Aligned_Component (Renamed_Object (Entity (N)));
else
return False;
end if;
end case;
end Possible_Bit_Aligned_Component;
-----------------------------------------------
-- Process_Statements_For_Controlled_Objects --
-----------------------------------------------
procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
function Are_Wrapped (L : List_Id) return Boolean;
-- Determine whether list L contains only one statement which is a block
function Wrap_Statements_In_Block
(L : List_Id;
Scop : Entity_Id := Current_Scope) return Node_Id;
-- Given a list of statements L, wrap it in a block statement and return
-- the generated node. Scop is either the current scope or the scope of
-- the context (if applicable).
-----------------
-- Are_Wrapped --
-----------------
function Are_Wrapped (L : List_Id) return Boolean is
Stmt : constant Node_Id := First (L);
begin
return
Present (Stmt)
and then No (Next (Stmt))
and then Nkind (Stmt) = N_Block_Statement;
end Are_Wrapped;
------------------------------
-- Wrap_Statements_In_Block --
------------------------------
function Wrap_Statements_In_Block
(L : List_Id;
Scop : Entity_Id := Current_Scope) return Node_Id
is
Block_Id : Entity_Id;
Block_Nod : Node_Id;
Iter_Loop : Entity_Id;
begin
Block_Nod :=
Make_Block_Statement (Loc,
Declarations => No_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => L));
-- Create a label for the block in case the block needs to manage the
-- secondary stack. A label allows for flag Uses_Sec_Stack to be set.
Add_Block_Identifier (Block_Nod, Block_Id);
-- When wrapping the statements of an iterator loop, check whether
-- the loop requires secondary stack management and if so, propagate
-- the appropriate flags to the block. This ensures that the cursor
-- is properly cleaned up at each iteration of the loop.
Iter_Loop := Find_Enclosing_Iterator_Loop (Scop);
if Present (Iter_Loop) then
Set_Uses_Sec_Stack (Block_Id, Uses_Sec_Stack (Iter_Loop));
-- Secondary stack reclamation is suppressed when the associated
-- iterator loop contains a return statement which uses the stack.
Set_Sec_Stack_Needed_For_Return
(Block_Id, Sec_Stack_Needed_For_Return (Iter_Loop));
end if;
return Block_Nod;
end Wrap_Statements_In_Block;
-- Local variables
Block : Node_Id;
-- Start of processing for Process_Statements_For_Controlled_Objects
begin
-- Whenever a non-handled statement list is wrapped in a block, the
-- block must be explicitly analyzed to redecorate all entities in the
-- list and ensure that a finalizer is properly built.
case Nkind (N) is
when N_Conditional_Entry_Call
| N_Elsif_Part
| N_If_Statement
| N_Selective_Accept
=>
-- Check the "then statements" for elsif parts and if statements
if Nkind (N) in N_Elsif_Part | N_If_Statement
and then not Is_Empty_List (Then_Statements (N))
and then not Are_Wrapped (Then_Statements (N))
and then Requires_Cleanup_Actions
(L => Then_Statements (N),
Lib_Level => False,
Nested_Constructs => False)
then
Block := Wrap_Statements_In_Block (Then_Statements (N));
Set_Then_Statements (N, New_List (Block));
Analyze (Block);
end if;
-- Check the "else statements" for conditional entry calls, if
-- statements and selective accepts.
if Nkind (N) in
N_Conditional_Entry_Call | N_If_Statement | N_Selective_Accept
and then not Is_Empty_List (Else_Statements (N))
and then not Are_Wrapped (Else_Statements (N))
and then Requires_Cleanup_Actions
(L => Else_Statements (N),
Lib_Level => False,
Nested_Constructs => False)
then
Block := Wrap_Statements_In_Block (Else_Statements (N));
Set_Else_Statements (N, New_List (Block));
Analyze (Block);
end if;
when N_Abortable_Part
| N_Accept_Alternative
| N_Case_Statement_Alternative
| N_Delay_Alternative
| N_Entry_Call_Alternative
| N_Exception_Handler
| N_Loop_Statement
| N_Triggering_Alternative
=>
if not Is_Empty_List (Statements (N))
and then not Are_Wrapped (Statements (N))
and then Requires_Cleanup_Actions
(L => Statements (N),
Lib_Level => False,
Nested_Constructs => False)
then
if Nkind (N) = N_Loop_Statement
and then Present (Identifier (N))
then
Block :=
Wrap_Statements_In_Block
(L => Statements (N),
Scop => Entity (Identifier (N)));
else
Block := Wrap_Statements_In_Block (Statements (N));
end if;
Set_Statements (N, New_List (Block));
Analyze (Block);
end if;
-- Could be e.g. a loop that was transformed into a block or null
-- statement. Do nothing for terminate alternatives.
when N_Block_Statement
| N_Null_Statement
| N_Terminate_Alternative
=>
null;
when others =>
raise Program_Error;
end case;
end Process_Statements_For_Controlled_Objects;
------------------
-- Power_Of_Two --
------------------
function Power_Of_Two (N : Node_Id) return Nat is
Typ : constant Entity_Id := Etype (N);
pragma Assert (Is_Integer_Type (Typ));
Siz : constant Nat := UI_To_Int (Esize (Typ));
Val : Uint;
begin
if not Compile_Time_Known_Value (N) then
return 0;
else
Val := Expr_Value (N);
for J in 1 .. Siz - 1 loop
if Val = Uint_2 ** J then
return J;
end if;
end loop;
return 0;
end if;
end Power_Of_Two;
----------------------
-- Remove_Init_Call --
----------------------
function Remove_Init_Call
(Var : Entity_Id;
Rep_Clause : Node_Id) return Node_Id
is
Par : constant Node_Id := Parent (Var);
Typ : constant Entity_Id := Etype (Var);
Init_Proc : Entity_Id;
-- Initialization procedure for Typ
function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
-- Look for init call for Var starting at From and scanning the
-- enclosing list until Rep_Clause or the end of the list is reached.
----------------------------
-- Find_Init_Call_In_List --
----------------------------
function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
Init_Call : Node_Id;
begin
Init_Call := From;
while Present (Init_Call) and then Init_Call /= Rep_Clause loop
if Nkind (Init_Call) = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (Init_Call))
and then Entity (Name (Init_Call)) = Init_Proc
then
return Init_Call;
end if;
Next (Init_Call);
end loop;
return Empty;
end Find_Init_Call_In_List;
Init_Call : Node_Id;
-- Start of processing for Find_Init_Call
begin
if Present (Initialization_Statements (Var)) then
Init_Call := Initialization_Statements (Var);
Set_Initialization_Statements (Var, Empty);
elsif not Has_Non_Null_Base_Init_Proc (Typ) then
-- No init proc for the type, so obviously no call to be found
return Empty;
else
-- We might be able to handle other cases below by just properly
-- setting Initialization_Statements at the point where the init proc
-- call is generated???
Init_Proc := Base_Init_Proc (Typ);
-- First scan the list containing the declaration of Var
Init_Call := Find_Init_Call_In_List (From => Next (Par));
-- If not found, also look on Var's freeze actions list, if any,
-- since the init call may have been moved there (case of an address
-- clause applying to Var).
if No (Init_Call) and then Present (Freeze_Node (Var)) then
Init_Call :=
Find_Init_Call_In_List (First (Actions (Freeze_Node (Var))));
end if;
-- If the initialization call has actuals that use the secondary
-- stack, the call may have been wrapped into a temporary block, in
-- which case the block itself has to be removed.
if No (Init_Call) and then Nkind (Next (Par)) = N_Block_Statement then
declare
Blk : constant Node_Id := Next (Par);
begin
if Present
(Find_Init_Call_In_List
(First (Statements (Handled_Statement_Sequence (Blk)))))
then
Init_Call := Blk;
end if;
end;
end if;
end if;
if Present (Init_Call) then
Remove (Init_Call);
end if;
return Init_Call;
end Remove_Init_Call;
-------------------------
-- Remove_Side_Effects --
-------------------------
procedure Remove_Side_Effects
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False;
Variable_Ref : Boolean := False;
Related_Id : Entity_Id := Empty;
Is_Low_Bound : Boolean := False;
Is_High_Bound : Boolean := False;
Check_Side_Effects : Boolean := True)
is
function Build_Temporary
(Loc : Source_Ptr;
Id : Character;
Related_Nod : Node_Id := Empty) return Entity_Id;
-- Create an external symbol of the form xxx_FIRST/_LAST if Related_Nod
-- is present (xxx is taken from the Chars field of Related_Nod),
-- otherwise it generates an internal temporary. The created temporary
-- entity is marked as internal.
---------------------
-- Build_Temporary --
---------------------
function Build_Temporary
(Loc : Source_Ptr;
Id : Character;
Related_Nod : Node_Id := Empty) return Entity_Id
is
Temp_Id : Entity_Id;
Temp_Nam : Name_Id;
begin
-- The context requires an external symbol
if Present (Related_Id) then
if Is_Low_Bound then
Temp_Nam := New_External_Name (Chars (Related_Id), "_FIRST");
else pragma Assert (Is_High_Bound);
Temp_Nam := New_External_Name (Chars (Related_Id), "_LAST");
end if;
Temp_Id := Make_Defining_Identifier (Loc, Temp_Nam);
-- Otherwise generate an internal temporary
else
Temp_Id := Make_Temporary (Loc, Id, Related_Nod);
end if;
Set_Is_Internal (Temp_Id);
return Temp_Id;
end Build_Temporary;
-- Local variables
Loc : constant Source_Ptr := Sloc (Exp);
Exp_Type : constant Entity_Id := Etype (Exp);
Svg_Suppress : constant Suppress_Record := Scope_Suppress;
Def_Id : Entity_Id;
E : Node_Id;
New_Exp : Node_Id;
Ptr_Typ_Decl : Node_Id;
Ref_Type : Entity_Id;
Res : Node_Id;
-- Start of processing for Remove_Side_Effects
begin
-- Handle cases in which there is nothing to do. In GNATprove mode,
-- removal of side effects is useful for the light expansion of
-- renamings. This removal should only occur when not inside a
-- generic and not doing a preanalysis.
if not Expander_Active
and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
then
return;
-- Cannot generate temporaries if the invocation to remove side effects
-- was issued too early and the type of the expression is not resolved
-- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
-- Remove_Side_Effects).
elsif No (Exp_Type)
or else Ekind (Exp_Type) = E_Access_Attribute_Type
then
return;
-- Nothing to do if prior expansion determined that a function call does
-- not require side effect removal.
elsif Nkind (Exp) = N_Function_Call
and then No_Side_Effect_Removal (Exp)
then
return;
-- No action needed for side-effect free expressions
elsif Check_Side_Effects
and then Side_Effect_Free (Exp, Name_Req, Variable_Ref)
then
return;
-- Generating C code we cannot remove side effect of function returning
-- class-wide types since there is no secondary stack (required to use
-- 'reference).
elsif Modify_Tree_For_C
and then Nkind (Exp) = N_Function_Call
and then Is_Class_Wide_Type (Etype (Exp))
then
return;
-- An expression which is in SPARK mode is considered side effect free
-- if the resulting value is captured by a variable or a constant.
elsif GNATprove_Mode
and then Nkind (Parent (Exp)) = N_Object_Declaration
then
return;
end if;
-- The remaining processing is done with all checks suppressed
-- Note: from now on, don't use return statements, instead do a goto
-- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
Scope_Suppress.Suppress := (others => True);
-- If this is a side-effect free attribute reference whose expressions
-- are also side-effect free and whose prefix is not a name, remove the
-- side effects of the prefix. A copy of the prefix is required in this
-- case and it is better not to make an additional one for the attribute
-- itself, because the return type of many of them is universal integer,
-- which is a very large type for a temporary.
if Nkind (Exp) = N_Attribute_Reference
and then Side_Effect_Free_Attribute (Attribute_Name (Exp))
and then Side_Effect_Free (Expressions (Exp), Name_Req, Variable_Ref)
and then not Is_Name_Reference (Prefix (Exp))
then
Remove_Side_Effects (Prefix (Exp), Name_Req, Variable_Ref);
goto Leave;
-- If this is an elementary or a small not-by-reference record type, and
-- we need to capture the value, just make a constant; this is cheap and
-- objects of both kinds of types can be bit aligned, so it might not be
-- possible to generate a reference to them. Likewise if this is not a
-- name reference, except for a type conversion, because we would enter
-- an infinite recursion with Checks.Apply_Predicate_Check if the target
-- type has predicates (and type conversions need a specific treatment
-- anyway, see below). Also do it if we have a volatile reference and
-- Name_Req is not set (see comments for Side_Effect_Free).
elsif (Is_Elementary_Type (Exp_Type)
or else (Is_Record_Type (Exp_Type)
and then Known_Static_RM_Size (Exp_Type)
and then RM_Size (Exp_Type) <= System_Max_Integer_Size
and then not Has_Discriminants (Exp_Type)
and then not Is_By_Reference_Type (Exp_Type)))
and then (Variable_Ref
or else (not Is_Name_Reference (Exp)
and then Nkind (Exp) /= N_Type_Conversion)
or else (not Name_Req
and then Is_Volatile_Reference (Exp)))
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res := New_Occurrence_Of (Def_Id, Loc);
-- If the expression is a packed reference, it must be reanalyzed and
-- expanded, depending on context. This is the case for actuals where
-- a constraint check may capture the actual before expansion of the
-- call is complete.
if Nkind (Exp) = N_Indexed_Component
and then Is_Packed (Etype (Prefix (Exp)))
then
Set_Analyzed (Exp, False);
Set_Analyzed (Prefix (Exp), False);
end if;
-- Generate:
-- Rnn : Exp_Type renames Expr;
-- In GNATprove mode, we prefer to use renamings for intermediate
-- variables to definition of constants, due to the implicit move
-- operation that such a constant definition causes as part of the
-- support in GNATprove for ownership pointers. Hence, we generate
-- a renaming for a reference to an object of a nonscalar type.
if Renaming_Req
or else (GNATprove_Mode
and then Is_Object_Reference (Exp)
and then not Is_Scalar_Type (Exp_Type))
then
E :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
Name => Relocate_Node (Exp));
-- Generate:
-- Rnn : constant Exp_Type := Expr;
else
E :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Constant_Present => True,
Expression => Relocate_Node (Exp));
Set_Assignment_OK (E);
end if;
Insert_Action (Exp, E);
-- If the expression has the form v.all then we can just capture the
-- pointer, and then do an explicit dereference on the result, but
-- this is not right if this is a volatile reference.
elsif Nkind (Exp) = N_Explicit_Dereference
and then not Is_Volatile_Reference (Exp)
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Res :=
Make_Explicit_Dereference (Loc, New_Occurrence_Of (Def_Id, Loc));
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition =>
New_Occurrence_Of (Etype (Prefix (Exp)), Loc),
Constant_Present => True,
Expression => Relocate_Node (Prefix (Exp))));
-- Similar processing for an unchecked conversion of an expression of
-- the form v.all, where we want the same kind of treatment.
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
and then Nkind (Expression (Exp)) = N_Explicit_Dereference
then
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
goto Leave;
-- If this is a type conversion, leave the type conversion and remove
-- side effects in the expression, unless it is of universal integer,
-- which is a very large type for a temporary. This is important in
-- several circumstances: for change of representations and also when
-- this is a view conversion to a smaller object, where gigi can end
-- up creating its own temporary of the wrong size.
elsif Nkind (Exp) = N_Type_Conversion
and then Etype (Expression (Exp)) /= Universal_Integer
then
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
-- Generating C code the type conversion of an access to constrained
-- array type into an access to unconstrained array type involves
-- initializing a fat pointer and the expression must be free of
-- side effects to safely compute its bounds.
if Modify_Tree_For_C
and then Is_Access_Type (Etype (Exp))
and then Is_Array_Type (Designated_Type (Etype (Exp)))
and then not Is_Constrained (Designated_Type (Etype (Exp)))
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res := New_Occurrence_Of (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Constant_Present => True,
Expression => Relocate_Node (Exp)));
else
goto Leave;
end if;
-- If this is an unchecked conversion that Gigi can't handle, make
-- a copy or a use a renaming to capture the value.
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
and then not Safe_Unchecked_Type_Conversion (Exp)
then
if CW_Or_Has_Controlled_Part (Exp_Type) then
-- Use a renaming to capture the expression, rather than create
-- a controlled temporary.
Def_Id := Build_Temporary (Loc, 'R', Exp);
Res := New_Occurrence_Of (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
Name => Relocate_Node (Exp)));
else
Def_Id := Build_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res := New_Occurrence_Of (Def_Id, Loc);
E :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Constant_Present => not Is_Variable (Exp),
Expression => Relocate_Node (Exp));
Set_Assignment_OK (E);
Insert_Action (Exp, E);
end if;
-- If this is a packed array component or a selected component with a
-- nonstandard representation, we cannot generate a reference because
-- the component may be unaligned, so we must use a renaming and this
-- renaming must be handled by the front end, as the back end may balk
-- at the nonstandard representation (see Exp_Ch2.Expand_Renaming).
elsif Nkind (Exp) in N_Indexed_Component | N_Selected_Component
and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Res := New_Occurrence_Of (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
Name => Relocate_Node (Exp)));
-- For an expression that denotes a name, we can use a renaming scheme
-- that is handled by the back end, instead of the front end as above.
-- This is needed for correctness in the case of a volatile object of
-- a nonvolatile type because the Make_Reference call of the "default"
-- approach would generate an illegal access value (an access value
-- cannot designate such an object - see Analyze_Reference).
elsif Is_Name_Reference (Exp)
-- We skip using this scheme if we have an object of a volatile
-- type and we do not have Name_Req set true (see comments for
-- Side_Effect_Free).
and then (Name_Req or else not Treat_As_Volatile (Exp_Type))
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Res := New_Occurrence_Of (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
Name => Relocate_Node (Exp)));
Set_Is_Renaming_Of_Object (Def_Id, False);
-- Avoid generating a variable-sized temporary, by generating the
-- reference just for the function call. The transformation could be
-- refined to apply only when the array component is constrained by a
-- discriminant???
elsif Nkind (Exp) = N_Selected_Component
and then Nkind (Prefix (Exp)) = N_Function_Call
and then Is_Array_Type (Exp_Type)
then
Remove_Side_Effects (Prefix (Exp), Name_Req, Variable_Ref);
goto Leave;
-- Otherwise we generate a reference to the expression
else
-- When generating C code we cannot consider side effect free object
-- declarations that have discriminants and are initialized by means
-- of a function call since on this target there is no secondary
-- stack to store the return value and the expander may generate an
-- extra call to the function to compute the discriminant value. In
-- addition, for targets that have secondary stack, the expansion of
-- functions with side effects involves the generation of an access
-- type to capture the return value stored in the secondary stack;
-- by contrast when generating C code such expansion generates an
-- internal object declaration (no access type involved) which must
-- be identified here to avoid entering into a never-ending loop
-- generating internal object declarations.
if Modify_Tree_For_C
and then Nkind (Parent (Exp)) = N_Object_Declaration
and then
(Nkind (Exp) /= N_Function_Call
or else not Has_Discriminants (Exp_Type)
or else Is_Internal_Name
(Chars (Defining_Identifier (Parent (Exp)))))
then
goto Leave;
end if;
-- Special processing for function calls that return a limited type.
-- We need to build a declaration that will enable build-in-place
-- expansion of the call. This is not done if the context is already
-- an object declaration, to prevent infinite recursion.
-- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
-- to accommodate functions returning limited objects by reference.
if Ada_Version >= Ada_2005
and then Nkind (Exp) = N_Function_Call
and then Is_Limited_View (Etype (Exp))
and then Nkind (Parent (Exp)) /= N_Object_Declaration
then
declare
Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
Decl : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Obj,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Expression => Relocate_Node (Exp));
Insert_Action (Exp, Decl);
Set_Etype (Obj, Exp_Type);
Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
goto Leave;
end;
end if;
Def_Id := Build_Temporary (Loc, 'R', Exp);
-- The regular expansion of functions with side effects involves the
-- generation of an access type to capture the return value found on
-- the secondary stack. Since SPARK (and why) cannot process access
-- types, use a different approach which ignores the secondary stack
-- and "copies" the returned object.
-- When generating C code, no need for a 'reference since the
-- secondary stack is not supported.
if GNATprove_Mode or Modify_Tree_For_C then
Res := New_Occurrence_Of (Def_Id, Loc);
Ref_Type := Exp_Type;
-- Regular expansion utilizing an access type and 'reference
else
Res :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Def_Id, Loc));
-- Generate:
-- type Ann is access all <Exp_Type>;
Ref_Type := Make_Temporary (Loc, 'A');
Ptr_Typ_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ref_Type,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Occurrence_Of (Exp_Type, Loc)));
Insert_Action (Exp, Ptr_Typ_Decl);
end if;
E := Exp;
if Nkind (E) = N_Explicit_Dereference then
New_Exp := Relocate_Node (Prefix (E));
else
E := Relocate_Node (E);
-- Do not generate a 'reference in SPARK mode or C generation
-- since the access type is not created in the first place.
if GNATprove_Mode or Modify_Tree_For_C then
New_Exp := E;
-- Otherwise generate reference, marking the value as non-null
-- since we know it cannot be null and we don't want a check.
else
New_Exp := Make_Reference (Loc, E);
Set_Is_Known_Non_Null (Def_Id);
end if;
end if;
if Is_Delayed_Aggregate (E) then
-- The expansion of nested aggregates is delayed until the
-- enclosing aggregate is expanded. As aggregates are often
-- qualified, the predicate applies to qualified expressions as
-- well, indicating that the enclosing aggregate has not been
-- expanded yet. At this point the aggregate is part of a
-- stand-alone declaration, and must be fully expanded.
if Nkind (E) = N_Qualified_Expression then
Set_Expansion_Delayed (Expression (E), False);
Set_Analyzed (Expression (E), False);
else
Set_Expansion_Delayed (E, False);
end if;
Set_Analyzed (E, False);
end if;
-- Generating C code of object declarations that have discriminants
-- and are initialized by means of a function call we propagate the
-- discriminants of the parent type to the internally built object.
-- This is needed to avoid generating an extra call to the called
-- function.
-- For example, if we generate here the following declaration, it
-- will be expanded later adding an extra call to evaluate the value
-- of the discriminant (needed to compute the size of the object).
--
-- type Rec (D : Integer) is ...
-- Obj : constant Rec := SomeFunc;
if Modify_Tree_For_C
and then Nkind (Parent (Exp)) = N_Object_Declaration
and then Has_Discriminants (Exp_Type)
and then Nkind (Exp) = N_Function_Call
then
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Copy_Tree
(Object_Definition (Parent (Exp))),
Constant_Present => True,
Expression => New_Exp));
else
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Ref_Type, Loc),
Constant_Present => True,
Expression => New_Exp));
end if;
end if;
-- Preserve the Assignment_OK flag in all copies, since at least one
-- copy may be used in a context where this flag must be set (otherwise
-- why would the flag be set in the first place).
Set_Assignment_OK (Res, Assignment_OK (Exp));
-- Preserve the Do_Range_Check flag in all copies
Set_Do_Range_Check (Res, Do_Range_Check (Exp));
-- Finally rewrite the original expression and we are done
Rewrite (Exp, Res);
Analyze_And_Resolve (Exp, Exp_Type);
<<Leave>>
Scope_Suppress := Svg_Suppress;
end Remove_Side_Effects;
------------------------
-- Replace_References --
------------------------
procedure Replace_References
(Expr : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Par_Obj : Entity_Id := Empty;
Deriv_Obj : Entity_Id := Empty)
is
function Is_Deriv_Obj_Ref (Ref : Node_Id) return Boolean;
-- Determine whether node Ref denotes some component of Deriv_Obj
function Replace_Ref (Ref : Node_Id) return Traverse_Result;
-- Substitute a reference to an entity with the corresponding value
-- stored in table Type_Map.
function Type_Of_Formal
(Call : Node_Id;
Actual : Node_Id) return Entity_Id;
-- Find the type of the formal parameter which corresponds to actual
-- parameter Actual in subprogram call Call.
----------------------
-- Is_Deriv_Obj_Ref --
----------------------
function Is_Deriv_Obj_Ref (Ref : Node_Id) return Boolean is
Par : constant Node_Id := Parent (Ref);
begin
-- Detect the folowing selected component form:
-- Deriv_Obj.(something)
return
Nkind (Par) = N_Selected_Component
and then Is_Entity_Name (Prefix (Par))
and then Entity (Prefix (Par)) = Deriv_Obj;
end Is_Deriv_Obj_Ref;
-----------------
-- Replace_Ref --
-----------------
function Replace_Ref (Ref : Node_Id) return Traverse_Result is
procedure Remove_Controlling_Arguments (From_Arg : Node_Id);
-- Reset the Controlling_Argument of all function calls that
-- encapsulate node From_Arg.
----------------------------------
-- Remove_Controlling_Arguments --
----------------------------------
procedure Remove_Controlling_Arguments (From_Arg : Node_Id) is
Par : Node_Id;
begin
Par := From_Arg;
while Present (Par) loop
if Nkind (Par) = N_Function_Call
and then Present (Controlling_Argument (Par))
then
Set_Controlling_Argument (Par, Empty);
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
end Remove_Controlling_Arguments;
-- Local variables
Context : constant Node_Id := Parent (Ref);
Loc : constant Source_Ptr := Sloc (Ref);
Ref_Id : Entity_Id;
Result : Traverse_Result;
New_Ref : Node_Id;
-- The new reference which is intended to substitute the old one
Old_Ref : Node_Id;
-- The reference designated for replacement. In certain cases this
-- may be a node other than Ref.
Val : Node_Or_Entity_Id;
-- The corresponding value of Ref from the type map
-- Start of processing for Replace_Ref
begin
-- Assume that the input reference is to be replaced and that the
-- traversal should examine the children of the reference.
Old_Ref := Ref;
Result := OK;
-- The input denotes a meaningful reference
if Nkind (Ref) in N_Has_Entity and then Present (Entity (Ref)) then
Ref_Id := Entity (Ref);
Val := Type_Map.Get (Ref_Id);
-- The reference has a corresponding value in the type map, a
-- substitution is possible.
if Present (Val) then
-- The reference denotes a discriminant
if Ekind (Ref_Id) = E_Discriminant then
if Nkind (Val) in N_Entity then
-- The value denotes another discriminant. Replace as
-- follows:
-- _object.Discr -> _object.Val
if Ekind (Val) = E_Discriminant then
New_Ref := New_Occurrence_Of (Val, Loc);
-- Otherwise the value denotes the entity of a name which
-- constraints the discriminant. Replace as follows:
-- _object.Discr -> Val
else
pragma Assert (Is_Deriv_Obj_Ref (Old_Ref));
New_Ref := New_Occurrence_Of (Val, Loc);
Old_Ref := Parent (Old_Ref);
end if;
-- Otherwise the value denotes an arbitrary expression which
-- constraints the discriminant. Replace as follows:
-- _object.Discr -> Val
else
pragma Assert (Is_Deriv_Obj_Ref (Old_Ref));
New_Ref := New_Copy_Tree (Val);
Old_Ref := Parent (Old_Ref);
end if;
-- Otherwise the reference denotes a primitive. Replace as
-- follows:
-- Primitive -> Val
else
pragma Assert (Nkind (Val) in N_Entity);
New_Ref := New_Occurrence_Of (Val, Loc);
end if;
-- The reference mentions the _object parameter of the parent
-- type's DIC or type invariant procedure. Replace as follows:
-- _object -> _object
elsif Present (Par_Obj)
and then Present (Deriv_Obj)
and then Ref_Id = Par_Obj
then
New_Ref := New_Occurrence_Of (Deriv_Obj, Loc);
-- The type of the _object parameter is class-wide when the
-- expression comes from an assertion pragma that applies to
-- an abstract parent type or an interface. The class-wide type
-- facilitates the preanalysis of the expression by treating
-- calls to abstract primitives that mention the current
-- instance of the type as dispatching. Once the calls are
-- remapped to invoke overriding or inherited primitives, the
-- calls no longer need to be dispatching. Examine all function
-- calls that encapsulate the _object parameter and reset their
-- Controlling_Argument attribute.
if Is_Class_Wide_Type (Etype (Par_Obj))
and then Is_Abstract_Type (Root_Type (Etype (Par_Obj)))
then
Remove_Controlling_Arguments (Old_Ref);
end if;
-- The reference to _object acts as an actual parameter in a
-- subprogram call which may be invoking a primitive of the
-- parent type:
-- Primitive (... _object ...);
-- The parent type primitive may not be overridden nor
-- inherited when it is declared after the derived type
-- definition:
-- type Parent is tagged private;
-- type Child is new Parent with private;
-- procedure Primitive (Obj : Parent);
-- In this scenario the _object parameter is converted to the
-- parent type. Due to complications with partial/full views
-- and view swaps, the parent type is taken from the formal
-- parameter of the subprogram being called.
if Nkind (Context) in
N_Function_Call | N_Procedure_Call_Statement
and then No (Type_Map.Get (Entity (Name (Context))))
then
New_Ref :=
Convert_To (Type_Of_Formal (Context, Old_Ref), New_Ref);
-- Do not process the generated type conversion because
-- both the parent type and the derived type are in the
-- Type_Map table. This will clobber the type conversion
-- by resetting its subtype mark.
Result := Skip;
end if;
-- Otherwise there is nothing to replace
else
New_Ref := Empty;
end if;
if Present (New_Ref) then
Rewrite (Old_Ref, New_Ref);
-- Update the return type when the context of the reference
-- acts as the name of a function call. Note that the update
-- should not be performed when the reference appears as an
-- actual in the call.
if Nkind (Context) = N_Function_Call
and then Name (Context) = Old_Ref
then
Set_Etype (Context, Etype (Val));
end if;
end if;
end if;
-- Reanalyze the reference due to potential replacements
if Nkind (Old_Ref) in N_Has_Etype then
Set_Analyzed (Old_Ref, False);
end if;
return Result;
end Replace_Ref;
procedure Replace_Refs is new Traverse_Proc (Replace_Ref);
--------------------
-- Type_Of_Formal --
--------------------
function Type_Of_Formal
(Call : Node_Id;
Actual : Node_Id) return Entity_Id
is
A : Node_Id;
F : Entity_Id;
begin
-- Examine the list of actual and formal parameters in parallel
A := First (Parameter_Associations (Call));
F := First_Formal (Entity (Name (Call)));
while Present (A) and then Present (F) loop
if A = Actual then
return Etype (F);
end if;
Next (A);
Next_Formal (F);
end loop;
-- The actual parameter must always have a corresponding formal
pragma Assert (False);
return Empty;
end Type_Of_Formal;
-- Start of processing for Replace_References
begin
-- Map the attributes of the parent type to the proper corresponding
-- attributes of the derived type.
Map_Types
(Parent_Type => Par_Typ,
Derived_Type => Deriv_Typ);
-- Inspect the input expression and perform substitutions where
-- necessary.
Replace_Refs (Expr);
end Replace_References;
-----------------------------
-- Replace_Type_References --
-----------------------------
procedure Replace_Type_References
(Expr : Node_Id;
Typ : Entity_Id;
Obj_Id : Entity_Id)
is
procedure Replace_Type_Ref (N : Node_Id);
-- Substitute a single reference of the current instance of type Typ
-- with a reference to Obj_Id.
----------------------
-- Replace_Type_Ref --
----------------------
procedure Replace_Type_Ref (N : Node_Id) is
begin
-- Decorate the reference to Typ even though it may be rewritten
-- further down. This is done so that routines which examine
-- properties of the Original_Node have some semantic information.
if Nkind (N) = N_Identifier then
Set_Entity (N, Typ);
Set_Etype (N, Typ);
elsif Nkind (N) = N_Selected_Component then
Analyze (Prefix (N));
Set_Entity (Selector_Name (N), Typ);
Set_Etype (Selector_Name (N), Typ);
end if;
-- Perform the following substitution:
-- Typ --> _object
Rewrite (N, New_Occurrence_Of (Obj_Id, Sloc (N)));
Set_Comes_From_Source (N, True);
end Replace_Type_Ref;
procedure Replace_Type_Refs is
new Replace_Type_References_Generic (Replace_Type_Ref);
-- Start of processing for Replace_Type_References
begin
Replace_Type_Refs (Expr, Typ);
end Replace_Type_References;
---------------------------
-- Represented_As_Scalar --
---------------------------
function Represented_As_Scalar (T : Entity_Id) return Boolean is
UT : constant Entity_Id := Underlying_Type (T);
begin
return Is_Scalar_Type (UT)
or else (Is_Bit_Packed_Array (UT)
and then Is_Scalar_Type (Packed_Array_Impl_Type (UT)));
end Represented_As_Scalar;
------------------------------
-- Requires_Cleanup_Actions --
------------------------------
function Requires_Cleanup_Actions
(N : Node_Id;
Lib_Level : Boolean) return Boolean
is
At_Lib_Level : constant Boolean :=
Lib_Level
and then Nkind (N) in N_Package_Body | N_Package_Specification;
-- N is at the library level if the top-most context is a package and
-- the path taken to reach N does not include nonpackage constructs.
begin
case Nkind (N) is
when N_Accept_Statement
| N_Block_Statement
| N_Entry_Body
| N_Package_Body
| N_Protected_Body
| N_Subprogram_Body
| N_Task_Body
=>
return
Requires_Cleanup_Actions
(L => Declarations (N),
Lib_Level => At_Lib_Level,
Nested_Constructs => True)
or else
(Present (Handled_Statement_Sequence (N))
and then
Requires_Cleanup_Actions
(L =>
Statements (Handled_Statement_Sequence (N)),
Lib_Level => At_Lib_Level,
Nested_Constructs => True));
-- Extended return statements are the same as the above, except that
-- there is no Declarations field. We do not want to clean up the
-- Return_Object_Declarations.
when N_Extended_Return_Statement =>
return
Present (Handled_Statement_Sequence (N))
and then Requires_Cleanup_Actions
(L =>
Statements (Handled_Statement_Sequence (N)),
Lib_Level => At_Lib_Level,
Nested_Constructs => True);
when N_Package_Specification =>
return
Requires_Cleanup_Actions
(L => Visible_Declarations (N),
Lib_Level => At_Lib_Level,
Nested_Constructs => True)
or else
Requires_Cleanup_Actions
(L => Private_Declarations (N),
Lib_Level => At_Lib_Level,
Nested_Constructs => True);
when others =>
raise Program_Error;
end case;
end Requires_Cleanup_Actions;
------------------------------
-- Requires_Cleanup_Actions --
------------------------------
function Requires_Cleanup_Actions
(L : List_Id;
Lib_Level : Boolean;
Nested_Constructs : Boolean) return Boolean
is
Decl : Node_Id;
Expr : Node_Id;
Obj_Id : Entity_Id;
Obj_Typ : Entity_Id;
Pack_Id : Entity_Id;
Typ : Entity_Id;
begin
if No (L) or else Is_Empty_List (L) then
return False;
end if;
Decl := First (L);
while Present (Decl) loop
-- Library-level tagged types
if Nkind (Decl) = N_Full_Type_Declaration then
Typ := Defining_Identifier (Decl);
-- Ignored Ghost types do not need any cleanup actions because
-- they will not appear in the final tree.
if Is_Ignored_Ghost_Entity (Typ) then
null;
elsif Is_Tagged_Type (Typ)
and then Is_Library_Level_Entity (Typ)
and then Convention (Typ) = Convention_Ada
and then Present (Access_Disp_Table (Typ))
and then RTE_Available (RE_Unregister_Tag)
and then not Is_Abstract_Type (Typ)
and then not No_Run_Time_Mode
then
return True;
end if;
-- Regular object declarations
elsif Nkind (Decl) = N_Object_Declaration then
Obj_Id := Defining_Identifier (Decl);
Obj_Typ := Base_Type (Etype (Obj_Id));
Expr := Expression (Decl);
-- Bypass any form of processing for objects which have their
-- finalization disabled. This applies only to objects at the
-- library level.
if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
null;
-- Finalization of transient objects are treated separately in
-- order to handle sensitive cases. These include:
-- * Aggregate expansion
-- * If, case, and expression with actions expansion
-- * Transient scopes
-- If one of those contexts has marked the transient object as
-- ignored, do not generate finalization actions for it.
elsif Is_Finalized_Transient (Obj_Id)
or else Is_Ignored_Transient (Obj_Id)
then
null;
-- Ignored Ghost objects do not need any cleanup actions because
-- they will not appear in the final tree.
elsif Is_Ignored_Ghost_Entity (Obj_Id) then
null;
-- The object is of the form:
-- Obj : [constant] Typ [:= Expr];
--
-- Do not process tag-to-class-wide conversions because they do
-- not yield an object. Do not process the incomplete view of a
-- deferred constant. Note that an object initialized by means
-- of a build-in-place function call may appear as a deferred
-- constant after expansion activities. These kinds of objects
-- must be finalized.
elsif not Is_Imported (Obj_Id)
and then Needs_Finalization (Obj_Typ)
and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
and then not (Ekind (Obj_Id) = E_Constant
and then not Has_Completion (Obj_Id)
and then No (BIP_Initialization_Call (Obj_Id)))
then
return True;
-- The object is of the form:
-- Obj : Access_Typ := Non_BIP_Function_Call'reference;
--
-- Obj : Access_Typ :=
-- BIP_Function_Call (BIPalloc => 2, ...)'reference;
elsif Is_Access_Type (Obj_Typ)
and then Needs_Finalization
(Available_View (Designated_Type (Obj_Typ)))
and then Present (Expr)
and then
(Is_Secondary_Stack_BIP_Func_Call (Expr)
or else
(Is_Non_BIP_Func_Call (Expr)
and then not Is_Related_To_Func_Return (Obj_Id)))
then
return True;
-- Processing for "hook" objects generated for transient objects
-- declared inside an Expression_With_Actions.
elsif Is_Access_Type (Obj_Typ)
and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
N_Object_Declaration
then
return True;
-- Processing for intermediate results of if expressions where
-- one of the alternatives uses a controlled function call.
elsif Is_Access_Type (Obj_Typ)
and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
N_Defining_Identifier
and then Present (Expr)
and then Nkind (Expr) = N_Null
then
return True;
-- Simple protected objects which use type System.Tasking.
-- Protected_Objects.Protection to manage their locks should be
-- treated as controlled since they require manual cleanup.
elsif Ekind (Obj_Id) = E_Variable
and then (Is_Simple_Protected_Type (Obj_Typ)
or else Has_Simple_Protected_Object (Obj_Typ))
then
return True;
end if;
-- Specific cases of object renamings
elsif Nkind (Decl) = N_Object_Renaming_Declaration then
Obj_Id := Defining_Identifier (Decl);
Obj_Typ := Base_Type (Etype (Obj_Id));
-- Bypass any form of processing for objects which have their
-- finalization disabled. This applies only to objects at the
-- library level.
if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
null;
-- Ignored Ghost object renamings do not need any cleanup actions
-- because they will not appear in the final tree.
elsif Is_Ignored_Ghost_Entity (Obj_Id) then
null;
-- Return object of a build-in-place function. This case is
-- recognized and marked by the expansion of an extended return
-- statement (see Expand_N_Extended_Return_Statement).
elsif Needs_Finalization (Obj_Typ)
and then Is_Return_Object (Obj_Id)
and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
then
return True;
-- Detect a case where a source object has been initialized by
-- a controlled function call or another object which was later
-- rewritten as a class-wide conversion of Ada.Tags.Displace.
-- Obj1 : CW_Type := Src_Obj;
-- Obj2 : CW_Type := Function_Call (...);
-- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
-- Tmp : ... := Function_Call (...)'reference;
-- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp));
elsif Is_Displacement_Of_Object_Or_Function_Result (Obj_Id) then
return True;
end if;
-- Inspect the freeze node of an access-to-controlled type and look
-- for a delayed finalization master. This case arises when the
-- freeze actions are inserted at a later time than the expansion of
-- the context. Since Build_Finalizer is never called on a single
-- construct twice, the master will be ultimately left out and never
-- finalized. This is also needed for freeze actions of designated
-- types themselves, since in some cases the finalization master is
-- associated with a designated type's freeze node rather than that
-- of the access type (see handling for freeze actions in
-- Build_Finalization_Master).
elsif Nkind (Decl) = N_Freeze_Entity
and then Present (Actions (Decl))
then
Typ := Entity (Decl);
-- Freeze nodes for ignored Ghost types do not need cleanup
-- actions because they will never appear in the final tree.
if Is_Ignored_Ghost_Entity (Typ) then
null;
elsif ((Is_Access_Type (Typ)
and then not Is_Access_Subprogram_Type (Typ)
and then Needs_Finalization
(Available_View (Designated_Type (Typ))))
or else (Is_Type (Typ) and then Needs_Finalization (Typ)))
and then Requires_Cleanup_Actions
(Actions (Decl), Lib_Level, Nested_Constructs)
then
return True;
end if;
-- Nested package declarations
elsif Nested_Constructs
and then Nkind (Decl) = N_Package_Declaration
then
Pack_Id := Defining_Entity (Decl);
-- Do not inspect an ignored Ghost package because all code found
-- within will not appear in the final tree.
if Is_Ignored_Ghost_Entity (Pack_Id) then
null;
elsif Ekind (Pack_Id) /= E_Generic_Package
and then Requires_Cleanup_Actions
(Specification (Decl), Lib_Level)
then
return True;
end if;
-- Nested package bodies
elsif Nested_Constructs and then Nkind (Decl) = N_Package_Body then
-- Do not inspect an ignored Ghost package body because all code
-- found within will not appear in the final tree.
if Is_Ignored_Ghost_Entity (Defining_Entity (Decl)) then
null;
elsif Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package
and then Requires_Cleanup_Actions (Decl, Lib_Level)
then
return True;
end if;
elsif Nkind (Decl) = N_Block_Statement
and then
-- Handle a rare case caused by a controlled transient object
-- created as part of a record init proc. The variable is wrapped
-- in a block, but the block is not associated with a transient
-- scope.
(Inside_Init_Proc
-- Handle the case where the original context has been wrapped in
-- a block to avoid interference between exception handlers and
-- At_End handlers. Treat the block as transparent and process its
-- contents.
or else Is_Finalization_Wrapper (Decl))
then
if Requires_Cleanup_Actions (Decl, Lib_Level) then
return True;
end if;
end if;
Next (Decl);
end loop;
return False;
end Requires_Cleanup_Actions;
------------------------------------
-- Safe_Unchecked_Type_Conversion --
------------------------------------
-- Note: this function knows quite a bit about the exact requirements of
-- Gigi with respect to unchecked type conversions, and its code must be
-- coordinated with any changes in Gigi in this area.
-- The above requirements should be documented in Sinfo ???
function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
Otyp : Entity_Id;
Ityp : Entity_Id;
Oalign : Uint;
Ialign : Uint;
Pexp : constant Node_Id := Parent (Exp);
begin
-- If the expression is the RHS of an assignment or object declaration
-- we are always OK because there will always be a target.
-- Object renaming declarations, (generated for view conversions of
-- actuals in inlined calls), like object declarations, provide an
-- explicit type, and are safe as well.
if (Nkind (Pexp) = N_Assignment_Statement
and then Expression (Pexp) = Exp)
or else Nkind (Pexp)
in N_Object_Declaration | N_Object_Renaming_Declaration
then
return True;
-- If the expression is the prefix of an N_Selected_Component we should
-- also be OK because GCC knows to look inside the conversion except if
-- the type is discriminated. We assume that we are OK anyway if the
-- type is not set yet or if it is controlled since we can't afford to
-- introduce a temporary in this case.
elsif Nkind (Pexp) = N_Selected_Component
and then Prefix (Pexp) = Exp
then
return No (Etype (Pexp))
or else not Is_Type (Etype (Pexp))
or else not Has_Discriminants (Etype (Pexp))
or else Is_Constrained (Etype (Pexp));
end if;
-- Set the output type, this comes from Etype if it is set, otherwise we
-- take it from the subtype mark, which we assume was already fully
-- analyzed.
if Present (Etype (Exp)) then
Otyp := Etype (Exp);
else
Otyp := Entity (Subtype_Mark (Exp));
end if;
-- The input type always comes from the expression, and we assume this
-- is indeed always analyzed, so we can simply get the Etype.
Ityp := Etype (Expression (Exp));
-- Initialize alignments to unknown so far
Oalign := No_Uint;
Ialign := No_Uint;
-- Replace a concurrent type by its corresponding record type and each
-- type by its underlying type and do the tests on those. The original
-- type may be a private type whose completion is a concurrent type, so
-- find the underlying type first.
if Present (Underlying_Type (Otyp)) then
Otyp := Underlying_Type (Otyp);
end if;
if Present (Underlying_Type (Ityp)) then
Ityp := Underlying_Type (Ityp);
end if;
if Is_Concurrent_Type (Otyp) then
Otyp := Corresponding_Record_Type (Otyp);
end if;
if Is_Concurrent_Type (Ityp) then
Ityp := Corresponding_Record_Type (Ityp);
end if;
-- If the base types are the same, we know there is no problem since
-- this conversion will be a noop.
if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
return True;
-- Same if this is an upwards conversion of an untagged type, and there
-- are no constraints involved (could be more general???)
elsif Etype (Ityp) = Otyp
and then not Is_Tagged_Type (Ityp)
and then not Has_Discriminants (Ityp)
and then No (First_Rep_Item (Base_Type (Ityp)))
then
return True;
-- If the expression has an access type (object or subprogram) we assume
-- that the conversion is safe, because the size of the target is safe,
-- even if it is a record (which might be treated as having unknown size
-- at this point).
elsif Is_Access_Type (Ityp) then
return True;
-- If the size of output type is known at compile time, there is never
-- a problem. Note that unconstrained records are considered to be of
-- known size, but we can't consider them that way here, because we are
-- talking about the actual size of the object.
-- We also make sure that in addition to the size being known, we do not
-- have a case which might generate an embarrassingly large temp in
-- stack checking mode.
elsif Size_Known_At_Compile_Time (Otyp)
and then
(not Stack_Checking_Enabled
or else not May_Generate_Large_Temp (Otyp))
and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
then
return True;
-- If either type is tagged, then we know the alignment is OK so Gigi
-- will be able to use pointer punning.
elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
return True;
-- If either type is a limited record type, we cannot do a copy, so say
-- safe since there's nothing else we can do.
elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
return True;
-- Conversions to and from packed array types are always ignored and
-- hence are safe.
elsif Is_Packed_Array_Impl_Type (Otyp)
or else Is_Packed_Array_Impl_Type (Ityp)
then
return True;
end if;
-- The only other cases known to be safe is if the input type's
-- alignment is known to be at least the maximum alignment for the
-- target or if both alignments are known and the output type's
-- alignment is no stricter than the input's. We can use the component
-- type alignment for an array if a type is an unpacked array type.
if Present (Alignment_Clause (Otyp)) then
Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
elsif Is_Array_Type (Otyp)
and then Present (Alignment_Clause (Component_Type (Otyp)))
then
Oalign := Expr_Value (Expression (Alignment_Clause
(Component_Type (Otyp))));
end if;
if Present (Alignment_Clause (Ityp)) then
Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
elsif Is_Array_Type (Ityp)
and then Present (Alignment_Clause (Component_Type (Ityp)))
then
Ialign := Expr_Value (Expression (Alignment_Clause
(Component_Type (Ityp))));
end if;
if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
return True;
elsif Ialign /= No_Uint
and then Oalign /= No_Uint
and then Ialign <= Oalign
then
return True;
-- Otherwise, Gigi cannot handle this and we must make a temporary
else
return False;
end if;
end Safe_Unchecked_Type_Conversion;
---------------------------------
-- Set_Current_Value_Condition --
---------------------------------
-- Note: the implementation of this procedure is very closely tied to the
-- implementation of Get_Current_Value_Condition. Here we set required
-- Current_Value fields, and in Get_Current_Value_Condition, we interpret
-- them, so they must have a consistent view.
procedure Set_Current_Value_Condition (Cnode : Node_Id) is
procedure Set_Entity_Current_Value (N : Node_Id);
-- If N is an entity reference, where the entity is of an appropriate
-- kind, then set the current value of this entity to Cnode, unless
-- there is already a definite value set there.
procedure Set_Expression_Current_Value (N : Node_Id);
-- If N is of an appropriate form, sets an appropriate entry in current
-- value fields of relevant entities. Multiple entities can be affected
-- in the case of an AND or AND THEN.
------------------------------
-- Set_Entity_Current_Value --
------------------------------
procedure Set_Entity_Current_Value (N : Node_Id) is
begin
if Is_Entity_Name (N) then
declare
Ent : constant Entity_Id := Entity (N);
begin
-- Don't capture if not safe to do so
if not Safe_To_Capture_Value (N, Ent, Cond => True) then
return;
end if;
-- Here we have a case where the Current_Value field may need
-- to be set. We set it if it is not already set to a compile
-- time expression value.
-- Note that this represents a decision that one condition
-- blots out another previous one. That's certainly right if
-- they occur at the same level. If the second one is nested,
-- then the decision is neither right nor wrong (it would be
-- equally OK to leave the outer one in place, or take the new
-- inner one). Really we should record both, but our data
-- structures are not that elaborate.
if Nkind (Current_Value (Ent)) not in N_Subexpr then
Set_Current_Value (Ent, Cnode);
end if;
end;
end if;
end Set_Entity_Current_Value;
----------------------------------
-- Set_Expression_Current_Value --
----------------------------------
procedure Set_Expression_Current_Value (N : Node_Id) is
Cond : Node_Id;
begin
Cond := N;
-- Loop to deal with (ignore for now) any NOT operators present. The
-- presence of NOT operators will be handled properly when we call
-- Get_Current_Value_Condition.
while Nkind (Cond) = N_Op_Not loop
Cond := Right_Opnd (Cond);
end loop;
-- For an AND or AND THEN, recursively process operands
if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
Set_Expression_Current_Value (Left_Opnd (Cond));
Set_Expression_Current_Value (Right_Opnd (Cond));
return;
end if;
-- Check possible relational operator
if Nkind (Cond) in N_Op_Compare then
if Compile_Time_Known_Value (Right_Opnd (Cond)) then
Set_Entity_Current_Value (Left_Opnd (Cond));
elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
Set_Entity_Current_Value (Right_Opnd (Cond));
end if;
elsif Nkind (Cond) in N_Type_Conversion
| N_Qualified_Expression
| N_Expression_With_Actions
then
Set_Expression_Current_Value (Expression (Cond));
-- Check possible boolean variable reference
else
Set_Entity_Current_Value (Cond);
end if;
end Set_Expression_Current_Value;
-- Start of processing for Set_Current_Value_Condition
begin
Set_Expression_Current_Value (Condition (Cnode));
end Set_Current_Value_Condition;
--------------------------
-- Set_Elaboration_Flag --
--------------------------
procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
Asn : Node_Id;
begin
if Present (Ent) then
-- Nothing to do if at the compilation unit level, because in this
-- case the flag is set by the binder generated elaboration routine.
if Nkind (Parent (N)) = N_Compilation_Unit then
null;
-- Here we do need to generate an assignment statement
else
Check_Restriction (No_Elaboration_Code, N);
Asn :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Ent, Loc),
Expression => Make_Integer_Literal (Loc, Uint_1));
-- Mark the assignment statement as elaboration code. This allows
-- the early call region mechanism (see Sem_Elab) to properly
-- ignore such assignments even though they are nonpreelaborable
-- code.
Set_Is_Elaboration_Code (Asn);
if Nkind (Parent (N)) = N_Subunit then
Insert_After (Corresponding_Stub (Parent (N)), Asn);
else
Insert_After (N, Asn);
end if;
Analyze (Asn);
-- Kill current value indication. This is necessary because the
-- tests of this flag are inserted out of sequence and must not
-- pick up bogus indications of the wrong constant value.
Set_Current_Value (Ent, Empty);
-- If the subprogram is in the current declarative part and
-- 'access has been applied to it, generate an elaboration
-- check at the beginning of the declarations of the body.
if Nkind (N) = N_Subprogram_Body
and then Address_Taken (Spec_Id)
and then
Ekind (Scope (Spec_Id)) in E_Block | E_Procedure | E_Function
then
declare
Loc : constant Source_Ptr := Sloc (N);
Decls : constant List_Id := Declarations (N);
Chk : Node_Id;
begin
-- No need to generate this check if first entry in the
-- declaration list is a raise of Program_Error now.
if Present (Decls)
and then Nkind (First (Decls)) = N_Raise_Program_Error
then
return;
end if;
-- Otherwise generate the check
Chk :=
Make_Raise_Program_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (Ent, Loc),
Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
Reason => PE_Access_Before_Elaboration);
if No (Decls) then
Set_Declarations (N, New_List (Chk));
else
Prepend (Chk, Decls);
end if;
Analyze (Chk);
end;
end if;
end if;
end if;
end Set_Elaboration_Flag;
----------------------------
-- Set_Renamed_Subprogram --
----------------------------
procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
begin
-- If input node is an identifier, we can just reset it
if Nkind (N) = N_Identifier then
Set_Chars (N, Chars (E));
Set_Entity (N, E);
-- Otherwise we have to do a rewrite, preserving Comes_From_Source
else
declare
CS : constant Boolean := Comes_From_Source (N);
begin
Rewrite (N, Make_Identifier (Sloc (N), Chars (E)));
Set_Entity (N, E);
Set_Comes_From_Source (N, CS);
Set_Analyzed (N, True);
end;
end if;
end Set_Renamed_Subprogram;
----------------------
-- Side_Effect_Free --
----------------------
function Side_Effect_Free
(N : Node_Id;
Name_Req : Boolean := False;
Variable_Ref : Boolean := False) return Boolean
is
Typ : constant Entity_Id := Etype (N);
-- Result type of the expression
function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
-- The argument N is a construct where the Prefix is dereferenced if it
-- is an access type and the result is a variable. The call returns True
-- if the construct is side effect free (not considering side effects in
-- other than the prefix which are to be tested by the caller).
function Within_In_Parameter (N : Node_Id) return Boolean;
-- Determines if N is a subcomponent of a composite in-parameter. If so,
-- N is not side-effect free when the actual is global and modifiable
-- indirectly from within a subprogram, because it may be passed by
-- reference. The front-end must be conservative here and assume that
-- this may happen with any array or record type. On the other hand, we
-- cannot create temporaries for all expressions for which this
-- condition is true, for various reasons that might require clearing up
-- ??? For example, discriminant references that appear out of place, or
-- spurious type errors with class-wide expressions. As a result, we
-- limit the transformation to loop bounds, which is so far the only
-- case that requires it.
-----------------------------
-- Safe_Prefixed_Reference --
-----------------------------
function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
begin
-- If prefix is not side effect free, definitely not safe
if not Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref) then
return False;
-- If the prefix is of an access type that is not access-to-constant,
-- then this construct is a variable reference, which means it is to
-- be considered to have side effects if Variable_Ref is set True.
elsif Is_Access_Type (Etype (Prefix (N)))
and then not Is_Access_Constant (Etype (Prefix (N)))
and then Variable_Ref
then
-- Exception is a prefix that is the result of a previous removal
-- of side effects.
return Is_Entity_Name (Prefix (N))
and then not Comes_From_Source (Prefix (N))
and then Ekind (Entity (Prefix (N))) = E_Constant
and then Is_Internal_Name (Chars (Entity (Prefix (N))));
-- If the prefix is an explicit dereference then this construct is a
-- variable reference, which means it is to be considered to have
-- side effects if Variable_Ref is True.
-- We do NOT exclude dereferences of access-to-constant types because
-- we handle them as constant view of variables.
elsif Nkind (Prefix (N)) = N_Explicit_Dereference
and then Variable_Ref
then
return False;
-- Note: The following test is the simplest way of solving a complex
-- problem uncovered by the following test (Side effect on loop bound
-- that is a subcomponent of a global variable:
-- with Text_Io; use Text_Io;
-- procedure Tloop is
-- type X is
-- record
-- V : Natural := 4;
-- S : String (1..5) := (others => 'a');
-- end record;
-- X1 : X;
-- procedure Modi;
-- generic
-- with procedure Action;
-- procedure Loop_G (Arg : X; Msg : String)
-- procedure Loop_G (Arg : X; Msg : String) is
-- begin
-- Put_Line ("begin loop_g " & Msg & " will loop till: "
-- & Natural'Image (Arg.V));
-- for Index in 1 .. Arg.V loop
-- Text_Io.Put_Line
-- (Natural'Image (Index) & " " & Arg.S (Index));
-- if Index > 2 then
-- Modi;
-- end if;
-- end loop;
-- Put_Line ("end loop_g " & Msg);
-- end;
-- procedure Loop1 is new Loop_G (Modi);
-- procedure Modi is
-- begin
-- X1.V := 1;
-- Loop1 (X1, "from modi");
-- end;
--
-- begin
-- Loop1 (X1, "initial");
-- end;
-- The output of the above program should be:
-- begin loop_g initial will loop till: 4
-- 1 a
-- 2 a
-- 3 a
-- begin loop_g from modi will loop till: 1
-- 1 a
-- end loop_g from modi
-- 4 a
-- begin loop_g from modi will loop till: 1
-- 1 a
-- end loop_g from modi
-- end loop_g initial
-- If a loop bound is a subcomponent of a global variable, a
-- modification of that variable within the loop may incorrectly
-- affect the execution of the loop.
elsif Nkind (Parent (Parent (N))) = N_Loop_Parameter_Specification
and then Within_In_Parameter (Prefix (N))
and then Variable_Ref
then
return False;
-- All other cases are side effect free
else
return True;
end if;
end Safe_Prefixed_Reference;
-------------------------
-- Within_In_Parameter --
-------------------------
function Within_In_Parameter (N : Node_Id) return Boolean is
begin
if not Comes_From_Source (N) then
return False;
elsif Is_Entity_Name (N) then
return Ekind (Entity (N)) = E_In_Parameter;
elsif Nkind (N) in N_Indexed_Component | N_Selected_Component then
return Within_In_Parameter (Prefix (N));
else
return False;
end if;
end Within_In_Parameter;
-- Start of processing for Side_Effect_Free
begin
-- If volatile reference, always consider it to have side effects
if Is_Volatile_Reference (N) then
return False;
end if;
-- Note on checks that could raise Constraint_Error. Strictly, if we
-- take advantage of 11.6, these checks do not count as side effects.
-- However, we would prefer to consider that they are side effects,
-- since the back end CSE does not work very well on expressions which
-- can raise Constraint_Error. On the other hand if we don't consider
-- them to be side effect free, then we get some awkward expansions
-- in -gnato mode, resulting in code insertions at a point where we
-- do not have a clear model for performing the insertions.
-- Special handling for entity names
if Is_Entity_Name (N) then
-- A type reference is always side effect free
if Is_Type (Entity (N)) then
return True;
-- Variables are considered to be a side effect if Variable_Ref
-- is set or if we have a volatile reference and Name_Req is off.
-- If Name_Req is True then we can't help returning a name which
-- effectively allows multiple references in any case.
elsif Is_Variable (N, Use_Original_Node => False) then
return not Variable_Ref
and then (not Is_Volatile_Reference (N) or else Name_Req);
-- Any other entity (e.g. a subtype name) is definitely side
-- effect free.
else
return True;
end if;
-- A value known at compile time is always side effect free
elsif Compile_Time_Known_Value (N) then
return True;
-- A variable renaming is not side-effect free, because the renaming
-- will function like a macro in the front-end in some cases, and an
-- assignment can modify the component designated by N, so we need to
-- create a temporary for it.
-- The guard testing for Entity being present is needed at least in
-- the case of rewritten predicate expressions, and may well also be
-- appropriate elsewhere. Obviously we can't go testing the entity
-- field if it does not exist, so it's reasonable to say that this is
-- not the renaming case if it does not exist.
elsif Is_Entity_Name (Original_Node (N))
and then Present (Entity (Original_Node (N)))
and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
and then Ekind (Entity (Original_Node (N))) /= E_Constant
then
declare
RO : constant Node_Id :=
Renamed_Object (Entity (Original_Node (N)));
begin
-- If the renamed object is an indexed component, or an
-- explicit dereference, then the designated object could
-- be modified by an assignment.
if Nkind (RO) in N_Indexed_Component | N_Explicit_Dereference then
return False;
-- A selected component must have a safe prefix
elsif Nkind (RO) = N_Selected_Component then
return Safe_Prefixed_Reference (RO);
-- In all other cases, designated object cannot be changed so
-- we are side effect free.
else
return True;
end if;
end;
-- Remove_Side_Effects generates an object renaming declaration to
-- capture the expression of a class-wide expression. In VM targets
-- the frontend performs no expansion for dispatching calls to
-- class- wide types since they are handled by the VM. Hence, we must
-- locate here if this node corresponds to a previous invocation of
-- Remove_Side_Effects to avoid a never ending loop in the frontend.
elsif not Tagged_Type_Expansion
and then not Comes_From_Source (N)
and then Nkind (Parent (N)) = N_Object_Renaming_Declaration
and then Is_Class_Wide_Type (Typ)
then
return True;
-- Generating C the type conversion of an access to constrained array
-- type into an access to unconstrained array type involves initializing
-- a fat pointer and the expression cannot be assumed to be free of side
-- effects since it must referenced several times to compute its bounds.
elsif Modify_Tree_For_C
and then Nkind (N) = N_Type_Conversion
and then Is_Access_Type (Typ)
and then Is_Array_Type (Designated_Type (Typ))
and then not Is_Constrained (Designated_Type (Typ))
then
return False;
end if;
-- For other than entity names and compile time known values,
-- check the node kind for special processing.
case Nkind (N) is
-- An attribute reference is side-effect free if its expressions
-- are side-effect free and its prefix is side-effect free or is
-- an entity reference.
when N_Attribute_Reference =>
return Side_Effect_Free_Attribute (Attribute_Name (N))
and then
Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
and then
(Is_Entity_Name (Prefix (N))
or else
Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref));
-- A binary operator is side effect free if and both operands are
-- side effect free. For this purpose binary operators include
-- membership tests and short circuit forms.
when N_Binary_Op
| N_Membership_Test
| N_Short_Circuit
=>
return Side_Effect_Free (Left_Opnd (N), Name_Req, Variable_Ref)
and then
Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
-- An explicit dereference is side effect free only if it is
-- a side effect free prefixed reference.
when N_Explicit_Dereference =>
return Safe_Prefixed_Reference (N);
-- An expression with action is side effect free if its expression
-- is side effect free and it has no actions.
when N_Expression_With_Actions =>
return
Is_Empty_List (Actions (N))
and then Side_Effect_Free
(Expression (N), Name_Req, Variable_Ref);
-- A call to _rep_to_pos is side effect free, since we generate
-- this pure function call ourselves. Moreover it is critically
-- important to make this exception, since otherwise we can have
-- discriminants in array components which don't look side effect
-- free in the case of an array whose index type is an enumeration
-- type with an enumeration rep clause.
-- All other function calls are not side effect free
when N_Function_Call =>
return
Nkind (Name (N)) = N_Identifier
and then Is_TSS (Name (N), TSS_Rep_To_Pos)
and then Side_Effect_Free
(First (Parameter_Associations (N)),
Name_Req, Variable_Ref);
-- An IF expression is side effect free if it's of a scalar type, and
-- all its components are all side effect free (conditions and then
-- actions and else actions). We restrict to scalar types, since it
-- is annoying to deal with things like (if A then B else C)'First
-- where the type involved is a string type.
when N_If_Expression =>
return
Is_Scalar_Type (Typ)
and then Side_Effect_Free
(Expressions (N), Name_Req, Variable_Ref);
-- An indexed component is side effect free if it is a side
-- effect free prefixed reference and all the indexing
-- expressions are side effect free.
when N_Indexed_Component =>
return
Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
and then Safe_Prefixed_Reference (N);
-- A type qualification, type conversion, or unchecked expression is
-- side effect free if the expression is side effect free.
when N_Qualified_Expression
| N_Type_Conversion
| N_Unchecked_Expression
=>
return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
-- A selected component is side effect free only if it is a side
-- effect free prefixed reference.
when N_Selected_Component =>
return Safe_Prefixed_Reference (N);
-- A range is side effect free if the bounds are side effect free
when N_Range =>
return Side_Effect_Free (Low_Bound (N), Name_Req, Variable_Ref)
and then
Side_Effect_Free (High_Bound (N), Name_Req, Variable_Ref);
-- A slice is side effect free if it is a side effect free
-- prefixed reference and the bounds are side effect free.
when N_Slice =>
return
Side_Effect_Free (Discrete_Range (N), Name_Req, Variable_Ref)
and then Safe_Prefixed_Reference (N);
-- A unary operator is side effect free if the operand
-- is side effect free.
when N_Unary_Op =>
return Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
-- An unchecked type conversion is side effect free only if it
-- is safe and its argument is side effect free.
when N_Unchecked_Type_Conversion =>
return
Safe_Unchecked_Type_Conversion (N)
and then Side_Effect_Free
(Expression (N), Name_Req, Variable_Ref);
-- A literal is side effect free
when N_Character_Literal
| N_Integer_Literal
| N_Real_Literal
| N_String_Literal
=>
return True;
-- An aggregate is side effect free if all its values are compile
-- time known.
when N_Aggregate =>
return Compile_Time_Known_Aggregate (N);
-- We consider that anything else has side effects. This is a bit
-- crude, but we are pretty close for most common cases, and we
-- are certainly correct (i.e. we never return True when the
-- answer should be False).
when others =>
return False;
end case;
end Side_Effect_Free;
-- A list is side effect free if all elements of the list are side
-- effect free.
function Side_Effect_Free
(L : List_Id;
Name_Req : Boolean := False;
Variable_Ref : Boolean := False) return Boolean
is
N : Node_Id;
begin
if L = No_List or else L = Error_List then
return True;
else
N := First (L);
while Present (N) loop
if not Side_Effect_Free (N, Name_Req, Variable_Ref) then
return False;
else
Next (N);
end if;
end loop;
return True;
end if;
end Side_Effect_Free;
--------------------------------
-- Side_Effect_Free_Attribute --
--------------------------------
function Side_Effect_Free_Attribute (Name : Name_Id) return Boolean is
begin
case Name is
when Name_Input =>
return False;
when Name_Image
| Name_Img
| Name_Wide_Image
| Name_Wide_Wide_Image
=>
-- CodePeer doesn't want to see replicated copies of 'Image calls
return not CodePeer_Mode;
when others =>
return True;
end case;
end Side_Effect_Free_Attribute;
----------------------------------
-- Silly_Boolean_Array_Not_Test --
----------------------------------
-- This procedure implements an odd and silly test. We explicitly check
-- for the case where the 'First of the component type is equal to the
-- 'Last of this component type, and if this is the case, we make sure
-- that constraint error is raised. The reason is that the NOT is bound
-- to cause CE in this case, and we will not otherwise catch it.
-- No such check is required for AND and OR, since for both these cases
-- False op False = False, and True op True = True. For the XOR case,
-- see Silly_Boolean_Array_Xor_Test.
-- Believe it or not, this was reported as a bug. Note that nearly always,
-- the test will evaluate statically to False, so the code will be
-- statically removed, and no extra overhead caused.
procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
CT : constant Entity_Id := Component_Type (T);
begin
-- The check we install is
-- constraint_error when
-- component_type'first = component_type'last
-- and then array_type'Length /= 0)
-- We need the last guard because we don't want to raise CE for empty
-- arrays since no out of range values result. (Empty arrays with a
-- component type of True .. True -- very useful -- even the ACATS
-- does not test that marginal case).
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_First),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_Last)),
Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
Reason => CE_Range_Check_Failed));
end Silly_Boolean_Array_Not_Test;
----------------------------------
-- Silly_Boolean_Array_Xor_Test --
----------------------------------
-- This procedure implements an odd and silly test. We explicitly check
-- for the XOR case where the component type is True .. True, since this
-- will raise constraint error. A special check is required since CE
-- will not be generated otherwise (cf Expand_Packed_Not).
-- No such check is required for AND and OR, since for both these cases
-- False op False = False, and True op True = True, and no check is
-- required for the case of False .. False, since False xor False = False.
-- See also Silly_Boolean_Array_Not_Test
procedure Silly_Boolean_Array_Xor_Test
(N : Node_Id;
R : Node_Id;
T : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
CT : constant Entity_Id := Component_Type (T);
begin
-- The check we install is
-- constraint_error when
-- Boolean (component_type'First)
-- and then Boolean (component_type'Last)
-- and then array_type'Length /= 0)
-- We need the last guard because we don't want to raise CE for empty
-- arrays since no out of range values result (Empty arrays with a
-- component type of True .. True -- very useful -- even the ACATS
-- does not test that marginal case).
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_And_Then (Loc,
Left_Opnd =>
Make_And_Then (Loc,
Left_Opnd =>
Convert_To (Standard_Boolean,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_First)),
Right_Opnd =>
Convert_To (Standard_Boolean,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_Last))),
Right_Opnd => Make_Non_Empty_Check (Loc, R)),
Reason => CE_Range_Check_Failed));
end Silly_Boolean_Array_Xor_Test;
----------------------------
-- Small_Integer_Type_For --
----------------------------
function Small_Integer_Type_For (S : Uint; Uns : Boolean) return Entity_Id
is
begin
pragma Assert (S <= System_Max_Integer_Size);
if S <= Standard_Short_Short_Integer_Size then
if Uns then
return Standard_Short_Short_Unsigned;
else
return Standard_Short_Short_Integer;
end if;
elsif S <= Standard_Short_Integer_Size then
if Uns then
return Standard_Short_Unsigned;
else
return Standard_Short_Integer;
end if;
elsif S <= Standard_Integer_Size then
if Uns then
return Standard_Unsigned;
else
return Standard_Integer;
end if;
elsif S <= Standard_Long_Integer_Size then
if Uns then
return Standard_Long_Unsigned;
else
return Standard_Long_Integer;
end if;
elsif S <= Standard_Long_Long_Integer_Size then
if Uns then
return Standard_Long_Long_Unsigned;
else
return Standard_Long_Long_Integer;
end if;
elsif S <= Standard_Long_Long_Long_Integer_Size then
if Uns then
return Standard_Long_Long_Long_Unsigned;
else
return Standard_Long_Long_Long_Integer;
end if;
else
raise Program_Error;
end if;
end Small_Integer_Type_For;
--------------------------
-- Target_Has_Fixed_Ops --
--------------------------
Integer_Sized_Small : Ureal;
-- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
-- called (we don't want to compute it more than once).
Long_Integer_Sized_Small : Ureal;
-- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
-- is called (we don't want to compute it more than once)
First_Time_For_THFO : Boolean := True;
-- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
function Target_Has_Fixed_Ops
(Left_Typ : Entity_Id;
Right_Typ : Entity_Id;
Result_Typ : Entity_Id) return Boolean
is
function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
-- Return True if the given type is a fixed-point type with a small
-- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
-- an absolute value less than 1.0. This is currently limited to
-- fixed-point types that map to Integer or Long_Integer.
------------------------
-- Is_Fractional_Type --
------------------------
function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
begin
if Esize (Typ) = Standard_Integer_Size then
return Small_Value (Typ) = Integer_Sized_Small;
elsif Esize (Typ) = Standard_Long_Integer_Size then
return Small_Value (Typ) = Long_Integer_Sized_Small;
else
return False;
end if;
end Is_Fractional_Type;
-- Start of processing for Target_Has_Fixed_Ops
begin
-- Return False if Fractional_Fixed_Ops_On_Target is false
if not Fractional_Fixed_Ops_On_Target then
return False;
end if;
-- Here the target has Fractional_Fixed_Ops, if first time, compute
-- standard constants used by Is_Fractional_Type.
if First_Time_For_THFO then
First_Time_For_THFO := False;
Integer_Sized_Small :=
UR_From_Components
(Num => Uint_1,
Den => UI_From_Int (Standard_Integer_Size - 1),
Rbase => 2);
Long_Integer_Sized_Small :=
UR_From_Components
(Num => Uint_1,
Den => UI_From_Int (Standard_Long_Integer_Size - 1),
Rbase => 2);
end if;
-- Return True if target supports fixed-by-fixed multiply/divide for
-- fractional fixed-point types (see Is_Fractional_Type) and the operand
-- and result types are equivalent fractional types.
return Is_Fractional_Type (Base_Type (Left_Typ))
and then Is_Fractional_Type (Base_Type (Right_Typ))
and then Is_Fractional_Type (Base_Type (Result_Typ))
and then Esize (Left_Typ) = Esize (Right_Typ)
and then Esize (Left_Typ) = Esize (Result_Typ);
end Target_Has_Fixed_Ops;
-------------------
-- Type_Map_Hash --
-------------------
function Type_Map_Hash (Id : Entity_Id) return Type_Map_Header is
begin
return Type_Map_Header (Id mod Type_Map_Size);
end Type_Map_Hash;
------------------------------------------
-- Type_May_Have_Bit_Aligned_Components --
------------------------------------------
function Type_May_Have_Bit_Aligned_Components
(Typ : Entity_Id) return Boolean
is
begin
-- Array type, check component type
if Is_Array_Type (Typ) then
return
Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
-- Record type, check components
elsif Is_Record_Type (Typ) then
declare
E : Entity_Id;
begin
E := First_Component_Or_Discriminant (Typ);
while Present (E) loop
-- This is the crucial test: if the component itself causes
-- trouble, then we can stop and return True.
if Component_May_Be_Bit_Aligned (E) then
return True;
end if;
-- Otherwise, we need to test its type, to see if it may
-- itself contain a troublesome component.
if Type_May_Have_Bit_Aligned_Components (Etype (E)) then
return True;
end if;
Next_Component_Or_Discriminant (E);
end loop;
return False;
end;
-- Type other than array or record is always OK
else
return False;
end if;
end Type_May_Have_Bit_Aligned_Components;
-------------------------------
-- Update_Primitives_Mapping --
-------------------------------
procedure Update_Primitives_Mapping
(Inher_Id : Entity_Id;
Subp_Id : Entity_Id)
is
begin
Map_Types
(Parent_Type => Find_Dispatching_Type (Inher_Id),
Derived_Type => Find_Dispatching_Type (Subp_Id));
end Update_Primitives_Mapping;
----------------------------------
-- Within_Case_Or_If_Expression --
----------------------------------
function Within_Case_Or_If_Expression (N : Node_Id) return Boolean is
Par : Node_Id;
begin
-- Locate an enclosing case or if expression. Note that these constructs
-- can be expanded into Expression_With_Actions, hence the test of the
-- original node.
Par := Parent (N);
while Present (Par) loop
if Nkind (Original_Node (Par)) in N_Case_Expression | N_If_Expression
then
return True;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
return False;
end if;
Par := Parent (Par);
end loop;
return False;
end Within_Case_Or_If_Expression;
------------------------------
-- Predicate_Check_In_Scope --
------------------------------
function Predicate_Check_In_Scope (N : Node_Id) return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then not Is_Subprogram (S) loop
S := Scope (S);
end loop;
if Present (S) then
-- Predicate checks should only be enabled in init procs for
-- expressions coming from source.
if Is_Init_Proc (S) then
return Comes_From_Source (N);
elsif Get_TSS_Name (S) /= TSS_Null
and then not Is_Predicate_Function (S)
and then not Is_Predicate_Function_M (S)
then
return False;
end if;
end if;
return True;
end Predicate_Check_In_Scope;
end Exp_Util;
|