1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ U N S T --
-- --
-- B o d y --
-- --
-- Copyright (C) 2014-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Exp_Util; use Exp_Util;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt;
with Output; use Output;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch8; use Sem_Ch8;
with Sem_Mech; use Sem_Mech;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Sinput; use Sinput;
with Snames; use Snames;
with Stand; use Stand;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
package body Exp_Unst is
-----------------------
-- Local Subprograms --
-----------------------
procedure Unnest_Subprogram
(Subp : Entity_Id; Subp_Body : Node_Id; For_Inline : Boolean := False);
-- Subp is a library-level subprogram which has nested subprograms, and
-- Subp_Body is the corresponding N_Subprogram_Body node. This procedure
-- declares the AREC types and objects, adds assignments to the AREC record
-- as required, defines the xxxPTR types for uplevel referenced objects,
-- adds the ARECP parameter to all nested subprograms which need it, and
-- modifies all uplevel references appropriately. If For_Inline is True,
-- we're unnesting this subprogram because it's on the list of inlined
-- subprograms and should unnest it despite it not being part of the main
-- unit.
-----------
-- Calls --
-----------
-- Table to record calls within the nest being analyzed. These are the
-- calls which may need to have an AREC actual added. This table is built
-- new for each subprogram nest and cleared at the end of processing each
-- subprogram nest.
type Call_Entry is record
N : Node_Id;
-- The actual call
Caller : Entity_Id;
-- Entity of the subprogram containing the call (can be at any level)
Callee : Entity_Id;
-- Entity of the subprogram called (always at level 2 or higher). Note
-- that in accordance with the basic rules of nesting, the level of To
-- is either less than or equal to the level of From, or one greater.
end record;
package Calls is new Table.Table (
Table_Component_Type => Call_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 100,
Table_Increment => 200,
Table_Name => "Unnest_Calls");
-- Records each call within the outer subprogram and all nested subprograms
-- that are to other subprograms nested within the outer subprogram. These
-- are the calls that may need an additional parameter.
procedure Append_Unique_Call (Call : Call_Entry);
-- Append a call entry to the Calls table. A check is made to see if the
-- table already contains this entry and if so it has no effect.
----------------------------------
-- Subprograms For Fat Pointers --
----------------------------------
function Build_Access_Type_Decl
(E : Entity_Id;
Scop : Entity_Id) return Node_Id;
-- For an uplevel reference that involves an unconstrained array type,
-- build an access type declaration for the corresponding activation
-- record component. The relevant attributes of the access type are
-- set here to avoid a full analysis that would require a scope stack.
function Needs_Fat_Pointer (E : Entity_Id) return Boolean;
-- A formal parameter of an unconstrained array type that appears in an
-- uplevel reference requires the construction of an access type, to be
-- used in the corresponding component declaration.
-----------
-- Urefs --
-----------
-- Table to record explicit uplevel references to objects (variables,
-- constants, formal parameters). These are the references that will
-- need rewriting to use the activation table (AREC) pointers. Also
-- included are implicit and explicit uplevel references to types, but
-- these do not get rewritten by the front end. This table is built new
-- for each subprogram nest and cleared at the end of processing each
-- subprogram nest.
type Uref_Entry is record
Ref : Node_Id;
-- The reference itself. For objects this is always an entity reference
-- and the referenced entity will have its Is_Uplevel_Referenced_Entity
-- flag set and will appear in the Uplevel_Referenced_Entities list of
-- the subprogram declaring this entity.
Ent : Entity_Id;
-- The Entity_Id of the uplevel referenced object or type
Caller : Entity_Id;
-- The entity for the subprogram immediately containing this entity
Callee : Entity_Id;
-- The entity for the subprogram containing the referenced entity. Note
-- that the level of Callee must be less than the level of Caller, since
-- this is an uplevel reference.
end record;
package Urefs is new Table.Table (
Table_Component_Type => Uref_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 100,
Table_Increment => 200,
Table_Name => "Unnest_Urefs");
------------------------
-- Append_Unique_Call --
------------------------
procedure Append_Unique_Call (Call : Call_Entry) is
begin
for J in Calls.First .. Calls.Last loop
if Calls.Table (J) = Call then
return;
end if;
end loop;
Calls.Append (Call);
end Append_Unique_Call;
-----------------------------
-- Build_Access_Type_Decl --
-----------------------------
function Build_Access_Type_Decl
(E : Entity_Id;
Scop : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (E);
Typ : Entity_Id;
begin
Typ := Make_Temporary (Loc, 'S');
Mutate_Ekind (Typ, E_General_Access_Type);
Set_Etype (Typ, Typ);
Set_Scope (Typ, Scop);
Set_Directly_Designated_Type (Typ, Etype (E));
return
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
Subtype_Indication => New_Occurrence_Of (Etype (E), Loc)));
end Build_Access_Type_Decl;
---------------
-- Get_Level --
---------------
function Get_Level (Subp : Entity_Id; Sub : Entity_Id) return Nat is
Lev : Nat;
S : Entity_Id;
begin
Lev := 1;
S := Sub;
loop
if S = Subp then
return Lev;
else
Lev := Lev + 1;
S := Enclosing_Subprogram (S);
end if;
end loop;
end Get_Level;
--------------------------
-- In_Synchronized_Unit --
--------------------------
function In_Synchronized_Unit (Subp : Entity_Id) return Boolean is
S : Entity_Id := Scope (Subp);
begin
while Present (S) and then S /= Standard_Standard loop
if Is_Concurrent_Type (S) then
return True;
elsif Is_Private_Type (S)
and then Present (Full_View (S))
and then Is_Concurrent_Type (Full_View (S))
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Synchronized_Unit;
-----------------------
-- Needs_Fat_Pointer --
-----------------------
function Needs_Fat_Pointer (E : Entity_Id) return Boolean is
Typ : constant Entity_Id := Get_Fullest_View (Etype (E));
begin
return Is_Array_Type (Typ) and then not Is_Constrained (Typ);
end Needs_Fat_Pointer;
----------------
-- Subp_Index --
----------------
function Subp_Index (Sub : Entity_Id) return SI_Type is
E : Entity_Id := Sub;
begin
pragma Assert (Is_Subprogram (E));
if Field_Is_Initial_Zero (E, F_Subps_Index)
or else Subps_Index (E) = Uint_0
then
E := Ultimate_Alias (E);
-- The body of a protected operation has a different name and
-- has been scanned at this point, and thus has an entry in the
-- subprogram table.
if E = Sub and then Present (Protected_Body_Subprogram (E)) then
E := Protected_Body_Subprogram (E);
end if;
if Ekind (E) = E_Function
and then Rewritten_For_C (E)
and then Present (Corresponding_Procedure (E))
then
E := Corresponding_Procedure (E);
end if;
end if;
pragma Assert (Subps_Index (E) /= Uint_0);
return SI_Type (UI_To_Int (Subps_Index (E)));
end Subp_Index;
-----------------------
-- Unnest_Subprogram --
-----------------------
procedure Unnest_Subprogram
(Subp : Entity_Id; Subp_Body : Node_Id; For_Inline : Boolean := False) is
function AREC_Name (J : Pos; S : String) return Name_Id;
-- Returns name for string ARECjS, where j is the decimal value of j
function Enclosing_Subp (Subp : SI_Type) return SI_Type;
-- Subp is the index of a subprogram which has a Lev greater than 1.
-- This function returns the index of the enclosing subprogram which
-- will have a Lev value one less than this.
function Img_Pos (N : Pos) return String;
-- Return image of N without leading blank
function Upref_Name
(Ent : Entity_Id;
Index : Pos;
Clist : List_Id) return Name_Id;
-- This function returns the name to be used in the activation record to
-- reference the variable uplevel. Clist is the list of components that
-- have been created in the activation record so far. Normally the name
-- is just a copy of the Chars field of the entity. The exception is
-- when the name has already been used, in which case we suffix the name
-- with the index value Index to avoid duplication. This happens with
-- declare blocks and generic parameters at least.
---------------
-- AREC_Name --
---------------
function AREC_Name (J : Pos; S : String) return Name_Id is
begin
return Name_Find ("AREC" & Img_Pos (J) & S);
end AREC_Name;
--------------------
-- Enclosing_Subp --
--------------------
function Enclosing_Subp (Subp : SI_Type) return SI_Type is
STJ : Subp_Entry renames Subps.Table (Subp);
Ret : constant SI_Type := Subp_Index (Enclosing_Subprogram (STJ.Ent));
begin
pragma Assert (STJ.Lev > 1);
pragma Assert (Subps.Table (Ret).Lev = STJ.Lev - 1);
return Ret;
end Enclosing_Subp;
-------------
-- Img_Pos --
-------------
function Img_Pos (N : Pos) return String is
Buf : String (1 .. 20);
Ptr : Natural;
NV : Nat;
begin
Ptr := Buf'Last;
NV := N;
while NV /= 0 loop
Buf (Ptr) := Character'Val (48 + NV mod 10);
Ptr := Ptr - 1;
NV := NV / 10;
end loop;
return Buf (Ptr + 1 .. Buf'Last);
end Img_Pos;
----------------
-- Upref_Name --
----------------
function Upref_Name
(Ent : Entity_Id;
Index : Pos;
Clist : List_Id) return Name_Id
is
C : Node_Id;
begin
C := First (Clist);
loop
if No (C) then
return Chars (Ent);
elsif Chars (Defining_Identifier (C)) = Chars (Ent) then
return
Name_Find (Get_Name_String (Chars (Ent)) & Img_Pos (Index));
else
Next (C);
end if;
end loop;
end Upref_Name;
-- Start of processing for Unnest_Subprogram
begin
-- Nothing to do inside a generic (all processing is for instance)
if Inside_A_Generic then
return;
end if;
-- If the main unit is a package body then we need to examine the spec
-- to determine whether the main unit is generic (the scope stack is not
-- present when this is called on the main unit).
if not For_Inline
and then Ekind (Cunit_Entity (Main_Unit)) = E_Package_Body
and then Is_Generic_Unit (Spec_Entity (Cunit_Entity (Main_Unit)))
then
return;
-- Only unnest when generating code for the main source unit or if
-- we're unnesting for inline. But in some Annex E cases the Sloc
-- points to a different unit, so also make sure that the Parent
-- isn't in something that we know we're generating code for.
elsif not For_Inline
and then not In_Extended_Main_Code_Unit (Subp_Body)
and then not In_Extended_Main_Code_Unit (Parent (Subp_Body))
then
return;
end if;
-- This routine is called late, after the scope stack is gone. The
-- following creates a suitable dummy scope stack to be used for the
-- analyze/expand calls made from this routine.
Push_Scope (Subp);
-- First step, we must mark all nested subprograms that require a static
-- link (activation record) because either they contain explicit uplevel
-- references (as indicated by Is_Uplevel_Referenced_Entity being set at
-- this point), or they make calls to other subprograms in the same nest
-- that require a static link (in which case we set this flag).
-- This is a recursive definition, and to implement this, we have to
-- build a call graph for the set of nested subprograms, and then go
-- over this graph to implement recursively the invariant that if a
-- subprogram has a call to a subprogram requiring a static link, then
-- the calling subprogram requires a static link.
-- First populate the above tables
Subps_First := Subps.Last + 1;
Calls.Init;
Urefs.Init;
Build_Tables : declare
Current_Subprogram : Entity_Id := Empty;
-- When we scan a subprogram body, we set Current_Subprogram to the
-- corresponding entity. This gets recursively saved and restored.
function Visit_Node (N : Node_Id) return Traverse_Result;
-- Visit a single node in Subp
-----------
-- Visit --
-----------
procedure Visit is new Traverse_Proc (Visit_Node);
-- Used to traverse the body of Subp, populating the tables
----------------
-- Visit_Node --
----------------
function Visit_Node (N : Node_Id) return Traverse_Result is
Ent : Entity_Id;
Caller : Entity_Id;
Callee : Entity_Id;
procedure Check_Static_Type
(In_T : Entity_Id;
N : Node_Id;
DT : in out Boolean;
Check_Designated : Boolean := False);
-- Given a type In_T, checks if it is a static type defined as
-- a type with no dynamic bounds in sight. If so, the only
-- action is to set Is_Static_Type True for In_T. If In_T is
-- not a static type, then all types with dynamic bounds
-- associated with In_T are detected, and their bounds are
-- marked as uplevel referenced if not at the library level,
-- and DT is set True. If N is specified, it's the node that
-- will need to be replaced. If not specified, it means we
-- can't do a replacement because the bound is implicit.
-- If Check_Designated is True and In_T or its full view
-- is an access type, check whether the designated type
-- has dynamic bounds.
procedure Note_Uplevel_Ref
(E : Entity_Id;
N : Node_Id;
Caller : Entity_Id;
Callee : Entity_Id);
-- Called when we detect an explicit or implicit uplevel reference
-- from within Caller to entity E declared in Callee. E can be a
-- an object or a type.
procedure Register_Subprogram (E : Entity_Id; Bod : Node_Id);
-- Enter a subprogram whose body is visible or which is a
-- subprogram instance into the subprogram table.
-----------------------
-- Check_Static_Type --
-----------------------
procedure Check_Static_Type
(In_T : Entity_Id;
N : Node_Id;
DT : in out Boolean;
Check_Designated : Boolean := False)
is
T : constant Entity_Id := Get_Fullest_View (In_T);
procedure Note_Uplevel_Bound (N : Node_Id; Ref : Node_Id);
-- N is the bound of a dynamic type. This procedure notes that
-- this bound is uplevel referenced, it can handle references
-- to entities (typically _FIRST and _LAST entities), and also
-- attribute references of the form T'name (name is typically
-- FIRST or LAST) where T is the uplevel referenced bound.
-- Ref, if Present, is the location of the reference to
-- replace.
------------------------
-- Note_Uplevel_Bound --
------------------------
procedure Note_Uplevel_Bound (N : Node_Id; Ref : Node_Id) is
begin
-- Entity name case. Make sure that the entity is declared
-- in a subprogram. This may not be the case for a type in a
-- loop appearing in a precondition.
-- Exclude explicitly discriminants (that can appear
-- in bounds of discriminated components) and enumeration
-- literals.
if Is_Entity_Name (N) then
if Present (Entity (N))
and then not Is_Type (Entity (N))
and then Present (Enclosing_Subprogram (Entity (N)))
and then
Ekind (Entity (N))
not in E_Discriminant | E_Enumeration_Literal
then
Note_Uplevel_Ref
(E => Entity (N),
N => Empty,
Caller => Current_Subprogram,
Callee => Enclosing_Subprogram (Entity (N)));
end if;
-- Attribute or indexed component case
elsif Nkind (N) in
N_Attribute_Reference | N_Indexed_Component
then
Note_Uplevel_Bound (Prefix (N), Ref);
-- The indices of the indexed components, or the
-- associated expressions of an attribute reference,
-- may also involve uplevel references.
declare
Expr : Node_Id;
begin
Expr := First (Expressions (N));
while Present (Expr) loop
Note_Uplevel_Bound (Expr, Ref);
Next (Expr);
end loop;
end;
-- The type of the prefix may be have an uplevel
-- reference if this needs bounds.
if Nkind (N) = N_Attribute_Reference then
declare
Attr : constant Attribute_Id :=
Get_Attribute_Id (Attribute_Name (N));
DT : Boolean := False;
begin
if (Attr = Attribute_First
or else Attr = Attribute_Last
or else Attr = Attribute_Length)
and then Is_Constrained (Etype (Prefix (N)))
then
Check_Static_Type
(Etype (Prefix (N)), Empty, DT);
end if;
end;
end if;
-- Binary operator cases. These can apply to arrays for
-- which we may need bounds.
elsif Nkind (N) in N_Binary_Op then
Note_Uplevel_Bound (Left_Opnd (N), Ref);
Note_Uplevel_Bound (Right_Opnd (N), Ref);
-- Unary operator case
elsif Nkind (N) in N_Unary_Op then
Note_Uplevel_Bound (Right_Opnd (N), Ref);
-- Explicit dereference and selected component case
elsif Nkind (N) in
N_Explicit_Dereference | N_Selected_Component
then
Note_Uplevel_Bound (Prefix (N), Ref);
-- Conditional expressions
elsif Nkind (N) = N_If_Expression then
declare
Expr : Node_Id;
begin
Expr := First (Expressions (N));
while Present (Expr) loop
Note_Uplevel_Bound (Expr, Ref);
Next (Expr);
end loop;
end;
elsif Nkind (N) = N_Case_Expression then
declare
Alternative : Node_Id;
begin
Note_Uplevel_Bound (Expression (N), Ref);
Alternative := First (Alternatives (N));
while Present (Alternative) loop
Note_Uplevel_Bound (Expression (Alternative), Ref);
end loop;
end;
-- Conversion case
elsif Nkind (N) = N_Type_Conversion then
Note_Uplevel_Bound (Expression (N), Ref);
end if;
end Note_Uplevel_Bound;
-- Start of processing for Check_Static_Type
begin
-- If already marked static, immediate return
if Is_Static_Type (T) and then not Check_Designated then
return;
end if;
-- If the type is at library level, always consider it static,
-- since such uplevel references are irrelevant.
if Is_Library_Level_Entity (T) then
Set_Is_Static_Type (T);
return;
end if;
-- Otherwise figure out what the story is with this type
-- For a scalar type, check bounds
if Is_Scalar_Type (T) then
-- If both bounds static, then this is a static type
declare
LB : constant Node_Id := Type_Low_Bound (T);
UB : constant Node_Id := Type_High_Bound (T);
begin
if not Is_Static_Expression (LB) then
Note_Uplevel_Bound (LB, N);
DT := True;
end if;
if not Is_Static_Expression (UB) then
Note_Uplevel_Bound (UB, N);
DT := True;
end if;
end;
-- For record type, check all components and discriminant
-- constraints if present.
elsif Is_Record_Type (T) then
declare
C : Entity_Id;
D : Elmt_Id;
begin
C := First_Component_Or_Discriminant (T);
while Present (C) loop
Check_Static_Type (Etype (C), N, DT);
Next_Component_Or_Discriminant (C);
end loop;
if Has_Discriminants (T)
and then Present (Discriminant_Constraint (T))
then
D := First_Elmt (Discriminant_Constraint (T));
while Present (D) loop
if not Is_Static_Expression (Node (D)) then
Note_Uplevel_Bound (Node (D), N);
DT := True;
end if;
Next_Elmt (D);
end loop;
end if;
end;
-- For array type, check index types and component type
elsif Is_Array_Type (T) then
declare
IX : Node_Id;
begin
Check_Static_Type (Component_Type (T), N, DT);
IX := First_Index (T);
while Present (IX) loop
Check_Static_Type (Etype (IX), N, DT);
Next_Index (IX);
end loop;
end;
-- For private type, examine whether full view is static
elsif Is_Incomplete_Or_Private_Type (T)
and then Present (Full_View (T))
then
Check_Static_Type (Full_View (T), N, DT, Check_Designated);
if Is_Static_Type (Full_View (T)) then
Set_Is_Static_Type (T);
end if;
-- For access types, check designated type when required
elsif Is_Access_Type (T) and then Check_Designated then
Check_Static_Type (Directly_Designated_Type (T), N, DT);
-- For now, ignore other types
else
return;
end if;
if not DT then
Set_Is_Static_Type (T);
end if;
end Check_Static_Type;
----------------------
-- Note_Uplevel_Ref --
----------------------
procedure Note_Uplevel_Ref
(E : Entity_Id;
N : Node_Id;
Caller : Entity_Id;
Callee : Entity_Id)
is
Full_E : Entity_Id := E;
begin
-- Nothing to do for static type
if Is_Static_Type (E) then
return;
end if;
-- Nothing to do if Caller and Callee are the same
if Caller = Callee then
return;
-- Callee may be a function that returns an array, and that has
-- been rewritten as a procedure. If caller is that procedure,
-- nothing to do either.
elsif Ekind (Callee) = E_Function
and then Rewritten_For_C (Callee)
and then Corresponding_Procedure (Callee) = Caller
then
return;
elsif Ekind (Callee) in E_Entry | E_Entry_Family then
return;
end if;
-- We have a new uplevel referenced entity
if Ekind (E) = E_Constant and then Present (Full_View (E)) then
Full_E := Full_View (E);
end if;
-- All we do at this stage is to add the uplevel reference to
-- the table. It's too early to do anything else, since this
-- uplevel reference may come from an unreachable subprogram
-- in which case the entry will be deleted.
Urefs.Append ((N, Full_E, Caller, Callee));
end Note_Uplevel_Ref;
-------------------------
-- Register_Subprogram --
-------------------------
procedure Register_Subprogram (E : Entity_Id; Bod : Node_Id) is
L : constant Nat := Get_Level (Subp, E);
begin
-- Subprograms declared in tasks and protected types cannot be
-- eliminated because calls to them may be in other units, so
-- they must be treated as reachable.
Subps.Append
((Ent => E,
Bod => Bod,
Lev => L,
Reachable => In_Synchronized_Unit (E)
or else Address_Taken (E),
Uplevel_Ref => L,
Declares_AREC => False,
Uents => No_Elist,
Last => 0,
ARECnF => Empty,
ARECn => Empty,
ARECnT => Empty,
ARECnPT => Empty,
ARECnP => Empty,
ARECnU => Empty));
Set_Subps_Index (E, UI_From_Int (Subps.Last));
-- If we marked this reachable because it's in a synchronized
-- unit, we have to mark all enclosing subprograms as reachable
-- as well. We do the same for subprograms with Address_Taken,
-- because otherwise we can run into problems with looking at
-- enclosing subprograms in Subps.Table due to their being
-- unreachable (the Subp_Index of unreachable subps is later
-- set to zero and their entry in Subps.Table is removed).
if In_Synchronized_Unit (E) or else Address_Taken (E) then
declare
S : Entity_Id := E;
begin
for J in reverse 1 .. L - 1 loop
S := Enclosing_Subprogram (S);
Subps.Table (Subp_Index (S)).Reachable := True;
end loop;
end;
end if;
end Register_Subprogram;
-- Start of processing for Visit_Node
begin
case Nkind (N) is
-- Record a subprogram call
when N_Function_Call
| N_Procedure_Call_Statement
=>
-- We are only interested in direct calls, not indirect
-- calls (where Name (N) is an explicit dereference) at
-- least for now!
if Nkind (Name (N)) in N_Has_Entity then
Ent := Entity (Name (N));
-- We are only interested in calls to subprograms nested
-- within Subp. Calls to Subp itself or to subprograms
-- outside the nested structure do not affect us.
if Is_Subprogram (Ent)
and then not Is_Generic_Subprogram (Ent)
and then not Is_Imported (Ent)
and then not Is_Intrinsic_Subprogram (Ent)
and then Scope_Within (Ultimate_Alias (Ent), Subp)
then
Append_Unique_Call ((N, Current_Subprogram, Ent));
end if;
end if;
-- For all calls where the formal is an unconstrained array
-- and the actual is constrained we need to check the bounds
-- for uplevel references.
declare
Actual : Entity_Id;
DT : Boolean := False;
Formal : Node_Id;
Subp : Entity_Id;
F_Type : Entity_Id;
A_Type : Entity_Id;
begin
if Nkind (Name (N)) = N_Explicit_Dereference then
Subp := Etype (Name (N));
else
Subp := Entity (Name (N));
end if;
Actual := First_Actual (N);
Formal := First_Formal_With_Extras (Subp);
while Present (Actual) loop
F_Type := Get_Fullest_View (Etype (Formal));
A_Type := Get_Fullest_View (Etype (Actual));
if Is_Array_Type (F_Type)
and then not Is_Constrained (F_Type)
and then Is_Constrained (A_Type)
then
Check_Static_Type (A_Type, Empty, DT);
end if;
Next_Actual (Actual);
Next_Formal_With_Extras (Formal);
end loop;
end;
-- An At_End_Proc in a statement sequence indicates that there
-- is a call from the enclosing construct or block to that
-- subprogram. As above, the called entity must be local and
-- not imported.
when N_Handled_Sequence_Of_Statements =>
if Present (At_End_Proc (N))
and then Scope_Within (Entity (At_End_Proc (N)), Subp)
and then not Is_Imported (Entity (At_End_Proc (N)))
then
Append_Unique_Call
((N, Current_Subprogram, Entity (At_End_Proc (N))));
end if;
-- Similarly, the following constructs include a semantic
-- attribute Procedure_To_Call that must be handled like
-- other calls. Likewise for attribute Storage_Pool.
when N_Allocator
| N_Extended_Return_Statement
| N_Free_Statement
| N_Simple_Return_Statement
=>
declare
Pool : constant Entity_Id := Storage_Pool (N);
Proc : constant Entity_Id := Procedure_To_Call (N);
begin
if Present (Proc)
and then Scope_Within (Proc, Subp)
and then not Is_Imported (Proc)
then
Append_Unique_Call ((N, Current_Subprogram, Proc));
end if;
if Present (Pool)
and then not Is_Library_Level_Entity (Pool)
and then Scope_Within_Or_Same (Scope (Pool), Subp)
then
Caller := Current_Subprogram;
Callee := Enclosing_Subprogram (Pool);
if Callee /= Caller then
Note_Uplevel_Ref (Pool, Empty, Caller, Callee);
end if;
end if;
end;
-- For an allocator with a qualified expression, check type
-- of expression being qualified. The explicit type name is
-- handled as an entity reference.
if Nkind (N) = N_Allocator
and then Nkind (Expression (N)) = N_Qualified_Expression
then
declare
DT : Boolean := False;
begin
Check_Static_Type
(Etype (Expression (Expression (N))), Empty, DT);
end;
-- For a Return or Free (all other nodes we handle here),
-- we usually need the size of the object, so we need to be
-- sure that any nonstatic bounds of the expression's type
-- that are uplevel are handled.
elsif Nkind (N) /= N_Allocator
and then Present (Expression (N))
then
declare
DT : Boolean := False;
begin
Check_Static_Type
(Etype (Expression (N)),
Empty,
DT,
Check_Designated => Nkind (N) = N_Free_Statement);
end;
end if;
-- A 'Access reference is a (potential) call. So is 'Address,
-- in particular on imported subprograms. Other attributes
-- require special handling.
when N_Attribute_Reference =>
declare
Attr : constant Attribute_Id :=
Get_Attribute_Id (Attribute_Name (N));
begin
case Attr is
when Attribute_Access
| Attribute_Unchecked_Access
| Attribute_Unrestricted_Access
| Attribute_Address
=>
if Nkind (Prefix (N)) in N_Has_Entity then
Ent := Entity (Prefix (N));
-- We only need to examine calls to subprograms
-- nested within current Subp.
if Scope_Within (Ent, Subp) then
if Is_Imported (Ent) then
null;
elsif Is_Subprogram (Ent) then
Append_Unique_Call
((N, Current_Subprogram, Ent));
end if;
end if;
end if;
-- References to bounds can be uplevel references if
-- the type isn't static.
when Attribute_First
| Attribute_Last
| Attribute_Length
=>
-- Special-case attributes of objects whose bounds
-- may be uplevel references. More complex prefixes
-- handled during full traversal. Note that if the
-- nominal subtype of the prefix is unconstrained,
-- the bound must be obtained from the object, not
-- from the (possibly) uplevel reference. We call
-- Get_Referenced_Object to deal with prefixes that
-- are object renamings (prefixes that are types
-- can be passed and will simply be returned). But
-- it's also legal to get the bounds from the type
-- of the prefix, so we have to handle both cases.
declare
DT : Boolean := False;
begin
if Is_Constrained
(Etype (Get_Referenced_Object (Prefix (N))))
then
Check_Static_Type
(Etype (Get_Referenced_Object (Prefix (N))),
Empty, DT);
end if;
if Is_Constrained (Etype (Prefix (N))) then
Check_Static_Type
(Etype (Prefix (N)), Empty, DT);
end if;
end;
when others =>
null;
end case;
end;
-- Component associations in aggregates are either static or
-- else the aggregate will be expanded into assignments, in
-- which case the expression is analyzed later and provides
-- no relevant code generation.
when N_Component_Association =>
if No (Expression (N))
or else No (Etype (Expression (N)))
then
return Skip;
end if;
-- Generic associations are not analyzed: the actuals are
-- transferred to renaming and subtype declarations that
-- are the ones that must be examined.
when N_Generic_Association =>
return Skip;
-- Indexed references can be uplevel if the type isn't static
-- and if the lower bound (or an inner bound for a multi-
-- dimensional array) is uplevel.
when N_Indexed_Component
| N_Slice
=>
if Is_Constrained (Etype (Prefix (N))) then
declare
DT : Boolean := False;
begin
Check_Static_Type (Etype (Prefix (N)), Empty, DT);
end;
end if;
-- A selected component can have an implicit up-level
-- reference due to the bounds of previous fields in the
-- record. We simplify the processing here by examining
-- all components of the record.
-- Selected components appear as unit names and end labels
-- for child units. Prefixes of these nodes denote parent
-- units and carry no type information so they are skipped.
when N_Selected_Component =>
if Present (Etype (Prefix (N))) then
declare
DT : Boolean := False;
begin
Check_Static_Type (Etype (Prefix (N)), Empty, DT);
end;
end if;
-- For EQ/NE comparisons, we need the type of the operands
-- in order to do the comparison, which means we need the
-- bounds.
when N_Op_Eq
| N_Op_Ne
=>
declare
DT : Boolean := False;
begin
Check_Static_Type (Etype (Left_Opnd (N)), Empty, DT);
Check_Static_Type (Etype (Right_Opnd (N)), Empty, DT);
end;
-- Likewise we need the sizes to compute how much to move in
-- an assignment.
when N_Assignment_Statement =>
declare
DT : Boolean := False;
begin
Check_Static_Type (Etype (Name (N)), Empty, DT);
Check_Static_Type (Etype (Expression (N)), Empty, DT);
end;
-- Record a subprogram. We record a subprogram body that acts
-- as a spec. Otherwise we record a subprogram declaration,
-- providing that it has a corresponding body we can get hold
-- of. The case of no corresponding body being available is
-- ignored for now.
when N_Subprogram_Body =>
Ent := Unique_Defining_Entity (N);
-- Ignore generic subprogram
if Is_Generic_Subprogram (Ent) then
return Skip;
end if;
-- Make new entry in subprogram table if not already made
Register_Subprogram (Ent, N);
-- We make a recursive call to scan the subprogram body, so
-- that we can save and restore Current_Subprogram.
declare
Save_CS : constant Entity_Id := Current_Subprogram;
Decl : Node_Id;
begin
Current_Subprogram := Ent;
-- Scan declarations
Decl := First (Declarations (N));
while Present (Decl) loop
Visit (Decl);
Next (Decl);
end loop;
-- Scan statements
Visit (Handled_Statement_Sequence (N));
-- Restore current subprogram setting
Current_Subprogram := Save_CS;
end;
-- Now at this level, return skipping the subprogram body
-- descendants, since we already took care of them!
return Skip;
-- If we have a body stub, visit the associated subunit, which
-- is a semantic descendant of the stub.
when N_Body_Stub =>
Visit (Library_Unit (N));
-- A declaration of a wrapper package indicates a subprogram
-- instance for which there is no explicit body. Enter the
-- subprogram instance in the table.
when N_Package_Declaration =>
if Is_Wrapper_Package (Defining_Entity (N)) then
Register_Subprogram
(Related_Instance (Defining_Entity (N)), Empty);
end if;
-- Skip generic declarations
when N_Generic_Declaration =>
return Skip;
-- Skip generic package body
when N_Package_Body =>
if Present (Corresponding_Spec (N))
and then Ekind (Corresponding_Spec (N)) = E_Generic_Package
then
return Skip;
end if;
-- Pragmas and component declarations are ignored. Quantified
-- expressions are expanded into explicit loops and the
-- original epression must be ignored.
when N_Component_Declaration
| N_Pragma
| N_Quantified_Expression
=>
return Skip;
-- We want to skip the function spec for a generic function
-- to avoid looking at any generic types that might be in
-- its formals.
when N_Function_Specification =>
if Is_Generic_Subprogram (Unique_Defining_Entity (N)) then
return Skip;
end if;
-- Otherwise record an uplevel reference in a local identifier
when others =>
if Nkind (N) in N_Has_Entity
and then Present (Entity (N))
then
Ent := Entity (N);
-- Only interested in entities declared within our nest
if not Is_Library_Level_Entity (Ent)
and then Scope_Within_Or_Same (Scope (Ent), Subp)
-- Skip entities defined in inlined subprograms
and then
Chars (Enclosing_Subprogram (Ent)) /= Name_uParent
-- Constants and variables are potentially uplevel
-- references to global declarations.
and then
(Ekind (Ent) in E_Constant
| E_Loop_Parameter
| E_Variable
-- Formals are interesting, but not if being used
-- as mere names of parameters for name notation
-- calls.
or else
(Is_Formal (Ent)
and then not
(Nkind (Parent (N)) = N_Parameter_Association
and then Selector_Name (Parent (N)) = N))
-- Types other than known Is_Static types are
-- potentially interesting.
or else
(Is_Type (Ent) and then not Is_Static_Type (Ent)))
then
-- Here we have a potentially interesting uplevel
-- reference to examine.
if Is_Type (Ent) then
declare
DT : Boolean := False;
begin
Check_Static_Type (Ent, N, DT);
return OK;
end;
end if;
Caller := Current_Subprogram;
Callee := Enclosing_Subprogram (Ent);
if Callee /= Caller
and then (not Is_Static_Type (Ent)
or else Needs_Fat_Pointer (Ent))
then
Note_Uplevel_Ref (Ent, N, Caller, Callee);
-- Check the type of a formal parameter of the current
-- subprogram, whose formal type may be an uplevel
-- reference.
elsif Is_Formal (Ent)
and then Scope (Ent) = Current_Subprogram
then
declare
DT : Boolean := False;
begin
Check_Static_Type (Etype (Ent), Empty, DT);
end;
end if;
end if;
end if;
end case;
-- Fall through to continue scanning children of this node
return OK;
end Visit_Node;
-- Start of processing for Build_Tables
begin
-- Traverse the body to get subprograms, calls and uplevel references
Visit (Subp_Body);
end Build_Tables;
-- Now do the first transitive closure which determines which
-- subprograms in the nest are actually reachable.
Reachable_Closure : declare
Modified : Boolean;
begin
Subps.Table (Subps_First).Reachable := True;
-- We use a simple minded algorithm as follows (obviously this can
-- be done more efficiently, using one of the standard algorithms
-- for efficient transitive closure computation, but this is simple
-- and most likely fast enough that its speed does not matter).
-- Repeatedly scan the list of calls. Any time we find a call from
-- A to B, where A is reachable, but B is not, then B is reachable,
-- and note that we have made a change by setting Modified True. We
-- repeat this until we make a pass with no modifications.
Outer : loop
Modified := False;
Inner : for J in Calls.First .. Calls.Last loop
declare
CTJ : Call_Entry renames Calls.Table (J);
SINF : constant SI_Type := Subp_Index (CTJ.Caller);
SINT : constant SI_Type := Subp_Index (CTJ.Callee);
SUBF : Subp_Entry renames Subps.Table (SINF);
SUBT : Subp_Entry renames Subps.Table (SINT);
begin
if SUBF.Reachable and then not SUBT.Reachable then
SUBT.Reachable := True;
Modified := True;
end if;
end;
end loop Inner;
exit Outer when not Modified;
end loop Outer;
end Reachable_Closure;
-- Remove calls from unreachable subprograms
declare
New_Index : Nat;
begin
New_Index := 0;
for J in Calls.First .. Calls.Last loop
declare
CTJ : Call_Entry renames Calls.Table (J);
SINF : constant SI_Type := Subp_Index (CTJ.Caller);
SINT : constant SI_Type := Subp_Index (CTJ.Callee);
SUBF : Subp_Entry renames Subps.Table (SINF);
SUBT : Subp_Entry renames Subps.Table (SINT);
begin
if SUBF.Reachable then
pragma Assert (SUBT.Reachable);
New_Index := New_Index + 1;
Calls.Table (New_Index) := Calls.Table (J);
end if;
end;
end loop;
Calls.Set_Last (New_Index);
end;
-- Remove uplevel references from unreachable subprograms
declare
New_Index : Nat;
begin
New_Index := 0;
for J in Urefs.First .. Urefs.Last loop
declare
URJ : Uref_Entry renames Urefs.Table (J);
SINF : constant SI_Type := Subp_Index (URJ.Caller);
SINT : constant SI_Type := Subp_Index (URJ.Callee);
SUBF : Subp_Entry renames Subps.Table (SINF);
SUBT : Subp_Entry renames Subps.Table (SINT);
S : Entity_Id;
begin
-- Keep reachable reference
if SUBF.Reachable then
New_Index := New_Index + 1;
Urefs.Table (New_Index) := Urefs.Table (J);
-- And since we know we are keeping this one, this is a good
-- place to fill in information for a good reference.
-- Mark all enclosing subprograms need to declare AREC
S := URJ.Caller;
loop
S := Enclosing_Subprogram (S);
-- If we are at the top level, as can happen with
-- references to formals in aspects of nested subprogram
-- declarations, there are no further subprograms to mark
-- as requiring activation records.
exit when No (S);
declare
SUBI : Subp_Entry renames Subps.Table (Subp_Index (S));
begin
SUBI.Declares_AREC := True;
-- If this entity was marked reachable because it is
-- in a task or protected type, there may not appear
-- to be any calls to it, which would normally adjust
-- the levels of the parent subprograms. So we need to
-- be sure that the uplevel reference of that entity
-- takes into account possible calls.
if In_Synchronized_Unit (SUBF.Ent)
and then SUBT.Lev < SUBI.Uplevel_Ref
then
SUBI.Uplevel_Ref := SUBT.Lev;
end if;
end;
exit when S = URJ.Callee;
end loop;
-- Add to list of uplevel referenced entities for Callee.
-- We do not add types to this list, only actual references
-- to objects that will be referenced uplevel, and we use
-- the flag Is_Uplevel_Referenced_Entity to avoid making
-- duplicate entries in the list. Discriminants are also
-- excluded, only the enclosing object can appear in the
-- list.
if not Is_Uplevel_Referenced_Entity (URJ.Ent)
and then Ekind (URJ.Ent) /= E_Discriminant
then
Set_Is_Uplevel_Referenced_Entity (URJ.Ent);
Append_New_Elmt (URJ.Ent, SUBT.Uents);
end if;
-- And set uplevel indication for caller
if SUBT.Lev < SUBF.Uplevel_Ref then
SUBF.Uplevel_Ref := SUBT.Lev;
end if;
end if;
end;
end loop;
Urefs.Set_Last (New_Index);
end;
-- Remove unreachable subprograms from Subps table. Note that we do
-- this after eliminating entries from the other two tables, since
-- those elimination steps depend on referencing the Subps table.
declare
New_SI : SI_Type;
begin
New_SI := Subps_First - 1;
for J in Subps_First .. Subps.Last loop
declare
STJ : Subp_Entry renames Subps.Table (J);
Spec : Node_Id;
Decl : Node_Id;
begin
-- Subprogram is reachable, copy and reset index
if STJ.Reachable then
New_SI := New_SI + 1;
Subps.Table (New_SI) := STJ;
Set_Subps_Index (STJ.Ent, UI_From_Int (New_SI));
-- Subprogram is not reachable
else
-- Clear index, since no longer active
Set_Subps_Index (Subps.Table (J).Ent, Uint_0);
-- Output debug information if -gnatd.3 set
if Debug_Flag_Dot_3 then
Write_Str ("Eliminate ");
Write_Name (Chars (Subps.Table (J).Ent));
Write_Str (" at ");
Write_Location (Sloc (Subps.Table (J).Ent));
Write_Str (" (not referenced)");
Write_Eol;
end if;
-- Rewrite declaration, body, and corresponding freeze node
-- to null statements.
-- A subprogram instantiation does not have an explicit
-- body. If unused, we could remove the corresponding
-- wrapper package and its body.
if Present (STJ.Bod) then
Spec := Corresponding_Spec (STJ.Bod);
if Present (Spec) then
Decl := Parent (Declaration_Node (Spec));
Rewrite (Decl, Make_Null_Statement (Sloc (Decl)));
if Present (Freeze_Node (Spec)) then
Rewrite (Freeze_Node (Spec),
Make_Null_Statement (Sloc (Decl)));
end if;
end if;
Rewrite (STJ.Bod, Make_Null_Statement (Sloc (STJ.Bod)));
end if;
end if;
end;
end loop;
Subps.Set_Last (New_SI);
end;
-- Now it is time for the second transitive closure, which follows calls
-- and makes sure that A calls B, and B has uplevel references, then A
-- is also marked as having uplevel references.
Closure_Uplevel : declare
Modified : Boolean;
begin
-- We use a simple minded algorithm as follows (obviously this can
-- be done more efficiently, using one of the standard algorithms
-- for efficient transitive closure computation, but this is simple
-- and most likely fast enough that its speed does not matter).
-- Repeatedly scan the list of calls. Any time we find a call from
-- A to B, where B has uplevel references, make sure that A is marked
-- as having at least the same level of uplevel referencing.
Outer2 : loop
Modified := False;
Inner2 : for J in Calls.First .. Calls.Last loop
declare
CTJ : Call_Entry renames Calls.Table (J);
SINF : constant SI_Type := Subp_Index (CTJ.Caller);
SINT : constant SI_Type := Subp_Index (CTJ.Callee);
SUBF : Subp_Entry renames Subps.Table (SINF);
SUBT : Subp_Entry renames Subps.Table (SINT);
begin
if SUBT.Lev > SUBT.Uplevel_Ref
and then SUBF.Uplevel_Ref > SUBT.Uplevel_Ref
then
SUBF.Uplevel_Ref := SUBT.Uplevel_Ref;
Modified := True;
end if;
end;
end loop Inner2;
exit Outer2 when not Modified;
end loop Outer2;
end Closure_Uplevel;
-- We have one more step before the tables are complete. An uplevel
-- call from subprogram A to subprogram B where subprogram B has uplevel
-- references is in effect an uplevel reference, and must arrange for
-- the proper activation link to be passed.
for J in Calls.First .. Calls.Last loop
declare
CTJ : Call_Entry renames Calls.Table (J);
SINF : constant SI_Type := Subp_Index (CTJ.Caller);
SINT : constant SI_Type := Subp_Index (CTJ.Callee);
SUBF : Subp_Entry renames Subps.Table (SINF);
SUBT : Subp_Entry renames Subps.Table (SINT);
A : Entity_Id;
begin
-- If callee has uplevel references
if SUBT.Uplevel_Ref < SUBT.Lev
-- And this is an uplevel call
and then SUBT.Lev < SUBF.Lev
then
-- We need to arrange for finding the uplink
A := CTJ.Caller;
loop
A := Enclosing_Subprogram (A);
Subps.Table (Subp_Index (A)).Declares_AREC := True;
exit when A = CTJ.Callee;
-- In any case exit when we get to the outer level. This
-- happens in some odd cases with generics (in particular
-- sem_ch3.adb does not compile without this kludge ???).
exit when A = Subp;
end loop;
end if;
end;
end loop;
-- The tables are now complete, so we can record the last index in the
-- Subps table for later reference in Cprint.
Subps.Table (Subps_First).Last := Subps.Last;
-- Next step, create the entities for code we will insert. We do this
-- at the start so that all the entities are defined, regardless of the
-- order in which we do the code insertions.
Create_Entities : for J in Subps_First .. Subps.Last loop
declare
STJ : Subp_Entry renames Subps.Table (J);
Loc : constant Source_Ptr := Sloc (STJ.Bod);
begin
-- First we create the ARECnF entity for the additional formal for
-- all subprograms which need an activation record passed.
if STJ.Uplevel_Ref < STJ.Lev then
STJ.ARECnF :=
Make_Defining_Identifier (Loc, Chars => AREC_Name (J, "F"));
end if;
-- Define the AREC entities for the activation record if needed
if STJ.Declares_AREC then
STJ.ARECn :=
Make_Defining_Identifier (Loc, AREC_Name (J, ""));
STJ.ARECnT :=
Make_Defining_Identifier (Loc, AREC_Name (J, "T"));
STJ.ARECnPT :=
Make_Defining_Identifier (Loc, AREC_Name (J, "PT"));
STJ.ARECnP :=
Make_Defining_Identifier (Loc, AREC_Name (J, "P"));
-- Define uplink component entity if inner nesting case
if Present (STJ.ARECnF) then
STJ.ARECnU :=
Make_Defining_Identifier (Loc, AREC_Name (J, "U"));
end if;
end if;
end;
end loop Create_Entities;
-- Loop through subprograms
Subp_Loop : declare
Addr : Entity_Id := Empty;
begin
for J in Subps_First .. Subps.Last loop
declare
STJ : Subp_Entry renames Subps.Table (J);
begin
-- First add the extra formal if needed. This applies to all
-- nested subprograms that require an activation record to be
-- passed, as indicated by ARECnF being defined.
if Present (STJ.ARECnF) then
-- Here we need the extra formal. We do the expansion and
-- analysis of this manually, since it is fairly simple,
-- and it is not obvious how we can get what we want if we
-- try to use the normal Analyze circuit.
Add_Extra_Formal : declare
Encl : constant SI_Type := Enclosing_Subp (J);
STJE : Subp_Entry renames Subps.Table (Encl);
-- Index and Subp_Entry for enclosing routine
Form : constant Entity_Id := STJ.ARECnF;
-- The formal to be added. Note that n here is one less
-- than the level of the subprogram itself (STJ.Ent).
procedure Add_Form_To_Spec (F : Entity_Id; S : Node_Id);
-- S is an N_Function/Procedure_Specification node, and F
-- is the new entity to add to this subprogram spec as
-- the last Extra_Formal.
----------------------
-- Add_Form_To_Spec --
----------------------
procedure Add_Form_To_Spec (F : Entity_Id; S : Node_Id) is
Sub : constant Entity_Id := Defining_Entity (S);
Ent : Entity_Id;
begin
-- Case of at least one Extra_Formal is present, set
-- ARECnF as the new last entry in the list.
if Present (Extra_Formals (Sub)) then
Ent := Extra_Formals (Sub);
while Present (Extra_Formal (Ent)) loop
Ent := Extra_Formal (Ent);
end loop;
Set_Extra_Formal (Ent, F);
-- No Extra formals present
else
Set_Extra_Formals (Sub, F);
Ent := Last_Formal (Sub);
if Present (Ent) then
Set_Extra_Formal (Ent, F);
end if;
end if;
end Add_Form_To_Spec;
-- Start of processing for Add_Extra_Formal
begin
-- Decorate the new formal entity
Set_Scope (Form, STJ.Ent);
Mutate_Ekind (Form, E_In_Parameter);
Set_Etype (Form, STJE.ARECnPT);
Set_Mechanism (Form, By_Copy);
Set_Never_Set_In_Source (Form, True);
Set_Analyzed (Form, True);
Set_Comes_From_Source (Form, False);
Set_Is_Activation_Record (Form, True);
-- Case of only body present
if Acts_As_Spec (STJ.Bod) then
Add_Form_To_Spec (Form, Specification (STJ.Bod));
-- Case of separate spec
else
Add_Form_To_Spec (Form, Parent (STJ.Ent));
end if;
end Add_Extra_Formal;
end if;
-- Processing for subprograms that declare an activation record
if Present (STJ.ARECn) then
-- Local declarations for one such subprogram
declare
Loc : constant Source_Ptr := Sloc (STJ.Bod);
Decls : constant List_Id := New_List;
-- List of new declarations we create
Clist : List_Id;
Comp : Entity_Id;
Decl_Assign : Node_Id;
-- Assignment to set uplink, Empty if none
Decl_ARECnT : Node_Id;
Decl_ARECnPT : Node_Id;
Decl_ARECn : Node_Id;
Decl_ARECnP : Node_Id;
-- Declaration nodes for the AREC entities we build
begin
-- Build list of component declarations for ARECnT and
-- load System.Address.
Clist := Empty_List;
if No (Addr) then
Addr := RTE (RE_Address);
end if;
-- If we are in a subprogram that has a static link that
-- is passed in (as indicated by ARECnF being defined),
-- then include ARECnU : ARECmPT where ARECmPT comes from
-- the level one higher than the current level, and the
-- entity ARECnPT comes from the enclosing subprogram.
if Present (STJ.ARECnF) then
declare
STJE : Subp_Entry
renames Subps.Table (Enclosing_Subp (J));
begin
Append_To (Clist,
Make_Component_Declaration (Loc,
Defining_Identifier => STJ.ARECnU,
Component_Definition =>
Make_Component_Definition (Loc,
Subtype_Indication =>
New_Occurrence_Of (STJE.ARECnPT, Loc))));
end;
end if;
-- Add components for uplevel referenced entities
if Present (STJ.Uents) then
declare
Elmt : Elmt_Id;
Ptr_Decl : Node_Id;
Uent : Entity_Id;
Indx : Nat;
-- 1's origin of index in list of elements. This is
-- used to uniquify names if needed in Upref_Name.
begin
Elmt := First_Elmt (STJ.Uents);
Indx := 0;
while Present (Elmt) loop
Uent := Node (Elmt);
Indx := Indx + 1;
Comp :=
Make_Defining_Identifier (Loc,
Chars => Upref_Name (Uent, Indx, Clist));
Set_Activation_Record_Component
(Uent, Comp);
if Needs_Fat_Pointer (Uent) then
-- Build corresponding access type
Ptr_Decl :=
Build_Access_Type_Decl
(Etype (Uent), STJ.Ent);
Append_To (Decls, Ptr_Decl);
-- And use its type in the corresponding
-- component.
Append_To (Clist,
Make_Component_Declaration (Loc,
Defining_Identifier => Comp,
Component_Definition =>
Make_Component_Definition (Loc,
Subtype_Indication =>
New_Occurrence_Of
(Defining_Identifier (Ptr_Decl),
Loc))));
else
Append_To (Clist,
Make_Component_Declaration (Loc,
Defining_Identifier => Comp,
Component_Definition =>
Make_Component_Definition (Loc,
Subtype_Indication =>
New_Occurrence_Of (Addr, Loc))));
end if;
Next_Elmt (Elmt);
end loop;
end;
end if;
-- Now we can insert the AREC declarations into the body
-- type ARECnT is record .. end record;
-- pragma Suppress_Initialization (ARECnT);
-- Note that we need to set the Suppress_Initialization
-- flag after Decl_ARECnT has been analyzed.
Decl_ARECnT :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => STJ.ARECnT,
Type_Definition =>
Make_Record_Definition (Loc,
Component_List =>
Make_Component_List (Loc,
Component_Items => Clist)));
Append_To (Decls, Decl_ARECnT);
-- type ARECnPT is access all ARECnT;
Decl_ARECnPT :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => STJ.ARECnPT,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Occurrence_Of (STJ.ARECnT, Loc)));
Append_To (Decls, Decl_ARECnPT);
-- ARECn : aliased ARECnT;
Decl_ARECn :=
Make_Object_Declaration (Loc,
Defining_Identifier => STJ.ARECn,
Aliased_Present => True,
Object_Definition =>
New_Occurrence_Of (STJ.ARECnT, Loc));
Append_To (Decls, Decl_ARECn);
-- ARECnP : constant ARECnPT := ARECn'Access;
Decl_ARECnP :=
Make_Object_Declaration (Loc,
Defining_Identifier => STJ.ARECnP,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (STJ.ARECnPT, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (STJ.ARECn, Loc),
Attribute_Name => Name_Access));
Append_To (Decls, Decl_ARECnP);
-- If we are in a subprogram that has a static link that
-- is passed in (as indicated by ARECnF being defined),
-- then generate ARECn.ARECmU := ARECmF where m is
-- one less than the current level to set the uplink.
if Present (STJ.ARECnF) then
Decl_Assign :=
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix =>
New_Occurrence_Of (STJ.ARECn, Loc),
Selector_Name =>
New_Occurrence_Of (STJ.ARECnU, Loc)),
Expression =>
New_Occurrence_Of (STJ.ARECnF, Loc));
Append_To (Decls, Decl_Assign);
else
Decl_Assign := Empty;
end if;
if No (Declarations (STJ.Bod)) then
Set_Declarations (STJ.Bod, Decls);
else
Prepend_List_To (Declarations (STJ.Bod), Decls);
end if;
-- Analyze the newly inserted declarations. Note that we
-- do not need to establish the whole scope stack, since
-- we have already set all entity fields (so there will
-- be no searching of upper scopes to resolve names). But
-- we do set the scope of the current subprogram, so that
-- newly created entities go in the right entity chain.
-- We analyze with all checks suppressed (since we do
-- not expect any exceptions).
Push_Scope (STJ.Ent);
Analyze (Decl_ARECnT, Suppress => All_Checks);
-- Note that we need to call Set_Suppress_Initialization
-- after Decl_ARECnT has been analyzed, but before
-- analyzing Decl_ARECnP so that the flag is properly
-- taking into account.
Set_Suppress_Initialization (STJ.ARECnT);
Analyze (Decl_ARECnPT, Suppress => All_Checks);
Analyze (Decl_ARECn, Suppress => All_Checks);
Analyze (Decl_ARECnP, Suppress => All_Checks);
if Present (Decl_Assign) then
Analyze (Decl_Assign, Suppress => All_Checks);
end if;
Pop_Scope;
-- Next step, for each uplevel referenced entity, add
-- assignment operations to set the component in the
-- activation record.
if Present (STJ.Uents) then
declare
Elmt : Elmt_Id;
begin
Elmt := First_Elmt (STJ.Uents);
while Present (Elmt) loop
declare
Ent : constant Entity_Id := Node (Elmt);
Loc : constant Source_Ptr := Sloc (Ent);
Dec : constant Node_Id :=
Declaration_Node (Ent);
Asn : Node_Id;
Attr : Name_Id;
Comp : Entity_Id;
Ins : Node_Id;
Rhs : Node_Id;
begin
-- For parameters, we insert the assignment
-- right after the declaration of ARECnP.
-- For all other entities, we insert the
-- assignment immediately after the
-- declaration of the entity or after the
-- freeze node if present.
-- Note: we don't need to mark the entity
-- as being aliased, because the address
-- attribute will mark it as Address_Taken,
-- and that is good enough.
if Is_Formal (Ent) then
Ins := Decl_ARECnP;
elsif Has_Delayed_Freeze (Ent) then
Ins := Freeze_Node (Ent);
else
Ins := Dec;
end if;
-- Build and insert the assignment:
-- ARECn.nam := nam'Address
-- or else 'Unchecked_Access for
-- unconstrained array.
if Needs_Fat_Pointer (Ent) then
Attr := Name_Unchecked_Access;
else
Attr := Name_Address;
end if;
Rhs :=
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Ent, Loc),
Attribute_Name => Attr);
-- If the entity is an unconstrained formal
-- we wrap the attribute reference in an
-- unchecked conversion to the type of the
-- activation record component, to prevent
-- spurious subtype conformance errors within
-- instances.
if Is_Formal (Ent)
and then not Is_Constrained (Etype (Ent))
then
-- Find target component and its type
Comp := First_Component (STJ.ARECnT);
while Chars (Comp) /= Chars (Ent) loop
Next_Component (Comp);
end loop;
Rhs :=
Unchecked_Convert_To (Etype (Comp), Rhs);
end if;
Asn :=
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix =>
New_Occurrence_Of (STJ.ARECn, Loc),
Selector_Name =>
New_Occurrence_Of
(Activation_Record_Component
(Ent),
Loc)),
Expression => Rhs);
-- If we have a loop parameter, we have
-- to insert before the first statement
-- of the loop. Ins points to the
-- N_Loop_Parameter_Specification or to
-- an N_Iterator_Specification.
if Nkind (Ins) in
N_Iterator_Specification |
N_Loop_Parameter_Specification
then
-- Quantified expression are rewritten as
-- loops during expansion.
if Nkind (Parent (Ins)) =
N_Quantified_Expression
then
null;
else
Ins :=
First
(Statements
(Parent (Parent (Ins))));
Insert_Before (Ins, Asn);
end if;
else
Insert_After (Ins, Asn);
end if;
-- Analyze the assignment statement. We do
-- not need to establish the relevant scope
-- stack entries here, because we have
-- already set the correct entity references,
-- so no name resolution is required, and no
-- new entities are created, so we don't even
-- need to set the current scope.
-- We analyze with all checks suppressed
-- (since we do not expect any exceptions).
Analyze (Asn, Suppress => All_Checks);
end;
Next_Elmt (Elmt);
end loop;
end;
end if;
end;
end if;
end;
end loop;
end Subp_Loop;
-- Next step, process uplevel references. This has to be done in a
-- separate pass, after completing the processing in Sub_Loop because we
-- need all the AREC declarations generated, inserted, and analyzed so
-- that the uplevel references can be successfully analyzed.
Uplev_Refs : for J in Urefs.First .. Urefs.Last loop
declare
UPJ : Uref_Entry renames Urefs.Table (J);
begin
-- Ignore type references, these are implicit references that do
-- not need rewriting (e.g. the appearance in a conversion).
-- Also ignore if no reference was specified or if the rewriting
-- has already been done (this can happen if the N_Identifier
-- occurs more than one time in the tree). Also ignore references
-- when not generating C code (in particular for the case of LLVM,
-- since GNAT-LLVM will handle the processing for up-level refs).
if No (UPJ.Ref)
or else not Is_Entity_Name (UPJ.Ref)
or else not Present (Entity (UPJ.Ref))
or else not Opt.Generate_C_Code
then
goto Continue;
end if;
-- Rewrite one reference
Rewrite_One_Ref : declare
Loc : constant Source_Ptr := Sloc (UPJ.Ref);
-- Source location for the reference
Typ : constant Entity_Id := Etype (UPJ.Ent);
-- The type of the referenced entity
Atyp : Entity_Id;
-- The actual subtype of the reference
RS_Caller : constant SI_Type := Subp_Index (UPJ.Caller);
-- Subp_Index for caller containing reference
STJR : Subp_Entry renames Subps.Table (RS_Caller);
-- Subp_Entry for subprogram containing reference
RS_Callee : constant SI_Type := Subp_Index (UPJ.Callee);
-- Subp_Index for subprogram containing referenced entity
STJE : Subp_Entry renames Subps.Table (RS_Callee);
-- Subp_Entry for subprogram containing referenced entity
Pfx : Node_Id;
Comp : Entity_Id;
SI : SI_Type;
begin
Atyp := Etype (UPJ.Ref);
if Ekind (Atyp) /= E_Record_Subtype then
Atyp := Get_Actual_Subtype (UPJ.Ref);
end if;
-- Ignore if no ARECnF entity for enclosing subprogram which
-- probably happens as a result of not properly treating
-- instance bodies. To be examined ???
-- If this test is omitted, then the compilation of freeze.adb
-- and inline.adb fail in unnesting mode.
if No (STJR.ARECnF) then
goto Continue;
end if;
-- If this is a reference to a global constant, use its value
-- rather than create a reference. It is more efficient and
-- furthermore indispensable if the context requires a
-- constant, such as a branch of a case statement.
if Ekind (UPJ.Ent) = E_Constant
and then Is_True_Constant (UPJ.Ent)
and then Present (Constant_Value (UPJ.Ent))
and then Is_Static_Expression (Constant_Value (UPJ.Ent))
then
Rewrite (UPJ.Ref, New_Copy_Tree (Constant_Value (UPJ.Ent)));
goto Continue;
end if;
-- Push the current scope, so that the pointer type Tnn, and
-- any subsidiary entities resulting from the analysis of the
-- rewritten reference, go in the right entity chain.
Push_Scope (STJR.Ent);
-- Now we need to rewrite the reference. We have a reference
-- from level STJR.Lev to level STJE.Lev. The general form of
-- the rewritten reference for entity X is:
-- Typ'Deref (ARECaF.ARECbU.ARECcU.ARECdU....ARECmU.X)
-- where a,b,c,d .. m =
-- STJR.Lev - 1, STJR.Lev - 2, .. STJE.Lev
pragma Assert (STJR.Lev > STJE.Lev);
-- Compute the prefix of X. Here are examples to make things
-- clear (with parens to show groupings, the prefix is
-- everything except the .X at the end).
-- level 2 to level 1
-- AREC1F.X
-- level 3 to level 1
-- (AREC2F.AREC1U).X
-- level 4 to level 1
-- ((AREC3F.AREC2U).AREC1U).X
-- level 6 to level 2
-- (((AREC5F.AREC4U).AREC3U).AREC2U).X
-- In the above, ARECnF and ARECnU are pointers, so there are
-- explicit dereferences required for these occurrences.
Pfx :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (STJR.ARECnF, Loc));
SI := RS_Caller;
for L in STJE.Lev .. STJR.Lev - 2 loop
SI := Enclosing_Subp (SI);
Pfx :=
Make_Explicit_Dereference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Pfx,
Selector_Name =>
New_Occurrence_Of (Subps.Table (SI).ARECnU, Loc)));
end loop;
-- Get activation record component (must exist)
Comp := Activation_Record_Component (UPJ.Ent);
pragma Assert (Present (Comp));
-- Do the replacement. If the component type is an access type,
-- this is an uplevel reference for an entity that requires a
-- fat pointer, so dereference the component.
if Is_Access_Type (Etype (Comp)) then
Rewrite (UPJ.Ref,
Make_Explicit_Dereference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Pfx,
Selector_Name =>
New_Occurrence_Of (Comp, Loc))));
else
Rewrite (UPJ.Ref,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Atyp, Loc),
Attribute_Name => Name_Deref,
Expressions => New_List (
Make_Selected_Component (Loc,
Prefix => Pfx,
Selector_Name =>
New_Occurrence_Of (Comp, Loc)))));
end if;
-- Analyze and resolve the new expression. We do not need to
-- establish the relevant scope stack entries here, because we
-- have already set all the correct entity references, so no
-- name resolution is needed. We have already set the current
-- scope, so that any new entities created will be in the right
-- scope.
-- We analyze with all checks suppressed (since we do not
-- expect any exceptions)
Analyze_And_Resolve (UPJ.Ref, Typ, Suppress => All_Checks);
-- Generate an extra temporary to facilitate the C backend
-- processing this dereference
if Opt.Modify_Tree_For_C
and then Nkind (Parent (UPJ.Ref)) in
N_Type_Conversion | N_Unchecked_Type_Conversion
then
Force_Evaluation (UPJ.Ref, Mode => Strict);
end if;
Pop_Scope;
end Rewrite_One_Ref;
end;
<<Continue>>
null;
end loop Uplev_Refs;
-- Finally, loop through all calls adding extra actual for the
-- activation record where it is required.
Adjust_Calls : for J in Calls.First .. Calls.Last loop
-- Process a single call, we are only interested in a call to a
-- subprogram that actually needs a pointer to an activation record,
-- as indicated by the ARECnF entity being set. This excludes the
-- top level subprogram, and any subprogram not having uplevel refs.
Adjust_One_Call : declare
CTJ : Call_Entry renames Calls.Table (J);
STF : Subp_Entry renames Subps.Table (Subp_Index (CTJ.Caller));
STT : Subp_Entry renames Subps.Table (Subp_Index (CTJ.Callee));
Loc : constant Source_Ptr := Sloc (CTJ.N);
Extra : Node_Id;
ExtraP : Node_Id;
SubX : SI_Type;
Act : Node_Id;
begin
if Present (STT.ARECnF)
and then Nkind (CTJ.N) in N_Subprogram_Call
then
-- CTJ.N is a call to a subprogram which may require a pointer
-- to an activation record. The subprogram containing the call
-- is CTJ.From and the subprogram being called is CTJ.To, so we
-- have a call from level STF.Lev to level STT.Lev.
-- There are three possibilities:
-- For a call to the same level, we just pass the activation
-- record passed to the calling subprogram.
if STF.Lev = STT.Lev then
Extra := New_Occurrence_Of (STF.ARECnF, Loc);
-- For a call that goes down a level, we pass a pointer to the
-- activation record constructed within the caller (which may
-- be the outer-level subprogram, but also may be a more deeply
-- nested caller).
elsif STT.Lev = STF.Lev + 1 then
Extra := New_Occurrence_Of (STF.ARECnP, Loc);
-- Otherwise we must have an upcall (STT.Lev < STF.LEV),
-- since it is not possible to do a downcall of more than
-- one level.
-- For a call from level STF.Lev to level STT.Lev, we
-- have to find the activation record needed by the
-- callee. This is as follows:
-- ARECaF.ARECbU.ARECcU....ARECmU
-- where a,b,c .. m =
-- STF.Lev - 1, STF.Lev - 2, STF.Lev - 3 .. STT.Lev
else
pragma Assert (STT.Lev < STF.Lev);
Extra := New_Occurrence_Of (STF.ARECnF, Loc);
SubX := Subp_Index (CTJ.Caller);
for K in reverse STT.Lev .. STF.Lev - 1 loop
SubX := Enclosing_Subp (SubX);
Extra :=
Make_Selected_Component (Loc,
Prefix => Extra,
Selector_Name =>
New_Occurrence_Of
(Subps.Table (SubX).ARECnU, Loc));
end loop;
end if;
-- Extra is the additional parameter to be added. Build a
-- parameter association that we can append to the actuals.
ExtraP :=
Make_Parameter_Association (Loc,
Selector_Name =>
New_Occurrence_Of (STT.ARECnF, Loc),
Explicit_Actual_Parameter => Extra);
if No (Parameter_Associations (CTJ.N)) then
Set_Parameter_Associations (CTJ.N, Empty_List);
end if;
Append (ExtraP, Parameter_Associations (CTJ.N));
-- We need to deal with the actual parameter chain as well. The
-- newly added parameter is always the last actual.
Act := First_Named_Actual (CTJ.N);
if No (Act) then
Set_First_Named_Actual (CTJ.N, Extra);
-- If call has been relocated (as with an expression in
-- an aggregate), set First_Named pointer in original node
-- as well, because that's the parent of the parameter list.
Set_First_Named_Actual
(Parent (List_Containing (ExtraP)), Extra);
-- Here we must follow the chain and append the new entry
else
loop
declare
PAN : Node_Id;
NNA : Node_Id;
begin
PAN := Parent (Act);
pragma Assert (Nkind (PAN) = N_Parameter_Association);
NNA := Next_Named_Actual (PAN);
if No (NNA) then
Set_Next_Named_Actual (PAN, Extra);
exit;
end if;
Act := NNA;
end;
end loop;
end if;
-- Analyze and resolve the new actual. We do not need to
-- establish the relevant scope stack entries here, because
-- we have already set all the correct entity references, so
-- no name resolution is needed.
-- We analyze with all checks suppressed (since we do not
-- expect any exceptions, and also we temporarily turn off
-- Unested_Subprogram_Mode to avoid trying to mark uplevel
-- references (not needed at this stage, and in fact causes
-- a bit of recursive chaos).
Opt.Unnest_Subprogram_Mode := False;
Analyze_And_Resolve
(Extra, Etype (STT.ARECnF), Suppress => All_Checks);
Opt.Unnest_Subprogram_Mode := True;
end if;
end Adjust_One_Call;
end loop Adjust_Calls;
return;
end Unnest_Subprogram;
------------------------
-- Unnest_Subprograms --
------------------------
procedure Unnest_Subprograms (N : Node_Id) is
function Search_Subprograms (N : Node_Id) return Traverse_Result;
-- Tree visitor that search for outer level procedures with nested
-- subprograms and invokes Unnest_Subprogram()
---------------
-- Do_Search --
---------------
procedure Do_Search is new Traverse_Proc (Search_Subprograms);
-- Subtree visitor instantiation
------------------------
-- Search_Subprograms --
------------------------
function Search_Subprograms (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) in N_Subprogram_Body | N_Subprogram_Body_Stub then
declare
Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
begin
-- We are only interested in subprograms (not generic
-- subprograms), that have nested subprograms.
if Is_Subprogram (Spec_Id)
and then Has_Nested_Subprogram (Spec_Id)
and then Is_Library_Level_Entity (Spec_Id)
then
Unnest_Subprogram (Spec_Id, N);
end if;
end;
-- The proper body of a stub may contain nested subprograms, and
-- therefore must be visited explicitly. Nested stubs are examined
-- recursively in Visit_Node.
elsif Nkind (N) in N_Body_Stub then
Do_Search (Library_Unit (N));
-- Skip generic packages
elsif Nkind (N) = N_Package_Body
and then Ekind (Corresponding_Spec (N)) = E_Generic_Package
then
return Skip;
end if;
return OK;
end Search_Subprograms;
Subp : Entity_Id;
Subp_Body : Node_Id;
-- Start of processing for Unnest_Subprograms
begin
if not Opt.Unnest_Subprogram_Mode or not Opt.Expander_Active then
return;
end if;
-- A specification will contain bodies if it contains instantiations so
-- examine package or subprogram declaration of the main unit, when it
-- is present.
if Nkind (Unit (N)) = N_Package_Body
or else (Nkind (Unit (N)) = N_Subprogram_Body
and then not Acts_As_Spec (N))
then
Do_Search (Library_Unit (N));
end if;
Do_Search (N);
-- Unnest any subprograms passed on the list of inlined subprograms
Subp := First_Inlined_Subprogram (N);
while Present (Subp) loop
Subp_Body := Parent (Declaration_Node (Subp));
if Nkind (Subp_Body) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Subp_Body))
then
Subp_Body := Parent (Declaration_Node
(Corresponding_Body (Subp_Body)));
end if;
Unnest_Subprogram (Subp, Subp_Body, For_Inline => True);
Next_Inlined_Subprogram (Subp);
end loop;
end Unnest_Subprograms;
end Exp_Unst;
|