aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/exp_ch3.adb
blob: 04c3ad8c6317fd4cb7fbcb67e58e668c9d772166 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                              E X P _ C H 3                               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2023, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Accessibility;  use Accessibility;
with Aspects;        use Aspects;
with Atree;          use Atree;
with Checks;         use Checks;
with Contracts;      use Contracts;
with Einfo;          use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils;    use Einfo.Utils;
with Errout;         use Errout;
with Expander;       use Expander;
with Exp_Aggr;       use Exp_Aggr;
with Exp_Atag;       use Exp_Atag;
with Exp_Ch4;        use Exp_Ch4;
with Exp_Ch6;        use Exp_Ch6;
with Exp_Ch7;        use Exp_Ch7;
with Exp_Ch9;        use Exp_Ch9;
with Exp_Dbug;       use Exp_Dbug;
with Exp_Disp;       use Exp_Disp;
with Exp_Dist;       use Exp_Dist;
with Exp_Put_Image;
with Exp_Smem;       use Exp_Smem;
with Exp_Strm;       use Exp_Strm;
with Exp_Util;       use Exp_Util;
with Freeze;         use Freeze;
with Ghost;          use Ghost;
with Lib;            use Lib;
with Namet;          use Namet;
with Nlists;         use Nlists;
with Nmake;          use Nmake;
with Opt;            use Opt;
with Restrict;       use Restrict;
with Rident;         use Rident;
with Rtsfind;        use Rtsfind;
with Sem;            use Sem;
with Sem_Aux;        use Sem_Aux;
with Sem_Attr;       use Sem_Attr;
with Sem_Cat;        use Sem_Cat;
with Sem_Ch3;        use Sem_Ch3;
with Sem_Ch6;        use Sem_Ch6;
with Sem_Ch8;        use Sem_Ch8;
with Sem_Disp;       use Sem_Disp;
with Sem_Eval;       use Sem_Eval;
with Sem_Mech;       use Sem_Mech;
with Sem_Res;        use Sem_Res;
with Sem_SCIL;       use Sem_SCIL;
with Sem_Type;       use Sem_Type;
with Sem_Util;       use Sem_Util;
with Sinfo;          use Sinfo;
with Sinfo.Nodes;    use Sinfo.Nodes;
with Sinfo.Utils;    use Sinfo.Utils;
with Stand;          use Stand;
with Snames;         use Snames;
with Tbuild;         use Tbuild;
with Ttypes;         use Ttypes;
with Validsw;        use Validsw;

package body Exp_Ch3 is

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Adjust_Discriminants (Rtype : Entity_Id);
   --  This is used when freezing a record type. It attempts to construct
   --  more restrictive subtypes for discriminants so that the max size of
   --  the record can be calculated more accurately. See the body of this
   --  procedure for details.

   procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
   --  Build initialization procedure for given array type. Nod is a node
   --  used for attachment of any actions required in its construction.
   --  It also supplies the source location used for the procedure.

   function Build_Discriminant_Formals
     (Rec_Id : Entity_Id;
      Use_Dl : Boolean) return List_Id;
   --  This function uses the discriminants of a type to build a list of
   --  formal parameters, used in Build_Init_Procedure among other places.
   --  If the flag Use_Dl is set, the list is built using the already
   --  defined discriminals of the type, as is the case for concurrent
   --  types with discriminants. Otherwise new identifiers are created,
   --  with the source names of the discriminants.

   procedure Build_Discr_Checking_Funcs (N : Node_Id);
   --  For each variant component, builds a function which checks whether
   --  the component name is consistent with the current discriminants
   --  and sets the component's Dcheck_Function attribute to refer to it.
   --  N is the full type declaration node; the discriminant checking
   --  functions are inserted after this node.

   function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id;
   --  This function builds a static aggregate that can serve as the initial
   --  value for an array type whose bounds are static, and whose component
   --  type is a composite type that has a static equivalent aggregate.
   --  The equivalent array aggregate is used both for object initialization
   --  and for component initialization, when used in the following function.

   function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id;
   --  This function builds a static aggregate that can serve as the initial
   --  value for a record type whose components are scalar and initialized
   --  with compile-time values, or arrays with similar initialization or
   --  defaults. When possible, initialization of an object of the type can
   --  be achieved by using a copy of the aggregate as an initial value, thus
   --  removing the implicit call that would otherwise constitute elaboration
   --  code.

   procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id);
   --  Build record initialization procedure. N is the type declaration
   --  node, and Rec_Ent is the corresponding entity for the record type.

   procedure Build_Slice_Assignment (Typ : Entity_Id);
   --  Build assignment procedure for one-dimensional arrays of controlled
   --  types. Other array and slice assignments are expanded in-line, but
   --  the code expansion for controlled components (when control actions
   --  are active) can lead to very large blocks that GCC handles poorly.

   procedure Build_Untagged_Record_Equality (Typ : Entity_Id);
   --  AI05-0123: Equality on untagged records composes. This procedure
   --  builds the equality routine for an untagged record that has components
   --  of a record type that has user-defined primitive equality operations.
   --  The resulting operation is a TSS subprogram.

   procedure Check_Stream_Attributes (Typ : Entity_Id);
   --  Check that if a limited extension has a parent with user-defined stream
   --  attributes, and does not itself have user-defined stream-attributes,
   --  then any limited component of the extension also has the corresponding
   --  user-defined stream attributes.

   procedure Clean_Task_Names
     (Typ     : Entity_Id;
      Proc_Id : Entity_Id);
   --  If an initialization procedure includes calls to generate names
   --  for task subcomponents, indicate that secondary stack cleanup is
   --  needed after an initialization. Typ is the component type, and Proc_Id
   --  the initialization procedure for the enclosing composite type.

   procedure Copy_Discr_Checking_Funcs (N : Node_Id);
   --  For a derived untagged type, copy the attributes that were set
   --  for the components of the parent type onto the components of the
   --  derived type. No new subprograms are constructed.
   --  N is the full type declaration node, as for Build_Discr_Checking_Funcs.

   procedure Expand_Freeze_Array_Type (N : Node_Id);
   --  Freeze an array type. Deals with building the initialization procedure,
   --  creating the packed array type for a packed array and also with the
   --  creation of the controlling procedures for the controlled case. The
   --  argument N is the N_Freeze_Entity node for the type.

   procedure Expand_Freeze_Class_Wide_Type (N : Node_Id);
   --  Freeze a class-wide type. Build routine Finalize_Address for the purpose
   --  of finalizing controlled derivations from the class-wide's root type.

   procedure Expand_Freeze_Enumeration_Type (N : Node_Id);
   --  Freeze enumeration type with non-standard representation. Builds the
   --  array and function needed to convert between enumeration pos and
   --  enumeration representation values. N is the N_Freeze_Entity node
   --  for the type.

   procedure Expand_Freeze_Record_Type (N : Node_Id);
   --  Freeze record type. Builds all necessary discriminant checking
   --  and other ancillary functions, and builds dispatch tables where
   --  needed. The argument N is the N_Freeze_Entity node. This processing
   --  applies only to E_Record_Type entities, not to class wide types,
   --  record subtypes, or private types.

   procedure Expand_Tagged_Root (T : Entity_Id);
   --  Add a field _Tag at the beginning of the record. This field carries
   --  the value of the access to the Dispatch table. This procedure is only
   --  called on root type, the _Tag field being inherited by the descendants.

   procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
   --  Treat user-defined stream operations as renaming_as_body if the
   --  subprogram they rename is not frozen when the type is frozen.

   package Initialization_Control is

      function Requires_Late_Init
        (Decl : Node_Id; Rec_Type : Entity_Id) return Boolean;
      --  Return True iff the given component declaration requires late
      --  initialization, as defined by 3.3.1 (8.1/5).

      function Has_Late_Init_Component
        (Tagged_Rec_Type : Entity_Id) return Boolean;
      --  Return True iff the given tagged record type has at least one
      --  component that requires late initialization; this includes
      --  components of ancestor types.

      type Initialization_Mode is
        (Full_Init, Full_Init_Except_Tag, Early_Init_Only, Late_Init_Only);
      --  The initialization routine for a tagged type is passed in a
      --  formal parameter of this type, indicating what initialization
      --  is to be performed. This parameter defaults to Full_Init in all
      --  cases except when the init proc of a type extension (let's call
      --  that type T2) calls the init proc of its parent (let's call that
      --  type T1). In that case, one of the other 3 values will
      --  be passed in. In all three of those cases, the Tag component has
      --  already been initialized before the call and is therefore not to be
      --  modified. T2's init proc will either call T1's init proc
      --  once (with Full_Init_Except_Tag as the parameter value) or twice
      --  (first with Early_Init_Only, then later with Late_Init_Only),
      --  depending on the result returned by Has_Late_Init_Component (T1).
      --  In the latter case, the first call does not initialize any
      --  components that require late initialization and the second call
      --  then performs that deferred initialization.
      --  Strictly speaking, the formal parameter subtype is actually Natural
      --  but calls will only pass in values corresponding to literals
      --  of this enumeration type.

      function Make_Mode_Literal
        (Loc : Source_Ptr; Mode : Initialization_Mode) return Node_Id
      is (Make_Integer_Literal (Loc, Initialization_Mode'Pos (Mode)));
      --  Generate an integer literal for a given mode value.

      function Tag_Init_Condition
        (Loc : Source_Ptr;
         Init_Control_Formal : Entity_Id) return Node_Id;
      function Early_Init_Condition
        (Loc : Source_Ptr;
         Init_Control_Formal : Entity_Id) return Node_Id;
      function Late_Init_Condition
        (Loc : Source_Ptr;
         Init_Control_Formal : Entity_Id) return Node_Id;
      --  These three functions each return a Boolean expression that
      --  can be used to determine whether a given call to the initialization
      --  expression for a tagged type should initialize (respectively)
      --  the Tag component, the non-Tag components that do not require late
      --  initialization, and the components that do require late
      --  initialization.

   end Initialization_Control;

   procedure Initialization_Warning (E : Entity_Id);
   --  If static elaboration of the package is requested, indicate
   --  when a type does meet the conditions for static initialization. If
   --  E is a type, it has components that have no static initialization.
   --  if E is an entity, its initial expression is not compile-time known.

   function Init_Formals (Typ : Entity_Id; Proc_Id : Entity_Id) return List_Id;
   --  This function builds the list of formals for an initialization routine.
   --  The first formal is always _Init with the given type. For task value
   --  record types and types containing tasks, three additional formals are
   --  added and Proc_Id is decorated with attribute Has_Master_Entity:
   --
   --    _Master    : Master_Id
   --    _Chain     : in out Activation_Chain
   --    _Task_Name : String
   --
   --  The caller must append additional entries for discriminants if required.

   function Inline_Init_Proc (Typ : Entity_Id) return Boolean;
   --  Returns true if the initialization procedure of Typ should be inlined

   function In_Runtime (E : Entity_Id) return Boolean;
   --  Check if E is defined in the RTL (in a child of Ada or System). Used
   --  to avoid to bring in the overhead of _Input, _Output for tagged types.

   function Is_Null_Statement_List (Stmts : List_Id) return Boolean;
   --  Returns true if Stmts is made of null statements only, possibly wrapped
   --  in a case statement, recursively. This latter pattern may occur for the
   --  initialization procedure of an unchecked union.

   function Make_Eq_Body
     (Typ     : Entity_Id;
      Eq_Name : Name_Id) return Node_Id;
   --  Build the body of a primitive equality operation for a tagged record
   --  type, or in Ada 2012 for any record type that has components with a
   --  user-defined equality. Factored out of Predefined_Primitive_Bodies.

   function Make_Eq_Case
     (E      : Entity_Id;
      CL     : Node_Id;
      Discrs : Elist_Id := New_Elmt_List) return List_Id;
   --  Building block for variant record equality. Defined to share the code
   --  between the tagged and untagged case. Given a Component_List node CL,
   --  it generates an 'if' followed by a 'case' statement that compares all
   --  components of local temporaries named X and Y (that are declared as
   --  formals at some upper level). E provides the Sloc to be used for the
   --  generated code.
   --
   --  IF E is an unchecked_union,  Discrs is the list of formals created for
   --  the inferred discriminants of one operand. These formals are used in
   --  the generated case statements for each variant of the unchecked union.

   function Make_Eq_If
     (E : Entity_Id;
      L : List_Id) return Node_Id;
   --  Building block for variant record equality. Defined to share the code
   --  between the tagged and untagged case. Given the list of components
   --  (or discriminants) L, it generates a return statement that compares all
   --  components of local temporaries named X and Y (that are declared as
   --  formals at some upper level). E provides the Sloc to be used for the
   --  generated code.

   function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id;
   --  Search for a renaming of the inequality dispatching primitive of
   --  this tagged type. If found then build and return the corresponding
   --  rename-as-body inequality subprogram; otherwise return Empty.

   procedure Make_Predefined_Primitive_Specs
     (Tag_Typ     : Entity_Id;
      Predef_List : out List_Id;
      Renamed_Eq  : out Entity_Id);
   --  Create a list with the specs of the predefined primitive operations.
   --  For tagged types that are interfaces all these primitives are defined
   --  abstract.
   --
   --  The following entries are present for all tagged types, and provide
   --  the results of the corresponding attribute applied to the object.
   --  Dispatching is required in general, since the result of the attribute
   --  will vary with the actual object subtype.
   --
   --     _size          provides result of 'Size attribute
   --     typSR          provides result of 'Read attribute
   --     typSW          provides result of 'Write attribute
   --     typSI          provides result of 'Input attribute
   --     typSO          provides result of 'Output attribute
   --     typPI          provides result of 'Put_Image attribute
   --
   --  The following entries are additionally present for non-limited tagged
   --  types, and implement additional dispatching operations for predefined
   --  operations:
   --
   --     _equality      implements "=" operator
   --     _assign        implements assignment operation
   --     typDF          implements deep finalization
   --     typDA          implements deep adjust
   --
   --  The latter two are empty procedures unless the type contains some
   --  controlled components that require finalization actions (the deep
   --  in the name refers to the fact that the action applies to components).
   --
   --  The list of specs is returned in Predef_List

   function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
   --  Returns True if there are representation clauses for type T that are not
   --  inherited. If the result is false, the init_proc and the discriminant
   --  checking functions of the parent can be reused by a derived type.

   function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id;
   --  Ada 2005 (AI-251): Makes specs for null procedures associated with any
   --  null procedures inherited from an interface type that have not been
   --  overridden. Only one null procedure will be created for a given set of
   --  inherited null procedures with homographic profiles.

   function Predef_Spec_Or_Body
     (Loc      : Source_Ptr;
      Tag_Typ  : Entity_Id;
      Name     : Name_Id;
      Profile  : List_Id;
      Ret_Type : Entity_Id := Empty;
      For_Body : Boolean   := False) return Node_Id;
   --  This function generates the appropriate expansion for a predefined
   --  primitive operation specified by its name, parameter profile and
   --  return type (Empty means this is a procedure). If For_Body is false,
   --  then the returned node is a subprogram declaration. If For_Body is
   --  true, then the returned node is a empty subprogram body containing
   --  no declarations and no statements.

   function Predef_Stream_Attr_Spec
     (Loc     : Source_Ptr;
      Tag_Typ : Entity_Id;
      Name    : TSS_Name_Type) return Node_Id;
   --  Specialized version of Predef_Spec_Or_Body that apply to read, write,
   --  input and output attribute whose specs are constructed in Exp_Strm.

   function Predef_Deep_Spec
     (Loc      : Source_Ptr;
      Tag_Typ  : Entity_Id;
      Name     : TSS_Name_Type;
      For_Body : Boolean := False) return Node_Id;
   --  Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
   --  and _deep_finalize

   function Predefined_Primitive_Bodies
     (Tag_Typ    : Entity_Id;
      Renamed_Eq : Entity_Id) return List_Id;
   --  Create the bodies of the predefined primitives that are described in
   --  Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
   --  the defining unit name of the type's predefined equality as returned
   --  by Make_Predefined_Primitive_Specs.

   function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
   --  Freeze entities of all predefined primitive operations. This is needed
   --  because the bodies of these operations do not normally do any freezing.

   --------------------------
   -- Adjust_Discriminants --
   --------------------------

   --  This procedure attempts to define subtypes for discriminants that are
   --  more restrictive than those declared. Such a replacement is possible if
   --  we can demonstrate that values outside the restricted range would cause
   --  constraint errors in any case. The advantage of restricting the
   --  discriminant types in this way is that the maximum size of the variant
   --  record can be calculated more conservatively.

   --  An example of a situation in which we can perform this type of
   --  restriction is the following:

   --    subtype B is range 1 .. 10;
   --    type Q is array (B range <>) of Integer;

   --    type V (N : Natural) is record
   --       C : Q (1 .. N);
   --    end record;

   --  In this situation, we can restrict the upper bound of N to 10, since
   --  any larger value would cause a constraint error in any case.

   --  There are many situations in which such restriction is possible, but
   --  for now, we just look for cases like the above, where the component
   --  in question is a one dimensional array whose upper bound is one of
   --  the record discriminants. Also the component must not be part of
   --  any variant part, since then the component does not always exist.

   procedure Adjust_Discriminants (Rtype : Entity_Id) is
      Loc   : constant Source_Ptr := Sloc (Rtype);
      Comp  : Entity_Id;
      Ctyp  : Entity_Id;
      Ityp  : Entity_Id;
      Lo    : Node_Id;
      Hi    : Node_Id;
      P     : Node_Id;
      Loval : Uint;
      Discr : Entity_Id;
      Dtyp  : Entity_Id;
      Dhi   : Node_Id;
      Dhiv  : Uint;
      Ahi   : Node_Id;
      Ahiv  : Uint;
      Tnn   : Entity_Id;

   begin
      Comp := First_Component (Rtype);
      while Present (Comp) loop

         --  If our parent is a variant, quit, we do not look at components
         --  that are in variant parts, because they may not always exist.

         P := Parent (Comp);   -- component declaration
         P := Parent (P);      -- component list

         exit when Nkind (Parent (P)) = N_Variant;

         --  We are looking for a one dimensional array type

         Ctyp := Etype (Comp);

         if not Is_Array_Type (Ctyp) or else Number_Dimensions (Ctyp) > 1 then
            goto Continue;
         end if;

         --  The lower bound must be constant, and the upper bound is a
         --  discriminant (which is a discriminant of the current record).

         Ityp := Etype (First_Index (Ctyp));
         Lo := Type_Low_Bound (Ityp);
         Hi := Type_High_Bound (Ityp);

         if not Compile_Time_Known_Value (Lo)
           or else Nkind (Hi) /= N_Identifier
           or else No (Entity (Hi))
           or else Ekind (Entity (Hi)) /= E_Discriminant
         then
            goto Continue;
         end if;

         --  We have an array with appropriate bounds

         Loval := Expr_Value (Lo);
         Discr := Entity (Hi);
         Dtyp  := Etype (Discr);

         --  See if the discriminant has a known upper bound

         Dhi := Type_High_Bound (Dtyp);

         if not Compile_Time_Known_Value (Dhi) then
            goto Continue;
         end if;

         Dhiv := Expr_Value (Dhi);

         --  See if base type of component array has known upper bound

         Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));

         if not Compile_Time_Known_Value (Ahi) then
            goto Continue;
         end if;

         Ahiv := Expr_Value (Ahi);

         --  The condition for doing the restriction is that the high bound
         --  of the discriminant is greater than the low bound of the array,
         --  and is also greater than the high bound of the base type index.

         if Dhiv > Loval and then Dhiv > Ahiv then

            --  We can reset the upper bound of the discriminant type to
            --  whichever is larger, the low bound of the component, or
            --  the high bound of the base type array index.

            --  We build a subtype that is declared as

            --     subtype Tnn is discr_type range discr_type'First .. max;

            --  And insert this declaration into the tree. The type of the
            --  discriminant is then reset to this more restricted subtype.

            Tnn := Make_Temporary (Loc, 'T');

            Insert_Action (Declaration_Node (Rtype),
              Make_Subtype_Declaration (Loc,
                Defining_Identifier => Tnn,
                Subtype_Indication =>
                  Make_Subtype_Indication (Loc,
                    Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
                    Constraint   =>
                      Make_Range_Constraint (Loc,
                        Range_Expression =>
                          Make_Range (Loc,
                            Low_Bound =>
                              Make_Attribute_Reference (Loc,
                                Attribute_Name => Name_First,
                                Prefix => New_Occurrence_Of (Dtyp, Loc)),
                            High_Bound =>
                              Make_Integer_Literal (Loc,
                                Intval => UI_Max (Loval, Ahiv)))))));

            Set_Etype (Discr, Tnn);
         end if;

      <<Continue>>
         Next_Component (Comp);
      end loop;
   end Adjust_Discriminants;

   ------------------------------------------
   -- Build_Access_Subprogram_Wrapper_Body --
   ------------------------------------------

   procedure Build_Access_Subprogram_Wrapper_Body
     (Decl     : Node_Id;
      New_Decl : Node_Id)
   is
      Loc       : constant Source_Ptr := Sloc (Decl);
      Actuals   : constant List_Id    := New_List;
      Type_Def  : constant Node_Id    := Type_Definition (Decl);
      Type_Id   : constant Entity_Id  := Defining_Identifier (Decl);
      Spec_Node : constant Node_Id    :=
                    Copy_Subprogram_Spec (Specification (New_Decl));
      --  This copy creates new identifiers for formals and subprogram.

      Act       : Node_Id;
      Body_Node : Node_Id;
      Call_Stmt : Node_Id;
      Ptr       : Entity_Id;

   begin
      --  Create List of actuals for indirect call. The last parameter of the
      --  subprogram declaration is the access value for the indirect call.

      Act := First (Parameter_Specifications (Spec_Node));

      while Present (Act) loop
         exit when Act = Last (Parameter_Specifications (Spec_Node));
         Append_To (Actuals,
           Make_Identifier (Loc, Chars (Defining_Identifier (Act))));
         Next (Act);
      end loop;

      Ptr :=
        Defining_Identifier
          (Last (Parameter_Specifications (Specification (New_Decl))));

      if Nkind (Type_Def) = N_Access_Procedure_Definition then
         Call_Stmt := Make_Procedure_Call_Statement (Loc,
           Name =>
              Make_Explicit_Dereference
                (Loc, New_Occurrence_Of (Ptr, Loc)),
           Parameter_Associations => Actuals);
      else
         Call_Stmt := Make_Simple_Return_Statement (Loc,
           Expression =>
             Make_Function_Call (Loc,
           Name => Make_Explicit_Dereference
                    (Loc, New_Occurrence_Of (Ptr, Loc)),
           Parameter_Associations => Actuals));
      end if;

      Body_Node := Make_Subprogram_Body (Loc,
        Specification => Spec_Node,
        Declarations  => New_List,
        Handled_Statement_Sequence =>
          Make_Handled_Sequence_Of_Statements (Loc,
            Statements    => New_List (Call_Stmt)));

      --  Place body in list of freeze actions for the type.

      Append_Freeze_Action (Type_Id, Body_Node);
   end Build_Access_Subprogram_Wrapper_Body;

   ---------------------------
   -- Build_Array_Init_Proc --
   ---------------------------

   procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
      Comp_Type        : constant Entity_Id := Component_Type (A_Type);
      Comp_Simple_Init : constant Boolean   :=
        Needs_Simple_Initialization
          (Typ         => Comp_Type,
           Consider_IS =>
             not (Validity_Check_Copies and Is_Bit_Packed_Array (A_Type)));
      --  True if the component needs simple initialization, based on its type,
      --  plus the fact that we do not do simple initialization for components
      --  of bit-packed arrays when validity checks are enabled, because the
      --  initialization with deliberately out-of-range values would raise
      --  Constraint_Error.

      Body_Stmts       : List_Id;
      Has_Default_Init : Boolean;
      Index_List       : List_Id;
      Loc              : Source_Ptr;
      Parameters       : List_Id;
      Proc_Id          : Entity_Id;

      function Init_Component return List_Id;
      --  Create one statement to initialize one array component, designated
      --  by a full set of indexes.

      function Init_One_Dimension (N : Int) return List_Id;
      --  Create loop to initialize one dimension of the array. The single
      --  statement in the loop body initializes the inner dimensions if any,
      --  or else the single component. Note that this procedure is called
      --  recursively, with N being the dimension to be initialized. A call
      --  with N greater than the number of dimensions simply generates the
      --  component initialization, terminating the recursion.

      --------------------
      -- Init_Component --
      --------------------

      function Init_Component return List_Id is
         Comp : Node_Id;

      begin
         Comp :=
           Make_Indexed_Component (Loc,
             Prefix      => Make_Identifier (Loc, Name_uInit),
             Expressions => Index_List);

         if Has_Default_Aspect (A_Type) then
            Set_Assignment_OK (Comp);
            return New_List (
              Make_Assignment_Statement (Loc,
                Name       => Comp,
                Expression =>
                  Convert_To (Comp_Type,
                    Default_Aspect_Component_Value (First_Subtype (A_Type)))));

         elsif Comp_Simple_Init then
            Set_Assignment_OK (Comp);
            return New_List (
              Make_Assignment_Statement (Loc,
                Name       => Comp,
                Expression =>
                  Get_Simple_Init_Val
                    (Typ  => Comp_Type,
                     N    => Nod,
                     Size => Component_Size (A_Type))));

         else
            Clean_Task_Names (Comp_Type, Proc_Id);
            return
              Build_Initialization_Call
                (Loc          => Loc,
                 Id_Ref       => Comp,
                 Typ          => Comp_Type,
                 In_Init_Proc => True,
                 Enclos_Type  => A_Type);
         end if;
      end Init_Component;

      ------------------------
      -- Init_One_Dimension --
      ------------------------

      function Init_One_Dimension (N : Int) return List_Id is
         Index       : Entity_Id;
         DIC_Call    : Node_Id;
         Result_List : List_Id;

         function Possible_DIC_Call return Node_Id;
         --  If the component type has Default_Initial_Conditions and a DIC
         --  procedure that is not an empty body, then builds a call to the
         --  DIC procedure and returns it.

         -----------------------
         -- Possible_DIC_Call --
         -----------------------

         function Possible_DIC_Call return Node_Id is
         begin
            --  When the component's type has a Default_Initial_Condition, then
            --  create a call for the DIC check.

            if Has_DIC (Comp_Type)
              --  In GNATprove mode, the component DICs are checked by other
              --  means. They should not be added to the record type DIC
              --  procedure, so that the procedure can be used to check the
              --  record type invariants or DICs if any.

              and then not GNATprove_Mode

              --  DIC checks for components of controlled types are done later
              --  (see Exp_Ch7.Make_Deep_Array_Body).

              and then not Is_Controlled (Comp_Type)

              and then Present (DIC_Procedure (Comp_Type))

              and then not Has_Null_Body (DIC_Procedure (Comp_Type))
            then
               return
                 Build_DIC_Call (Loc,
                   Make_Indexed_Component (Loc,
                     Prefix      => Make_Identifier (Loc, Name_uInit),
                     Expressions => Index_List),
                   Comp_Type);
            else
               return Empty;
            end if;
         end Possible_DIC_Call;

      --  Start of processing for Init_One_Dimension

      begin
         --  If the component does not need initializing, then there is nothing
         --  to do here, so we return a null body. This occurs when generating
         --  the dummy Init_Proc needed for Initialize_Scalars processing.
         --  An exception is if component type has a Default_Initial_Condition,
         --  in which case we generate a call to the type's DIC procedure.

         if not Has_Non_Null_Base_Init_Proc (Comp_Type)
           and then not Comp_Simple_Init
           and then not Has_Task (Comp_Type)
           and then not Has_Default_Aspect (A_Type)
           and then (not Has_DIC (Comp_Type)
                      or else N > Number_Dimensions (A_Type))
         then
            DIC_Call := Possible_DIC_Call;

            if Present (DIC_Call) then
               return New_List (DIC_Call);
            else
               return New_List (Make_Null_Statement (Loc));
            end if;

         --  If all dimensions dealt with, we simply initialize the component
         --  and append a call to component type's DIC procedure when needed.

         elsif N > Number_Dimensions (A_Type) then
            DIC_Call := Possible_DIC_Call;

            if Present (DIC_Call) then
               Result_List := Init_Component;
               Append (DIC_Call, Result_List);
               return Result_List;

            else
               return Init_Component;
            end if;

         --  Here we generate the required loop

         else
            Index :=
              Make_Defining_Identifier (Loc, New_External_Name ('J', N));

            Append (New_Occurrence_Of (Index, Loc), Index_List);

            return New_List (
              Make_Implicit_Loop_Statement (Nod,
                Identifier       => Empty,
                Iteration_Scheme =>
                  Make_Iteration_Scheme (Loc,
                    Loop_Parameter_Specification =>
                      Make_Loop_Parameter_Specification (Loc,
                        Defining_Identifier         => Index,
                        Discrete_Subtype_Definition =>
                          Make_Attribute_Reference (Loc,
                            Prefix          =>
                              Make_Identifier (Loc, Name_uInit),
                            Attribute_Name  => Name_Range,
                            Expressions     => New_List (
                              Make_Integer_Literal (Loc, N))))),
                Statements       => Init_One_Dimension (N + 1)));
         end if;
      end Init_One_Dimension;

   --  Start of processing for Build_Array_Init_Proc

   begin
      --  The init proc is created when analyzing the freeze node for the type,
      --  but it properly belongs with the array type declaration. However, if
      --  the freeze node is for a subtype of a type declared in another unit
      --  it seems preferable to use the freeze node as the source location of
      --  the init proc. In any case this is preferable for gcov usage, and
      --  the Sloc is not otherwise used by the compiler.

      if In_Open_Scopes (Scope (A_Type)) then
         Loc := Sloc (A_Type);
      else
         Loc := Sloc (Nod);
      end if;

      --  Nothing to generate in the following cases:

      --    1. Initialization is suppressed for the type
      --    2. An initialization already exists for the base type

      if Initialization_Suppressed (A_Type)
        or else Present (Base_Init_Proc (A_Type))
      then
         return;
      end if;

      Index_List := New_List;

      --  We need an initialization procedure if any of the following is true:

      --    1. The component type has an initialization procedure
      --    2. The component type needs simple initialization
      --    3. Tasks are present
      --    4. The type is marked as a public entity
      --    5. The array type has a Default_Component_Value aspect
      --    6. The array component type has a Default_Initialization_Condition

      --  The reason for the public entity test is to deal properly with the
      --  Initialize_Scalars pragma. This pragma can be set in the client and
      --  not in the declaring package, this means the client will make a call
      --  to the initialization procedure (because one of conditions 1-3 must
      --  apply in this case), and we must generate a procedure (even if it is
      --  null) to satisfy the call in this case.

      --  Exception: do not build an array init_proc for a type whose root
      --  type is Standard.String or Standard.Wide_[Wide_]String, since there
      --  is no place to put the code, and in any case we handle initialization
      --  of such types (in the Initialize_Scalars case, that's the only time
      --  the issue arises) in a special manner anyway which does not need an
      --  init_proc.

      Has_Default_Init := Has_Non_Null_Base_Init_Proc (Comp_Type)
                            or else Comp_Simple_Init
                            or else Has_Task (Comp_Type)
                            or else Has_Default_Aspect (A_Type)
                            or else Has_DIC (Comp_Type);

      if Has_Default_Init
        or else (not Restriction_Active (No_Initialize_Scalars)
                  and then Is_Public (A_Type)
                  and then not Is_Standard_String_Type (A_Type))
      then
         Proc_Id :=
           Make_Defining_Identifier (Loc,
             Chars => Make_Init_Proc_Name (A_Type));

         --  If No_Default_Initialization restriction is active, then we don't
         --  want to build an init_proc, but we need to mark that an init_proc
         --  would be needed if this restriction was not active (so that we can
         --  detect attempts to call it), so set a dummy init_proc in place.
         --  This is only done though when actual default initialization is
         --  needed (and not done when only Is_Public is True), since otherwise
         --  objects such as arrays of scalars could be wrongly flagged as
         --  violating the restriction.

         if Restriction_Active (No_Default_Initialization) then
            if Has_Default_Init then
               Set_Init_Proc (A_Type, Proc_Id);
            end if;

            return;
         end if;

         Body_Stmts := Init_One_Dimension (1);
         Parameters := Init_Formals (A_Type, Proc_Id);

         Discard_Node (
           Make_Subprogram_Body (Loc,
             Specification =>
               Make_Procedure_Specification (Loc,
                 Defining_Unit_Name => Proc_Id,
                 Parameter_Specifications => Parameters),
             Declarations => New_List,
             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => Body_Stmts)));

         Mutate_Ekind       (Proc_Id, E_Procedure);
         Set_Is_Public      (Proc_Id, Is_Public (A_Type));
         Set_Is_Internal    (Proc_Id);
         Set_Has_Completion (Proc_Id);

         if not Debug_Generated_Code then
            Set_Debug_Info_Off (Proc_Id);
         end if;

         --  Set Inlined on Init_Proc if it is set on the Init_Proc of the
         --  component type itself (see also Build_Record_Init_Proc).

         Set_Is_Inlined (Proc_Id, Inline_Init_Proc (Comp_Type));

         --  Associate Init_Proc with type, and determine if the procedure
         --  is null (happens because of the Initialize_Scalars pragma case,
         --  where we have to generate a null procedure in case it is called
         --  by a client with Initialize_Scalars set). Such procedures have
         --  to be generated, but do not have to be called, so we mark them
         --  as null to suppress the call. Kill also warnings for the _Init
         --  out parameter, which is left entirely uninitialized.

         Set_Init_Proc (A_Type, Proc_Id);

         if Is_Null_Statement_List (Body_Stmts) then
            Set_Is_Null_Init_Proc (Proc_Id);
            Set_Warnings_Off (Defining_Identifier (First (Parameters)));

         else
            --  Try to build a static aggregate to statically initialize
            --  objects of the type. This can only be done for constrained
            --  one-dimensional arrays with static bounds.

            Set_Static_Initialization
              (Proc_Id,
               Build_Equivalent_Array_Aggregate (First_Subtype (A_Type)));
         end if;
      end if;
   end Build_Array_Init_Proc;

   --------------------------------
   -- Build_Discr_Checking_Funcs --
   --------------------------------

   procedure Build_Discr_Checking_Funcs (N : Node_Id) is
      Rec_Id            : Entity_Id;
      Loc               : Source_Ptr;
      Enclosing_Func_Id : Entity_Id;
      Sequence          : Nat := 1;
      Type_Def          : Node_Id;
      V                 : Node_Id;

      function Build_Case_Statement
        (Case_Id : Entity_Id;
         Variant : Node_Id) return Node_Id;
      --  Build a case statement containing only two alternatives. The first
      --  alternative corresponds to the discrete choices given on the variant
      --  that contains the components that we are generating the checks
      --  for. If the discriminant is one of these return False. The second
      --  alternative is an OTHERS choice that returns True indicating the
      --  discriminant did not match.

      function Build_Dcheck_Function
        (Case_Id : Entity_Id;
         Variant : Node_Id) return Entity_Id;
      --  Build the discriminant checking function for a given variant

      procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
      --  Builds the discriminant checking function for each variant of the
      --  given variant part of the record type.

      --------------------------
      -- Build_Case_Statement --
      --------------------------

      function Build_Case_Statement
        (Case_Id : Entity_Id;
         Variant : Node_Id) return Node_Id
      is
         Alt_List       : constant List_Id := New_List;
         Actuals_List   : List_Id;
         Case_Node      : Node_Id;
         Case_Alt_Node  : Node_Id;
         Choice         : Node_Id;
         Choice_List    : List_Id;
         D              : Entity_Id;
         Return_Node    : Node_Id;

      begin
         Case_Node := New_Node (N_Case_Statement, Loc);
         Set_End_Span (Case_Node, Uint_0);

         --  Replace the discriminant which controls the variant with the name
         --  of the formal of the checking function.

         Set_Expression (Case_Node, Make_Identifier (Loc, Chars (Case_Id)));

         Choice := First (Discrete_Choices (Variant));

         if Nkind (Choice) = N_Others_Choice then
            Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
         else
            Choice_List := New_Copy_List (Discrete_Choices (Variant));
         end if;

         if not Is_Empty_List (Choice_List) then
            Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
            Set_Discrete_Choices (Case_Alt_Node, Choice_List);

            --  In case this is a nested variant, we need to return the result
            --  of the discriminant checking function for the immediately
            --  enclosing variant.

            if Present (Enclosing_Func_Id) then
               Actuals_List := New_List;

               D := First_Discriminant (Rec_Id);
               while Present (D) loop
                  Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
                  Next_Discriminant (D);
               end loop;

               Return_Node :=
                 Make_Simple_Return_Statement (Loc,
                   Expression =>
                     Make_Function_Call (Loc,
                       Name =>
                         New_Occurrence_Of (Enclosing_Func_Id,  Loc),
                       Parameter_Associations =>
                         Actuals_List));

            else
               Return_Node :=
                 Make_Simple_Return_Statement (Loc,
                   Expression =>
                     New_Occurrence_Of (Standard_False, Loc));
            end if;

            Set_Statements (Case_Alt_Node, New_List (Return_Node));
            Append (Case_Alt_Node, Alt_List);
         end if;

         Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
         Choice_List := New_List (New_Node (N_Others_Choice, Loc));
         Set_Discrete_Choices (Case_Alt_Node, Choice_List);

         Return_Node :=
           Make_Simple_Return_Statement (Loc,
             Expression =>
               New_Occurrence_Of (Standard_True, Loc));

         Set_Statements (Case_Alt_Node, New_List (Return_Node));
         Append (Case_Alt_Node, Alt_List);

         Set_Alternatives (Case_Node, Alt_List);
         return Case_Node;
      end Build_Case_Statement;

      ---------------------------
      -- Build_Dcheck_Function --
      ---------------------------

      function Build_Dcheck_Function
        (Case_Id : Entity_Id;
         Variant : Node_Id) return Entity_Id
      is
         Body_Node      : Node_Id;
         Func_Id        : Entity_Id;
         Parameter_List : List_Id;
         Spec_Node      : Node_Id;

      begin
         Body_Node := New_Node (N_Subprogram_Body, Loc);
         Sequence := Sequence + 1;

         Func_Id :=
           Make_Defining_Identifier (Loc,
             Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
         Set_Is_Discriminant_Check_Function (Func_Id);

         Spec_Node := New_Node (N_Function_Specification, Loc);
         Set_Defining_Unit_Name (Spec_Node, Func_Id);

         Parameter_List := Build_Discriminant_Formals (Rec_Id, False);

         Set_Parameter_Specifications (Spec_Node, Parameter_List);
         Set_Result_Definition (Spec_Node,
                                New_Occurrence_Of (Standard_Boolean,  Loc));
         Set_Specification (Body_Node, Spec_Node);
         Set_Declarations (Body_Node, New_List);

         Set_Handled_Statement_Sequence (Body_Node,
           Make_Handled_Sequence_Of_Statements (Loc,
             Statements => New_List (
               Build_Case_Statement (Case_Id, Variant))));

         Mutate_Ekind    (Func_Id, E_Function);
         Set_Mechanism   (Func_Id, Default_Mechanism);
         Set_Is_Inlined  (Func_Id, True);
         Set_Is_Pure     (Func_Id, True);
         Set_Is_Public   (Func_Id, Is_Public (Rec_Id));
         Set_Is_Internal (Func_Id, True);

         if not Debug_Generated_Code then
            Set_Debug_Info_Off (Func_Id);
         end if;

         Analyze (Body_Node);

         Append_Freeze_Action (Rec_Id, Body_Node);
         Set_Dcheck_Function (Variant, Func_Id);
         return Func_Id;
      end Build_Dcheck_Function;

      ----------------------------
      -- Build_Dcheck_Functions --
      ----------------------------

      procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
         Component_List_Node : Node_Id;
         Decl                : Entity_Id;
         Discr_Name          : Entity_Id;
         Func_Id             : Entity_Id;
         Variant             : Node_Id;
         Saved_Enclosing_Func_Id : Entity_Id;

      begin
         --  Build the discriminant-checking function for each variant, and
         --  label all components of that variant with the function's name.
         --  We only Generate a discriminant-checking function when the
         --  variant is not empty, to prevent the creation of dead code.

         Discr_Name := Entity (Name (Variant_Part_Node));
         Variant := First_Non_Pragma (Variants (Variant_Part_Node));

         while Present (Variant) loop
            Component_List_Node := Component_List (Variant);

            if not Null_Present (Component_List_Node) then
               Func_Id := Build_Dcheck_Function (Discr_Name, Variant);

               Decl :=
                 First_Non_Pragma (Component_Items (Component_List_Node));
               while Present (Decl) loop
                  Set_Discriminant_Checking_Func
                    (Defining_Identifier (Decl), Func_Id);
                  Next_Non_Pragma (Decl);
               end loop;

               if Present (Variant_Part (Component_List_Node)) then
                  Saved_Enclosing_Func_Id := Enclosing_Func_Id;
                  Enclosing_Func_Id := Func_Id;
                  Build_Dcheck_Functions (Variant_Part (Component_List_Node));
                  Enclosing_Func_Id := Saved_Enclosing_Func_Id;
               end if;
            end if;

            Next_Non_Pragma (Variant);
         end loop;
      end Build_Dcheck_Functions;

   --  Start of processing for Build_Discr_Checking_Funcs

   begin
      --  Only build if not done already

      if not Discr_Check_Funcs_Built (N) then
         Type_Def := Type_Definition (N);

         if Nkind (Type_Def) = N_Record_Definition then
            if No (Component_List (Type_Def)) then   -- null record.
               return;
            else
               V := Variant_Part (Component_List (Type_Def));
            end if;

         else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
            if No (Component_List (Record_Extension_Part (Type_Def))) then
               return;
            else
               V := Variant_Part
                      (Component_List (Record_Extension_Part (Type_Def)));
            end if;
         end if;

         Rec_Id := Defining_Identifier (N);

         if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
            Loc := Sloc (N);
            Enclosing_Func_Id := Empty;
            Build_Dcheck_Functions (V);
         end if;

         Set_Discr_Check_Funcs_Built (N);
      end if;
   end Build_Discr_Checking_Funcs;

   ----------------------------------------
   -- Build_Or_Copy_Discr_Checking_Funcs --
   ----------------------------------------

   procedure Build_Or_Copy_Discr_Checking_Funcs (N : Node_Id) is
      Typ : constant Entity_Id := Defining_Identifier (N);
   begin
      if Is_Unchecked_Union (Typ) or else not Has_Discriminants (Typ) then
         null;
      elsif not Is_Derived_Type (Typ)
        or else Has_New_Non_Standard_Rep (Typ)
        or else Is_Tagged_Type (Typ)
      then
         Build_Discr_Checking_Funcs (N);
      else
         Copy_Discr_Checking_Funcs (N);
      end if;
   end Build_Or_Copy_Discr_Checking_Funcs;

   --------------------------------
   -- Build_Discriminant_Formals --
   --------------------------------

   function Build_Discriminant_Formals
     (Rec_Id : Entity_Id;
      Use_Dl : Boolean) return List_Id
   is
      Loc             : Source_Ptr       := Sloc (Rec_Id);
      Parameter_List  : constant List_Id := New_List;
      D               : Entity_Id;
      Formal          : Entity_Id;
      Formal_Type     : Entity_Id;
      Param_Spec_Node : Node_Id;

   begin
      if Has_Discriminants (Rec_Id) then
         D := First_Discriminant (Rec_Id);
         while Present (D) loop
            Loc := Sloc (D);

            if Use_Dl then
               Formal := Discriminal (D);
               Formal_Type := Etype (Formal);
            else
               Formal := Make_Defining_Identifier (Loc, Chars (D));
               Formal_Type := Etype (D);
            end if;

            Param_Spec_Node :=
              Make_Parameter_Specification (Loc,
                  Defining_Identifier => Formal,
                Parameter_Type =>
                  New_Occurrence_Of (Formal_Type, Loc));
            Append (Param_Spec_Node, Parameter_List);
            Next_Discriminant (D);
         end loop;
      end if;

      return Parameter_List;
   end Build_Discriminant_Formals;

   --------------------------------------
   -- Build_Equivalent_Array_Aggregate --
   --------------------------------------

   function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id is
      Loc        : constant Source_Ptr := Sloc (T);
      Comp_Type  : constant Entity_Id := Component_Type (T);
      Index_Type : constant Entity_Id := Etype (First_Index (T));
      Proc       : constant Entity_Id := Base_Init_Proc (T);
      Lo, Hi     : Node_Id;
      Aggr       : Node_Id;
      Expr       : Node_Id;

   begin
      if not Is_Constrained (T)
        or else Number_Dimensions (T) > 1
        or else No (Proc)
      then
         Initialization_Warning (T);
         return Empty;
      end if;

      Lo := Type_Low_Bound  (Index_Type);
      Hi := Type_High_Bound (Index_Type);

      if not Compile_Time_Known_Value (Lo)
        or else not Compile_Time_Known_Value (Hi)
      then
         Initialization_Warning (T);
         return Empty;
      end if;

      if Is_Record_Type (Comp_Type)
        and then Present (Base_Init_Proc (Comp_Type))
      then
         Expr := Static_Initialization (Base_Init_Proc (Comp_Type));

         if No (Expr) then
            Initialization_Warning (T);
            return Empty;
         end if;

      else
         Initialization_Warning (T);
         return Empty;
      end if;

      Aggr := Make_Aggregate (Loc, No_List, New_List);
      Set_Etype (Aggr, T);
      Set_Aggregate_Bounds (Aggr,
        Make_Range (Loc,
          Low_Bound  => New_Copy (Lo),
          High_Bound => New_Copy (Hi)));
      Set_Parent (Aggr, Parent (Proc));

      Append_To (Component_Associations (Aggr),
         Make_Component_Association (Loc,
              Choices =>
                 New_List (
                   Make_Range (Loc,
                     Low_Bound  => New_Copy (Lo),
                     High_Bound => New_Copy (Hi))),
              Expression => Expr));

      if Static_Array_Aggregate (Aggr) then
         return Aggr;
      else
         Initialization_Warning (T);
         return Empty;
      end if;
   end Build_Equivalent_Array_Aggregate;

   ---------------------------------------
   -- Build_Equivalent_Record_Aggregate --
   ---------------------------------------

   function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id is
      Agg       : Node_Id;
      Comp      : Entity_Id;
      Comp_Type : Entity_Id;

   begin
      if not Is_Record_Type (T)
        or else Has_Discriminants (T)
        or else Is_Limited_Type (T)
        or else Has_Non_Standard_Rep (T)
      then
         Initialization_Warning (T);
         return Empty;
      end if;

      Comp := First_Component (T);

      --  A null record needs no warning

      if No (Comp) then
         return Empty;
      end if;

      while Present (Comp) loop

         --  Array components are acceptable if initialized by a positional
         --  aggregate with static components.

         if Is_Array_Type (Etype (Comp)) then
            Comp_Type := Component_Type (Etype (Comp));

            if Nkind (Parent (Comp)) /= N_Component_Declaration
              or else No (Expression (Parent (Comp)))
              or else Nkind (Expression (Parent (Comp))) /= N_Aggregate
            then
               Initialization_Warning (T);
               return Empty;

            elsif Is_Scalar_Type (Component_Type (Etype (Comp)))
               and then
                 (not Compile_Time_Known_Value (Type_Low_Bound  (Comp_Type))
                   or else
                  not Compile_Time_Known_Value (Type_High_Bound (Comp_Type)))
            then
               Initialization_Warning (T);
               return Empty;

            elsif
              not Static_Array_Aggregate (Expression (Parent (Comp)))
            then
               Initialization_Warning (T);
               return Empty;

               --  We need to return empty if the type has predicates because
               --  this would otherwise duplicate calls to the predicate
               --  function. If the type hasn't been frozen before being
               --  referenced in the current record, the extraneous call to
               --  the predicate function would be inserted somewhere before
               --  the predicate function is elaborated, which would result in
               --  an invalid tree.

            elsif Has_Predicates (Etype (Comp)) then
               return Empty;
            end if;

         elsif Is_Scalar_Type (Etype (Comp)) then
            Comp_Type := Etype (Comp);

            if Nkind (Parent (Comp)) /= N_Component_Declaration
              or else No (Expression (Parent (Comp)))
              or else not Compile_Time_Known_Value (Expression (Parent (Comp)))
              or else not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
              or else not
                Compile_Time_Known_Value (Type_High_Bound (Comp_Type))
            then
               Initialization_Warning (T);
               return Empty;
            end if;

         --  For now, other types are excluded

         else
            Initialization_Warning (T);
            return Empty;
         end if;

         Next_Component (Comp);
      end loop;

      --  All components have static initialization. Build positional aggregate
      --  from the given expressions or defaults.

      Agg := Make_Aggregate (Sloc (T), New_List, New_List);
      Set_Parent (Agg, Parent (T));

      Comp := First_Component (T);
      while Present (Comp) loop
         Append
           (New_Copy_Tree (Expression (Parent (Comp))), Expressions (Agg));
         Next_Component (Comp);
      end loop;

      Analyze_And_Resolve (Agg, T);
      return Agg;
   end Build_Equivalent_Record_Aggregate;

   ----------------------------
   -- Init_Proc_Level_Formal --
   ----------------------------

   function Init_Proc_Level_Formal (Proc : Entity_Id) return Entity_Id is
      Form : Entity_Id;
   begin
      --  Move through the formals of the initialization procedure Proc to find
      --  the extra accessibility level parameter associated with the object
      --  being initialized.

      Form := First_Formal (Proc);
      while Present (Form) loop
         if Chars (Form) = Name_uInit_Level then
            return Form;
         end if;

         Next_Formal (Form);
      end loop;

      --  No formal was found, return Empty

      return Empty;
   end Init_Proc_Level_Formal;

   -------------------------------
   -- Build_Initialization_Call --
   -------------------------------

   --  References to a discriminant inside the record type declaration can
   --  appear either in the subtype_indication to constrain a record or an
   --  array, or as part of a larger expression given for the initial value
   --  of a component. In both of these cases N appears in the record
   --  initialization procedure and needs to be replaced by the formal
   --  parameter of the initialization procedure which corresponds to that
   --  discriminant.

   --  In the example below, references to discriminants D1 and D2 in proc_1
   --  are replaced by references to formals with the same name
   --  (discriminals)

   --  A similar replacement is done for calls to any record initialization
   --  procedure for any components that are themselves of a record type.

   --  type R (D1, D2 : Integer) is record
   --     X : Integer := F * D1;
   --     Y : Integer := F * D2;
   --  end record;

   --  procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
   --  begin
   --     Out_2.D1 := D1;
   --     Out_2.D2 := D2;
   --     Out_2.X := F * D1;
   --     Out_2.Y := F * D2;
   --  end;

   function Build_Initialization_Call
     (Loc                 : Source_Ptr;
      Id_Ref              : Node_Id;
      Typ                 : Entity_Id;
      In_Init_Proc        : Boolean := False;
      Enclos_Type         : Entity_Id := Empty;
      Discr_Map           : Elist_Id := New_Elmt_List;
      With_Default_Init   : Boolean := False;
      Constructor_Ref     : Node_Id := Empty;
      Init_Control_Actual : Entity_Id := Empty) return List_Id
   is
      Res : constant List_Id := New_List;

      Full_Type : Entity_Id;

      procedure Check_Predicated_Discriminant
        (Val   : Node_Id;
         Discr : Entity_Id);
      --  Discriminants whose subtypes have predicates are checked in two
      --  cases:
      --    a) When an object is default-initialized and assertions are enabled
      --       we check that the value of the discriminant obeys the predicate.

      --    b) In all cases, if the discriminant controls a variant and the
      --       variant has no others_choice, Constraint_Error must be raised if
      --       the predicate is violated, because there is no variant covered
      --       by the illegal discriminant value.

      -----------------------------------
      -- Check_Predicated_Discriminant --
      -----------------------------------

      procedure Check_Predicated_Discriminant
        (Val   : Node_Id;
         Discr : Entity_Id)
      is
         Typ : constant Entity_Id := Etype (Discr);

         procedure Check_Missing_Others (V : Node_Id);
         --  Check that a given variant and its nested variants have an others
         --  choice, and generate a constraint error raise when it does not.

         --------------------------
         -- Check_Missing_Others --
         --------------------------

         procedure Check_Missing_Others (V : Node_Id) is
            Alt      : Node_Id;
            Choice   : Node_Id;
            Last_Var : Node_Id;

         begin
            Last_Var := Last_Non_Pragma (Variants (V));
            Choice   := First (Discrete_Choices (Last_Var));

            --  An others_choice is added during expansion for gcc use, but
            --  does not cover the illegality.

            if Entity (Name (V)) = Discr then
               if Present (Choice)
                 and then (Nkind (Choice) /= N_Others_Choice
                            or else not Comes_From_Source (Choice))
               then
                  Check_Expression_Against_Static_Predicate (Val, Typ);

                  if not Is_Static_Expression (Val) then
                     Prepend_To (Res,
                        Make_Raise_Constraint_Error (Loc,
                          Condition =>
                            Make_Op_Not (Loc,
                              Right_Opnd => Make_Predicate_Call (Typ, Val)),
                          Reason    => CE_Invalid_Data));
                  end if;
               end if;
            end if;

            --  Check whether some nested variant is ruled by the predicated
            --  discriminant.

            Alt := First (Variants (V));
            while Present (Alt) loop
               if Nkind (Alt) = N_Variant
                 and then Present (Variant_Part (Component_List (Alt)))
               then
                  Check_Missing_Others
                    (Variant_Part (Component_List (Alt)));
               end if;

               Next (Alt);
            end loop;
         end Check_Missing_Others;

         --  Local variables

         Def : Node_Id;

      --  Start of processing for Check_Predicated_Discriminant

      begin
         if Ekind (Base_Type (Full_Type)) = E_Record_Type then
            Def := Type_Definition (Parent (Base_Type (Full_Type)));
         else
            return;
         end if;

         if Policy_In_Effect (Name_Assert) = Name_Check
           and then not Predicates_Ignored (Etype (Discr))
         then
            Prepend_To (Res, Make_Predicate_Check (Typ, Val));
         end if;

         --  If discriminant controls a variant, verify that predicate is
         --  obeyed or else an Others_Choice is present.

         if Nkind (Def) = N_Record_Definition
           and then Present (Variant_Part (Component_List (Def)))
           and then Policy_In_Effect (Name_Assert) = Name_Ignore
         then
            Check_Missing_Others (Variant_Part (Component_List (Def)));
         end if;
      end Check_Predicated_Discriminant;

      --  Local variables

      Arg            : Node_Id;
      Args           : List_Id;
      Decls          : List_Id;
      Decl           : Node_Id;
      Discr          : Entity_Id;
      First_Arg      : Node_Id;
      Full_Init_Type : Entity_Id;
      Init_Call      : Node_Id;
      Init_Type      : Entity_Id;
      Proc           : Entity_Id;

   --  Start of processing for Build_Initialization_Call

   begin
      pragma Assert (Constructor_Ref = Empty
        or else Is_CPP_Constructor_Call (Constructor_Ref));

      if No (Constructor_Ref) then
         Proc := Base_Init_Proc (Typ);
      else
         Proc := Base_Init_Proc (Typ, Entity (Name (Constructor_Ref)));
      end if;

      pragma Assert (Present (Proc));
      Init_Type      := Etype (First_Formal (Proc));
      Full_Init_Type := Underlying_Type (Init_Type);

      --  Nothing to do if the Init_Proc is null, unless Initialize_Scalars
      --  is active (in which case we make the call anyway, since in the
      --  actual compiled client it may be non null).

      if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
         return Empty_List;

      --  Nothing to do for an array of controlled components that have only
      --  the inherited Initialize primitive. This is a useful optimization
      --  for CodePeer.

      elsif Is_Trivial_Subprogram (Proc)
        and then Is_Array_Type (Full_Init_Type)
      then
         return New_List (Make_Null_Statement (Loc));
      end if;

      --  Use the [underlying] full view when dealing with a private type. This
      --  may require several steps depending on derivations.

      Full_Type := Typ;
      loop
         if Is_Private_Type (Full_Type) then
            if Present (Full_View (Full_Type)) then
               Full_Type := Full_View (Full_Type);

            elsif Present (Underlying_Full_View (Full_Type)) then
               Full_Type := Underlying_Full_View (Full_Type);

            --  When a private type acts as a generic actual and lacks a full
            --  view, use the base type.

            elsif Is_Generic_Actual_Type (Full_Type) then
               Full_Type := Base_Type (Full_Type);

            elsif Ekind (Full_Type) = E_Private_Subtype
              and then (not Has_Discriminants (Full_Type)
                         or else No (Discriminant_Constraint (Full_Type)))
            then
               Full_Type := Etype (Full_Type);

            --  The loop has recovered the [underlying] full view, stop the
            --  traversal.

            else
               exit;
            end if;

         --  The type is not private, nothing to do

         else
            exit;
         end if;
      end loop;

      --  If Typ is derived, the procedure is the initialization procedure for
      --  the root type. Wrap the argument in an conversion to make it type
      --  honest. Actually it isn't quite type honest, because there can be
      --  conflicts of views in the private type case. That is why we set
      --  Conversion_OK in the conversion node.

      if (Is_Record_Type (Typ)
           or else Is_Array_Type (Typ)
           or else Is_Private_Type (Typ))
        and then Init_Type /= Base_Type (Typ)
      then
         First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
         Set_Etype (First_Arg, Init_Type);

      else
         First_Arg := Id_Ref;
      end if;

      Args := New_List (Convert_Concurrent (First_Arg, Typ));

      --  In the tasks case, add _Master as the value of the _Master parameter
      --  and _Chain as the value of the _Chain parameter. At the outer level,
      --  these will be variables holding the corresponding values obtained
      --  from GNARL. At inner levels, they will be the parameters passed down
      --  through the outer routines.

      if Has_Task (Full_Type) then
         if Restriction_Active (No_Task_Hierarchy) then
            Append_To (Args, Make_Integer_Literal (Loc, Library_Task_Level));
         else
            Append_To (Args, Make_Identifier (Loc, Name_uMaster));
         end if;

         --  Add _Chain (not done for sequential elaboration policy, see
         --  comment for Create_Restricted_Task_Sequential in s-tarest.ads).

         if Partition_Elaboration_Policy /= 'S' then
            Append_To (Args, Make_Identifier (Loc, Name_uChain));
         end if;

         --  Ada 2005 (AI-287): In case of default initialized components
         --  with tasks, we generate a null string actual parameter.
         --  This is just a workaround that must be improved later???

         if With_Default_Init then
            Append_To (Args,
              Make_String_Literal (Loc,
                Strval => ""));

         else
            Decls :=
              Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type, In_Init_Proc);
            Decl  := Last (Decls);

            Append_To (Args,
              New_Occurrence_Of (Defining_Identifier (Decl), Loc));
            Append_List (Decls, Res);
         end if;

      else
         Decls := No_List;
         Decl  := Empty;
      end if;

      --  Handle the optionally generated formal *_skip_null_excluding_checks

      --  Look at the associated node for the object we are referencing and
      --  verify that we are expanding a call to an Init_Proc for an internally
      --  generated object declaration before passing True and skipping the
      --  relevant checks.

      if Needs_Conditional_Null_Excluding_Check (Full_Init_Type)
        and then Nkind (Id_Ref) in N_Has_Entity
        and then (Comes_From_Source (Id_Ref)
                   or else (Present (Associated_Node (Id_Ref))
                             and then Comes_From_Source
                                        (Associated_Node (Id_Ref))))
      then
         Append_To (Args, New_Occurrence_Of (Standard_True, Loc));
      end if;

      --  Add discriminant values if discriminants are present

      if Has_Discriminants (Full_Init_Type) then
         Discr := First_Discriminant (Full_Init_Type);
         while Present (Discr) loop

            --  If this is a discriminated concurrent type, the init_proc
            --  for the corresponding record is being called. Use that type
            --  directly to find the discriminant value, to handle properly
            --  intervening renamed discriminants.

            declare
               T : Entity_Id := Full_Type;

            begin
               if Is_Protected_Type (T) then
                  T := Corresponding_Record_Type (T);
               end if;

               Arg :=
                 Get_Discriminant_Value (
                   Discr,
                   T,
                   Discriminant_Constraint (Full_Type));
            end;

            --  If the target has access discriminants, and is constrained by
            --  an access to the enclosing construct, i.e. a current instance,
            --  replace the reference to the type by a reference to the object.

            if Nkind (Arg) = N_Attribute_Reference
              and then Is_Access_Type (Etype (Arg))
              and then Is_Entity_Name (Prefix (Arg))
              and then Is_Type (Entity (Prefix (Arg)))
            then
               Arg :=
                 Make_Attribute_Reference (Loc,
                   Prefix         => New_Copy (Prefix (Id_Ref)),
                   Attribute_Name => Name_Unrestricted_Access);

            elsif In_Init_Proc then

               --  Replace any possible references to the discriminant in the
               --  call to the record initialization procedure with references
               --  to the appropriate formal parameter.

               if Nkind (Arg) = N_Identifier
                 and then Ekind (Entity (Arg)) = E_Discriminant
               then
                  Arg := New_Occurrence_Of (Discriminal (Entity (Arg)), Loc);

               --  Otherwise make a copy of the default expression. Note that
               --  we use the current Sloc for this, because we do not want the
               --  call to appear to be at the declaration point. Within the
               --  expression, replace discriminants with their discriminals.

               else
                  Arg :=
                    New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
               end if;

            else
               if Is_Constrained (Full_Type) then
                  Arg := Duplicate_Subexpr_No_Checks (Arg);
               else
                  --  The constraints come from the discriminant default exps,
                  --  they must be reevaluated, so we use New_Copy_Tree but we
                  --  ensure the proper Sloc (for any embedded calls).
                  --  In addition, if a predicate check is needed on the value
                  --  of the discriminant, insert it ahead of the call.

                  Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
               end if;

               if Has_Predicates (Etype (Discr)) then
                  Check_Predicated_Discriminant (Arg, Discr);
               end if;
            end if;

            --  Ada 2005 (AI-287): In case of default initialized components,
            --  if the component is constrained with a discriminant of the
            --  enclosing type, we need to generate the corresponding selected
            --  component node to access the discriminant value. In other cases
            --  this is not required, either  because we are inside the init
            --  proc and we use the corresponding formal, or else because the
            --  component is constrained by an expression.

            if With_Default_Init
              and then Nkind (Id_Ref) = N_Selected_Component
              and then Nkind (Arg) = N_Identifier
              and then Ekind (Entity (Arg)) = E_Discriminant
            then
               Append_To (Args,
                 Make_Selected_Component (Loc,
                   Prefix        => New_Copy_Tree (Prefix (Id_Ref)),
                   Selector_Name => Arg));
            else
               Append_To (Args, Arg);
            end if;

            Next_Discriminant (Discr);
         end loop;
      end if;

      --  If this is a call to initialize the parent component of a derived
      --  tagged type, indicate that the tag should not be set in the parent.
      --  This is done via the actual parameter value for the Init_Control
      --  formal parameter, which is also used to deal with late initialization
      --  requirements.
      --
      --  We pass in Full_Init_Except_Tag unless the caller tells us to do
      --  otherwise (by passing in a nonempty Init_Control_Actual parameter).

      if Is_Tagged_Type (Full_Init_Type)
        and then not Is_CPP_Class (Full_Init_Type)
        and then Nkind (Id_Ref) = N_Selected_Component
        and then Chars (Selector_Name (Id_Ref)) = Name_uParent
      then
         declare
            use Initialization_Control;
         begin
            Append_To (Args,
              (if Present (Init_Control_Actual)
               then Init_Control_Actual
               else Make_Mode_Literal (Loc, Full_Init_Except_Tag)));
         end;
      elsif Present (Constructor_Ref) then
         Append_List_To (Args,
           New_Copy_List (Parameter_Associations (Constructor_Ref)));
      end if;

      --  Pass the extra accessibility level parameter associated with the
      --  level of the object being initialized when required.

      if Is_Entity_Name (Id_Ref)
        and then Present (Init_Proc_Level_Formal (Proc))
      then
         Append_To (Args,
           Make_Parameter_Association (Loc,
             Selector_Name             =>
               Make_Identifier (Loc, Name_uInit_Level),
             Explicit_Actual_Parameter =>
               Accessibility_Level (Id_Ref, Dynamic_Level)));
      end if;

      Append_To (Res,
        Make_Procedure_Call_Statement (Loc,
          Name                   => New_Occurrence_Of (Proc, Loc),
          Parameter_Associations => Args));

      if Needs_Finalization (Typ)
        and then Nkind (Id_Ref) = N_Selected_Component
      then
         if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
            Init_Call :=
              Make_Init_Call
                (Obj_Ref => New_Copy_Tree (First_Arg),
                 Typ     => Typ);

            --  Guard against a missing [Deep_]Initialize when the type was not
            --  properly frozen.

            if Present (Init_Call) then
               Append_To (Res, Init_Call);
            end if;
         end if;
      end if;

      return Res;

   exception
      when RE_Not_Available =>
         return Empty_List;
   end Build_Initialization_Call;

   ----------------------------
   -- Build_Record_Init_Proc --
   ----------------------------

   procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id) is
      Decls     : constant List_Id  := New_List;
      Discr_Map : constant Elist_Id := New_Elmt_List;
      Loc       : constant Source_Ptr := Sloc (Rec_Ent);
      Counter   : Nat := 0;
      Proc_Id   : Entity_Id;
      Rec_Type  : Entity_Id;

      Init_Control_Formal : Entity_Id := Empty; -- set in Build_Init_Statements
      Has_Late_Init_Comp  : Boolean := False;   -- set in Build_Init_Statements

      function Build_Assignment
        (Id      : Entity_Id;
         Default : Node_Id) return List_Id;
      --  Build an assignment statement that assigns the default expression to
      --  its corresponding record component if defined. The left-hand side of
      --  the assignment is marked Assignment_OK so that initialization of
      --  limited private records works correctly. This routine may also build
      --  an adjustment call if the component is controlled.

      procedure Build_Discriminant_Assignments (Statement_List : List_Id);
      --  If the record has discriminants, add assignment statements to
      --  Statement_List to initialize the discriminant values from the
      --  arguments of the initialization procedure.

      function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
      --  Build a list representing a sequence of statements which initialize
      --  components of the given component list. This may involve building
      --  case statements for the variant parts. Append any locally declared
      --  objects on list Decls.

      function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
      --  Given an untagged type-derivation that declares discriminants, e.g.
      --
      --     type R (R1, R2 : Integer) is record ... end record;
      --     type D (D1 : Integer) is new R (1, D1);
      --
      --  we make the _init_proc of D be
      --
      --       procedure _init_proc (X : D; D1 : Integer) is
      --       begin
      --          _init_proc (R (X), 1, D1);
      --       end _init_proc;
      --
      --  This function builds the call statement in this _init_proc.

      procedure Build_CPP_Init_Procedure;
      --  Build the tree corresponding to the procedure specification and body
      --  of the IC procedure that initializes the C++ part of the dispatch
      --  table of an Ada tagged type that is a derivation of a CPP type.
      --  Install it as the CPP_Init TSS.

      procedure Build_Init_Procedure;
      --  Build the tree corresponding to the procedure specification and body
      --  of the initialization procedure and install it as the _init TSS.

      procedure Build_Offset_To_Top_Functions;
      --  Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
      --  and body of Offset_To_Top, a function used in conjuction with types
      --  having secondary dispatch tables.

      procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
      --  Add range checks to components of discriminated records. S is a
      --  subtype indication of a record component. Check_List is a list
      --  to which the check actions are appended.

      function Component_Needs_Simple_Initialization
        (T : Entity_Id) return Boolean;
      --  Determine if a component needs simple initialization, given its type
      --  T. This routine is the same as Needs_Simple_Initialization except for
      --  components of type Tag and Interface_Tag. These two access types do
      --  not require initialization since they are explicitly initialized by
      --  other means.

      function Parent_Subtype_Renaming_Discrims return Boolean;
      --  Returns True for base types N that rename discriminants, else False

      function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
      --  Determine whether a record initialization procedure needs to be
      --  generated for the given record type.

      ----------------------
      -- Build_Assignment --
      ----------------------

      function Build_Assignment
        (Id      : Entity_Id;
         Default : Node_Id) return List_Id
      is
         Default_Loc : constant Source_Ptr := Sloc (Default);
         Typ         : constant Entity_Id  := Underlying_Type (Etype (Id));

         Adj_Call : Node_Id;
         Exp      : Node_Id;
         Exp_Q    : Node_Id;
         Lhs      : Node_Id;
         Res      : List_Id;

      begin
         Lhs :=
           Make_Selected_Component (Default_Loc,
             Prefix        => Make_Identifier (Loc, Name_uInit),
             Selector_Name => New_Occurrence_Of (Id, Default_Loc));
         Set_Assignment_OK (Lhs);

         --  Take copy of Default to ensure that later copies of this component
         --  declaration in derived types see the original tree, not a node
         --  rewritten during expansion of the init_proc. If the copy contains
         --  itypes, the scope of the new itypes is the init_proc being built.

         declare
            Map : Elist_Id := No_Elist;

         begin
            if Has_Late_Init_Comp then
               --  Map the type to the _Init parameter in order to
               --  handle "current instance" references.

               Map := New_Elmt_List
                        (Elmt1 => Rec_Type,
                         Elmt2 => Defining_Identifier (First
                                   (Parameter_Specifications
                                      (Parent (Proc_Id)))));

               --  If the type has an incomplete view, a current instance
               --  may have an incomplete type. In that case, it must also be
               --  replaced by the formal of the Init_Proc.

               if Nkind (Parent (Rec_Type)) = N_Full_Type_Declaration
                 and then Present (Incomplete_View (Parent (Rec_Type)))
               then
                  Append_Elmt (
                    N  => Incomplete_View (Parent (Rec_Type)),
                    To => Map);
                  Append_Elmt (
                    N  => Defining_Identifier
                            (First
                              (Parameter_Specifications
                                (Parent (Proc_Id)))),
                    To => Map);
               end if;
            end if;

            Exp := New_Copy_Tree (Default, New_Scope => Proc_Id, Map => Map);
         end;

         Res := New_List (
           Make_Assignment_Statement (Loc,
             Name       => Lhs,
             Expression => Exp));

         Set_No_Ctrl_Actions (First (Res));

         Exp_Q := Unqualify (Exp);

         --  Adjust the tag if tagged (because of possible view conversions).
         --  Suppress the tag adjustment when not Tagged_Type_Expansion because
         --  tags are represented implicitly in objects, and when the record is
         --  initialized with a raise expression.

         if Is_Tagged_Type (Typ)
           and then Tagged_Type_Expansion
           and then Nkind (Exp_Q) /= N_Raise_Expression
         then
            Append_To (Res,
              Make_Tag_Assignment_From_Type
                (Default_Loc,
                 New_Copy_Tree (Lhs, New_Scope => Proc_Id),
                 Underlying_Type (Typ)));
         end if;

         --  Adjust the component if controlled except if it is an aggregate
         --  that will be expanded inline.

         if Needs_Finalization (Typ)
           and then Nkind (Exp_Q) not in N_Aggregate | N_Extension_Aggregate
           and then not Is_Build_In_Place_Function_Call (Exp)
         then
            Adj_Call :=
              Make_Adjust_Call
                (Obj_Ref => New_Copy_Tree (Lhs),
                 Typ     => Etype (Id));

            --  Guard against a missing [Deep_]Adjust when the component type
            --  was not properly frozen.

            if Present (Adj_Call) then
               Append_To (Res, Adj_Call);
            end if;
         end if;

         return Res;

      exception
         when RE_Not_Available =>
            return Empty_List;
      end Build_Assignment;

      ------------------------------------
      -- Build_Discriminant_Assignments --
      ------------------------------------

      procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
         Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
         D         : Entity_Id;
         D_Loc     : Source_Ptr;

      begin
         if Has_Discriminants (Rec_Type)
           and then not Is_Unchecked_Union (Rec_Type)
         then
            D := First_Discriminant (Rec_Type);
            while Present (D) loop

               --  Don't generate the assignment for discriminants in derived
               --  tagged types if the discriminant is a renaming of some
               --  ancestor discriminant. This initialization will be done
               --  when initializing the _parent field of the derived record.

               if Is_Tagged
                 and then Present (Corresponding_Discriminant (D))
               then
                  null;

               else
                  D_Loc := Sloc (D);
                  Append_List_To (Statement_List,
                    Build_Assignment (D,
                      New_Occurrence_Of (Discriminal (D), D_Loc)));
               end if;

               Next_Discriminant (D);
            end loop;
         end if;
      end Build_Discriminant_Assignments;

      --------------------------
      -- Build_Init_Call_Thru --
      --------------------------

      function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
         Parent_Proc : constant Entity_Id :=
                         Base_Init_Proc (Etype (Rec_Type));

         Parent_Type : constant Entity_Id :=
                         Etype (First_Formal (Parent_Proc));

         Uparent_Type : constant Entity_Id :=
                          Underlying_Type (Parent_Type);

         First_Discr_Param : Node_Id;

         Arg          : Node_Id;
         Args         : List_Id;
         First_Arg    : Node_Id;
         Parent_Discr : Entity_Id;
         Res          : List_Id;

      begin
         --  First argument (_Init) is the object to be initialized.
         --  ??? not sure where to get a reasonable Loc for First_Arg

         First_Arg :=
           OK_Convert_To (Parent_Type,
             New_Occurrence_Of
               (Defining_Identifier (First (Parameters)), Loc));

         Set_Etype (First_Arg, Parent_Type);

         Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));

         --  In the tasks case,
         --    add _Master as the value of the _Master parameter
         --    add _Chain as the value of the _Chain parameter.
         --    add _Task_Name as the value of the _Task_Name parameter.
         --  At the outer level, these will be variables holding the
         --  corresponding values obtained from GNARL or the expander.
         --
         --  At inner levels, they will be the parameters passed down through
         --  the outer routines.

         First_Discr_Param := Next (First (Parameters));

         if Has_Task (Rec_Type) then
            if Restriction_Active (No_Task_Hierarchy) then
               Append_To
                 (Args, Make_Integer_Literal (Loc, Library_Task_Level));
            else
               Append_To (Args, Make_Identifier (Loc, Name_uMaster));
            end if;

            --  Add _Chain (not done for sequential elaboration policy, see
            --  comment for Create_Restricted_Task_Sequential in s-tarest.ads).

            if Partition_Elaboration_Policy /= 'S' then
               Append_To (Args, Make_Identifier (Loc, Name_uChain));
            end if;

            Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
            First_Discr_Param := Next (Next (Next (First_Discr_Param)));
         end if;

         --  Append discriminant values

         if Has_Discriminants (Uparent_Type) then
            pragma Assert (not Is_Tagged_Type (Uparent_Type));

            Parent_Discr := First_Discriminant (Uparent_Type);
            while Present (Parent_Discr) loop

               --  Get the initial value for this discriminant
               --  ??? needs to be cleaned up to use parent_Discr_Constr
               --  directly.

               declare
                  Discr       : Entity_Id :=
                                  First_Stored_Discriminant (Uparent_Type);

                  Discr_Value : Elmt_Id :=
                                  First_Elmt (Stored_Constraint (Rec_Type));

               begin
                  while Original_Record_Component (Parent_Discr) /= Discr loop
                     Next_Stored_Discriminant (Discr);
                     Next_Elmt (Discr_Value);
                  end loop;

                  Arg := Node (Discr_Value);
               end;

               --  Append it to the list

               if Nkind (Arg) = N_Identifier
                 and then Ekind (Entity (Arg)) = E_Discriminant
               then
                  Append_To (Args,
                    New_Occurrence_Of (Discriminal (Entity (Arg)), Loc));

               --  Case of access discriminants. We replace the reference
               --  to the type by a reference to the actual object.

               --  Is above comment right??? Use of New_Copy below seems mighty
               --  suspicious ???

               else
                  Append_To (Args, New_Copy (Arg));
               end if;

               Next_Discriminant (Parent_Discr);
            end loop;
         end if;

         Res :=
           New_List (
             Make_Procedure_Call_Statement (Loc,
               Name                   =>
                 New_Occurrence_Of (Parent_Proc, Loc),
               Parameter_Associations => Args));

         return Res;
      end Build_Init_Call_Thru;

      -----------------------------------
      -- Build_Offset_To_Top_Functions --
      -----------------------------------

      procedure Build_Offset_To_Top_Functions is

         procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id);
         --  Generate:
         --    function Fxx (O : Address) return Storage_Offset is
         --       type Acc is access all <Typ>;
         --    begin
         --       return Acc!(O).Iface_Comp'Position;
         --    end Fxx;

         ----------------------------------
         -- Build_Offset_To_Top_Function --
         ----------------------------------

         procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id) is
            Body_Node : Node_Id;
            Func_Id   : Entity_Id;
            Spec_Node : Node_Id;
            Acc_Type  : Entity_Id;

         begin
            Func_Id := Make_Temporary (Loc, 'F');
            Set_DT_Offset_To_Top_Func (Iface_Comp, Func_Id);

            --  Generate
            --    function Fxx (O : in Rec_Typ) return Storage_Offset;

            Spec_Node := New_Node (N_Function_Specification, Loc);
            Set_Defining_Unit_Name (Spec_Node, Func_Id);
            Set_Parameter_Specifications (Spec_Node, New_List (
              Make_Parameter_Specification (Loc,
                Defining_Identifier =>
                  Make_Defining_Identifier (Loc, Name_uO),
                In_Present          => True,
                Parameter_Type      =>
                  New_Occurrence_Of (RTE (RE_Address), Loc))));
            Set_Result_Definition (Spec_Node,
              New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));

            --  Generate
            --    function Fxx (O : in Rec_Typ) return Storage_Offset is
            --    begin
            --       return -O.Iface_Comp'Position;
            --    end Fxx;

            Body_Node := New_Node (N_Subprogram_Body, Loc);
            Set_Specification (Body_Node, Spec_Node);

            Acc_Type := Make_Temporary (Loc, 'T');
            Set_Declarations (Body_Node, New_List (
              Make_Full_Type_Declaration (Loc,
                Defining_Identifier => Acc_Type,
                Type_Definition     =>
                  Make_Access_To_Object_Definition (Loc,
                    All_Present            => True,
                    Null_Exclusion_Present => False,
                    Constant_Present       => False,
                    Subtype_Indication     =>
                      New_Occurrence_Of (Rec_Type, Loc)))));

            Set_Handled_Statement_Sequence (Body_Node,
              Make_Handled_Sequence_Of_Statements (Loc,
                Statements     => New_List (
                  Make_Simple_Return_Statement (Loc,
                    Expression =>
                      Make_Op_Minus (Loc,
                        Make_Attribute_Reference (Loc,
                          Prefix         =>
                            Make_Selected_Component (Loc,
                              Prefix        =>
                                Make_Explicit_Dereference (Loc,
                                  Unchecked_Convert_To (Acc_Type,
                                    Make_Identifier (Loc, Name_uO))),
                              Selector_Name =>
                                New_Occurrence_Of (Iface_Comp, Loc)),
                          Attribute_Name => Name_Position))))));

            Mutate_Ekind    (Func_Id, E_Function);
            Set_Mechanism   (Func_Id, Default_Mechanism);
            Set_Is_Internal (Func_Id, True);

            if not Debug_Generated_Code then
               Set_Debug_Info_Off (Func_Id);
            end if;

            Analyze (Body_Node);

            Append_Freeze_Action (Rec_Type, Body_Node);
         end Build_Offset_To_Top_Function;

         --  Local variables

         Iface_Comp       : Node_Id;
         Iface_Comp_Elmt  : Elmt_Id;
         Ifaces_Comp_List : Elist_Id;

      --  Start of processing for Build_Offset_To_Top_Functions

      begin
         --  Offset_To_Top_Functions are built only for derivations of types
         --  with discriminants that cover interface types.
         --  Nothing is needed either in case of virtual targets, since
         --  interfaces are handled directly by the target.

         if not Is_Tagged_Type (Rec_Type)
           or else Etype (Rec_Type) = Rec_Type
           or else not Has_Discriminants (Etype (Rec_Type))
           or else not Tagged_Type_Expansion
         then
            return;
         end if;

         Collect_Interface_Components (Rec_Type, Ifaces_Comp_List);

         --  For each interface type with secondary dispatch table we generate
         --  the Offset_To_Top_Functions (required to displace the pointer in
         --  interface conversions)

         Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
         while Present (Iface_Comp_Elmt) loop
            Iface_Comp := Node (Iface_Comp_Elmt);
            pragma Assert (Is_Interface (Related_Type (Iface_Comp)));

            --  If the interface is a parent of Rec_Type it shares the primary
            --  dispatch table and hence there is no need to build the function

            if not Is_Ancestor (Related_Type (Iface_Comp), Rec_Type,
                                Use_Full_View => True)
            then
               Build_Offset_To_Top_Function (Iface_Comp);
            end if;

            Next_Elmt (Iface_Comp_Elmt);
         end loop;
      end Build_Offset_To_Top_Functions;

      ------------------------------
      -- Build_CPP_Init_Procedure --
      ------------------------------

      procedure Build_CPP_Init_Procedure is
         Body_Node         : Node_Id;
         Body_Stmts        : List_Id;
         Flag_Id           : Entity_Id;
         Handled_Stmt_Node : Node_Id;
         Init_Tags_List    : List_Id;
         Proc_Id           : Entity_Id;
         Proc_Spec_Node    : Node_Id;

      begin
         --  Check cases requiring no IC routine

         if not Is_CPP_Class (Root_Type (Rec_Type))
           or else Is_CPP_Class (Rec_Type)
           or else CPP_Num_Prims (Rec_Type) = 0
           or else not Tagged_Type_Expansion
           or else No_Run_Time_Mode
         then
            return;
         end if;

         --  Generate:

         --     Flag : Boolean := False;
         --
         --     procedure Typ_IC is
         --     begin
         --        if not Flag then
         --           Copy C++ dispatch table slots from parent
         --           Update C++ slots of overridden primitives
         --        end if;
         --     end;

         Flag_Id := Make_Temporary (Loc, 'F');

         Append_Freeze_Action (Rec_Type,
           Make_Object_Declaration (Loc,
             Defining_Identifier => Flag_Id,
             Object_Definition =>
               New_Occurrence_Of (Standard_Boolean, Loc),
             Expression =>
               New_Occurrence_Of (Standard_True, Loc)));

         Body_Stmts := New_List;
         Body_Node  := New_Node (N_Subprogram_Body, Loc);

         Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);

         Proc_Id :=
           Make_Defining_Identifier (Loc,
             Chars => Make_TSS_Name (Rec_Type, TSS_CPP_Init_Proc));

         Mutate_Ekind    (Proc_Id, E_Procedure);
         Set_Is_Internal (Proc_Id);

         Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);

         Set_Parameter_Specifications (Proc_Spec_Node, New_List);
         Set_Specification (Body_Node, Proc_Spec_Node);
         Set_Declarations  (Body_Node, New_List);

         Init_Tags_List := Build_Inherit_CPP_Prims (Rec_Type);

         Append_To (Init_Tags_List,
           Make_Assignment_Statement (Loc,
             Name =>
               New_Occurrence_Of (Flag_Id, Loc),
             Expression =>
               New_Occurrence_Of (Standard_False, Loc)));

         Append_To (Body_Stmts,
           Make_If_Statement (Loc,
             Condition => New_Occurrence_Of (Flag_Id, Loc),
             Then_Statements => Init_Tags_List));

         Handled_Stmt_Node :=
           New_Node (N_Handled_Sequence_Of_Statements, Loc);
         Set_Statements (Handled_Stmt_Node, Body_Stmts);
         Set_Exception_Handlers (Handled_Stmt_Node, No_List);
         Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);

         if not Debug_Generated_Code then
            Set_Debug_Info_Off (Proc_Id);
         end if;

         --  Associate CPP_Init_Proc with type

         Set_Init_Proc (Rec_Type, Proc_Id);
      end Build_CPP_Init_Procedure;

      --------------------------
      -- Build_Init_Procedure --
      --------------------------

      procedure Build_Init_Procedure is
         Body_Stmts            : List_Id;
         Body_Node             : Node_Id;
         Handled_Stmt_Node     : Node_Id;
         Init_Tags_List        : List_Id;
         Parameters            : List_Id;
         Proc_Spec_Node        : Node_Id;
         Record_Extension_Node : Node_Id;

         use Initialization_Control;
      begin
         Body_Stmts := New_List;
         Body_Node := New_Node (N_Subprogram_Body, Loc);
         Mutate_Ekind (Proc_Id, E_Procedure);

         Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
         Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);

         Parameters := Init_Formals (Rec_Type, Proc_Id);
         Append_List_To (Parameters,
           Build_Discriminant_Formals (Rec_Type, True));

         --  For tagged types, we add a parameter to indicate what
         --  portion of the object's initialization is to be performed.
         --  This is used for two purposes:
         --   1)  When a type extension's initialization procedure calls
         --       the initialization procedure of the parent type, we do
         --       not want the parent to initialize the Tag component;
         --       it has been set already.
         --   2)  If an ancestor type has at least one component that requires
         --       late initialization, then we need to be able to initialize
         --       those components separately after initializing any other
         --       components.

         if Is_Tagged_Type (Rec_Type) then
            Init_Control_Formal := Make_Temporary (Loc, 'P');

            Append_To (Parameters,
              Make_Parameter_Specification (Loc,
                Defining_Identifier => Init_Control_Formal,
                Parameter_Type =>
                  New_Occurrence_Of (Standard_Natural, Loc),
                Expression => Make_Mode_Literal (Loc, Full_Init)));
         end if;

         --  Create an extra accessibility parameter to capture the level of
         --  the object being initialized when its type is a limited record.

         if Is_Limited_Record (Rec_Type) then
            Append_To (Parameters,
              Make_Parameter_Specification (Loc,
                Defining_Identifier => Make_Defining_Identifier
                                         (Loc, Name_uInit_Level),
                Parameter_Type      =>
                  New_Occurrence_Of (Standard_Natural, Loc),
                Expression          =>
                  Make_Integer_Literal
                    (Loc, Scope_Depth (Standard_Standard))));
         end if;

         Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
         Set_Specification (Body_Node, Proc_Spec_Node);
         Set_Declarations (Body_Node, Decls);

         --  N is a Derived_Type_Definition that renames the parameters of the
         --  ancestor type. We initialize it by expanding our discriminants and
         --  call the ancestor _init_proc with a type-converted object.

         if Parent_Subtype_Renaming_Discrims then
            Append_List_To (Body_Stmts, Build_Init_Call_Thru (Parameters));

         elsif Nkind (Type_Definition (N)) = N_Record_Definition then
            Build_Discriminant_Assignments (Body_Stmts);

            if not Null_Present (Type_Definition (N)) then
               Append_List_To (Body_Stmts,
                 Build_Init_Statements (Component_List (Type_Definition (N))));
            end if;

         --  N is a Derived_Type_Definition with a possible non-empty
         --  extension. The initialization of a type extension consists in the
         --  initialization of the components in the extension.

         else
            Build_Discriminant_Assignments (Body_Stmts);

            Record_Extension_Node :=
              Record_Extension_Part (Type_Definition (N));

            if not Null_Present (Record_Extension_Node) then
               declare
                  Stmts : constant List_Id :=
                            Build_Init_Statements (
                              Component_List (Record_Extension_Node));

               begin
                  --  The parent field must be initialized first because the
                  --  offset of the new discriminants may depend on it. This is
                  --  not needed if the parent is an interface type because in
                  --  such case the initialization of the _parent field was not
                  --  generated.

                  if not Is_Interface (Etype (Rec_Ent)) then
                     declare
                        Parent_IP : constant Name_Id :=
                                      Make_Init_Proc_Name (Etype (Rec_Ent));
                        Stmt      : Node_Id := First (Stmts);
                        IP_Call   : Node_Id := Empty;
                     begin
                        --  Look for a call to the parent IP associated with
                        --  the record extension.
                        --  The call will be inside not one but two
                        --  if-statements (with the same condition). Testing
                        --  the same Early_Init condition twice might seem
                        --  redundant. However, as soon as we exit this loop,
                        --  we are going to hoist the inner if-statement out
                        --  of the outer one; the "redundant" test was built
                        --  in anticipation of this hoisting.

                        while Present (Stmt) loop
                           if Nkind (Stmt) = N_If_Statement then
                              declare
                                 Then_Stmt1 : Node_Id :=
                                   First (Then_Statements (Stmt));
                                 Then_Stmt2 : Node_Id;
                              begin
                                 while Present (Then_Stmt1) loop
                                    if Nkind (Then_Stmt1) = N_If_Statement then
                                       Then_Stmt2 :=
                                         First (Then_Statements (Then_Stmt1));

                                       if Nkind (Then_Stmt2) =
                                            N_Procedure_Call_Statement
                                         and then Chars (Name (Then_Stmt2)) =
                                           Parent_IP
                                       then
                                          --  IP_Call is a call wrapped in an
                                          --  if statement.
                                          IP_Call := Then_Stmt1;
                                          exit;
                                       end if;
                                    end if;
                                    Next (Then_Stmt1);
                                 end loop;
                              end;
                           end if;

                           Next (Stmt);
                        end loop;

                        --  If found then move it to the beginning of the
                        --  statements of this IP routine

                        if Present (IP_Call) then
                           Remove (IP_Call);
                           Prepend_List_To (Body_Stmts, New_List (IP_Call));
                        end if;
                     end;
                  end if;

                  Append_List_To (Body_Stmts, Stmts);
               end;
            end if;
         end if;

         --  Add here the assignment to instantiate the Tag

         --  The assignment corresponds to the code:

         --     _Init._Tag := Typ'Tag;

         --  Suppress the tag assignment when not Tagged_Type_Expansion because
         --  tags are represented implicitly in objects. It is also suppressed
         --  in case of CPP_Class types because in this case the tag is
         --  initialized in the C++ side.

         if Is_Tagged_Type (Rec_Type)
           and then Tagged_Type_Expansion
           and then not No_Run_Time_Mode
         then
            --  Case 1: Ada tagged types with no CPP ancestor. Set the tags of
            --  the actual object and invoke the IP of the parent (in this
            --  order). The tag must be initialized before the call to the IP
            --  of the parent and the assignments to other components because
            --  the initial value of the components may depend on the tag (eg.
            --  through a dispatching operation on an access to the current
            --  type). The tag assignment is not done when initializing the
            --  parent component of a type extension, because in that case the
            --  tag is set in the extension.

            if not Is_CPP_Class (Root_Type (Rec_Type)) then

               --  Initialize the primary tag component

               Init_Tags_List := New_List (
                 Make_Tag_Assignment_From_Type
                   (Loc, Make_Identifier (Loc, Name_uInit), Rec_Type));

               --  Ada 2005 (AI-251): Initialize the secondary tags components
               --  located at fixed positions (tags whose position depends on
               --  variable size components are initialized later ---see below)

               if Ada_Version >= Ada_2005
                 and then not Is_Interface (Rec_Type)
                 and then Has_Interfaces (Rec_Type)
               then
                  declare
                     Elab_Sec_DT_Stmts_List : constant List_Id := New_List;
                     Elab_List              : List_Id          := New_List;

                  begin
                     Init_Secondary_Tags
                       (Typ            => Rec_Type,
                        Target         => Make_Identifier (Loc, Name_uInit),
                        Init_Tags_List => Init_Tags_List,
                        Stmts_List     => Elab_Sec_DT_Stmts_List,
                        Fixed_Comps    => True,
                        Variable_Comps => False);

                     Elab_List := New_List (
                       Make_If_Statement (Loc,
                         Condition       =>
                           Tag_Init_Condition (Loc, Init_Control_Formal),
                         Then_Statements => Init_Tags_List));

                     if Elab_Flag_Needed (Rec_Type) then
                        Append_To (Elab_Sec_DT_Stmts_List,
                          Make_Assignment_Statement (Loc,
                            Name       =>
                              New_Occurrence_Of
                                (Access_Disp_Table_Elab_Flag (Rec_Type),
                                 Loc),
                            Expression =>
                              New_Occurrence_Of (Standard_False, Loc)));

                        Append_To (Elab_List,
                          Make_If_Statement (Loc,
                            Condition       =>
                              New_Occurrence_Of
                                (Access_Disp_Table_Elab_Flag (Rec_Type), Loc),
                            Then_Statements => Elab_Sec_DT_Stmts_List));
                     end if;

                     Prepend_List_To (Body_Stmts, Elab_List);
                  end;
               else
                  Prepend_To (Body_Stmts,
                    Make_If_Statement (Loc,
                      Condition =>
                        Tag_Init_Condition (Loc, Init_Control_Formal),
                      Then_Statements => Init_Tags_List));
               end if;

            --  Case 2: CPP type. The imported C++ constructor takes care of
            --  tags initialization. No action needed here because the IP
            --  is built by Set_CPP_Constructors; in this case the IP is a
            --  wrapper that invokes the C++ constructor and copies the C++
            --  tags locally. Done to inherit the C++ slots in Ada derivations
            --  (see case 3).

            elsif Is_CPP_Class (Rec_Type) then
               pragma Assert (False);
               null;

            --  Case 3: Combined hierarchy containing C++ types and Ada tagged
            --  type derivations. Derivations of imported C++ classes add a
            --  complication, because we cannot inhibit tag setting in the
            --  constructor for the parent. Hence we initialize the tag after
            --  the call to the parent IP (that is, in reverse order compared
            --  with pure Ada hierarchies ---see comment on case 1).

            else
               --  Initialize the primary tag

               Init_Tags_List := New_List (
                 Make_Tag_Assignment_From_Type
                   (Loc, Make_Identifier (Loc, Name_uInit), Rec_Type));

               --  Ada 2005 (AI-251): Initialize the secondary tags components
               --  located at fixed positions (tags whose position depends on
               --  variable size components are initialized later ---see below)

               if Ada_Version >= Ada_2005
                 and then not Is_Interface (Rec_Type)
                 and then Has_Interfaces (Rec_Type)
               then
                  Init_Secondary_Tags
                    (Typ            => Rec_Type,
                     Target         => Make_Identifier (Loc, Name_uInit),
                     Init_Tags_List => Init_Tags_List,
                     Stmts_List     => Init_Tags_List,
                     Fixed_Comps    => True,
                     Variable_Comps => False);
               end if;

               --  Initialize the tag component after invocation of parent IP.

               --  Generate:
               --     parent_IP(_init.parent); // Invokes the C++ constructor
               --     [ typIC; ]               // Inherit C++ slots from parent
               --     init_tags

               declare
                  Ins_Nod : Node_Id;

               begin
                  --  Search for the call to the IP of the parent. We assume
                  --  that the first init_proc call is for the parent.
                  --  It is wrapped in an "if Early_Init_Condition"
                  --  if-statement.

                  Ins_Nod := First (Body_Stmts);
                  while Present (Next (Ins_Nod))
                    and then
                      (Nkind (Ins_Nod) /= N_If_Statement
                        or else Nkind (First (Then_Statements (Ins_Nod)))
                                  /= N_Procedure_Call_Statement
                        or else not Is_Init_Proc
                                      (Name (First (Then_Statements
                                         (Ins_Nod)))))
                  loop
                     Next (Ins_Nod);
                  end loop;

                  --  The IC routine copies the inherited slots of the C+ part
                  --  of the dispatch table from the parent and updates the
                  --  overridden C++ slots.

                  if CPP_Num_Prims (Rec_Type) > 0 then
                     declare
                        Init_DT : Entity_Id;
                        New_Nod : Node_Id;

                     begin
                        Init_DT := CPP_Init_Proc (Rec_Type);
                        pragma Assert (Present (Init_DT));

                        New_Nod :=
                          Make_Procedure_Call_Statement (Loc,
                            New_Occurrence_Of (Init_DT, Loc));
                        Insert_After (Ins_Nod, New_Nod);

                        --  Update location of init tag statements

                        Ins_Nod := New_Nod;
                     end;
                  end if;

                  Insert_List_After (Ins_Nod, Init_Tags_List);
               end;
            end if;

            --  Ada 2005 (AI-251): Initialize the secondary tag components
            --  located at variable positions. We delay the generation of this
            --  code until here because the value of the attribute 'Position
            --  applied to variable size components of the parent type that
            --  depend on discriminants is only safely read at runtime after
            --  the parent components have been initialized.

            if Ada_Version >= Ada_2005
              and then not Is_Interface (Rec_Type)
              and then Has_Interfaces (Rec_Type)
              and then Has_Discriminants (Etype (Rec_Type))
              and then Is_Variable_Size_Record (Etype (Rec_Type))
            then
               Init_Tags_List := New_List;

               Init_Secondary_Tags
                 (Typ            => Rec_Type,
                  Target         => Make_Identifier (Loc, Name_uInit),
                  Init_Tags_List => Init_Tags_List,
                  Stmts_List     => Init_Tags_List,
                  Fixed_Comps    => False,
                  Variable_Comps => True);

               Append_List_To (Body_Stmts, Init_Tags_List);
            end if;
         end if;

         Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
         Set_Statements (Handled_Stmt_Node, Body_Stmts);

         --  Generate:
         --    Deep_Finalize (_init, C1, ..., CN);
         --    raise;

         if Counter > 0
           and then Needs_Finalization (Rec_Type)
           and then not Is_Abstract_Type (Rec_Type)
           and then not Restriction_Active (No_Exception_Propagation)
         then
            declare
               DF_Call : Node_Id;
               DF_Id   : Entity_Id;

            begin
               --  Create a local version of Deep_Finalize which has indication
               --  of partial initialization state.

               DF_Id :=
                 Make_Defining_Identifier (Loc,
                   Chars => New_External_Name (Name_uFinalizer));

               Append_To (Decls, Make_Local_Deep_Finalize (Rec_Type, DF_Id));

               DF_Call :=
                 Make_Procedure_Call_Statement (Loc,
                   Name                   => New_Occurrence_Of (DF_Id, Loc),
                   Parameter_Associations => New_List (
                     Make_Identifier (Loc, Name_uInit),
                     New_Occurrence_Of (Standard_False, Loc)));

               --  Do not emit warnings related to the elaboration order when a
               --  controlled object is declared before the body of Finalize is
               --  seen.

               if Legacy_Elaboration_Checks then
                  Set_No_Elaboration_Check (DF_Call);
               end if;

               Set_Exception_Handlers (Handled_Stmt_Node, New_List (
                 Make_Exception_Handler (Loc,
                   Exception_Choices => New_List (
                     Make_Others_Choice (Loc)),
                   Statements        => New_List (
                     DF_Call,
                     Make_Raise_Statement (Loc)))));
            end;
         else
            Set_Exception_Handlers (Handled_Stmt_Node, No_List);
         end if;

         Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);

         if not Debug_Generated_Code then
            Set_Debug_Info_Off (Proc_Id);
         end if;

         --  Associate Init_Proc with type, and determine if the procedure
         --  is null (happens because of the Initialize_Scalars pragma case,
         --  where we have to generate a null procedure in case it is called
         --  by a client with Initialize_Scalars set). Such procedures have
         --  to be generated, but do not have to be called, so we mark them
         --  as null to suppress the call. Kill also warnings for the _Init
         --  out parameter, which is left entirely uninitialized.

         Set_Init_Proc (Rec_Type, Proc_Id);

         if Is_Null_Statement_List (Body_Stmts) then
            Set_Is_Null_Init_Proc (Proc_Id);
            Set_Warnings_Off (Defining_Identifier (First (Parameters)));
         end if;
      end Build_Init_Procedure;

      ---------------------------
      -- Build_Init_Statements --
      ---------------------------

      function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
         Checks             : constant List_Id := New_List;
         Actions            : List_Id          := No_List;
         Counter_Id         : Entity_Id        := Empty;
         Comp_Loc           : Source_Ptr;
         Decl               : Node_Id;
         Id                 : Entity_Id;
         Parent_Stmts       : List_Id;
         Parent_Id          : Entity_Id := Empty;
         Stmts, Late_Stmts  : List_Id := Empty_List;
         Typ                : Entity_Id;

         procedure Increment_Counter
           (Loc  : Source_Ptr; Late : Boolean := False);
         --  Generate an "increment by one" statement for the current counter
         --  and append it to the appropriate statement list.

         procedure Make_Counter (Loc : Source_Ptr);
         --  Create a new counter for the current component list. The routine
         --  creates a new defining Id, adds an object declaration and sets
         --  the Id generator for the next variant.

         -----------------------
         -- Increment_Counter --
         -----------------------

         procedure Increment_Counter
           (Loc  : Source_Ptr; Late : Boolean := False) is
         begin
            --  Generate:
            --    Counter := Counter + 1;

            Append_To ((if Late then Late_Stmts else Stmts),
              Make_Assignment_Statement (Loc,
                Name       => New_Occurrence_Of (Counter_Id, Loc),
                Expression =>
                  Make_Op_Add (Loc,
                    Left_Opnd  => New_Occurrence_Of (Counter_Id, Loc),
                    Right_Opnd => Make_Integer_Literal (Loc, 1))));
         end Increment_Counter;

         ------------------
         -- Make_Counter --
         ------------------

         procedure Make_Counter (Loc : Source_Ptr) is
         begin
            --  Increment the Id generator

            Counter := Counter + 1;

            --  Create the entity and declaration

            Counter_Id :=
              Make_Defining_Identifier (Loc,
                Chars => New_External_Name ('C', Counter));

            --  Generate:
            --    Cnn : Integer := 0;

            Append_To (Decls,
              Make_Object_Declaration (Loc,
                Defining_Identifier => Counter_Id,
                Object_Definition   =>
                  New_Occurrence_Of (Standard_Integer, Loc),
                Expression          =>
                  Make_Integer_Literal (Loc, 0)));
         end Make_Counter;

      --  Start of processing for Build_Init_Statements

      begin
         if Null_Present (Comp_List) then
            return New_List (Make_Null_Statement (Loc));
         end if;

         Parent_Stmts := New_List;
         Stmts := New_List;

         --  Loop through visible declarations of task types and protected
         --  types moving any expanded code from the spec to the body of the
         --  init procedure.

         if Is_Concurrent_Record_Type (Rec_Type) then
            declare
               Decl : constant Node_Id :=
                        Parent (Corresponding_Concurrent_Type (Rec_Type));
               Def  : Node_Id;
               N1   : Node_Id;
               N2   : Node_Id;

            begin
               if Is_Task_Record_Type (Rec_Type) then
                  Def := Task_Definition (Decl);
               else
                  Def := Protected_Definition (Decl);
               end if;

               if Present (Def) then
                  N1 := First (Visible_Declarations (Def));
                  while Present (N1) loop
                     N2 := N1;
                     N1 := Next (N1);

                     if Nkind (N2) in N_Statement_Other_Than_Procedure_Call
                       or else Nkind (N2) in N_Raise_xxx_Error
                       or else Nkind (N2) = N_Procedure_Call_Statement
                     then
                        Append_To (Stmts,
                          New_Copy_Tree (N2, New_Scope => Proc_Id));
                        Rewrite (N2, Make_Null_Statement (Sloc (N2)));
                        Analyze (N2);
                     end if;
                  end loop;
               end if;
            end;
         end if;

         --  Loop through components, skipping pragmas, in 2 steps. The first
         --  step deals with regular components. The second step deals with
         --  components that require late initialization.

         --  First pass : regular components

         Decl := First_Non_Pragma (Component_Items (Comp_List));
         while Present (Decl) loop
            Comp_Loc := Sloc (Decl);
            Build_Record_Checks
              (Subtype_Indication (Component_Definition (Decl)), Checks);

            Id  := Defining_Identifier (Decl);
            Typ := Etype (Id);

            --  Leave any processing of component requiring late initialization
            --  for the second pass.

            if Initialization_Control.Requires_Late_Init (Decl, Rec_Type) then
               if not Has_Late_Init_Comp then
                  Late_Stmts := New_List;
               end if;
               Has_Late_Init_Comp := True;

            --  Regular component cases

            else
               --  In the context of the init proc, references to discriminants
               --  resolve to denote the discriminals: this is where we can
               --  freeze discriminant dependent component subtypes.

               if not Is_Frozen (Typ) then
                  Append_List_To (Stmts, Freeze_Entity (Typ, N));
               end if;

               --  Explicit initialization

               if Present (Expression (Decl)) then
                  if Is_CPP_Constructor_Call (Expression (Decl)) then
                     Actions :=
                       Build_Initialization_Call
                         (Comp_Loc,
                          Id_Ref          =>
                            Make_Selected_Component (Comp_Loc,
                              Prefix        =>
                                Make_Identifier (Comp_Loc, Name_uInit),
                              Selector_Name =>
                                New_Occurrence_Of (Id, Comp_Loc)),
                          Typ             => Typ,
                          In_Init_Proc    => True,
                          Enclos_Type     => Rec_Type,
                          Discr_Map       => Discr_Map,
                          Constructor_Ref => Expression (Decl));
                  else
                     Actions := Build_Assignment (Id, Expression (Decl));
                  end if;

               --  CPU, Dispatching_Domain, Priority, and Secondary_Stack_Size
               --  components are filled in with the corresponding rep-item
               --  expression of the concurrent type (if any).

               elsif Ekind (Scope (Id)) = E_Record_Type
                 and then Present (Corresponding_Concurrent_Type (Scope (Id)))
                 and then Chars (Id) in Name_uCPU
                                      | Name_uDispatching_Domain
                                      | Name_uPriority
                                      | Name_uSecondary_Stack_Size
               then
                  declare
                     Exp   : Node_Id;
                     Nam   : Name_Id;
                     pragma Warnings (Off, Nam);
                     Ritem : Node_Id;

                  begin
                     if Chars (Id) = Name_uCPU then
                        Nam := Name_CPU;

                     elsif Chars (Id) = Name_uDispatching_Domain then
                        Nam := Name_Dispatching_Domain;

                     elsif Chars (Id) = Name_uPriority then
                        Nam := Name_Priority;

                     elsif Chars (Id) = Name_uSecondary_Stack_Size then
                        Nam := Name_Secondary_Stack_Size;
                     end if;

                     --  Get the Rep Item (aspect specification, attribute
                     --  definition clause or pragma) of the corresponding
                     --  concurrent type.

                     Ritem :=
                       Get_Rep_Item
                         (Corresponding_Concurrent_Type (Scope (Id)),
                          Nam,
                          Check_Parents => False);

                     if Present (Ritem) then

                        --  Pragma case

                        if Nkind (Ritem) = N_Pragma then
                           Exp :=
                             Get_Pragma_Arg
                               (First (Pragma_Argument_Associations (Ritem)));

                           --  Conversion for Priority expression

                           if Nam = Name_Priority then
                              if Pragma_Name (Ritem) = Name_Priority
                                and then not GNAT_Mode
                              then
                                 Exp := Convert_To (RTE (RE_Priority), Exp);
                              else
                                 Exp :=
                                   Convert_To (RTE (RE_Any_Priority), Exp);
                              end if;
                           end if;

                        --  Aspect/Attribute definition clause case

                        else
                           Exp := Expression (Ritem);

                           --  Conversion for Priority expression

                           if Nam = Name_Priority then
                              if Chars (Ritem) = Name_Priority
                                and then not GNAT_Mode
                              then
                                 Exp := Convert_To (RTE (RE_Priority), Exp);
                              else
                                 Exp :=
                                   Convert_To (RTE (RE_Any_Priority), Exp);
                              end if;
                           end if;
                        end if;

                        --  Conversion for Dispatching_Domain value

                        if Nam = Name_Dispatching_Domain then
                           Exp :=
                             Unchecked_Convert_To
                               (RTE (RE_Dispatching_Domain_Access), Exp);

                        --  Conversion for Secondary_Stack_Size value

                        elsif Nam = Name_Secondary_Stack_Size then
                           Exp := Convert_To (RTE (RE_Size_Type), Exp);
                        end if;

                        Actions := Build_Assignment (Id, Exp);

                     --  Nothing needed if no Rep Item

                     else
                        Actions := No_List;
                     end if;
                  end;

               --  Composite component with its own Init_Proc

               elsif not Is_Interface (Typ)
                 and then Has_Non_Null_Base_Init_Proc (Typ)
               then
                  declare
                     use Initialization_Control;
                     Init_Control_Actual : Node_Id := Empty;
                     Is_Parent : constant Boolean := Chars (Id) = Name_uParent;
                     Init_Call_Stmts : List_Id;
                  begin
                     if Is_Parent and then Has_Late_Init_Component (Etype (Id))
                     then
                        Init_Control_Actual :=
                          Make_Mode_Literal (Comp_Loc, Early_Init_Only);
                        --  Parent_Id used later in second call to parent's
                        --  init proc to initialize late-init components.
                        Parent_Id := Id;
                     end if;

                     Init_Call_Stmts :=
                       Build_Initialization_Call
                         (Comp_Loc,
                          Make_Selected_Component (Comp_Loc,
                            Prefix        =>
                              Make_Identifier (Comp_Loc, Name_uInit),
                            Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
                          Typ,
                          In_Init_Proc        => True,
                          Enclos_Type         => Rec_Type,
                          Discr_Map           => Discr_Map,
                          Init_Control_Actual => Init_Control_Actual);

                     if Is_Parent then
                        --  This is tricky. At first it looks like
                        --  we are going to end up with nested
                        --  if-statements with the same condition:
                        --    if Early_Init_Condition then
                        --       if Early_Init_Condition then
                        --          Parent_TypeIP (...);
                        --       end if;
                        --    end if;
                        --  But later we will hoist the inner if-statement
                        --  out of the outer one; we do this  because the
                        --  init-proc call for the _Parent component of a type
                        --  extension has to precede any other initialization.
                        Actions :=
                          New_List (Make_If_Statement (Loc,
                            Condition =>
                              Early_Init_Condition (Loc, Init_Control_Formal),
                            Then_Statements => Init_Call_Stmts));
                     else
                        Actions := Init_Call_Stmts;
                     end if;
                  end;

                  Clean_Task_Names (Typ, Proc_Id);

               --  Simple initialization. If the Esize is not yet set, we pass
               --  Uint_0 as expected by Get_Simple_Init_Val.

               elsif Component_Needs_Simple_Initialization (Typ) then
                  Actions :=
                    Build_Assignment
                      (Id      => Id,
                       Default =>
                         Get_Simple_Init_Val
                           (Typ  => Typ,
                            N    => N,
                            Size =>
                              (if Known_Esize (Id) then Esize (Id)
                               else Uint_0)));

               --  Nothing needed for this case

               else
                  Actions := No_List;
               end if;

               --  When the component's type has a Default_Initial_Condition,
               --  and the component is default initialized, then check the
               --  DIC here.

               if Has_DIC (Typ)
                 and then No (Expression (Decl))
                 and then Present (DIC_Procedure (Typ))
                 and then not Has_Null_Body (DIC_Procedure (Typ))

                 --  The DICs of ancestors are checked as part of the type's
                 --  DIC procedure.

                 and then Chars (Id) /= Name_uParent

                 --  In GNATprove mode, the component DICs are checked by other
                 --  means. They should not be added to the record type DIC
                 --  procedure, so that the procedure can be used to check the
                 --  record type invariants or DICs if any.

                 and then not GNATprove_Mode
               then
                  Append_New_To (Actions,
                     Build_DIC_Call
                       (Comp_Loc,
                        Make_Selected_Component (Comp_Loc,
                          Prefix        =>
                            Make_Identifier (Comp_Loc, Name_uInit),
                          Selector_Name =>
                            New_Occurrence_Of (Id, Comp_Loc)),
                        Typ));
               end if;

               if Present (Checks) then
                  if Chars (Id) = Name_uParent then
                     Append_List_To (Parent_Stmts, Checks);
                  else
                     Append_List_To (Stmts, Checks);
                  end if;
               end if;

               if Present (Actions) then
                  if Chars (Id) = Name_uParent then
                     Append_List_To (Parent_Stmts, Actions);
                  else
                     Append_List_To (Stmts, Actions);

                     --  Preserve initialization state in the current counter

                     if Needs_Finalization (Typ) then
                        if No (Counter_Id) then
                           Make_Counter (Comp_Loc);
                        end if;

                        Increment_Counter (Comp_Loc);
                     end if;
                  end if;
               end if;
            end if;

            Next_Non_Pragma (Decl);
         end loop;

         --  The parent field must be initialized first because variable
         --  size components of the parent affect the location of all the
         --  new components.

         Prepend_List_To (Stmts, Parent_Stmts);

         --  Set up tasks and protected object support. This needs to be done
         --  before any component with a per-object access discriminant
         --  constraint, or any variant part (which may contain such
         --  components) is initialized, because the initialization of these
         --  components may reference the enclosing concurrent object.

         --  For a task record type, add the task create call and calls to bind
         --  any interrupt (signal) entries.

         if Is_Task_Record_Type (Rec_Type) then

            --  In the case of the restricted run time the ATCB has already
            --  been preallocated.

            if Restricted_Profile then
               Append_To (Stmts,
                 Make_Assignment_Statement (Loc,
                   Name       =>
                     Make_Selected_Component (Loc,
                       Prefix        => Make_Identifier (Loc, Name_uInit),
                       Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
                   Expression =>
                     Make_Attribute_Reference (Loc,
                       Prefix         =>
                         Make_Selected_Component (Loc,
                           Prefix        => Make_Identifier (Loc, Name_uInit),
                           Selector_Name => Make_Identifier (Loc, Name_uATCB)),
                       Attribute_Name => Name_Unchecked_Access)));
            end if;

            Append_To (Stmts, Make_Task_Create_Call (Rec_Type));

            declare
               Task_Type : constant Entity_Id :=
                             Corresponding_Concurrent_Type (Rec_Type);
               Task_Decl : constant Node_Id := Parent (Task_Type);
               Task_Def  : constant Node_Id := Task_Definition (Task_Decl);
               Decl_Loc  : Source_Ptr;
               Ent       : Entity_Id;
               Vis_Decl  : Node_Id;

            begin
               if Present (Task_Def) then
                  Vis_Decl := First (Visible_Declarations (Task_Def));
                  while Present (Vis_Decl) loop
                     Decl_Loc := Sloc (Vis_Decl);

                     if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
                        if Get_Attribute_Id (Chars (Vis_Decl)) =
                                                       Attribute_Address
                        then
                           Ent := Entity (Name (Vis_Decl));

                           if Ekind (Ent) = E_Entry then
                              Append_To (Stmts,
                                Make_Procedure_Call_Statement (Decl_Loc,
                                  Name =>
                                    New_Occurrence_Of (RTE (
                                      RE_Bind_Interrupt_To_Entry), Decl_Loc),
                                  Parameter_Associations => New_List (
                                    Make_Selected_Component (Decl_Loc,
                                      Prefix        =>
                                        Make_Identifier (Decl_Loc, Name_uInit),
                                      Selector_Name =>
                                        Make_Identifier
                                         (Decl_Loc, Name_uTask_Id)),
                                    Entry_Index_Expression
                                      (Decl_Loc, Ent, Empty, Task_Type),
                                    Expression (Vis_Decl))));
                           end if;
                        end if;
                     end if;

                     Next (Vis_Decl);
                  end loop;
               end if;
            end;

         --  For a protected type, add statements generated by
         --  Make_Initialize_Protection.

         elsif Is_Protected_Record_Type (Rec_Type) then
            Append_List_To (Stmts,
              Make_Initialize_Protection (Rec_Type));
         end if;

         --  Second pass: components that require late initialization

         if Present (Parent_Id) then
            declare
               Parent_Loc : constant Source_Ptr := Sloc (Parent (Parent_Id));
               use Initialization_Control;
            begin
               --  We are building the init proc for a type extension.
               --  Call the parent type's init proc a second time, this
               --  time to initialize the parent's components that require
               --  late initialization.

               Append_List_To (Late_Stmts,
                 Build_Initialization_Call
                   (Loc                  => Parent_Loc,
                    Id_Ref               =>
                      Make_Selected_Component (Parent_Loc,
                        Prefix        => Make_Identifier
                                           (Parent_Loc, Name_uInit),
                        Selector_Name => New_Occurrence_Of (Parent_Id,
                                                            Parent_Loc)),
                    Typ                 => Etype (Parent_Id),
                    In_Init_Proc        => True,
                    Enclos_Type         => Rec_Type,
                    Discr_Map           => Discr_Map,
                    Init_Control_Actual => Make_Mode_Literal
                                             (Parent_Loc, Late_Init_Only)));
            end;
         end if;

         if Has_Late_Init_Comp then
            Decl := First_Non_Pragma (Component_Items (Comp_List));
            while Present (Decl) loop
               Comp_Loc := Sloc (Decl);
               Id := Defining_Identifier (Decl);
               Typ := Etype (Id);

               if Initialization_Control.Requires_Late_Init (Decl, Rec_Type)
               then
                  if Present (Expression (Decl)) then
                     Append_List_To (Late_Stmts,
                       Build_Assignment (Id, Expression (Decl)));

                  elsif Has_Non_Null_Base_Init_Proc (Typ) then
                     Append_List_To (Late_Stmts,
                       Build_Initialization_Call (Comp_Loc,
                         Make_Selected_Component (Comp_Loc,
                           Prefix        =>
                             Make_Identifier (Comp_Loc, Name_uInit),
                           Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
                         Typ,
                         In_Init_Proc => True,
                         Enclos_Type  => Rec_Type,
                         Discr_Map    => Discr_Map));

                     Clean_Task_Names (Typ, Proc_Id);

                     --  Preserve initialization state in the current counter

                     if Needs_Finalization (Typ) then
                        if No (Counter_Id) then
                           Make_Counter (Comp_Loc);
                        end if;

                        Increment_Counter (Comp_Loc, Late => True);
                     end if;
                  elsif Component_Needs_Simple_Initialization (Typ) then
                     Append_List_To (Late_Stmts,
                       Build_Assignment
                         (Id      => Id,
                          Default =>
                            Get_Simple_Init_Val
                              (Typ  => Typ,
                               N    => N,
                               Size => Esize (Id))));
                  end if;
               end if;

               Next_Non_Pragma (Decl);
            end loop;
         end if;

         --  Process the variant part (incorrectly ignoring late
         --  initialization requirements for components therein).

         if Present (Variant_Part (Comp_List)) then
            declare
               Variant_Alts : constant List_Id := New_List;
               Var_Loc      : Source_Ptr := No_Location;
               Variant      : Node_Id;

            begin
               Variant :=
                 First_Non_Pragma (Variants (Variant_Part (Comp_List)));
               while Present (Variant) loop
                  Var_Loc := Sloc (Variant);
                  Append_To (Variant_Alts,
                    Make_Case_Statement_Alternative (Var_Loc,
                      Discrete_Choices =>
                        New_Copy_List (Discrete_Choices (Variant)),
                      Statements =>
                        Build_Init_Statements (Component_List (Variant))));
                  Next_Non_Pragma (Variant);
               end loop;

               --  The expression of the case statement which is a reference
               --  to one of the discriminants is replaced by the appropriate
               --  formal parameter of the initialization procedure.

               Append_To (Stmts,
                 Make_Case_Statement (Var_Loc,
                   Expression =>
                     New_Occurrence_Of (Discriminal (
                       Entity (Name (Variant_Part (Comp_List)))), Var_Loc),
                   Alternatives => Variant_Alts));
            end;
         end if;

         if No (Init_Control_Formal) then
            Append_List_To (Stmts, Late_Stmts);

            --  If no initializations were generated for component declarations
            --  and included in Stmts, then append a null statement to Stmts
            --  to make it a valid Ada tree.

            if Is_Empty_List (Stmts) then
               Append (Make_Null_Statement (Loc), Stmts);
            end if;

            return Stmts;
         else
            declare
               use Initialization_Control;

               If_Early : constant Node_Id :=
                  (if Is_Empty_List (Stmts) then
                      Make_Null_Statement (Loc)
                   else
                      Make_If_Statement (Loc,
                        Condition =>
                          Early_Init_Condition (Loc, Init_Control_Formal),
                        Then_Statements => Stmts));
               If_Late : constant Node_Id :=
                  (if Is_Empty_List (Late_Stmts) then
                      Make_Null_Statement (Loc)
                   else
                      Make_If_Statement (Loc,
                        Condition =>
                          Late_Init_Condition (Loc, Init_Control_Formal),
                        Then_Statements => Late_Stmts));
            begin
               return New_List (If_Early, If_Late);
            end;
         end if;
      exception
         when RE_Not_Available =>
            return Empty_List;
      end Build_Init_Statements;

      -------------------------
      -- Build_Record_Checks --
      -------------------------

      procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
         Subtype_Mark_Id : Entity_Id;

         procedure Constrain_Array
           (SI         : Node_Id;
            Check_List : List_Id);
         --  Apply a list of index constraints to an unconstrained array type.
         --  The first parameter is the entity for the resulting subtype.
         --  Check_List is a list to which the check actions are appended.

         ---------------------
         -- Constrain_Array --
         ---------------------

         procedure Constrain_Array
           (SI         : Node_Id;
            Check_List : List_Id)
         is
            C                     : constant Node_Id := Constraint (SI);
            Number_Of_Constraints : Nat := 0;
            Index                 : Node_Id;
            S, T                  : Entity_Id;

            procedure Constrain_Index
              (Index      : Node_Id;
               S          : Node_Id;
               Check_List : List_Id);
            --  Process an index constraint in a constrained array declaration.
            --  The constraint can be either a subtype name or a range with or
            --  without an explicit subtype mark. Index is the corresponding
            --  index of the unconstrained array. S is the range expression.
            --  Check_List is a list to which the check actions are appended.

            ---------------------
            -- Constrain_Index --
            ---------------------

            procedure Constrain_Index
              (Index        : Node_Id;
               S            : Node_Id;
               Check_List   : List_Id)
            is
               T : constant Entity_Id := Etype (Index);

            begin
               if Nkind (S) = N_Range then
                  Process_Range_Expr_In_Decl (S, T, Check_List => Check_List);
               end if;
            end Constrain_Index;

         --  Start of processing for Constrain_Array

         begin
            T := Entity (Subtype_Mark (SI));

            if Is_Access_Type (T) then
               T := Designated_Type (T);
            end if;

            S := First (Constraints (C));
            while Present (S) loop
               Number_Of_Constraints := Number_Of_Constraints + 1;
               Next (S);
            end loop;

            --  In either case, the index constraint must provide a discrete
            --  range for each index of the array type and the type of each
            --  discrete range must be the same as that of the corresponding
            --  index. (RM 3.6.1)

            S := First (Constraints (C));
            Index := First_Index (T);
            Analyze (Index);

            --  Apply constraints to each index type

            for J in 1 .. Number_Of_Constraints loop
               Constrain_Index (Index, S, Check_List);
               Next (Index);
               Next (S);
            end loop;
         end Constrain_Array;

      --  Start of processing for Build_Record_Checks

      begin
         if Nkind (S) = N_Subtype_Indication then
            Find_Type (Subtype_Mark (S));
            Subtype_Mark_Id := Entity (Subtype_Mark (S));

            --  Remaining processing depends on type

            case Ekind (Subtype_Mark_Id) is
               when Array_Kind =>
                  Constrain_Array (S, Check_List);

               when others =>
                  null;
            end case;
         end if;
      end Build_Record_Checks;

      -------------------------------------------
      -- Component_Needs_Simple_Initialization --
      -------------------------------------------

      function Component_Needs_Simple_Initialization
        (T : Entity_Id) return Boolean
      is
      begin
         return
           Needs_Simple_Initialization (T)
             and then not Is_RTE (T, RE_Tag)

             --  Ada 2005 (AI-251): Check also the tag of abstract interfaces

             and then not Is_RTE (T, RE_Interface_Tag);
      end Component_Needs_Simple_Initialization;

      --------------------------------------
      -- Parent_Subtype_Renaming_Discrims --
      --------------------------------------

      function Parent_Subtype_Renaming_Discrims return Boolean is
         De : Entity_Id;
         Dp : Entity_Id;

      begin
         if Base_Type (Rec_Ent) /= Rec_Ent then
            return False;
         end if;

         if Etype (Rec_Ent) = Rec_Ent
           or else not Has_Discriminants (Rec_Ent)
           or else Is_Constrained (Rec_Ent)
           or else Is_Tagged_Type (Rec_Ent)
         then
            return False;
         end if;

         --  If there are no explicit stored discriminants we have inherited
         --  the root type discriminants so far, so no renamings occurred.

         if First_Discriminant (Rec_Ent) =
              First_Stored_Discriminant (Rec_Ent)
         then
            return False;
         end if;

         --  Check if we have done some trivial renaming of the parent
         --  discriminants, i.e. something like
         --
         --    type DT (X1, X2: int) is new PT (X1, X2);

         De := First_Discriminant (Rec_Ent);
         Dp := First_Discriminant (Etype (Rec_Ent));
         while Present (De) loop
            pragma Assert (Present (Dp));

            if Corresponding_Discriminant (De) /= Dp then
               return True;
            end if;

            Next_Discriminant (De);
            Next_Discriminant (Dp);
         end loop;

         return Present (Dp);
      end Parent_Subtype_Renaming_Discrims;

      ------------------------
      -- Requires_Init_Proc --
      ------------------------

      function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
         Comp_Decl : Node_Id;
         Id        : Entity_Id;
         Typ       : Entity_Id;

      begin
         --  Definitely do not need one if specifically suppressed

         if Initialization_Suppressed (Rec_Id) then
            return False;
         end if;

         --  If it is a type derived from a type with unknown discriminants,
         --  we cannot build an initialization procedure for it.

         if Has_Unknown_Discriminants (Rec_Id)
           or else Has_Unknown_Discriminants (Etype (Rec_Id))
         then
            return False;
         end if;

         --  Otherwise we need to generate an initialization procedure if
         --  Is_CPP_Class is False and at least one of the following applies:

         --  1. Discriminants are present, since they need to be initialized
         --     with the appropriate discriminant constraint expressions.
         --     However, the discriminant of an unchecked union does not
         --     count, since the discriminant is not present.

         --  2. The type is a tagged type, since the implicit Tag component
         --     needs to be initialized with a pointer to the dispatch table.

         --  3. The type contains tasks

         --  4. One or more components has an initial value

         --  5. One or more components is for a type which itself requires
         --     an initialization procedure.

         --  6. One or more components is a type that requires simple
         --     initialization (see Needs_Simple_Initialization), except
         --     that types Tag and Interface_Tag are excluded, since fields
         --     of these types are initialized by other means.

         --  7. The type is the record type built for a task type (since at
         --     the very least, Create_Task must be called)

         --  8. The type is the record type built for a protected type (since
         --     at least Initialize_Protection must be called)

         --  9. The type is marked as a public entity. The reason we add this
         --     case (even if none of the above apply) is to properly handle
         --     Initialize_Scalars. If a package is compiled without an IS
         --     pragma, and the client is compiled with an IS pragma, then
         --     the client will think an initialization procedure is present
         --     and call it, when in fact no such procedure is required, but
         --     since the call is generated, there had better be a routine
         --     at the other end of the call, even if it does nothing).

         --  Note: the reason we exclude the CPP_Class case is because in this
         --  case the initialization is performed by the C++ constructors, and
         --  the IP is built by Set_CPP_Constructors.

         if Is_CPP_Class (Rec_Id) then
            return False;

         elsif Is_Interface (Rec_Id) then
            return False;

         elsif (Has_Discriminants (Rec_Id)
                 and then not Is_Unchecked_Union (Rec_Id))
           or else Is_Tagged_Type (Rec_Id)
           or else Is_Concurrent_Record_Type (Rec_Id)
           or else Has_Task (Rec_Id)
         then
            return True;
         end if;

         Id := First_Component (Rec_Id);
         while Present (Id) loop
            Comp_Decl := Parent (Id);
            Typ := Etype (Id);

            if Present (Expression (Comp_Decl))
              or else Has_Non_Null_Base_Init_Proc (Typ)
              or else Component_Needs_Simple_Initialization (Typ)
            then
               return True;
            end if;

            Next_Component (Id);
         end loop;

         --  As explained above, a record initialization procedure is needed
         --  for public types in case Initialize_Scalars applies to a client.
         --  However, such a procedure is not needed in the case where either
         --  of restrictions No_Initialize_Scalars or No_Default_Initialization
         --  applies. No_Initialize_Scalars excludes the possibility of using
         --  Initialize_Scalars in any partition, and No_Default_Initialization
         --  implies that no initialization should ever be done for objects of
         --  the type, so is incompatible with Initialize_Scalars.

         if not Restriction_Active (No_Initialize_Scalars)
           and then not Restriction_Active (No_Default_Initialization)
           and then Is_Public (Rec_Id)
         then
            return True;
         end if;

         return False;
      end Requires_Init_Proc;

   --  Start of processing for Build_Record_Init_Proc

   begin
      Rec_Type := Defining_Identifier (N);

      --  This may be full declaration of a private type, in which case
      --  the visible entity is a record, and the private entity has been
      --  exchanged with it in the private part of the current package.
      --  The initialization procedure is built for the record type, which
      --  is retrievable from the private entity.

      if Is_Incomplete_Or_Private_Type (Rec_Type) then
         Rec_Type := Underlying_Type (Rec_Type);
      end if;

      --  If we have a variant record with restriction No_Implicit_Conditionals
      --  in effect, then we skip building the procedure. This is safe because
      --  if we can see the restriction, so can any caller, calls to initialize
      --  such records are not allowed for variant records if this restriction
      --  is active.

      if Has_Variant_Part (Rec_Type)
        and then Restriction_Active (No_Implicit_Conditionals)
      then
         return;
      end if;

      --  If there are discriminants, build the discriminant map to replace
      --  discriminants by their discriminals in complex bound expressions.
      --  These only arise for the corresponding records of synchronized types.

      if Is_Concurrent_Record_Type (Rec_Type)
        and then Has_Discriminants (Rec_Type)
      then
         declare
            Disc : Entity_Id;
         begin
            Disc := First_Discriminant (Rec_Type);
            while Present (Disc) loop
               Append_Elmt (Disc, Discr_Map);
               Append_Elmt (Discriminal (Disc), Discr_Map);
               Next_Discriminant (Disc);
            end loop;
         end;
      end if;

      --  Derived types that have no type extension can use the initialization
      --  procedure of their parent and do not need a procedure of their own.
      --  This is only correct if there are no representation clauses for the
      --  type or its parent, and if the parent has in fact been frozen so
      --  that its initialization procedure exists.

      if Is_Derived_Type (Rec_Type)
        and then not Is_Tagged_Type (Rec_Type)
        and then not Is_Unchecked_Union (Rec_Type)
        and then not Has_New_Non_Standard_Rep (Rec_Type)
        and then not Parent_Subtype_Renaming_Discrims
        and then Present (Base_Init_Proc (Etype (Rec_Type)))
      then
         Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);

      --  Otherwise if we need an initialization procedure, then build one,
      --  mark it as public and inlinable and as having a completion.

      elsif Requires_Init_Proc (Rec_Type)
        or else Is_Unchecked_Union (Rec_Type)
      then
         Proc_Id :=
           Make_Defining_Identifier (Loc,
             Chars => Make_Init_Proc_Name (Rec_Type));

         --  If No_Default_Initialization restriction is active, then we don't
         --  want to build an init_proc, but we need to mark that an init_proc
         --  would be needed if this restriction was not active (so that we can
         --  detect attempts to call it), so set a dummy init_proc in place.

         if Restriction_Active (No_Default_Initialization) then
            Set_Init_Proc (Rec_Type, Proc_Id);
            return;
         end if;

         Build_Offset_To_Top_Functions;
         Build_CPP_Init_Procedure;
         Build_Init_Procedure;

         Set_Is_Public      (Proc_Id, Is_Public (Rec_Ent));
         Set_Is_Internal    (Proc_Id);
         Set_Has_Completion (Proc_Id);

         if not Debug_Generated_Code then
            Set_Debug_Info_Off (Proc_Id);
         end if;

         Set_Is_Inlined (Proc_Id, Inline_Init_Proc (Rec_Type));

         --  Do not build an aggregate if Modify_Tree_For_C, this isn't
         --  needed and may generate early references to non frozen types
         --  since we expand aggregate much more systematically.

         if Modify_Tree_For_C then
            return;
         end if;

         declare
            Agg : constant Node_Id :=
                    Build_Equivalent_Record_Aggregate (Rec_Type);

            procedure Collect_Itypes (Comp : Node_Id);
            --  Generate references to itypes in the aggregate, because
            --  the first use of the aggregate may be in a nested scope.

            --------------------
            -- Collect_Itypes --
            --------------------

            procedure Collect_Itypes (Comp : Node_Id) is
               Ref      : Node_Id;
               Sub_Aggr : Node_Id;
               Typ      : constant Entity_Id := Etype (Comp);

            begin
               if Is_Array_Type (Typ) and then Is_Itype (Typ) then
                  Ref := Make_Itype_Reference (Loc);
                  Set_Itype (Ref, Typ);
                  Append_Freeze_Action (Rec_Type, Ref);

                  Ref := Make_Itype_Reference (Loc);
                  Set_Itype (Ref, Etype (First_Index (Typ)));
                  Append_Freeze_Action (Rec_Type, Ref);

                  --  Recurse on nested arrays

                  Sub_Aggr := First (Expressions (Comp));
                  while Present (Sub_Aggr) loop
                     Collect_Itypes (Sub_Aggr);
                     Next (Sub_Aggr);
                  end loop;
               end if;
            end Collect_Itypes;

         begin
            --  If there is a static initialization aggregate for the type,
            --  generate itype references for the types of its (sub)components,
            --  to prevent out-of-scope errors in the resulting tree.
            --  The aggregate may have been rewritten as a Raise node, in which
            --  case there are no relevant itypes.

            if Present (Agg) and then Nkind (Agg) = N_Aggregate then
               Set_Static_Initialization (Proc_Id, Agg);

               declare
                  Comp : Node_Id;
               begin
                  Comp := First (Component_Associations (Agg));
                  while Present (Comp) loop
                     Collect_Itypes (Expression (Comp));
                     Next (Comp);
                  end loop;
               end;
            end if;
         end;
      end if;
   end Build_Record_Init_Proc;

   ----------------------------
   -- Build_Slice_Assignment --
   ----------------------------

   --  Generates the following subprogram:

   --    procedure array_typeSA
   --     (Source,  Target    : Array_Type,
   --      Left_Lo, Left_Hi   : Index;
   --      Right_Lo, Right_Hi : Index;
   --      Rev                : Boolean)
   --    is
   --       Li1 : Index;
   --       Ri1 : Index;

   --    begin
   --       if Left_Hi < Left_Lo then
   --          return;
   --       end if;

   --       if Rev then
   --          Li1 := Left_Hi;
   --          Ri1 := Right_Hi;
   --       else
   --          Li1 := Left_Lo;
   --          Ri1 := Right_Lo;
   --       end if;

   --       loop
   --          Target (Li1) := Source (Ri1);

   --          if Rev then
   --             exit when Li1 = Left_Lo;
   --             Li1 := Index'pred (Li1);
   --             Ri1 := Index'pred (Ri1);
   --          else
   --             exit when Li1 = Left_Hi;
   --             Li1 := Index'succ (Li1);
   --             Ri1 := Index'succ (Ri1);
   --          end if;
   --       end loop;
   --    end array_typeSA;

   procedure Build_Slice_Assignment (Typ : Entity_Id) is
      Loc   : constant Source_Ptr := Sloc (Typ);
      Index : constant Entity_Id  := Base_Type (Etype (First_Index (Typ)));

      Larray    : constant Entity_Id := Make_Temporary (Loc, 'A');
      Rarray    : constant Entity_Id := Make_Temporary (Loc, 'R');
      Left_Lo   : constant Entity_Id := Make_Temporary (Loc, 'L');
      Left_Hi   : constant Entity_Id := Make_Temporary (Loc, 'L');
      Right_Lo  : constant Entity_Id := Make_Temporary (Loc, 'R');
      Right_Hi  : constant Entity_Id := Make_Temporary (Loc, 'R');
      Rev       : constant Entity_Id := Make_Temporary (Loc, 'D');
      --  Formal parameters of procedure

      Proc_Name : constant Entity_Id :=
                    Make_Defining_Identifier (Loc,
                      Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));

      Lnn : constant Entity_Id := Make_Temporary (Loc, 'L');
      Rnn : constant Entity_Id := Make_Temporary (Loc, 'R');
      --  Subscripts for left and right sides

      Decls : List_Id;
      Loops : Node_Id;
      Stats : List_Id;

   begin
      --  Build declarations for indexes

      Decls := New_List;

      Append_To (Decls,
         Make_Object_Declaration (Loc,
           Defining_Identifier => Lnn,
           Object_Definition  =>
             New_Occurrence_Of (Index, Loc)));

      Append_To (Decls,
        Make_Object_Declaration (Loc,
          Defining_Identifier => Rnn,
          Object_Definition  =>
            New_Occurrence_Of (Index, Loc)));

      Stats := New_List;

      --  Build test for empty slice case

      Append_To (Stats,
        Make_If_Statement (Loc,
          Condition =>
             Make_Op_Lt (Loc,
               Left_Opnd  => New_Occurrence_Of (Left_Hi, Loc),
               Right_Opnd => New_Occurrence_Of (Left_Lo, Loc)),
          Then_Statements => New_List (Make_Simple_Return_Statement (Loc))));

      --  Build initializations for indexes

      declare
         F_Init : constant List_Id := New_List;
         B_Init : constant List_Id := New_List;

      begin
         Append_To (F_Init,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Lnn, Loc),
             Expression => New_Occurrence_Of (Left_Lo, Loc)));

         Append_To (F_Init,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Rnn, Loc),
             Expression => New_Occurrence_Of (Right_Lo, Loc)));

         Append_To (B_Init,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Lnn, Loc),
             Expression => New_Occurrence_Of (Left_Hi, Loc)));

         Append_To (B_Init,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Rnn, Loc),
             Expression => New_Occurrence_Of (Right_Hi, Loc)));

         Append_To (Stats,
           Make_If_Statement (Loc,
             Condition => New_Occurrence_Of (Rev, Loc),
             Then_Statements => B_Init,
             Else_Statements => F_Init));
      end;

      --  Now construct the assignment statement

      Loops :=
        Make_Loop_Statement (Loc,
          Statements => New_List (
            Make_Assignment_Statement (Loc,
              Name =>
                Make_Indexed_Component (Loc,
                  Prefix => New_Occurrence_Of (Larray, Loc),
                  Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
              Expression =>
                Make_Indexed_Component (Loc,
                  Prefix => New_Occurrence_Of (Rarray, Loc),
                  Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
          End_Label  => Empty);

      --  Build the exit condition and increment/decrement statements

      declare
         F_Ass : constant List_Id := New_List;
         B_Ass : constant List_Id := New_List;

      begin
         Append_To (F_Ass,
           Make_Exit_Statement (Loc,
             Condition =>
               Make_Op_Eq (Loc,
                 Left_Opnd  => New_Occurrence_Of (Lnn, Loc),
                 Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));

         Append_To (F_Ass,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Lnn, Loc),
             Expression =>
               Make_Attribute_Reference (Loc,
                 Prefix =>
                   New_Occurrence_Of (Index, Loc),
                 Attribute_Name => Name_Succ,
                 Expressions => New_List (
                   New_Occurrence_Of (Lnn, Loc)))));

         Append_To (F_Ass,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Rnn, Loc),
             Expression =>
               Make_Attribute_Reference (Loc,
                 Prefix =>
                   New_Occurrence_Of (Index, Loc),
                 Attribute_Name => Name_Succ,
                 Expressions => New_List (
                   New_Occurrence_Of (Rnn, Loc)))));

         Append_To (B_Ass,
           Make_Exit_Statement (Loc,
             Condition =>
               Make_Op_Eq (Loc,
                 Left_Opnd  => New_Occurrence_Of (Lnn, Loc),
                 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));

         Append_To (B_Ass,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Lnn, Loc),
             Expression =>
               Make_Attribute_Reference (Loc,
                 Prefix =>
                   New_Occurrence_Of (Index, Loc),
                 Attribute_Name => Name_Pred,
                   Expressions => New_List (
                     New_Occurrence_Of (Lnn, Loc)))));

         Append_To (B_Ass,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Rnn, Loc),
             Expression =>
               Make_Attribute_Reference (Loc,
                 Prefix =>
                   New_Occurrence_Of (Index, Loc),
                 Attribute_Name => Name_Pred,
                 Expressions => New_List (
                   New_Occurrence_Of (Rnn, Loc)))));

         Append_To (Statements (Loops),
           Make_If_Statement (Loc,
             Condition => New_Occurrence_Of (Rev, Loc),
             Then_Statements => B_Ass,
             Else_Statements => F_Ass));
      end;

      Append_To (Stats, Loops);

      declare
         Spec    : Node_Id;
         Formals : List_Id;

      begin
         Formals := New_List (
           Make_Parameter_Specification (Loc,
             Defining_Identifier => Larray,
             Out_Present => True,
             Parameter_Type =>
               New_Occurrence_Of (Base_Type (Typ), Loc)),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => Rarray,
             Parameter_Type =>
               New_Occurrence_Of (Base_Type (Typ), Loc)),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => Left_Lo,
             Parameter_Type =>
               New_Occurrence_Of (Index, Loc)),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => Left_Hi,
             Parameter_Type =>
               New_Occurrence_Of (Index, Loc)),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => Right_Lo,
             Parameter_Type =>
               New_Occurrence_Of (Index, Loc)),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => Right_Hi,
             Parameter_Type =>
               New_Occurrence_Of (Index, Loc)));

         Append_To (Formals,
           Make_Parameter_Specification (Loc,
             Defining_Identifier => Rev,
             Parameter_Type =>
               New_Occurrence_Of (Standard_Boolean, Loc)));

         Spec :=
           Make_Procedure_Specification (Loc,
             Defining_Unit_Name       => Proc_Name,
             Parameter_Specifications => Formals);

         Discard_Node (
           Make_Subprogram_Body (Loc,
             Specification              => Spec,
             Declarations               => Decls,
             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => Stats)));
      end;

      Set_TSS (Typ, Proc_Name);
      Set_Is_Pure (Proc_Name);
   end Build_Slice_Assignment;

   ------------------------------------
   -- Build_Untagged_Record_Equality --
   ------------------------------------

   procedure Build_Untagged_Record_Equality (Typ : Entity_Id) is
      Build_Eq : Boolean;
      Comp     : Entity_Id;
      Decl     : Node_Id;
      Op       : Entity_Id;
      Eq_Op    : Entity_Id;

      function User_Defined_Eq (T : Entity_Id) return Entity_Id;
      --  Check whether the type T has a user-defined primitive equality. If so
      --  return it, else return Empty. If true for a component of Typ, we have
      --  to build the primitive equality for it.

      ---------------------
      -- User_Defined_Eq --
      ---------------------

      function User_Defined_Eq (T : Entity_Id) return Entity_Id is
         Op : constant Entity_Id := TSS (T, TSS_Composite_Equality);

      begin
         if Present (Op) then
            return Op;
         else
            return Get_User_Defined_Equality (T);
         end if;
      end User_Defined_Eq;

   --  Start of processing for Build_Untagged_Record_Equality

   begin
      --  If a record component has a primitive equality operation, we must
      --  build the corresponding one for the current type.

      Build_Eq := False;
      Comp := First_Component (Typ);
      while Present (Comp) loop
         if Is_Record_Type (Etype (Comp))
           and then Present (User_Defined_Eq (Etype (Comp)))
         then
            Build_Eq := True;
            exit;
         end if;

         Next_Component (Comp);
      end loop;

      --  If there is a user-defined equality for the type, we do not create
      --  the implicit one.

      Eq_Op := Get_User_Defined_Equality (Typ);
      if Present (Eq_Op) then
         if Comes_From_Source (Eq_Op) then
            Build_Eq := False;
         else
            Eq_Op := Empty;
         end if;
      end if;

      --  If the type is derived, inherit the operation, if present, from the
      --  parent type. It may have been declared after the type derivation. If
      --  the parent type itself is derived, it may have inherited an operation
      --  that has itself been overridden, so update its alias and related
      --  flags. Ditto for inequality.

      if No (Eq_Op) and then Is_Derived_Type (Typ) then
         Eq_Op := Get_User_Defined_Equality (Etype (Typ));
         if Present (Eq_Op) then
            Copy_TSS (Eq_Op, Typ);
            Build_Eq := False;

            declare
               Op    : constant Entity_Id := User_Defined_Eq (Typ);
               NE_Op : constant Entity_Id := Next_Entity (Eq_Op);

            begin
               if Present (Op) then
                  Set_Alias (Op, Eq_Op);
                  Set_Is_Abstract_Subprogram
                    (Op, Is_Abstract_Subprogram (Eq_Op));

                  if Chars (Next_Entity (Op)) = Name_Op_Ne then
                     Set_Is_Abstract_Subprogram
                       (Next_Entity (Op), Is_Abstract_Subprogram (NE_Op));
                  end if;
               end if;
            end;
         end if;
      end if;

      --  If not inherited and not user-defined, build body as for a type with
      --  components of record type (i.e. a type for which "=" composes when
      --  used as a component in an outer composite type).

      if Build_Eq then
         Decl :=
           Make_Eq_Body (Typ, Make_TSS_Name (Typ, TSS_Composite_Equality));
         Op := Defining_Entity (Decl);
         Set_TSS (Typ, Op);
         Set_Is_Pure (Op);

         if Is_Library_Level_Entity (Typ) then
            Set_Is_Public (Op);
         end if;
      end if;
   end Build_Untagged_Record_Equality;

   -----------------------------------
   -- Build_Variant_Record_Equality --
   -----------------------------------

   --  Generates:

   --    function <<Body_Id>> (Left, Right : T) return Boolean is
   --       [ X : T renames Left;  ]
   --       [ Y : T renames Right; ]
   --       --  The above renamings are generated only if the parameters of
   --       --  this built function (which are passed by the caller) are not
   --       --  named 'X' and 'Y'; these names are required to reuse several
   --       --  expander routines when generating this body.

   --    begin
   --       --  Compare discriminants

   --       if X.D1 /= Y.D1 or else X.D2 /= Y.D2 or else ... then
   --          return False;
   --       end if;

   --       --  Compare components

   --       if X.C1 /= Y.C1 or else X.C2 /= Y.C2 or else ... then
   --          return False;
   --       end if;

   --       --  Compare variant part

   --       case X.D1 is
   --          when V1 =>
   --             if X.C2 /= Y.C2 or else X.C3 /= Y.C3 or else ... then
   --                return False;
   --             end if;
   --          ...
   --          when Vn =>
   --             if X.Cn /= Y.Cn or else ... then
   --                return False;
   --             end if;
   --       end case;

   --       return True;
   --    end _Equality;

   function Build_Variant_Record_Equality
     (Typ         : Entity_Id;
      Spec_Id     : Entity_Id;
      Body_Id     : Entity_Id;
      Param_Specs : List_Id) return Node_Id
   is
      Loc   : constant Source_Ptr := Sloc (Typ);
      Def   : constant Node_Id    := Parent (Typ);
      Comps : constant Node_Id    := Component_List (Type_Definition (Def));
      Left  : constant Entity_Id  := Defining_Identifier (First (Param_Specs));
      Right : constant Entity_Id  :=
                    Defining_Identifier (Next (First (Param_Specs)));
      Decls : constant List_Id    := New_List;
      Stmts : constant List_Id    := New_List;

      Subp_Body : Node_Id;

   begin
      pragma Assert (not Is_Tagged_Type (Typ));

      --  In order to reuse the expander routines Make_Eq_If and Make_Eq_Case
      --  the name of the formals must be X and Y; otherwise we generate two
      --  renaming declarations for such purpose.

      if Chars (Left) /= Name_X then
         Append_To (Decls,
           Make_Object_Renaming_Declaration (Loc,
             Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
             Subtype_Mark        => New_Occurrence_Of (Typ, Loc),
             Name                => Make_Identifier (Loc, Chars (Left))));
      end if;

      if Chars (Right) /= Name_Y then
         Append_To (Decls,
           Make_Object_Renaming_Declaration (Loc,
             Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
             Subtype_Mark        => New_Occurrence_Of (Typ, Loc),
             Name                => Make_Identifier (Loc, Chars (Right))));
      end if;

      --  Unchecked_Unions require additional machinery to support equality.
      --  Two extra parameters (A and B) are added to the equality function
      --  parameter list for each discriminant of the type, in order to
      --  capture the inferred values of the discriminants in equality calls.
      --  The names of the parameters match the names of the corresponding
      --  discriminant, with an added suffix.

      if Is_Unchecked_Union (Typ) then
         declare
            Right_Formal : constant Entity_Id :=
              (if Present (Spec_Id) then Last_Formal (Spec_Id) else Right);
            Scop : constant Entity_Id :=
              (if Present (Spec_Id) then Spec_Id else Body_Id);

            procedure Decorate_Extra_Formal (F, F_Typ : Entity_Id);
            --  Decorate extra formal F with type F_Typ

            ---------------------------
            -- Decorate_Extra_Formal --
            ---------------------------

            procedure Decorate_Extra_Formal (F, F_Typ : Entity_Id) is
            begin
               Mutate_Ekind  (F, E_In_Parameter);
               Set_Etype     (F, F_Typ);
               Set_Scope     (F, Scop);
               Set_Mechanism (F, By_Copy);
            end Decorate_Extra_Formal;

            A          : Entity_Id;
            B          : Entity_Id;
            Discr      : Entity_Id;
            Discr_Type : Entity_Id;
            Last_Extra : Entity_Id := Empty;
            New_Discrs : Elist_Id;

         begin
            Mutate_Ekind (Body_Id, E_Subprogram_Body);
            New_Discrs := New_Elmt_List;

            Discr := First_Discriminant (Typ);
            while Present (Discr) loop
               Discr_Type := Etype (Discr);

               --  Add the new parameters as extra formals

               A :=
                 Make_Defining_Identifier (Loc,
                   Chars => New_External_Name (Chars (Discr), 'A'));

               Decorate_Extra_Formal (A, Discr_Type);

               if Present (Last_Extra) then
                  Set_Extra_Formal (Last_Extra, A);
               else
                  Set_Extra_Formal (Right_Formal, A);
                  Set_Extra_Formals (Scop, A);
               end if;

               Append_Elmt (A, New_Discrs);

               B :=
                 Make_Defining_Identifier (Loc,
                   Chars => New_External_Name (Chars (Discr), 'B'));

               Decorate_Extra_Formal (B, Discr_Type);

               Set_Extra_Formal (A, B);
               Last_Extra := B;

               --  Generate the following code to compare each of the inferred
               --  discriminants:

               --  if a /= b then
               --     return False;
               --  end if;

               Append_To (Stmts,
                 Make_If_Statement (Loc,
                   Condition       =>
                     Make_Op_Ne (Loc,
                       Left_Opnd  => New_Occurrence_Of (A, Loc),
                       Right_Opnd => New_Occurrence_Of (B, Loc)),
                   Then_Statements => New_List (
                     Make_Simple_Return_Statement (Loc,
                       Expression =>
                         New_Occurrence_Of (Standard_False, Loc)))));

               Next_Discriminant (Discr);
            end loop;

            --  Generate component-by-component comparison. Note that we must
            --  propagate the inferred discriminants formals to act as the case
            --  statement switch. Their value is added when an equality call on
            --  unchecked unions is expanded.

            Append_List_To (Stmts, Make_Eq_Case (Typ, Comps, New_Discrs));
         end;

      --  Normal case (not unchecked union)

      else
         Append_To (Stmts,
           Make_Eq_If (Typ, Discriminant_Specifications (Def)));
         Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
      end if;

      Append_To (Stmts,
        Make_Simple_Return_Statement (Loc,
          Expression => New_Occurrence_Of (Standard_True, Loc)));

      Subp_Body :=
        Make_Subprogram_Body (Loc,
          Specification              =>
            Make_Function_Specification (Loc,
              Defining_Unit_Name       => Body_Id,
              Parameter_Specifications => Param_Specs,
              Result_Definition        =>
                New_Occurrence_Of (Standard_Boolean, Loc)),
          Declarations               => Decls,
          Handled_Statement_Sequence =>
            Make_Handled_Sequence_Of_Statements (Loc,
              Statements => Stmts));

      return Subp_Body;
   end Build_Variant_Record_Equality;

   -----------------------------
   -- Check_Stream_Attributes --
   -----------------------------

   procedure Check_Stream_Attributes (Typ : Entity_Id) is
      Comp      : Entity_Id;
      Par_Read  : constant Boolean :=
                    Stream_Attribute_Available (Typ, TSS_Stream_Read)
                      and then not Has_Specified_Stream_Read (Typ);
      Par_Write : constant Boolean :=
                    Stream_Attribute_Available (Typ, TSS_Stream_Write)
                      and then not Has_Specified_Stream_Write (Typ);

      procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
      --  Check that Comp has a user-specified Nam stream attribute

      ----------------
      -- Check_Attr --
      ----------------

      procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
      begin
         --  Move this check to sem???

         if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then
            Error_Msg_Name_1 := Nam;
            Error_Msg_N
              ("|component& in limited extension must have% attribute", Comp);
         end if;
      end Check_Attr;

   --  Start of processing for Check_Stream_Attributes

   begin
      if Par_Read or else Par_Write then
         Comp := First_Component (Typ);
         while Present (Comp) loop
            if Comes_From_Source (Comp)
              and then Original_Record_Component (Comp) = Comp
              and then Is_Limited_Type (Etype (Comp))
            then
               if Par_Read then
                  Check_Attr (Name_Read, TSS_Stream_Read);
               end if;

               if Par_Write then
                  Check_Attr (Name_Write, TSS_Stream_Write);
               end if;
            end if;

            Next_Component (Comp);
         end loop;
      end if;
   end Check_Stream_Attributes;

   ----------------------
   -- Clean_Task_Names --
   ----------------------

   procedure Clean_Task_Names
     (Typ     : Entity_Id;
      Proc_Id : Entity_Id)
   is
   begin
      if Has_Task (Typ)
        and then not Restriction_Active (No_Implicit_Heap_Allocations)
        and then not Global_Discard_Names
        and then Tagged_Type_Expansion
      then
         Set_Uses_Sec_Stack (Proc_Id);
      end if;
   end Clean_Task_Names;

   -------------------------------
   -- Copy_Discr_Checking_Funcs --
   -------------------------------

   procedure Copy_Discr_Checking_Funcs (N : Node_Id) is
      Typ      : constant Entity_Id := Defining_Identifier (N);
      Comp     : Entity_Id := First_Component (Typ);
      Old_Comp : Entity_Id := First_Component
                                (Base_Type (Underlying_Type (Etype (Typ))));
   begin
      while Present (Comp) loop
         if Chars (Comp) = Chars (Old_Comp) then
            Set_Discriminant_Checking_Func
              (Comp, Discriminant_Checking_Func (Old_Comp));
         end if;

         Next_Component (Old_Comp);
         Next_Component (Comp);
      end loop;
   end Copy_Discr_Checking_Funcs;

   ------------------------------
   -- Expand_Freeze_Array_Type --
   ------------------------------

   procedure Expand_Freeze_Array_Type (N : Node_Id) is
      Typ      : constant Entity_Id := Entity (N);
      Base     : constant Entity_Id := Base_Type (Typ);
      Comp_Typ : constant Entity_Id := Component_Type (Typ);

   begin
      if not Is_Bit_Packed_Array (Typ) then

         --  If the component contains tasks, so does the array type. This may
         --  not be indicated in the array type because the component may have
         --  been a private type at the point of definition. Same if component
         --  type is controlled or contains protected objects.

         Propagate_Concurrent_Flags (Base, Comp_Typ);
         Set_Has_Controlled_Component
           (Base, Has_Controlled_Component (Comp_Typ)
                    or else Is_Controlled (Comp_Typ));

         if No (Init_Proc (Base)) then

            --  If this is an anonymous array created for a declaration with
            --  an initial value, its init_proc will never be called. The
            --  initial value itself may have been expanded into assignments,
            --  in which case the object declaration is carries the
            --  No_Initialization flag.

            if Is_Itype (Base)
              and then Nkind (Associated_Node_For_Itype (Base)) =
                                                    N_Object_Declaration
              and then
                (Present (Expression (Associated_Node_For_Itype (Base)))
                  or else No_Initialization (Associated_Node_For_Itype (Base)))
            then
               null;

            --  We do not need an init proc for string or wide [wide] string,
            --  since the only time these need initialization in normalize or
            --  initialize scalars mode, and these types are treated specially
            --  and do not need initialization procedures.

            elsif Is_Standard_String_Type (Base) then
               null;

            --  Otherwise we have to build an init proc for the subtype

            else
               Build_Array_Init_Proc (Base, N);
            end if;
         end if;

         if Typ = Base and then Has_Controlled_Component (Base) then
            Build_Controlling_Procs (Base);

            if not Is_Limited_Type (Comp_Typ)
              and then Number_Dimensions (Typ) = 1
            then
               Build_Slice_Assignment (Typ);
            end if;
         end if;

      --  For packed case, default initialization, except if the component type
      --  is itself a packed structure with an initialization procedure, or
      --  initialize/normalize scalars active, and we have a base type, or the
      --  type is public, because in that case a client might specify
      --  Normalize_Scalars and there better be a public Init_Proc for it.

      elsif (Present (Init_Proc (Component_Type (Base)))
              and then No (Base_Init_Proc (Base)))
        or else (Init_Or_Norm_Scalars and then Base = Typ)
        or else Is_Public (Typ)
      then
         Build_Array_Init_Proc (Base, N);
      end if;
   end Expand_Freeze_Array_Type;

   -----------------------------------
   -- Expand_Freeze_Class_Wide_Type --
   -----------------------------------

   procedure Expand_Freeze_Class_Wide_Type (N : Node_Id) is
      function Is_C_Derivation (Typ : Entity_Id) return Boolean;
      --  Given a type, determine whether it is derived from a C or C++ root

      ---------------------
      -- Is_C_Derivation --
      ---------------------

      function Is_C_Derivation (Typ : Entity_Id) return Boolean is
         T : Entity_Id;

      begin
         T := Typ;
         loop
            if Is_CPP_Class (T)
              or else Convention (T) = Convention_C
              or else Convention (T) = Convention_CPP
            then
               return True;
            end if;

            exit when T = Etype (T);

            T := Etype (T);
         end loop;

         return False;
      end Is_C_Derivation;

      --  Local variables

      Typ  : constant Entity_Id := Entity (N);
      Root : constant Entity_Id := Root_Type (Typ);

   --  Start of processing for Expand_Freeze_Class_Wide_Type

   begin
      --  Certain run-time configurations and targets do not provide support
      --  for controlled types.

      if Restriction_Active (No_Finalization) then
         return;

      --  Do not create TSS routine Finalize_Address when dispatching calls are
      --  disabled since the core of the routine is a dispatching call.

      elsif Restriction_Active (No_Dispatching_Calls) then
         return;

      --  Do not create TSS routine Finalize_Address for concurrent class-wide
      --  types. Ignore C, C++, CIL and Java types since it is assumed that the
      --  non-Ada side will handle their destruction.

      elsif Is_Concurrent_Type (Root)
        or else Is_C_Derivation (Root)
        or else Convention (Typ) = Convention_CPP
      then
         return;

      --  Do not create TSS routine Finalize_Address when compiling in CodePeer
      --  mode since the routine contains an Unchecked_Conversion.

      elsif CodePeer_Mode then
         return;
      end if;

      --  Create the body of TSS primitive Finalize_Address. This automatically
      --  sets the TSS entry for the class-wide type.

      Make_Finalize_Address_Body (Typ);
   end Expand_Freeze_Class_Wide_Type;

   ------------------------------------
   -- Expand_Freeze_Enumeration_Type --
   ------------------------------------

   procedure Expand_Freeze_Enumeration_Type (N : Node_Id) is
      Typ : constant Entity_Id  := Entity (N);
      Loc : constant Source_Ptr := Sloc (Typ);

      Arr           : Entity_Id;
      Ent           : Entity_Id;
      Fent          : Entity_Id;
      Is_Contiguous : Boolean;
      Index_Typ     : Entity_Id;
      Ityp          : Entity_Id;
      Last_Repval   : Uint;
      Lst           : List_Id;
      Num           : Nat;
      Pos_Expr      : Node_Id;

      Func : Entity_Id;
      pragma Warnings (Off, Func);

   begin
      --  Various optimizations possible if given representation is contiguous

      Is_Contiguous := True;

      Ent := First_Literal (Typ);
      Last_Repval := Enumeration_Rep (Ent);
      Num := 1;
      Next_Literal (Ent);

      while Present (Ent) loop
         if Enumeration_Rep (Ent) - Last_Repval /= 1 then
            Is_Contiguous := False;
         else
            Last_Repval := Enumeration_Rep (Ent);
         end if;

         Num := Num + 1;
         Next_Literal (Ent);
      end loop;

      if Is_Contiguous then
         Set_Has_Contiguous_Rep (Typ);

         --  Now build a subtype declaration

         --    subtype typI is new Natural range 0 .. num - 1

         Index_Typ :=
           Make_Defining_Identifier (Loc,
             Chars => New_External_Name (Chars (Typ), 'I'));

         Append_Freeze_Action (Typ,
           Make_Subtype_Declaration (Loc,
             Defining_Identifier => Index_Typ,
             Subtype_Indication =>
               Make_Subtype_Indication (Loc,
                 Subtype_Mark =>
                   New_Occurrence_Of (Standard_Natural,  Loc),
                 Constraint  =>
                   Make_Range_Constraint (Loc,
                     Range_Expression =>
                       Make_Range (Loc,
                         Low_Bound  =>
                           Make_Integer_Literal (Loc, 0),
                         High_Bound =>
                           Make_Integer_Literal (Loc, Num - 1))))));

         Set_Enum_Pos_To_Rep (Typ, Index_Typ);

      else
         --  Build list of literal references

         Lst := New_List;
         Ent := First_Literal (Typ);
         while Present (Ent) loop
            Append_To (Lst, New_Occurrence_Of (Ent, Sloc (Ent)));
            Next_Literal (Ent);
         end loop;

         --  Now build an array declaration

         --    typA : constant array (Natural range 0 .. num - 1) of typ :=
         --             (v, v, v, v, v, ....)

         Arr :=
           Make_Defining_Identifier (Loc,
             Chars => New_External_Name (Chars (Typ), 'A'));

         Append_Freeze_Action (Typ,
           Make_Object_Declaration (Loc,
             Defining_Identifier => Arr,
             Constant_Present    => True,

             Object_Definition   =>
               Make_Constrained_Array_Definition (Loc,
                 Discrete_Subtype_Definitions => New_List (
                   Make_Subtype_Indication (Loc,
                     Subtype_Mark =>
                       New_Occurrence_Of (Standard_Natural, Loc),
                     Constraint   =>
                       Make_Range_Constraint (Loc,
                         Range_Expression =>
                           Make_Range (Loc,
                             Low_Bound  =>
                               Make_Integer_Literal (Loc, 0),
                             High_Bound =>
                               Make_Integer_Literal (Loc, Num - 1))))),

                 Component_Definition =>
                   Make_Component_Definition (Loc,
                     Aliased_Present => False,
                     Subtype_Indication => New_Occurrence_Of (Typ, Loc))),

             Expression =>
               Make_Aggregate (Loc,
                 Expressions => Lst)));

         Set_Enum_Pos_To_Rep (Typ, Arr);
      end if;

      --  Now we build the function that converts representation values to
      --  position values. This function has the form:

      --    function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
      --    begin
      --       case ityp!(A) is
      --         when enum-lit'Enum_Rep => return posval;
      --         when enum-lit'Enum_Rep => return posval;
      --         ...
      --         when others   =>
      --           [raise Constraint_Error when F "invalid data"]
      --           return -1;
      --       end case;
      --    end;

      --  Note: the F parameter determines whether the others case (no valid
      --  representation) raises Constraint_Error or returns a unique value
      --  of minus one. The latter case is used, e.g. in 'Valid code.

      --  Note: the reason we use Enum_Rep values in the case here is to avoid
      --  the code generator making inappropriate assumptions about the range
      --  of the values in the case where the value is invalid. ityp is a
      --  signed or unsigned integer type of appropriate width.

      --  Note: if exceptions are not supported, then we suppress the raise
      --  and return -1 unconditionally (this is an erroneous program in any
      --  case and there is no obligation to raise Constraint_Error here). We
      --  also do this if pragma Restrictions (No_Exceptions) is active.

      --  Is this right??? What about No_Exception_Propagation???

      --  The underlying type is signed. Reset the Is_Unsigned_Type explicitly
      --  because it might have been inherited from the parent type.

      if Enumeration_Rep (First_Literal (Typ)) < 0 then
         Set_Is_Unsigned_Type (Typ, False);
      end if;

      Ityp := Integer_Type_For (Esize (Typ), Is_Unsigned_Type (Typ));

      --  The body of the function is a case statement. First collect case
      --  alternatives, or optimize the contiguous case.

      Lst := New_List;

      --  If representation is contiguous, Pos is computed by subtracting
      --  the representation of the first literal.

      if Is_Contiguous then
         Ent := First_Literal (Typ);

         if Enumeration_Rep (Ent) = Last_Repval then

            --  Another special case: for a single literal, Pos is zero

            Pos_Expr := Make_Integer_Literal (Loc, Uint_0);

         else
            Pos_Expr :=
              Convert_To (Standard_Integer,
                Make_Op_Subtract (Loc,
                  Left_Opnd  =>
                    Unchecked_Convert_To
                     (Ityp, Make_Identifier (Loc, Name_uA)),
                  Right_Opnd =>
                    Make_Integer_Literal (Loc,
                      Intval => Enumeration_Rep (First_Literal (Typ)))));
         end if;

         Append_To (Lst,
           Make_Case_Statement_Alternative (Loc,
             Discrete_Choices => New_List (
               Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
                 Low_Bound =>
                   Make_Integer_Literal (Loc,
                    Intval => Enumeration_Rep (Ent)),
                 High_Bound =>
                   Make_Integer_Literal (Loc, Intval => Last_Repval))),

             Statements => New_List (
               Make_Simple_Return_Statement (Loc,
                 Expression => Pos_Expr))));

      else
         Ent := First_Literal (Typ);
         while Present (Ent) loop
            Append_To (Lst,
              Make_Case_Statement_Alternative (Loc,
                Discrete_Choices => New_List (
                  Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
                    Intval => Enumeration_Rep (Ent))),

                Statements => New_List (
                  Make_Simple_Return_Statement (Loc,
                    Expression =>
                      Make_Integer_Literal (Loc,
                        Intval => Enumeration_Pos (Ent))))));

            Next_Literal (Ent);
         end loop;
      end if;

      --  In normal mode, add the others clause with the test.
      --  If Predicates_Ignored is True, validity checks do not apply to
      --  the subtype.

      if not No_Exception_Handlers_Set
        and then not Predicates_Ignored (Typ)
      then
         Append_To (Lst,
           Make_Case_Statement_Alternative (Loc,
             Discrete_Choices => New_List (Make_Others_Choice (Loc)),
             Statements       => New_List (
               Make_Raise_Constraint_Error (Loc,
                 Condition => Make_Identifier (Loc, Name_uF),
                 Reason    => CE_Invalid_Data),
               Make_Simple_Return_Statement (Loc,
                 Expression => Make_Integer_Literal (Loc, -1)))));

      --  If either of the restrictions No_Exceptions_Handlers/Propagation is
      --  active then return -1 (we cannot usefully raise Constraint_Error in
      --  this case). See description above for further details.

      else
         Append_To (Lst,
           Make_Case_Statement_Alternative (Loc,
             Discrete_Choices => New_List (Make_Others_Choice (Loc)),
             Statements       => New_List (
               Make_Simple_Return_Statement (Loc,
                 Expression => Make_Integer_Literal (Loc, -1)))));
      end if;

      --  Now we can build the function body

      Fent :=
        Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));

      Func :=
        Make_Subprogram_Body (Loc,
          Specification =>
            Make_Function_Specification (Loc,
              Defining_Unit_Name       => Fent,
              Parameter_Specifications => New_List (
                Make_Parameter_Specification (Loc,
                  Defining_Identifier =>
                    Make_Defining_Identifier (Loc, Name_uA),
                  Parameter_Type => New_Occurrence_Of (Typ, Loc)),
                Make_Parameter_Specification (Loc,
                  Defining_Identifier =>
                    Make_Defining_Identifier (Loc, Name_uF),
                  Parameter_Type =>
                    New_Occurrence_Of (Standard_Boolean, Loc))),

              Result_Definition => New_Occurrence_Of (Standard_Integer, Loc)),

            Declarations => Empty_List,

            Handled_Statement_Sequence =>
              Make_Handled_Sequence_Of_Statements (Loc,
                Statements => New_List (
                  Make_Case_Statement (Loc,
                    Expression =>
                      Unchecked_Convert_To
                        (Ityp, Make_Identifier (Loc, Name_uA)),
                    Alternatives => Lst))));

      Set_TSS (Typ, Fent);

      --  Set Pure flag (it will be reset if the current context is not Pure).
      --  We also pretend there was a pragma Pure_Function so that for purposes
      --  of optimization and constant-folding, we will consider the function
      --  Pure even if we are not in a Pure context).

      Set_Is_Pure (Fent);
      Set_Has_Pragma_Pure_Function (Fent);

      --  Unless we are in -gnatD mode, where we are debugging generated code,
      --  this is an internal entity for which we don't need debug info.

      if not Debug_Generated_Code then
         Set_Debug_Info_Off (Fent);
      end if;

      Set_Is_Inlined (Fent);

   exception
      when RE_Not_Available =>
         return;
   end Expand_Freeze_Enumeration_Type;

   -------------------------------
   -- Expand_Freeze_Record_Type --
   -------------------------------

   procedure Expand_Freeze_Record_Type (N : Node_Id) is

      procedure Build_Class_Condition_Subprograms (Typ : Entity_Id);
      --  Create internal subprograms of Typ primitives that have class-wide
      --  preconditions or postconditions; they are invoked by the caller to
      --  evaluate the conditions.

      procedure Build_Variant_Record_Equality (Typ  : Entity_Id);
      --  Create an equality function for the untagged variant record Typ and
      --  attach it to the TSS list.

      procedure Register_Dispatch_Table_Wrappers (Typ : Entity_Id);
      --  Register dispatch-table wrappers in the dispatch table of Typ

      procedure Validate_Tagged_Type_Extra_Formals (Typ : Entity_Id);
      --  Check extra formals of dispatching primitives of tagged type Typ.
      --  Used in pragma Debug.

      ---------------------------------------
      -- Build_Class_Condition_Subprograms --
      ---------------------------------------

      procedure Build_Class_Condition_Subprograms (Typ : Entity_Id) is
         Prim_List : constant Elist_Id := Primitive_Operations (Typ);
         Prim_Elmt : Elmt_Id           := First_Elmt (Prim_List);
         Prim      : Entity_Id;

      begin
         while Present (Prim_Elmt) loop
            Prim := Node (Prim_Elmt);

            --  Primitive with class-wide preconditions

            if Comes_From_Source (Prim)
              and then Has_Significant_Contract (Prim)
              and then
                (Present (Class_Preconditions (Prim))
                   or else Present (Ignored_Class_Preconditions (Prim)))
            then
               if Expander_Active then
                  Make_Class_Precondition_Subps (Prim);
               end if;

            --  Wrapper of a primitive that has or inherits class-wide
            --  preconditions.

            elsif Is_Primitive_Wrapper (Prim)
              and then
                (Present (Nearest_Class_Condition_Subprogram
                           (Spec_Id => Prim,
                            Kind    => Class_Precondition))
                   or else
                 Present (Nearest_Class_Condition_Subprogram
                           (Spec_Id => Prim,
                            Kind    => Ignored_Class_Precondition)))
            then
               if Expander_Active then
                  Make_Class_Precondition_Subps (Prim);
               end if;
            end if;

            Next_Elmt (Prim_Elmt);
         end loop;
      end Build_Class_Condition_Subprograms;

      -----------------------------------
      -- Build_Variant_Record_Equality --
      -----------------------------------

      procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
         Loc : constant Source_Ptr := Sloc (Typ);
         F   : constant Entity_Id  :=
                 Make_Defining_Identifier (Loc,
                   Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
      begin
         --  For a variant record with restriction No_Implicit_Conditionals
         --  in effect we skip building the procedure. This is safe because
         --  if we can see the restriction, so can any caller, and calls to
         --  equality test routines are not allowed for variant records if
         --  this restriction is active.

         if Restriction_Active (No_Implicit_Conditionals) then
            return;
         end if;

         --  Derived Unchecked_Union types no longer inherit the equality
         --  function of their parent.

         if Is_Derived_Type (Typ)
           and then not Is_Unchecked_Union (Typ)
           and then not Has_New_Non_Standard_Rep (Typ)
         then
            declare
               Parent_Eq : constant Entity_Id :=
                             TSS (Root_Type (Typ), TSS_Composite_Equality);
            begin
               if Present (Parent_Eq) then
                  Copy_TSS (Parent_Eq, Typ);
                  return;
               end if;
            end;
         end if;

         Discard_Node (
           Build_Variant_Record_Equality
             (Typ         => Typ,
              Spec_Id     => Empty,
              Body_Id     => F,
              Param_Specs => New_List (
                Make_Parameter_Specification (Loc,
                  Defining_Identifier =>
                    Make_Defining_Identifier (Loc, Name_X),
                  Parameter_Type      => New_Occurrence_Of (Typ, Loc)),

                Make_Parameter_Specification (Loc,
                  Defining_Identifier =>
                    Make_Defining_Identifier (Loc, Name_Y),
                  Parameter_Type      => New_Occurrence_Of (Typ, Loc)))));

         Set_TSS (Typ, F);
         Set_Is_Pure (F);

         if not Debug_Generated_Code then
            Set_Debug_Info_Off (F);
         end if;
      end Build_Variant_Record_Equality;

      --------------------------------------
      -- Register_Dispatch_Table_Wrappers --
      --------------------------------------

      procedure Register_Dispatch_Table_Wrappers (Typ : Entity_Id) is
         Elmt : Elmt_Id := First_Elmt (Primitive_Operations (Typ));
         Subp : Entity_Id;

      begin
         while Present (Elmt) loop
            Subp := Node (Elmt);

            if Is_Dispatch_Table_Wrapper (Subp) then
               Append_Freeze_Actions (Typ,
                 Register_Primitive (Sloc (Subp), Subp));
            end if;

            Next_Elmt (Elmt);
         end loop;
      end Register_Dispatch_Table_Wrappers;

      ----------------------------------------
      -- Validate_Tagged_Type_Extra_Formals --
      ----------------------------------------

      procedure Validate_Tagged_Type_Extra_Formals (Typ : Entity_Id) is
         Ovr_Subp : Entity_Id;
         Elmt     : Elmt_Id;
         Subp     : Entity_Id;

      begin
         pragma Assert (not Is_Class_Wide_Type (Typ));

         --  No check required if expansion is not active since we never
         --  generate extra formals in such case.

         if not Expander_Active then
            return;
         end if;

         Elmt := First_Elmt (Primitive_Operations (Typ));
         while Present (Elmt) loop
            Subp := Node (Elmt);

            --  Extra formals of a dispatching primitive must match:

            --  1) The extra formals of its covered interface primitive

            if Present (Interface_Alias (Subp)) then
               pragma Assert
                 (Extra_Formals_Match_OK
                   (E     => Interface_Alias (Subp),
                    Ref_E => Alias (Subp)));
            end if;

            --  2) The extra formals of its renamed primitive

            if Present (Alias (Subp)) then
               pragma Assert
                 (Extra_Formals_Match_OK
                   (E     => Subp,
                    Ref_E => Ultimate_Alias (Subp)));
            end if;

            --  3) The extra formals of its overridden primitive

            if Present (Overridden_Operation (Subp)) then
               Ovr_Subp := Overridden_Operation (Subp);

               --  Handle controlling function wrapper

               if Is_Wrapper (Subp)
                 and then Ultimate_Alias (Ovr_Subp) = Subp
               then
                  if Present (Overridden_Operation (Ovr_Subp)) then
                     pragma Assert
                       (Extra_Formals_Match_OK
                         (E     => Subp,
                          Ref_E => Overridden_Operation (Ovr_Subp)));
                  end if;

               else
                  pragma Assert
                    (Extra_Formals_Match_OK
                      (E     => Subp,
                       Ref_E => Ovr_Subp));
               end if;
            end if;

            Next_Elmt (Elmt);
         end loop;
      end Validate_Tagged_Type_Extra_Formals;

      --  Local variables

      Typ      : constant Node_Id := Entity (N);
      Typ_Decl : constant Node_Id := Parent (Typ);

      Comp        : Entity_Id;
      Comp_Typ    : Entity_Id;
      Predef_List : List_Id;

      Wrapper_Decl_List : List_Id;
      Wrapper_Body_List : List_Id := No_List;

      Renamed_Eq : Node_Id := Empty;
      --  Defining unit name for the predefined equality function in the case
      --  where the type has a primitive operation that is a renaming of
      --  predefined equality (but only if there is also an overriding
      --  user-defined equality function). Used to pass this entity from
      --  Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.

   --  Start of processing for Expand_Freeze_Record_Type

   begin
      --  Build discriminant checking functions if not a derived type (for
      --  derived types that are not tagged types, always use the discriminant
      --  checking functions of the parent type). However, for untagged types
      --  the derivation may have taken place before the parent was frozen, so
      --  we copy explicitly the discriminant checking functions from the
      --  parent into the components of the derived type.

      Build_Or_Copy_Discr_Checking_Funcs (Typ_Decl);

      if Is_Derived_Type (Typ)
        and then Is_Limited_Type (Typ)
        and then Is_Tagged_Type (Typ)
      then
         Check_Stream_Attributes (Typ);
      end if;

      --  Update task, protected, and controlled component flags, because some
      --  of the component types may have been private at the point of the
      --  record declaration. Detect anonymous access-to-controlled components.

      Comp := First_Component (Typ);
      while Present (Comp) loop
         Comp_Typ := Etype (Comp);

         Propagate_Concurrent_Flags (Typ, Comp_Typ);

         --  Do not set Has_Controlled_Component on a class-wide equivalent
         --  type. See Make_CW_Equivalent_Type.

         if not Is_Class_Wide_Equivalent_Type (Typ)
           and then
             (Has_Controlled_Component (Comp_Typ)
               or else (Chars (Comp) /= Name_uParent
                         and then Is_Controlled (Comp_Typ)))
         then
            Set_Has_Controlled_Component (Typ);
         end if;

         Next_Component (Comp);
      end loop;

      --  Handle constructors of untagged CPP_Class types

      if not Is_Tagged_Type (Typ) and then Is_CPP_Class (Typ) then
         Set_CPP_Constructors (Typ);
      end if;

      --  Creation of the Dispatch Table. Note that a Dispatch Table is built
      --  for regular tagged types as well as for Ada types deriving from a C++
      --  Class, but not for tagged types directly corresponding to C++ classes
      --  In the later case we assume that it is created in the C++ side and we
      --  just use it.

      if Is_Tagged_Type (Typ) then

         --  Add the _Tag component

         if Underlying_Type (Etype (Typ)) = Typ then
            Expand_Tagged_Root (Typ);
         end if;

         if Is_CPP_Class (Typ) then
            Set_All_DT_Position (Typ);

            --  Create the tag entities with a minimum decoration

            if Tagged_Type_Expansion then
               Append_Freeze_Actions (Typ, Make_Tags (Typ));
            end if;

            Set_CPP_Constructors (Typ);

         else
            if not Building_Static_DT (Typ) then

               --  Usually inherited primitives are not delayed but the first
               --  Ada extension of a CPP_Class is an exception since the
               --  address of the inherited subprogram has to be inserted in
               --  the new Ada Dispatch Table and this is a freezing action.

               --  Similarly, if this is an inherited operation whose parent is
               --  not frozen yet, it is not in the DT of the parent, and we
               --  generate an explicit freeze node for the inherited operation
               --  so it is properly inserted in the DT of the current type.

               declare
                  Elmt : Elmt_Id;
                  Subp : Entity_Id;

               begin
                  Elmt := First_Elmt (Primitive_Operations (Typ));
                  while Present (Elmt) loop
                     Subp := Node (Elmt);

                     if Present (Alias (Subp)) then
                        if Is_CPP_Class (Etype (Typ)) then
                           Set_Has_Delayed_Freeze (Subp);

                        elsif Has_Delayed_Freeze (Alias (Subp))
                          and then not Is_Frozen (Alias (Subp))
                        then
                           Set_Is_Frozen (Subp, False);
                           Set_Has_Delayed_Freeze (Subp);
                        end if;
                     end if;

                     Next_Elmt (Elmt);
                  end loop;
               end;
            end if;

            --  Unfreeze momentarily the type to add the predefined primitives
            --  operations. The reason we unfreeze is so that these predefined
            --  operations will indeed end up as primitive operations (which
            --  must be before the freeze point).

            Set_Is_Frozen (Typ, False);

            --  Do not add the spec of predefined primitives in case of
            --  CPP tagged type derivations that have convention CPP.

            if Is_CPP_Class (Root_Type (Typ))
              and then Convention (Typ) = Convention_CPP
            then
               null;

            --  Do not add the spec of the predefined primitives if we are
            --  compiling under restriction No_Dispatching_Calls.

            elsif not Restriction_Active (No_Dispatching_Calls) then
               Make_Predefined_Primitive_Specs (Typ, Predef_List, Renamed_Eq);
               Insert_List_Before_And_Analyze (N, Predef_List);
            end if;

            --  Ada 2005 (AI-391): For a nonabstract null extension, create
            --  wrapper functions for each nonoverridden inherited function
            --  with a controlling result of the type. The wrapper for such
            --  a function returns an extension aggregate that invokes the
            --  parent function.

            if Ada_Version >= Ada_2005
              and then not Is_Abstract_Type (Typ)
              and then Is_Null_Extension (Typ)
            then
               Make_Controlling_Function_Wrappers
                 (Typ, Wrapper_Decl_List, Wrapper_Body_List);
               Insert_List_Before_And_Analyze (N, Wrapper_Decl_List);
            end if;

            --  Ada 2005 (AI-251): For a nonabstract type extension, build
            --  null procedure declarations for each set of homographic null
            --  procedures that are inherited from interface types but not
            --  overridden. This is done to ensure that the dispatch table
            --  entry associated with such null primitives are properly filled.

            if Ada_Version >= Ada_2005
              and then Etype (Typ) /= Typ
              and then not Is_Abstract_Type (Typ)
              and then Has_Interfaces (Typ)
            then
               Insert_Actions (N, Make_Null_Procedure_Specs (Typ));
            end if;

            Set_Is_Frozen (Typ);

            if not Is_Derived_Type (Typ)
              or else Is_Tagged_Type (Etype (Typ))
            then
               Set_All_DT_Position (Typ);

            --  If this is a type derived from an untagged private type whose
            --  full view is tagged, the type is marked tagged for layout
            --  reasons, but it has no dispatch table.

            elsif Is_Derived_Type (Typ)
              and then Is_Private_Type (Etype (Typ))
              and then not Is_Tagged_Type (Etype (Typ))
            then
               return;
            end if;

            --  Create and decorate the tags. Suppress their creation when
            --  not Tagged_Type_Expansion because the dispatching mechanism is
            --  handled internally by the virtual target.

            if Tagged_Type_Expansion then
               Append_Freeze_Actions (Typ, Make_Tags (Typ));

               --  Generate dispatch table of locally defined tagged type.
               --  Dispatch tables of library level tagged types are built
               --  later (see Build_Static_Dispatch_Tables).

               if not Building_Static_DT (Typ) then
                  Append_Freeze_Actions (Typ, Make_DT (Typ));

                  --  Register dispatch table wrappers in the dispatch table.
                  --  It could not be done when these wrappers were built
                  --  because, at that stage, the dispatch table was not
                  --  available.

                  Register_Dispatch_Table_Wrappers (Typ);
               end if;
            end if;

            --  If the type has unknown discriminants, propagate dispatching
            --  information to its underlying record view, which does not get
            --  its own dispatch table.

            if Is_Derived_Type (Typ)
              and then Has_Unknown_Discriminants (Typ)
              and then Present (Underlying_Record_View (Typ))
            then
               declare
                  Rep : constant Entity_Id := Underlying_Record_View (Typ);
               begin
                  Set_Access_Disp_Table
                    (Rep, Access_Disp_Table           (Typ));
                  Set_Dispatch_Table_Wrappers
                    (Rep, Dispatch_Table_Wrappers     (Typ));
                  Set_Direct_Primitive_Operations
                    (Rep, Direct_Primitive_Operations (Typ));
               end;
            end if;

            --  Make sure that the primitives Initialize, Adjust and Finalize
            --  are Frozen before other TSS subprograms. We don't want them
            --  Frozen inside.

            if Is_Controlled (Typ) then
               if not Is_Limited_Type (Typ) then
                  Append_Freeze_Actions (Typ,
                    Freeze_Entity (Find_Prim_Op (Typ, Name_Adjust), Typ));
               end if;

               Append_Freeze_Actions (Typ,
                 Freeze_Entity (Find_Prim_Op (Typ, Name_Initialize), Typ));

               Append_Freeze_Actions (Typ,
                 Freeze_Entity (Find_Prim_Op (Typ, Name_Finalize), Typ));
            end if;

            --  Freeze rest of primitive operations. There is no need to handle
            --  the predefined primitives if we are compiling under restriction
            --  No_Dispatching_Calls.

            if not Restriction_Active (No_Dispatching_Calls) then
               Append_Freeze_Actions (Typ, Predefined_Primitive_Freeze (Typ));
            end if;
         end if;

      --  In the untagged case, ever since Ada 83 an equality function must
      --  be provided for variant records that are not unchecked unions.

      elsif Has_Discriminants (Typ)
        and then not Is_Limited_Type (Typ)
        and then Present (Component_List (Type_Definition (Typ_Decl)))
        and then
          Present (Variant_Part (Component_List (Type_Definition (Typ_Decl))))
      then
         Build_Variant_Record_Equality (Typ);

      --  In Ada 2012 the equality function composes, and thus must be built
      --  explicitly just as for tagged records.

      --  This is done unconditionally to ensure that tools can be linked
      --  properly with user programs compiled with older language versions.
      --  In addition, this is needed because "=" composes for bounded strings
      --  in all language versions (see Exp_Ch4.Expand_Composite_Equality).

      elsif Comes_From_Source (Typ)
        and then Convention (Typ) = Convention_Ada
        and then not Is_Limited_Type (Typ)
      then
         Build_Untagged_Record_Equality (Typ);
      end if;

      --  Before building the record initialization procedure, if we are
      --  dealing with a concurrent record value type, then we must go through
      --  the discriminants, exchanging discriminals between the concurrent
      --  type and the concurrent record value type. See the section "Handling
      --  of Discriminants" in the Einfo spec for details.

      if Is_Concurrent_Record_Type (Typ) and then Has_Discriminants (Typ) then
         declare
            Ctyp       : constant Entity_Id :=
                           Corresponding_Concurrent_Type (Typ);
            Conc_Discr : Entity_Id;
            Rec_Discr  : Entity_Id;
            Temp       : Entity_Id;

         begin
            Conc_Discr := First_Discriminant (Ctyp);
            Rec_Discr  := First_Discriminant (Typ);
            while Present (Conc_Discr) loop
               Temp := Discriminal (Conc_Discr);
               Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
               Set_Discriminal (Rec_Discr, Temp);

               Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
               Set_Discriminal_Link (Discriminal (Rec_Discr),  Rec_Discr);

               Next_Discriminant (Conc_Discr);
               Next_Discriminant (Rec_Discr);
            end loop;
         end;
      end if;

      if Has_Controlled_Component (Typ) then
         Build_Controlling_Procs (Typ);
      end if;

      Adjust_Discriminants (Typ);

      --  Do not need init for interfaces on virtual targets since they're
      --  abstract.

      if Tagged_Type_Expansion or else not Is_Interface (Typ) then
         Build_Record_Init_Proc (Typ_Decl, Typ);
      end if;

      --  For tagged type that are not interfaces, build bodies of primitive
      --  operations. Note: do this after building the record initialization
      --  procedure, since the primitive operations may need the initialization
      --  routine. There is no need to add predefined primitives of interfaces
      --  because all their predefined primitives are abstract.

      if Is_Tagged_Type (Typ) and then not Is_Interface (Typ) then

         --  Do not add the body of predefined primitives in case of CPP tagged
         --  type derivations that have convention CPP.

         if Is_CPP_Class (Root_Type (Typ))
           and then Convention (Typ) = Convention_CPP
         then
            null;

         --  Do not add the body of the predefined primitives if we are
         --  compiling under restriction No_Dispatching_Calls or if we are
         --  compiling a CPP tagged type.

         elsif not Restriction_Active (No_Dispatching_Calls) then

            --  Create the body of TSS primitive Finalize_Address. This must
            --  be done before the bodies of all predefined primitives are
            --  created. If Typ is limited, Stream_Input and Stream_Read may
            --  produce build-in-place allocations and for those the expander
            --  needs Finalize_Address.

            Make_Finalize_Address_Body (Typ);
            Predef_List := Predefined_Primitive_Bodies (Typ, Renamed_Eq);
            Append_Freeze_Actions (Typ, Predef_List);
         end if;

         --  Ada 2005 (AI-391): If any wrappers were created for nonoverridden
         --  inherited functions, then add their bodies to the freeze actions.

         Append_Freeze_Actions (Typ, Wrapper_Body_List);
      end if;

      --  Create extra formals for the primitive operations of the type.
      --  This must be done before analyzing the body of the initialization
      --  procedure, because a self-referential type might call one of these
      --  primitives in the body of the init_proc itself.
      --
      --  This is not needed:
      --    1) If expansion is disabled, because extra formals are only added
      --       when we are generating code.
      --
      --    2) For types with foreign convention since primitives with foreign
      --       convention don't have extra formals and AI95-117 requires that
      --       all primitives of a tagged type inherit the convention.

      if Expander_Active
        and then Is_Tagged_Type (Typ)
        and then not Has_Foreign_Convention (Typ)
      then
         declare
            Elmt : Elmt_Id;
            E    : Entity_Id;

         begin
            --  Add extra formals to primitive operations

            Elmt := First_Elmt (Primitive_Operations (Typ));
            while Present (Elmt) loop
               Create_Extra_Formals (Node (Elmt));
               Next_Elmt (Elmt);
            end loop;

            --  Add extra formals to renamings of primitive operations. The
            --  addition of extra formals is done in two steps to minimize
            --  the compile time required for this action; the evaluation of
            --  Find_Dispatching_Type() and Contains() is only done here for
            --  renamings that are not primitive operations.

            E := First_Entity (Scope (Typ));
            while Present (E) loop
               if Is_Dispatching_Operation (E)
                 and then Present (Alias (E))
                 and then Find_Dispatching_Type (E) = Typ
                 and then not Contains (Primitive_Operations (Typ), E)
               then
                  Create_Extra_Formals (E);
               end if;

               Next_Entity (E);
            end loop;

            pragma Debug (Validate_Tagged_Type_Extra_Formals (Typ));
         end;
      end if;

      --  Build internal subprograms of primitives with class-wide
      --  pre/postconditions.

      if Is_Tagged_Type (Typ) then
         Build_Class_Condition_Subprograms (Typ);
      end if;
   end Expand_Freeze_Record_Type;

   ------------------------------------
   -- Expand_N_Full_Type_Declaration --
   ------------------------------------

   procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
      procedure Build_Master (Ptr_Typ : Entity_Id);
      --  Create the master associated with Ptr_Typ

      ------------------
      -- Build_Master --
      ------------------

      procedure Build_Master (Ptr_Typ : Entity_Id) is
         Desig_Typ : Entity_Id := Designated_Type (Ptr_Typ);

      begin
         --  If the designated type is an incomplete view coming from a
         --  limited-with'ed package, we need to use the nonlimited view in
         --  case it has tasks.

         if Is_Incomplete_Type (Desig_Typ)
           and then Present (Non_Limited_View (Desig_Typ))
         then
            Desig_Typ := Non_Limited_View (Desig_Typ);
         end if;

         --  Anonymous access types are created for the components of the
         --  record parameter for an entry declaration. No master is created
         --  for such a type.

         if Has_Task (Desig_Typ) then
            Build_Master_Entity (Ptr_Typ);
            Build_Master_Renaming (Ptr_Typ);

         --  Create a class-wide master because a Master_Id must be generated
         --  for access-to-limited-class-wide types whose root may be extended
         --  with task components.

         --  Note: This code covers access-to-limited-interfaces because they
         --        can be used to reference tasks implementing them.

         --  Suppress the master creation for access types created for entry
         --  formal parameters (parameter block component types). Seems like
         --  suppression should be more general for compiler-generated types,
         --  but testing Comes_From_Source may be too general in this case
         --  (affects some test output)???

         elsif not Is_Param_Block_Component_Type (Ptr_Typ)
           and then Is_Limited_Class_Wide_Type (Desig_Typ)
         then
            Build_Class_Wide_Master (Ptr_Typ);
         end if;
      end Build_Master;

      --  Local declarations

      Def_Id : constant Entity_Id := Defining_Identifier (N);
      B_Id   : constant Entity_Id := Base_Type (Def_Id);
      FN     : Node_Id;
      Par_Id : Entity_Id;

   --  Start of processing for Expand_N_Full_Type_Declaration

   begin
      if Is_Access_Type (Def_Id) then
         Build_Master (Def_Id);

         if Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
            Expand_Access_Protected_Subprogram_Type (N);
         end if;

      --  Array of anonymous access-to-task pointers

      elsif Ada_Version >= Ada_2005
        and then Is_Array_Type (Def_Id)
        and then Is_Access_Type (Component_Type (Def_Id))
        and then Ekind (Component_Type (Def_Id)) = E_Anonymous_Access_Type
      then
         Build_Master (Component_Type (Def_Id));

      elsif Has_Task (Def_Id) then
         Expand_Previous_Access_Type (Def_Id);

      --  Check the components of a record type or array of records for
      --  anonymous access-to-task pointers.

      elsif Ada_Version >= Ada_2005
        and then (Is_Record_Type (Def_Id)
                   or else
                     (Is_Array_Type (Def_Id)
                       and then Is_Record_Type (Component_Type (Def_Id))))
      then
         declare
            Comp  : Entity_Id;
            First : Boolean;
            M_Id  : Entity_Id := Empty;
            Typ   : Entity_Id;

         begin
            if Is_Array_Type (Def_Id) then
               Comp := First_Entity (Component_Type (Def_Id));
            else
               Comp := First_Entity (Def_Id);
            end if;

            --  Examine all components looking for anonymous access-to-task
            --  types.

            First := True;
            while Present (Comp) loop
               Typ := Etype (Comp);

               if Ekind (Typ) = E_Anonymous_Access_Type
                 and then Might_Have_Tasks
                            (Available_View (Designated_Type (Typ)))
                 and then No (Master_Id (Typ))
               then
                  --  Ensure that the record or array type have a _master

                  if First then
                     Build_Master_Entity (Def_Id);
                     Build_Master_Renaming (Typ);
                     M_Id := Master_Id (Typ);

                     First := False;

                  --  Reuse the same master to service any additional types

                  else
                     pragma Assert (Present (M_Id));
                     Set_Master_Id (Typ, M_Id);
                  end if;
               end if;

               Next_Entity (Comp);
            end loop;
         end;
      end if;

      Par_Id := Etype (B_Id);

      --  The parent type is private then we need to inherit any TSS operations
      --  from the full view.

      if Is_Private_Type (Par_Id)
        and then Present (Full_View (Par_Id))
      then
         Par_Id := Base_Type (Full_View (Par_Id));
      end if;

      if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
        and then not Is_Tagged_Type (Def_Id)
        and then Present (Freeze_Node (Par_Id))
        and then Present (TSS_Elist (Freeze_Node (Par_Id)))
      then
         Ensure_Freeze_Node (B_Id);
         FN := Freeze_Node (B_Id);

         if No (TSS_Elist (FN)) then
            Set_TSS_Elist (FN, New_Elmt_List);
         end if;

         declare
            T_E  : constant Elist_Id := TSS_Elist (FN);
            Elmt : Elmt_Id;

         begin
            Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
            while Present (Elmt) loop
               if Chars (Node (Elmt)) /= Name_uInit then
                  Append_Elmt (Node (Elmt), T_E);
               end if;

               Next_Elmt (Elmt);
            end loop;

            --  If the derived type itself is private with a full view, then
            --  associate the full view with the inherited TSS_Elist as well.

            if Is_Private_Type (B_Id)
              and then Present (Full_View (B_Id))
            then
               Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
               Set_TSS_Elist
                 (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
            end if;
         end;
      end if;
   end Expand_N_Full_Type_Declaration;

   ---------------------------------
   -- Expand_N_Object_Declaration --
   ---------------------------------

   procedure Expand_N_Object_Declaration (N : Node_Id) is
      Loc      : constant Source_Ptr := Sloc (N);
      Def_Id   : constant Entity_Id  := Defining_Identifier (N);
      Expr     : constant Node_Id    := Expression (N);
      Obj_Def  : constant Node_Id    := Object_Definition (N);
      Typ      : constant Entity_Id  := Etype (Def_Id);
      Base_Typ : constant Entity_Id  := Base_Type (Typ);
      Next_N   : constant Node_Id    := Next (N);

      Special_Ret_Obj : constant Boolean := Is_Special_Return_Object (Def_Id);
      --  If this is a special return object, it will be allocated differently
      --  and ultimately rewritten as a renaming, so initialization activities
      --  need to be deferred until after that is done.

      Func_Id : constant Entity_Id :=
       (if Special_Ret_Obj then Return_Applies_To (Scope (Def_Id)) else Empty);
      --  The function if this is a special return object, otherwise Empty

      function Build_Equivalent_Aggregate return Boolean;
      --  If the object has a constrained discriminated type and no initial
      --  value, it may be possible to build an equivalent aggregate instead,
      --  and prevent an actual call to the initialization procedure.

      function Build_Heap_Or_Pool_Allocator
        (Temp_Id    : Entity_Id;
         Temp_Typ   : Entity_Id;
         Ret_Typ    : Entity_Id;
         Alloc_Expr : Node_Id) return Node_Id;
      --  Create the statements necessary to allocate a return object on the
      --  heap or user-defined storage pool. The object may need finalization
      --  actions depending on the return type.
      --
      --    * Controlled case
      --
      --       if BIPfinalizationmaster = null then
      --          Temp_Id := <Alloc_Expr>;
      --       else
      --          declare
      --             type Ptr_Typ is access Ret_Typ;
      --             for Ptr_Typ'Storage_Pool use
      --                   Base_Pool (BIPfinalizationmaster.all).all;
      --             Local : Ptr_Typ;
      --
      --          begin
      --             procedure Allocate (...) is
      --             begin
      --                System.Storage_Pools.Subpools.Allocate_Any (...);
      --             end Allocate;
      --
      --             Local := <Alloc_Expr>;
      --             Temp_Id := Temp_Typ (Local);
      --          end;
      --       end if;
      --
      --    * Non-controlled case
      --
      --       Temp_Id := <Alloc_Expr>;
      --
      --  Temp_Id is the temporary which is used to reference the internally
      --  created object in all allocation forms. Temp_Typ is the type of the
      --  temporary. Func_Id is the enclosing function. Ret_Typ is the return
      --  type of Func_Id. Alloc_Expr is the actual allocator.

      function BIP_Function_Call_Id return Entity_Id;
      --  If the object initialization expression is a call to a build-in-place
      --  function, return the id of the called function; otherwise return
      --  Empty.

      procedure Count_Default_Sized_Task_Stacks
        (Typ         : Entity_Id;
         Pri_Stacks  : out Int;
         Sec_Stacks  : out Int);
      --  Count the number of default-sized primary and secondary task stacks
      --  required for task objects contained within type Typ. If the number of
      --  task objects contained within the type is not known at compile time
      --  the procedure will return the stack counts of zero.

      procedure Default_Initialize_Object (After : Node_Id);
      --  Generate all default initialization actions for object Def_Id. Any
      --  new code is inserted after node After.

      procedure Initialize_Return_Object
        (Tag_Assign : Node_Id;
         Adj_Call   : Node_Id;
         Expr       : Node_Id;
         Init_Stmt  : Node_Id;
         After      : Node_Id);
      --  Generate all initialization actions for return object Def_Id. Any
      --  new code is inserted after node After.

      function Is_Renamable_Function_Call (Expr : Node_Id) return Boolean;
      --  If we are not at library level and the object declaration originally
      --  appears in the form:

      --    Obj : Typ := Func (...);

      --  and has been rewritten as the dereference of a captured reference
      --  to the function result built either on the primary or the secondary
      --  stack, then the declaration can be rewritten as the renaming of this
      --  dereference:

      --    type Ann is access all Typ;
      --    Rnn : constant Axx := Func (...)'reference;
      --    Obj : Typ renames Rnn.all;

      --  This will avoid making an extra copy and, in the case where Typ needs
      --  finalization, a pair of calls to the Adjust and Finalize primitives,
      --  or Deep_Adjust and Deep_Finalize routines, depending on whether Typ
      --  has components that themselves need finalization.

      --  However, in the case of a special return object, we need to make sure
      --  that the object Rnn is recognized by the Is_Related_To_Func_Return
      --  predicate; otherwise, if it is of a type that needs finalization,
      --  then Requires_Cleanup_Actions would return true because of this and
      --  Build_Finalizer would finalize it prematurely because of this (see
      --  also Expand_Simple_Function_Return for the same test in the case of
      --  a simple return).

      --  Finally, in the case of a special return object, we also need to make
      --  sure that the two functions return on the same stack, otherwise we
      --  would create a dangling reference.

      function Make_Allocator_For_Return (Expr : Node_Id) return Node_Id;
      --  Make an allocator for a return object initialized with Expr

      function OK_To_Rename_Ref (N : Node_Id) return Boolean;
      --  Return True if N denotes an entity with OK_To_Rename set

      --------------------------------
      -- Build_Equivalent_Aggregate --
      --------------------------------

      function Build_Equivalent_Aggregate return Boolean is
         Aggr      : Node_Id;
         Comp      : Entity_Id;
         Discr     : Elmt_Id;
         Full_Type : Entity_Id;

      begin
         Full_Type := Typ;

         if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
            Full_Type := Full_View (Typ);
         end if;

         --  Only perform this transformation if Elaboration_Code is forbidden
         --  or undesirable, and if this is a global entity of a constrained
         --  record type.

         --  If Initialize_Scalars might be active this  transformation cannot
         --  be performed either, because it will lead to different semantics
         --  or because elaboration code will in fact be created.

         if Ekind (Full_Type) /= E_Record_Subtype
           or else not Has_Discriminants (Full_Type)
           or else not Is_Constrained (Full_Type)
           or else Is_Controlled (Full_Type)
           or else Is_Limited_Type (Full_Type)
           or else not Restriction_Active (No_Initialize_Scalars)
         then
            return False;
         end if;

         if Ekind (Current_Scope) = E_Package
           and then
             (Restriction_Active (No_Elaboration_Code)
               or else Is_Preelaborated (Current_Scope))
         then
            --  Building a static aggregate is possible if the discriminants
            --  have static values and the other components have static
            --  defaults or none.

            Discr := First_Elmt (Discriminant_Constraint (Full_Type));
            while Present (Discr) loop
               if not Is_OK_Static_Expression (Node (Discr)) then
                  return False;
               end if;

               Next_Elmt (Discr);
            end loop;

            --  Check that initialized components are OK, and that non-
            --  initialized components do not require a call to their own
            --  initialization procedure.

            Comp := First_Component (Full_Type);
            while Present (Comp) loop
               if Present (Expression (Parent (Comp)))
                 and then
                   not Is_OK_Static_Expression (Expression (Parent (Comp)))
               then
                  return False;

               elsif Has_Non_Null_Base_Init_Proc (Etype (Comp)) then
                  return False;

               end if;

               Next_Component (Comp);
            end loop;

            --  Everything is static, assemble the aggregate, discriminant
            --  values first.

            Aggr :=
               Make_Aggregate (Loc,
                Expressions            => New_List,
                Component_Associations => New_List);

            Discr := First_Elmt (Discriminant_Constraint (Full_Type));
            while Present (Discr) loop
               Append_To (Expressions (Aggr), New_Copy (Node (Discr)));
               Next_Elmt (Discr);
            end loop;

            --  Now collect values of initialized components

            Comp := First_Component (Full_Type);
            while Present (Comp) loop
               if Present (Expression (Parent (Comp))) then
                  Append_To (Component_Associations (Aggr),
                    Make_Component_Association (Loc,
                      Choices    => New_List (New_Occurrence_Of (Comp, Loc)),
                      Expression => New_Copy_Tree
                                      (Expression (Parent (Comp)))));
               end if;

               Next_Component (Comp);
            end loop;

            --  Finally, box-initialize remaining components

            Append_To (Component_Associations (Aggr),
              Make_Component_Association (Loc,
                Choices    => New_List (Make_Others_Choice (Loc)),
                Expression => Empty));
            Set_Box_Present (Last (Component_Associations (Aggr)));
            Set_Expression (N, Aggr);

            if Typ /= Full_Type then
               Analyze_And_Resolve (Aggr, Full_View (Base_Type (Full_Type)));
               Rewrite (Aggr, Unchecked_Convert_To (Typ, Aggr));
               Analyze_And_Resolve (Aggr, Typ);
            else
               Analyze_And_Resolve (Aggr, Full_Type);
            end if;

            return True;

         else
            return False;
         end if;
      end Build_Equivalent_Aggregate;

      ----------------------------------
      -- Build_Heap_Or_Pool_Allocator --
      ----------------------------------

      function Build_Heap_Or_Pool_Allocator
        (Temp_Id    : Entity_Id;
         Temp_Typ   : Entity_Id;
         Ret_Typ    : Entity_Id;
         Alloc_Expr : Node_Id) return Node_Id
      is
      begin
         pragma Assert (Is_Build_In_Place_Function (Func_Id));

         --  Processing for objects that require finalization actions

         if Needs_Finalization (Ret_Typ) then
            declare
               Decls      : constant List_Id := New_List;
               Fin_Mas_Id : constant Entity_Id :=
                 Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
               Orig_Expr  : constant Node_Id := New_Copy_Tree (Alloc_Expr);
               Stmts      : constant List_Id := New_List;
               Local_Id   : Entity_Id;
               Pool_Id    : Entity_Id;
               Ptr_Typ    : Entity_Id;

            begin
               --  Generate:
               --    Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;

               Pool_Id := Make_Temporary (Loc, 'P');

               Append_To (Decls,
                 Make_Object_Renaming_Declaration (Loc,
                   Defining_Identifier => Pool_Id,
                   Subtype_Mark        =>
                     New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
                   Name                =>
                     Make_Explicit_Dereference (Loc,
                       Prefix =>
                         Make_Function_Call (Loc,
                           Name                   =>
                             New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
                           Parameter_Associations => New_List (
                             Make_Explicit_Dereference (Loc,
                               Prefix =>
                                 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));

               --  Create an access type which uses the storage pool of the
               --  caller's master. This additional type is necessary because
               --  the finalization master cannot be associated with the type
               --  of the temporary. Otherwise the secondary stack allocation
               --  will fail.

               --  Generate:
               --    type Ptr_Typ is access Ret_Typ;

               Ptr_Typ := Make_Temporary (Loc, 'P');

               Append_To (Decls,
                 Make_Full_Type_Declaration (Loc,
                   Defining_Identifier => Ptr_Typ,
                   Type_Definition     =>
                     Make_Access_To_Object_Definition (Loc,
                       Subtype_Indication =>
                         New_Occurrence_Of (Ret_Typ, Loc))));

               --  Perform minor decoration in order to set the master and the
               --  storage pool attributes.

               Mutate_Ekind                (Ptr_Typ, E_Access_Type);
               Set_Finalization_Master     (Ptr_Typ, Fin_Mas_Id);
               Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);

               --  Create the temporary, generate:
               --    Local_Id : Ptr_Typ;

               Local_Id := Make_Temporary (Loc, 'T');

               Append_To (Decls,
                 Make_Object_Declaration (Loc,
                   Defining_Identifier => Local_Id,
                   Object_Definition   =>
                     New_Occurrence_Of (Ptr_Typ, Loc)));

               --  Allocate the object, generate:
               --    Local_Id := <Alloc_Expr>;

               Append_To (Stmts,
                 Make_Assignment_Statement (Loc,
                   Name       => New_Occurrence_Of (Local_Id, Loc),
                   Expression => Alloc_Expr));

               --  Generate:
               --    Temp_Id := Temp_Typ (Local_Id);

               Append_To (Stmts,
                 Make_Assignment_Statement (Loc,
                   Name       => New_Occurrence_Of (Temp_Id, Loc),
                   Expression =>
                     Unchecked_Convert_To (Temp_Typ,
                       New_Occurrence_Of (Local_Id, Loc))));

               --  Wrap the allocation in a block. This is further conditioned
               --  by checking the caller finalization master at runtime. A
               --  null value indicates a non-existent master, most likely due
               --  to a Finalize_Storage_Only allocation.

               --  Generate:
               --    if BIPfinalizationmaster = null then
               --       Temp_Id := <Orig_Expr>;
               --    else
               --       declare
               --          <Decls>
               --       begin
               --          <Stmts>
               --       end;
               --    end if;

               return
                 Make_If_Statement (Loc,
                   Condition       =>
                     Make_Op_Eq (Loc,
                       Left_Opnd  => New_Occurrence_Of (Fin_Mas_Id, Loc),
                       Right_Opnd => Make_Null (Loc)),

                   Then_Statements => New_List (
                     Make_Assignment_Statement (Loc,
                       Name       => New_Occurrence_Of (Temp_Id, Loc),
                       Expression => Orig_Expr)),

                   Else_Statements => New_List (
                     Make_Block_Statement (Loc,
                       Declarations               => Decls,
                       Handled_Statement_Sequence =>
                         Make_Handled_Sequence_Of_Statements (Loc,
                           Statements => Stmts))));
            end;

         --  For all other cases, generate:
         --    Temp_Id := <Alloc_Expr>;

         else
            return
              Make_Assignment_Statement (Loc,
                Name       => New_Occurrence_Of (Temp_Id, Loc),
                Expression => Alloc_Expr);
         end if;
      end Build_Heap_Or_Pool_Allocator;

      --------------------------
      -- BIP_Function_Call_Id --
      --------------------------

      function BIP_Function_Call_Id return Entity_Id is

         function Func_Call_Id (Function_Call : Node_Id) return Entity_Id;
         --  Return the id of the called function.

         function Func_Call_Id (Function_Call : Node_Id) return Entity_Id is
            Call_Node : constant Node_Id := Unqual_Conv (Function_Call);

         begin
            if Is_Entity_Name (Name (Call_Node)) then
               return Entity (Name (Call_Node));

            elsif Nkind (Name (Call_Node)) = N_Explicit_Dereference then
               return Etype (Name (Call_Node));

            else
               pragma Assert (Nkind (Name (Call_Node)) = N_Selected_Component);
               return Etype (Entity (Selector_Name (Name (Call_Node))));
            end if;
         end Func_Call_Id;

         --  Local declarations

         BIP_Func_Call : Node_Id;
         Expr_Q        : constant Node_Id := Unqual_Conv (Expr);

      --  Start of processing for BIP_Function_Call_Id

      begin
         if Is_Build_In_Place_Function_Call (Expr_Q) then
            return Func_Call_Id (Expr_Q);
         end if;

         BIP_Func_Call := Unqual_BIP_Iface_Function_Call (Expr_Q);

         if Present (BIP_Func_Call) then

            --  In the case of an explicitly dereferenced call, return the
            --  subprogram type.

            if Nkind (Name (BIP_Func_Call)) = N_Explicit_Dereference then
               return Etype (Name (BIP_Func_Call));
            else
               pragma Assert (Is_Entity_Name (Name (BIP_Func_Call)));
               return Entity (Name (BIP_Func_Call));
            end if;

         elsif Nkind (Expr_Q) = N_Reference
                 and then Is_Build_In_Place_Function_Call (Prefix (Expr_Q))
         then
            return Func_Call_Id (Prefix (Expr_Q));

         else
            return Empty;
         end if;
      end BIP_Function_Call_Id;

      -------------------------------------
      -- Count_Default_Sized_Task_Stacks --
      -------------------------------------

      procedure Count_Default_Sized_Task_Stacks
        (Typ         : Entity_Id;
         Pri_Stacks  : out Int;
         Sec_Stacks  : out Int)
      is
         Component : Entity_Id;

      begin
         --  To calculate the number of default-sized task stacks required for
         --  an object of Typ, a depth-first recursive traversal of the AST
         --  from the Typ entity node is undertaken. Only type nodes containing
         --  task objects are visited.

         Pri_Stacks := 0;
         Sec_Stacks := 0;

         if not Has_Task (Typ) then
            return;
         end if;

         case Ekind (Typ) is
            when E_Task_Subtype
               | E_Task_Type
            =>
               --  A task type is found marking the bottom of the descent. If
               --  the type has no representation aspect for the corresponding
               --  stack then that stack is using the default size.

               if Present (Get_Rep_Item (Typ, Name_Storage_Size)) then
                  Pri_Stacks := 0;
               else
                  Pri_Stacks := 1;
               end if;

               if Present (Get_Rep_Item (Typ, Name_Secondary_Stack_Size)) then
                  Sec_Stacks := 0;
               else
                  Sec_Stacks := 1;
               end if;

            when E_Array_Subtype
               | E_Array_Type
            =>
               --  First find the number of default stacks contained within an
               --  array component.

               Count_Default_Sized_Task_Stacks
                 (Component_Type (Typ),
                  Pri_Stacks,
                  Sec_Stacks);

               --  Then multiply the result by the size of the array

               declare
                  Quantity : constant Int := Number_Of_Elements_In_Array (Typ);
                  --  Number_Of_Elements_In_Array is non-trival, consequently
                  --  its result is captured as an optimization.

               begin
                  Pri_Stacks := Pri_Stacks * Quantity;
                  Sec_Stacks := Sec_Stacks * Quantity;
               end;

            when E_Protected_Subtype
               | E_Protected_Type
               | E_Record_Subtype
               | E_Record_Type
            =>
               Component := First_Component_Or_Discriminant (Typ);

               --  Recursively descend each component of the composite type
               --  looking for tasks, but only if the component is marked as
               --  having a task.

               while Present (Component) loop
                  if Has_Task (Etype (Component)) then
                     declare
                        P : Int;
                        S : Int;

                     begin
                        Count_Default_Sized_Task_Stacks
                          (Etype (Component), P, S);
                        Pri_Stacks := Pri_Stacks + P;
                        Sec_Stacks := Sec_Stacks + S;
                     end;
                  end if;

                  Next_Component_Or_Discriminant (Component);
               end loop;

            when E_Limited_Private_Subtype
               | E_Limited_Private_Type
               | E_Record_Subtype_With_Private
               | E_Record_Type_With_Private
            =>
               --  Switch to the full view of the private type to continue
               --  search.

               Count_Default_Sized_Task_Stacks
                 (Full_View (Typ), Pri_Stacks, Sec_Stacks);

            --  Other types should not contain tasks

            when others =>
               raise Program_Error;
         end case;
      end Count_Default_Sized_Task_Stacks;

      -------------------------------
      -- Default_Initialize_Object --
      -------------------------------

      procedure Default_Initialize_Object (After : Node_Id) is
         function New_Object_Reference return Node_Id;
         --  Return a new reference to Def_Id with attributes Assignment_OK and
         --  Must_Not_Freeze already set.

         function Simple_Initialization_OK
           (Init_Typ : Entity_Id) return Boolean;
         --  Determine whether object declaration N with entity Def_Id needs
         --  simple initialization, assuming that it is of type Init_Typ.

         --------------------------
         -- New_Object_Reference --
         --------------------------

         function New_Object_Reference return Node_Id is
            Obj_Ref : constant Node_Id := New_Occurrence_Of (Def_Id, Loc);

         begin
            --  The call to the type init proc or [Deep_]Finalize must not
            --  freeze the related object as the call is internally generated.
            --  This way legal rep clauses that apply to the object will not be
            --  flagged. Note that the initialization call may be removed if
            --  pragma Import is encountered or moved to the freeze actions of
            --  the object because of an address clause.

            Set_Assignment_OK   (Obj_Ref);
            Set_Must_Not_Freeze (Obj_Ref);

            return Obj_Ref;
         end New_Object_Reference;

         ------------------------------
         -- Simple_Initialization_OK --
         ------------------------------

         function Simple_Initialization_OK
           (Init_Typ : Entity_Id) return Boolean
         is
         begin
            --  Do not consider the object declaration if it comes with an
            --  initialization expression, or is internal in which case it
            --  will be assigned later.

            return
              not Is_Internal (Def_Id)
                and then not Has_Init_Expression (N)
                and then Needs_Simple_Initialization
                           (Typ         => Init_Typ,
                            Consider_IS =>
                              Initialize_Scalars
                                and then No (Following_Address_Clause (N)));
         end Simple_Initialization_OK;

         --  Local variables

         Exceptions_OK : constant Boolean :=
                           not Restriction_Active (No_Exception_Propagation);

         Aggr_Init  : Node_Id;
         Comp_Init  : List_Id := No_List;
         Fin_Block  : Node_Id;
         Fin_Call   : Node_Id;
         Init_Stmts : List_Id := No_List;
         Obj_Init   : Node_Id := Empty;
         Obj_Ref    : Node_Id;

      --  Start of processing for Default_Initialize_Object

      begin
         --  Default initialization is suppressed for objects that are already
         --  known to be imported (i.e. whose declaration specifies the Import
         --  aspect). Note that for objects with a pragma Import, we generate
         --  initialization here, and then remove it downstream when processing
         --  the pragma. It is also suppressed for variables for which a pragma
         --  Suppress_Initialization has been explicitly given

         if Is_Imported (Def_Id) or else Suppress_Initialization (Def_Id) then
            return;

         --  Nothing to do if the object being initialized is of a task type
         --  and restriction No_Tasking is in effect, because this is a direct
         --  violation of the restriction.

         elsif Is_Task_Type (Base_Typ)
           and then Restriction_Active (No_Tasking)
         then
            return;
         end if;

         --  The expansion performed by this routine is as follows:

         --    begin
         --       Abort_Defer;
         --       Type_Init_Proc (Obj);

         --       begin
         --          [Deep_]Initialize (Obj);

         --       exception
         --          when others =>
         --             [Deep_]Finalize (Obj, Self => False);
         --             raise;
         --       end;
         --    at end
         --       Abort_Undefer_Direct;
         --    end;

         --  Initialize the components of the object

         if Has_Non_Null_Base_Init_Proc (Typ)
           and then not No_Initialization (N)
           and then not Initialization_Suppressed (Typ)
         then
            --  Do not initialize the components if No_Default_Initialization
            --  applies as the actual restriction check will occur later when
            --  the object is frozen as it is not known yet whether the object
            --  is imported or not.

            if not Restriction_Active (No_Default_Initialization) then

               --  If the values of the components are compile-time known, use
               --  their prebuilt aggregate form directly.

               Aggr_Init := Static_Initialization (Base_Init_Proc (Typ));

               if Present (Aggr_Init) then
                  Set_Expression (N,
                    New_Copy_Tree (Aggr_Init, New_Scope => Current_Scope));

               --  If type has discriminants, try to build an equivalent
               --  aggregate using discriminant values from the declaration.
               --  This is a useful optimization, in particular if restriction
               --  No_Elaboration_Code is active.

               elsif Build_Equivalent_Aggregate then
                  null;

               --  Optimize the default initialization of an array object when
               --  pragma Initialize_Scalars or Normalize_Scalars is in effect.
               --  Construct an in-place initialization aggregate which may be
               --  convert into a fast memset by the backend.

               elsif Init_Or_Norm_Scalars
                 and then Is_Array_Type (Typ)

                 --  The array must lack atomic components because they are
                 --  treated as non-static, and as a result the backend will
                 --  not initialize the memory in one go.

                 and then not Has_Atomic_Components (Typ)

                 --  The array must not be packed because the invalid values
                 --  in System.Scalar_Values are multiples of Storage_Unit.

                 and then not Is_Packed (Typ)

                 --  The array must have static non-empty ranges, otherwise
                 --  the backend cannot initialize the memory in one go.

                 and then Has_Static_Non_Empty_Array_Bounds (Typ)

                 --  The optimization is only relevant for arrays of scalar
                 --  types.

                 and then Is_Scalar_Type (Component_Type (Typ))

                 --  Similar to regular array initialization using a type
                 --  init proc, predicate checks are not performed because the
                 --  initialization values are intentionally invalid, and may
                 --  violate the predicate.

                 and then not Has_Predicates (Component_Type (Typ))

                 --  Array default component value takes precedence over
                 --  Init_Or_Norm_Scalars.

                 and then No (Find_Aspect (Typ,
                                           Aspect_Default_Component_Value))

                 --  The component type must have a single initialization value

                 and then Simple_Initialization_OK (Component_Type (Typ))
               then
                  Set_No_Initialization (N, False);
                  Set_Expression (N,
                    Get_Simple_Init_Val
                      (Typ  => Typ,
                       N    => Obj_Def,
                       Size => (if Known_Esize (Def_Id) then Esize (Def_Id)
                                else Uint_0)));

                  Analyze_And_Resolve
                    (Expression (N), Typ, Suppress => All_Checks);

               --  Otherwise invoke the type init proc, generate:
               --    Type_Init_Proc (Obj);

               else
                  Obj_Ref := New_Object_Reference;

                  if Comes_From_Source (Def_Id) then
                     Initialization_Warning (Obj_Ref);
                  end if;

                  Comp_Init := Build_Initialization_Call (Loc, Obj_Ref, Typ);
               end if;
            end if;

         --  Provide a default value if the object needs simple initialization

         elsif Simple_Initialization_OK (Typ) then
            Set_No_Initialization (N, False);
            Set_Expression (N,
              Get_Simple_Init_Val
                (Typ  => Typ,
                 N    => Obj_Def,
                 Size =>
                   (if Known_Esize (Def_Id) then Esize (Def_Id) else Uint_0)));

            Analyze_And_Resolve (Expression (N), Typ);
         end if;

         --  Initialize the object, generate:
         --    [Deep_]Initialize (Obj);

         if Needs_Finalization (Typ) and then not No_Initialization (N) then
            Obj_Init :=
              Make_Init_Call
                (Obj_Ref => New_Object_Reference,
                 Typ     => Typ);
         end if;

         --  Build a special finalization block when both the object and its
         --  controlled components are to be initialized. The block finalizes
         --  the components if the object initialization fails. Generate:

         --    begin
         --       <Obj_Init>

         --    exception
         --       when others =>
         --          <Fin_Call>
         --          raise;
         --    end;

         if Has_Controlled_Component (Typ)
           and then Present (Comp_Init)
           and then Present (Obj_Init)
           and then Exceptions_OK
         then
            Init_Stmts := Comp_Init;

            Fin_Call :=
              Make_Final_Call
                (Obj_Ref   => New_Object_Reference,
                 Typ       => Typ,
                 Skip_Self => True);

            if Present (Fin_Call) then

               --  Do not emit warnings related to the elaboration order when a
               --  controlled object is declared before the body of Finalize is
               --  seen.

               if Legacy_Elaboration_Checks then
                  Set_No_Elaboration_Check (Fin_Call);
               end if;

               Fin_Block :=
                 Make_Block_Statement (Loc,
                   Declarations               => No_List,

                   Handled_Statement_Sequence =>
                     Make_Handled_Sequence_Of_Statements (Loc,
                       Statements         => New_List (Obj_Init),

                       Exception_Handlers => New_List (
                         Make_Exception_Handler (Loc,
                           Exception_Choices => New_List (
                             Make_Others_Choice (Loc)),

                           Statements        => New_List (
                             Fin_Call,
                             Make_Raise_Statement (Loc))))));

               --  Signal the ABE mechanism that the block carries out
               --  initialization actions.

               Set_Is_Initialization_Block (Fin_Block);

               Append_To (Init_Stmts, Fin_Block);
            end if;

         --  Otherwise finalization is not required, the initialization calls
         --  are passed to the abort block building circuitry, generate:

         --    Type_Init_Proc (Obj);
         --    [Deep_]Initialize (Obj);

         else
            if Present (Comp_Init) then
               Init_Stmts := Comp_Init;
            end if;

            if Present (Obj_Init) then
               if No (Init_Stmts) then
                  Init_Stmts := New_List;
               end if;

               Append_To (Init_Stmts, Obj_Init);
            end if;
         end if;

         --  Build an abort block to protect the initialization calls

         if Abort_Allowed
           and then Present (Comp_Init)
           and then Present (Obj_Init)
         then
            --  Generate:
            --    Abort_Defer;

            Prepend_To (Init_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));

            --  When exceptions are propagated, abort deferral must take place
            --  in the presence of initialization or finalization exceptions.
            --  Generate:

            --    begin
            --       Abort_Defer;
            --       <Init_Stmts>
            --    at end
            --       Abort_Undefer_Direct;
            --    end;

            if Exceptions_OK then
               Init_Stmts := New_List (
                 Build_Abort_Undefer_Block (Loc,
                   Stmts   => Init_Stmts,
                   Context => N));

            --  Otherwise exceptions are not propagated. Generate:

            --    Abort_Defer;
            --    <Init_Stmts>
            --    Abort_Undefer;

            else
               Append_To (Init_Stmts,
                 Build_Runtime_Call (Loc, RE_Abort_Undefer));
            end if;
         end if;

         --  Insert the whole initialization sequence into the tree. If the
         --  object has a delayed freeze, as will be the case when it has
         --  aspect specifications, the initialization sequence is part of
         --  the freeze actions.

         if Present (Init_Stmts) then
            if Has_Delayed_Freeze (Def_Id) then
               Append_Freeze_Actions (Def_Id, Init_Stmts);
            else
               Insert_Actions_After (After, Init_Stmts);
            end if;
         end if;
      end Default_Initialize_Object;

      ------------------------------
      -- Initialize_Return_Object --
      ------------------------------

      procedure Initialize_Return_Object
        (Tag_Assign : Node_Id;
         Adj_Call   : Node_Id;
         Expr       : Node_Id;
         Init_Stmt  : Node_Id;
         After      : Node_Id)
      is
      begin
         if Present (Tag_Assign) then
            Insert_Action_After (After, Tag_Assign);
         end if;

         if Present (Adj_Call) then
            Insert_Action_After (After, Adj_Call);
         end if;

         if No (Expr) then
            Default_Initialize_Object (After);

         elsif Is_Delayed_Aggregate (Expr)
           and then not No_Initialization (N)
         then
            Convert_Aggr_In_Object_Decl (N);

         elsif Present (Init_Stmt) then
            Insert_Action_After (After, Init_Stmt);
            Set_Expression (N, Empty);
         end if;
      end Initialize_Return_Object;

      --------------------------------
      -- Is_Renamable_Function_Call --
      --------------------------------

      function Is_Renamable_Function_Call (Expr : Node_Id) return Boolean is
      begin
         return not Is_Library_Level_Entity (Def_Id)
           and then Is_Captured_Function_Call (Expr)
           and then (not Special_Ret_Obj
                      or else
                        (Is_Related_To_Func_Return (Entity (Prefix (Expr)))
                          and then Needs_Secondary_Stack (Etype (Expr)) =
                                   Needs_Secondary_Stack (Etype (Func_Id))));
      end Is_Renamable_Function_Call;

      -------------------------------
      -- Make_Allocator_For_Return --
      -------------------------------

      function Make_Allocator_For_Return (Expr : Node_Id) return Node_Id is
         Alloc      : Node_Id;
         Alloc_Expr : Entity_Id;
         Alloc_Typ  : Entity_Id;

      begin
         --  If the return object's declaration does not include an expression,
         --  then we use its subtype for the allocation. Likewise in the case
         --  of a degenerate expression like a raise expression.

         if No (Expr)
           or else Nkind (Original_Node (Expr)) = N_Raise_Expression
         then
            Alloc_Typ := Typ;

         --  If the return object's declaration includes an expression, then
         --  there are two cases: either the nominal subtype of the object is
         --  definite and we can use it for the allocation directly, or it is
         --  not and Analyze_Object_Declaration should have built an actual
         --  subtype from the expression.

         --  However, there are exceptions in the latter case for interfaces
         --  (see Analyze_Object_Declaration), as well as class-wide types and
         --  types with unknown discriminants if they are additionally limited
         --  (see Expand_Subtype_From_Expr), so we must cope with them.

         elsif Is_Interface (Typ) then
            pragma Assert (Is_Class_Wide_Type (Typ));

            --  For interfaces, we use the type of the expression, except if
            --  we need to put back a conversion that we have removed earlier
            --  in the processing.

            if Is_Class_Wide_Type (Etype (Expr)) then
               Alloc_Typ := Typ;
            else
               Alloc_Typ := Etype (Expr);
            end if;

         elsif Is_Class_Wide_Type (Typ) then

            --  For class-wide types, we have to make sure that we use the
            --  dynamic type of the expression for the allocation, either by
            --  means of its (static) subtype or through the actual subtype.

            if Has_Tag_Of_Type (Expr) then
               Alloc_Typ := Etype (Expr);

            else pragma Assert (Ekind (Typ) = E_Class_Wide_Subtype
              and then Present (Equivalent_Type (Typ)));

               Alloc_Typ := Typ;
            end if;

         else pragma Assert (Is_Definite_Subtype (Typ)
           or else (Has_Unknown_Discriminants (Typ)
                     and then Is_Limited_View (Typ)));

            Alloc_Typ := Typ;
         end if;

         --  If the return object's declaration includes an expression and the
         --  declaration isn't marked as No_Initialization, then we generate an
         --  allocator with a qualified expression. Although this is necessary
         --  only in the case where the result type is an interface (or class-
         --  wide interface), we do it in all cases for the sake of consistency
         --  instead of subsequently generating a separate assignment.

         if Present (Expr)
           and then not Is_Delayed_Aggregate (Expr)
           and then not No_Initialization (N)
         then
            --  Ada 2005 (AI95-344): If the result type is class-wide, insert
            --  a check that the level of the return expression's underlying
            --  type is not deeper than the level of the master enclosing the
            --  function.

            --  AI12-043: The check is made immediately after the return object
            --  is created.

            if Is_Class_Wide_Type (Etype (Func_Id)) then
               Apply_CW_Accessibility_Check (Expr, Func_Id);
            end if;

            Alloc_Expr := New_Copy_Tree (Expr);

            if Etype (Alloc_Expr) /= Alloc_Typ then
               Alloc_Expr := Convert_To (Alloc_Typ, Alloc_Expr);
            end if;

            Alloc :=
              Make_Allocator (Loc,
                Expression =>
                  Make_Qualified_Expression (Loc,
                    Subtype_Mark =>
                      New_Occurrence_Of (Alloc_Typ, Loc),
                    Expression   => Alloc_Expr));

         else
            Alloc :=
              Make_Allocator (Loc,
                Expression => New_Occurrence_Of (Alloc_Typ, Loc));

            --  If the return object requires default initialization, then it
            --  will happen later following the elaboration of the renaming.
            --  If we don't turn it off here, then the object will be default
            --  initialized twice.

            Set_No_Initialization (Alloc);
         end if;

         --  Set the flag indicating that the allocator is made for a special
         --  return object. This is used to bypass various legality checks as
         --  well as to make sure that the result is not adjusted twice.

         Set_For_Special_Return_Object (Alloc);

         return Alloc;
      end Make_Allocator_For_Return;

      ----------------------
      -- OK_To_Rename_Ref --
      ----------------------

      function OK_To_Rename_Ref (N : Node_Id) return Boolean is
      begin
         return Is_Entity_Name (N)
           and then Ekind (Entity (N)) = E_Variable
           and then OK_To_Rename (Entity (N));
      end OK_To_Rename_Ref;

      --  Local variables

      Adj_Call   : Node_Id := Empty;
      Expr_Q     : Node_Id := Empty;
      Tag_Assign : Node_Id := Empty;

      Init_After : Node_Id := N;
      --  Node after which the initialization actions are to be inserted. This
      --  is normally N, except for the case of a shared passive variable, in
      --  which case the init proc call must be inserted only after the bodies
      --  of the shared variable procedures have been seen.

      Has_BIP_Init_Expr : Boolean := False;
      --  Whether the object is initialized with a BIP function call

      Rewrite_As_Renaming : Boolean := False;
      --  Whether to turn the declaration into a renaming at the end

      Nominal_Subtype_Is_Constrained_Array : constant Boolean :=
        Comes_From_Source (Obj_Def)
        and then Is_Array_Type (Typ) and then Is_Constrained (Typ);
      --  Used to avoid rewriting as a renaming for constrained arrays,
      --  which is only a problem for source arrays; others have the
      --  correct bounds (see below).

   --  Start of processing for Expand_N_Object_Declaration

   begin
      --  Don't do anything for deferred constants. All proper actions will be
      --  expanded during the full declaration.

      if No (Expr) and Constant_Present (N) then
         return;
      end if;

      --  The type of the object cannot be abstract. This is diagnosed at the
      --  point the object is frozen, which happens after the declaration is
      --  fully expanded, so simply return now.

      if Is_Abstract_Type (Typ) then
         return;
      end if;

      --  No action needed for the internal imported dummy object added by
      --  Make_DT to compute the offset of the components that reference
      --  secondary dispatch tables; required to avoid never-ending loop
      --  processing this internal object declaration.

      if Tagged_Type_Expansion
        and then Is_Internal (Def_Id)
        and then Is_Imported (Def_Id)
        and then Related_Type (Def_Id) = Implementation_Base_Type (Typ)
      then
         return;
      end if;

      --  Make shared memory routines for shared passive variable

      if Is_Shared_Passive (Def_Id) then
         Init_After := Make_Shared_Var_Procs (N);
      end if;

      --  Determine whether the object is initialized with a BIP function call

      if Present (Expr) then
         Expr_Q := Unqualify (Expr);

         Has_BIP_Init_Expr :=
           Is_Build_In_Place_Function_Call (Expr_Q)
             or else Present (Unqual_BIP_Iface_Function_Call (Expr_Q))
             or else (Nkind (Expr_Q) = N_Reference
                        and then
                      Is_Build_In_Place_Function_Call (Prefix (Expr_Q)));
      end if;

      --  If tasks are being declared, make sure we have an activation chain
      --  defined for the tasks (has no effect if we already have one), and
      --  also that a Master variable is established (and that the appropriate
      --  enclosing construct is established as a task master).

      if Has_Task (Typ)
        or else Might_Have_Tasks (Typ)
        or else (Has_BIP_Init_Expr
                   and then Needs_BIP_Task_Actuals (BIP_Function_Call_Id))
      then
         Build_Activation_Chain_Entity (N);

         if Has_Task (Typ) then
            Build_Master_Entity (Def_Id);

         --  Handle objects initialized with BIP function calls

         elsif Has_BIP_Init_Expr then
            Build_Master_Entity (Def_Id);
         end if;
      end if;

      --  If No_Implicit_Heap_Allocations or No_Implicit_Task_Allocations
      --  restrictions are active then default-sized secondary stacks are
      --  generated by the binder and allocated by SS_Init. To provide the
      --  binder the number of stacks to generate, the number of default-sized
      --  stacks required for task objects contained within the object
      --  declaration N is calculated here as it is at this point where
      --  unconstrained types become constrained. The result is stored in the
      --  enclosing unit's Unit_Record.

      --  Note if N is an array object declaration that has an initialization
      --  expression, a second object declaration for the initialization
      --  expression is created by the compiler. To prevent double counting
      --  of the stacks in this scenario, the stacks of the first array are
      --  not counted.

      if Might_Have_Tasks (Typ)
        and then not Restriction_Active (No_Secondary_Stack)
        and then (Restriction_Active (No_Implicit_Heap_Allocations)
          or else Restriction_Active (No_Implicit_Task_Allocations))
        and then not (Ekind (Typ) in E_Array_Type | E_Array_Subtype
                      and then Has_Init_Expression (N))
      then
         declare
            PS_Count, SS_Count : Int := 0;
         begin
            Count_Default_Sized_Task_Stacks (Typ, PS_Count, SS_Count);
            Increment_Primary_Stack_Count (PS_Count);
            Increment_Sec_Stack_Count (SS_Count);
         end;
      end if;

      --  Default initialization required, and no expression present

      if No (Expr) then
         --  If we have a type with a variant part, the initialization proc
         --  will contain implicit tests of the discriminant values, which
         --  counts as a violation of the restriction No_Implicit_Conditionals.

         if Has_Variant_Part (Typ) then
            declare
               Msg : Boolean;

            begin
               Check_Restriction (Msg, No_Implicit_Conditionals, Obj_Def);

               if Msg then
                  Error_Msg_N
                    ("\initialization of variant record tests discriminants",
                     Obj_Def);
                  return;
               end if;
            end;
         end if;

         --  For the default initialization case, if we have a private type
         --  with invariants, and invariant checks are enabled, then insert an
         --  invariant check after the object declaration. Note that it is OK
         --  to clobber the object with an invalid value since if the exception
         --  is raised, then the object will go out of scope. In the case where
         --  an array object is initialized with an aggregate, the expression
         --  is removed. Check flag Has_Init_Expression to avoid generating a
         --  junk invariant check and flag No_Initialization to avoid checking
         --  an uninitialized object such as a compiler temporary used for an
         --  aggregate.

         if Has_Invariants (Base_Typ)
           and then Present (Invariant_Procedure (Base_Typ))
           and then not Has_Init_Expression (N)
           and then not No_Initialization (N)
         then
            --  If entity has an address clause or aspect, make invariant
            --  call into a freeze action for the explicit freeze node for
            --  object. Otherwise insert invariant check after declaration.

            if Present (Following_Address_Clause (N))
              or else Has_Aspect (Def_Id, Aspect_Address)
            then
               Ensure_Freeze_Node (Def_Id);
               Set_Has_Delayed_Freeze (Def_Id);
               Set_Is_Frozen (Def_Id, False);

               if not Partial_View_Has_Unknown_Discr (Typ) then
                  Append_Freeze_Action (Def_Id,
                    Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc)));
               end if;

            elsif not Partial_View_Has_Unknown_Discr (Typ) then
               Insert_After (N,
                 Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc)));
            end if;
         end if;

         if not Special_Ret_Obj then
            Default_Initialize_Object (Init_After);
         end if;

         --  Generate attribute for Persistent_BSS if needed

         if Persistent_BSS_Mode
           and then Comes_From_Source (N)
           and then Is_Potentially_Persistent_Type (Typ)
           and then not Has_Init_Expression (N)
           and then Is_Library_Level_Entity (Def_Id)
         then
            declare
               Prag : Node_Id;
            begin
               Prag :=
                 Make_Linker_Section_Pragma
                   (Def_Id, Sloc (N), ".persistent.bss");
               Insert_After (N, Prag);
               Analyze (Prag);
            end;
         end if;

         --  If access type, then we know it is null if not initialized

         if Is_Access_Type (Typ) then
            Set_Is_Known_Null (Def_Id);
         end if;

      --  Explicit initialization present

      else
         --  Obtain actual expression from qualified expression

         Expr_Q := Unqualify (Expr);

         --  When we have the appropriate type of aggregate in the expression
         --  (it has been determined during analysis of the aggregate by
         --  setting the delay flag), let's perform in place assignment and
         --  thus avoid creating a temporary.

         if Is_Delayed_Aggregate (Expr_Q) then

            --  An aggregate that must be built in place is not resolved and
            --  expanded until the enclosing construct is expanded. This will
            --  happen when the aggregate is limited and the declared object
            --  has a following address clause; it happens also when generating
            --  C code for an aggregate that has an alignment or address clause
            --  (see Analyze_Object_Declaration). Resolution is done without
            --  expansion because it will take place when the declaration
            --  itself is expanded.

            if (Is_Limited_Type (Typ) or else Modify_Tree_For_C)
              and then not Analyzed (Expr)
            then
               Expander_Mode_Save_And_Set (False);
               Resolve (Expr, Typ);
               Expander_Mode_Restore;
            end if;

            if not Special_Ret_Obj then
               Convert_Aggr_In_Object_Decl (N);
            end if;

         --  Ada 2005 (AI-318-02): If the initialization expression is a call
         --  to a build-in-place function, then access to the declared object
         --  must be passed to the function. Currently we limit such functions
         --  to those with constrained limited result subtypes, but eventually
         --  plan to expand the allowed forms of functions that are treated as
         --  build-in-place.

         elsif Is_Build_In_Place_Function_Call (Expr_Q) then
            Make_Build_In_Place_Call_In_Object_Declaration (N, Expr_Q);

            --  The previous call expands the expression initializing the
            --  built-in-place object into further code that will be analyzed
            --  later. No further expansion needed here.

            return;

         --  This is the same as the previous 'elsif', except that the call has
         --  been transformed by other expansion activities into something like
         --  F(...)'Reference.

         elsif Nkind (Expr_Q) = N_Reference
           and then Is_Build_In_Place_Function_Call (Prefix (Expr_Q))
           and then not Is_Expanded_Build_In_Place_Call
                          (Unqual_Conv (Prefix (Expr_Q)))
         then
            Make_Build_In_Place_Call_In_Anonymous_Context (Prefix (Expr_Q));

            --  The previous call expands the expression initializing the
            --  built-in-place object into further code that will be analyzed
            --  later. No further expansion needed here.

            return;

         --  Ada 2005 (AI-318-02): Specialization of the previous case for
         --  expressions containing a build-in-place function call whose
         --  returned object covers interface types, and Expr_Q has calls to
         --  Ada.Tags.Displace to displace the pointer to the returned build-
         --  in-place object to reference the secondary dispatch table of a
         --  covered interface type.

         elsif Present (Unqual_BIP_Iface_Function_Call (Expr_Q)) then
            Make_Build_In_Place_Iface_Call_In_Object_Declaration (N, Expr_Q);

            --  The previous call expands the expression initializing the
            --  built-in-place object into further code that will be analyzed
            --  later. No further expansion needed here.

            return;

         --  Ada 2005 (AI-251): Rewrite the expression that initializes a
         --  class-wide interface object to ensure that we copy the full
         --  object, unless we are targetting a VM where interfaces are handled
         --  by VM itself. Note that if the root type of Typ is an ancestor of
         --  Expr's type, both types share the same dispatch table and there is
         --  no need to displace the pointer.

         elsif Is_Interface (Typ)

           --  Avoid never-ending recursion because if Equivalent_Type is set
           --  then we've done it already and must not do it again.

           and then not
             (Nkind (Obj_Def) = N_Identifier
               and then Present (Equivalent_Type (Entity (Obj_Def))))
         then
            pragma Assert (Is_Class_Wide_Type (Typ));

            --  If the original node of the expression was a conversion
            --  to this specific class-wide interface type then restore
            --  the original node because we must copy the object before
            --  displacing the pointer to reference the secondary tag
            --  component. This code must be kept synchronized with the
            --  expansion done by routine Expand_Interface_Conversion

            if not Comes_From_Source (Expr)
              and then Nkind (Expr) = N_Explicit_Dereference
              and then Nkind (Original_Node (Expr)) = N_Type_Conversion
              and then Etype (Original_Node (Expr)) = Typ
            then
               Rewrite (Expr, Original_Node (Expression (N)));
            end if;

            --  Avoid expansion of redundant interface conversion

            if Nkind (Expr) = N_Type_Conversion
              and then Etype (Expr) = Typ
            then
               Expr_Q := Expression (Expr);
            else
               Expr_Q := Expr;
            end if;

            --  We may use a renaming if the initialization expression is a
            --  captured function call that meets a few conditions.

            Rewrite_As_Renaming := Is_Renamable_Function_Call (Expr_Q);

            --  If the object is a special return object, then bypass special
            --  treatment of class-wide interface initialization below. In this
            --  case, the expansion of the return object will take care of this
            --  initialization via the expansion of the allocator.

            if Special_Ret_Obj and then not Rewrite_As_Renaming then

               --  If the type needs finalization and is not inherently
               --  limited, then the target is adjusted after the copy
               --  and attached to the finalization list.

               if Needs_Finalization (Typ)
                 and then not Is_Limited_View (Typ)
               then
                  Adj_Call :=
                    Make_Adjust_Call (
                      Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
                      Typ     => Base_Typ);
               end if;

            --  Renaming an expression of the object's type is immediate

            elsif Rewrite_As_Renaming
              and then Base_Type (Etype (Expr_Q)) = Base_Type (Typ)
            then
               null;

            elsif Tagged_Type_Expansion then
               declare
                  Iface : constant Entity_Id := Root_Type (Typ);

                  Expr_Typ     : Entity_Id;
                  New_Expr     : Node_Id;
                  Obj_Id       : Entity_Id;
                  Ptr_Obj_Decl : Node_Id;
                  Ptr_Obj_Id   : Entity_Id;
                  Tag_Comp     : Node_Id;

               begin
                  Expr_Typ := Base_Type (Etype (Expr_Q));
                  if Is_Class_Wide_Type (Expr_Typ) then
                     Expr_Typ := Root_Type (Expr_Typ);
                  end if;

                  --  Rename limited objects since they cannot be copied

                  if Is_Limited_Record (Expr_Typ) then
                     Rewrite_As_Renaming := True;
                  end if;

                  Obj_Id := Make_Temporary (Loc, 'D', Expr_Q);

                  --  Replace
                  --     IW : I'Class := Expr;
                  --  by
                  --     Dnn : Tag renames Tag_Ptr!(Expr'Address).all;
                  --     type Ityp is not null access I'Class;
                  --     Rnn : constant Ityp :=
                  --             Ityp!(Displace (Dnn'Address, I'Tag));
                  --     IW : I'Class renames Rnn.all;

                  if Rewrite_As_Renaming then
                     New_Expr :=
                       Make_Explicit_Dereference (Loc,
                         Unchecked_Convert_To (RTE (RE_Tag_Ptr),
                           Make_Attribute_Reference (Loc,
                             Prefix => Relocate_Node (Expr_Q),
                             Attribute_Name => Name_Address)));

                     --  Suppress junk access checks on RE_Tag_Ptr

                     Insert_Action (N,
                       Make_Object_Renaming_Declaration (Loc,
                         Defining_Identifier => Obj_Id,
                         Subtype_Mark        =>
                           New_Occurrence_Of (RTE (RE_Tag), Loc),
                         Name                => New_Expr),
                       Suppress => Access_Check);

                     --  Dynamically reference the tag associated with the
                     --  interface.

                     Tag_Comp :=
                       Make_Function_Call (Loc,
                         Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
                         Parameter_Associations => New_List (
                           Make_Attribute_Reference (Loc,
                             Prefix => New_Occurrence_Of (Obj_Id, Loc),
                             Attribute_Name => Name_Address),
                           New_Occurrence_Of
                             (Node (First_Elmt (Access_Disp_Table (Iface))),
                              Loc)));

                  --  Replace
                  --     IW : I'Class := Expr;
                  --  by
                  --     Dnn : Typ := Expr;
                  --     type Ityp is not null access I'Class;
                  --     Rnn : constant Ityp := Ityp (Dnn.I_Tag'Address);
                  --     IW  : I'Class renames Rnn.all;

                  elsif Has_Tag_Of_Type (Expr_Q)
                    and then Interface_Present_In_Ancestor (Expr_Typ, Typ)
                    and then (Expr_Typ = Etype (Expr_Typ)
                               or else not
                                 Is_Variable_Size_Record (Etype (Expr_Typ)))
                  then
                     Insert_Action (N,
                       Make_Object_Declaration (Loc,
                         Defining_Identifier => Obj_Id,
                         Object_Definition   =>
                           New_Occurrence_Of (Expr_Typ, Loc),
                         Expression          => Relocate_Node (Expr_Q)));

                     --  Statically reference the tag associated with the
                     --  interface

                     Tag_Comp :=
                       Make_Selected_Component (Loc,
                         Prefix        => New_Occurrence_Of (Obj_Id, Loc),
                         Selector_Name =>
                           New_Occurrence_Of
                             (Find_Interface_Tag (Expr_Typ, Iface), Loc));

                  --  Replace
                  --     IW : I'Class := Expr;
                  --  by
                  --     type Equiv_Record is record ... end record;
                  --     implicit subtype CW is <Class_Wide_Subtype>;
                  --     Dnn : CW := CW!(Expr);
                  --     type Ityp is not null access I'Class;
                  --     Rnn : constant Ityp :=
                  --             Ityp!(Displace (Dnn'Address, I'Tag));
                  --     IW : I'Class renames Rnn.all;

                  else
                     --  Generate the equivalent record type and update the
                     --  subtype indication to reference it.

                     Expand_Subtype_From_Expr
                       (N             => N,
                        Unc_Type      => Typ,
                        Subtype_Indic => Obj_Def,
                        Exp           => Expr_Q);

                     --  For interface types we use 'Address which displaces
                     --  the pointer to the base of the object (if required).

                     if Is_Interface (Etype (Expr_Q)) then
                        New_Expr :=
                          Unchecked_Convert_To (Etype (Obj_Def),
                            Make_Explicit_Dereference (Loc,
                              Unchecked_Convert_To (RTE (RE_Tag_Ptr),
                                Make_Attribute_Reference (Loc,
                                  Prefix => Relocate_Node (Expr_Q),
                                  Attribute_Name => Name_Address))));

                     --  For other types, no displacement is needed

                     else
                        New_Expr := Relocate_Node (Expr_Q);
                     end if;

                     --  Suppress junk access checks on RE_Tag_Ptr

                     Insert_Action (N,
                       Make_Object_Declaration (Loc,
                         Defining_Identifier => Obj_Id,
                         Object_Definition   =>
                           New_Occurrence_Of (Etype (Obj_Def), Loc),
                         Expression          => New_Expr),
                       Suppress => Access_Check);

                     --  Dynamically reference the tag associated with the
                     --  interface.

                     Tag_Comp :=
                       Make_Function_Call (Loc,
                         Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
                         Parameter_Associations => New_List (
                           Make_Attribute_Reference (Loc,
                             Prefix => New_Occurrence_Of (Obj_Id, Loc),
                             Attribute_Name => Name_Address),
                           New_Occurrence_Of
                             (Node (First_Elmt (Access_Disp_Table (Iface))),
                              Loc)));
                  end if;

                  --  As explained in Exp_Disp, we use Convert_Tag_To_Interface
                  --  to do the final conversion, but we insert an intermediate
                  --  temporary before the dereference so that we can process
                  --  the expansion as part of the analysis of the declaration
                  --  of this temporary, and then rewrite manually the original
                  --  object as the simple renaming of this dereference.

                  Tag_Comp := Convert_Tag_To_Interface (Typ, Tag_Comp);
                  pragma Assert (Nkind (Tag_Comp) = N_Explicit_Dereference
                    and then
                      Nkind (Prefix (Tag_Comp)) = N_Unchecked_Type_Conversion);

                  Ptr_Obj_Id := Make_Temporary (Loc, 'R');

                  Ptr_Obj_Decl :=
                    Make_Object_Declaration (Loc,
                      Defining_Identifier => Ptr_Obj_Id,
                      Constant_Present    => True,
                      Object_Definition   =>
                        New_Occurrence_Of
                          (Entity (Subtype_Mark (Prefix (Tag_Comp))), Loc),
                      Expression => Prefix (Tag_Comp));

                  Insert_Action (N, Ptr_Obj_Decl, Suppress => All_Checks);

                  Set_Prefix (Tag_Comp, New_Occurrence_Of (Ptr_Obj_Id, Loc));
                  Expr_Q := Tag_Comp;
                  Set_Etype (Expr_Q, Typ);
                  Set_Parent (Expr_Q, N);

                  Rewrite_As_Renaming := True;
               end;

            else
               return;
            end if;

         --  Common case of explicit object initialization

         else
            --  Small optimization: if the expression is a function call and
            --  the object is stand-alone, not declared at library level and of
            --  a class-wide type, then we capture the result of the call into
            --  a temporary, with the benefit that, if the result's type does
            --  not need finalization, nothing will be finalized and, if it
            --  does, the temporary only will be finalized by means of a direct
            --  call to the Finalize primitive if the result's type is not a
            --  class-wide type; whereas, in both cases, the stand-alone object
            --  itself would be finalized by means of a dispatching call to the
            --  Deep_Finalize routine.

            if Nkind (Expr_Q) = N_Function_Call
              and then not Special_Ret_Obj
              and then not Is_Library_Level_Entity (Def_Id)
              and then Is_Class_Wide_Type (Typ)
            then
               Remove_Side_Effects (Expr_Q);
            end if;

            --  In most cases, we must check that the initial value meets any
            --  constraint imposed by the declared type. However, there is one
            --  very important exception to this rule. If the entity has an
            --  unconstrained nominal subtype, then it acquired its constraints
            --  from the expression in the first place, and not only does this
            --  mean that the constraint check is not needed, but an attempt to
            --  perform the constraint check can cause order of elaboration
            --  problems.

            if not Is_Constr_Subt_For_U_Nominal (Typ) then

               --  If this is an allocator for an aggregate that has been
               --  allocated in place, delay checks until assignments are
               --  made, because the discriminants are not initialized.

               if Nkind (Expr) = N_Allocator
                 and then No_Initialization (Expr)
               then
                  null;

               --  Otherwise apply a constraint check now if no prev error

               elsif Nkind (Expr) /= N_Error then
                  Apply_Constraint_Check (Expr, Typ);

                  --  Deal with possible range check

                  if Do_Range_Check (Expr) then

                     --  If assignment checks are suppressed, turn off flag

                     if Suppress_Assignment_Checks (N) then
                        Set_Do_Range_Check (Expr, False);

                     --  Otherwise generate the range check

                     else
                        Generate_Range_Check
                          (Expr, Typ, CE_Range_Check_Failed);
                     end if;
                  end if;
               end if;
            end if;

            --  For tagged types, when an init value is given, the tag has to
            --  be re-initialized separately in order to avoid the propagation
            --  of a wrong tag coming from a view conversion unless the type
            --  is class wide (in this case the tag comes from the init value).
            --  Suppress the tag assignment when not Tagged_Type_Expansion
            --  because tags are represented implicitly in objects. Ditto for
            --  types that are CPP_CLASS, and for initializations that are
            --  aggregates, because they have to have the right tag.

            --  The re-assignment of the tag has to be done even if the object
            --  is a constant. The assignment must be analyzed after the
            --  declaration. If an address clause follows, this is handled as
            --  part of the freeze actions for the object, otherwise insert
            --  tag assignment here.

            Tag_Assign := Make_Tag_Assignment (N);

            if Present (Tag_Assign) then
               if Present (Following_Address_Clause (N)) then
                  Ensure_Freeze_Node (Def_Id);
               elsif not Special_Ret_Obj then
                  Insert_Action_After (Init_After, Tag_Assign);
               end if;

            --  Handle C++ constructor calls. Note that we do not check that
            --  Typ is a tagged type since the equivalent Ada type of a C++
            --  class that has no virtual methods is an untagged limited
            --  record type.

            elsif Is_CPP_Constructor_Call (Expr) then
               declare
                  Id_Ref : constant Node_Id := New_Occurrence_Of (Def_Id, Loc);

               begin
                  --  The call to the initialization procedure does NOT freeze
                  --  the object being initialized.

                  Set_Must_Not_Freeze (Id_Ref);
                  Set_Assignment_OK (Id_Ref);

                  Insert_Actions_After (Init_After,
                    Build_Initialization_Call (Loc, Id_Ref, Typ,
                      Constructor_Ref => Expr));

                  --  We remove here the original call to the constructor
                  --  to avoid its management in the backend

                  Set_Expression (N, Empty);
                  return;
               end;

            --  Handle initialization of limited tagged types

            elsif Is_Tagged_Type (Typ)
              and then Is_Class_Wide_Type (Typ)
              and then Is_Limited_Record (Typ)
              and then not Is_Limited_Interface (Typ)
            then
               --  Given that the type is limited we cannot perform a copy. If
               --  Expr_Q is the reference to a variable we mark the variable
               --  as OK_To_Rename to expand this declaration into a renaming
               --  declaration (see below).

               if Is_Entity_Name (Expr_Q) then
                  Set_OK_To_Rename (Entity (Expr_Q));

               --  If we cannot convert the expression into a renaming we must
               --  consider it an internal error because the backend does not
               --  have support to handle it. But avoid crashing on a raise
               --  expression or conditional expression.

               elsif Nkind (Original_Node (Expr_Q)) not in
                 N_Raise_Expression | N_If_Expression | N_Case_Expression
               then
                  raise Program_Error;
               end if;

            --  For discrete types, set the Is_Known_Valid flag if the
            --  initializing value is known to be valid. Only do this for
            --  source assignments, since otherwise we can end up turning
            --  on the known valid flag prematurely from inserted code.

            elsif Comes_From_Source (N)
              and then Is_Discrete_Type (Typ)
              and then Expr_Known_Valid (Expr)
              and then Safe_To_Capture_Value (N, Def_Id)
            then
               Set_Is_Known_Valid (Def_Id);

            --  For access types, set the Is_Known_Non_Null flag if the
            --  initializing value is known to be non-null. We can also
            --  set Can_Never_Be_Null if this is a constant.

            elsif Is_Access_Type (Typ) and then Known_Non_Null (Expr) then
               Set_Is_Known_Non_Null (Def_Id, True);

               if Constant_Present (N) then
                  Set_Can_Never_Be_Null (Def_Id);
               end if;
            end if;

            --  If validity checking on copies, validate initial expression.
            --  But skip this if declaration is for a generic type, since it
            --  makes no sense to validate generic types. Not clear if this
            --  can happen for legal programs, but it definitely can arise
            --  from previous instantiation errors.

            if Validity_Checks_On
              and then Comes_From_Source (N)
              and then Validity_Check_Copies
              and then not Is_Generic_Type (Typ)
            then
               Ensure_Valid (Expr);

               if Safe_To_Capture_Value (N, Def_Id) then
                  Set_Is_Known_Valid (Def_Id);
               end if;
            end if;

            --  Now determine whether we will use a renaming

            Rewrite_As_Renaming :=

              --  The declaration cannot be rewritten if it has got constraints

              Is_Entity_Name (Original_Node (Obj_Def))

                --  Nor if it is effectively an unconstrained declaration

                and then not (Is_Array_Type (Typ)
                               and then Is_Constr_Subt_For_UN_Aliased (Typ))

                --  We may use a renaming if the initialization expression is a
                --  captured function call that meets a few conditions.

                and then
                  (Is_Renamable_Function_Call (Expr_Q)

                   --  Or else if it is a variable with OK_To_Rename set

                   or else (OK_To_Rename_Ref (Expr_Q)
                             and then not Special_Ret_Obj)

                   --  Or else if it is a slice of such a variable

                   or else (Nkind (Expr_Q) = N_Slice
                             and then OK_To_Rename_Ref (Prefix (Expr_Q))
                             and then not Special_Ret_Obj))

                --  If we have "X : S := ...;", and S is a constrained array
                --  subtype, then we cannot rename, because renamings ignore
                --  the constraints of S, so that would change the semantics
                --  (sliding would not occur on the initial value).

                and then not Nominal_Subtype_Is_Constrained_Array;

            --  If the type needs finalization and is not inherently limited,
            --  then the target is adjusted after the copy and attached to the
            --  finalization list. However, no adjustment is needed in the case
            --  where the object has been initialized by a call to a function
            --  returning on the primary stack (see Expand_Ctrl_Function_Call)
            --  since no copy occurred, given that the type is by-reference.
            --  Similarly, no adjustment is needed if we are going to rewrite
            --  the object declaration into a renaming declaration.

            if Needs_Finalization (Typ)
              and then not Is_Limited_View (Typ)
              and then Nkind (Expr_Q) /= N_Function_Call
              and then not Rewrite_As_Renaming
            then
               Adj_Call :=
                 Make_Adjust_Call (
                   Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
                   Typ     => Base_Typ);

               if Present (Adj_Call) and then not Special_Ret_Obj then
                  Insert_Action_After (Init_After, Adj_Call);
               end if;
            end if;
         end if;

         --  Cases where the back end cannot handle the initialization
         --  directly. In such cases, we expand an assignment that will
         --  be appropriately handled by Expand_N_Assignment_Statement.

         --  The exclusion of the unconstrained case is wrong, but for now it
         --  is too much trouble ???

         if (Is_Possibly_Unaligned_Slice (Expr)
              or else (Is_Possibly_Unaligned_Object (Expr)
                        and then not Represented_As_Scalar (Etype (Expr))))
           and then not (Is_Array_Type (Etype (Expr))
                          and then not Is_Constrained (Etype (Expr)))
         then
            declare
               Stat : constant Node_Id :=
                       Make_Assignment_Statement (Loc,
                         Name       => New_Occurrence_Of (Def_Id, Loc),
                         Expression => Relocate_Node (Expr));
            begin
               Set_Assignment_OK (Name (Stat));
               Set_No_Ctrl_Actions (Stat);
               Insert_Action_After (Init_After, Stat);
               Set_Expression (N, Empty);
               Set_No_Initialization (N);
            end;
         end if;
      end if;

      if Nkind (Obj_Def) = N_Access_Definition
        and then not Is_Local_Anonymous_Access (Typ)
      then
         --  An Ada 2012 stand-alone object of an anonymous access type

         declare
            Loc : constant Source_Ptr := Sloc (N);

            Level : constant Entity_Id :=
                      Make_Defining_Identifier (Sloc (N),
                        Chars =>
                          New_External_Name (Chars (Def_Id), Suffix => "L"));

            Level_Decl : Node_Id;
            Level_Expr : Node_Id;

         begin
            Mutate_Ekind (Level, Ekind (Def_Id));
            Set_Etype (Level, Standard_Natural);
            Set_Scope (Level, Scope (Def_Id));

            --  Set accessibility level of null

            if No (Expr) then
               Level_Expr :=
                 Make_Integer_Literal
                   (Loc, Scope_Depth (Standard_Standard));

            --  When the expression of the object is a function which returns
            --  an anonymous access type the master of the call is the object
            --  being initialized instead of the type.

            elsif Nkind (Expr) = N_Function_Call
              and then Ekind (Etype (Name (Expr))) = E_Anonymous_Access_Type
            then
               Level_Expr := Accessibility_Level
                               (Def_Id, Object_Decl_Level);

            --  General case

            else
               Level_Expr := Accessibility_Level (Expr, Dynamic_Level);
            end if;

            Level_Decl :=
              Make_Object_Declaration (Loc,
                Defining_Identifier => Level,
                Object_Definition   =>
                  New_Occurrence_Of (Standard_Natural, Loc),
                Expression          => Level_Expr,
                Constant_Present    => Constant_Present (N),
                Has_Init_Expression => True);

            Insert_Action_After (Init_After, Level_Decl);

            Set_Extra_Accessibility (Def_Id, Level);
         end;
      end if;

      --  If the object is default initialized and its type is subject to
      --  pragma Default_Initial_Condition, add a runtime check to verify
      --  the assumption of the pragma (SPARK RM 7.3.3). Generate:

      --    <Base_Typ>DIC (<Base_Typ> (Def_Id));

      --  Note that the check is generated for source objects only

      if Comes_From_Source (Def_Id)
        and then Has_DIC (Typ)
        and then Present (DIC_Procedure (Typ))
        and then not Has_Null_Body (DIC_Procedure (Typ))
        and then not Has_Init_Expression (N)
        and then No (Expr)
        and then not Is_Imported (Def_Id)
      then
         declare
            DIC_Call : constant Node_Id :=
                         Build_DIC_Call
                           (Loc, New_Occurrence_Of (Def_Id, Loc), Typ);
         begin
            if Present (Next_N) then
               Insert_Before_And_Analyze (Next_N, DIC_Call);

            --  The object declaration is the last node in a declarative or a
            --  statement list.

            else
               Append_To (List_Containing (N), DIC_Call);
               Analyze (DIC_Call);
            end if;
         end;
      end if;

      --  If this is the return object of a build-in-place function, locate the
      --  implicit BIPaccess parameter designating the caller-supplied return
      --  object and convert the declaration to a renaming of a dereference of
      --  this parameter. If the declaration includes an expression, add an
      --  assignment statement to ensure the return object gets initialized.

      --    Result : T [:= <expression>];

      --  is converted to

      --    Result : T renames BIPaccess.all;
      --    [Result := <expression>;]

      --  in the constrained case, or to

      --    type Txx is access all ...;
      --    Rxx : Txx := null;

      --    if BIPalloc = 1 then
      --       Rxx := BIPaccess;
      --       Rxx.all := <expression>;
      --    elsif BIPalloc = 2 then
      --       Rxx := new <expression-type>'(<expression>)[storage_pool =
      --         system__secondary_stack__ss_pool][procedure_to_call =
      --         system__secondary_stack__ss_allocate];
      --    elsif BIPalloc = 3 then
      --       Rxx := new <expression-type>'(<expression>)
      --    elsif BIPalloc = 4 then
      --       Pxx : system__storage_pools__root_storage_pool renames
      --         BIPstoragepool.all;
      --       Rxx := new <expression-type>'(<expression>)[storage_pool =
      --         Pxx][procedure_to_call =
      --         system__storage_pools__allocate_any];
      --    else
      --       [program_error "build in place mismatch"]
      --    end if;

      --    Result : T renames Rxx.all;

      --  in the unconstrained case.

      if Is_Build_In_Place_Return_Object (Def_Id) then
         declare
            Init_Stmt      : Node_Id;
            Obj_Acc_Formal : Entity_Id;

         begin
            --  Retrieve the implicit access parameter passed by the caller

            Obj_Acc_Formal :=
              Build_In_Place_Formal (Func_Id, BIP_Object_Access);

            --  If the return object's declaration includes an expression
            --  and the declaration isn't marked as No_Initialization, then
            --  we need to generate an assignment to the object and insert
            --  it after the declaration before rewriting it as a renaming
            --  (otherwise we'll lose the initialization). The case where
            --  the result type is an interface (or class-wide interface)
            --  is also excluded because the context of the function call
            --  must be unconstrained, so the initialization will always
            --  be done as part of an allocator evaluation (storage pool
            --  or secondary stack), never to a constrained target object
            --  passed in by the caller. Besides the assignment being
            --  unneeded in this case, it avoids problems with trying to
            --  generate a dispatching assignment when the return expression
            --  is a nonlimited descendant of a limited interface (the
            --  interface has no assignment operation).

            if Present (Expr_Q)
              and then not Is_Delayed_Aggregate (Expr_Q)
              and then not No_Initialization (N)
              and then not Is_Interface (Typ)
            then
               if Is_Class_Wide_Type (Typ)
                 and then not Is_Class_Wide_Type (Etype (Expr_Q))
               then
                  Init_Stmt :=
                    Make_Assignment_Statement (Loc,
                      Name       => New_Occurrence_Of (Def_Id, Loc),
                      Expression =>
                        Make_Type_Conversion (Loc,
                          Subtype_Mark =>
                            New_Occurrence_Of (Typ, Loc),
                          Expression   => New_Copy_Tree (Expr_Q)));

               else
                  Init_Stmt :=
                    Make_Assignment_Statement (Loc,
                      Name       => New_Occurrence_Of (Def_Id, Loc),
                      Expression => New_Copy_Tree (Expr_Q));
               end if;

               Set_Assignment_OK (Name (Init_Stmt));
               Set_No_Ctrl_Actions (Init_Stmt);

            else
               Init_Stmt := Empty;
            end if;

            --  When the function's subtype is unconstrained, a run-time
            --  test may be needed to decide the form of allocation to use
            --  for the return object. The function has an implicit formal
            --  parameter indicating this. If the BIP_Alloc_Form formal has
            --  the value one, then the caller has passed access to an
            --  existing object for use as the return object. If the value
            --  is two, then the return object must be allocated on the
            --  secondary stack. If the value is three, then the return
            --  object must be allocated on the heap. Otherwise, the object
            --  must be allocated in a storage pool. We generate an if
            --  statement to test the BIP_Alloc_Form formal and initialize
            --  a local access value appropriately.

            if Needs_BIP_Alloc_Form (Func_Id) then
               declare
                  Desig_Typ : constant Entity_Id :=
                    (if Ekind (Typ) = E_Array_Subtype
                     then Etype (Func_Id) else Typ);
                  --  Ensure that the we use a fat pointer when allocating
                  --  an unconstrained array on the heap. In this case the
                  --  result object's type is a constrained array type even
                  --  though the function's type is unconstrained.

                  Obj_Alloc_Formal : constant Entity_Id :=
                    Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
                  Pool_Id          : constant Entity_Id :=
                    Make_Temporary (Loc, 'P');

                  Acc_Typ        : Entity_Id;
                  Alloc_Obj_Decl : Node_Id;
                  Alloc_Obj_Id   : Entity_Id;
                  Alloc_Stmt     : Node_Id;
                  Guard_Except   : Node_Id;
                  Heap_Allocator : Node_Id;
                  Pool_Allocator : Node_Id;
                  Pool_Decl      : Node_Id;
                  Ptr_Typ_Decl   : Node_Id;
                  SS_Allocator   : Node_Id;

               begin
                  --  Create an access type designating the function's
                  --  result subtype.

                  Acc_Typ := Make_Temporary (Loc, 'A');

                  Ptr_Typ_Decl :=
                    Make_Full_Type_Declaration (Loc,
                      Defining_Identifier => Acc_Typ,
                      Type_Definition     =>
                        Make_Access_To_Object_Definition (Loc,
                          All_Present        => True,
                          Subtype_Indication =>
                            New_Occurrence_Of (Desig_Typ, Loc)));

                  Insert_Action (N, Ptr_Typ_Decl, Suppress => All_Checks);

                  --  Create an access object that will be initialized to an
                  --  access value denoting the return object, either coming
                  --  from an implicit access value passed in by the caller
                  --  or from the result of an allocator.

                  Alloc_Obj_Id := Make_Temporary (Loc, 'R');

                  Alloc_Obj_Decl :=
                    Make_Object_Declaration (Loc,
                      Defining_Identifier => Alloc_Obj_Id,
                      Object_Definition   =>
                        New_Occurrence_Of (Acc_Typ, Loc));

                  Insert_Action (N, Alloc_Obj_Decl, Suppress => All_Checks);

                  --  First create the Heap_Allocator

                  Heap_Allocator := Make_Allocator_For_Return (Expr_Q);

                  --  The Pool_Allocator is just like the Heap_Allocator,
                  --  except we set Storage_Pool and Procedure_To_Call so
                  --  it will use the user-defined storage pool.

                  Pool_Allocator := Make_Allocator_For_Return (Expr_Q);

                  --  Do not generate the renaming of the build-in-place
                  --  pool parameter on ZFP because the parameter is not
                  --  created in the first place.

                  if RTE_Available (RE_Root_Storage_Pool_Ptr) then
                     Pool_Decl :=
                       Make_Object_Renaming_Declaration (Loc,
                         Defining_Identifier => Pool_Id,
                         Subtype_Mark        =>
                           New_Occurrence_Of
                             (RTE (RE_Root_Storage_Pool), Loc),
                         Name                =>
                           Make_Explicit_Dereference (Loc,
                             New_Occurrence_Of
                               (Build_In_Place_Formal
                                  (Func_Id, BIP_Storage_Pool), Loc)));
                     Set_Storage_Pool (Pool_Allocator, Pool_Id);
                     Set_Procedure_To_Call
                       (Pool_Allocator, RTE (RE_Allocate_Any));
                  else
                     Pool_Decl := Make_Null_Statement (Loc);
                  end if;

                  --  If the No_Allocators restriction is active, then only
                  --  an allocator for secondary stack allocation is needed.
                  --  It's OK for such allocators to have Comes_From_Source
                  --  set to False, because gigi knows not to flag them as
                  --  being a violation of No_Implicit_Heap_Allocations.

                  if Restriction_Active (No_Allocators) then
                     SS_Allocator   := Heap_Allocator;
                     Heap_Allocator := Make_Null (Loc);
                     Pool_Allocator := Make_Null (Loc);

                  --  Otherwise the heap and pool allocators may be needed,
                  --  so we make another allocator for secondary stack
                  --  allocation.

                  else
                     SS_Allocator := Make_Allocator_For_Return (Expr_Q);

                     --  The heap and pool allocators are marked as
                     --  Comes_From_Source since they correspond to an
                     --  explicit user-written allocator (that is, it will
                     --  only be executed on behalf of callers that call the
                     --  function as initialization for such an allocator).
                     --  Prevents errors when No_Implicit_Heap_Allocations
                     --  is in force.

                     Set_Comes_From_Source (Heap_Allocator, True);
                     Set_Comes_From_Source (Pool_Allocator, True);
                  end if;

                  --  The allocator is returned on the secondary stack

                  Check_Restriction (No_Secondary_Stack, N);
                  Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
                  Set_Procedure_To_Call
                    (SS_Allocator, RTE (RE_SS_Allocate));

                  --  The allocator is returned on the secondary stack,
                  --  so indicate that the function return, as well as
                  --  all blocks that encloses the allocator, must not
                  --  release it. The flags must be set now because
                  --  the decision to use the secondary stack is done
                  --  very late in the course of expanding the return
                  --  statement, past the point where these flags are
                  --  normally set.

                  Set_Uses_Sec_Stack (Func_Id);
                  Set_Uses_Sec_Stack (Scope (Def_Id));
                  Set_Sec_Stack_Needed_For_Return (Scope (Def_Id));

                  --  Guard against poor expansion on the caller side by
                  --  using a raise statement to catch out-of-range values
                  --  of formal parameter BIP_Alloc_Form.

                  if Exceptions_OK then
                     Guard_Except :=
                       Make_Raise_Program_Error (Loc,
                         Reason => PE_Build_In_Place_Mismatch);
                  else
                     Guard_Except := Make_Null_Statement (Loc);
                  end if;

                  --  Create an if statement to test the BIP_Alloc_Form
                  --  formal and initialize the access object to either the
                  --  BIP_Object_Access formal (BIP_Alloc_Form =
                  --  Caller_Allocation), the result of allocating the
                  --  object in the secondary stack (BIP_Alloc_Form =
                  --  Secondary_Stack), or else an allocator to create the
                  --  return object in the heap or user-defined pool
                  --  (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).

                  --  ??? An unchecked type conversion must be made in the
                  --  case of assigning the access object formal to the
                  --  local access object, because a normal conversion would
                  --  be illegal in some cases (such as converting access-
                  --  to-unconstrained to access-to-constrained), but the
                  --  the unchecked conversion will presumably fail to work
                  --  right in just such cases. It's not clear at all how to
                  --  handle this.

                  Alloc_Stmt :=
                    Make_If_Statement (Loc,
                      Condition =>
                        Make_Op_Eq (Loc,
                          Left_Opnd  =>
                            New_Occurrence_Of (Obj_Alloc_Formal, Loc),
                          Right_Opnd =>
                            Make_Integer_Literal (Loc,
                              UI_From_Int (BIP_Allocation_Form'Pos
                                             (Caller_Allocation)))),

                      Then_Statements => New_List (
                        Make_Assignment_Statement (Loc,
                          Name       =>
                            New_Occurrence_Of (Alloc_Obj_Id, Loc),
                          Expression =>
                            Unchecked_Convert_To
                              (Acc_Typ,
                               New_Occurrence_Of (Obj_Acc_Formal, Loc)))),

                      Elsif_Parts => New_List (
                        Make_Elsif_Part (Loc,
                          Condition =>
                            Make_Op_Eq (Loc,
                              Left_Opnd  =>
                                New_Occurrence_Of (Obj_Alloc_Formal, Loc),
                              Right_Opnd =>
                                Make_Integer_Literal (Loc,
                                  UI_From_Int (BIP_Allocation_Form'Pos
                                                 (Secondary_Stack)))),

                          Then_Statements => New_List (
                            Make_Assignment_Statement (Loc,
                              Name       =>
                                New_Occurrence_Of (Alloc_Obj_Id, Loc),
                              Expression => SS_Allocator))),

                        Make_Elsif_Part (Loc,
                          Condition =>
                            Make_Op_Eq (Loc,
                              Left_Opnd  =>
                                New_Occurrence_Of (Obj_Alloc_Formal, Loc),
                              Right_Opnd =>
                                Make_Integer_Literal (Loc,
                                  UI_From_Int (BIP_Allocation_Form'Pos
                                                 (Global_Heap)))),

                          Then_Statements => New_List (
                            Build_Heap_Or_Pool_Allocator
                              (Temp_Id    => Alloc_Obj_Id,
                               Temp_Typ   => Acc_Typ,
                               Ret_Typ    => Desig_Typ,
                               Alloc_Expr => Heap_Allocator))),

                        --  ??? If all is well, we can put the following
                        --  'elsif' in the 'else', but this is a useful
                        --  self-check in case caller and callee don't agree
                        --  on whether BIPAlloc and so on should be passed.

                        Make_Elsif_Part (Loc,
                          Condition =>
                            Make_Op_Eq (Loc,
                              Left_Opnd  =>
                                New_Occurrence_Of (Obj_Alloc_Formal, Loc),
                              Right_Opnd =>
                                Make_Integer_Literal (Loc,
                                  UI_From_Int (BIP_Allocation_Form'Pos
                                                 (User_Storage_Pool)))),

                          Then_Statements => New_List (
                            Pool_Decl,
                            Build_Heap_Or_Pool_Allocator
                              (Temp_Id    => Alloc_Obj_Id,
                               Temp_Typ   => Acc_Typ,
                               Ret_Typ    => Desig_Typ,
                               Alloc_Expr => Pool_Allocator)))),

                      --  Raise Program_Error if it's none of the above;
                      --  this is a compiler bug.

                      Else_Statements => New_List (Guard_Except));

                     --  If a separate initialization assignment was created
                     --  earlier, append that following the assignment of the
                     --  implicit access formal to the access object, to ensure
                     --  that the return object is initialized in that case. In
                     --  this situation, the target of the assignment must be
                     --  rewritten to denote a dereference of the access to the
                     --  return object passed in by the caller.

                     if Present (Init_Stmt) then
                        Set_Name (Init_Stmt,
                          Make_Explicit_Dereference (Loc,
                            Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
                        Set_Assignment_OK (Name (Init_Stmt));

                        Append_To (Then_Statements (Alloc_Stmt), Init_Stmt);
                        Init_Stmt := Empty;
                     end if;

                  Insert_Action (N, Alloc_Stmt, Suppress => All_Checks);

                  --  From now on, the type of the return object is the
                  --  designated type.

                  if Desig_Typ /= Typ then
                     Set_Etype (Def_Id, Desig_Typ);
                     Set_Actual_Subtype (Def_Id, Typ);
                  end if;

                  --  Remember the local access object for use in the
                  --  dereference of the renaming created below.

                  Obj_Acc_Formal := Alloc_Obj_Id;
               end;

            --  When the function's type is unconstrained and a run-time test
            --  is not needed, we nevertheless need to build the return using
            --  the return object's type.

            elsif not Is_Constrained (Underlying_Type (Etype (Func_Id))) then
               declare
                  Acc_Typ        : Entity_Id;
                  Alloc_Obj_Decl : Node_Id;
                  Alloc_Obj_Id   : Entity_Id;
                  Ptr_Typ_Decl   : Node_Id;

               begin
                  --  Create an access type designating the function's
                  --  result subtype.

                  Acc_Typ := Make_Temporary (Loc, 'A');

                  Ptr_Typ_Decl :=
                    Make_Full_Type_Declaration (Loc,
                      Defining_Identifier => Acc_Typ,
                      Type_Definition     =>
                        Make_Access_To_Object_Definition (Loc,
                          All_Present        => True,
                          Subtype_Indication =>
                            New_Occurrence_Of (Typ, Loc)));

                  Insert_Action (N, Ptr_Typ_Decl, Suppress => All_Checks);

                  --  Create an access object initialized to the conversion
                  --  of the implicit access value passed in by the caller.

                  Alloc_Obj_Id := Make_Temporary (Loc, 'R');

                  --  See the ??? comment a few lines above about the use of
                  --  an unchecked conversion here.

                  Alloc_Obj_Decl :=
                    Make_Object_Declaration (Loc,
                      Defining_Identifier => Alloc_Obj_Id,
                      Constant_Present    => True,
                      Object_Definition   =>
                        New_Occurrence_Of (Acc_Typ, Loc),
                      Expression =>
                        Unchecked_Convert_To
                          (Acc_Typ, New_Occurrence_Of (Obj_Acc_Formal, Loc)));

                  Insert_Action (N, Alloc_Obj_Decl, Suppress => All_Checks);

                  --  Remember the local access object for use in the
                  --  dereference of the renaming created below.

                  Obj_Acc_Formal := Alloc_Obj_Id;
               end;
            end if;

            --  Initialize the object now that it has got its final subtype,
            --  but before rewriting it as a renaming.

            Initialize_Return_Object
              (Tag_Assign, Adj_Call, Expr_Q, Init_Stmt, Init_After);

            --  Replace the return object declaration with a renaming of a
            --  dereference of the access value designating the return object.

            Expr_Q :=
              Make_Explicit_Dereference (Loc,
                Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
            Set_Etype (Expr_Q, Etype (Def_Id));

            Rewrite_As_Renaming := True;
         end;

      --  If we can rename the initialization expression, we need to make sure
      --  that we use the proper type in the case of a return object that lives
      --  on the secondary stack (see other cases below for a similar handling)
      --  and that the tag is assigned in the case of any return object.

      elsif Rewrite_As_Renaming then
         if Special_Ret_Obj then
            declare
               Desig_Typ : constant Entity_Id :=
                 (if Ekind (Typ) = E_Array_Subtype
                  then Etype (Func_Id) else Typ);

            begin
               --  From now on, the type of the return object is the
               --  designated type.

               if Desig_Typ /= Typ then
                  Set_Etype (Def_Id, Desig_Typ);
                  Set_Actual_Subtype (Def_Id, Typ);
               end if;

               if Present (Tag_Assign) then
                  Insert_Action_After (Init_After, Tag_Assign);
               end if;

               --  Ada 2005 (AI95-344): If the result type is class-wide,
               --  insert a check that the level of the return expression's
               --  underlying type is not deeper than the level of the master
               --  enclosing the function.

               --  AI12-043: The check is made immediately after the return
               --  object is created.

               if Is_Class_Wide_Type (Etype (Func_Id)) then
                  Apply_CW_Accessibility_Check (Expr_Q, Func_Id);
               end if;
            end;
         end if;

      --  If this is the return object of a function returning on the secondary
      --  stack, convert the declaration to a renaming of the dereference of ah
      --  allocator for the secondary stack.

      --    Result : T [:= <expression>];

      --  is converted to

      --    type Txx is access all ...;
      --    Rxx : constant Txx :=
      --      new <expression-type>['(<expression>)][storage_pool =
      --        system__secondary_stack__ss_pool][procedure_to_call =
      --        system__secondary_stack__ss_allocate];

      --    Result : T renames Rxx.all;

      elsif Is_Secondary_Stack_Return_Object (Def_Id) then
         declare
            Desig_Typ : constant Entity_Id :=
              (if Ekind (Typ) = E_Array_Subtype
               then Etype (Func_Id) else Typ);
            --  Ensure that the we use a fat pointer when allocating
            --  an unconstrained array on the heap. In this case the
            --  result object's type is a constrained array type even
            --  though the function's type is unconstrained.

            Acc_Typ        : Entity_Id;
            Alloc_Obj_Decl : Node_Id;
            Alloc_Obj_Id   : Entity_Id;
            Ptr_Type_Decl  : Node_Id;

         begin
            --  Create an access type designating the function's
            --  result subtype.

            Acc_Typ := Make_Temporary (Loc, 'A');

            Ptr_Type_Decl :=
              Make_Full_Type_Declaration (Loc,
                Defining_Identifier => Acc_Typ,
                Type_Definition     =>
                  Make_Access_To_Object_Definition (Loc,
                    All_Present        => True,
                    Subtype_Indication =>
                      New_Occurrence_Of (Desig_Typ, Loc)));

            Insert_Action (N, Ptr_Type_Decl, Suppress => All_Checks);

            Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));

            Alloc_Obj_Id := Make_Temporary (Loc, 'R');

            Alloc_Obj_Decl :=
              Make_Object_Declaration (Loc,
                Defining_Identifier => Alloc_Obj_Id,
                Constant_Present    => True,
                Object_Definition   =>
                  New_Occurrence_Of (Acc_Typ, Loc),
                Expression => Make_Allocator_For_Return (Expr_Q));

            Insert_Action (N, Alloc_Obj_Decl, Suppress => All_Checks);

            Set_Uses_Sec_Stack (Func_Id);
            Set_Uses_Sec_Stack (Scope (Def_Id));
            Set_Sec_Stack_Needed_For_Return (Scope (Def_Id));

            --  From now on, the type of the return object is the
            --  designated type.

            if Desig_Typ /= Typ then
               Set_Etype (Def_Id, Desig_Typ);
               Set_Actual_Subtype (Def_Id, Typ);
            end if;

            --  Initialize the object now that it has got its final subtype,
            --  but before rewriting it as a renaming.

            Initialize_Return_Object
              (Tag_Assign, Adj_Call, Expr_Q, Empty, Init_After);

            --  Replace the return object declaration with a renaming of a
            --  dereference of the access value designating the return object.

            Expr_Q :=
              Make_Explicit_Dereference (Loc,
                Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc));
            Set_Etype (Expr_Q, Etype (Def_Id));

            Rewrite_As_Renaming := True;
         end;

      --  If this is the return object of a function returning a by-reference
      --  type, convert the declaration to a renaming of the dereference of ah
      --  allocator for the return stack.

      --    Result : T [:= <expression>];

      --  is converted to

      --    type Txx is access all ...;
      --    Rxx : constant Txx :=
      --      new <expression-type>['(<expression>)][storage_pool =
      --        system__return_stack__rs_pool][procedure_to_call =
      --        system__return_stack__rs_allocate];

      --    Result : T renames Rxx.all;

      elsif Back_End_Return_Slot
        and then Is_By_Reference_Return_Object (Def_Id)
      then
         declare
            Acc_Typ        : Entity_Id;
            Alloc_Obj_Decl : Node_Id;
            Alloc_Obj_Id   : Entity_Id;
            Ptr_Type_Decl  : Node_Id;

         begin
            --  Create an access type designating the function's
            --  result subtype.

            Acc_Typ := Make_Temporary (Loc, 'A');

            Ptr_Type_Decl :=
              Make_Full_Type_Declaration (Loc,
                Defining_Identifier => Acc_Typ,
                Type_Definition     =>
                  Make_Access_To_Object_Definition (Loc,
                    All_Present        => True,
                    Subtype_Indication =>
                      New_Occurrence_Of (Typ, Loc)));

            Insert_Action (N, Ptr_Type_Decl, Suppress => All_Checks);

            Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_RS_Pool));

            Alloc_Obj_Id := Make_Temporary (Loc, 'R');

            Alloc_Obj_Decl :=
              Make_Object_Declaration (Loc,
                Defining_Identifier => Alloc_Obj_Id,
                Constant_Present    => True,
                Object_Definition   =>
                  New_Occurrence_Of (Acc_Typ, Loc),
                Expression => Make_Allocator_For_Return (Expr_Q));

            Insert_Action (N, Alloc_Obj_Decl, Suppress => All_Checks);

            --  Initialize the object now that it has got its final subtype,
            --  but before rewriting it as a renaming.

            Initialize_Return_Object
              (Tag_Assign, Adj_Call, Expr_Q, Empty, Init_After);

            --  Replace the return object declaration with a renaming of a
            --  dereference of the access value designating the return object.

            Expr_Q :=
              Make_Explicit_Dereference (Loc,
                Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc));
            Set_Etype (Expr_Q, Etype (Def_Id));

            Rewrite_As_Renaming := True;
         end;
      end if;

      --  Final transformation - turn the object declaration into a renaming
      --  if appropriate. If this is the completion of a deferred constant
      --  declaration, then this transformation generates what would be
      --  illegal code if written by hand, but that's OK.

      if Rewrite_As_Renaming then
         Rewrite (N,
           Make_Object_Renaming_Declaration (Loc,
             Defining_Identifier => Def_Id,
             Subtype_Mark        => New_Occurrence_Of (Etype (Def_Id), Loc),
             Name                => Expr_Q));

         --  We do not analyze this renaming declaration, because all its
         --  components have already been analyzed, and if we were to go
         --  ahead and analyze it, we would in effect be trying to generate
         --  another declaration of X, which won't do.

         Set_Renamed_Object (Def_Id, Expr_Q);
         Set_Analyzed (N);

         --  We do need to deal with debug issues for this renaming

         --  First, if entity comes from source, then mark it as needing
         --  debug information, even though it is defined by a generated
         --  renaming that does not come from source.

         Set_Debug_Info_Defining_Id (N);

         --  Now call the routine to generate debug info for the renaming

         Insert_Action (N, Debug_Renaming_Declaration (N));
      end if;

   --  Exception on library entity not available

   exception
      when RE_Not_Available =>
         return;
   end Expand_N_Object_Declaration;

   ---------------------------------
   -- Expand_N_Subtype_Indication --
   ---------------------------------

   --  Add a check on the range of the subtype and deal with validity checking

   procedure Expand_N_Subtype_Indication (N : Node_Id) is
      Ran : constant Node_Id   := Range_Expression (Constraint (N));
      Typ : constant Entity_Id := Entity (Subtype_Mark (N));

   begin
      if Nkind (Constraint (N)) = N_Range_Constraint then
         Validity_Check_Range (Range_Expression (Constraint (N)));
      end if;

      --  Do not duplicate the work of Process_Range_Expr_In_Decl in Sem_Ch3

      if Nkind (Parent (N)) in N_Constrained_Array_Definition | N_Slice
        and then Nkind (Parent (Parent (N))) not in
                   N_Full_Type_Declaration | N_Object_Declaration
      then
         Apply_Range_Check (Ran, Typ);
      end if;
   end Expand_N_Subtype_Indication;

   ---------------------------
   -- Expand_N_Variant_Part --
   ---------------------------

   --  Note: this procedure no longer has any effect. It used to be that we
   --  would replace the choices in the last variant by a when others, and
   --  also expanded static predicates in variant choices here, but both of
   --  those activities were being done too early, since we can't check the
   --  choices until the statically predicated subtypes are frozen, which can
   --  happen as late as the free point of the record, and we can't change the
   --  last choice to an others before checking the choices, which is now done
   --  at the freeze point of the record.

   procedure Expand_N_Variant_Part (N : Node_Id) is
   begin
      null;
   end Expand_N_Variant_Part;

   ---------------------------------
   -- Expand_Previous_Access_Type --
   ---------------------------------

   procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
      Ptr_Typ : Entity_Id;

   begin
      --  Find all access types in the current scope whose designated type is
      --  Def_Id and build master renamings for them.

      Ptr_Typ := First_Entity (Current_Scope);
      while Present (Ptr_Typ) loop
         if Is_Access_Type (Ptr_Typ)
           and then Designated_Type (Ptr_Typ) = Def_Id
           and then No (Master_Id (Ptr_Typ))
         then
            --  Ensure that the designated type has a master

            Build_Master_Entity (Def_Id);

            --  Private and incomplete types complicate the insertion of master
            --  renamings because the access type may precede the full view of
            --  the designated type. For this reason, the master renamings are
            --  inserted relative to the designated type.

            Build_Master_Renaming (Ptr_Typ, Ins_Nod => Parent (Def_Id));
         end if;

         Next_Entity (Ptr_Typ);
      end loop;
   end Expand_Previous_Access_Type;

   -----------------------------
   -- Expand_Record_Extension --
   -----------------------------

   --  Add a field _parent at the beginning of the record extension. This is
   --  used to implement inheritance. Here are some examples of expansion:

   --  1. no discriminants
   --      type T2 is new T1 with null record;
   --   gives
   --      type T2 is new T1 with record
   --        _Parent : T1;
   --      end record;

   --  2. renamed discriminants
   --    type T2 (B, C : Int) is new T1 (A => B) with record
   --       _Parent : T1 (A => B);
   --       D : Int;
   --    end;

   --  3. inherited discriminants
   --    type T2 is new T1 with record -- discriminant A inherited
   --       _Parent : T1 (A);
   --       D : Int;
   --    end;

   procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
      Indic        : constant Node_Id    := Subtype_Indication (Def);
      Loc          : constant Source_Ptr := Sloc (Def);
      Rec_Ext_Part : Node_Id             := Record_Extension_Part (Def);
      Par_Subtype  : Entity_Id;
      Comp_List    : Node_Id;
      Comp_Decl    : Node_Id;
      Parent_N     : Node_Id;
      D            : Entity_Id;
      List_Constr  : constant List_Id    := New_List;

   begin
      --  Expand_Record_Extension is called directly from the semantics, so
      --  we must check to see whether expansion is active before proceeding,
      --  because this affects the visibility of selected components in bodies
      --  of instances. Within a generic we still need to set Parent_Subtype
      --  link because the visibility of inherited components will have to be
      --  verified in subsequent instances.

      if not Expander_Active then
         if Inside_A_Generic and then Ekind (T) = E_Record_Type then
            Set_Parent_Subtype (T, Etype (T));
         end if;
         return;
      end if;

      --  This may be a derivation of an untagged private type whose full
      --  view is tagged, in which case the Derived_Type_Definition has no
      --  extension part. Build an empty one now.

      if No (Rec_Ext_Part) then
         Rec_Ext_Part :=
           Make_Record_Definition (Loc,
             End_Label      => Empty,
             Component_List => Empty,
             Null_Present   => True);

         Set_Record_Extension_Part (Def, Rec_Ext_Part);
         Mark_Rewrite_Insertion (Rec_Ext_Part);
      end if;

      Comp_List := Component_List (Rec_Ext_Part);

      Parent_N := Make_Defining_Identifier (Loc, Name_uParent);

      --  If the derived type inherits its discriminants the type of the
      --  _parent field must be constrained by the inherited discriminants

      if Has_Discriminants (T)
        and then Nkind (Indic) /= N_Subtype_Indication
        and then not Is_Constrained (Entity (Indic))
      then
         D := First_Discriminant (T);
         while Present (D) loop
            Append_To (List_Constr, New_Occurrence_Of (D, Loc));
            Next_Discriminant (D);
         end loop;

         Par_Subtype :=
           Process_Subtype (
             Make_Subtype_Indication (Loc,
               Subtype_Mark => New_Occurrence_Of (Entity (Indic), Loc),
               Constraint   =>
                 Make_Index_Or_Discriminant_Constraint (Loc,
                   Constraints => List_Constr)),
             Def);

      --  Otherwise the original subtype_indication is just what is needed

      else
         Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
      end if;

      Set_Parent_Subtype (T, Par_Subtype);

      Comp_Decl :=
        Make_Component_Declaration (Loc,
          Defining_Identifier => Parent_N,
          Component_Definition =>
            Make_Component_Definition (Loc,
              Aliased_Present => False,
              Subtype_Indication => New_Occurrence_Of (Par_Subtype, Loc)));

      if Null_Present (Rec_Ext_Part) then
         Set_Component_List (Rec_Ext_Part,
           Make_Component_List (Loc,
             Component_Items => New_List (Comp_Decl),
             Variant_Part => Empty,
             Null_Present => False));
         Set_Null_Present (Rec_Ext_Part, False);

      elsif Null_Present (Comp_List)
        or else Is_Empty_List (Component_Items (Comp_List))
      then
         Set_Component_Items (Comp_List, New_List (Comp_Decl));
         Set_Null_Present (Comp_List, False);

      else
         Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
      end if;

      Analyze (Comp_Decl);
   end Expand_Record_Extension;

   ------------------------
   -- Expand_Tagged_Root --
   ------------------------

   procedure Expand_Tagged_Root (T : Entity_Id) is
      Def       : constant Node_Id := Type_Definition (Parent (T));
      Comp_List : Node_Id;
      Comp_Decl : Node_Id;
      Sloc_N    : Source_Ptr;

   begin
      if Null_Present (Def) then
         Set_Component_List (Def,
           Make_Component_List (Sloc (Def),
             Component_Items => Empty_List,
             Variant_Part => Empty,
             Null_Present => True));
      end if;

      Comp_List := Component_List (Def);

      if Null_Present (Comp_List)
        or else Is_Empty_List (Component_Items (Comp_List))
      then
         Sloc_N := Sloc (Comp_List);
      else
         Sloc_N := Sloc (First (Component_Items (Comp_List)));
      end if;

      Comp_Decl :=
        Make_Component_Declaration (Sloc_N,
          Defining_Identifier => First_Tag_Component (T),
          Component_Definition =>
            Make_Component_Definition (Sloc_N,
              Aliased_Present => False,
              Subtype_Indication => New_Occurrence_Of (RTE (RE_Tag), Sloc_N)));

      if Null_Present (Comp_List)
        or else Is_Empty_List (Component_Items (Comp_List))
      then
         Set_Component_Items (Comp_List, New_List (Comp_Decl));
         Set_Null_Present (Comp_List, False);

      else
         Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
      end if;

      --  We don't Analyze the whole expansion because the tag component has
      --  already been analyzed previously. Here we just insure that the tree
      --  is coherent with the semantic decoration

      Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));

   exception
      when RE_Not_Available =>
         return;
   end Expand_Tagged_Root;

   ------------------------------
   -- Freeze_Stream_Operations --
   ------------------------------

   procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
      Names     : constant array (1 .. 4) of TSS_Name_Type :=
                    (TSS_Stream_Input,
                     TSS_Stream_Output,
                     TSS_Stream_Read,
                     TSS_Stream_Write);
      Stream_Op : Entity_Id;

   begin
      --  Primitive operations of tagged types are frozen when the dispatch
      --  table is constructed.

      if not Comes_From_Source (Typ) or else Is_Tagged_Type (Typ) then
         return;
      end if;

      for J in Names'Range loop
         Stream_Op := TSS (Typ, Names (J));

         if Present (Stream_Op)
           and then Is_Subprogram (Stream_Op)
           and then Nkind (Unit_Declaration_Node (Stream_Op)) =
                                                    N_Subprogram_Declaration
           and then not Is_Frozen (Stream_Op)
         then
            Append_Freeze_Actions (Typ, Freeze_Entity (Stream_Op, N));
         end if;
      end loop;
   end Freeze_Stream_Operations;

   -----------------
   -- Freeze_Type --
   -----------------

   --  Full type declarations are expanded at the point at which the type is
   --  frozen. The formal N is the Freeze_Node for the type. Any statements or
   --  declarations generated by the freezing (e.g. the procedure generated
   --  for initialization) are chained in the Actions field list of the freeze
   --  node using Append_Freeze_Actions.

   --  WARNING: This routine manages Ghost regions. Return statements must be
   --  replaced by gotos which jump to the end of the routine and restore the
   --  Ghost mode.

   function Freeze_Type (N : Node_Id) return Boolean is
      procedure Process_RACW_Types (Typ : Entity_Id);
      --  Validate and generate stubs for all RACW types associated with type
      --  Typ.

      procedure Process_Pending_Access_Types (Typ : Entity_Id);
      --  Associate type Typ's Finalize_Address primitive with the finalization
      --  masters of pending access-to-Typ types.

      ------------------------
      -- Process_RACW_Types --
      ------------------------

      procedure Process_RACW_Types (Typ : Entity_Id) is
         List : constant Elist_Id := Access_Types_To_Process (N);
         E    : Elmt_Id;
         Seen : Boolean := False;

      begin
         if Present (List) then
            E := First_Elmt (List);
            while Present (E) loop
               if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
                  Validate_RACW_Primitives (Node (E));
                  Seen := True;
               end if;

               Next_Elmt (E);
            end loop;
         end if;

         --  If there are RACWs designating this type, make stubs now

         if Seen then
            Remote_Types_Tagged_Full_View_Encountered (Typ);
         end if;
      end Process_RACW_Types;

      ----------------------------------
      -- Process_Pending_Access_Types --
      ----------------------------------

      procedure Process_Pending_Access_Types (Typ : Entity_Id) is
         E : Elmt_Id;

      begin
         --  Finalize_Address is not generated in CodePeer mode because the
         --  body contains address arithmetic. This processing is disabled.

         if CodePeer_Mode then
            null;

         --  Certain itypes are generated for contexts that cannot allocate
         --  objects and should not set primitive Finalize_Address.

         elsif Is_Itype (Typ)
           and then Nkind (Associated_Node_For_Itype (Typ)) =
                      N_Explicit_Dereference
         then
            null;

         --  When an access type is declared after the incomplete view of a
         --  Taft-amendment type, the access type is considered pending in
         --  case the full view of the Taft-amendment type is controlled. If
         --  this is indeed the case, associate the Finalize_Address routine
         --  of the full view with the finalization masters of all pending
         --  access types. This scenario applies to anonymous access types as
         --  well. But the Finalize_Address routine is missing if the type is
         --  class-wide and we are under restriction No_Dispatching_Calls, see
         --  Expand_Freeze_Class_Wide_Type above for the rationale.

         elsif Needs_Finalization (Typ)
           and then (not Is_Class_Wide_Type (Typ)
                      or else not Restriction_Active (No_Dispatching_Calls))
           and then Present (Pending_Access_Types (Typ))
         then
            E := First_Elmt (Pending_Access_Types (Typ));
            while Present (E) loop

               --  Generate:
               --    Set_Finalize_Address
               --      (Ptr_Typ, <Typ>FD'Unrestricted_Access);

               Append_Freeze_Action (Typ,
                 Make_Set_Finalize_Address_Call
                   (Loc     => Sloc (N),
                    Ptr_Typ => Node (E)));

               Next_Elmt (E);
            end loop;
         end if;
      end Process_Pending_Access_Types;

      --  Local variables

      Def_Id : constant Entity_Id := Entity (N);

      Saved_GM  : constant Ghost_Mode_Type := Ghost_Mode;
      Saved_IGR : constant Node_Id         := Ignored_Ghost_Region;
      --  Save the Ghost-related attributes to restore on exit

      Result : Boolean := False;

   --  Start of processing for Freeze_Type

   begin
      --  The type being frozen may be subject to pragma Ghost. Set the mode
      --  now to ensure that any nodes generated during freezing are properly
      --  marked as Ghost.

      Set_Ghost_Mode (Def_Id);

      --  Process any remote access-to-class-wide types designating the type
      --  being frozen.

      Process_RACW_Types (Def_Id);

      --  Freeze processing for record types

      if Is_Record_Type (Def_Id) then
         if Ekind (Def_Id) = E_Record_Type then
            Expand_Freeze_Record_Type (N);
         elsif Is_Class_Wide_Type (Def_Id) then
            Expand_Freeze_Class_Wide_Type (N);
         end if;

      --  Freeze processing for array types

      elsif Is_Array_Type (Def_Id) then
         Expand_Freeze_Array_Type (N);

      --  Freeze processing for access types

      --  For pool-specific access types, find out the pool object used for
      --  this type, needs actual expansion of it in some cases. Here are the
      --  different cases :

      --  1. Rep Clause "for Def_Id'Storage_Size use 0;"
      --      ---> don't use any storage pool

      --  2. Rep Clause : for Def_Id'Storage_Size use Expr.
      --     Expand:
      --      Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);

      --  3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
      --      ---> Storage Pool is the specified one

      --  See GNAT Pool packages in the Run-Time for more details

      elsif Ekind (Def_Id) in E_Access_Type | E_General_Access_Type then
         declare
            Loc        : constant Source_Ptr := Sloc (N);
            Desig_Type : constant Entity_Id  := Designated_Type (Def_Id);

            Freeze_Action_Typ : Entity_Id;
            Pool_Object       : Entity_Id;

         begin
            --  Case 1

            --    Rep Clause "for Def_Id'Storage_Size use 0;"
            --    ---> don't use any storage pool

            if No_Pool_Assigned (Def_Id) then
               null;

            --  Case 2

            --    Rep Clause : for Def_Id'Storage_Size use Expr.
            --    ---> Expand:
            --           Def_Id__Pool : Stack_Bounded_Pool
            --                            (Expr, DT'Size, DT'Alignment);

            elsif Has_Storage_Size_Clause (Def_Id) then
               declare
                  DT_Align : Node_Id;
                  DT_Size  : Node_Id;

               begin
                  --  For unconstrained composite types we give a size of zero
                  --  so that the pool knows that it needs a special algorithm
                  --  for variable size object allocation.

                  if Is_Composite_Type (Desig_Type)
                    and then not Is_Constrained (Desig_Type)
                  then
                     DT_Size  := Make_Integer_Literal (Loc, 0);
                     DT_Align := Make_Integer_Literal (Loc, Maximum_Alignment);

                  else
                     DT_Size :=
                       Make_Attribute_Reference (Loc,
                         Prefix         => New_Occurrence_Of (Desig_Type, Loc),
                         Attribute_Name => Name_Max_Size_In_Storage_Elements);

                     DT_Align :=
                       Make_Attribute_Reference (Loc,
                         Prefix         => New_Occurrence_Of (Desig_Type, Loc),
                         Attribute_Name => Name_Alignment);
                  end if;

                  Pool_Object :=
                    Make_Defining_Identifier (Loc,
                      Chars => New_External_Name (Chars (Def_Id), 'P'));

                  --  We put the code associated with the pools in the entity
                  --  that has the later freeze node, usually the access type
                  --  but it can also be the designated_type; because the pool
                  --  code requires both those types to be frozen

                  if Is_Frozen (Desig_Type)
                    and then (No (Freeze_Node (Desig_Type))
                               or else Analyzed (Freeze_Node (Desig_Type)))
                  then
                     Freeze_Action_Typ := Def_Id;

                  --  A Taft amendment type cannot get the freeze actions
                  --  since the full view is not there.

                  elsif Is_Incomplete_Or_Private_Type (Desig_Type)
                    and then No (Full_View (Desig_Type))
                  then
                     Freeze_Action_Typ := Def_Id;

                  else
                     Freeze_Action_Typ := Desig_Type;
                  end if;

                  Append_Freeze_Action (Freeze_Action_Typ,
                    Make_Object_Declaration (Loc,
                      Defining_Identifier => Pool_Object,
                      Object_Definition   =>
                        Make_Subtype_Indication (Loc,
                          Subtype_Mark =>
                            New_Occurrence_Of
                              (RTE (RE_Stack_Bounded_Pool), Loc),

                          Constraint   =>
                            Make_Index_Or_Discriminant_Constraint (Loc,
                              Constraints => New_List (

                                --  First discriminant is the Pool Size

                                New_Occurrence_Of (
                                  Storage_Size_Variable (Def_Id), Loc),

                                --  Second discriminant is the element size

                                DT_Size,

                                --  Third discriminant is the alignment

                                DT_Align)))));
               end;

               Set_Associated_Storage_Pool (Def_Id, Pool_Object);

            --  Case 3

            --    Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
            --    ---> Storage Pool is the specified one

            --  When compiling in Ada 2012 mode, ensure that the accessibility
            --  level of the subpool access type is not deeper than that of the
            --  pool_with_subpools.

            elsif Ada_Version >= Ada_2012
              and then Present (Associated_Storage_Pool (Def_Id))
              and then RTU_Loaded (System_Storage_Pools_Subpools)
            then
               declare
                  Loc   : constant Source_Ptr := Sloc (Def_Id);
                  Pool  : constant Entity_Id :=
                            Associated_Storage_Pool (Def_Id);

               begin
                  --  It is known that the accessibility level of the access
                  --  type is deeper than that of the pool.

                  if Type_Access_Level (Def_Id)
                       > Static_Accessibility_Level (Pool, Object_Decl_Level)
                    and then Is_Class_Wide_Type (Etype (Pool))
                    and then not Accessibility_Checks_Suppressed (Def_Id)
                    and then not Accessibility_Checks_Suppressed (Pool)
                  then
                     --  When the pool is of a class-wide type, it may or may
                     --  not support subpools depending on the path of
                     --  derivation. Generate:

                     --    if Def_Id in RSPWS'Class then
                     --       raise Program_Error;
                     --    end if;

                     Append_Freeze_Action (Def_Id,
                       Make_If_Statement (Loc,
                         Condition       =>
                           Make_In (Loc,
                             Left_Opnd  => New_Occurrence_Of (Pool, Loc),
                             Right_Opnd =>
                               New_Occurrence_Of
                                 (Class_Wide_Type
                                   (RTE
                                     (RE_Root_Storage_Pool_With_Subpools)),
                                  Loc)),
                         Then_Statements => New_List (
                           Make_Raise_Program_Error (Loc,
                             Reason => PE_Accessibility_Check_Failed))));
                  end if;
               end;
            end if;

            --  For access-to-controlled types (including class-wide types and
            --  Taft-amendment types, which potentially have controlled
            --  components), expand the list controller object that will store
            --  the dynamically allocated objects. Don't do this transformation
            --  for expander-generated access types, except do it for types
            --  that are the full view of types derived from other private
            --  types and for access types used to implement indirect temps.
            --  Also suppress the list controller in the case of a designated
            --  type with convention Java, since this is used when binding to
            --  Java API specs, where there's no equivalent of a finalization
            --  list and we don't want to pull in the finalization support if
            --  not needed.

            if not Comes_From_Source (Def_Id)
              and then not Has_Private_Declaration (Def_Id)
              and then not Old_Attr_Util.Indirect_Temps
                             .Is_Access_Type_For_Indirect_Temp (Def_Id)
            then
               null;

            --  An exception is made for types defined in the run-time because
            --  Ada.Tags.Tag itself is such a type and cannot afford this
            --  unnecessary overhead that would generates a loop in the
            --  expansion scheme. Another exception is if Restrictions
            --  (No_Finalization) is active, since then we know nothing is
            --  controlled.

            elsif Restriction_Active (No_Finalization)
              or else In_Runtime (Def_Id)
            then
               null;

            --  Create a finalization master for an access-to-controlled type
            --  or an access-to-incomplete type. It is assumed that the full
            --  view will be controlled.

            elsif Needs_Finalization (Desig_Type)
              or else (Is_Incomplete_Type (Desig_Type)
                        and then No (Full_View (Desig_Type)))
            then
               Build_Finalization_Master (Def_Id);

            --  Create a finalization master when the designated type contains
            --  a private component. It is assumed that the full view will be
            --  controlled.

            elsif Has_Private_Component (Desig_Type) then
               Build_Finalization_Master
                 (Typ            => Def_Id,
                  For_Private    => True,
                  Context_Scope  => Scope (Def_Id),
                  Insertion_Node => Declaration_Node (Desig_Type));
            end if;
         end;

      --  Freeze processing for enumeration types

      elsif Ekind (Def_Id) = E_Enumeration_Type then

         --  We only have something to do if we have a non-standard
         --  representation (i.e. at least one literal whose pos value
         --  is not the same as its representation)

         if Has_Non_Standard_Rep (Def_Id) then
            Expand_Freeze_Enumeration_Type (N);
         end if;

      --  Private types that are completed by a derivation from a private
      --  type have an internally generated full view, that needs to be
      --  frozen. This must be done explicitly because the two views share
      --  the freeze node, and the underlying full view is not visible when
      --  the freeze node is analyzed.

      elsif Is_Private_Type (Def_Id)
        and then Is_Derived_Type (Def_Id)
        and then Present (Full_View (Def_Id))
        and then Is_Itype (Full_View (Def_Id))
        and then Has_Private_Declaration (Full_View (Def_Id))
        and then Freeze_Node (Full_View (Def_Id)) = N
      then
         Set_Entity (N, Full_View (Def_Id));
         Result := Freeze_Type (N);
         Set_Entity (N, Def_Id);

      --  All other types require no expander action. There are such cases
      --  (e.g. task types and protected types). In such cases, the freeze
      --  nodes are there for use by Gigi.

      end if;

      --  Complete the initialization of all pending access types' finalization
      --  masters now that the designated type has been is frozen and primitive
      --  Finalize_Address generated.

      Process_Pending_Access_Types (Def_Id);
      Freeze_Stream_Operations (N, Def_Id);

      --  Generate the [spec and] body of the invariant procedure tasked with
      --  the runtime verification of all invariants that pertain to the type.
      --  This includes invariants on the partial and full view, inherited
      --  class-wide invariants from parent types or interfaces, and invariants
      --  on array elements or record components. But skip internal types.

      if Is_Itype (Def_Id) then
         null;

      elsif Is_Interface (Def_Id) then

         --  Interfaces are treated as the partial view of a private type in
         --  order to achieve uniformity with the general case. As a result, an
         --  interface receives only a "partial" invariant procedure which is
         --  never called.

         if Has_Own_Invariants (Def_Id) then
            Build_Invariant_Procedure_Body
              (Typ               => Def_Id,
               Partial_Invariant => Is_Interface (Def_Id));
         end if;

      --  Non-interface types

      --  Do not generate invariant procedure within other assertion
      --  subprograms, which may involve local declarations of local
      --  subtypes to which these checks do not apply.

      else
         if Has_Invariants (Def_Id) then
            if not Predicate_Check_In_Scope (Def_Id)
              or else (Ekind (Current_Scope) = E_Function
                        and then Is_Predicate_Function (Current_Scope))
            then
               null;
            else
               Build_Invariant_Procedure_Body (Def_Id);
            end if;
         end if;

         --  Generate the [spec and] body of the procedure tasked with the
         --  run-time verification of pragma Default_Initial_Condition's
         --  expression.

         if Has_DIC (Def_Id) then
            Build_DIC_Procedure_Body (Def_Id);
         end if;
      end if;

      Restore_Ghost_Region (Saved_GM, Saved_IGR);

      return Result;

   exception
      when RE_Not_Available =>
         Restore_Ghost_Region (Saved_GM, Saved_IGR);

         return False;
   end Freeze_Type;

   -------------------------
   -- Get_Simple_Init_Val --
   -------------------------

   function Get_Simple_Init_Val
     (Typ  : Entity_Id;
      N    : Node_Id;
      Size : Uint := No_Uint) return Node_Id
   is
      IV_Attribute : constant Boolean :=
                       Nkind (N) = N_Attribute_Reference
                         and then Attribute_Name (N) = Name_Invalid_Value;

      Loc : constant Source_Ptr := Sloc (N);

      procedure Extract_Subtype_Bounds
        (Lo_Bound : out Uint;
         Hi_Bound : out Uint);
      --  Inspect subtype Typ as well its ancestor subtypes and derived types
      --  to determine the best known information about the bounds of the type.
      --  The output parameters are set as follows:
      --
      --    * Lo_Bound - Set to No_Unit when there is no information available,
      --      or to the known low bound.
      --
      --    * Hi_Bound - Set to No_Unit when there is no information available,
      --      or to the known high bound.

      function Simple_Init_Array_Type return Node_Id;
      --  Build an expression to initialize array type Typ

      function Simple_Init_Defaulted_Type return Node_Id;
      --  Build an expression to initialize type Typ which is subject to
      --  aspect Default_Value.

      function Simple_Init_Initialize_Scalars_Type
        (Size_To_Use : Uint) return Node_Id;
      --  Build an expression to initialize scalar type Typ which is subject to
      --  pragma Initialize_Scalars. Size_To_Use is the size of the object.

      function Simple_Init_Normalize_Scalars_Type
        (Size_To_Use : Uint) return Node_Id;
      --  Build an expression to initialize scalar type Typ which is subject to
      --  pragma Normalize_Scalars. Size_To_Use is the size of the object.

      function Simple_Init_Private_Type return Node_Id;
      --  Build an expression to initialize private type Typ

      function Simple_Init_Scalar_Type return Node_Id;
      --  Build an expression to initialize scalar type Typ

      ----------------------------
      -- Extract_Subtype_Bounds --
      ----------------------------

      procedure Extract_Subtype_Bounds
        (Lo_Bound : out Uint;
         Hi_Bound : out Uint)
      is
         ST1    : Entity_Id;
         ST2    : Entity_Id;
         Lo     : Node_Id;
         Hi     : Node_Id;
         Lo_Val : Uint;
         Hi_Val : Uint;

      begin
         Lo_Bound := No_Uint;
         Hi_Bound := No_Uint;

         --  Loop to climb ancestor subtypes and derived types

         ST1 := Typ;
         loop
            if not Is_Discrete_Type (ST1) then
               return;
            end if;

            Lo := Type_Low_Bound (ST1);
            Hi := Type_High_Bound (ST1);

            if Compile_Time_Known_Value (Lo) then
               Lo_Val := Expr_Value (Lo);

               if No (Lo_Bound) or else Lo_Bound < Lo_Val then
                  Lo_Bound := Lo_Val;
               end if;
            end if;

            if Compile_Time_Known_Value (Hi) then
               Hi_Val := Expr_Value (Hi);

               if No (Hi_Bound) or else Hi_Bound > Hi_Val then
                  Hi_Bound := Hi_Val;
               end if;
            end if;

            ST2 := Ancestor_Subtype (ST1);

            if No (ST2) then
               ST2 := Etype (ST1);
            end if;

            exit when ST1 = ST2;
            ST1 := ST2;
         end loop;
      end Extract_Subtype_Bounds;

      ----------------------------
      -- Simple_Init_Array_Type --
      ----------------------------

      function Simple_Init_Array_Type return Node_Id is
         Comp_Typ : constant Entity_Id := Component_Type (Typ);

         function Simple_Init_Dimension (Index : Node_Id) return Node_Id;
         --  Initialize a single array dimension with index constraint Index

         --------------------
         -- Simple_Init_Dimension --
         --------------------

         function Simple_Init_Dimension (Index : Node_Id) return Node_Id is
         begin
            --  Process the current dimension

            if Present (Index) then

               --  Build a suitable "others" aggregate for the next dimension,
               --  or initialize the component itself. Generate:
               --
               --    (others => ...)

               return
                 Make_Aggregate (Loc,
                   Component_Associations => New_List (
                     Make_Component_Association (Loc,
                       Choices    => New_List (Make_Others_Choice (Loc)),
                       Expression =>
                         Simple_Init_Dimension (Next_Index (Index)))));

            --  Otherwise all dimensions have been processed. Initialize the
            --  component itself.

            else
               return
                 Get_Simple_Init_Val
                   (Typ  => Comp_Typ,
                    N    => N,
                    Size => Esize (Comp_Typ));
            end if;
         end Simple_Init_Dimension;

      --  Start of processing for Simple_Init_Array_Type

      begin
         return Simple_Init_Dimension (First_Index (Typ));
      end Simple_Init_Array_Type;

      --------------------------------
      -- Simple_Init_Defaulted_Type --
      --------------------------------

      function Simple_Init_Defaulted_Type return Node_Id is
         Subtyp : Entity_Id := First_Subtype (Typ);

      begin
         --  When the first subtype is private, retrieve the expression of the
         --  Default_Value from the underlying type.

         if Is_Private_Type (Subtyp) then
            Subtyp := Full_View (Subtyp);
         end if;

         --  Use the Sloc of the context node when constructing the initial
         --  value because the expression of Default_Value may come from a
         --  different unit. Updating the Sloc will result in accurate error
         --  diagnostics.

         return
           OK_Convert_To
             (Typ  => Typ,
              Expr =>
                New_Copy_Tree
                  (Source   => Default_Aspect_Value (Subtyp),
                   New_Sloc => Loc));
      end Simple_Init_Defaulted_Type;

      -----------------------------------------
      -- Simple_Init_Initialize_Scalars_Type --
      -----------------------------------------

      function Simple_Init_Initialize_Scalars_Type
        (Size_To_Use : Uint) return Node_Id
      is
         Float_Typ : Entity_Id;
         Hi_Bound  : Uint;
         Lo_Bound  : Uint;
         Scal_Typ  : Scalar_Id;

      begin
         Extract_Subtype_Bounds (Lo_Bound, Hi_Bound);

         --  Float types

         if Is_Floating_Point_Type (Typ) then
            Float_Typ := Root_Type (Typ);

            if Float_Typ = Standard_Short_Float then
               Scal_Typ := Name_Short_Float;
            elsif Float_Typ = Standard_Float then
               Scal_Typ := Name_Float;
            elsif Float_Typ = Standard_Long_Float then
               Scal_Typ := Name_Long_Float;
            else pragma Assert (Float_Typ = Standard_Long_Long_Float);
               Scal_Typ := Name_Long_Long_Float;
            end if;

         --  If zero is invalid, it is a convenient value to use that is for
         --  sure an appropriate invalid value in all situations.

         elsif Present (Lo_Bound) and then Lo_Bound > Uint_0 then
            return Make_Integer_Literal (Loc, 0);

         --  Unsigned types

         elsif Is_Unsigned_Type (Typ) then
            if Size_To_Use <= 8 then
               Scal_Typ := Name_Unsigned_8;
            elsif Size_To_Use <= 16 then
               Scal_Typ := Name_Unsigned_16;
            elsif Size_To_Use <= 32 then
               Scal_Typ := Name_Unsigned_32;
            elsif Size_To_Use <= 64 then
               Scal_Typ := Name_Unsigned_64;
            else
               Scal_Typ := Name_Unsigned_128;
            end if;

         --  Signed types

         else
            if Size_To_Use <= 8 then
               Scal_Typ := Name_Signed_8;
            elsif Size_To_Use <= 16 then
               Scal_Typ := Name_Signed_16;
            elsif Size_To_Use <= 32 then
               Scal_Typ := Name_Signed_32;
            elsif Size_To_Use <= 64 then
               Scal_Typ := Name_Signed_64;
            else
               Scal_Typ := Name_Signed_128;
            end if;
         end if;

         --  Use the values specified by pragma Initialize_Scalars or the ones
         --  provided by the binder. Higher precedence is given to the pragma.

         return Invalid_Scalar_Value (Loc, Scal_Typ);
      end Simple_Init_Initialize_Scalars_Type;

      ----------------------------------------
      -- Simple_Init_Normalize_Scalars_Type --
      ----------------------------------------

      function Simple_Init_Normalize_Scalars_Type
        (Size_To_Use : Uint) return Node_Id
      is
         Signed_Size : constant Uint := UI_Min (Uint_63, Size_To_Use - 1);

         Expr     : Node_Id;
         Hi_Bound : Uint;
         Lo_Bound : Uint;

      begin
         Extract_Subtype_Bounds (Lo_Bound, Hi_Bound);

         --  If zero is invalid, it is a convenient value to use that is for
         --  sure an appropriate invalid value in all situations.

         if Present (Lo_Bound) and then Lo_Bound > Uint_0 then
            Expr := Make_Integer_Literal (Loc, 0);

         --  Cases where all one bits is the appropriate invalid value

         --  For modular types, all 1 bits is either invalid or valid. If it
         --  is valid, then there is nothing that can be done since there are
         --  no invalid values (we ruled out zero already).

         --  For signed integer types that have no negative values, either
         --  there is room for negative values, or there is not. If there
         --  is, then all 1-bits may be interpreted as minus one, which is
         --  certainly invalid. Alternatively it is treated as the largest
         --  positive value, in which case the observation for modular types
         --  still applies.

         --  For float types, all 1-bits is a NaN (not a number), which is
         --  certainly an appropriately invalid value.

         elsif Is_Enumeration_Type (Typ)
           or else Is_Floating_Point_Type (Typ)
           or else Is_Unsigned_Type (Typ)
         then
            Expr := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);

            --  Resolve as Long_Long_Long_Unsigned, because the largest number
            --  we can generate is out of range of universal integer.

            Analyze_And_Resolve (Expr, Standard_Long_Long_Long_Unsigned);

         --  Case of signed types

         else
            --  Normally we like to use the most negative number. The one
            --  exception is when this number is in the known subtype range and
            --  the largest positive number is not in the known subtype range.

            --  For this exceptional case, use largest positive value

            if Present (Lo_Bound) and then Present (Hi_Bound)
              and then Lo_Bound <= (-(2 ** Signed_Size))
              and then Hi_Bound < 2 ** Signed_Size
            then
               Expr := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);

            --  Normal case of largest negative value

            else
               Expr := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
            end if;
         end if;

         return Expr;
      end Simple_Init_Normalize_Scalars_Type;

      ------------------------------
      -- Simple_Init_Private_Type --
      ------------------------------

      function Simple_Init_Private_Type return Node_Id is
         Under_Typ : constant Entity_Id := Underlying_Type (Typ);
         Expr      : Node_Id;

      begin
         --  The availability of the underlying view must be checked by routine
         --  Needs_Simple_Initialization.

         pragma Assert (Present (Under_Typ));

         Expr := Get_Simple_Init_Val (Under_Typ, N, Size);

         --  If the initial value is null or an aggregate, qualify it with the
         --  underlying type in order to provide a proper context.

         if Nkind (Expr) in N_Aggregate | N_Null then
            Expr :=
              Make_Qualified_Expression (Loc,
                Subtype_Mark => New_Occurrence_Of (Under_Typ, Loc),
                Expression   => Expr);
         end if;

         Expr := Unchecked_Convert_To (Typ, Expr);

         --  Do not truncate the result when scalar types are involved and
         --  Initialize/Normalize_Scalars is in effect.

         if Nkind (Expr) = N_Unchecked_Type_Conversion
           and then Is_Scalar_Type (Under_Typ)
         then
            Set_No_Truncation (Expr);
         end if;

         return Expr;
      end Simple_Init_Private_Type;

      -----------------------------
      -- Simple_Init_Scalar_Type --
      -----------------------------

      function Simple_Init_Scalar_Type return Node_Id is
         Expr        : Node_Id;
         Size_To_Use : Uint;

      begin
         pragma Assert (Init_Or_Norm_Scalars or IV_Attribute);

         --  Determine the size of the object. This is either the size provided
         --  by the caller, or the Esize of the scalar type.

         if No (Size) or else Size <= Uint_0 then
            Size_To_Use := UI_Max (Uint_1, Esize (Typ));
         else
            Size_To_Use := Size;
         end if;

         --  The maximum size to use is System_Max_Integer_Size bits. This
         --  will create values of type Long_Long_Long_Unsigned and the range
         --  must fit this type.

         if Present (Size_To_Use)
           and then Size_To_Use > System_Max_Integer_Size
         then
            Size_To_Use := UI_From_Int (System_Max_Integer_Size);
         end if;

         if Normalize_Scalars and then not IV_Attribute then
            Expr := Simple_Init_Normalize_Scalars_Type (Size_To_Use);
         else
            Expr := Simple_Init_Initialize_Scalars_Type (Size_To_Use);
         end if;

         --  The final expression is obtained by doing an unchecked conversion
         --  of this result to the base type of the required subtype. Use the
         --  base type to prevent the unchecked conversion from chopping bits,
         --  and then we set Kill_Range_Check to preserve the "bad" value.

         Expr := Unchecked_Convert_To (Base_Type (Typ), Expr);

         --  Ensure that the expression is not truncated since the "bad" bits
         --  are desired, and also kill the range checks.

         if Nkind (Expr) = N_Unchecked_Type_Conversion then
            Set_Kill_Range_Check (Expr);
            Set_No_Truncation    (Expr);
         end if;

         return Expr;
      end Simple_Init_Scalar_Type;

   --  Start of processing for Get_Simple_Init_Val

   begin
      if Is_Private_Type (Typ) then
         return Simple_Init_Private_Type;

      elsif Is_Scalar_Type (Typ) then
         if Has_Default_Aspect (Typ) then
            return Simple_Init_Defaulted_Type;
         else
            return Simple_Init_Scalar_Type;
         end if;

      --  Array type with Initialize or Normalize_Scalars

      elsif Is_Array_Type (Typ) then
         pragma Assert (Init_Or_Norm_Scalars);
         return Simple_Init_Array_Type;

      --  Access type is initialized to null

      elsif Is_Access_Type (Typ) then
         return Make_Null (Loc);

      --  No other possibilities should arise, since we should only be calling
      --  Get_Simple_Init_Val if Needs_Simple_Initialization returned True,
      --  indicating one of the above cases held.

      else
         raise Program_Error;
      end if;

   exception
      when RE_Not_Available =>
         return Empty;
   end Get_Simple_Init_Val;

   ------------------------------
   -- Has_New_Non_Standard_Rep --
   ------------------------------

   function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
   begin
      if not Is_Derived_Type (T) then
         return Has_Non_Standard_Rep (T)
           or else Has_Non_Standard_Rep (Root_Type (T));

      --  If Has_Non_Standard_Rep is not set on the derived type, the
      --  representation is fully inherited.

      elsif not Has_Non_Standard_Rep (T) then
         return False;

      else
         return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));

         --  May need a more precise check here: the First_Rep_Item may be a
         --  stream attribute, which does not affect the representation of the
         --  type ???

      end if;
   end Has_New_Non_Standard_Rep;

   ----------------------
   -- Inline_Init_Proc --
   ----------------------

   function Inline_Init_Proc (Typ : Entity_Id) return Boolean is
   begin
      --  The initialization proc of protected records is not worth inlining.
      --  In addition, when compiled for another unit for inlining purposes,
      --  it may make reference to entities that have not been elaborated yet.
      --  The initialization proc of records that need finalization contains
      --  a nested clean-up procedure that makes it impractical to inline as
      --  well, except for simple controlled types themselves. And similar
      --  considerations apply to task types.

      if Is_Concurrent_Type (Typ) then
         return False;

      elsif Needs_Finalization (Typ) and then not Is_Controlled (Typ) then
         return False;

      elsif Has_Task (Typ) then
         return False;

      else
         return True;
      end if;
   end Inline_Init_Proc;

   ----------------
   -- In_Runtime --
   ----------------

   function In_Runtime (E : Entity_Id) return Boolean is
      S1 : Entity_Id;

   begin
      S1 := Scope (E);
      while Scope (S1) /= Standard_Standard loop
         S1 := Scope (S1);
      end loop;

      return Is_RTU (S1, System) or else Is_RTU (S1, Ada);
   end In_Runtime;

   package body Initialization_Control is

      ------------------------
      -- Requires_Late_Init --
      ------------------------

      function Requires_Late_Init
        (Decl     : Node_Id;
         Rec_Type : Entity_Id) return Boolean
      is
         References_Current_Instance : Boolean := False;
         Has_Access_Discriminant     : Boolean := False;
         Has_Internal_Call           : Boolean := False;

         function Find_Access_Discriminant
           (N : Node_Id) return Traverse_Result;
         --  Look for a name denoting an access discriminant

         function Find_Current_Instance
           (N : Node_Id) return Traverse_Result;
         --  Look for a reference to the current instance of the type

         function Find_Internal_Call
           (N : Node_Id) return Traverse_Result;
         --  Look for an internal protected function call

         ------------------------------
         -- Find_Access_Discriminant --
         ------------------------------

         function Find_Access_Discriminant
           (N : Node_Id) return Traverse_Result is
         begin
            if Is_Entity_Name (N)
              and then Denotes_Discriminant (N)
              and then Is_Access_Type (Etype (N))
            then
               Has_Access_Discriminant := True;
               return Abandon;
            else
               return OK;
            end if;
         end Find_Access_Discriminant;

         ---------------------------
         -- Find_Current_Instance --
         ---------------------------

         function Find_Current_Instance
           (N : Node_Id) return Traverse_Result is
         begin
            if Is_Entity_Name (N)
              and then Present (Entity (N))
              and then Is_Current_Instance (N)
            then
               References_Current_Instance := True;
               return Abandon;
            else
               return OK;
            end if;
         end Find_Current_Instance;

         ------------------------
         -- Find_Internal_Call --
         ------------------------

         function Find_Internal_Call (N : Node_Id) return Traverse_Result is

            function Call_Scope (N : Node_Id) return Entity_Id;
            --  Return the scope enclosing a given call node N

            ----------------
            -- Call_Scope --
            ----------------

            function Call_Scope (N : Node_Id) return Entity_Id is
               Nam : constant Node_Id := Name (N);
            begin
               if Nkind (Nam) = N_Selected_Component then
                  return Scope (Entity (Prefix (Nam)));
               else
                  return Scope (Entity (Nam));
               end if;
            end Call_Scope;

         begin
            if Nkind (N) = N_Function_Call
              and then Call_Scope (N)
                         = Corresponding_Concurrent_Type (Rec_Type)
            then
               Has_Internal_Call := True;
               return Abandon;
            else
               return OK;
            end if;
         end Find_Internal_Call;

         procedure Search_Access_Discriminant is new
           Traverse_Proc (Find_Access_Discriminant);

         procedure Search_Current_Instance is new
           Traverse_Proc (Find_Current_Instance);

         procedure Search_Internal_Call is new
           Traverse_Proc (Find_Internal_Call);

         --  Start of processing for Requires_Late_Init

      begin
         --  A component of an object is said to require late initialization
         --  if:

         --  it has an access discriminant value constrained by a per-object
         --  expression;

         if Has_Access_Constraint (Defining_Identifier (Decl))
           and then No (Expression (Decl))
         then
            return True;

         elsif Present (Expression (Decl)) then

            --  it has an initialization expression that includes a name
            --  denoting an access discriminant;

            Search_Access_Discriminant (Expression (Decl));

            if Has_Access_Discriminant then
               return True;
            end if;

            --  or it has an initialization expression that includes a
            --  reference to the current instance of the type either by
            --  name...

            Search_Current_Instance (Expression (Decl));

            if References_Current_Instance then
               return True;
            end if;

            --  ...or implicitly as the target object of a call.

            if Is_Protected_Record_Type (Rec_Type) then
               Search_Internal_Call (Expression (Decl));

               if Has_Internal_Call then
                  return True;
               end if;
            end if;
         end if;

         return False;
      end Requires_Late_Init;

      -----------------------------
      -- Has_Late_Init_Component --
      -----------------------------

      function Has_Late_Init_Component
        (Tagged_Rec_Type : Entity_Id) return Boolean
      is
         Comp_Id : Entity_Id :=
           First_Component (Implementation_Base_Type (Tagged_Rec_Type));
      begin
         while Present (Comp_Id) loop
            if Requires_Late_Init (Decl     => Parent (Comp_Id),
                                   Rec_Type => Tagged_Rec_Type)
            then
               return True; -- found a component that requires late init

            elsif Chars (Comp_Id) = Name_uParent
              and then Has_Late_Init_Component (Etype (Comp_Id))
            then
               return True; -- an ancestor type has a late init component
            end if;

            Next_Component (Comp_Id);
         end loop;

         return False;
      end Has_Late_Init_Component;

      ------------------------
      -- Tag_Init_Condition --
      ------------------------

      function Tag_Init_Condition
        (Loc : Source_Ptr;
         Init_Control_Formal : Entity_Id) return Node_Id is
      begin
         return Make_Op_Eq (Loc,
                  New_Occurrence_Of (Init_Control_Formal, Loc),
                  Make_Mode_Literal (Loc, Full_Init));
      end Tag_Init_Condition;

      --------------------------
      -- Early_Init_Condition --
      --------------------------

      function Early_Init_Condition
        (Loc : Source_Ptr;
         Init_Control_Formal : Entity_Id) return Node_Id is
      begin
         return Make_Op_Ne (Loc,
                  New_Occurrence_Of (Init_Control_Formal, Loc),
                  Make_Mode_Literal (Loc, Late_Init_Only));
      end Early_Init_Condition;

      -------------------------
      -- Late_Init_Condition --
      -------------------------

      function Late_Init_Condition
        (Loc : Source_Ptr;
         Init_Control_Formal : Entity_Id) return Node_Id is
      begin
         return Make_Op_Ne (Loc,
                  New_Occurrence_Of (Init_Control_Formal, Loc),
                  Make_Mode_Literal (Loc, Early_Init_Only));
      end Late_Init_Condition;

   end Initialization_Control;

   ----------------------------
   -- Initialization_Warning --
   ----------------------------

   procedure Initialization_Warning (E : Entity_Id) is
      Warning_Needed : Boolean;

   begin
      Warning_Needed := False;

      if Ekind (Current_Scope) = E_Package
        and then Static_Elaboration_Desired (Current_Scope)
      then
         if Is_Type (E) then
            if Is_Record_Type (E) then
               if Has_Discriminants (E)
                 or else Is_Limited_Type (E)
                 or else Has_Non_Standard_Rep (E)
               then
                  Warning_Needed := True;

               else
                  --  Verify that at least one component has an initialization
                  --  expression. No need for a warning on a type if all its
                  --  components have no initialization.

                  declare
                     Comp : Entity_Id;

                  begin
                     Comp := First_Component (E);
                     while Present (Comp) loop
                        pragma Assert
                          (Nkind (Parent (Comp)) = N_Component_Declaration);

                        if Present (Expression (Parent (Comp))) then
                           Warning_Needed := True;
                           exit;
                        end if;

                        Next_Component (Comp);
                     end loop;
                  end;
               end if;

               if Warning_Needed then
                  Error_Msg_N
                    ("objects of the type cannot be initialized statically "
                     & "by default??", Parent (E));
               end if;
            end if;

         else
            Error_Msg_N ("object cannot be initialized statically??", E);
         end if;
      end if;
   end Initialization_Warning;

   ------------------
   -- Init_Formals --
   ------------------

   function Init_Formals (Typ : Entity_Id; Proc_Id : Entity_Id) return List_Id
   is
      Loc        : constant Source_Ptr := Sloc (Typ);
      Unc_Arr    : constant Boolean :=
                     Is_Array_Type (Typ) and then not Is_Constrained (Typ);
      With_Prot  : constant Boolean :=
                     Has_Protected (Typ)
                       or else (Is_Record_Type (Typ)
                                 and then Is_Protected_Record_Type (Typ));
      With_Task  : constant Boolean :=
                     not Global_No_Tasking
                       and then
                     (Has_Task (Typ)
                        or else (Is_Record_Type (Typ)
                                   and then Is_Task_Record_Type (Typ)));
      Formals : List_Id;

   begin
      --  The first parameter is always _Init : [in] out Typ. Note that we need
      --  it to be in/out in the case of an unconstrained array, because of the
      --  need to have the bounds, and in the case of protected or task record
      --  value, because there are default record fields that may be referenced
      --  in the generated initialization routine.

      Formals := New_List (
        Make_Parameter_Specification (Loc,
          Defining_Identifier => Make_Defining_Identifier (Loc, Name_uInit),
          In_Present          => Unc_Arr or else With_Prot or else With_Task,
          Out_Present         => True,
          Parameter_Type      => New_Occurrence_Of (Typ, Loc)));

      --  For task record value, or type that contains tasks, add two more
      --  formals, _Master : Master_Id and _Chain : in out Activation_Chain
      --  We also add these parameters for the task record type case.

      if With_Task then
         Append_To (Formals,
           Make_Parameter_Specification (Loc,
             Defining_Identifier =>
               Make_Defining_Identifier (Loc, Name_uMaster),
             Parameter_Type      =>
               New_Occurrence_Of (Standard_Integer, Loc)));

         Set_Has_Master_Entity (Proc_Id);

         --  Add _Chain (not done for sequential elaboration policy, see
         --  comment for Create_Restricted_Task_Sequential in s-tarest.ads).

         if Partition_Elaboration_Policy /= 'S' then
            Append_To (Formals,
              Make_Parameter_Specification (Loc,
                Defining_Identifier =>
                  Make_Defining_Identifier (Loc, Name_uChain),
                In_Present          => True,
                Out_Present         => True,
                Parameter_Type      =>
                  New_Occurrence_Of (RTE (RE_Activation_Chain), Loc)));
         end if;

         Append_To (Formals,
           Make_Parameter_Specification (Loc,
             Defining_Identifier =>
               Make_Defining_Identifier (Loc, Name_uTask_Name),
             In_Present          => True,
             Parameter_Type      => New_Occurrence_Of (Standard_String, Loc)));
      end if;

      --  Due to certain edge cases such as arrays with null-excluding
      --  components being built with the secondary stack it becomes necessary
      --  to add a formal to the Init_Proc which controls whether we raise
      --  Constraint_Errors on generated calls for internal object
      --  declarations.

      if Needs_Conditional_Null_Excluding_Check (Typ) then
         Append_To (Formals,
           Make_Parameter_Specification (Loc,
             Defining_Identifier =>
               Make_Defining_Identifier (Loc,
                 New_External_Name (Chars
                   (Component_Type (Typ)), "_skip_null_excluding_check")),
             Expression          => New_Occurrence_Of (Standard_False, Loc),
             In_Present          => True,
             Parameter_Type      =>
               New_Occurrence_Of (Standard_Boolean, Loc)));
      end if;

      return Formals;

   exception
      when RE_Not_Available =>
         return Empty_List;
   end Init_Formals;

   -------------------------
   -- Init_Secondary_Tags --
   -------------------------

   procedure Init_Secondary_Tags
     (Typ            : Entity_Id;
      Target         : Node_Id;
      Init_Tags_List : List_Id;
      Stmts_List     : List_Id;
      Fixed_Comps    : Boolean := True;
      Variable_Comps : Boolean := True)
   is
      Loc : constant Source_Ptr := Sloc (Target);

      --  Inherit the C++ tag of the secondary dispatch table of Typ associated
      --  with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.

      procedure Initialize_Tag
        (Typ       : Entity_Id;
         Iface     : Entity_Id;
         Tag_Comp  : Entity_Id;
         Iface_Tag : Node_Id);
      --  Initialize the tag of the secondary dispatch table of Typ associated
      --  with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
      --  Compiling under the CPP full ABI compatibility mode, if the ancestor
      --  of Typ CPP tagged type we generate code to inherit the contents of
      --  the dispatch table directly from the ancestor.

      --------------------
      -- Initialize_Tag --
      --------------------

      procedure Initialize_Tag
        (Typ       : Entity_Id;
         Iface     : Entity_Id;
         Tag_Comp  : Entity_Id;
         Iface_Tag : Node_Id)
      is
         Comp_Typ           : Entity_Id;
         Offset_To_Top_Comp : Entity_Id := Empty;

      begin
         --  Initialize pointer to secondary DT associated with the interface

         if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
            Append_To (Init_Tags_List,
              Make_Assignment_Statement (Loc,
                Name       =>
                  Make_Selected_Component (Loc,
                    Prefix        => New_Copy_Tree (Target),
                    Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
                Expression =>
                  New_Occurrence_Of (Iface_Tag, Loc)));
         end if;

         Comp_Typ := Scope (Tag_Comp);

         --  Initialize the entries of the table of interfaces. We generate a
         --  different call when the parent of the type has variable size
         --  components.

         if Comp_Typ /= Etype (Comp_Typ)
           and then Is_Variable_Size_Record (Etype (Comp_Typ))
           and then Chars (Tag_Comp) /= Name_uTag
         then
            pragma Assert (Present (DT_Offset_To_Top_Func (Tag_Comp)));

            --  Issue error if Set_Dynamic_Offset_To_Top is not available in a
            --  configurable run-time environment.

            if not RTE_Available (RE_Set_Dynamic_Offset_To_Top) then
               Error_Msg_CRT
                 ("variable size record with interface types", Typ);
               return;
            end if;

            --  Generate:
            --    Set_Dynamic_Offset_To_Top
            --      (This         => Init,
            --       Prim_T       => Typ'Tag,
            --       Interface_T  => Iface'Tag,
            --       Offset_Value => n,
            --       Offset_Func  => Fn'Unrestricted_Access)

            Append_To (Stmts_List,
              Make_Procedure_Call_Statement (Loc,
                Name                   =>
                  New_Occurrence_Of (RTE (RE_Set_Dynamic_Offset_To_Top), Loc),
                Parameter_Associations => New_List (
                  Make_Attribute_Reference (Loc,
                    Prefix         => New_Copy_Tree (Target),
                    Attribute_Name => Name_Address),

                  Unchecked_Convert_To (RTE (RE_Tag),
                    New_Occurrence_Of
                      (Node (First_Elmt (Access_Disp_Table (Typ))), Loc)),

                  Unchecked_Convert_To (RTE (RE_Tag),
                    New_Occurrence_Of
                      (Node (First_Elmt (Access_Disp_Table (Iface))),
                       Loc)),

                  Unchecked_Convert_To
                    (RTE (RE_Storage_Offset),
                     Make_Op_Minus (Loc,
                       Make_Attribute_Reference (Loc,
                         Prefix         =>
                           Make_Selected_Component (Loc,
                             Prefix        => New_Copy_Tree (Target),
                             Selector_Name =>
                               New_Occurrence_Of (Tag_Comp, Loc)),
                         Attribute_Name => Name_Position))),

                  Unchecked_Convert_To (RTE (RE_Offset_To_Top_Function_Ptr),
                    Make_Attribute_Reference (Loc,
                      Prefix => New_Occurrence_Of
                                  (DT_Offset_To_Top_Func (Tag_Comp), Loc),
                      Attribute_Name => Name_Unrestricted_Access)))));

            --  In this case the next component stores the value of the offset
            --  to the top.

            Offset_To_Top_Comp := Next_Entity (Tag_Comp);
            pragma Assert (Present (Offset_To_Top_Comp));

            Append_To (Init_Tags_List,
              Make_Assignment_Statement (Loc,
                Name       =>
                  Make_Selected_Component (Loc,
                    Prefix        => New_Copy_Tree (Target),
                    Selector_Name =>
                      New_Occurrence_Of (Offset_To_Top_Comp, Loc)),

                Expression =>
                  Make_Op_Minus (Loc,
                    Make_Attribute_Reference (Loc,
                      Prefix       =>
                        Make_Selected_Component (Loc,
                          Prefix        => New_Copy_Tree (Target),
                          Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
                    Attribute_Name => Name_Position))));

         --  Normal case: No discriminants in the parent type

         else
            --  Don't need to set any value if the offset-to-top field is
            --  statically set or if this interface shares the primary
            --  dispatch table.

            if not Building_Static_Secondary_DT (Typ)
              and then not Is_Ancestor (Iface, Typ, Use_Full_View => True)
            then
               Append_To (Stmts_List,
                 Build_Set_Static_Offset_To_Top (Loc,
                   Iface_Tag    => New_Occurrence_Of (Iface_Tag, Loc),
                   Offset_Value =>
                     Unchecked_Convert_To (RTE (RE_Storage_Offset),
                       Make_Op_Minus (Loc,
                         Make_Attribute_Reference (Loc,
                           Prefix         =>
                             Make_Selected_Component (Loc,
                               Prefix        => New_Copy_Tree (Target),
                               Selector_Name =>
                                 New_Occurrence_Of (Tag_Comp, Loc)),
                           Attribute_Name => Name_Position)))));
            end if;

            --  Generate:
            --    Register_Interface_Offset
            --      (Prim_T       => Typ'Tag,
            --       Interface_T  => Iface'Tag,
            --       Is_Constant  => True,
            --       Offset_Value => n,
            --       Offset_Func  => null);

            if not Building_Static_Secondary_DT (Typ)
              and then RTE_Available (RE_Register_Interface_Offset)
            then
               Append_To (Stmts_List,
                 Make_Procedure_Call_Statement (Loc,
                   Name                   =>
                     New_Occurrence_Of
                       (RTE (RE_Register_Interface_Offset), Loc),
                   Parameter_Associations => New_List (
                     Unchecked_Convert_To (RTE (RE_Tag),
                       New_Occurrence_Of
                         (Node (First_Elmt (Access_Disp_Table (Typ))), Loc)),

                     Unchecked_Convert_To (RTE (RE_Tag),
                       New_Occurrence_Of
                         (Node (First_Elmt (Access_Disp_Table (Iface))), Loc)),

                     New_Occurrence_Of (Standard_True, Loc),

                     Unchecked_Convert_To (RTE (RE_Storage_Offset),
                       Make_Op_Minus (Loc,
                         Make_Attribute_Reference (Loc,
                           Prefix         =>
                             Make_Selected_Component (Loc,
                               Prefix         => New_Copy_Tree (Target),
                               Selector_Name  =>
                                 New_Occurrence_Of (Tag_Comp, Loc)),
                           Attribute_Name => Name_Position))),

                     Make_Null (Loc))));
            end if;
         end if;
      end Initialize_Tag;

      --  Local variables

      Full_Typ         : Entity_Id;
      Ifaces_List      : Elist_Id;
      Ifaces_Comp_List : Elist_Id;
      Ifaces_Tag_List  : Elist_Id;
      Iface_Elmt       : Elmt_Id;
      Iface_Comp_Elmt  : Elmt_Id;
      Iface_Tag_Elmt   : Elmt_Id;
      Tag_Comp         : Node_Id;
      In_Variable_Pos  : Boolean;

   --  Start of processing for Init_Secondary_Tags

   begin
      --  Handle private types

      if Present (Full_View (Typ)) then
         Full_Typ := Full_View (Typ);
      else
         Full_Typ := Typ;
      end if;

      Collect_Interfaces_Info
        (Full_Typ, Ifaces_List, Ifaces_Comp_List, Ifaces_Tag_List);

      Iface_Elmt      := First_Elmt (Ifaces_List);
      Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
      Iface_Tag_Elmt  := First_Elmt (Ifaces_Tag_List);
      while Present (Iface_Elmt) loop
         Tag_Comp := Node (Iface_Comp_Elmt);

         --  Check if parent of record type has variable size components

         In_Variable_Pos := Scope (Tag_Comp) /= Etype (Scope (Tag_Comp))
           and then Is_Variable_Size_Record (Etype (Scope (Tag_Comp)));

         --  If we are compiling under the CPP full ABI compatibility mode and
         --  the ancestor is a CPP_Pragma tagged type then we generate code to
         --  initialize the secondary tag components from tags that reference
         --  secondary tables filled with copy of parent slots.

         if Is_CPP_Class (Root_Type (Full_Typ)) then

            --  Reject interface components located at variable offset in
            --  C++ derivations. This is currently unsupported.

            if not Fixed_Comps and then In_Variable_Pos then

               --  Locate the first dynamic component of the record. Done to
               --  improve the text of the warning.

               declare
                  Comp     : Entity_Id;
                  Comp_Typ : Entity_Id;

               begin
                  Comp := First_Entity (Typ);
                  while Present (Comp) loop
                     Comp_Typ := Etype (Comp);

                     if Ekind (Comp) /= E_Discriminant
                       and then not Is_Tag (Comp)
                     then
                        exit when
                          (Is_Record_Type (Comp_Typ)
                            and then
                              Is_Variable_Size_Record (Base_Type (Comp_Typ)))
                         or else
                           (Is_Array_Type (Comp_Typ)
                             and then Is_Variable_Size_Array (Comp_Typ));
                     end if;

                     Next_Entity (Comp);
                  end loop;

                  pragma Assert (Present (Comp));

                  --  Move this check to sem???
                  Error_Msg_Node_2 := Comp;
                  Error_Msg_NE
                    ("parent type & with dynamic component & cannot be parent"
                     & " of 'C'P'P derivation if new interfaces are present",
                     Typ, Scope (Original_Record_Component (Comp)));

                  Error_Msg_Sloc :=
                    Sloc (Scope (Original_Record_Component (Comp)));
                  Error_Msg_NE
                    ("type derived from 'C'P'P type & defined #",
                     Typ, Scope (Original_Record_Component (Comp)));

                  --  Avoid duplicated warnings

                  exit;
               end;

            --  Initialize secondary tags

            else
               Initialize_Tag
                 (Typ       => Full_Typ,
                  Iface     => Node (Iface_Elmt),
                  Tag_Comp  => Tag_Comp,
                  Iface_Tag => Node (Iface_Tag_Elmt));
            end if;

         --  Otherwise generate code to initialize the tag

         else
            if (In_Variable_Pos and then Variable_Comps)
              or else (not In_Variable_Pos and then Fixed_Comps)
            then
               Initialize_Tag
                 (Typ       => Full_Typ,
                  Iface     => Node (Iface_Elmt),
                  Tag_Comp  => Tag_Comp,
                  Iface_Tag => Node (Iface_Tag_Elmt));
            end if;
         end if;

         Next_Elmt (Iface_Elmt);
         Next_Elmt (Iface_Comp_Elmt);
         Next_Elmt (Iface_Tag_Elmt);
      end loop;
   end Init_Secondary_Tags;

   ----------------------------
   -- Is_Null_Statement_List --
   ----------------------------

   function Is_Null_Statement_List (Stmts : List_Id) return Boolean is
      Stmt : Node_Id;

   begin
      --  We must skip SCIL nodes because they may have been added to the list
      --  by Insert_Actions.

      Stmt := First_Non_SCIL_Node (Stmts);
      while Present (Stmt) loop
         if Nkind (Stmt) = N_Case_Statement then
            declare
               Alt : Node_Id;
            begin
               Alt := First (Alternatives (Stmt));
               while Present (Alt) loop
                  if not Is_Null_Statement_List (Statements (Alt)) then
                     return False;
                  end if;

                  Next (Alt);
               end loop;
            end;

         elsif Nkind (Stmt) /= N_Null_Statement then
            return False;
         end if;

         Stmt := Next_Non_SCIL_Node (Stmt);
      end loop;

      return True;
   end Is_Null_Statement_List;

   ----------------------------------------
   -- Make_Controlling_Function_Wrappers --
   ----------------------------------------

   procedure Make_Controlling_Function_Wrappers
     (Tag_Typ   : Entity_Id;
      Decl_List : out List_Id;
      Body_List : out List_Id)
   is
      Loc : constant Source_Ptr := Sloc (Tag_Typ);

      function Make_Wrapper_Specification (Subp : Entity_Id) return Node_Id;
      --  Returns a function specification with the same profile as Subp

      --------------------------------
      -- Make_Wrapper_Specification --
      --------------------------------

      function Make_Wrapper_Specification (Subp : Entity_Id) return Node_Id is
      begin
         return
           Make_Function_Specification (Loc,
             Defining_Unit_Name       =>
               Make_Defining_Identifier (Loc,
                 Chars => Chars (Subp)),
             Parameter_Specifications =>
               Copy_Parameter_List (Subp),
             Result_Definition        =>
               New_Occurrence_Of (Etype (Subp), Loc));
      end Make_Wrapper_Specification;

      Prim_Elmt   : Elmt_Id;
      Subp        : Entity_Id;
      Actual_List : List_Id;
      Formal      : Entity_Id;
      Par_Formal  : Entity_Id;
      Ext_Aggr    : Node_Id;
      Formal_Node : Node_Id;
      Func_Body   : Node_Id;
      Func_Decl   : Node_Id;
      Func_Id     : Entity_Id;

   --  Start of processing for Make_Controlling_Function_Wrappers

   begin
      Decl_List := New_List;
      Body_List := New_List;

      Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
      while Present (Prim_Elmt) loop
         Subp := Node (Prim_Elmt);

         --  If a primitive function with a controlling result of the type has
         --  not been overridden by the user, then we must create a wrapper
         --  function here that effectively overrides it and invokes the
         --  (non-abstract) parent function. This can only occur for a null
         --  extension. Note that functions with anonymous controlling access
         --  results don't qualify and must be overridden. We also exclude
         --  Input attributes, since each type will have its own version of
         --  Input constructed by the expander. The test for Comes_From_Source
         --  is needed to distinguish inherited operations from renamings
         --  (which also have Alias set). We exclude internal entities with
         --  Interface_Alias to avoid generating duplicated wrappers since
         --  the primitive which covers the interface is also available in
         --  the list of primitive operations.

         --  The function may be abstract, or require_Overriding may be set
         --  for it, because tests for null extensions may already have reset
         --  the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
         --  set, functions that need wrappers are recognized by having an
         --  alias that returns the parent type.

         if Comes_From_Source (Subp)
           or else No (Alias (Subp))
           or else Present (Interface_Alias (Subp))
           or else Ekind (Subp) /= E_Function
           or else not Has_Controlling_Result (Subp)
           or else Is_Access_Type (Etype (Subp))
           or else Is_Abstract_Subprogram (Alias (Subp))
           or else Is_TSS (Subp, TSS_Stream_Input)
         then
            goto Next_Prim;

         elsif Is_Abstract_Subprogram (Subp)
           or else Requires_Overriding (Subp)
           or else
             (Is_Null_Extension (Etype (Subp))
               and then Etype (Alias (Subp)) /= Etype (Subp))
         then
            --  If there is a non-overloadable homonym in the current
            --  scope, the implicit declaration remains invisible.
            --  We check the current entity with the same name, or its
            --  homonym in case the derivation takes place after the
            --  hiding object declaration.

            if Present (Current_Entity (Subp)) then
               declare
                  Curr : constant Entity_Id := Current_Entity (Subp);
                  Prev : constant Entity_Id := Homonym (Curr);
               begin
                  if (Comes_From_Source (Curr)
                    and then Scope (Curr) = Current_Scope
                    and then not Is_Overloadable (Curr))
                  or else
                    (Present (Prev)
                      and then Comes_From_Source (Prev)
                      and then Scope (Prev) = Current_Scope
                      and then not Is_Overloadable (Prev))
                  then
                     goto Next_Prim;
                  end if;
               end;
            end if;

            Func_Decl :=
              Make_Subprogram_Declaration (Loc,
                Specification => Make_Wrapper_Specification (Subp));

            Append_To (Decl_List, Func_Decl);

            --  Build a wrapper body that calls the parent function. The body
            --  contains a single return statement that returns an extension
            --  aggregate whose ancestor part is a call to the parent function,
            --  passing the formals as actuals (with any controlling arguments
            --  converted to the types of the corresponding formals of the
            --  parent function, which might be anonymous access types), and
            --  having a null extension.

            Formal      := First_Formal (Subp);
            Par_Formal  := First_Formal (Alias (Subp));
            Formal_Node :=
              First (Parameter_Specifications (Specification (Func_Decl)));

            if Present (Formal) then
               Actual_List := New_List;

               while Present (Formal) loop
                  if Is_Controlling_Formal (Formal) then
                     Append_To (Actual_List,
                       Make_Type_Conversion (Loc,
                         Subtype_Mark =>
                           New_Occurrence_Of (Etype (Par_Formal), Loc),
                         Expression   =>
                           New_Occurrence_Of
                             (Defining_Identifier (Formal_Node), Loc)));
                  else
                     Append_To
                       (Actual_List,
                        New_Occurrence_Of
                          (Defining_Identifier (Formal_Node), Loc));
                  end if;

                  Next_Formal (Formal);
                  Next_Formal (Par_Formal);
                  Next (Formal_Node);
               end loop;
            else
               Actual_List := No_List;
            end if;

            Ext_Aggr :=
              Make_Extension_Aggregate (Loc,
                Ancestor_Part       =>
                  Make_Function_Call (Loc,
                    Name                   =>
                      New_Occurrence_Of (Alias (Subp), Loc),
                    Parameter_Associations => Actual_List),
                Null_Record_Present => True);

            --  GNATprove will use expression of an expression function as an
            --  implicit postcondition. GNAT will also benefit from expression
            --  function to avoid premature freezing, but would struggle if we
            --  added an expression function to freezing actions, so we create
            --  the expanded form directly.

            if GNATprove_Mode then
               Func_Body :=
                 Make_Expression_Function (Loc,
                   Specification =>
                     Make_Wrapper_Specification (Subp),
                   Expression => Ext_Aggr);
            else
               Func_Body :=
                 Make_Subprogram_Body (Loc,
                   Specification              =>
                     Make_Wrapper_Specification (Subp),
                   Declarations               => Empty_List,
                   Handled_Statement_Sequence =>
                     Make_Handled_Sequence_Of_Statements (Loc,
                       Statements => New_List (
                         Make_Simple_Return_Statement (Loc,
                           Expression => Ext_Aggr))));
               Set_Was_Expression_Function (Func_Body);
            end if;

            Append_To (Body_List, Func_Body);

            --  Replace the inherited function with the wrapper function in the
            --  primitive operations list. We add the minimum decoration needed
            --  to override interface primitives.

            Func_Id := Defining_Unit_Name (Specification (Func_Decl));

            Mutate_Ekind (Func_Id, E_Function);
            Set_Is_Wrapper (Func_Id);

            --  Corresponding_Spec will be set again to the same value during
            --  analysis, but we need this information earlier.
            --  Expand_N_Freeze_Entity needs to know whether a subprogram body
            --  is a wrapper's body in order to get check suppression right.

            Set_Corresponding_Spec (Func_Body, Func_Id);
         end if;

      <<Next_Prim>>
         Next_Elmt (Prim_Elmt);
      end loop;
   end Make_Controlling_Function_Wrappers;

   ------------------
   -- Make_Eq_Body --
   ------------------

   function Make_Eq_Body
     (Typ     : Entity_Id;
      Eq_Name : Name_Id) return Node_Id
   is
      Loc          : constant Source_Ptr := Sloc (Parent (Typ));
      Decl         : Node_Id;
      Def          : constant Node_Id := Parent (Typ);
      Stmts        : constant List_Id := New_List;
      Variant_Case : Boolean := Has_Discriminants (Typ);
      Comps        : Node_Id := Empty;
      Typ_Def      : Node_Id := Type_Definition (Def);

   begin
      Decl :=
        Predef_Spec_Or_Body (Loc,
          Tag_Typ  => Typ,
          Name     => Eq_Name,
          Profile  => New_List (
            Make_Parameter_Specification (Loc,
              Defining_Identifier =>
                Make_Defining_Identifier (Loc, Name_X),
              Parameter_Type      => New_Occurrence_Of (Typ, Loc)),

            Make_Parameter_Specification (Loc,
              Defining_Identifier =>
                Make_Defining_Identifier (Loc, Name_Y),
              Parameter_Type      => New_Occurrence_Of (Typ, Loc))),

          Ret_Type => Standard_Boolean,
          For_Body => True);

      if Variant_Case then
         if Nkind (Typ_Def) = N_Derived_Type_Definition then
            Typ_Def := Record_Extension_Part (Typ_Def);
         end if;

         if Present (Typ_Def) then
            Comps := Component_List (Typ_Def);
         end if;

         Variant_Case :=
           Present (Comps) and then Present (Variant_Part (Comps));
      end if;

      if Variant_Case then
         Append_To (Stmts,
           Make_Eq_If (Typ, Discriminant_Specifications (Def)));
         Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
         Append_To (Stmts,
           Make_Simple_Return_Statement (Loc,
             Expression => New_Occurrence_Of (Standard_True, Loc)));

      else
         Append_To (Stmts,
           Make_Simple_Return_Statement (Loc,
             Expression =>
               Expand_Record_Equality
                 (Typ,
                  Typ => Typ,
                  Lhs => Make_Identifier (Loc, Name_X),
                  Rhs => Make_Identifier (Loc, Name_Y))));
      end if;

      Set_Handled_Statement_Sequence
        (Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts));
      return Decl;
   end Make_Eq_Body;

   ------------------
   -- Make_Eq_Case --
   ------------------

   --  <Make_Eq_If shared components>

   --  case X.D1 is
   --     when V1 => <Make_Eq_Case> on subcomponents
   --     ...
   --     when Vn => <Make_Eq_Case> on subcomponents
   --  end case;

   function Make_Eq_Case
     (E      : Entity_Id;
      CL     : Node_Id;
      Discrs : Elist_Id := New_Elmt_List) return List_Id
   is
      Loc      : constant Source_Ptr := Sloc (E);
      Result   : constant List_Id    := New_List;
      Variant  : Node_Id;
      Alt_List : List_Id;

      function Corresponding_Formal (C : Node_Id) return Entity_Id;
      --  Given the discriminant that controls a given variant of an unchecked
      --  union, find the formal of the equality function that carries the
      --  inferred value of the discriminant.

      function External_Name (E : Entity_Id) return Name_Id;
      --  The value of a given discriminant is conveyed in the corresponding
      --  formal parameter of the equality routine. The name of this formal
      --  parameter carries a one-character suffix which is removed here.

      --------------------------
      -- Corresponding_Formal --
      --------------------------

      function Corresponding_Formal (C : Node_Id) return Entity_Id is
         Discr : constant Entity_Id := Entity (Name (Variant_Part (C)));
         Elm   : Elmt_Id;

      begin
         Elm := First_Elmt (Discrs);
         while Present (Elm) loop
            if Chars (Discr) = External_Name (Node (Elm)) then
               return Node (Elm);
            end if;

            Next_Elmt (Elm);
         end loop;

         --  A formal of the proper name must be found

         raise Program_Error;
      end Corresponding_Formal;

      -------------------
      -- External_Name --
      -------------------

      function External_Name (E : Entity_Id) return Name_Id is
      begin
         Get_Name_String (Chars (E));
         Name_Len := Name_Len - 1;
         return Name_Find;
      end External_Name;

   --  Start of processing for Make_Eq_Case

   begin
      Append_To (Result, Make_Eq_If (E, Component_Items (CL)));

      if No (Variant_Part (CL)) then
         return Result;
      end if;

      Variant := First_Non_Pragma (Variants (Variant_Part (CL)));

      if No (Variant) then
         return Result;
      end if;

      Alt_List := New_List;
      while Present (Variant) loop
         Append_To (Alt_List,
           Make_Case_Statement_Alternative (Loc,
             Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
             Statements =>
               Make_Eq_Case (E, Component_List (Variant), Discrs)));
         Next_Non_Pragma (Variant);
      end loop;

      --  If we have an Unchecked_Union, use one of the parameters of the
      --  enclosing equality routine that captures the discriminant, to use
      --  as the expression in the generated case statement.

      if Is_Unchecked_Union (E) then
         Append_To (Result,
           Make_Case_Statement (Loc,
             Expression =>
               New_Occurrence_Of (Corresponding_Formal (CL), Loc),
             Alternatives => Alt_List));

      else
         Append_To (Result,
           Make_Case_Statement (Loc,
             Expression =>
               Make_Selected_Component (Loc,
                 Prefix        => Make_Identifier (Loc, Name_X),
                 Selector_Name => New_Copy (Name (Variant_Part (CL)))),
             Alternatives => Alt_List));
      end if;

      return Result;
   end Make_Eq_Case;

   ----------------
   -- Make_Eq_If --
   ----------------

   --  Generates:

   --    if
   --      X.C1 /= Y.C1
   --        or else
   --      X.C2 /= Y.C2
   --        ...
   --    then
   --       return False;
   --    end if;

   --  or a null statement if the list L is empty

   --  Equality may be user-defined for a given component type, in which case
   --  a function call is constructed instead of an operator node. This is an
   --  Ada 2012 change in the composability of equality for untagged composite
   --  types.

   function Make_Eq_If
     (E : Entity_Id;
      L : List_Id) return Node_Id
   is
      Loc : constant Source_Ptr := Sloc (E);

      C          : Node_Id;
      Cond       : Node_Id;
      Field_Name : Name_Id;
      Next_Test  : Node_Id;
      Typ        : Entity_Id;

   begin
      if No (L) then
         return Make_Null_Statement (Loc);

      else
         Cond := Empty;

         C := First_Non_Pragma (L);
         while Present (C) loop
            Typ        := Etype (Defining_Identifier (C));
            Field_Name := Chars (Defining_Identifier (C));

            --  The tags must not be compared: they are not part of the value.
            --  Ditto for parent interfaces because their equality operator is
            --  abstract.

            --  Note also that in the following, we use Make_Identifier for
            --  the component names. Use of New_Occurrence_Of to identify the
            --  components would be incorrect because the wrong entities for
            --  discriminants could be picked up in the private type case.

            if Field_Name = Name_uParent
              and then Is_Interface (Typ)
            then
               null;

            elsif Field_Name /= Name_uTag then
               declare
                  Lhs : constant Node_Id :=
                    Make_Selected_Component (Loc,
                      Prefix        => Make_Identifier (Loc, Name_X),
                      Selector_Name => Make_Identifier (Loc, Field_Name));

                  Rhs : constant Node_Id :=
                    Make_Selected_Component (Loc,
                      Prefix        => Make_Identifier (Loc, Name_Y),
                      Selector_Name => Make_Identifier (Loc, Field_Name));
                  Eq_Call : Node_Id;

               begin
                  --  Build equality code with a user-defined operator, if
                  --  available, and with the predefined "=" otherwise. For
                  --  compatibility with older Ada versions, we also use the
                  --  predefined operation if the component-type equality is
                  --  abstract, rather than raising Program_Error.

                  if Ada_Version < Ada_2012 then
                     Next_Test := Make_Op_Ne (Loc, Lhs, Rhs);

                  else
                     Eq_Call := Build_Eq_Call (Typ, Loc, Lhs, Rhs);

                     if No (Eq_Call) then
                        Next_Test := Make_Op_Ne (Loc, Lhs, Rhs);

                     --  If a component has a defined abstract equality, its
                     --  application raises Program_Error on that component
                     --  and therefore on the current variant.

                     elsif Nkind (Eq_Call) = N_Raise_Program_Error then
                        Set_Etype (Eq_Call, Standard_Boolean);
                        Next_Test := Make_Op_Not (Loc, Eq_Call);

                     else
                        Next_Test := Make_Op_Not (Loc, Eq_Call);
                     end if;
                  end if;
               end;

               Evolve_Or_Else (Cond, Next_Test);
            end if;

            Next_Non_Pragma (C);
         end loop;

         if No (Cond) then
            return Make_Null_Statement (Loc);

         else
            return
              Make_Implicit_If_Statement (E,
                Condition       => Cond,
                Then_Statements => New_List (
                  Make_Simple_Return_Statement (Loc,
                    Expression => New_Occurrence_Of (Standard_False, Loc))));
         end if;
      end if;
   end Make_Eq_If;

   -------------------
   -- Make_Neq_Body --
   -------------------

   function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id is

      function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean;
      --  Returns true if Prim is a renaming of an unresolved predefined
      --  inequality operation.

      --------------------------------
      -- Is_Predefined_Neq_Renaming --
      --------------------------------

      function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean is
      begin
         return Chars (Prim) /= Name_Op_Ne
           and then Present (Alias (Prim))
           and then Comes_From_Source (Prim)
           and then Is_Intrinsic_Subprogram (Alias (Prim))
           and then Chars (Alias (Prim)) = Name_Op_Ne;
      end Is_Predefined_Neq_Renaming;

      --  Local variables

      Loc           : constant Source_Ptr := Sloc (Parent (Tag_Typ));
      Decl          : Node_Id;
      Eq_Prim       : Entity_Id;
      Left_Op       : Entity_Id;
      Renaming_Prim : Entity_Id;
      Right_Op      : Entity_Id;
      Target        : Entity_Id;

   --  Start of processing for Make_Neq_Body

   begin
      --  For a call on a renaming of a dispatching subprogram that is
      --  overridden, if the overriding occurred before the renaming, then
      --  the body executed is that of the overriding declaration, even if the
      --  overriding declaration is not visible at the place of the renaming;
      --  otherwise, the inherited or predefined subprogram is called, see
      --  (RM 8.5.4(8)).

      --  Stage 1: Search for a renaming of the inequality primitive and also
      --  search for an overriding of the equality primitive located before the
      --  renaming declaration.

      declare
         Elmt : Elmt_Id;
         Prim : Node_Id;

      begin
         Eq_Prim       := Empty;
         Renaming_Prim := Empty;

         Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
         while Present (Elmt) loop
            Prim := Node (Elmt);

            if Is_User_Defined_Equality (Prim) and then No (Alias (Prim)) then
               if No (Renaming_Prim) then
                  pragma Assert (No (Eq_Prim));
                  Eq_Prim := Prim;
               end if;

            elsif Is_Predefined_Neq_Renaming (Prim) then
               Renaming_Prim := Prim;
            end if;

            Next_Elmt (Elmt);
         end loop;
      end;

      --  No further action needed if no renaming was found

      if No (Renaming_Prim) then
         return Empty;
      end if;

      --  Stage 2: Replace the renaming declaration by a subprogram declaration
      --  (required to add its body)

      Decl := Parent (Parent (Renaming_Prim));
      Rewrite (Decl,
        Make_Subprogram_Declaration (Loc,
          Specification => Specification (Decl)));
      Set_Analyzed (Decl);

      --  Remove the decoration of intrinsic renaming subprogram

      Set_Is_Intrinsic_Subprogram (Renaming_Prim, False);
      Set_Convention (Renaming_Prim, Convention_Ada);
      Set_Alias (Renaming_Prim, Empty);
      Set_Has_Completion (Renaming_Prim, False);

      --  Stage 3: Build the corresponding body

      Left_Op  := First_Formal (Renaming_Prim);
      Right_Op := Next_Formal (Left_Op);

      Decl :=
        Predef_Spec_Or_Body (Loc,
          Tag_Typ  => Tag_Typ,
          Name     => Chars (Renaming_Prim),
          Profile  => New_List (
            Make_Parameter_Specification (Loc,
              Defining_Identifier =>
                Make_Defining_Identifier (Loc, Chars (Left_Op)),
              Parameter_Type      => New_Occurrence_Of (Tag_Typ, Loc)),

            Make_Parameter_Specification (Loc,
              Defining_Identifier =>
                Make_Defining_Identifier (Loc, Chars (Right_Op)),
              Parameter_Type      => New_Occurrence_Of (Tag_Typ, Loc))),

          Ret_Type => Standard_Boolean,
          For_Body => True);

      --  If the overriding of the equality primitive occurred before the
      --  renaming, then generate:

      --    function <Neq_Name> (X : Y : Typ) return Boolean is
      --    begin
      --       return not Oeq (X, Y);
      --    end;

      if Present (Eq_Prim) then
         Target := Eq_Prim;

      --  Otherwise build a nested subprogram which performs the predefined
      --  evaluation of the equality operator. That is, generate:

      --    function <Neq_Name> (X : Y : Typ) return Boolean is
      --       function Oeq (X : Y) return Boolean is
      --       begin
      --          <<body of default implementation>>
      --       end;
      --    begin
      --       return not Oeq (X, Y);
      --    end;

      else
         declare
            Local_Subp : Node_Id;
         begin
            Local_Subp := Make_Eq_Body (Tag_Typ, Name_Op_Eq);
            Set_Declarations (Decl, New_List (Local_Subp));
            Target := Defining_Entity (Local_Subp);
         end;
      end if;

      Set_Handled_Statement_Sequence
        (Decl,
         Make_Handled_Sequence_Of_Statements (Loc, New_List (
           Make_Simple_Return_Statement (Loc,
              Expression =>
                Make_Op_Not (Loc,
                  Make_Function_Call (Loc,
                  Name                   => New_Occurrence_Of (Target, Loc),
                  Parameter_Associations => New_List (
                    Make_Identifier (Loc, Chars (Left_Op)),
                    Make_Identifier (Loc, Chars (Right_Op)))))))));

      return Decl;
   end Make_Neq_Body;

   -------------------------------
   -- Make_Null_Procedure_Specs --
   -------------------------------

   function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id is
      Decl_List      : constant List_Id    := New_List;
      Loc            : constant Source_Ptr := Sloc (Tag_Typ);
      Formal         : Entity_Id;
      New_Param_Spec : Node_Id;
      New_Spec       : Node_Id;
      Parent_Subp    : Entity_Id;
      Prim_Elmt      : Elmt_Id;
      Subp           : Entity_Id;

   begin
      Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
      while Present (Prim_Elmt) loop
         Subp := Node (Prim_Elmt);

         --  If a null procedure inherited from an interface has not been
         --  overridden, then we build a null procedure declaration to
         --  override the inherited procedure.

         Parent_Subp := Alias (Subp);

         if Present (Parent_Subp)
           and then Is_Null_Interface_Primitive (Parent_Subp)
         then
            --  The null procedure spec is copied from the inherited procedure,
            --  except for the IS NULL (which must be added) and the overriding
            --  indicators (which must be removed, if present).

            New_Spec :=
              Copy_Subprogram_Spec (Subprogram_Specification (Subp), Loc);

            Set_Null_Present      (New_Spec, True);
            Set_Must_Override     (New_Spec, False);
            Set_Must_Not_Override (New_Spec, False);

            Formal := First_Formal (Subp);
            New_Param_Spec := First (Parameter_Specifications (New_Spec));

            while Present (Formal) loop

               --  For controlling arguments we must change their parameter
               --  type to reference the tagged type (instead of the interface
               --  type).

               if Is_Controlling_Formal (Formal) then
                  if Nkind (Parameter_Type (Parent (Formal))) = N_Identifier
                  then
                     Set_Parameter_Type (New_Param_Spec,
                       New_Occurrence_Of (Tag_Typ, Loc));

                  else pragma Assert
                         (Nkind (Parameter_Type (Parent (Formal))) =
                                                     N_Access_Definition);
                     Set_Subtype_Mark (Parameter_Type (New_Param_Spec),
                       New_Occurrence_Of (Tag_Typ, Loc));
                  end if;
               end if;

               Next_Formal (Formal);
               Next (New_Param_Spec);
            end loop;

            Append_To (Decl_List,
              Make_Subprogram_Declaration (Loc,
                Specification => New_Spec));
         end if;

         Next_Elmt (Prim_Elmt);
      end loop;

      return Decl_List;
   end Make_Null_Procedure_Specs;

   ---------------------------------------
   -- Make_Predefined_Primitive_Eq_Spec --
   ---------------------------------------

   procedure Make_Predefined_Primitive_Eq_Spec
     (Tag_Typ     : Entity_Id;
      Predef_List : List_Id;
      Renamed_Eq  : out Entity_Id)
   is
      function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
      --  Returns true if Prim is a renaming of an unresolved predefined
      --  equality operation.

      -------------------------------
      -- Is_Predefined_Eq_Renaming --
      -------------------------------

      function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
      begin
         return Chars (Prim) /= Name_Op_Eq
           and then Present (Alias (Prim))
           and then Comes_From_Source (Prim)
           and then Is_Intrinsic_Subprogram (Alias (Prim))
           and then Chars (Alias (Prim)) = Name_Op_Eq;
      end Is_Predefined_Eq_Renaming;

      --  Local variables

      Loc : constant Source_Ptr := Sloc (Tag_Typ);

      Eq_Name   : Name_Id := Name_Op_Eq;
      Eq_Needed : Boolean := True;
      Eq_Spec   : Node_Id;
      Prim      : Elmt_Id;

      Has_Predef_Eq_Renaming : Boolean := False;
      --  Set to True if Tag_Typ has a primitive that renames the predefined
      --  equality operator. Used to implement (RM 8-5-4(8)).

   --  Start of processing for Make_Predefined_Primitive_Specs

   begin
      Renamed_Eq := Empty;

      Prim := First_Elmt (Primitive_Operations (Tag_Typ));
      while Present (Prim) loop

         --  If a primitive is encountered that renames the predefined equality
         --  operator before reaching any explicit equality primitive, then we
         --  still need to create a predefined equality function, because calls
         --  to it can occur via the renaming. A new name is created for the
         --  equality to avoid conflicting with any user-defined equality.
         --  (Note that this doesn't account for renamings of equality nested
         --  within subpackages???)

         if Is_Predefined_Eq_Renaming (Node (Prim)) then
            Has_Predef_Eq_Renaming := True;
            Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');

         --  User-defined equality

         elsif Is_User_Defined_Equality (Node (Prim)) then
            if No (Alias (Node (Prim)))
              or else Nkind (Unit_Declaration_Node (Node (Prim))) =
                        N_Subprogram_Renaming_Declaration
            then
               Eq_Needed := False;
               exit;

            --  If the parent is not an interface type and has an abstract
            --  equality function explicitly defined in the sources, then the
            --  inherited equality is abstract as well, and no body can be
            --  created for it.

            elsif not Is_Interface (Etype (Tag_Typ))
              and then Present (Alias (Node (Prim)))
              and then Comes_From_Source (Alias (Node (Prim)))
              and then Is_Abstract_Subprogram (Alias (Node (Prim)))
            then
               Eq_Needed := False;
               exit;

            --  If the type has an equality function corresponding with a
            --  primitive defined in an interface type, the inherited equality
            --  is abstract as well, and no body can be created for it.

            elsif Present (Alias (Node (Prim)))
              and then Comes_From_Source (Ultimate_Alias (Node (Prim)))
              and then
                Is_Interface
                  (Find_Dispatching_Type (Ultimate_Alias (Node (Prim))))
            then
               Eq_Needed := False;
               exit;
            end if;
         end if;

         Next_Elmt (Prim);
      end loop;

      --  If a renaming of predefined equality was found but there was no
      --  user-defined equality (so Eq_Needed is still true), then set the name
      --  back to Name_Op_Eq. But in the case where a user-defined equality was
      --  located after such a renaming, then the predefined equality function
      --  is still needed, so Eq_Needed must be set back to True.

      if Eq_Name /= Name_Op_Eq then
         if Eq_Needed then
            Eq_Name := Name_Op_Eq;
         else
            Eq_Needed := True;
         end if;
      end if;

      if Eq_Needed then
         Eq_Spec := Predef_Spec_Or_Body (Loc,
           Tag_Typ  => Tag_Typ,
           Name     => Eq_Name,
           Profile  => New_List (
             Make_Parameter_Specification (Loc,
               Defining_Identifier =>
                 Make_Defining_Identifier (Loc, Name_X),
               Parameter_Type      => New_Occurrence_Of (Tag_Typ, Loc)),

             Make_Parameter_Specification (Loc,
               Defining_Identifier =>
                 Make_Defining_Identifier (Loc, Name_Y),
               Parameter_Type      => New_Occurrence_Of (Tag_Typ, Loc))),
           Ret_Type => Standard_Boolean);
         Append_To (Predef_List, Eq_Spec);

         if Has_Predef_Eq_Renaming then
            Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));

            Prim := First_Elmt (Primitive_Operations (Tag_Typ));
            while Present (Prim) loop

               --  Any renamings of equality that appeared before an overriding
               --  equality must be updated to refer to the entity for the
               --  predefined equality, otherwise calls via the renaming would
               --  get incorrectly resolved to call the user-defined equality
               --  function.

               if Is_Predefined_Eq_Renaming (Node (Prim)) then
                  Set_Alias (Node (Prim), Renamed_Eq);

               --  Exit upon encountering a user-defined equality

               elsif Chars (Node (Prim)) = Name_Op_Eq
                 and then No (Alias (Node (Prim)))
               then
                  exit;
               end if;

               Next_Elmt (Prim);
            end loop;
         end if;
      end if;
   end Make_Predefined_Primitive_Eq_Spec;

   -------------------------------------
   -- Make_Predefined_Primitive_Specs --
   -------------------------------------

   procedure Make_Predefined_Primitive_Specs
     (Tag_Typ     : Entity_Id;
      Predef_List : out List_Id;
      Renamed_Eq  : out Entity_Id)
   is
      Loc : constant Source_Ptr := Sloc (Tag_Typ);
      Res : constant List_Id    := New_List;

      use Exp_Put_Image;

   begin
      Renamed_Eq := Empty;

      --  Spec of _Size

      Append_To (Res, Predef_Spec_Or_Body (Loc,
        Tag_Typ  => Tag_Typ,
        Name     => Name_uSize,
        Profile  => New_List (
          Make_Parameter_Specification (Loc,
            Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
            Parameter_Type      => New_Occurrence_Of (Tag_Typ, Loc))),

        Ret_Type => Standard_Long_Long_Integer));

      --  Spec of Put_Image

      if not No_Run_Time_Mode
        and then RTE_Available (RE_Root_Buffer_Type)
      then
         --  No_Run_Time_Mode implies that the declaration of Tag_Typ
         --  (like any tagged type) will be rejected. Given this, avoid
         --  cascading errors associated with the Tag_Typ's TSS_Put_Image
         --  procedure.

         Append_To (Res, Predef_Spec_Or_Body (Loc,
           Tag_Typ => Tag_Typ,
           Name    => Make_TSS_Name (Tag_Typ, TSS_Put_Image),
           Profile => Build_Put_Image_Profile (Loc, Tag_Typ)));
      end if;

      --  Specs for dispatching stream attributes

      declare
         Stream_Op_TSS_Names :
           constant array (Positive range <>) of TSS_Name_Type :=
             (TSS_Stream_Read,
              TSS_Stream_Write,
              TSS_Stream_Input,
              TSS_Stream_Output);

      begin
         for Op in Stream_Op_TSS_Names'Range loop
            if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
               Append_To (Res,
                 Predef_Stream_Attr_Spec (Loc, Tag_Typ,
                  Stream_Op_TSS_Names (Op)));
            end if;
         end loop;
      end;

      --  Spec of "=" is expanded if the type is not limited and if a user
      --  defined "=" was not already declared for the non-full view of a
      --  private extension.

      if not Is_Limited_Type (Tag_Typ) then
         Make_Predefined_Primitive_Eq_Spec (Tag_Typ, Res, Renamed_Eq);

         --  Spec for dispatching assignment

         Append_To (Res, Predef_Spec_Or_Body (Loc,
           Tag_Typ => Tag_Typ,
           Name    => Name_uAssign,
           Profile => New_List (
             Make_Parameter_Specification (Loc,
               Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
               Out_Present         => True,
               Parameter_Type      => New_Occurrence_Of (Tag_Typ, Loc)),

             Make_Parameter_Specification (Loc,
               Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
               Parameter_Type      => New_Occurrence_Of (Tag_Typ, Loc)))));
      end if;

      --  Ada 2005: Generate declarations for the following primitive
      --  operations for limited interfaces and synchronized types that
      --  implement a limited interface.

      --    Disp_Asynchronous_Select
      --    Disp_Conditional_Select
      --    Disp_Get_Prim_Op_Kind
      --    Disp_Get_Task_Id
      --    Disp_Requeue
      --    Disp_Timed_Select

      --  Disable the generation of these bodies if Ravenscar or ZFP is active

      if Ada_Version >= Ada_2005
        and then not Restriction_Active (No_Select_Statements)
        and then RTE_Available (RE_Select_Specific_Data)
      then
         --  These primitives are defined abstract in interface types

         if Is_Interface (Tag_Typ)
           and then Is_Limited_Record (Tag_Typ)
         then
            Append_To (Res,
              Make_Abstract_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));

            Append_To (Res,
              Make_Abstract_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Conditional_Select_Spec (Tag_Typ)));

            Append_To (Res,
              Make_Abstract_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));

            Append_To (Res,
              Make_Abstract_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Get_Task_Id_Spec (Tag_Typ)));

            Append_To (Res,
              Make_Abstract_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Requeue_Spec (Tag_Typ)));

            Append_To (Res,
              Make_Abstract_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Timed_Select_Spec (Tag_Typ)));

         --  If ancestor is an interface type, declare non-abstract primitives
         --  to override the abstract primitives of the interface type.

         --  In VM targets we define these primitives in all root tagged types
         --  that are not interface types. Done because in VM targets we don't
         --  have secondary dispatch tables and any derivation of Tag_Typ may
         --  cover limited interfaces (which always have these primitives since
         --  they may be ancestors of synchronized interface types).

         elsif (not Is_Interface (Tag_Typ)
                 and then Is_Interface (Etype (Tag_Typ))
                 and then Is_Limited_Record (Etype (Tag_Typ)))
             or else
               (Is_Concurrent_Record_Type (Tag_Typ)
                 and then Has_Interfaces (Tag_Typ))
             or else
               (not Tagged_Type_Expansion
                 and then not Is_Interface (Tag_Typ)
                 and then Tag_Typ = Root_Type (Tag_Typ))
         then
            Append_To (Res,
              Make_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));

            Append_To (Res,
              Make_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Conditional_Select_Spec (Tag_Typ)));

            Append_To (Res,
              Make_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));

            Append_To (Res,
              Make_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Get_Task_Id_Spec (Tag_Typ)));

            Append_To (Res,
              Make_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Requeue_Spec (Tag_Typ)));

            Append_To (Res,
              Make_Subprogram_Declaration (Loc,
                Specification =>
                  Make_Disp_Timed_Select_Spec (Tag_Typ)));
         end if;
      end if;

      --  All tagged types receive their own Deep_Adjust and Deep_Finalize
      --  regardless of whether they are controlled or may contain controlled
      --  components.

      --  Do not generate the routines if finalization is disabled

      if Restriction_Active (No_Finalization) then
         null;

      else
         if not Is_Limited_Type (Tag_Typ) then
            Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
         end if;

         Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
      end if;

      Predef_List := Res;
   end Make_Predefined_Primitive_Specs;

   -------------------------
   -- Make_Tag_Assignment --
   -------------------------

   function Make_Tag_Assignment (N : Node_Id) return Node_Id is
      Loc      : constant Source_Ptr := Sloc (N);
      Def_Id   : constant Entity_Id  := Defining_Identifier (N);
      Expr     : constant Node_Id    := Expression (N);
      Typ      : constant Entity_Id  := Etype (Def_Id);
      Full_Typ : constant Entity_Id  := Underlying_Type (Typ);

   begin
      --  This expansion activity is called during analysis

      if Is_Tagged_Type (Typ)
        and then not Is_Class_Wide_Type (Typ)
        and then not Is_CPP_Class (Typ)
        and then Tagged_Type_Expansion
        and then Nkind (Unqualify (Expr)) /= N_Aggregate
      then
         return
           Make_Tag_Assignment_From_Type
             (Loc, New_Occurrence_Of (Def_Id, Loc), Full_Typ);

      else
         return Empty;
      end if;
   end Make_Tag_Assignment;

   ----------------------
   -- Predef_Deep_Spec --
   ----------------------

   function Predef_Deep_Spec
     (Loc      : Source_Ptr;
      Tag_Typ  : Entity_Id;
      Name     : TSS_Name_Type;
      For_Body : Boolean := False) return Node_Id
   is
      Formals : List_Id;

   begin
      --  V : in out Tag_Typ

      Formals := New_List (
        Make_Parameter_Specification (Loc,
          Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
          In_Present          => True,
          Out_Present         => True,
          Parameter_Type      => New_Occurrence_Of (Tag_Typ, Loc)));

      --  F : Boolean := True

      if Name = TSS_Deep_Adjust
        or else Name = TSS_Deep_Finalize
      then
         Append_To (Formals,
           Make_Parameter_Specification (Loc,
             Defining_Identifier => Make_Defining_Identifier (Loc, Name_F),
             Parameter_Type      => New_Occurrence_Of (Standard_Boolean, Loc),
             Expression          => New_Occurrence_Of (Standard_True, Loc)));
      end if;

      return
        Predef_Spec_Or_Body (Loc,
          Name     => Make_TSS_Name (Tag_Typ, Name),
          Tag_Typ  => Tag_Typ,
          Profile  => Formals,
          For_Body => For_Body);

   exception
      when RE_Not_Available =>
         return Empty;
   end Predef_Deep_Spec;

   -------------------------
   -- Predef_Spec_Or_Body --
   -------------------------

   function Predef_Spec_Or_Body
     (Loc      : Source_Ptr;
      Tag_Typ  : Entity_Id;
      Name     : Name_Id;
      Profile  : List_Id;
      Ret_Type : Entity_Id := Empty;
      For_Body : Boolean := False) return Node_Id
   is
      Id   : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
      Spec : Node_Id;

   begin
      Set_Is_Public (Id, Is_Public (Tag_Typ));

      --  The internal flag is set to mark these declarations because they have
      --  specific properties. First, they are primitives even if they are not
      --  defined in the type scope (the freezing point is not necessarily in
      --  the same scope). Second, the predefined equality can be overridden by
      --  a user-defined equality, no body will be generated in this case.

      Set_Is_Internal (Id);

      if not Debug_Generated_Code then
         Set_Debug_Info_Off (Id);
      end if;

      if No (Ret_Type) then
         Spec :=
           Make_Procedure_Specification (Loc,
             Defining_Unit_Name       => Id,
             Parameter_Specifications => Profile);
      else
         Spec :=
           Make_Function_Specification (Loc,
             Defining_Unit_Name       => Id,
             Parameter_Specifications => Profile,
             Result_Definition        => New_Occurrence_Of (Ret_Type, Loc));
      end if;

      --  Declare an abstract subprogram for primitive subprograms of an
      --  interface type (except for "=").

      if Is_Interface (Tag_Typ) then
         if Name /= Name_Op_Eq then
            return Make_Abstract_Subprogram_Declaration (Loc, Spec);

         --  The equality function (if any) for an interface type is defined
         --  to be nonabstract, so we create an expression function for it that
         --  always returns False. Note that the function can never actually be
         --  invoked because interface types are abstract, so there aren't any
         --  objects of such types (and their equality operation will always
         --  dispatch).

         else
            return Make_Expression_Function
                     (Loc, Spec, New_Occurrence_Of (Standard_False, Loc));
         end if;

      --  If body case, return empty subprogram body. Note that this is ill-
      --  formed, because there is not even a null statement, and certainly not
      --  a return in the function case. The caller is expected to do surgery
      --  on the body to add the appropriate stuff.

      elsif For_Body then
         return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);

      --  For the case of an Input attribute predefined for an abstract type,
      --  generate an abstract specification. This will never be called, but we
      --  need the slot allocated in the dispatching table so that attributes
      --  typ'Class'Input and typ'Class'Output will work properly.

      elsif Is_TSS (Name, TSS_Stream_Input)
        and then Is_Abstract_Type (Tag_Typ)
      then
         return Make_Abstract_Subprogram_Declaration (Loc, Spec);

      --  Normal spec case, where we return a subprogram declaration

      else
         return Make_Subprogram_Declaration (Loc, Spec);
      end if;
   end Predef_Spec_Or_Body;

   -----------------------------
   -- Predef_Stream_Attr_Spec --
   -----------------------------

   function Predef_Stream_Attr_Spec
     (Loc     : Source_Ptr;
      Tag_Typ : Entity_Id;
      Name    : TSS_Name_Type) return Node_Id
   is
      Ret_Type : Entity_Id;

   begin
      if Name = TSS_Stream_Input then
         Ret_Type := Tag_Typ;
      else
         Ret_Type := Empty;
      end if;

      return
        Predef_Spec_Or_Body
          (Loc,
           Name     => Make_TSS_Name (Tag_Typ, Name),
           Tag_Typ  => Tag_Typ,
           Profile  => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
           Ret_Type => Ret_Type,
           For_Body => False);
   end Predef_Stream_Attr_Spec;

   ----------------------------------
   -- Predefined_Primitive_Eq_Body --
   ----------------------------------

   procedure Predefined_Primitive_Eq_Body
     (Tag_Typ     : Entity_Id;
      Predef_List : List_Id;
      Renamed_Eq  : Entity_Id)
   is
      Decl      : Node_Id;
      Eq_Needed : Boolean;
      Eq_Name   : Name_Id;
      Prim      : Elmt_Id;

   begin
      --  See if we have a predefined "=" operator

      if Present (Renamed_Eq) then
         Eq_Needed := True;
         Eq_Name   := Chars (Renamed_Eq);

      --  If the parent is an interface type then it has defined all the
      --  predefined primitives abstract and we need to check if the type
      --  has some user defined "=" function which matches the profile of
      --  the Ada predefined equality operator to avoid generating it.

      elsif Is_Interface (Etype (Tag_Typ)) then
         Eq_Needed := True;
         Eq_Name := Name_Op_Eq;

         Prim := First_Elmt (Primitive_Operations (Tag_Typ));
         while Present (Prim) loop
            if Is_User_Defined_Equality (Node (Prim))
              and then not Is_Internal (Node (Prim))
            then
               Eq_Needed := False;
               Eq_Name := No_Name;
               exit;
            end if;

            Next_Elmt (Prim);
         end loop;

      else
         Eq_Needed := False;
         Eq_Name   := No_Name;

         Prim := First_Elmt (Primitive_Operations (Tag_Typ));
         while Present (Prim) loop
            if Is_User_Defined_Equality (Node (Prim))
              and then Is_Internal (Node (Prim))
            then
               Eq_Needed := True;
               Eq_Name := Name_Op_Eq;
               exit;
            end if;

            Next_Elmt (Prim);
         end loop;
      end if;

      --  If equality is needed, we will have its name

      pragma Assert (Eq_Needed = Present (Eq_Name));

      --  Body for equality

      if Eq_Needed then
         Decl := Make_Eq_Body (Tag_Typ, Eq_Name);
         Append_To (Predef_List, Decl);
      end if;

      --  Body for inequality (if required)

      Decl := Make_Neq_Body (Tag_Typ);

      if Present (Decl) then
         Append_To (Predef_List, Decl);
      end if;
   end Predefined_Primitive_Eq_Body;

   ---------------------------------
   -- Predefined_Primitive_Bodies --
   ---------------------------------

   function Predefined_Primitive_Bodies
     (Tag_Typ    : Entity_Id;
      Renamed_Eq : Entity_Id) return List_Id
   is
      Loc      : constant Source_Ptr := Sloc (Tag_Typ);
      Res      : constant List_Id    := New_List;
      Adj_Call : Node_Id;
      Decl     : Node_Id;
      Fin_Call : Node_Id;
      Ent      : Entity_Id;

      pragma Warnings (Off, Ent);

      use Exp_Put_Image;

   begin
      pragma Assert (not Is_Interface (Tag_Typ));

      --  Body of _Size

      Decl := Predef_Spec_Or_Body (Loc,
        Tag_Typ => Tag_Typ,
        Name    => Name_uSize,
        Profile => New_List (
          Make_Parameter_Specification (Loc,
            Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
            Parameter_Type      => New_Occurrence_Of (Tag_Typ, Loc))),

        Ret_Type => Standard_Long_Long_Integer,
        For_Body => True);

      Set_Handled_Statement_Sequence (Decl,
        Make_Handled_Sequence_Of_Statements (Loc, New_List (
          Make_Simple_Return_Statement (Loc,
            Expression =>
              Make_Attribute_Reference (Loc,
                Prefix          => Make_Identifier (Loc, Name_X),
                Attribute_Name  => Name_Size)))));

      Append_To (Res, Decl);

      --  Body of Put_Image

      if No (TSS (Tag_Typ, TSS_Put_Image))
         and then not No_Run_Time_Mode
         and then RTE_Available (RE_Root_Buffer_Type)
      then
         Build_Record_Put_Image_Procedure (Loc, Tag_Typ, Decl, Ent);
         Append_To (Res, Decl);
      end if;

      --  Bodies for Dispatching stream IO routines. We need these only for
      --  non-limited types (in the limited case there is no dispatching).
      --  We also skip them if dispatching or finalization are not available
      --  or if stream operations are prohibited by restriction No_Streams or
      --  from use of pragma/aspect No_Tagged_Streams.

      if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
        and then No (TSS (Tag_Typ, TSS_Stream_Read))
      then
         Build_Record_Read_Procedure (Tag_Typ, Decl, Ent);
         Append_To (Res, Decl);
      end if;

      if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
        and then No (TSS (Tag_Typ, TSS_Stream_Write))
      then
         Build_Record_Write_Procedure (Tag_Typ, Decl, Ent);
         Append_To (Res, Decl);
      end if;

      --  Skip body of _Input for the abstract case, since the corresponding
      --  spec is abstract (see Predef_Spec_Or_Body).

      if not Is_Abstract_Type (Tag_Typ)
        and then Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
        and then No (TSS (Tag_Typ, TSS_Stream_Input))
      then
         Build_Record_Or_Elementary_Input_Function
           (Tag_Typ, Decl, Ent);
         Append_To (Res, Decl);
      end if;

      if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
        and then No (TSS (Tag_Typ, TSS_Stream_Output))
      then
         Build_Record_Or_Elementary_Output_Procedure (Tag_Typ, Decl, Ent);
         Append_To (Res, Decl);
      end if;

      --  Ada 2005: Generate bodies for the following primitive operations for
      --  limited interfaces and synchronized types that implement a limited
      --  interface.

      --    disp_asynchronous_select
      --    disp_conditional_select
      --    disp_get_prim_op_kind
      --    disp_get_task_id
      --    disp_timed_select

      --  The interface versions will have null bodies

      --  Disable the generation of these bodies if Ravenscar or ZFP is active

      --  In VM targets we define these primitives in all root tagged types
      --  that are not interface types. Done because in VM targets we don't
      --  have secondary dispatch tables and any derivation of Tag_Typ may
      --  cover limited interfaces (which always have these primitives since
      --  they may be ancestors of synchronized interface types).

      if Ada_Version >= Ada_2005
        and then
          ((Is_Interface (Etype (Tag_Typ))
             and then Is_Limited_Record (Etype (Tag_Typ)))
           or else
             (Is_Concurrent_Record_Type (Tag_Typ)
               and then Has_Interfaces (Tag_Typ))
           or else
             (not Tagged_Type_Expansion
               and then Tag_Typ = Root_Type (Tag_Typ)))
        and then not Restriction_Active (No_Select_Statements)
        and then RTE_Available (RE_Select_Specific_Data)
      then
         Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ));
         Append_To (Res, Make_Disp_Conditional_Select_Body  (Tag_Typ));
         Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body    (Tag_Typ));
         Append_To (Res, Make_Disp_Get_Task_Id_Body         (Tag_Typ));
         Append_To (Res, Make_Disp_Requeue_Body             (Tag_Typ));
         Append_To (Res, Make_Disp_Timed_Select_Body        (Tag_Typ));
      end if;

      if not Is_Limited_Type (Tag_Typ) then
         --  Body for equality and inequality

         Predefined_Primitive_Eq_Body (Tag_Typ, Res, Renamed_Eq);

         --  Body for dispatching assignment

         Decl :=
           Predef_Spec_Or_Body (Loc,
             Tag_Typ => Tag_Typ,
             Name    => Name_uAssign,
             Profile => New_List (
               Make_Parameter_Specification (Loc,
                 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
                 Out_Present         => True,
                 Parameter_Type      => New_Occurrence_Of (Tag_Typ, Loc)),

               Make_Parameter_Specification (Loc,
                 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
                 Parameter_Type      => New_Occurrence_Of (Tag_Typ, Loc))),
             For_Body => True);

         Set_Handled_Statement_Sequence (Decl,
           Make_Handled_Sequence_Of_Statements (Loc, New_List (
             Make_Assignment_Statement (Loc,
               Name       => Make_Identifier (Loc, Name_X),
               Expression => Make_Identifier (Loc, Name_Y)))));

         Append_To (Res, Decl);
      end if;

      --  Generate empty bodies of routines Deep_Adjust and Deep_Finalize for
      --  tagged types which do not contain controlled components.

      --  Do not generate the routines if finalization is disabled

      if Restriction_Active (No_Finalization) then
         null;

      elsif not Has_Controlled_Component (Tag_Typ) then
         if not Is_Limited_Type (Tag_Typ) then
            Adj_Call := Empty;
            Decl     := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);

            if Is_Controlled (Tag_Typ) then
               Adj_Call :=
                 Make_Adjust_Call (
                   Obj_Ref => Make_Identifier (Loc, Name_V),
                   Typ     => Tag_Typ);
            end if;

            if No (Adj_Call) then
               Adj_Call := Make_Null_Statement (Loc);
            end if;

            Set_Handled_Statement_Sequence (Decl,
              Make_Handled_Sequence_Of_Statements (Loc,
                Statements => New_List (Adj_Call)));

            Append_To (Res, Decl);
         end if;

         Fin_Call := Empty;
         Decl     := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);

         if Is_Controlled (Tag_Typ) then
            Fin_Call :=
              Make_Final_Call
                (Obj_Ref => Make_Identifier (Loc, Name_V),
                 Typ     => Tag_Typ);
         end if;

         if No (Fin_Call) then
            Fin_Call := Make_Null_Statement (Loc);
         end if;

         Set_Handled_Statement_Sequence (Decl,
           Make_Handled_Sequence_Of_Statements (Loc,
             Statements => New_List (Fin_Call)));

         Append_To (Res, Decl);
      end if;

      return Res;
   end Predefined_Primitive_Bodies;

   ---------------------------------
   -- Predefined_Primitive_Freeze --
   ---------------------------------

   function Predefined_Primitive_Freeze
     (Tag_Typ : Entity_Id) return List_Id
   is
      Res     : constant List_Id := New_List;
      Prim    : Elmt_Id;
      Frnodes : List_Id;

   begin
      Prim := First_Elmt (Primitive_Operations (Tag_Typ));
      while Present (Prim) loop
         if Is_Predefined_Dispatching_Operation (Node (Prim)) then
            Frnodes := Freeze_Entity (Node (Prim), Tag_Typ);

            if Present (Frnodes) then
               Append_List_To (Res, Frnodes);
            end if;
         end if;

         Next_Elmt (Prim);
      end loop;

      return Res;
   end Predefined_Primitive_Freeze;

   -------------------------
   -- Stream_Operation_OK --
   -------------------------

   function Stream_Operation_OK
     (Typ       : Entity_Id;
      Operation : TSS_Name_Type) return Boolean
   is
      Has_Predefined_Or_Specified_Stream_Attribute : Boolean := False;

   begin
      --  Special case of a limited type extension: a default implementation
      --  of the stream attributes Read or Write exists if that attribute
      --  has been specified or is available for an ancestor type; a default
      --  implementation of the attribute Output (resp. Input) exists if the
      --  attribute has been specified or Write (resp. Read) is available for
      --  an ancestor type. The last condition only applies under Ada 2005.

      if Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ) then
         if Operation = TSS_Stream_Read then
            Has_Predefined_Or_Specified_Stream_Attribute :=
              Has_Specified_Stream_Read (Typ);

         elsif Operation = TSS_Stream_Write then
            Has_Predefined_Or_Specified_Stream_Attribute :=
              Has_Specified_Stream_Write (Typ);

         elsif Operation = TSS_Stream_Input then
            Has_Predefined_Or_Specified_Stream_Attribute :=
              Has_Specified_Stream_Input (Typ)
                or else
                  (Ada_Version >= Ada_2005
                    and then Stream_Operation_OK (Typ, TSS_Stream_Read));

         elsif Operation = TSS_Stream_Output then
            Has_Predefined_Or_Specified_Stream_Attribute :=
              Has_Specified_Stream_Output (Typ)
                or else
                  (Ada_Version >= Ada_2005
                    and then Stream_Operation_OK (Typ, TSS_Stream_Write));
         end if;

         --  Case of inherited TSS_Stream_Read or TSS_Stream_Write

         if not Has_Predefined_Or_Specified_Stream_Attribute
           and then Is_Derived_Type (Typ)
           and then (Operation = TSS_Stream_Read
                      or else Operation = TSS_Stream_Write)
         then
            Has_Predefined_Or_Specified_Stream_Attribute :=
              Present
                (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
         end if;
      end if;

      --  If the type is not limited, or else is limited but the attribute is
      --  explicitly specified or is predefined for the type, then return True,
      --  unless other conditions prevail, such as restrictions prohibiting
      --  streams or dispatching operations. We also return True for limited
      --  interfaces, because they may be extended by nonlimited types and
      --  permit inheritance in this case (addresses cases where an abstract
      --  extension doesn't get 'Input declared, as per comments below, but
      --  'Class'Input must still be allowed). Note that attempts to apply
      --  stream attributes to a limited interface or its class-wide type
      --  (or limited extensions thereof) will still get properly rejected
      --  by Check_Stream_Attribute.

      --  We exclude the Input operation from being a predefined subprogram in
      --  the case where the associated type is an abstract extension, because
      --  the attribute is not callable in that case, per 13.13.2(49/2). Also,
      --  we don't want an abstract version created because types derived from
      --  the abstract type may not even have Input available (for example if
      --  derived from a private view of the abstract type that doesn't have
      --  a visible Input).

      --  Do not generate stream routines for type Finalization_Master because
      --  a master may never appear in types and therefore cannot be read or
      --  written.

      return
          (not Is_Limited_Type (Typ)
            or else Is_Interface (Typ)
            or else Has_Predefined_Or_Specified_Stream_Attribute)
        and then
          (Operation /= TSS_Stream_Input
            or else not Is_Abstract_Type (Typ)
            or else not Is_Derived_Type (Typ))
        and then not Has_Unknown_Discriminants (Typ)
        and then not Is_Concurrent_Interface (Typ)
        and then not Restriction_Active (No_Streams)
        and then not Restriction_Active (No_Dispatch)
        and then No (No_Tagged_Streams_Pragma (Typ))
        and then not No_Run_Time_Mode
        and then RTE_Available (RE_Tag)
        and then No (Type_Without_Stream_Operation (Typ))
        and then RTE_Available (RE_Root_Stream_Type)
        and then not Is_RTE (Typ, RE_Finalization_Master);
   end Stream_Operation_OK;

end Exp_Ch3;