aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/exp_aggr.adb
blob: 092e67c8a819a9fc048873cc5a574485230e94ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                             E X P _ A G G R                              --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2024, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Aspects;        use Aspects;
with Atree;          use Atree;
with Checks;         use Checks;
with Debug;          use Debug;
with Einfo;          use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils;    use Einfo.Utils;
with Elists;         use Elists;
with Errout;         use Errout;
with Expander;       use Expander;
with Exp_Util;       use Exp_Util;
with Exp_Ch3;        use Exp_Ch3;
with Exp_Ch6;        use Exp_Ch6;
with Exp_Ch7;        use Exp_Ch7;
with Exp_Ch9;        use Exp_Ch9;
with Exp_Disp;       use Exp_Disp;
with Exp_Tss;        use Exp_Tss;
with Freeze;         use Freeze;
with Itypes;         use Itypes;
with Lib;            use Lib;
with Mutably_Tagged; use Mutably_Tagged;
with Namet;          use Namet;
with Nmake;          use Nmake;
with Nlists;         use Nlists;
with Opt;            use Opt;
with Restrict;       use Restrict;
with Rident;         use Rident;
with Rtsfind;        use Rtsfind;
with Ttypes;         use Ttypes;
with Sem;            use Sem;
with Sem_Aggr;       use Sem_Aggr;
with Sem_Aux;        use Sem_Aux;
with Sem_Case;       use Sem_Case;
with Sem_Ch3;        use Sem_Ch3;
with Sem_Ch8;        use Sem_Ch8;
with Sem_Ch13;       use Sem_Ch13;
with Sem_Eval;       use Sem_Eval;
with Sem_Mech;       use Sem_Mech;
with Sem_Res;        use Sem_Res;
with Sem_Type;       use Sem_Type;
with Sem_Util;       use Sem_Util;
                     use Sem_Util.Storage_Model_Support;
with Sinfo;          use Sinfo;
with Sinfo.Nodes;    use Sinfo.Nodes;
with Sinfo.Utils;    use Sinfo.Utils;
with Snames;         use Snames;
with Stand;          use Stand;
with Stringt;        use Stringt;
with Tbuild;         use Tbuild;
with Uintp;          use Uintp;
with Urealp;         use Urealp;
with Warnsw;         use Warnsw;

package body Exp_Aggr is

   type Case_Bounds is record
     Choice_Lo   : Node_Id;
     Choice_Hi   : Node_Id;
     Choice_Node : Node_Id;
   end record;

   type Case_Table_Type is array (Nat range <>) of Case_Bounds;
   --  Table type used by Check_Case_Choices procedure

   function Get_Base_Object (N : Node_Id) return Entity_Id;
   --  Return the base object, i.e. the outermost prefix object, that N refers
   --  to statically, or Empty if it cannot be determined. The assumption is
   --  that all dereferences are explicit in the tree rooted at N.

   function Has_Default_Init_Comps (N : Node_Id) return Boolean;
   --  N is an aggregate (record or array). Checks the presence of default
   --  initialization (<>) in any component (Ada 2005: AI-287).

   procedure Initialize_Component
     (N         : Node_Id;
      Comp      : Node_Id;
      Comp_Typ  : Node_Id;
      Init_Expr : Node_Id;
      Stmts     : List_Id);
   --  Perform the initialization of component Comp with expected type
   --  Comp_Typ of aggregate N. Init_Expr denotes the initialization
   --  expression of the component. All generated code is added to Stmts.

   function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
   --  Returns true if N is an aggregate used to initialize the components
   --  of a statically allocated dispatch table.

   function Late_Expansion
     (N      : Node_Id;
      Typ    : Entity_Id;
      Target : Node_Id) return List_Id;
   --  This routine implements top-down expansion of nested aggregates. In
   --  doing so, it avoids the generation of temporaries at each level. N is
   --  a nested record or array aggregate with the Expansion_Delayed flag.
   --  Typ is the expected type of the aggregate. Target is a (duplicatable)
   --  expression that will hold the result of the aggregate expansion.

   function Make_OK_Assignment_Statement
     (Sloc       : Source_Ptr;
      Name       : Node_Id;
      Expression : Node_Id) return Node_Id;
   --  This is like Make_Assignment_Statement, except that Assignment_OK
   --  is set in the left operand. All assignments built by this unit use
   --  this routine. This is needed to deal with assignments to initialized
   --  constants that are done in place.

   function Must_Slide
     (Aggr     : Node_Id;
      Obj_Type : Entity_Id;
      Typ      : Entity_Id) return Boolean;
   --  A static array aggregate in an object declaration can in most cases be
   --  expanded in place. The one exception is when the aggregate is given
   --  with component associations that specify different bounds from those of
   --  the type definition in the object declaration. In this pathological
   --  case the aggregate must slide, and we must introduce an intermediate
   --  temporary to hold it.
   --
   --  The same holds in an assignment to multi-dimensional arrays, when
   --  components may be given with bounds that differ from those of the
   --  component type.

   function Number_Of_Choices (N : Node_Id) return Nat;
   --  Returns the number of discrete choices (not including the others choice
   --  if present) contained in (sub-)aggregate N.

   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
   --  Sort the Case Table using the Lower Bound of each Choice as the key.
   --  A simple insertion sort is used since the number of choices in a case
   --  statement of variant part will usually be small and probably in near
   --  sorted order.

   function UI_Are_In_Int_Range (Left, Right : Uint) return Boolean is
     (UI_Is_In_Int_Range (Left) and then UI_Is_In_Int_Range (Right));
   --  Return True if both Left and Right are in Int range

   ------------------------------------------------------
   -- Local subprograms for Record Aggregate Expansion --
   ------------------------------------------------------

   function Is_Build_In_Place_Aggregate_Return (N : Node_Id) return Boolean;
   --  Return True if N is a simple return whose expression needs to be built
   --  in place in the return object, assuming the expression is an aggregate,
   --  possibly qualified or a dependent expression of a conditional expression
   --  (and possibly recursively). Such qualified and conditional expressions
   --  are transparent for this purpose since an enclosing return is propagated
   --  resp. distributed into these expressions by the expander.

   function Build_Record_Aggr_Code
     (N   : Node_Id;
      Typ : Entity_Id;
      Lhs : Node_Id) return List_Id;
   --  N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
   --  aggregate. Lhs is an expression containing the location on which the
   --  component by component assignments will take place. Returns the list of
   --  assignments plus all other adjustments needed for tagged and controlled
   --  types.

   procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
   --  Transform a record aggregate into a sequence of assignments performed
   --  component by component. N is an N_Aggregate or N_Extension_Aggregate.
   --  Typ is the type of the record aggregate.

   procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id);
   --  This is the top level procedure for delta record aggregate expansion

   procedure Expand_Record_Aggregate
     (N           : Node_Id;
      Orig_Tag    : Node_Id := Empty;
      Parent_Expr : Node_Id := Empty);
   --  This is the top level procedure for record aggregate expansion.
   --  Expansion for record aggregates needs expand aggregates for tagged
   --  record types. Specifically Expand_Record_Aggregate adds the Tag
   --  field in front of the Component_Association list that was created
   --  during resolution by Resolve_Record_Aggregate.
   --
   --    N is the record aggregate node.
   --    Orig_Tag is the value of the Tag that has to be provided for this
   --      specific aggregate. It carries the tag corresponding to the type
   --      of the outermost aggregate during the recursive expansion
   --    Parent_Expr is the ancestor part of the original extension
   --      aggregate

   function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
   --  Return true if one of the components is of a discriminated type with
   --  defaults. An aggregate for a type with mutable components must be
   --  expanded into individual assignments.

   function In_Place_Assign_OK
     (N             : Node_Id;
      Target_Object : Entity_Id := Empty) return Boolean;
   --  Predicate to determine whether an aggregate assignment can be done in
   --  place, because none of the new values can depend on the components of
   --  the target of the assignment.

   procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
   --  If the type of the aggregate is a type extension with renamed discrimi-
   --  nants, we must initialize the hidden discriminants of the parent.
   --  Otherwise, the target object must not be initialized. The discriminants
   --  are initialized by calling the initialization procedure for the type.
   --  This is incorrect if the initialization of other components has any
   --  side effects. We restrict this call to the case where the parent type
   --  has a variant part, because this is the only case where the hidden
   --  discriminants are accessed, namely when calling discriminant checking
   --  functions of the parent type, and when applying a stream attribute to
   --  an object of the derived type.

   ---------------------------------------------------------
   -- Local Subprograms for Container Aggregate Expansion --
   ---------------------------------------------------------

   procedure Expand_Container_Aggregate (N : Node_Id);
   --  This is the top-level routine for container aggregate expansion

   function Build_Container_Aggr_Code
     (N    : Node_Id;
      Typ  : Entity_Id;
      Lhs  : Node_Id;
      Init : out Node_Id) return List_Id;
   --  N is an N_Aggregate for a container type Typ. Lhs is an expression
   --  containing the location of the anonymous object, which may be built
   --  in place. Returns the function call used to initialize the anonymous
   --  object in Init and the list of statements needed to build N.

   -----------------------------------------------------
   -- Local Subprograms for Array Aggregate Expansion --
   -----------------------------------------------------

   function Aggr_Assignment_OK_For_Backend
     (N      : Node_Id;
      Target : Node_Id := Empty) return Boolean;
   --  Returns true if assignment of aggregate N can be done by the back end.
   --  If Target is present, it is the left-hand side of the assignment; if it
   --  is not, the assignment is the initialization of an object or allocator.

   function Aggr_Size_OK (N : Node_Id) return Boolean;
   --  Very large static aggregates present problems to the back-end, and are
   --  transformed into assignments and loops. This function verifies that the
   --  total number of components of an aggregate is acceptable for rewriting
   --  into a purely positional static form. Aggr_Size_OK must be called before
   --  calling Flatten.
   --
   --  This function also detects and warns about one-component aggregates that
   --  appear in a nonstatic context. Even if the component value is static,
   --  such an aggregate must be expanded into an assignment.

   function Backend_Processing_Possible (N : Node_Id) return Boolean;
   --  This function checks if array aggregate N can be processed directly
   --  by the backend. If this is the case, True is returned.

   function Build_Array_Aggr_Code
     (N           : Node_Id;
      Ctype       : Entity_Id;
      Index       : Node_Id;
      Into        : Node_Id;
      Scalar_Comp : Boolean;
      Indexes     : List_Id := No_List) return List_Id;
   --  This recursive routine returns a list of statements containing the
   --  loops and assignments that are needed for the expansion of the array
   --  aggregate N.
   --
   --    N is the (sub-)aggregate node to be expanded into code. This node has
   --    been fully analyzed, and its Etype is properly set.
   --
   --    Index is the index node corresponding to the array subaggregate N
   --
   --    Into is the target expression into which we are copying the aggregate.
   --    Note that this node may not have been analyzed yet, and so the Etype
   --    field may not be set.
   --
   --    Scalar_Comp is True if the component type of the aggregate is scalar
   --
   --    Indexes is the current list of expressions used to index the object we
   --    are writing into.

   procedure Convert_To_Positional
     (N                 : Node_Id;
      Handle_Bit_Packed : Boolean := False);
   --  If possible, convert named notation to positional notation. This
   --  conversion is possible only in some static cases. If the conversion is
   --  possible, then N is rewritten with the analyzed converted aggregate.
   --  The parameter Handle_Bit_Packed is usually set False (since we do
   --  not expect the back end to handle bit packed arrays, so the normal case
   --  of conversion is pointless), but in the special case of a call from
   --  Packed_Array_Aggregate_Handled, we set this parameter to True, since
   --  these are cases we handle in there.

   procedure Expand_Array_Aggregate (N : Node_Id);
   --  This is the top-level routine for array aggregate expansion.
   --  N is the N_Aggregate node to be expanded.

   procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id);
   --  This is the top-level routine for delta array aggregate expansion

   function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean;
   --  For 2D packed array aggregates with constant bounds and constant scalar
   --  components, it is preferable to pack the inner aggregates because the
   --  whole matrix can then be presented to the back-end as a one-dimensional
   --  list of literals. This is much more efficient than expanding into single
   --  component assignments. This function determines if the type Typ is for
   --  an array that is suitable for this optimization: it returns True if Typ
   --  is a two dimensional bit packed array with component size 1, 2, or 4.

   function Max_Aggregate_Size
     (N            : Node_Id;
      Default_Size : Nat := 5000) return Nat;
   --  Return the max size for a static aggregate N. Return Default_Size if no
   --  other special criteria trigger.

   function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
   --  Given an array aggregate, this function handles the case of a packed
   --  array aggregate with all constant values, where the aggregate can be
   --  evaluated at compile time. If this is possible, then N is rewritten
   --  to be its proper compile time value with all the components properly
   --  assembled. The expression is analyzed and resolved and True is returned.
   --  If this transformation is not possible, N is unchanged and False is
   --  returned.

   function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean;
   --  If the type of the aggregate is a two-dimensional bit_packed array
   --  it may be transformed into an array of bytes with constant values,
   --  and presented to the back-end as a static value. The function returns
   --  false if this transformation cannot be performed. THis is similar to,
   --  and reuses part of the machinery in Packed_Array_Aggregate_Handled.

   ------------------------------------
   -- Aggr_Assignment_OK_For_Backend --
   ------------------------------------

   --  Back-end processing by Gigi/gcc is possible only if all the following
   --  conditions are met:

   --    1. N consists of a single OTHERS choice, possibly recursively, or
   --       of a single choice, possibly recursively, if it is surrounded by
   --       a qualified expression whose subtype mark is unconstrained.

   --    2. The array type has no null ranges (the purpose of this is to
   --       avoid a bogus warning for an out-of-range value).

   --    3. The array type has no atomic components

   --    4. The component type is elementary

   --    5. The component size is a multiple of Storage_Unit

   --    6. The component size is Storage_Unit or the value is of the form
   --       M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit)
   --       and M in 0 .. A-1. This can also be viewed as K occurrences of
   --       the Storage_Unit value M, concatenated together.

   --  The ultimate goal is to generate a call to a fast memset routine
   --  specifically optimized for the target.

   function Aggr_Assignment_OK_For_Backend
     (N      : Node_Id;
      Target : Node_Id := Empty) return Boolean
   is
      function Is_OK_Aggregate (Aggr : Node_Id) return Boolean;
      --  Return true if Aggr is suitable for back-end assignment

      ---------------------
      -- Is_OK_Aggregate --
      ---------------------

      function Is_OK_Aggregate (Aggr : Node_Id) return Boolean is
         Assoc : constant List_Id := Component_Associations (Aggr);

      begin
         --  An "others" aggregate is most likely OK, but see below

         if Is_Others_Aggregate (Aggr) then
            null;

         --  An aggregate with a single choice requires a qualified expression
         --  whose subtype mark is an unconstrained type because we need it to
         --  have the semantics of an "others" aggregate.

         elsif Nkind (Parent (N)) = N_Qualified_Expression
           and then not Is_Constrained (Entity (Subtype_Mark (Parent (N))))
           and then Is_Single_Aggregate (Aggr)
         then
            null;

         --  The other cases are not OK

         else
            return False;
         end if;

         --  In any case we do not support an iterated association

         return Nkind (First (Assoc)) /= N_Iterated_Component_Association;
      end Is_OK_Aggregate;

      Bounds    : Range_Nodes;
      Csiz      : Uint := No_Uint;
      Ctyp      : Entity_Id;
      Expr      : Node_Id;
      Index     : Entity_Id;
      Nunits    : Int;
      Remainder : Uint;
      Value     : Uint;

   --  Start of processing for Aggr_Assignment_OK_For_Backend

   begin
      --  CodePeer does not support this

      if CodePeer_Mode then
         return False;
      end if;

      --  Back end doesn't know about <>

      if Has_Default_Init_Comps (N) then
         return False;
      end if;

      --  Assignments to bit-aligned components or slices are not OK

      if Present (Target)
        and then (Possible_Bit_Aligned_Component (Target)
                   or else Is_Possibly_Unaligned_Slice (Target))
      then
         return False;
      end if;

      --  Recurse as far as possible to find the innermost component type

      Ctyp := Etype (N);
      Expr := N;
      while Is_Array_Type (Ctyp) loop
         if Nkind (Expr) /= N_Aggregate
           or else not Is_OK_Aggregate (Expr)
         then
            return False;
         end if;

         Index := First_Index (Ctyp);
         while Present (Index) loop
            Bounds := Get_Index_Bounds (Index);

            if Is_Null_Range (Bounds.First, Bounds.Last) then
               return False;
            end if;

            Next_Index (Index);
         end loop;

         Expr := Expression (First (Component_Associations (Expr)));

         for J in 1 .. Number_Dimensions (Ctyp) - 1 loop
            if Nkind (Expr) /= N_Aggregate
              or else not Is_OK_Aggregate (Expr)
            then
               return False;
            end if;

            Expr := Expression (First (Component_Associations (Expr)));
         end loop;

         if Has_Atomic_Components (Ctyp) then
            return False;
         end if;

         Csiz := Component_Size (Ctyp);
         Ctyp := Component_Type (Ctyp);

         if Is_Full_Access (Ctyp) then
            return False;
         end if;
      end loop;

      --  Access types need to be dealt with specially

      if Is_Access_Type (Ctyp) then

         --  Component_Size is not set by Layout_Type if the component
         --  type is an access type ???

         Csiz := Esize (Ctyp);

         --  Fat pointers are rejected as they are not really elementary
         --  for the backend.

         if No (Csiz) or else Csiz /= System_Address_Size then
            return False;
         end if;

         --  The supported expressions are NULL and constants, others are
         --  rejected upfront to avoid being analyzed below, which can be
         --  problematic for some of them, for example allocators.

         if Nkind (Expr) /= N_Null and then not Is_Entity_Name (Expr) then
            return False;
         end if;

      --  Scalar types are OK if their size is a multiple of Storage_Unit

      elsif Is_Scalar_Type (Ctyp) and then Present (Csiz) then

         if Csiz mod System_Storage_Unit /= 0 then
            return False;
         end if;

      --  Composite types are rejected

      else
         return False;
      end if;

      --  If the expression has side effects (e.g. contains calls with
      --  potential side effects), then reject it as well.

      if not Side_Effect_Free (Expr) then
         return False;
      end if;

      --  The expression needs to be analyzed if True is returned

      Analyze_And_Resolve (Expr, Ctyp);

      --  Strip away any conversions from the expression as they simply
      --  qualify the real expression.

      while Nkind (Expr) in N_Unchecked_Type_Conversion | N_Type_Conversion
      loop
         Expr := Expression (Expr);
      end loop;

      Nunits := UI_To_Int (Csiz) / System_Storage_Unit;

      if Nunits = 1 then
         return True;
      end if;

      if not Compile_Time_Known_Value (Expr) then
         return False;
      end if;

      --  The only supported value for floating point is 0.0

      if Is_Floating_Point_Type (Ctyp) then
         return Expr_Value_R (Expr) = Ureal_0;
      end if;

      --  For other types, we can look into the value as an integer, which
      --  means the representation value for enumeration literals.

      Value := Expr_Rep_Value (Expr);

      if Has_Biased_Representation (Ctyp) then
         Value := Value - Expr_Value (Type_Low_Bound (Ctyp));
      end if;

      --  Values 0 and -1 immediately satisfy the last check

      if Value = Uint_0 or else Value = Uint_Minus_1 then
         return True;
      end if;

      --  We need to work with an unsigned value

      if Value < 0 then
         Value := Value + 2**(System_Storage_Unit * Nunits);
      end if;

      Remainder := Value rem 2**System_Storage_Unit;

      for J in 1 .. Nunits - 1 loop
         Value := Value / 2**System_Storage_Unit;

         if Value rem 2**System_Storage_Unit /= Remainder then
            return False;
         end if;
      end loop;

      return True;
   end Aggr_Assignment_OK_For_Backend;

   ------------------
   -- Aggr_Size_OK --
   ------------------

   function Aggr_Size_OK (N : Node_Id) return Boolean is
      Typ  : constant Entity_Id := Etype (N);
      Lo   : Node_Id;
      Hi   : Node_Id;
      Indx : Node_Id;
      Size : Uint;
      Lov  : Uint;
      Hiv  : Uint;

      Max_Aggr_Size : Nat;
      --  Determines the maximum size of an array aggregate produced by
      --  converting named to positional notation (e.g. from others clauses).
      --  This avoids running away with attempts to convert huge aggregates,
      --  which hit memory limits in the backend.

      function Component_Count (T : Entity_Id) return Nat;
      --  The limit is applied to the total number of subcomponents that the
      --  aggregate will have, which is the number of static expressions
      --  that will appear in the flattened array. This requires a recursive
      --  computation of the number of scalar components of the structure.

      ---------------------
      -- Component_Count --
      ---------------------

      function Component_Count (T : Entity_Id) return Nat is
         Res  : Nat := 0;
         Comp : Entity_Id;

      begin
         if Is_Scalar_Type (T) then
            return 1;

         elsif Is_Record_Type (T) then
            Comp := First_Component (T);
            while Present (Comp) loop
               Res := Res + Component_Count (Etype (Comp));
               Next_Component (Comp);
            end loop;

            return Res;

         elsif Is_Array_Type (T) then
            declare
               Lo : constant Node_Id :=
                 Type_Low_Bound (Etype (First_Index (T)));
               Hi : constant Node_Id :=
                 Type_High_Bound (Etype (First_Index (T)));

               Siz : constant Nat := Component_Count (Component_Type (T));

            begin
               --  Check for superflat arrays, i.e. arrays with such bounds
               --  as 4 .. 2, to insure that this function never returns a
               --  meaningless negative value.

               if not Compile_Time_Known_Value (Lo)
                 or else not Compile_Time_Known_Value (Hi)
                 or else Expr_Value (Hi) < Expr_Value (Lo)
               then
                  return 0;

               else
                  --  If the number of components is greater than Int'Last,
                  --  then return Int'Last, so caller will return False (Aggr
                  --  size is not OK). Otherwise, UI_To_Int will crash.

                  declare
                     UI : constant Uint :=
                            (Expr_Value (Hi) - Expr_Value (Lo) + 1) * Siz;
                  begin
                     if UI_Is_In_Int_Range (UI) then
                        return UI_To_Int (UI);
                     else
                        return Int'Last;
                     end if;
                  end;
               end if;
            end;

         else
            --  Can only be a null for an access type

            return 1;
         end if;
      end Component_Count;

   --  Start of processing for Aggr_Size_OK

   begin
      --  We bump the maximum size unless the aggregate has a single component
      --  association, which will be more efficient if implemented with a loop.
      --  The -gnatd_g switch disables this bumping.

      if (No (Expressions (N))
            and then No (Next (First (Component_Associations (N)))))
        or else Debug_Flag_Underscore_G
      then
         Max_Aggr_Size := Max_Aggregate_Size (N);
      else
         Max_Aggr_Size := Max_Aggregate_Size (N, 500_000);
      end if;

      Size := UI_From_Int (Component_Count (Component_Type (Typ)));

      Indx := First_Index (Typ);
      while Present (Indx) loop
         Lo  := Type_Low_Bound (Etype (Indx));
         Hi  := Type_High_Bound (Etype (Indx));

         --  Bounds need to be known at compile time

         if not Compile_Time_Known_Value (Lo)
           or else not Compile_Time_Known_Value (Hi)
         then
            return False;
         end if;

         Lov := Expr_Value (Lo);
         Hiv := Expr_Value (Hi);

         --  A flat array is always safe

         if Hiv < Lov then
            return True;
         end if;

         --  One-component named aggregates where the index constraint is not
         --  known at compile time are suspicious as the user might have
         --  intended to write a subtype name but wrote the name of an object
         --  instead. We emit a warning if we're in such a case.

         if Hiv = Lov and then Nkind (Parent (N)) = N_Object_Declaration then
            declare
               Index_Type : constant Entity_Id :=
                 Etype
                   (First_Index (Etype (Defining_Identifier (Parent (N)))));
               Indx       : Node_Id;

            begin
               if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
                 or else not Compile_Time_Known_Value
                               (Type_High_Bound (Index_Type))
               then
                  if Present (Component_Associations (N)) then
                     Indx :=
                       First
                         (Choice_List (First (Component_Associations (N))));

                     if Is_Entity_Name (Indx)
                       and then not Is_Type (Entity (Indx))
                     then
                        Error_Msg_N
                          ("single component aggregate in "
                           &  "non-static context??", Indx);
                        Error_Msg_N ("\maybe subtype name was meant??", Indx);
                     end if;
                  end if;
               end if;
            end;
         end if;

         declare
            Rng : constant Uint := Hiv - Lov + 1;

         begin
            --  Check if size is too large

            if not UI_Is_In_Int_Range (Rng) then
               return False;
            end if;

            --  Compute the size using universal arithmetic to avoid the
            --  possibility of overflow on very large aggregates.

            Size := Size * Rng;

            if Size <= 0
              or else Size > Max_Aggr_Size
            then
               return False;
            end if;
         end;

         --  Bounds must be in integer range, for later array construction

         if not UI_Are_In_Int_Range (Lov, Hiv) then
            return False;
         end if;

         Next_Index (Indx);
      end loop;

      return True;
   end Aggr_Size_OK;

   ---------------------------------
   -- Backend_Processing_Possible --
   ---------------------------------

   --  Backend processing by Gigi/gcc is possible only if all the following
   --  conditions are met:

   --    1. N is fully positional

   --    2. N is not a bit-packed array aggregate;

   --    3. The size of N's array type must be known at compile time. Note
   --       that this implies that the component size is also known

   --    4. The array type of N does not follow the Fortran layout convention
   --       or if it does it must be 1 dimensional.

   --    5. The array component type may not be tagged (which could necessitate
   --       reassignment of proper tags).

   --    6. The array component type must not have unaligned bit components

   --    7. None of the components of the aggregate may be bit unaligned
   --       components.

   --    8. There cannot be delayed components, since we do not know enough
   --       at this stage to know if back end processing is possible.

   --    9. There cannot be any discriminated record components, since the
   --       back end cannot handle this complex case.

   --   10. No controlled actions need to be generated for components

   function Backend_Processing_Possible (N : Node_Id) return Boolean is
      Typ : constant Entity_Id := Etype (N);
      --  Typ is the correct constrained array subtype of the aggregate

      function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
      --  This routine checks components of aggregate N, enforcing checks
      --  1, 7, 8, 9, 11, and 12. In the multidimensional case, these checks
      --  are performed on subaggregates. The Index value is the current index
      --  being checked in the multidimensional case.

      ---------------------
      -- Component_Check --
      ---------------------

      function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
         Expr : Node_Id;
      begin
         --  Checks 1: (no component associations)

         if Present (Component_Associations (N)) then
            return False;
         end if;

         --  Checks on components

         --  Recurse to check subaggregates, which may appear in qualified
         --  expressions. If delayed, the front-end will have to expand.
         --  If the component is a discriminated record, treat as nonstatic,
         --  as the back-end cannot handle this properly.

         Expr := First (Expressions (N));
         while Present (Expr) loop

            --  Checks 8: (no delayed components)

            if Is_Delayed_Aggregate (Expr) then
               return False;
            end if;

            --  Checks 9: (no discriminated records)

            if Present (Etype (Expr))
              and then Is_Record_Type (Etype (Expr))
              and then Has_Discriminants (Etype (Expr))
            then
               return False;
            end if;

            --  Checks 7. Component must not be bit aligned component

            if Possible_Bit_Aligned_Component (Expr) then
               return False;
            end if;

            --  Recursion to following indexes for multiple dimension case

            if Present (Next_Index (Index))
              and then not Component_Check (Expr, Next_Index (Index))
            then
               return False;
            end if;

            --  All checks for that component finished, on to next

            Next (Expr);
         end loop;

         return True;
      end Component_Check;

   --  Start of processing for Backend_Processing_Possible

   begin
      --  Checks 2 (array not bit packed) and 10 (no controlled actions)

      if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
         return False;
      end if;

      --  If component is limited, aggregate must be expanded because each
      --  component assignment must be built in place.

      if Is_Inherently_Limited_Type (Component_Type (Typ)) then
         return False;
      end if;

      --  Checks 4 (array must not be multidimensional Fortran case)

      if Convention (Typ) = Convention_Fortran
        and then Number_Dimensions (Typ) > 1
      then
         return False;
      end if;

      --  Checks 3 (size of array must be known at compile time)

      if not Size_Known_At_Compile_Time (Typ) then
         return False;
      end if;

      --  Checks on components

      if not Component_Check (N, First_Index (Typ)) then
         return False;
      end if;

      --  Checks 5 (if the component type is tagged, then we may need to do
      --  tag adjustments. Perhaps this should be refined to check for any
      --  component associations that actually need tag adjustment, similar
      --  to the test in Component_OK_For_Backend for record aggregates with
      --  tagged components, but not clear whether it's worthwhile ???; in the
      --  case of virtual machines (no Tagged_Type_Expansion), object tags are
      --  handled implicitly).

      if Is_Tagged_Type (Component_Type (Typ))
        and then Tagged_Type_Expansion
      then
         return False;
      end if;

      --  Checks 6 (component type must not have bit aligned components)

      if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
         return False;
      end if;

      --  Backend processing is possible

      return True;
   end Backend_Processing_Possible;

   ---------------------------
   -- Build_Array_Aggr_Code --
   ---------------------------

   --  The code that we generate from a one dimensional aggregate is

   --  1. If the subaggregate contains discrete choices we

   --     (a) Sort the discrete choices

   --     (b) Otherwise for each discrete choice that specifies a range we
   --         emit a loop. If a range specifies a maximum of three values, or
   --         we are dealing with an expression we emit a sequence of
   --         assignments instead of a loop.

   --     (c) Generate the remaining loops to cover the others choice if any

   --  2. If the aggregate contains positional elements we

   --     (a) Translate the positional elements in a series of assignments

   --     (b) Generate a final loop to cover the others choice if any.
   --         Note that this final loop has to be a while loop since the case

   --             L : Integer := Integer'Last;
   --             H : Integer := Integer'Last;
   --             A : array (L .. H) := (1, others =>0);

   --         cannot be handled by a for loop. Thus for the following

   --             array (L .. H) := (.. positional elements.., others => E);

   --         we always generate something like:

   --             J : Index_Type := Index_Of_Last_Positional_Element;
   --             while J < H loop
   --                J := Index_Base'Succ (J)
   --                Tmp (J) := E;
   --             end loop;

   function Build_Array_Aggr_Code
     (N           : Node_Id;
      Ctype       : Entity_Id;
      Index       : Node_Id;
      Into        : Node_Id;
      Scalar_Comp : Boolean;
      Indexes     : List_Id := No_List) return List_Id
   is
      Loc          : constant Source_Ptr := Sloc (N);
      Typ          : constant Entity_Id  := Etype (N);
      Index_Base   : constant Entity_Id  := Base_Type (Etype (Index));
      Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
      Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);

      function Add (Val : Int; To : Node_Id) return Node_Id;
      --  Returns an expression where Val is added to expression To, unless
      --  To+Val is provably out of To's base type range. To must be an
      --  already analyzed expression.

      function Empty_Range (L, H : Node_Id) return Boolean;
      --  Returns True if the range defined by L .. H is certainly empty

      function Equal (L, H : Node_Id) return Boolean;
      --  Returns True if L = H for sure

      function Index_Base_Name return Node_Id;
      --  Returns a new reference to the index type name

      function Gen_Assign
        (Ind  : Node_Id;
         Expr : Node_Id) return List_Id;
      --  Ind must be a side-effect-free expression. If the input aggregate N
      --  to Build_Loop contains no subaggregates, then this function returns
      --  the assignment statement:
      --
      --     Into (Indexes, Ind) := Expr;
      --
      --  Otherwise we call Build_Code recursively.
      --
      --  Ada 2005 (AI-287): In case of default initialized component, Expr
      --  is empty and we generate a call to the corresponding IP subprogram.

      function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
      --  Nodes L and H must be side-effect-free expressions. If the input
      --  aggregate N to Build_Loop contains no subaggregates, this routine
      --  returns the for loop statement:
      --
      --     for J in Index_Base'(L) .. Index_Base'(H) loop
      --        Into (Indexes, J) := Expr;
      --     end loop;
      --
      --  Otherwise we call Build_Code recursively. As an optimization if the
      --  loop covers 3 or fewer scalar elements we generate a sequence of
      --  assignments.
      --  If the component association that generates the loop comes from an
      --  Iterated_Component_Association, the loop parameter has the name of
      --  the corresponding parameter in the original construct.

      function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
      --  Nodes L and H must be side-effect-free expressions. If the input
      --  aggregate N to Build_Loop contains no subaggregates, this routine
      --  returns the while loop statement:
      --
      --     J : Index_Base := L;
      --     while J < H loop
      --        J := Index_Base'Succ (J);
      --        Into (Indexes, J) := Expr;
      --     end loop;
      --
      --  Otherwise we call Build_Code recursively

      function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id;
      --  For an association with a box, use value given by aspect
      --  Default_Component_Value of array type if specified, else use
      --  value given by aspect Default_Value for component type itself
      --  if specified, else return Empty.

      function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
      function Local_Expr_Value               (E : Node_Id) return Uint;
      --  These two Local routines are used to replace the corresponding ones
      --  in sem_eval because while processing the bounds of an aggregate with
      --  discrete choices whose index type is an enumeration, we build static
      --  expressions not recognized by Compile_Time_Known_Value as such since
      --  they have not yet been analyzed and resolved. All the expressions in
      --  question are things like Index_Base_Name'Val (Const) which we can
      --  easily recognize as being constant.

      ---------
      -- Add --
      ---------

      function Add (Val : Int; To : Node_Id) return Node_Id is
         Expr_Pos : Node_Id;
         Expr     : Node_Id;
         To_Pos   : Node_Id;
         U_To     : Uint;
         U_Val    : constant Uint := UI_From_Int (Val);

      begin
         --  Note: do not try to optimize the case of Val = 0, because
         --  we need to build a new node with the proper Sloc value anyway.

         --  First test if we can do constant folding

         if Local_Compile_Time_Known_Value (To) then
            U_To := Local_Expr_Value (To) + Val;

            --  Determine if our constant is outside the range of the index.
            --  If so return an Empty node. This empty node will be caught
            --  by Empty_Range below.

            if Compile_Time_Known_Value (Index_Base_L)
              and then U_To < Expr_Value (Index_Base_L)
            then
               return Empty;

            elsif Compile_Time_Known_Value (Index_Base_H)
              and then U_To > Expr_Value (Index_Base_H)
            then
               return Empty;
            end if;

            Expr_Pos := Make_Integer_Literal (Loc, U_To);
            Set_Is_Static_Expression (Expr_Pos);

            if not Is_Enumeration_Type (Index_Base) then
               Expr := Expr_Pos;

            --  If we are dealing with enumeration return
            --     Index_Base'Val (Expr_Pos)

            else
               Expr :=
                 Make_Attribute_Reference
                   (Loc,
                    Prefix         => Index_Base_Name,
                    Attribute_Name => Name_Val,
                    Expressions    => New_List (Expr_Pos));
            end if;

            return Expr;
         end if;

         --  If we are here no constant folding possible

         if not Is_Enumeration_Type (Index_Base) then
            Expr :=
              Make_Op_Add (Loc,
                Left_Opnd  => Duplicate_Subexpr (To),
                Right_Opnd => Make_Integer_Literal (Loc, U_Val));

         --  If we are dealing with enumeration return
         --    Index_Base'Val (Index_Base'Pos (To) + Val)

         else
            To_Pos :=
              Make_Attribute_Reference
                (Loc,
                 Prefix         => Index_Base_Name,
                 Attribute_Name => Name_Pos,
                 Expressions    => New_List (Duplicate_Subexpr (To)));

            Expr_Pos :=
              Make_Op_Add (Loc,
                Left_Opnd  => To_Pos,
                Right_Opnd => Make_Integer_Literal (Loc, U_Val));

            Expr :=
              Make_Attribute_Reference
                (Loc,
                 Prefix         => Index_Base_Name,
                 Attribute_Name => Name_Val,
                 Expressions    => New_List (Expr_Pos));
         end if;

         return Expr;
      end Add;

      -----------------
      -- Empty_Range --
      -----------------

      function Empty_Range (L, H : Node_Id) return Boolean is
         Is_Empty : Boolean := False;
         Low      : Node_Id;
         High     : Node_Id;

      begin
         --  First check if L or H were already detected as overflowing the
         --  index base range type by function Add above. If this is so Add
         --  returns the empty node.

         if No (L) or else No (H) then
            return True;
         end if;

         for J in 1 .. 3 loop
            case J is

               --  L > H    range is empty

               when 1 =>
                  Low  := L;
                  High := H;

               --  B_L > H  range must be empty

               when 2 =>
                  Low  := Index_Base_L;
                  High := H;

               --  L > B_H  range must be empty

               when 3 =>
                  Low  := L;
                  High := Index_Base_H;
            end case;

            if Local_Compile_Time_Known_Value (Low)
                 and then
               Local_Compile_Time_Known_Value (High)
            then
               Is_Empty :=
                 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
            end if;

            exit when Is_Empty;
         end loop;

         return Is_Empty;
      end Empty_Range;

      -----------
      -- Equal --
      -----------

      function Equal (L, H : Node_Id) return Boolean is
      begin
         if L = H then
            return True;

         elsif Local_Compile_Time_Known_Value (L)
                 and then
               Local_Compile_Time_Known_Value (H)
         then
            return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
         end if;

         return False;
      end Equal;

      ----------------
      -- Gen_Assign --
      ----------------

      function Gen_Assign
        (Ind  : Node_Id;
         Expr : Node_Id) return List_Id
      is
         function Add_Loop_Actions (Lis : List_Id) return List_Id;
         --  Collect insert_actions generated in the construction of a loop,
         --  and prepend them to the sequence of assignments to complete the
         --  eventual body of the loop.

         ----------------------
         -- Add_Loop_Actions --
         ----------------------

         function Add_Loop_Actions (Lis : List_Id) return List_Id is
            Res : List_Id;

         begin
            --  Ada 2005 (AI-287): Do nothing else in case of default
            --  initialized component.

            if No (Expr) then
               return Lis;

            elsif Nkind (Parent (Expr)) in N_Component_Association
                                         | N_Iterated_Component_Association
              and then Present (Loop_Actions (Parent (Expr)))
            then
               Res := Loop_Actions (Parent (Expr));
               Set_Loop_Actions (Parent (Expr), No_List);
               Append_List (Lis, To => Res);
               return Res;

            else
               return Lis;
            end if;
         end Add_Loop_Actions;

         --  Local variables

         Stmts : constant List_Id := New_List;

         Comp_Typ     : Entity_Id := Empty;
         Expr_Q       : Node_Id;
         Indexed_Comp : Node_Id;
         Init_Call    : Node_Id;
         New_Indexes  : List_Id;

      --  Start of processing for Gen_Assign

      begin
         if No (Indexes) then
            New_Indexes := New_List;
         else
            New_Indexes := New_Copy_List_Tree (Indexes);
         end if;

         Append_To (New_Indexes, Ind);

         if Present (Next_Index (Index)) then
            return
              Add_Loop_Actions (
                Build_Array_Aggr_Code
                  (N           => Expr,
                   Ctype       => Ctype,
                   Index       => Next_Index (Index),
                   Into        => Into,
                   Scalar_Comp => Scalar_Comp,
                   Indexes     => New_Indexes));
         end if;

         --  If we get here then we are at a bottom-level (sub-)aggregate

         Indexed_Comp :=
           Make_Indexed_Component (Loc,
             Prefix      => New_Copy_Tree (Into),
             Expressions => New_Indexes);

         Set_Assignment_OK (Indexed_Comp);
         Set_Kill_Range_Check (Indexed_Comp);

         --  Ada 2005 (AI-287): In case of default initialized component, Expr
         --  is not present (and therefore we also initialize Expr_Q to empty).

         Expr_Q := Unqualify (Expr);

         if Present (Etype (N)) and then Etype (N) /= Any_Composite then
            Comp_Typ := Get_Corresponding_Mutably_Tagged_Type_If_Present
                          (Component_Type (Etype (N)));

         elsif Present (Next (First (New_Indexes))) then

            --  Ada 2005 (AI-287): Do nothing in case of default initialized
            --  component because we have received the component type in
            --  the formal parameter Ctype.

            --  ??? Some assert pragmas have been added to check if this new
            --  formal can be used to replace this code in all cases.

            if Present (Expr) then

               --  This is a multidimensional array. Recover the component type
               --  from the outermost aggregate, because subaggregates do not
               --  have an assigned type.

               declare
                  P : Node_Id;

               begin
                  P := Parent (Expr);
                  while Present (P) loop
                     if Nkind (P) = N_Aggregate
                       and then Present (Etype (P))
                     then
                        Comp_Typ := Component_Type (Etype (P));
                        exit;

                     else
                        P := Parent (P);
                     end if;
                  end loop;

                  pragma Assert (Comp_Typ = Ctype); --  AI-287
               end;
            end if;
         end if;

         --  Ada 2005 (AI-287): We only analyze the expression in case of non-
         --  default initialized components (otherwise Expr_Q is not present).

         if Present (Expr_Q)
           and then Nkind (Expr_Q) in N_Aggregate | N_Extension_Aggregate
         then
            --  At this stage the Expression may not have been analyzed yet
            --  because the array aggregate code has not been updated to use
            --  the Expansion_Delayed flag and avoid analysis altogether to
            --  solve the same problem (see Resolve_Aggr_Expr). So let us do
            --  the analysis of non-array aggregates now in order to get the
            --  value of Expansion_Delayed flag for the inner aggregate ???

            --  In the case of an iterated component association, the analysis
            --  of the generated loop will analyze the expression in the
            --  proper context, in which the loop parameter is visible.

            if Present (Comp_Typ) and then not Is_Array_Type (Comp_Typ) then
               if Nkind (Parent (Expr_Q)) = N_Iterated_Component_Association
                 or else Nkind (Parent (Parent ((Expr_Q)))) =
                           N_Iterated_Component_Association
               then
                  null;
               else
                  Analyze_And_Resolve (Expr_Q, Comp_Typ);
               end if;
            end if;

            if Is_Delayed_Aggregate (Expr_Q) then

               --  This is either a subaggregate of a multidimensional array,
               --  or a component of an array type whose component type is
               --  also an array. In the latter case, the expression may have
               --  component associations that provide different bounds from
               --  those of the component type, and sliding must occur. Instead
               --  of decomposing the current aggregate assignment, force the
               --  reanalysis of the assignment, so that a temporary will be
               --  generated in the usual fashion, and sliding will take place.

               if Nkind (Parent (N)) = N_Assignment_Statement
                 and then Is_Array_Type (Comp_Typ)
                 and then Present (Component_Associations (Expr_Q))
                 and then Must_Slide (N, Comp_Typ, Etype (Expr_Q))
               then
                  Set_Expansion_Delayed (Expr_Q, False);
                  Set_Analyzed (Expr_Q, False);

               else
                  return
                    Add_Loop_Actions (
                      Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
               end if;
            end if;
         end if;

         if Present (Expr) then
            Initialize_Component
              (N          => N,
               Comp       => Indexed_Comp,
               Comp_Typ   => Comp_Typ,
               Init_Expr  => Expr,
               Stmts      => Stmts);

         --  Ada 2005 (AI-287): In case of default initialized component, call
         --  the initialization subprogram associated with the component type.
         --  If the component type is an access type, add an explicit null
         --  assignment, because for the back-end there is an initialization
         --  present for the whole aggregate, and no default initialization
         --  will take place.

         --  In addition, if the component type is controlled, we must call
         --  its Initialize procedure explicitly, because there is no explicit
         --  object creation that will invoke it otherwise.

         else
            if Present (Base_Init_Proc (Ctype)) then
               Check_Restriction (No_Default_Initialization, N);

               if not Restriction_Active (No_Default_Initialization) then
                  Append_List_To (Stmts,
                    Build_Initialization_Call (N,
                      Id_Ref            => Indexed_Comp,
                      Typ               => Ctype,
                      With_Default_Init => True));
               end if;

               --  If the component type has invariants, add an invariant
               --  check after the component is default-initialized. It will
               --  be analyzed and resolved before the code for initialization
               --  of other components.

               if Has_Invariants (Ctype) then
                  Set_Etype (Indexed_Comp, Ctype);
                  Append_To (Stmts, Make_Invariant_Call (Indexed_Comp));
               end if;
            end if;

            if Needs_Finalization (Ctype) then
               Init_Call :=
                 Make_Init_Call
                   (Obj_Ref => New_Copy_Tree (Indexed_Comp),
                    Typ     => Ctype);

               --  Guard against a missing [Deep_]Initialize when the component
               --  type was not properly frozen.

               if Present (Init_Call) then
                  Append_To (Stmts, Init_Call);
               end if;
            end if;

            --  If Default_Initial_Condition applies to the component type,
            --  add a DIC check after the component is default-initialized,
            --  as well as after an Initialize procedure is called, in the
            --  case of components of a controlled type. It will be analyzed
            --  and resolved before the code for initialization of other
            --  components.

            --  Theoretically this might also be needed for cases where Expr
            --  is not empty, but a default init still applies, such as for
            --  Default_Value cases, in which case we won't get here. ???

            if Has_DIC (Ctype) and then Present (DIC_Procedure (Ctype)) then
               Append_To (Stmts,
                 Build_DIC_Call (Loc, New_Copy_Tree (Indexed_Comp), Ctype));
            end if;
         end if;

         return Add_Loop_Actions (Stmts);
      end Gen_Assign;

      --------------
      -- Gen_Loop --
      --------------

      function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
         Is_Iterated_Component : constant Boolean :=
           Parent_Kind (Expr) = N_Iterated_Component_Association;

         Ent : Entity_Id;

         L_J : Node_Id;

         L_L : Node_Id;
         --  Index_Base'(L)

         L_H : Node_Id;
         --  Index_Base'(H)

         L_Range : Node_Id;
         --  Index_Base'(L) .. Index_Base'(H)

         L_Iteration_Scheme : Node_Id;
         --  L_J in Index_Base'(L) .. Index_Base'(H)

         L_Body : List_Id;
         --  The statements to execute in the loop

         S : constant List_Id := New_List;
         --  List of statements

         Tcopy : Node_Id;
         --  Copy of expression tree, used for checking purposes

      begin
         --  If loop bounds define an empty range return the null statement

         if Empty_Range (L, H) then
            Append_To (S, Make_Null_Statement (Loc));

            --  Ada 2005 (AI-287): Nothing else need to be done in case of
            --  default initialized component.

            if No (Expr) then
               null;

            else
               --  The expression must be type-checked even though no component
               --  of the aggregate will have this value. This is done only for
               --  actual components of the array, not for subaggregates. Do
               --  the check on a copy, because the expression may be shared
               --  among several choices, some of which might be non-null.

               if Present (Etype (N))
                 and then Is_Array_Type (Etype (N))
                 and then No (Next_Index (Index))
               then
                  Expander_Mode_Save_And_Set (False);
                  Tcopy := New_Copy_Tree (Expr);
                  Set_Parent (Tcopy, N);

                  --  For iterated_component_association analyze and resolve
                  --  the expression with name of the index parameter visible.
                  --  To manipulate scopes, we use entity of the implicit loop.

                  if Is_Iterated_Component then
                     declare
                        Index_Parameter : constant Entity_Id :=
                          Defining_Identifier (Parent (Expr));
                     begin
                        Push_Scope (Scope (Index_Parameter));
                        Enter_Name (Index_Parameter);
                        Analyze_And_Resolve
                          (Tcopy, Component_Type (Etype (N)));
                        End_Scope;
                     end;

                  --  For ordinary component association, just analyze and
                  --  resolve the expression.

                  else
                     Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
                  end if;

                  Expander_Mode_Restore;
               end if;
            end if;

            return S;

         --  If loop bounds are the same then generate an assignment, unless
         --  the parent construct is an Iterated_Component_Association.

         elsif Equal (L, H) and then not Is_Iterated_Component then
            return Gen_Assign (New_Copy_Tree (L), Expr);

         --  If H - L <= 2 then generate a sequence of assignments when we are
         --  processing the bottom most aggregate and it contains scalar
         --  components.

         elsif No (Next_Index (Index))
           and then Scalar_Comp
           and then Local_Compile_Time_Known_Value (L)
           and then Local_Compile_Time_Known_Value (H)
           and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
           and then not Is_Iterated_Component
         then
            Append_List_To
              (S, Gen_Assign (New_Copy_Tree (L), New_Copy_Tree (Expr)));
            Append_List_To
              (S, Gen_Assign (Add (1, To => L), New_Copy_Tree (Expr)));

            if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
               Append_List_To
                 (S, Gen_Assign (Add (2, To => L), New_Copy_Tree (Expr)));
            end if;

            return S;
         end if;

         --  Otherwise construct the loop, starting with the loop index L_J

         if Is_Iterated_Component then

            --  Create a new scope for the loop variable so that the
            --  following Gen_Assign can correctly find it.

            Ent := New_Internal_Entity (E_Loop,
                 Current_Scope, Loc, 'L');
            Set_Etype  (Ent, Standard_Void_Type);
            Set_Parent (Ent, Parent (Parent (Expr)));
            Push_Scope (Ent);

            L_J :=
              Make_Defining_Identifier (Loc,
                Chars => (Chars (Defining_Identifier (Parent (Expr)))));

            Enter_Name (L_J);

            --  The Etype will be set by a later Analyze call.
            Set_Etype (L_J, Any_Type);

            Mutate_Ekind (L_J, E_Variable);
            Set_Is_Not_Self_Hidden (L_J);
            Set_Scope (L_J, Ent);
         else
            L_J := Make_Temporary (Loc, 'J', L);
         end if;

         --  Construct "L .. H" in Index_Base. We use a qualified expression
         --  for the bound to convert to the index base, but we don't need
         --  to do that if we already have the base type at hand.

         if Etype (L) = Index_Base then
            L_L := New_Copy_Tree (L);
         else
            L_L :=
              Make_Qualified_Expression (Loc,
                Subtype_Mark => Index_Base_Name,
                Expression   => New_Copy_Tree (L));
         end if;

         if Etype (H) = Index_Base then
            L_H := New_Copy_Tree (H);
         else
            L_H :=
              Make_Qualified_Expression (Loc,
                Subtype_Mark => Index_Base_Name,
                Expression   => New_Copy_Tree (H));
         end if;

         L_Range :=
           Make_Range (Loc,
             Low_Bound  => L_L,
             High_Bound => L_H);

         --  Construct "for L_J in Index_Base range L .. H"

         L_Iteration_Scheme :=
           Make_Iteration_Scheme (Loc,
              Loop_Parameter_Specification =>
                Make_Loop_Parameter_Specification (Loc,
                   Defining_Identifier         => L_J,
                   Discrete_Subtype_Definition => L_Range));

         --  Construct the statements to execute in the loop body

         L_Body := Gen_Assign (New_Occurrence_Of (L_J, Loc), Expr);

         --  Construct the final loop

         Append_To (S,
           Make_Implicit_Loop_Statement
             (Node             => N,
              Identifier       => Empty,
              Iteration_Scheme => L_Iteration_Scheme,
              Statements       => L_Body));

         if Is_Iterated_Component then
            End_Scope;
         end if;

         --  A small optimization: if the aggregate is initialized with a box
         --  and the component type has no initialization procedure, remove the
         --  useless empty loop.

         if Nkind (First (S)) = N_Loop_Statement
           and then Is_Empty_List (Statements (First (S)))
         then
            return New_List (Make_Null_Statement (Loc));
         else
            return S;
         end if;
      end Gen_Loop;

      ---------------
      -- Gen_While --
      ---------------

      --  The code built is

      --     W_J : Index_Base := L;
      --     while W_J < H loop
      --        W_J := Index_Base'Succ (W);
      --        L_Body;
      --     end loop;

      function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
         W_J : Node_Id;

         W_Decl : Node_Id;
         --  W_J : Base_Type := L;

         W_Iteration_Scheme : Node_Id;
         --  while W_J < H

         W_Index_Succ : Node_Id;
         --  Index_Base'Succ (J)

         W_Increment : Node_Id;
         --  W_J := Index_Base'Succ (W)

         W_Body : constant List_Id := New_List;
         --  The statements to execute in the loop

         S : constant List_Id := New_List;
         --  list of statement

      begin
         --  If loop bounds define an empty range or are equal return null

         if Empty_Range (L, H) or else Equal (L, H) then
            Append_To (S, Make_Null_Statement (Loc));
            return S;
         end if;

         --  Build the decl of W_J

         W_J    := Make_Temporary (Loc, 'J', L);
         W_Decl :=
           Make_Object_Declaration
             (Loc,
              Defining_Identifier => W_J,
              Object_Definition   => Index_Base_Name,
              Expression          => L);

         --  Theoretically we should do a New_Copy_Tree (L) here, but we know
         --  that in this particular case L is a fresh Expr generated by
         --  Add which we are the only ones to use.

         Append_To (S, W_Decl);

         --  Construct " while W_J < H"

         W_Iteration_Scheme :=
           Make_Iteration_Scheme
             (Loc,
              Condition => Make_Op_Lt
                             (Loc,
                              Left_Opnd  => New_Occurrence_Of (W_J, Loc),
                              Right_Opnd => New_Copy_Tree (H)));

         --  Construct the statements to execute in the loop body

         W_Index_Succ :=
           Make_Attribute_Reference
             (Loc,
              Prefix         => Index_Base_Name,
              Attribute_Name => Name_Succ,
              Expressions    => New_List (New_Occurrence_Of (W_J, Loc)));

         W_Increment  :=
           Make_OK_Assignment_Statement
             (Loc,
              Name       => New_Occurrence_Of (W_J, Loc),
              Expression => W_Index_Succ);

         Append_To (W_Body, W_Increment);

         Append_List_To (W_Body,
           Gen_Assign (New_Occurrence_Of (W_J, Loc), Expr));

         --  Construct the final loop

         Append_To (S,
           Make_Implicit_Loop_Statement
             (Node             => N,
              Identifier       => Empty,
              Iteration_Scheme => W_Iteration_Scheme,
              Statements       => W_Body));

         return S;
      end Gen_While;

      --------------------
      -- Get_Assoc_Expr --
      --------------------

      --  Duplicate the expression in case we will be generating several loops.
      --  As a result the expression is no longer shared between the loops and
      --  is reevaluated for each such loop.

      function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id is
         Typ : constant Entity_Id := Base_Type (Etype (N));

      begin
         if Box_Present (Assoc) then
            if Present (Default_Aspect_Component_Value (Typ)) then
               return New_Copy_Tree (Default_Aspect_Component_Value (Typ));
            elsif Needs_Simple_Initialization (Ctype) then
               return New_Copy_Tree (Get_Simple_Init_Val (Ctype, N));
            else
               return Empty;
            end if;

         else
            --  The expression will be passed to Gen_Loop, which immediately
            --  calls Parent_Kind on it, so we set Parent when it matters.

            return
               Expr : constant Node_Id := New_Copy_Tree (Expression (Assoc))
            do
               Copy_Parent (To => Expr, From => Expression (Assoc));
            end return;
         end if;
      end Get_Assoc_Expr;

      ---------------------
      -- Index_Base_Name --
      ---------------------

      function Index_Base_Name return Node_Id is
      begin
         return New_Occurrence_Of (Index_Base, Sloc (N));
      end Index_Base_Name;

      ------------------------------------
      -- Local_Compile_Time_Known_Value --
      ------------------------------------

      function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
      begin
         return Compile_Time_Known_Value (E)
           or else
             (Nkind (E) = N_Attribute_Reference
               and then Attribute_Name (E) = Name_Val
               and then Compile_Time_Known_Value (First (Expressions (E))));
      end Local_Compile_Time_Known_Value;

      ----------------------
      -- Local_Expr_Value --
      ----------------------

      function Local_Expr_Value (E : Node_Id) return Uint is
      begin
         if Compile_Time_Known_Value (E) then
            return Expr_Value (E);
         else
            return Expr_Value (First (Expressions (E)));
         end if;
      end Local_Expr_Value;

      --  Local variables

      New_Code : constant List_Id := New_List;

      Aggr_Bounds : constant Range_Nodes :=
        Get_Index_Bounds (Aggregate_Bounds (N));
      Aggr_L : Node_Id renames Aggr_Bounds.First;
      Aggr_H : Node_Id renames Aggr_Bounds.Last;
      --  The aggregate bounds of this specific subaggregate. Note that if the
      --  code generated by Build_Array_Aggr_Code is executed then these bounds
      --  are OK. Otherwise a Constraint_Error would have been raised.

      Aggr_Low  : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
      Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
      --  After Duplicate_Subexpr these are side-effect-free

      Assoc  : Node_Id;
      Choice : Node_Id;
      Expr   : Node_Id;

      Bounds : Range_Nodes;
      Low    : Node_Id renames Bounds.First;
      High   : Node_Id renames Bounds.Last;

      Nb_Choices : Nat := 0;
      Table      : Case_Table_Type (1 .. Number_Of_Choices (N));
      --  Used to sort all the different choice values

      Nb_Elements : Int;
      --  Number of elements in the positional aggregate

      Others_Assoc : Node_Id := Empty;

   --  Start of processing for Build_Array_Aggr_Code

   begin
      --  If the assignment can be done directly by the back end, then expand
      --  into an assignment statement.

      if Present (Etype (N))
        and then Aggr_Assignment_OK_For_Backend (N, Into)
      then
         declare
            New_Aggr : constant Node_Id := Relocate_Node (N);
            Target   : constant Node_Id :=
                         (if Nkind (Into) = N_Unchecked_Type_Conversion
                          then Expression (Into)
                          else Into);

            Temp : Node_Id;

         begin
            --  Block any further processing of the aggregate by the front end

            Set_Analyzed (New_Aggr);
            Set_Expansion_Delayed (New_Aggr, False);

            --  In the case where the target is the dereference of a prefix
            --  with Designated_Storage_Model aspect specifying the Copy_To
            --  procedure, first insert a temporary and have the back end
            --  handle the assignment to it, then assign the result to the
            --  original target.

            if Nkind (Target) = N_Explicit_Dereference
              and then
                Has_Designated_Storage_Model_Aspect (Etype (Prefix (Target)))
              and then Present (Storage_Model_Copy_To
                                 (Storage_Model_Object
                                   (Etype (Prefix (Target)))))
            then
               Temp := Build_Temporary_On_Secondary_Stack (Loc, Typ, New_Code);

               Append_To (New_Code,
                 Make_OK_Assignment_Statement (Loc,
                   Name       =>
                     Make_Explicit_Dereference (Loc,
                       Prefix => New_Occurrence_Of (Temp, Loc)),
                   Expression => New_Aggr));

               Append_To (New_Code,
                 Make_OK_Assignment_Statement (Loc,
                   Name       => Target,
                   Expression =>
                     Make_Explicit_Dereference (Loc,
                       Prefix => New_Occurrence_Of (Temp, Loc))));

               return New_Code;

            else
               return New_List (
                 Make_OK_Assignment_Statement (Loc,
                   Name       => Into,
                   Expression => New_Aggr));
            end if;
         end;
      end if;

      --  First before we start, a special case. If we have a bit packed
      --  array represented as a modular type, then clear the value to
      --  zero first, to ensure that unused bits are properly cleared.

      if Present (Typ)
        and then Is_Bit_Packed_Array (Typ)
        and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ))
      then
         declare
            Zero : constant Node_Id := Make_Integer_Literal (Loc, Uint_0);
         begin
            Analyze_And_Resolve (Zero, Packed_Array_Impl_Type (Typ));
            Append_To (New_Code,
              Make_Assignment_Statement (Loc,
                Name       => New_Copy_Tree (Into),
                Expression => Unchecked_Convert_To (Typ, Zero)));
         end;
      end if;

      --  If the component type contains tasks, we need to build a Master
      --  entity in the current scope, because it will be needed if build-
      --  in-place functions are called in the expanded code.

      if Nkind (Parent (N)) = N_Object_Declaration and then Has_Task (Typ) then
         Build_Master_Entity (Defining_Identifier (Parent (N)));
      end if;

      --  STEP 1: Process component associations

      --  For those associations that may generate a loop, initialize
      --  Loop_Actions to collect inserted actions that may be created.

      --  Skip this if no component associations

      if Is_Null_Aggregate (N) then
         null;

      elsif No (Expressions (N)) then

         --  STEP 1 (a): Sort the discrete choices

         Assoc := First (Component_Associations (N));
         while Present (Assoc) loop
            declare
               First_Range : Boolean := True;

            begin
               Choice := First (Choice_List (Assoc));
               while Present (Choice) loop
                  if Nkind (Choice) = N_Others_Choice then
                     Others_Assoc := Assoc;
                     exit;
                  end if;

                  Bounds := Get_Index_Bounds (Choice);

                  if First_Range and then Low /= High then
                     pragma Assert (No (Loop_Actions (Assoc)));
                     Set_Loop_Actions (Assoc, New_List);
                     First_Range := False;
                  end if;

                  Nb_Choices := Nb_Choices + 1;

                  Table (Nb_Choices) :=
                     (Choice_Lo   => Low,
                      Choice_Hi   => High,
                      Choice_Node => Get_Assoc_Expr (Assoc));

                  Next (Choice);
               end loop;
            end;

            Next (Assoc);
         end loop;

         --  If there is more than one set of choices these must be static
         --  and we can therefore sort them. Remember that Nb_Choices does not
         --  account for an others choice.

         if Nb_Choices > 1 then
            Sort_Case_Table (Table);
         end if;

         --  STEP 1 (b): take care of the whole set of discrete choices

         for J in 1 .. Nb_Choices loop
            Low  := Table (J).Choice_Lo;
            High := Table (J).Choice_Hi;
            Expr := Table (J).Choice_Node;
            Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
         end loop;

         --  STEP 1 (c): generate the remaining loops to cover others choice
         --  We don't need to generate loops over empty gaps, but if there is
         --  a single empty range we must analyze the expression for semantics

         if Present (Others_Assoc) then
            declare
               First : Boolean := True;

            begin
               for J in 0 .. Nb_Choices loop
                  if J = 0 then
                     Low := Aggr_Low;
                  else
                     Low := Add (1, To => Table (J).Choice_Hi);
                  end if;

                  if J = Nb_Choices then
                     High := Aggr_High;
                  else
                     High := Add (-1, To => Table (J + 1).Choice_Lo);
                  end if;

                  --  If this is an expansion within an init proc, make
                  --  sure that discriminant references are replaced by
                  --  the corresponding discriminal.

                  if Inside_Init_Proc then
                     if Is_Entity_Name (Low)
                       and then Ekind (Entity (Low)) = E_Discriminant
                     then
                        Set_Entity (Low, Discriminal (Entity (Low)));
                     end if;

                     if Is_Entity_Name (High)
                       and then Ekind (Entity (High)) = E_Discriminant
                     then
                        Set_Entity (High, Discriminal (Entity (High)));
                     end if;
                  end if;

                  if First or else not Empty_Range (Low, High) then
                     if First then
                        pragma Assert (No (Loop_Actions (Others_Assoc)));
                        Set_Loop_Actions (Others_Assoc, New_List);
                        First := False;
                     end if;
                     Expr := Get_Assoc_Expr (Others_Assoc);
                     Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
                  end if;
               end loop;
            end;
         end if;

      --  STEP 2: Process positional components

      else
         --  STEP 2 (a): Generate the assignments for each positional element
         --  Note that here we have to use Aggr_L rather than Aggr_Low because
         --  Aggr_L is analyzed and Add wants an analyzed expression.

         Expr        := First (Expressions (N));
         Nb_Elements := -1;
         while Present (Expr) loop
            Nb_Elements := Nb_Elements + 1;
            Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
                         To => New_Code);
            Next (Expr);
         end loop;

         --  STEP 2 (b): Generate final loop if an others choice is present.
         --  Here Nb_Elements gives the offset of the last positional element.

         if Present (Component_Associations (N)) then
            Assoc := Last (Component_Associations (N));

            if Nkind (Assoc) = N_Iterated_Component_Association then
               --  Ada 2022: generate a loop to have a proper scope for
               --  the identifier that typically appears in the expression.
               --  The lower bound of the loop is the position after all
               --  previous positional components.

               Append_List (Gen_Loop (Add (Nb_Elements + 1, To => Aggr_L),
                                      Aggr_High,
                                      Expression (Assoc)),
                            To => New_Code);
            else
               --  Ada 2005 (AI-287)

               Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
                                       Aggr_High,
                                       Get_Assoc_Expr (Assoc)),
                            To => New_Code);
            end if;
         end if;
      end if;

      return New_Code;
   end Build_Array_Aggr_Code;

   ----------------------------
   -- Build_Record_Aggr_Code --
   ----------------------------

   function Build_Record_Aggr_Code
     (N   : Node_Id;
      Typ : Entity_Id;
      Lhs : Node_Id) return List_Id
   is
      Loc     : constant Source_Ptr := Sloc (N);
      L       : constant List_Id    := New_List;
      N_Typ   : constant Entity_Id  := Etype (N);

      Comp      : Node_Id;
      Instr     : Node_Id;
      Ref       : Node_Id;
      Target    : Entity_Id;
      Comp_Type : Entity_Id;
      Selector  : Entity_Id;
      Comp_Expr : Node_Id;
      Expr_Q    : Node_Id;

      Ancestor_Is_Subtype_Mark : Boolean := False;

      Init_Typ : Entity_Id := Empty;

      Finalization_Done : Boolean := False;
      --  True if Generate_Finalization_Actions has already been called; calls
      --  after the first do nothing.

      function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
      --  Returns the value that the given discriminant of an ancestor type
      --  should receive (in the absence of a conflict with the value provided
      --  by an ancestor part of an extension aggregate).

      procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
      --  Check that each of the discriminant values defined by the ancestor
      --  part of an extension aggregate match the corresponding values
      --  provided by either an association of the aggregate or by the
      --  constraint imposed by a parent type (RM95-4.3.2(8)).

      function Compatible_Int_Bounds
        (Agg_Bounds : Node_Id;
         Typ_Bounds : Node_Id) return Boolean;
      --  Return true if Agg_Bounds are equal or within Typ_Bounds. It is
      --  assumed that both bounds are integer ranges.

      procedure Generate_Finalization_Actions;
      --  Deal with the various controlled type data structure initializations
      --  (but only if it hasn't been done already).

      function Get_Constraint_Association (T : Entity_Id) return Node_Id;
      --  Returns the first discriminant association in the constraint
      --  associated with T, if any, otherwise returns Empty.

      function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id;
      --  If the ancestor part is an unconstrained type and further ancestors
      --  do not provide discriminants for it, check aggregate components for
      --  values of the discriminants.

      procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
      --  If Typ is derived, and constrains discriminants of the parent type,
      --  these discriminants are not components of the aggregate, and must be
      --  initialized. The assignments are appended to List. The same is done
      --  if Typ derives from an already constrained subtype of a discriminated
      --  parent type.

      procedure Init_Stored_Discriminants;
      --  If the type is derived and has inherited discriminants, generate
      --  explicit assignments for each, using the store constraint of the
      --  type. Note that both visible and stored discriminants must be
      --  initialized in case the derived type has some renamed and some
      --  constrained discriminants.

      procedure Init_Visible_Discriminants;
      --  If type has discriminants, retrieve their values from aggregate,
      --  and generate explicit assignments for each. This does not include
      --  discriminants inherited from ancestor, which are handled above.
      --  The type of the aggregate is a subtype created ealier using the
      --  given values of the discriminant components of the aggregate.

      function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
      --  Check whether Bounds is a range node and its lower and higher bounds
      --  are integers literals.

      function Replace_Type (Expr : Node_Id) return Traverse_Result;
      --  If the aggregate contains a self-reference, traverse each expression
      --  to replace a possible self-reference with a reference to the proper
      --  component of the target of the assignment.

      function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
      --  If default expression of a component mentions a discriminant of the
      --  type, it must be rewritten as the discriminant of the target object.

      generic
         with function Process (N : Node_Id) return Traverse_Result is <>;
      procedure Traverse_Proc_For_Aggregate (N : Node_Id);
      pragma Inline (Traverse_Proc_For_Aggregate);
      --  This extends Traverse_Proc from Atree by looking into the Actions
      --  list of conditional expressions, which are semantic fields and not
      --  syntactic ones like the Actions of an N_Expression_With_Actions.
      --  This makes it possible to delay the expansion of these conditional
      --  expressions when they appear within the aggregate.

      ---------------------------------
      -- Ancestor_Discriminant_Value --
      ---------------------------------

      function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
         Assoc        : Node_Id;
         Assoc_Elmt   : Elmt_Id;
         Aggr_Comp    : Entity_Id;
         Corresp_Disc : Entity_Id;
         Current_Typ  : Entity_Id := Base_Type (Typ);
         Parent_Typ   : Entity_Id;
         Parent_Disc  : Entity_Id;
         Save_Assoc   : Node_Id := Empty;

      begin
         --  First check any discriminant associations to see if any of them
         --  provide a value for the discriminant.

         if Present (Discriminant_Specifications (Parent (Current_Typ))) then
            Assoc := First (Component_Associations (N));
            while Present (Assoc) loop
               Aggr_Comp := Entity (First (Choices (Assoc)));

               if Ekind (Aggr_Comp) = E_Discriminant then
                  Save_Assoc := Expression (Assoc);

                  Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
                  while Present (Corresp_Disc) loop

                     --  If found a corresponding discriminant then return the
                     --  value given in the aggregate. (Note: this is not
                     --  correct in the presence of side effects. ???)

                     if Disc = Corresp_Disc then
                        return Duplicate_Subexpr (Expression (Assoc));
                     end if;

                     Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
                  end loop;
               end if;

               Next (Assoc);
            end loop;
         end if;

         --  No match found in aggregate, so chain up parent types to find
         --  a constraint that defines the value of the discriminant.

         Parent_Typ := Etype (Current_Typ);
         while Current_Typ /= Parent_Typ loop
            if Has_Discriminants (Parent_Typ)
              and then not Has_Unknown_Discriminants (Parent_Typ)
            then
               Parent_Disc := First_Discriminant (Parent_Typ);

               --  We either get the association from the subtype indication
               --  of the type definition itself, or from the discriminant
               --  constraint associated with the type entity (which is
               --  preferable, but it's not always present ???)

               if Is_Empty_Elmt_List (Discriminant_Constraint (Current_Typ))
               then
                  Assoc := Get_Constraint_Association (Current_Typ);
                  Assoc_Elmt := No_Elmt;
               else
                  Assoc_Elmt :=
                    First_Elmt (Discriminant_Constraint (Current_Typ));
                  Assoc := Node (Assoc_Elmt);
               end if;

               --  Traverse the discriminants of the parent type looking
               --  for one that corresponds.

               while Present (Parent_Disc) and then Present (Assoc) loop
                  Corresp_Disc := Parent_Disc;
                  while Present (Corresp_Disc)
                    and then Disc /= Corresp_Disc
                  loop
                     Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
                  end loop;

                  if Disc = Corresp_Disc then
                     if Nkind (Assoc) = N_Discriminant_Association then
                        Assoc := Expression (Assoc);
                     end if;

                     --  If the located association directly denotes
                     --  a discriminant, then use the value of a saved
                     --  association of the aggregate. This is an approach
                     --  used to handle certain cases involving multiple
                     --  discriminants mapped to a single discriminant of
                     --  a descendant. It's not clear how to locate the
                     --  appropriate discriminant value for such cases. ???

                     if Is_Entity_Name (Assoc)
                       and then Ekind (Entity (Assoc)) = E_Discriminant
                     then
                        Assoc := Save_Assoc;
                     end if;

                     return Duplicate_Subexpr (Assoc);
                  end if;

                  Next_Discriminant (Parent_Disc);

                  if No (Assoc_Elmt) then
                     Next (Assoc);

                  else
                     Next_Elmt (Assoc_Elmt);

                     if Present (Assoc_Elmt) then
                        Assoc := Node (Assoc_Elmt);
                     else
                        Assoc := Empty;
                     end if;
                  end if;
               end loop;
            end if;

            Current_Typ := Parent_Typ;
            Parent_Typ := Etype (Current_Typ);
         end loop;

         --  In some cases there's no ancestor value to locate (such as
         --  when an ancestor part given by an expression defines the
         --  discriminant value).

         return Empty;
      end Ancestor_Discriminant_Value;

      ----------------------------------
      -- Check_Ancestor_Discriminants --
      ----------------------------------

      procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
         Discr      : Entity_Id;
         Disc_Value : Node_Id;
         Cond       : Node_Id;

      begin
         Discr := First_Discriminant (Base_Type (Anc_Typ));
         while Present (Discr) loop
            Disc_Value := Ancestor_Discriminant_Value (Discr);

            if Present (Disc_Value) then
               Cond := Make_Op_Ne (Loc,
                 Left_Opnd  =>
                   Make_Selected_Component (Loc,
                     Prefix        => New_Copy_Tree (Target),
                     Selector_Name => New_Occurrence_Of (Discr, Loc)),
                 Right_Opnd => Disc_Value);

               Append_To (L,
                 Make_Raise_Constraint_Error (Loc,
                   Condition => Cond,
                   Reason    => CE_Discriminant_Check_Failed));
            end if;

            Next_Discriminant (Discr);
         end loop;
      end Check_Ancestor_Discriminants;

      ---------------------------
      -- Compatible_Int_Bounds --
      ---------------------------

      function Compatible_Int_Bounds
        (Agg_Bounds : Node_Id;
         Typ_Bounds : Node_Id) return Boolean
      is
         Agg_Lo : constant Uint := Intval (Low_Bound  (Agg_Bounds));
         Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
         Typ_Lo : constant Uint := Intval (Low_Bound  (Typ_Bounds));
         Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
      begin
         return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
      end Compatible_Int_Bounds;

      -----------------------------------
      -- Generate_Finalization_Actions --
      -----------------------------------

      procedure Generate_Finalization_Actions is
      begin
         --  Do the work only the first time this is called

         if Finalization_Done then
            return;
         end if;

         Finalization_Done := True;

         --  Determine the external finalization list. It is either the
         --  finalization list of the outer scope or the one coming from an
         --  outer aggregate. When the target is not a temporary, the proper
         --  scope is the scope of the target rather than the potentially
         --  transient current scope.

         if Is_Controlled (Typ) and then Ancestor_Is_Subtype_Mark then
            Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
            Set_Assignment_OK (Ref);

            Append_To (L,
              Make_Procedure_Call_Statement (Loc,
                Name                   =>
                  New_Occurrence_Of
                    (Find_Controlled_Prim_Op (Init_Typ, Name_Initialize), Loc),
                Parameter_Associations => New_List (New_Copy_Tree (Ref))));
         end if;
      end Generate_Finalization_Actions;

      --------------------------------
      -- Get_Constraint_Association --
      --------------------------------

      function Get_Constraint_Association (T : Entity_Id) return Node_Id is
         Indic : Node_Id;
         Typ   : Entity_Id;

      begin
         Typ := T;

         --  If type is private, get constraint from full view. This was
         --  previously done in an instance context, but is needed whenever
         --  the ancestor part has a discriminant, possibly inherited through
         --  multiple derivations.

         if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
            Typ := Full_View (Typ);
         end if;

         Indic := Subtype_Indication (Type_Definition (Parent (Typ)));

         --  Verify that the subtype indication carries a constraint

         if Nkind (Indic) = N_Subtype_Indication
           and then Present (Constraint (Indic))
         then
            return First (Constraints (Constraint (Indic)));
         end if;

         return Empty;
      end Get_Constraint_Association;

      -------------------------------------
      -- Get_Explicit_Discriminant_Value --
      -------------------------------------

      function Get_Explicit_Discriminant_Value
        (D : Entity_Id) return Node_Id
      is
         Assoc  : Node_Id;
         Choice : Node_Id;
         Val    : Node_Id;

      begin
         --  The aggregate has been normalized and all associations have a
         --  single choice.

         Assoc := First (Component_Associations (N));
         while Present (Assoc) loop
            Choice := First (Choices (Assoc));

            if Chars (Choice) = Chars (D) then
               Val := Expression (Assoc);
               Remove (Assoc);
               return Val;
            end if;

            Next (Assoc);
         end loop;

         return Empty;
      end Get_Explicit_Discriminant_Value;

      -------------------------------
      -- Init_Hidden_Discriminants --
      -------------------------------

      procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
         function Is_Completely_Hidden_Discriminant
           (Discr : Entity_Id) return Boolean;
         --  Determine whether Discr is a completely hidden discriminant of
         --  type Typ.

         ---------------------------------------
         -- Is_Completely_Hidden_Discriminant --
         ---------------------------------------

         function Is_Completely_Hidden_Discriminant
           (Discr : Entity_Id) return Boolean
         is
            Item : Entity_Id;

         begin
            --  Use First/Next_Entity as First/Next_Discriminant do not yield
            --  completely hidden discriminants.

            Item := First_Entity (Typ);
            while Present (Item) loop
               if Ekind (Item) = E_Discriminant
                 and then Is_Completely_Hidden (Item)
                 and then Chars (Original_Record_Component (Item)) =
                          Chars (Discr)
               then
                  return True;
               end if;

               Next_Entity (Item);
            end loop;

            return False;
         end Is_Completely_Hidden_Discriminant;

         --  Local variables

         Base_Typ     : Entity_Id;
         Discr        : Entity_Id;
         Discr_Constr : Elmt_Id;
         Discr_Init   : Node_Id;
         Discr_Val    : Node_Id;
         In_Aggr_Type : Boolean;
         Par_Typ      : Entity_Id;

      --  Start of processing for Init_Hidden_Discriminants

      begin
         --  The constraints on the hidden discriminants, if present, are kept
         --  in the Stored_Constraint list of the type itself, or in that of
         --  the base type. If not in the constraints of the aggregate itself,
         --  we examine ancestors to find discriminants that are not renamed
         --  by other discriminants but constrained explicitly.

         In_Aggr_Type := True;

         Base_Typ := Base_Type (Typ);
         while Is_Derived_Type (Base_Typ)
           and then
             (Present (Stored_Constraint (Base_Typ))
               or else
                 (In_Aggr_Type and then Present (Stored_Constraint (Typ))))
         loop
            Par_Typ := Etype (Base_Typ);

            if not Has_Discriminants (Par_Typ) then
               return;
            end if;

            Discr := First_Discriminant (Par_Typ);

            --  We know that one of the stored-constraint lists is present

            if Present (Stored_Constraint (Base_Typ)) then
               Discr_Constr := First_Elmt (Stored_Constraint (Base_Typ));

            --  For private extension, stored constraint may be on full view

            elsif Is_Private_Type (Base_Typ)
              and then Present (Full_View (Base_Typ))
              and then Present (Stored_Constraint (Full_View (Base_Typ)))
            then
               Discr_Constr :=
                 First_Elmt (Stored_Constraint (Full_View (Base_Typ)));

            --  Otherwise, no discriminant to process

            else
               Discr_Constr := No_Elmt;
            end if;

            while Present (Discr) and then Present (Discr_Constr) loop
               Discr_Val := Node (Discr_Constr);

               --  The parent discriminant is renamed in the derived type,
               --  nothing to initialize.

               --    type Deriv_Typ (Discr : ...)
               --      is new Parent_Typ (Discr => Discr);

               if Is_Entity_Name (Discr_Val)
                 and then Ekind (Entity (Discr_Val)) = E_Discriminant
               then
                  null;

               --  When the parent discriminant is constrained at the type
               --  extension level, it does not appear in the derived type.

               --    type Deriv_Typ (Discr : ...)
               --      is new Parent_Typ (Discr        => Discr,
               --                         Hidden_Discr => Expression);

               elsif Is_Completely_Hidden_Discriminant (Discr) then
                  null;

               --  Otherwise initialize the discriminant

               else
                  Discr_Init :=
                    Make_OK_Assignment_Statement (Loc,
                      Name       =>
                        Make_Selected_Component (Loc,
                          Prefix        => New_Copy_Tree (Target),
                          Selector_Name => New_Occurrence_Of (Discr, Loc)),
                      Expression => New_Copy_Tree (Discr_Val));

                  Append_To (List, Discr_Init);
               end if;

               Next_Elmt (Discr_Constr);
               Next_Discriminant (Discr);
            end loop;

            In_Aggr_Type := False;
            Base_Typ := Base_Type (Par_Typ);
         end loop;
      end Init_Hidden_Discriminants;

      --------------------------------
      -- Init_Visible_Discriminants --
      --------------------------------

      procedure Init_Visible_Discriminants is
         Discriminant       : Entity_Id;
         Discriminant_Value : Node_Id;

      begin
         Discriminant := First_Discriminant (Typ);
         while Present (Discriminant) loop
            Comp_Expr :=
              Make_Selected_Component (Loc,
                Prefix        => New_Copy_Tree (Target),
                Selector_Name => New_Occurrence_Of (Discriminant, Loc));

            Discriminant_Value :=
              Get_Discriminant_Value
                (Discriminant, Typ, Discriminant_Constraint (N_Typ));

            Instr :=
              Make_OK_Assignment_Statement (Loc,
                Name       => Comp_Expr,
                Expression => New_Copy_Tree (Discriminant_Value));

            Append_To (L, Instr);

            Next_Discriminant (Discriminant);
         end loop;
      end Init_Visible_Discriminants;

      -------------------------------
      -- Init_Stored_Discriminants --
      -------------------------------

      procedure Init_Stored_Discriminants is
         Discriminant       : Entity_Id;
         Discriminant_Value : Node_Id;

      begin
         Discriminant := First_Stored_Discriminant (Typ);
         while Present (Discriminant) loop
            Comp_Expr :=
              Make_Selected_Component (Loc,
                Prefix        => New_Copy_Tree (Target),
                Selector_Name => New_Occurrence_Of (Discriminant, Loc));

            Discriminant_Value :=
              Get_Discriminant_Value
                (Discriminant, N_Typ, Discriminant_Constraint (N_Typ));

            Instr :=
              Make_OK_Assignment_Statement (Loc,
                Name       => Comp_Expr,
                Expression => New_Copy_Tree (Discriminant_Value));

            Append_To (L, Instr);

            Next_Stored_Discriminant (Discriminant);
         end loop;
      end Init_Stored_Discriminants;

      -------------------------
      -- Is_Int_Range_Bounds --
      -------------------------

      function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
      begin
         return Nkind (Bounds) = N_Range
           and then Nkind (Low_Bound  (Bounds)) = N_Integer_Literal
           and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
      end Is_Int_Range_Bounds;

      ------------------
      -- Replace_Type --
      ------------------

      function Replace_Type (Expr : Node_Id) return Traverse_Result is
      begin
         --  Note about the Is_Ancestor test below: aggregate components for
         --  self-referential types include attribute references to the current
         --  instance, of the form: Typ'access, etc. These references are
         --  rewritten as references to the target of the aggregate: the
         --  left-hand side of an assignment, the entity in a declaration,
         --  or a temporary. Without this test, we would improperly extend
         --  this rewriting to attribute references whose prefix is not the
         --  type of the aggregate.

         if Nkind (Expr) = N_Attribute_Reference
           and then Is_Entity_Name (Prefix (Expr))
           and then Is_Type (Entity (Prefix (Expr)))
           and then
             Is_Ancestor
               (Entity (Prefix (Expr)), Etype (N), Use_Full_View => True)
         then
            if Is_Entity_Name (Lhs) then
               Rewrite (Prefix (Expr), New_Occurrence_Of (Entity (Lhs), Loc));

            else
               Rewrite (Expr,
                 Make_Attribute_Reference (Loc,
                   Attribute_Name => Name_Unrestricted_Access,
                   Prefix         => New_Copy_Tree (Lhs)));
               Set_Analyzed (Parent (Expr), False);
            end if;
         end if;

         return OK;
      end Replace_Type;

      --------------------------
      -- Rewrite_Discriminant --
      --------------------------

      function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
      begin
         if Is_Entity_Name (Expr)
           and then Present (Entity (Expr))
           and then Ekind (Entity (Expr)) = E_In_Parameter
           and then Present (Discriminal_Link (Entity (Expr)))
           and then Scope (Discriminal_Link (Entity (Expr))) =
                                                       Base_Type (Etype (N))
         then
            Rewrite (Expr,
              Make_Selected_Component (Loc,
                Prefix        => New_Copy_Tree (Lhs),
                Selector_Name => Make_Identifier (Loc, Chars (Expr))));

            --  The generated code will be reanalyzed, but if the reference
            --  to the discriminant appears within an already analyzed
            --  expression (e.g. a conditional) we must set its proper entity
            --  now. Context is an initialization procedure.

            Analyze (Expr);
         end if;

         return OK;
      end Rewrite_Discriminant;

      ---------------------------------
      -- Traverse_Proc_For_Aggregate --
      ---------------------------------

      procedure Traverse_Proc_For_Aggregate (N : Node_Id) is

         function Process_For_Aggregate (N : Node_Id) return Traverse_Result;
         --  Call Process on N and on the nodes in the Actions list of N if
         --  it is a conditional expression.

         procedure Traverse_Node is new Traverse_Proc (Process_For_Aggregate);
         --  Call Process_For_Aggregate on the subtree rooted at N

         ---------------------------
         -- Process_For_Aggregate --
         ---------------------------

         function Process_For_Aggregate (N : Node_Id) return Traverse_Result is

            procedure Traverse_List (L : List_Id);
            pragma Inline (Traverse_List);
            --  Call Traverse_Node on the nodes of list L

            --------------------
            -- Traverse_List --
            --------------------

            procedure Traverse_List (L : List_Id) is
               N : Node_Id := First (L);

            begin
               while Present (N) loop
                  Traverse_Node (N);
                  Next (N);
               end loop;
            end Traverse_List;

            --  Local variables

            Alt     : Node_Id;
            Discard : Traverse_Final_Result;
            pragma Unreferenced (Discard);

         --  Start of processing for Process_For_Aggregate

         begin
            Discard := Process (N);

            if Nkind (N) = N_Case_Expression then
               Alt := First (Alternatives (N));
               while Present (Alt) loop
                  Traverse_List (Actions (Alt));
                  Next (Alt);
               end loop;

            elsif Nkind (N) = N_If_Expression then
               Traverse_List (Then_Actions (N));
               Traverse_List (Else_Actions (N));
            end if;

            return OK;
         end Process_For_Aggregate;

      begin
         Traverse_Node (N);
      end Traverse_Proc_For_Aggregate;

      procedure Replace_Discriminants is
        new Traverse_Proc_For_Aggregate (Rewrite_Discriminant);

      procedure Replace_Self_Reference is
        new Traverse_Proc_For_Aggregate (Replace_Type);

   --  Start of processing for Build_Record_Aggr_Code

   begin
      if Has_Self_Reference (N) then
         Replace_Self_Reference (N);
      end if;

      --  If the target of the aggregate is class-wide, we must convert it
      --  to the actual type of the aggregate, so that the proper components
      --  are visible. We know already that the types are compatible.

      if Present (Etype (Lhs)) and then Is_Class_Wide_Type (Etype (Lhs)) then
         Target := Unchecked_Convert_To (Typ, Lhs);
      else
         Target := Lhs;
      end if;

      --  Deal with the ancestor part of extension aggregates or with the
      --  discriminants of the root type.

      if Nkind (N) = N_Extension_Aggregate then
         declare
            Ancestor   : constant Node_Id := Ancestor_Part (N);
            Ancestor_Q : constant Node_Id := Unqualify (Ancestor);

            Assign   : List_Id;

         begin
            --  If the ancestor part is a subtype mark T, we generate

            --     init-proc (T (tmp));  if T is constrained and
            --     init-proc (S (tmp));  where S applies an appropriate
            --                           constraint if T is unconstrained

            if Is_Entity_Name (Ancestor)
              and then Is_Type (Entity (Ancestor))
            then
               Ancestor_Is_Subtype_Mark := True;

               if Is_Constrained (Entity (Ancestor)) then
                  Init_Typ := Entity (Ancestor);

               --  For an ancestor part given by an unconstrained type mark,
               --  create a subtype constrained by appropriate corresponding
               --  discriminant values coming from either associations of the
               --  aggregate or a constraint on a parent type. The subtype will
               --  be used to generate the correct default value for the
               --  ancestor part.

               elsif Has_Discriminants (Entity (Ancestor)) then
                  declare
                     Anc_Typ    : constant Entity_Id := Entity (Ancestor);
                     Anc_Constr : constant List_Id   := New_List;
                     Discrim    : Entity_Id;
                     Disc_Value : Node_Id;
                     New_Indic  : Node_Id;
                     Subt_Decl  : Node_Id;

                  begin
                     Discrim := First_Discriminant (Anc_Typ);
                     while Present (Discrim) loop
                        Disc_Value := Ancestor_Discriminant_Value (Discrim);

                        --  If no usable discriminant in ancestors, check
                        --  whether aggregate has an explicit value for it.

                        if No (Disc_Value) then
                           Disc_Value :=
                             Get_Explicit_Discriminant_Value (Discrim);
                        end if;

                        Append_To (Anc_Constr, Disc_Value);
                        Next_Discriminant (Discrim);
                     end loop;

                     New_Indic :=
                       Make_Subtype_Indication (Loc,
                         Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
                         Constraint   =>
                           Make_Index_Or_Discriminant_Constraint (Loc,
                             Constraints => Anc_Constr));

                     Init_Typ := Create_Itype (Ekind (Anc_Typ), N);

                     Subt_Decl :=
                       Make_Subtype_Declaration (Loc,
                         Defining_Identifier => Init_Typ,
                         Subtype_Indication  => New_Indic);

                     --  Itypes must be analyzed with checks off Declaration
                     --  must have a parent for proper handling of subsidiary
                     --  actions.

                     Set_Parent (Subt_Decl, N);
                     Analyze (Subt_Decl, Suppress => All_Checks);
                  end;
               end if;

               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
               Set_Assignment_OK (Ref);

               if not Is_Interface (Init_Typ) then
                  Append_List_To (L,
                    Build_Initialization_Call (N,
                      Id_Ref            => Ref,
                      Typ               => Init_Typ,
                      In_Init_Proc      => Within_Init_Proc,
                      With_Default_Init => Has_Default_Init_Comps (N)
                                             or else
                                           Has_Task (Base_Type (Init_Typ))));

                  if Is_Constrained (Entity (Ancestor))
                    and then Has_Discriminants (Entity (Ancestor))
                  then
                     Check_Ancestor_Discriminants (Entity (Ancestor));
                  end if;

                  --  If ancestor type has Default_Initialization_Condition,
                  --  add a DIC check after the ancestor object is initialized
                  --  by default.

                  if Has_DIC (Entity (Ancestor))
                    and then Present (DIC_Procedure (Entity (Ancestor)))
                  then
                     Append_To (L,
                       Build_DIC_Call
                         (Loc, New_Copy_Tree (Ref), Entity (Ancestor)));
                  end if;
               end if;

            --  Handle calls to C++ constructors

            elsif Is_CPP_Constructor_Call (Ancestor) then
               Init_Typ := Etype (Ancestor);
               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
               Set_Assignment_OK (Ref);

               Append_List_To (L,
                 Build_Initialization_Call (N,
                   Id_Ref            => Ref,
                   Typ               => Init_Typ,
                   In_Init_Proc      => Within_Init_Proc,
                   With_Default_Init => Has_Default_Init_Comps (N),
                   Constructor_Ref   => Ancestor));

            --  Ada 2005 (AI-287): If the ancestor part is an aggregate of
            --  limited type, a recursive call expands the ancestor. Note that
            --  in the limited case, the ancestor part must be either a
            --  function call (possibly qualified) or aggregate (definitely
            --  qualified).

            elsif Is_Limited_Type (Etype (Ancestor))
              and then Nkind (Ancestor_Q) in N_Aggregate
                                           | N_Extension_Aggregate
            then
               Append_List_To (L,
                  Build_Record_Aggr_Code
                    (N   => Ancestor_Q,
                     Typ => Etype (Ancestor_Q),
                     Lhs => Target));

            --  If the ancestor part is an expression E of type T, we generate

            --     T (tmp) := E;

            --  In Ada 2005, this includes the case of a (possibly qualified)
            --  limited function call. The assignment will later be turned into
            --  a build-in-place function call (for further details, see
            --  Make_Build_In_Place_Call_In_Assignment).

            else
               Init_Typ := Etype (Ancestor);

               --  If the ancestor part is an aggregate, force its full
               --  expansion, which was delayed.

               if Nkind (Ancestor_Q) in N_Aggregate | N_Extension_Aggregate
               then
                  Set_Analyzed (Ancestor, False);
                  Set_Analyzed (Expression (Ancestor), False);
               end if;

               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));

               Assign := New_List (
                 Make_OK_Assignment_Statement (Loc,
                   Name       => Ref,
                   Expression => Ancestor));

               --  Arrange for the component to be adjusted if need be (the
               --  call will be generated by Make_Tag_Ctrl_Assignment).

               if Needs_Finalization (Init_Typ)
                 and then not Is_Inherently_Limited_Type (Init_Typ)
               then
                  Set_No_Finalize_Actions (First (Assign));
               else
                  Set_No_Ctrl_Actions (First (Assign));
               end if;

               Append_To (L,
                 Make_Suppress_Block (Loc, Name_Discriminant_Check, Assign));

               if Has_Discriminants (Init_Typ) then
                  Check_Ancestor_Discriminants (Init_Typ);
               end if;
            end if;
         end;

         --  Generate assignments of hidden discriminants. If the base type is
         --  an unchecked union, the discriminants are unknown to the back-end
         --  and absent from a value of the type, so assignments for them are
         --  not emitted.

         if Has_Discriminants (Typ)
           and then not Is_Unchecked_Union (Base_Type (Typ))
         then
            Init_Hidden_Discriminants (Typ, L);
         end if;

      --  Normal case (not an extension aggregate)

      else
         --  Generate the discriminant expressions, component by component.
         --  If the base type is an unchecked union, the discriminants are
         --  unknown to the back-end and absent from a value of the type, so
         --  assignments for them are not emitted.

         if Has_Discriminants (Typ)
           and then not Is_Unchecked_Union (Base_Type (Typ))
         then
            Init_Hidden_Discriminants (Typ, L);

            --  Generate discriminant init values for the visible discriminants

            Init_Visible_Discriminants;

            if Is_Derived_Type (N_Typ) then
               Init_Stored_Discriminants;
            end if;
         end if;
      end if;

      --  For CPP types we generate an implicit call to the C++ default
      --  constructor to ensure the proper initialization of the _Tag
      --  component.

      if Is_CPP_Class (Root_Type (Typ)) and then CPP_Num_Prims (Typ) > 0 then
         Invoke_Constructor : declare
            CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ);

            procedure Invoke_IC_Proc (T : Entity_Id);
            --  Recursive routine used to climb to parents. Required because
            --  parents must be initialized before descendants to ensure
            --  propagation of inherited C++ slots.

            --------------------
            -- Invoke_IC_Proc --
            --------------------

            procedure Invoke_IC_Proc (T : Entity_Id) is
            begin
               --  Avoid generating extra calls. Initialization required
               --  only for types defined from the level of derivation of
               --  type of the constructor and the type of the aggregate.

               if T = CPP_Parent then
                  return;
               end if;

               Invoke_IC_Proc (Etype (T));

               --  Generate call to the IC routine

               if Present (CPP_Init_Proc (T)) then
                  Append_To (L,
                    Make_Procedure_Call_Statement (Loc,
                      Name => New_Occurrence_Of (CPP_Init_Proc (T), Loc)));
               end if;
            end Invoke_IC_Proc;

         --  Start of processing for Invoke_Constructor

         begin
            --  Implicit invocation of the C++ constructor

            if Nkind (N) = N_Aggregate then
               Append_To (L,
                 Make_Procedure_Call_Statement (Loc,
                   Name                   =>
                     New_Occurrence_Of (Base_Init_Proc (CPP_Parent), Loc),
                   Parameter_Associations => New_List (
                     Unchecked_Convert_To (CPP_Parent,
                       New_Copy_Tree (Lhs)))));
            end if;

            Invoke_IC_Proc (Typ);
         end Invoke_Constructor;
      end if;

      --  Generate the assignments, component by component

      --    tmp.comp1 := Expr1_From_Aggr;
      --    tmp.comp2 := Expr2_From_Aggr;
      --    ....

      Comp := First (Component_Associations (N));
      while Present (Comp) loop
         Selector := Entity (First (Choices (Comp)));
         pragma Assert (Present (Selector));

         --  C++ constructors

         if Is_CPP_Constructor_Call (Expression (Comp)) then
            Append_List_To (L,
              Build_Initialization_Call (N,
                Id_Ref            =>
                  Make_Selected_Component (Loc,
                    Prefix        => New_Copy_Tree (Target),
                    Selector_Name => New_Occurrence_Of (Selector, Loc)),
                Typ               => Etype (Selector),
                Enclos_Type       => Typ,
                With_Default_Init => True,
                Constructor_Ref   => Expression (Comp)));

         elsif Box_Present (Comp)
           and then Needs_Simple_Initialization (Etype (Selector))
         then
            Comp_Expr :=
              Make_Selected_Component (Loc,
                Prefix        => New_Copy_Tree (Target),
                Selector_Name => New_Occurrence_Of (Selector, Loc));

            Initialize_Component
              (N         => N,
               Comp      => Comp_Expr,
               Comp_Typ  => Etype (Selector),
               Init_Expr => Get_Simple_Init_Val
                              (Typ  => Etype (Selector),
                               N    => Comp,
                               Size =>
                                 (if Known_Esize (Selector)
                                  then Esize (Selector)
                                  else Uint_0)),
               Stmts     => L);

         --  Ada 2005 (AI-287): For each default-initialized component generate
         --  a call to the corresponding IP subprogram if available.

         elsif Box_Present (Comp)
           and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
         then
            Check_Restriction (No_Default_Initialization, N);

            if Ekind (Selector) /= E_Discriminant then
               Generate_Finalization_Actions;
            end if;

            --  Ada 2005 (AI-287): If the component type has tasks then
            --  generate the activation chain and master entities (except
            --  in case of an allocator because in that case these entities
            --  are generated by Build_Task_Allocate_Block).

            declare
               Ctype            : constant Entity_Id := Etype (Selector);
               Inside_Allocator : Boolean            := False;
               P                : Node_Id            := Parent (N);

            begin
               if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
                  while Present (P) loop
                     if Nkind (P) = N_Allocator then
                        Inside_Allocator := True;
                        exit;
                     end if;

                     P := Parent (P);
                  end loop;

                  if not Inside_Init_Proc and not Inside_Allocator then
                     Build_Activation_Chain_Entity (N);
                  end if;
               end if;
            end;

            if not Restriction_Active (No_Default_Initialization) then
               Append_List_To (L,
                 Build_Initialization_Call (N,
                   Id_Ref            => Make_Selected_Component (Loc,
                                          Prefix        =>
                                            New_Copy_Tree (Target),
                                          Selector_Name =>
                                            New_Occurrence_Of (Selector, Loc)),
                   Typ               => Etype (Selector),
                   Enclos_Type       => Typ,
                   With_Default_Init => True));
            end if;

         --  Prepare for component assignment

         elsif Ekind (Selector) /= E_Discriminant
           or else Nkind (N) = N_Extension_Aggregate
         then
            --  All the discriminants have now been assigned

            --  This is now a good moment to initialize and attach all the
            --  controllers. Their position may depend on the discriminants.

            if Ekind (Selector) /= E_Discriminant then
               Generate_Finalization_Actions;
            end if;

            Comp_Type := Underlying_Type (Etype (Selector));
            Comp_Expr :=
              Make_Selected_Component (Loc,
                Prefix        => New_Copy_Tree (Target),
                Selector_Name => New_Occurrence_Of (Selector, Loc));

            Expr_Q := Unqualify (Expression (Comp));

            --  Now either create the assignment or generate the code for the
            --  inner aggregate top-down.

            if Is_Delayed_Aggregate (Expr_Q) then

               --  We have the following case of aggregate nesting inside
               --  an object declaration:

               --    type Arr_Typ is array (Integer range <>) of ...;

               --    type Rec_Typ (...) is record
               --       Obj_Arr_Typ : Arr_Typ (A .. B);
               --    end record;

               --    Obj_Rec_Typ : Rec_Typ := (...,
               --      Obj_Arr_Typ => (X => (...), Y => (...)));

               --  The length of the ranges of the aggregate and Obj_Add_Typ
               --  are equal (B - A = Y - X), but they do not coincide (X /=
               --  A and B /= Y). This case requires array sliding which is
               --  performed in the following manner:

               --    subtype Arr_Sub is Arr_Typ (X .. Y);
               --    Temp : Arr_Sub;
               --    Temp (X) := (...);
               --    ...
               --    Temp (Y) := (...);
               --    Obj_Rec_Typ.Obj_Arr_Typ := Temp;

               if Ekind (Comp_Type) = E_Array_Subtype
                 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
                 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
                 and then not
                   Compatible_Int_Bounds
                     (Agg_Bounds => Aggregate_Bounds (Expr_Q),
                      Typ_Bounds => First_Index (Comp_Type))
               then
                  --  Create the array subtype with bounds equal to those of
                  --  the corresponding aggregate.

                  declare
                     SubE : constant Entity_Id := Make_Temporary (Loc, 'T');

                     SubD : constant Node_Id :=
                       Make_Subtype_Declaration (Loc,
                         Defining_Identifier => SubE,
                         Subtype_Indication  =>
                           Make_Subtype_Indication (Loc,
                             Subtype_Mark =>
                               New_Occurrence_Of (Etype (Comp_Type), Loc),
                             Constraint =>
                               Make_Index_Or_Discriminant_Constraint
                                 (Loc,
                                  Constraints => New_List (
                                    New_Copy_Tree
                                      (Aggregate_Bounds (Expr_Q))))));

                     --  Create a temporary array of the above subtype which
                     --  will be used to capture the aggregate assignments.

                     TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);

                     TmpD : constant Node_Id :=
                       Make_Object_Declaration (Loc,
                         Defining_Identifier => TmpE,
                         Object_Definition   => New_Occurrence_Of (SubE, Loc));

                  begin
                     Set_No_Initialization (TmpD);
                     Append_To (L, SubD);
                     Append_To (L, TmpD);

                     --  Expand aggregate into assignments to the temp array

                     Append_List_To (L,
                       Late_Expansion (Expr_Q, Comp_Type,
                         New_Occurrence_Of (TmpE, Loc)));

                     --  Slide

                     Append_To (L,
                       Make_Assignment_Statement (Loc,
                         Name       => New_Copy_Tree (Comp_Expr),
                         Expression => New_Occurrence_Of (TmpE, Loc)));
                  end;

               --  Normal case (sliding not required)

               else
                  Append_List_To (L,
                    Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
               end if;

            --  Expr_Q is not delayed aggregate

            else
               if Has_Discriminants (Typ) then
                  Replace_Discriminants (Expr_Q);

                  --  If the component is an array type that depends on
                  --  discriminants, and the expression is a single Others
                  --  clause, create an explicit subtype for it because the
                  --  backend has troubles recovering the actual bounds.

                  if Nkind (Expr_Q) = N_Aggregate
                    and then Is_Array_Type (Comp_Type)
                    and then Present (Component_Associations (Expr_Q))
                  then
                     declare
                        Assoc : constant Node_Id :=
                                  First (Component_Associations (Expr_Q));
                        Decl  : Node_Id;

                     begin
                        if Present (Assoc)
                          and then
                            Nkind (First (Choices (Assoc))) = N_Others_Choice
                        then
                           Decl :=
                             Build_Actual_Subtype_Of_Component
                               (Comp_Type, Comp_Expr);

                           --  If the component type does not in fact depend on
                           --  discriminants, the subtype declaration is empty.

                           if Present (Decl) then
                              Append_To (L, Decl);
                              Set_Etype (Comp_Expr, Defining_Entity (Decl));
                           end if;
                        end if;
                     end;
                  end if;
               end if;

               Initialize_Component
                 (N         => N,
                  Comp      => Comp_Expr,
                  Comp_Typ  => Etype (Selector),
                  Init_Expr => Expr_Q,
                  Stmts     => L);
            end if;

         --  comment would be good here ???

         elsif Ekind (Selector) = E_Discriminant
           and then Nkind (N) /= N_Extension_Aggregate
           and then Nkind (Parent (N)) = N_Component_Association
           and then Is_Constrained (Typ)
         then
            --  We must check that the discriminant value imposed by the
            --  context is the same as the value given in the subaggregate,
            --  because after the expansion into assignments there is no
            --  record on which to perform a regular discriminant check.

            declare
               D_Val : Elmt_Id;
               Disc  : Entity_Id;

            begin
               D_Val := First_Elmt (Discriminant_Constraint (Typ));
               Disc  := First_Discriminant (Typ);
               while Chars (Disc) /= Chars (Selector) loop
                  Next_Discriminant (Disc);
                  Next_Elmt (D_Val);
               end loop;

               pragma Assert (Present (D_Val));

               --  This check cannot performed for components that are
               --  constrained by a current instance, because this is not a
               --  value that can be compared with the actual constraint.

               if Nkind (Node (D_Val)) /= N_Attribute_Reference
                 or else not Is_Entity_Name (Prefix (Node (D_Val)))
                 or else not Is_Type (Entity (Prefix (Node (D_Val))))
               then
                  Append_To (L,
                  Make_Raise_Constraint_Error (Loc,
                    Condition =>
                      Make_Op_Ne (Loc,
                        Left_Opnd  => New_Copy_Tree (Node (D_Val)),
                        Right_Opnd => Expression (Comp)),
                    Reason    => CE_Discriminant_Check_Failed));

               else
                  --  Find self-reference in previous discriminant assignment,
                  --  and replace with proper expression.

                  declare
                     Ass : Node_Id;

                  begin
                     Ass := First (L);
                     while Present (Ass) loop
                        if Nkind (Ass) = N_Assignment_Statement
                          and then Nkind (Name (Ass)) = N_Selected_Component
                          and then Chars (Selector_Name (Name (Ass))) =
                                                                 Chars (Disc)
                        then
                           Set_Expression
                             (Ass, New_Copy_Tree (Expression (Comp)));
                           exit;
                        end if;
                        Next (Ass);
                     end loop;
                  end;
               end if;
            end;
         end if;

         --  If the component association was specified with a box and the
         --  component type has a Default_Initial_Condition, then generate
         --  a call to the DIC procedure.

         if Has_DIC (Etype (Selector))
           and then Was_Default_Init_Box_Association (Comp)
           and then Present (DIC_Procedure (Etype (Selector)))
         then
            Append_To (L,
              Build_DIC_Call (Loc,
                Make_Selected_Component (Loc,
                  Prefix        => New_Copy_Tree (Target),
                  Selector_Name => New_Occurrence_Of (Selector, Loc)),
                Etype (Selector)));
         end if;

         Next (Comp);
      end loop;

      --  For CPP types we generated a call to the C++ default constructor
      --  before the components have been initialized to ensure the proper
      --  initialization of the _Tag component (see above).

      if Is_CPP_Class (Typ) then
         null;

      --  If the type is tagged, the tag needs to be initialized (unless we
      --  are in VM-mode where tags are implicit). It is done late in the
      --  initialization process because in some cases, we call the init
      --  proc of an ancestor which will not leave out the right tag.

      elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
         Instr :=
           Make_Tag_Assignment_From_Type
             (Loc, New_Copy_Tree (Target), Base_Type (Typ));

         Append_To (L, Instr);

         --  Ada 2005 (AI-251): If the tagged type has been derived from an
         --  abstract interfaces we must also initialize the tags of the
         --  secondary dispatch tables.

         if Has_Interfaces (Base_Type (Typ)) then
            Init_Secondary_Tags
              (Typ            => Base_Type (Typ),
               Target         => Target,
               Stmts_List     => L,
               Init_Tags_List => L);
         end if;
      end if;

      --  If the controllers have not been initialized yet (by lack of non-
      --  discriminant components), let's do it now.

      Generate_Finalization_Actions;

      return L;
   end Build_Record_Aggr_Code;

   -------------------------------
   -- Convert_Aggr_In_Allocator --
   -------------------------------

   procedure Convert_Aggr_In_Allocator (N : Node_Id; Temp : Entity_Id) is
      Aggr : constant Node_Id    := Unqualify (Expression (N));
      Loc  : constant Source_Ptr := Sloc (Aggr);
      Typ  : constant Entity_Id  := Etype (Aggr);

      Occ  : constant Node_Id :=
        Unchecked_Convert_To (Typ,
          Make_Explicit_Dereference (Loc, New_Occurrence_Of (Temp, Loc)));

   begin
      if Has_Default_Init_Comps (Aggr) then
         declare
            Init_Stmts : constant List_Id := Late_Expansion (Aggr, Typ, Occ);

         begin
            if Has_Task (Typ) then
               declare
                  Actions : constant List_Id := New_List;

               begin
                  Build_Task_Allocate_Block (Actions, Aggr, Init_Stmts);
                  Insert_Actions (N, Actions);
               end;

            else
               Insert_Actions (N, Init_Stmts);
            end if;
         end;

      else
         Insert_Actions (N, Late_Expansion (Aggr, Typ, Occ));
      end if;
   end Convert_Aggr_In_Allocator;

   --------------------------------
   -- Convert_Aggr_In_Assignment --
   --------------------------------

   procedure Convert_Aggr_In_Assignment (N : Node_Id) is
      Aggr : constant Node_Id   := Unqualify (Expression (N));
      Typ  : constant Entity_Id := Etype (Aggr);
      Occ  : constant Node_Id   := New_Copy_Tree (Name (N));

   begin
      Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
   end Convert_Aggr_In_Assignment;

   ---------------------------------
   -- Convert_Aggr_In_Object_Decl --
   ---------------------------------

   procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
      Obj    : constant Entity_Id  := Defining_Identifier (N);
      Aggr   : constant Node_Id    := Unqualify (Expression (N));
      Loc    : constant Source_Ptr := Sloc (Aggr);
      Typ    : constant Entity_Id  := Etype (Aggr);
      Marker : constant Node_Id    := Next (N);

      function Discriminants_Ok return Boolean;
      --  If the object's subtype is constrained, the discriminants in the
      --  aggregate must be checked against the discriminants of the subtype.
      --  This cannot be done using Apply_Discriminant_Checks because after
      --  expansion there is no aggregate left to check.

      ----------------------
      -- Discriminants_Ok --
      ----------------------

      function Discriminants_Ok return Boolean is
         Cond  : Node_Id := Empty;
         Check : Node_Id;
         D     : Entity_Id;
         Disc1 : Elmt_Id;
         Disc2 : Elmt_Id;
         Val1  : Node_Id;
         Val2  : Node_Id;

      begin
         D := First_Discriminant (Typ);
         Disc1 := First_Elmt (Discriminant_Constraint (Typ));
         Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
         while Present (Disc1) and then Present (Disc2) loop
            Val1 := Node (Disc1);
            Val2 := Node (Disc2);

            if not Is_OK_Static_Expression (Val1)
              or else not Is_OK_Static_Expression (Val2)
            then
               Check := Make_Op_Ne (Loc,
                 Left_Opnd  => Duplicate_Subexpr (Val1),
                 Right_Opnd => Duplicate_Subexpr (Val2));

               if No (Cond) then
                  Cond := Check;

               else
                  Cond := Make_Or_Else (Loc,
                    Left_Opnd => Cond,
                    Right_Opnd => Check);
               end if;

            elsif Expr_Value (Val1) /= Expr_Value (Val2) then
               Apply_Compile_Time_Constraint_Error (Aggr,
                 Msg    => "incorrect value for discriminant&??",
                 Reason => CE_Discriminant_Check_Failed,
                 Ent    => D);
               return False;
            end if;

            Next_Discriminant (D);
            Next_Elmt (Disc1);
            Next_Elmt (Disc2);
         end loop;

         --  If any discriminant constraint is nonstatic, emit a check

         if Present (Cond) then
            Insert_Action (N,
              Make_Raise_Constraint_Error (Loc,
                Condition => Cond,
                Reason    => CE_Discriminant_Check_Failed));
         end if;

         return True;
      end Discriminants_Ok;

      --  Local variables

      Occ   : Node_Id;
      Param : Node_Id;
      Stmt  : Node_Id;
      Stmts : List_Id;

   --  Start of processing for Convert_Aggr_In_Object_Decl

   begin
      --  First generate discriminant checks if need be, and bail out if one
      --  of them fails statically.

      if Has_Discriminants (Typ)
        and then Typ /= Etype (Obj)
        and then Is_Constrained (Etype (Obj))
        and then not Discriminants_Ok
      then
         return;
      end if;

      --  If the context is an extended return statement, it has its own
      --  finalization machinery (i.e. works like a transient scope) and
      --  we do not want to create an additional one, because objects on
      --  the finalization list of the return must be moved to the caller's
      --  finalization list to complete the return.

      --  Similarly if the aggregate is limited, it is built in place, and the
      --  controlled components are not assigned to intermediate temporaries
      --  so there is no need for a transient scope in this case either.

      if Requires_Transient_Scope (Typ)
        and then Ekind (Current_Scope) /= E_Return_Statement
        and then not Is_Limited_Type (Typ)
      then
         Establish_Transient_Scope (N, Manage_Sec_Stack => False);
      end if;

      Occ := New_Occurrence_Of (Obj, Loc);
      Set_Assignment_OK (Occ);
      Stmts := Late_Expansion (Aggr, Typ, Occ);

      Insert_Actions_After (N, Stmts);

      --  If Typ has controlled components and a call to a Slice_Assign
      --  procedure is part of the initialization statements, then we
      --  need to initialize the array component since Slice_Assign will
      --  need to adjust it.

      if Has_Controlled_Component (Typ) then
         Stmt := First (Stmts);

         while Present (Stmt) loop
            if Nkind (Stmt) = N_Procedure_Call_Statement
              and then Is_TSS (Entity (Name (Stmt)), TSS_Slice_Assign)
            then
               Param := First (Parameter_Associations (Stmt));
               Insert_Actions (Stmt,
                 Build_Initialization_Call (N,
                   New_Copy_Tree (Param), Etype (Param)));
            end if;

            Next (Stmt);
         end loop;
      end if;

      --  If Typ is a bit-packed array and the first statement generated for
      --  the aggregate initialization is an assignment of the form:

      --    Obj (j) := (Obj (j) [and Mask]) or Val

      --  then we initialize Obj (j) right before the assignment, in order to
      --  avoid a spurious warning about Obj being used uninitialized.

      if Is_Bit_Packed_Array (Typ) then
         Stmt := Next (N);

         if Stmt /= Marker
           and then Nkind (Stmt) = N_Assignment_Statement
           and then Nkind (Expression (Stmt)) in N_Op_And | N_Op_Or
           and then Nkind (Name (Stmt)) = N_Indexed_Component
           and then Is_Entity_Name (Prefix (Name (Stmt)))
           and then Entity (Prefix (Name (Stmt))) = Obj
         then
            Insert_Action (Stmt,
              Make_Assignment_Statement (Loc,
                Name       => New_Copy_Tree (Name (Stmt)),
                Expression => Make_Integer_Literal (Loc, Uint_0)));
         end if;
      end if;

      --  After expansion the expression can be removed from the declaration
      --  except if the object is class-wide, in which case the aggregate
      --  provides the actual type.

      if not Is_Class_Wide_Type (Etype (Obj)) then
         Set_Expression (N, Empty);
      end if;

      Set_No_Initialization (N);

      Initialize_Discriminants (N, Typ);

      --  Park the generated statements if the declaration requires it and is
      --  not the node that is wrapped in a transient scope.

      if Needs_Initialization_Statements (N)
        and then not (Scope_Is_Transient and then N = Node_To_Be_Wrapped)
      then
         Move_To_Initialization_Statements (N, Marker);
      end if;
   end Convert_Aggr_In_Object_Decl;

   ------------------------
   -- In_Place_Assign_OK --
   ------------------------

   function In_Place_Assign_OK
     (N             : Node_Id;
      Target_Object : Entity_Id := Empty) return Boolean
   is
      Is_Array : constant Boolean := Is_Array_Type (Etype (N));

      function Safe_Aggregate (Aggr : Node_Id) return Boolean;
      --  Check recursively that each component of a (sub)aggregate does not
      --  depend on the variable being assigned to.

      function Safe_Component (Expr : Node_Id) return Boolean;
      --  Verify that an expression cannot depend on the target being assigned
      --  to. Return true for compile-time known values, stand-alone objects,
      --  parameters passed by copy, calls to functions that return by copy,
      --  selected components thereof only if the aggregate's type is an array,
      --  indexed components and slices thereof only if the aggregate's type is
      --  a record, and simple expressions involving only these as operands.
      --  This is OK whatever the target because, for a component to overlap
      --  with the target, it must be either a direct reference to a component
      --  of the target, in which case there must be a matching selection or
      --  indexation or slicing, or an indirect reference to such a component,
      --  which is excluded by the above condition. Additionally, if the target
      --  is statically known, return true for arbitrarily nested selections,
      --  indexations or slicings, provided that their ultimate prefix is not
      --  the target itself.

      --------------------
      -- Safe_Aggregate --
      --------------------

      function Safe_Aggregate (Aggr : Node_Id) return Boolean is
         Expr : Node_Id;

      begin
         if Nkind (Parent (Aggr)) = N_Iterated_Component_Association then
            return False;
         end if;

         if Present (Expressions (Aggr)) then
            Expr := First (Expressions (Aggr));
            while Present (Expr) loop
               if Nkind (Expr) = N_Aggregate then
                  if not Safe_Aggregate (Expr) then
                     return False;
                  end if;

               elsif not Safe_Component (Expr) then
                  return False;
               end if;

               Next (Expr);
            end loop;
         end if;

         if Present (Component_Associations (Aggr)) then
            Expr := First (Component_Associations (Aggr));
            while Present (Expr) loop
               if Nkind (Expression (Expr)) = N_Aggregate then
                  if not Safe_Aggregate (Expression (Expr)) then
                     return False;
                  end if;

               --  If association has a box, no way to determine yet whether
               --  default can be assigned in place.

               elsif Box_Present (Expr) then
                  return False;

               elsif not Safe_Component (Expression (Expr)) then
                  return False;
               end if;

               Next (Expr);
            end loop;
         end if;

         return True;
      end Safe_Aggregate;

      --------------------
      -- Safe_Component --
      --------------------

      function Safe_Component (Expr : Node_Id) return Boolean is
         Comp : Node_Id := Expr;

         function Check_Component (C : Node_Id; T_OK : Boolean) return Boolean;
         --  Do the recursive traversal, after copy. If T_OK is True, return
         --  True for a stand-alone object only if the target is statically
         --  known and distinct from the object. At the top level, we start
         --  with T_OK set to False and set it to True at a deeper level only
         --  if we cannot disambiguate the component here without statically
         --  knowing the target. Note that this is not optimal, we should do
         --  something along the lines of Denotes_Same_Prefix for that.

         ---------------------
         -- Check_Component --
         ---------------------

         function Check_Component (C : Node_Id; T_OK : Boolean) return Boolean
         is

            function SDO (E : Entity_Id) return Uint;
            --  Return the Scope Depth Of the enclosing dynamic scope of E

            ---------
            -- SDO --
            ---------

            function SDO (E : Entity_Id) return Uint is
            begin
               return Scope_Depth (Enclosing_Dynamic_Scope (E));
            end SDO;

         --  Start of processing for Check_Component

         begin
            if Is_Overloaded (C) then
               return False;

            elsif Compile_Time_Known_Value (C) then
               return True;
            end if;

            case Nkind (C) is
               when N_Attribute_Reference =>
                  return Check_Component (Prefix (C), T_OK);

               when N_Function_Call =>
                  if Nkind (Name (C)) = N_Explicit_Dereference then
                     return not Returns_By_Ref (Etype (Name (C)));
                  else
                     return not Returns_By_Ref (Entity (Name (C)));
                  end if;

               when N_Indexed_Component | N_Slice =>
                  --  In a target record, these operations cannot determine
                  --  alone a component so we can recurse whatever the target.
                  return Check_Component (Prefix (C), T_OK or else Is_Array);

               when N_Selected_Component =>
                  --  In a target array, this operation cannot determine alone
                  --  a component so we can recurse whatever the target.
                  return
                    Check_Component (Prefix (C), T_OK or else not Is_Array);

               when N_Type_Conversion | N_Unchecked_Type_Conversion =>
                  return Check_Component (Expression (C), T_OK);

               when N_Binary_Op =>
                  return Check_Component (Left_Opnd (C), T_OK)
                    and then Check_Component (Right_Opnd (C), T_OK);

               when N_Unary_Op =>
                  return Check_Component (Right_Opnd (C), T_OK);

               when others =>
                  if Is_Entity_Name (C) and then Is_Object (Entity (C)) then
                     --  Case of a formal parameter component. It's either
                     --  trivial if passed by copy or very annoying if not,
                     --  because in the latter case it's almost equivalent
                     --  to a dereference, so the path-based disambiguation
                     --  logic is totally off and we always need the target.

                     if Is_Formal (Entity (C)) then

                        --  If it is passed by copy, then this is safe

                        if Mechanism (Entity (C)) = By_Copy then
                           return True;

                        --  Otherwise, this is safe if the target is present
                        --  and is at least as deeply nested as the component.

                        else
                           return Present (Target_Object)
                             and then not Is_Formal (Target_Object)
                             and then SDO (Target_Object) >= SDO (Entity (C));
                        end if;

                     --  For a renamed object, recurse

                     elsif Present (Renamed_Object (Entity (C))) then
                        return
                          Check_Component (Renamed_Object (Entity (C)), T_OK);

                     --  If this is safe whatever the target, we are done

                     elsif not T_OK then
                        return True;

                     --  If there is no target or the component is the target,
                     --  this is not safe.

                     elsif No (Target_Object)
                       or else Entity (C) = Target_Object
                     then
                        return False;

                     --  Case of a formal parameter target. This is safe if it
                     --  is at most as deeply nested as the component.

                     elsif Is_Formal (Target_Object) then
                        return SDO (Target_Object) <= SDO (Entity (C));

                     --  For distinct stand-alone objects, this is safe

                     else
                        return True;
                     end if;

                  --  For anything else than an object, this is not safe

                  else
                     return False;
                  end if;
            end case;
         end Check_Component;

      --  Start of processing for Safe_Component

      begin
         --  If the component appears in an association that may correspond
         --  to more than one element, it is not analyzed before expansion
         --  into assignments, to avoid side effects. We analyze, but do not
         --  resolve the copy, to obtain sufficient entity information for
         --  the checks that follow. If component is overloaded we assume
         --  an unsafe function call.

         if not Analyzed (Comp) then
            if Is_Overloaded (Expr) then
               return False;

            elsif Nkind (Expr) = N_Allocator then

               --  For now, too complex to analyze

               return False;

            elsif Nkind (Parent (Expr)) = N_Iterated_Component_Association then

               --  Ditto for iterated component associations, which in general
               --  require an enclosing loop and involve nonstatic expressions.

               return False;
            end if;

            Comp := New_Copy_Tree (Expr);
            Set_Parent (Comp, Parent (Expr));
            Analyze (Comp);
         end if;

         if Nkind (Comp) = N_Aggregate then
            return Safe_Aggregate (Comp);
         else
            return Check_Component (Comp, False);
         end if;
      end Safe_Component;

      --  Local variables

      Parent_Kind : Node_Kind;
      Parent_Node : Node_Id;

   --  Start of processing for In_Place_Assign_OK

   begin
      --  By-copy semantic cannot be guaranteed for controlled objects

      if Needs_Finalization (Etype (N)) then
         return False;
      end if;

      Parent_Node := Parent (N);
      Parent_Kind := Nkind (Parent_Node);

      if Parent_Kind = N_Qualified_Expression then
         Parent_Node := Parent (Parent_Node);
         Parent_Kind := Nkind (Parent_Node);
      end if;

      --  On assignment, sliding can take place, so we cannot do the
      --  assignment in place unless the bounds of the aggregate are
      --  statically equal to those of the target.

      if Is_Array
        and then Must_Slide (N, Etype (Name (Parent_Node)), Etype (N))
      then
         return False;
      end if;

      --  Now check the component values themselves

      return Safe_Aggregate (N);
   end In_Place_Assign_OK;

   ----------------------------
   -- Convert_To_Assignments --
   ----------------------------

   procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
      Loc : constant Source_Ptr := Sloc (N);

      function Known_Size (Decl : Node_Id; Cond_Init : Boolean) return Boolean;
      --  Decl is an N_Object_Declaration node. Return true if it declares an
      --  object with a known size; in this context, that is always the case,
      --  except for a declaration without explicit constraints of an object,
      --  either whose nominal subtype is class-wide, or whose initialization
      --  contains a conditional expression and whose nominal subtype is both
      --  discriminated and unconstrained.

      ----------------
      -- Known_Size --
      ----------------

      function Known_Size (Decl : Node_Id; Cond_Init : Boolean) return Boolean
      is
      begin
         if Is_Entity_Name (Object_Definition (Decl)) then
            declare
               Typ : constant Entity_Id := Entity (Object_Definition (Decl));

            begin
               return not Is_Class_Wide_Type (Typ)
                 and then not (Cond_Init
                                and then Has_Discriminants (Typ)
                                and then not Is_Constrained (Typ));
            end;

         else
            return True;
         end if;
      end Known_Size;

      --  Local variables

      Aggr_Code    : List_Id;
      Full_Typ     : Entity_Id;
      In_Cond_Expr : Boolean;
      Instr        : Node_Id;
      Node         : Node_Id;
      Parent_Node  : Node_Id;
      Target_Expr  : Node_Id;
      Temp         : Entity_Id;

   --  Start of processing for Convert_To_Assignments

   begin
      pragma Assert (Nkind (N) in N_Aggregate | N_Extension_Aggregate);
      pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
      pragma Assert (Is_Record_Type (Typ));

      In_Cond_Expr := False;
      Node         := N;
      Parent_Node  := Parent (Node);

      --  First, climb the parent chain, looking through qualified expressions
      --  and dependent expressions of conditional expressions.

      while True loop
         case Nkind (Parent_Node) is
            when N_Case_Expression_Alternative =>
               null;

            when N_Case_Expression =>
               exit when Node = Expression (Parent_Node);
               In_Cond_Expr := True;

            when N_If_Expression =>
               exit when Node = First (Expressions (Parent_Node));
               In_Cond_Expr := True;

            when N_Qualified_Expression =>
               null;

            when others =>
               exit;
         end case;

         Node        := Parent_Node;
         Parent_Node := Parent (Node);
      end loop;

      --  Set the Expansion_Delayed flag in the cases where the transformation
      --  will be done top down from above.

      if
         --  Internal aggregates (transformed when expanding the parent),
         --  excluding container aggregates as these are transformed into
         --  subprogram calls later.

         (Nkind (Parent_Node) = N_Component_Association
           and then not Is_Container_Aggregate (Parent (Parent_Node)))

         or else (Nkind (Parent_Node) in N_Aggregate | N_Extension_Aggregate
                   and then not Is_Container_Aggregate (Parent_Node))

         --  Allocator (see Convert_Aggr_In_Allocator)

         or else Nkind (Parent_Node) = N_Allocator

         --  Object declaration (see Convert_Aggr_In_Object_Decl). So far only
         --  declarations with a known size are supported.

         or else (Nkind (Parent_Node) = N_Object_Declaration
                   and then Known_Size (Parent_Node, In_Cond_Expr))

         --  Safe assignment (see Convert_Aggr_In_Assignment). So far only the
         --  assignments in init procs are taken into account.

         or else (Nkind (Parent_Node) = N_Assignment_Statement
                   and then Inside_Init_Proc)

         --  Simple return statement, which will be handled in a build-in-place
         --  fashion and will ultimately be rewritten as an extended return.

         or else Is_Build_In_Place_Aggregate_Return (Parent_Node)
      then
         Node := N;

         --  Mark the aggregate, as well as all the intermediate conditional
         --  expressions, as having expansion delayed. This will block the
         --  usual (bottom-up) expansion of the marked nodes and replace it
         --  with a top-down expansion from the parent node.

         while Node /= Parent_Node loop
            if Nkind (Node) in N_Aggregate
                             | N_Case_Expression
                             | N_Extension_Aggregate
                             | N_If_Expression
            then
               Set_Expansion_Delayed (Node);
            end if;

            Node := Parent (Node);
         end loop;

         return;
      end if;

      --  Otherwise, if a transient scope is required, create it now

      if Requires_Transient_Scope (Typ) then
         Establish_Transient_Scope (N, Manage_Sec_Stack => False);
      end if;

      --  Now get back to the immediate parent, modulo qualified expression

      Parent_Node := Parent (N);

      if Nkind (Parent_Node) = N_Qualified_Expression then
         Parent_Node := Parent (Parent_Node);
      end if;

      --  If the context is an assignment and the aggregate is limited, this
      --  is a subaggregate of an enclosing aggregate being expanded; it must
      --  be built in place, so use the target of the current assignment.

      if Nkind (Parent_Node) = N_Assignment_Statement
        and then Is_Limited_Type (Typ)
      then
         Target_Expr := New_Copy_Tree (Name (Parent_Node));
         Insert_Actions (Parent_Node,
           Build_Record_Aggr_Code (N, Typ, Target_Expr));
         Rewrite (Parent_Node, Make_Null_Statement (Loc));

      --  Do not declare a temporary to initialize an aggregate assigned to
      --  a target when in-place assignment is possible, i.e. preserving the
      --  by-copy semantics of aggregates. This avoids large stack usage and
      --  generates more efficient code.

      elsif Nkind (Parent_Node) = N_Assignment_Statement
        and then In_Place_Assign_OK (N, Get_Base_Object (Name (Parent_Node)))
      then
         declare
            Lhs : constant Node_Id := Name (Parent_Node);
         begin
            --  Apply discriminant check if required

            if Has_Discriminants (Etype (N)) then
               Apply_Discriminant_Check (N, Etype (Lhs), Lhs);
            end if;

            --  The check just above may have replaced the aggregate with a CE

            if Nkind (N) in N_Aggregate | N_Extension_Aggregate then
               Target_Expr := New_Copy_Tree (Lhs);
               Insert_Actions (Parent_Node,
                 Build_Record_Aggr_Code (N, Typ, Target_Expr));
               Rewrite (Parent_Node, Make_Null_Statement (Loc));
            end if;
         end;

      --  Otherwise, create a temporary since aggregates have by-copy semantics

      else
         Temp := Make_Temporary (Loc, 'A', N);

         --  If the type inherits unknown discriminants, use the view with
         --  known discriminants if available.

         if Has_Unknown_Discriminants (Typ)
           and then Present (Underlying_Record_View (Typ))
         then
            Full_Typ := Underlying_Record_View (Typ);
         else
            Full_Typ := Typ;
         end if;

         Instr :=
           Make_Object_Declaration (Loc,
             Defining_Identifier => Temp,
             Object_Definition   => New_Occurrence_Of (Full_Typ, Loc));

         Set_No_Initialization (Instr);
         Insert_Action (N, Instr);
         Initialize_Discriminants (Instr, Full_Typ);

         Target_Expr := New_Occurrence_Of (Temp, Loc);
         Aggr_Code   := Build_Record_Aggr_Code (N, Full_Typ, Target_Expr);

         --  Save the last assignment statement associated with the aggregate
         --  when building a controlled object. This reference is utilized by
         --  the finalization machinery when marking an object as successfully
         --  initialized.

         if Needs_Finalization (Full_Typ) then
            Set_Last_Aggregate_Assignment (Temp, Last (Aggr_Code));
         end if;

         Insert_Actions (N, Aggr_Code);
         Rewrite (N, New_Occurrence_Of (Temp, Loc));
         Analyze_And_Resolve (N, Full_Typ);
      end if;
   end Convert_To_Assignments;

   ---------------------------
   -- Convert_To_Positional --
   ---------------------------

   procedure Convert_To_Positional
     (N                 : Node_Id;
      Handle_Bit_Packed : Boolean := False)
   is
      Typ                  : constant Entity_Id := Etype (N);
      Dims                 : constant Nat := Number_Dimensions (Typ);
      Max_Others_Replicate : constant Nat := Max_Aggregate_Size (N);

      Static_Components : Boolean   := True;

      procedure Check_Static_Components;
      --  Check whether all components of the aggregate are compile-time known
      --  values, and can be passed as is to the back-end without further
      --  expansion.

      function Flatten
        (N    : Node_Id;
         Dims : Nat;
         Ix   : Node_Id;
         Ixb  : Node_Id) return Boolean;
      --  Convert the aggregate into a purely positional form if possible after
      --  checking that the bounds of all dimensions are known to be static.

      function Is_Flat (N : Node_Id; Dims : Nat) return Boolean;
      --  Return True if the aggregate N is flat (which is not trivial in the
      --  case of multidimensional aggregates).

      function Is_Static_Element (N : Node_Id) return Boolean;
      --  Return True if N, an element of a component association list, i.e.
      --  N_Component_Association or N_Iterated_Component_Association, has a
      --  compile-time known value and can be passed as is to the back-end
      --  without further expansion.
      --  An Iterated_Component_Association is treated as nonstatic in most
      --  cases for now, so there are possibilities for optimization.

      -----------------------------
      -- Check_Static_Components --
      -----------------------------

      --  Could use some comments in this body ???

      procedure Check_Static_Components is
         Assoc : Node_Id;
         Expr  : Node_Id;

      begin
         Static_Components := True;

         if Nkind (N) = N_String_Literal then
            null;

         elsif Present (Expressions (N)) then
            Expr := First (Expressions (N));
            while Present (Expr) loop
               if Nkind (Expr) /= N_Aggregate
                 or else not Compile_Time_Known_Aggregate (Expr)
                 or else Expansion_Delayed (Expr)
               then
                  Static_Components := False;
                  exit;
               end if;

               Next (Expr);
            end loop;
         end if;

         if Nkind (N) = N_Aggregate
           and then Present (Component_Associations (N))
         then
            Assoc := First (Component_Associations (N));
            while Present (Assoc) loop
               if not Is_Static_Element (Assoc) then
                  Static_Components := False;
                  exit;
               end if;

               Next (Assoc);
            end loop;
         end if;
      end Check_Static_Components;

      -------------
      -- Flatten --
      -------------

      function Flatten
        (N    : Node_Id;
         Dims : Nat;
         Ix   : Node_Id;
         Ixb  : Node_Id) return Boolean
      is
         Loc : constant Source_Ptr := Sloc (N);
         Blo : constant Node_Id    := Type_Low_Bound (Etype (Ixb));
         Lo  : constant Node_Id    := Type_Low_Bound (Etype (Ix));
         Hi  : constant Node_Id    := Type_High_Bound (Etype (Ix));

         function Cannot_Flatten_Next_Aggr (Expr : Node_Id) return Boolean;
         --  Return true if Expr is an aggregate for the next dimension that
         --  cannot be recursively flattened.

         ------------------------------
         -- Cannot_Flatten_Next_Aggr --
         ------------------------------

         function Cannot_Flatten_Next_Aggr (Expr : Node_Id) return Boolean is
         begin
            return Nkind (Expr) = N_Aggregate
              and then Present (Next_Index (Ix))
              and then not
                Flatten (Expr, Dims - 1, Next_Index (Ix), Next_Index (Ixb));
         end Cannot_Flatten_Next_Aggr;

         --  Local variables

         Lov            : Uint;
         Hiv            : Uint;
         Others_Present : Boolean;

      --  Start of processing for Flatten

      begin
         if Nkind (Original_Node (N)) = N_String_Literal then
            return True;
         end if;

         if not Compile_Time_Known_Value (Lo)
           or else not Compile_Time_Known_Value (Hi)
         then
            return False;
         end if;

         Lov := Expr_Value (Lo);
         Hiv := Expr_Value (Hi);

         --  Check if there is an others choice

         Others_Present := False;

         if Present (Component_Associations (N)) then
            if Is_Empty_List (Component_Associations (N)) then
               --  an expanded null array aggregate
               return False;
            end if;

            declare
               Assoc   : Node_Id;
               Choice  : Node_Id;

            begin
               Assoc := First (Component_Associations (N));
               while Present (Assoc) loop

                  --  If this is a box association, flattening is in general
                  --  not possible because at this point we cannot tell if the
                  --  default is static or even exists.

                  if Box_Present (Assoc) then
                     return False;

                  elsif Nkind (Assoc) = N_Iterated_Component_Association then
                     return False;
                  end if;

                  Choice := First (Choice_List (Assoc));

                  while Present (Choice) loop
                     if Nkind (Choice) = N_Others_Choice then
                        Others_Present := True;
                     end if;

                     Next (Choice);
                  end loop;

                  Next (Assoc);
               end loop;
            end;
         end if;

         --  If the low bound is not known at compile time and others is not
         --  present we can proceed since the bounds can be obtained from the
         --  aggregate.

         if not Compile_Time_Known_Value (Blo) and then Others_Present then
            return False;
         end if;

         --  Guard against raising C_E in UI_To_Int

         if not UI_Are_In_Int_Range (Lov, Hiv) then
            return False;
         end if;

         --  Determine if set of alternatives is suitable for conversion and
         --  build an array containing the values in sequence.

         declare
            Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
                     of Node_Id := (others => Empty);
            --  The values in the aggregate sorted appropriately

            Vlist : List_Id;
            --  Same data as Vals in list form

            Rep_Count : Nat;
            --  Used to validate Max_Others_Replicate limit

            Elmt         : Node_Id;
            Expr         : Node_Id;
            Num          : Int := UI_To_Int (Lov);
            Choice_Index : Int;
            Choice       : Node_Id;
            Lo, Hi       : Node_Id;

         begin
            if Present (Expressions (N)) then
               Elmt := First (Expressions (N));
               while Present (Elmt) loop
                  --  In the case of a multidimensional array, check that the
                  --  aggregate can be recursively flattened.

                  if Cannot_Flatten_Next_Aggr (Elmt) then
                     return False;
                  end if;

                  --  Duplicate expression for each index it covers

                  Vals (Num) := New_Copy_Tree (Elmt);
                  Num := Num + 1;

                  Next (Elmt);
               end loop;
            end if;

            if No (Component_Associations (N)) then
               return True;
            end if;

            Elmt := First (Component_Associations (N));

            Component_Loop : while Present (Elmt) loop
               Expr := Expression (Elmt);

               --  If the expression involves a construct that generates a
               --  loop, we must generate individual assignments and no
               --  flattening is possible.

               if Nkind (Expr) = N_Quantified_Expression then
                  return False;
               end if;

               --  In the case of a multidimensional array, check that the
               --  aggregate can be recursively flattened.

               if Cannot_Flatten_Next_Aggr (Expr) then
                  return False;
               end if;

               Choice := First (Choice_List (Elmt));
               Choice_Loop : while Present (Choice) loop

                  --  If we have an others choice, fill in the missing elements
                  --  subject to the limit established by Max_Others_Replicate.

                  if Nkind (Choice) = N_Others_Choice then
                     Rep_Count := 0;

                     for J in Vals'Range loop
                        if No (Vals (J)) then
                           Vals (J)  := New_Copy_Tree (Expr);
                           Rep_Count := Rep_Count + 1;

                           --  Check for maximum others replication. Note that
                           --  we skip this test if either of the restrictions
                           --  No_Implicit_Loops or No_Elaboration_Code is
                           --  active, if this is a preelaborable unit or
                           --  a predefined unit, or if the unit must be
                           --  placed in data memory. This also ensures that
                           --  predefined units get the same level of constant
                           --  folding in Ada 95 and Ada 2005, where their
                           --  categorization has changed.

                           declare
                              P : constant Entity_Id :=
                                    Cunit_Entity (Current_Sem_Unit);

                           begin
                              --  Check if duplication is always OK and, if so,
                              --  continue processing.

                              if Restriction_Active (No_Implicit_Loops) then
                                 null;

                              --  If duplication is not always OK, continue
                              --  only if either the element is static or is
                              --  an aggregate (we already know it is OK).

                              elsif not Is_Static_Element (Elmt)
                                and then Nkind (Expr) /= N_Aggregate
                              then
                                 return False;

                              --  Check if duplication is OK for elaboration
                              --  purposes and, if so, continue processing.

                              elsif Restriction_Active (No_Elaboration_Code)
                                or else
                                  (Ekind (Current_Scope) = E_Package
                                    and then
                                   Static_Elaboration_Desired (Current_Scope))
                                or else Is_Preelaborated (P)
                                or else (Ekind (P) = E_Package_Body
                                          and then
                                         Is_Preelaborated (Spec_Entity (P)))
                                or else
                                  Is_Predefined_Unit (Get_Source_Unit (P))
                              then
                                 null;

                              --  Otherwise, check that the replication count
                              --  is not too high.

                              elsif Rep_Count > Max_Others_Replicate then
                                 return False;
                              end if;
                           end;
                        end if;
                     end loop;

                     if Rep_Count = 0
                       and then Warn_On_Redundant_Constructs
                       -- We don't emit warnings on null arrays initialized
                       -- with an aggregate of the form "(others => ...)".
                       and then Vals'Length > 0
                     then
                        Error_Msg_N ("there are no others?r?", Elmt);
                     end if;

                     exit Component_Loop;

                  --  Case of a subtype mark, identifier or expanded name

                  elsif Is_Entity_Name (Choice)
                    and then Is_Type (Entity (Choice))
                  then
                     Lo := Type_Low_Bound  (Etype (Choice));
                     Hi := Type_High_Bound (Etype (Choice));

                  --  Case of subtype indication

                  elsif Nkind (Choice) = N_Subtype_Indication then
                     Lo := Low_Bound  (Range_Expression (Constraint (Choice)));
                     Hi := High_Bound (Range_Expression (Constraint (Choice)));

                  --  Case of a range

                  elsif Nkind (Choice) = N_Range then
                     Lo := Low_Bound (Choice);
                     Hi := High_Bound (Choice);

                  --  Normal subexpression case

                  else pragma Assert (Nkind (Choice) in N_Subexpr);
                     if not Compile_Time_Known_Value (Choice) then
                        return False;

                     else
                        Choice_Index := UI_To_Int (Expr_Value (Choice));

                        if Choice_Index in Vals'Range then
                           Vals (Choice_Index) := New_Copy_Tree (Expr);
                           goto Continue;

                        --  Choice is statically out-of-range, will be
                        --  rewritten to raise Constraint_Error.

                        else
                           return False;
                        end if;
                     end if;
                  end if;

                  --  Range cases merge with Lo,Hi set

                  if not Compile_Time_Known_Value (Lo)
                       or else
                     not Compile_Time_Known_Value (Hi)
                  then
                     return False;

                  else
                     for J in UI_To_Int (Expr_Value (Lo)) ..
                              UI_To_Int (Expr_Value (Hi))
                     loop
                        Vals (J) := New_Copy_Tree (Expr);
                     end loop;
                  end if;

               <<Continue>>
                  Next (Choice);
               end loop Choice_Loop;

               Next (Elmt);
            end loop Component_Loop;

            --  If we get here the conversion is possible

            Vlist := New_List;
            for J in Vals'Range loop
               Append (Vals (J), Vlist);
            end loop;

            Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
            Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
            return True;
         end;
      end Flatten;

      -------------
      -- Is_Flat --
      -------------

      function Is_Flat (N : Node_Id; Dims : Nat) return Boolean is
         Elmt : Node_Id;

      begin
         if Dims = 0 then
            return True;

         elsif Nkind (N) = N_Aggregate then
            if Present (Component_Associations (N)) then
               return False;

            else
               Elmt := First (Expressions (N));
               while Present (Elmt) loop
                  if not Is_Flat (Elmt, Dims - 1) then
                     return False;
                  end if;

                  Next (Elmt);
               end loop;

               return True;
            end if;
         else
            return True;
         end if;
      end Is_Flat;

      -----------------------
      -- Is_Static_Element --
      -----------------------

      function Is_Static_Element (N : Node_Id) return Boolean is
         Expr : constant Node_Id := Expression (N);

      begin
         --  In most cases the interesting expressions are unambiguously static

         if Compile_Time_Known_Value (Expr) then
            return True;

         elsif Nkind (N) = N_Iterated_Component_Association then
            return False;

         elsif Nkind (Expr) = N_Aggregate
           and then Compile_Time_Known_Aggregate (Expr)
           and then not Expansion_Delayed (Expr)
         then
            return True;

         else
            return False;
         end if;
      end Is_Static_Element;

   --  Start of processing for Convert_To_Positional

   begin
      --  Ada 2005 (AI-287): Do not convert in case of default initialized
      --  components because in this case will need to call the corresponding
      --  IP procedure.

      if Has_Default_Init_Comps (N) then
         return;
      end if;

      --  A subaggregate may have been flattened but is not known to be
      --  Compile_Time_Known. Set that flag in cases that cannot require
      --  elaboration code, so that the aggregate can be used as the
      --  initial value of a thread-local variable.

      if Is_Flat (N, Dims) then
         if Static_Array_Aggregate (N) then
            Set_Compile_Time_Known_Aggregate (N);
         end if;

         return;
      end if;

      if Is_Bit_Packed_Array (Typ) and then not Handle_Bit_Packed then
         return;
      end if;

      --  Do not convert to positional if controlled components are involved
      --  since these require special processing

      if Has_Controlled_Component (Typ) then
         return;
      end if;

      Check_Static_Components;

      --  If the size is known, or all the components are static, try to
      --  build a fully positional aggregate.

      --  The size of the type may not be known for an aggregate with
      --  discriminated array components, but if the components are static
      --  it is still possible to verify statically that the length is
      --  compatible with the upper bound of the type, and therefore it is
      --  worth flattening such aggregates as well.

      if Aggr_Size_OK (N)
        and then
          Flatten (N, Dims, First_Index (Typ), First_Index (Base_Type (Typ)))
      then
         if Static_Components then
            Set_Compile_Time_Known_Aggregate (N);
            Set_Expansion_Delayed (N, False);
         end if;

         Analyze_And_Resolve (N, Typ);
      end if;

      --  If Static_Elaboration_Desired has been specified, diagnose aggregates
      --  that will still require initialization code.

      if (Ekind (Current_Scope) = E_Package
        and then Static_Elaboration_Desired (Current_Scope))
        and then Nkind (Parent (N)) = N_Object_Declaration
      then
         declare
            Expr : Node_Id;

         begin
            if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then
               Expr := First (Expressions (N));
               while Present (Expr) loop
                  if not Compile_Time_Known_Value (Expr) then
                     Error_Msg_N
                       ("non-static object requires elaboration code??", N);
                     exit;
                  end if;

                  Next (Expr);
               end loop;

               if Present (Component_Associations (N)) then
                  Error_Msg_N ("object requires elaboration code??", N);
               end if;
            end if;
         end;
      end if;
   end Convert_To_Positional;

   ----------------------------
   -- Expand_Array_Aggregate --
   ----------------------------

   --  Array aggregate expansion proceeds as follows:

   --  1. If requested we generate code to perform all the array aggregate
   --     bound checks, specifically

   --         (a) Check that the index range defined by aggregate bounds is
   --             compatible with corresponding index subtype.

   --         (b) If an others choice is present check that no aggregate
   --             index is outside the bounds of the index constraint.

   --         (c) For multidimensional arrays make sure that all subaggregates
   --             corresponding to the same dimension have the same bounds.

   --  2. Check for packed array aggregate which can be converted to a
   --     constant so that the aggregate disappears completely.

   --  3. Check if the aggregate can be statically processed. If this is the
   --     case pass it as is to Gigi. Note that a necessary condition for
   --     static processing is that the aggregate be fully positional.

   --  4. Check if delayed expansion is needed, for example in the cases of
   --     nested aggregates or aggregates in allocators or declarations.

   --  5. If in-place aggregate expansion is not possible, create a temporary
   --     and generate the appropriate initialization code.

   --  6. Build and insert the aggregate code

   procedure Expand_Array_Aggregate (N : Node_Id) is
      Loc : constant Source_Ptr := Sloc (N);

      Typ : constant Entity_Id := Etype (N);
      --  Typ is the correct constrained array subtype of the aggregate

      Component_Typ : constant Entity_Id := Component_Type (Typ);
      --  Component_Typ is the corresponding component type

      Ctyp : constant Entity_Id :=
        Get_Corresponding_Mutably_Tagged_Type_If_Present (Component_Typ);
      --  Ctyp is the corresponding component type to be used

      Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
      --  Number of aggregate index dimensions

      Aggr_Low  : array (1 .. Aggr_Dimension) of Node_Id;
      Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
      --  Low and High bounds of the constraint for each aggregate index

      Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
      --  The type of each index

      Maybe_In_Place_OK : Boolean;
      --  If the type is neither controlled nor packed and the aggregate
      --  is the expression in an assignment, assignment in place may be
      --  possible, provided other conditions are met on the LHS.

      Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
        (others => False);
      --  If Others_Present (J) is True, then there is an others choice in one
      --  of the subaggregates of N at dimension J.

      procedure Build_Constrained_Type (Positional : Boolean);
      --  If the subtype is not static or unconstrained, build a constrained
      --  type using the computable sizes of the aggregate and its sub-
      --  aggregates.

      procedure Check_Bounds (Aggr_Bounds_Node, Index_Bounds_Node : Node_Id);
      --  Checks that the bounds of Aggr_Bounds are within the bounds defined
      --  by Index_Bounds. For null array aggregate (Ada 2022) check that the
      --  aggregate bounds define a null range.

      procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
      --  Checks that in a multidimensional array aggregate all subaggregates
      --  corresponding to the same dimension have the same bounds. Sub_Aggr is
      --  an array subaggregate. Dim is the dimension corresponding to the
      --  subaggregate.

      procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
      --  Computes the values of array Others_Present. Sub_Aggr is the array
      --  subaggregate we start the computation from. Dim is the dimension
      --  corresponding to the subaggregate.

      procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
      --  Checks that if an others choice is present in any subaggregate, no
      --  aggregate index is outside the bounds of the index constraint.
      --  Sub_Aggr is an array subaggregate. Dim is the dimension corresponding
      --  to the subaggregate.

      function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
      --  In addition to Maybe_In_Place_OK, in order for an aggregate to be
      --  built directly into the target of an assignment, the target must
      --  be free of side effects. N is the target of the assignment.

      procedure Two_Pass_Aggregate_Expansion (N : Node_Id);
      --  If the aggregate consists only of iterated associations then the
      --  aggregate is constructed in two steps:
      --  a) Build an expression to compute the number of elements
      --     generated by each iterator, and use the expression to allocate
      --     the destination aggregate.
      --  b) Generate the loops corresponding to each iterator to insert
      --     the elements in their proper positions.

      ----------------------------
      -- Build_Constrained_Type --
      ----------------------------

      procedure Build_Constrained_Type (Positional : Boolean) is
         Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
         Decl     : Node_Id;
         Indexes  : constant List_Id := New_List;
         Num      : Nat;
         Sub_Agg  : Node_Id;

      begin
         --  If the aggregate is purely positional, all its subaggregates
         --  have the same size. We collect the dimensions from the first
         --  subaggregate at each level.

         if Positional then
            Sub_Agg := N;

            for D in 1 .. Aggr_Dimension loop
               Num := List_Length (Expressions (Sub_Agg));

               Append_To (Indexes,
                 Make_Range (Loc,
                   Low_Bound  => Make_Integer_Literal (Loc, Uint_1),
                   High_Bound => Make_Integer_Literal (Loc, Num)));

               Sub_Agg := First (Expressions (Sub_Agg));
            end loop;

         else
            --  We know the aggregate type is unconstrained and the aggregate
            --  is not processable by the back end, therefore not necessarily
            --  positional. Retrieve each dimension bounds (computed earlier).

            for D in 1 .. Aggr_Dimension loop
               Append_To (Indexes,
                 Make_Range (Loc,
                   Low_Bound  => Aggr_Low  (D),
                   High_Bound => Aggr_High (D)));
            end loop;
         end if;

         Decl :=
           Make_Full_Type_Declaration (Loc,
               Defining_Identifier => Agg_Type,
               Type_Definition     =>
                 Make_Constrained_Array_Definition (Loc,
                   Discrete_Subtype_Definitions => Indexes,
                   Component_Definition         =>
                     Make_Component_Definition (Loc,
                       Subtype_Indication =>
                         New_Occurrence_Of (Component_Type (Typ), Loc))));

         Insert_Action (N, Decl);
         Analyze (Decl);
         Set_Etype (N, Agg_Type);
         Set_Is_Itype (Agg_Type);
         Freeze_Itype (Agg_Type, N);
      end Build_Constrained_Type;

      ------------------
      -- Check_Bounds --
      ------------------

      procedure Check_Bounds (Aggr_Bounds_Node, Index_Bounds_Node : Node_Id) is
         Aggr_Bounds : constant Range_Nodes :=
           Get_Index_Bounds (Aggr_Bounds_Node);
         Ind_Bounds  : constant Range_Nodes :=
           Get_Index_Bounds (Index_Bounds_Node);

         Cond : Node_Id;

      begin
         --  For a null array aggregate check that high bound (i.e., low
         --  bound predecessor) exists. Fail if low bound is low bound of
         --  base subtype (in all cases, including modular).

         if Is_Null_Aggregate (N) then
            Insert_Action (N,
              Make_Raise_Constraint_Error (Loc,
                Condition =>
                  Make_Op_Eq (Loc,
                    New_Copy_Tree (Aggr_Bounds.First),
                    New_Copy_Tree
                      (Type_Low_Bound (Base_Type (Etype (Ind_Bounds.First))))),
                Reason    => CE_Range_Check_Failed));
            return;
         end if;

         --  Generate the following test:

         --    [constraint_error when
         --      Aggr_Bounds.First <= Aggr_Bounds.Last and then
         --        (Aggr_Bounds.First < Ind_Bounds.First
         --         or else Aggr_Bounds.Last > Ind_Bounds.Last)]

         --  As an optimization try to see if some tests are trivially vacuous
         --  because we are comparing an expression against itself.

         if Aggr_Bounds.First = Ind_Bounds.First
           and then Aggr_Bounds.Last = Ind_Bounds.Last
         then
            Cond := Empty;

         elsif Aggr_Bounds.Last = Ind_Bounds.Last then
            Cond :=
              Make_Op_Lt (Loc,
                Left_Opnd  =>
                  Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
                Right_Opnd =>
                  Duplicate_Subexpr_Move_Checks (Ind_Bounds.First));

         elsif Aggr_Bounds.First = Ind_Bounds.First then
            Cond :=
              Make_Op_Gt (Loc,
                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Bounds.Last),
                Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Bounds.Last));

         else
            Cond :=
              Make_Or_Else (Loc,
                Left_Opnd =>
                  Make_Op_Lt (Loc,
                    Left_Opnd  =>
                      Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
                    Right_Opnd =>
                      Duplicate_Subexpr_Move_Checks (Ind_Bounds.First)),

                Right_Opnd =>
                  Make_Op_Gt (Loc,
                    Left_Opnd  => Duplicate_Subexpr (Aggr_Bounds.Last),
                    Right_Opnd => Duplicate_Subexpr (Ind_Bounds.Last)));
         end if;

         if Present (Cond) then
            Cond :=
              Make_And_Then (Loc,
                Left_Opnd =>
                  Make_Op_Le (Loc,
                    Left_Opnd  =>
                      Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
                    Right_Opnd =>
                      Duplicate_Subexpr_Move_Checks (Aggr_Bounds.Last)),

                Right_Opnd => Cond);

            Set_Analyzed (Left_Opnd  (Left_Opnd (Cond)), False);
            Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
            Insert_Action (N,
              Make_Raise_Constraint_Error (Loc,
                Condition => Cond,
                Reason    => CE_Range_Check_Failed));
         end if;
      end Check_Bounds;

      ----------------------------
      -- Check_Same_Aggr_Bounds --
      ----------------------------

      procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
         Sub_Bounds : constant Range_Nodes :=
           Get_Index_Bounds (Aggregate_Bounds (Sub_Aggr));
         Sub_Lo : Node_Id renames Sub_Bounds.First;
         Sub_Hi : Node_Id renames Sub_Bounds.Last;
         --  The bounds of this specific subaggregate

         Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
         Aggr_Hi : constant Node_Id := Aggr_High (Dim);
         --  The bounds of the aggregate for this dimension

         Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
         --  The index type for this dimension.

         Cond  : Node_Id;
         Assoc : Node_Id;
         Expr  : Node_Id;

      begin
         --  If index checks are on generate the test

         --    [constraint_error when
         --      Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]

         --  As an optimization try to see if some tests are trivially vacuos
         --  because we are comparing an expression against itself. Also for
         --  the first dimension the test is trivially vacuous because there
         --  is just one aggregate for dimension 1.

         if Index_Checks_Suppressed (Ind_Typ) then
            Cond := Empty;

         elsif Dim = 1 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
         then
            Cond := Empty;

         elsif Aggr_Hi = Sub_Hi then
            Cond :=
              Make_Op_Ne (Loc,
                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
                Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));

         elsif Aggr_Lo = Sub_Lo then
            Cond :=
              Make_Op_Ne (Loc,
                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
                Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));

         else
            Cond :=
              Make_Or_Else (Loc,
                Left_Opnd =>
                  Make_Op_Ne (Loc,
                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),

                Right_Opnd =>
                  Make_Op_Ne (Loc,
                    Left_Opnd  => Duplicate_Subexpr (Aggr_Hi),
                    Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
         end if;

         if Present (Cond) then
            Insert_Action (N,
              Make_Raise_Constraint_Error (Loc,
                Condition => Cond,
                Reason    => CE_Length_Check_Failed));
         end if;

         --  Now look inside the subaggregate to see if there is more work

         if Dim < Aggr_Dimension then

            --  Process positional components

            if Present (Expressions (Sub_Aggr)) then
               Expr := First (Expressions (Sub_Aggr));
               while Present (Expr) loop
                  Check_Same_Aggr_Bounds (Expr, Dim + 1);
                  Next (Expr);
               end loop;
            end if;

            --  Process component associations

            if Present (Component_Associations (Sub_Aggr)) then
               Assoc := First (Component_Associations (Sub_Aggr));
               while Present (Assoc) loop
                  Expr := Expression (Assoc);
                  Check_Same_Aggr_Bounds (Expr, Dim + 1);
                  Next (Assoc);
               end loop;
            end if;
         end if;
      end Check_Same_Aggr_Bounds;

      ----------------------------
      -- Compute_Others_Present --
      ----------------------------

      procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
         Assoc : Node_Id;
         Expr  : Node_Id;

      begin
         if Present (Component_Associations (Sub_Aggr)) then
            Assoc := Last (Component_Associations (Sub_Aggr));

            if Present (Assoc)
              and then Nkind (First (Choice_List (Assoc))) = N_Others_Choice
            then
               Others_Present (Dim) := True;
            end if;
         end if;

         --  Now look inside the subaggregate to see if there is more work

         if Dim < Aggr_Dimension then

            --  Process positional components

            if Present (Expressions (Sub_Aggr)) then
               Expr := First (Expressions (Sub_Aggr));
               while Present (Expr) loop
                  Compute_Others_Present (Expr, Dim + 1);
                  Next (Expr);
               end loop;
            end if;

            --  Process component associations

            if Present (Component_Associations (Sub_Aggr)) then
               Assoc := First (Component_Associations (Sub_Aggr));
               while Present (Assoc) loop
                  Compute_Others_Present (Expression (Assoc), Dim + 1);
                  Next (Assoc);
               end loop;
            end if;
         end if;
      end Compute_Others_Present;

      ------------------
      -- Others_Check --
      ------------------

      procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
         Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
         Aggr_Hi : constant Node_Id := Aggr_High (Dim);
         --  The bounds of the aggregate for this dimension

         Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
         --  The index type for this dimension

         Need_To_Check : Boolean := False;

         Choices_Lo : Node_Id := Empty;
         Choices_Hi : Node_Id := Empty;
         --  The lowest and highest discrete choices for a named subaggregate

         Nb_Choices : Int := -1;
         --  The number of discrete non-others choices in this subaggregate

         Nb_Elements : Uint := Uint_0;
         --  The number of elements in a positional aggregate

         Cond : Node_Id := Empty;

         Assoc  : Node_Id;
         Choice : Node_Id;
         Expr   : Node_Id;

      begin
         --  Check if we have an others choice. If we do make sure that this
         --  subaggregate contains at least one element in addition to the
         --  others choice.

         if Range_Checks_Suppressed (Ind_Typ) then
            Need_To_Check := False;

         elsif Present (Expressions (Sub_Aggr))
           and then Present (Component_Associations (Sub_Aggr))
         then
            Need_To_Check :=
              not (Is_Empty_List (Expressions (Sub_Aggr))
                    and then Is_Empty_List
                               (Component_Associations (Sub_Aggr)));

         elsif Present (Component_Associations (Sub_Aggr)) then
            Assoc := Last (Component_Associations (Sub_Aggr));

            if Nkind (First (Choice_List (Assoc))) /= N_Others_Choice then
               Need_To_Check := False;

            else
               --  Count the number of discrete choices. Start with -1 because
               --  the others choice does not count.

               --  Is there some reason we do not use List_Length here ???

               Nb_Choices := -1;
               Assoc := First (Component_Associations (Sub_Aggr));
               while Present (Assoc) loop
                  Choice := First (Choice_List (Assoc));
                  while Present (Choice) loop
                     Nb_Choices := Nb_Choices + 1;
                     Next (Choice);
                  end loop;

                  Next (Assoc);
               end loop;

               --  If there is only an others choice nothing to do

               Need_To_Check := (Nb_Choices > 0);
            end if;

         else
            Need_To_Check := False;
         end if;

         --  If we are dealing with a positional subaggregate with an others
         --  choice then compute the number or positional elements.

         if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
            Expr := First (Expressions (Sub_Aggr));
            Nb_Elements := Uint_0;
            while Present (Expr) loop
               Nb_Elements := Nb_Elements + 1;
               Next (Expr);
            end loop;

         --  If the aggregate contains discrete choices and an others choice
         --  compute the smallest and largest discrete choice values.

         elsif Need_To_Check then
            Compute_Choices_Lo_And_Choices_Hi : declare

               Table : Case_Table_Type (1 .. Nb_Choices);
               --  Used to sort all the different choice values

               J    : Pos := 1;

            begin
               Assoc := First (Component_Associations (Sub_Aggr));
               while Present (Assoc) loop
                  Choice := First (Choice_List (Assoc));
                  while Present (Choice) loop
                     if Nkind (Choice) = N_Others_Choice then
                        exit;
                     end if;

                     declare
                        Bounds : constant Range_Nodes :=
                          Get_Index_Bounds (Choice);
                     begin
                        Table (J).Choice_Lo := Bounds.First;
                        Table (J).Choice_Hi := Bounds.Last;
                     end;

                     J := J + 1;
                     Next (Choice);
                  end loop;

                  Next (Assoc);
               end loop;

               --  Sort the discrete choices

               Sort_Case_Table (Table);

               Choices_Lo := Table (1).Choice_Lo;
               Choices_Hi := Table (Nb_Choices).Choice_Hi;
            end Compute_Choices_Lo_And_Choices_Hi;
         end if;

         --  If no others choice in this subaggregate, or the aggregate
         --  comprises only an others choice, nothing to do.

         if not Need_To_Check then
            Cond := Empty;

         --  If we are dealing with an aggregate containing an others choice
         --  and positional components, we generate the following test:

         --    if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
         --            Ind_Typ'Pos (Aggr_Hi)
         --    then
         --       raise Constraint_Error;
         --    end if;

         --  in the general case, but the following simpler test:

         --    [constraint_error when
         --      Aggr_Lo + (Nb_Elements - 1) > Aggr_Hi];

         --  instead if the index type is a signed integer.

         elsif Nb_Elements > Uint_0 then
            if Nb_Elements = Uint_1 then
               Cond :=
                 Make_Op_Gt (Loc,
                   Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
                   Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi));

            elsif Is_Signed_Integer_Type (Ind_Typ) then
               Cond :=
                 Make_Op_Gt (Loc,
                   Left_Opnd  =>
                     Make_Op_Add (Loc,
                       Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
                       Right_Opnd =>
                         Make_Integer_Literal (Loc, Nb_Elements - 1)),
                   Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi));

            else
               Cond :=
                 Make_Op_Gt (Loc,
                   Left_Opnd  =>
                     Make_Op_Add (Loc,
                       Left_Opnd  =>
                         Make_Attribute_Reference (Loc,
                           Prefix         => New_Occurrence_Of (Ind_Typ, Loc),
                           Attribute_Name => Name_Pos,
                           Expressions    =>
                             New_List
                               (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
                   Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),

                   Right_Opnd =>
                     Make_Attribute_Reference (Loc,
                       Prefix         => New_Occurrence_Of (Ind_Typ, Loc),
                       Attribute_Name => Name_Pos,
                       Expressions    => New_List (
                         Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
            end if;

         --  If we are dealing with an aggregate containing an others choice
         --  and discrete choices we generate the following test:

         --    [constraint_error when
         --      Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];

         else
            Cond :=
              Make_Or_Else (Loc,
                Left_Opnd =>
                  Make_Op_Lt (Loc,
                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Choices_Lo),
                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo)),

                Right_Opnd =>
                  Make_Op_Gt (Loc,
                    Left_Opnd  => Duplicate_Subexpr (Choices_Hi),
                    Right_Opnd => Duplicate_Subexpr (Aggr_Hi)));
         end if;

         if Present (Cond) then
            Insert_Action (N,
              Make_Raise_Constraint_Error (Loc,
                Condition => Cond,
                Reason    => CE_Length_Check_Failed));
            --  Questionable reason code, shouldn't that be a
            --  CE_Range_Check_Failed ???
         end if;

         --  Now look inside the subaggregate to see if there is more work

         if Dim < Aggr_Dimension then

            --  Process positional components

            if Present (Expressions (Sub_Aggr)) then
               Expr := First (Expressions (Sub_Aggr));
               while Present (Expr) loop
                  Others_Check (Expr, Dim + 1);
                  Next (Expr);
               end loop;
            end if;

            --  Process component associations

            if Present (Component_Associations (Sub_Aggr)) then
               Assoc := First (Component_Associations (Sub_Aggr));
               while Present (Assoc) loop
                  Expr := Expression (Assoc);
                  Others_Check (Expr, Dim + 1);
                  Next (Assoc);
               end loop;
            end if;
         end if;
      end Others_Check;

      -------------------------
      -- Safe_Left_Hand_Side --
      -------------------------

      function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
         function Is_Safe_Index (Indx : Node_Id) return Boolean;
         --  If the left-hand side includes an indexed component, check that
         --  the indexes are free of side effects.

         -------------------
         -- Is_Safe_Index --
         -------------------

         function Is_Safe_Index (Indx : Node_Id) return Boolean is
         begin
            if Is_Entity_Name (Indx) then
               return True;

            elsif Nkind (Indx) = N_Integer_Literal then
               return True;

            elsif Nkind (Indx) = N_Function_Call
              and then Is_Entity_Name (Name (Indx))
              and then Has_Pragma_Pure_Function (Entity (Name (Indx)))
            then
               return True;

            elsif Nkind (Indx) = N_Type_Conversion
              and then Is_Safe_Index (Expression (Indx))
            then
               return True;

            else
               return False;
            end if;
         end Is_Safe_Index;

      --  Start of processing for Safe_Left_Hand_Side

      begin
         if Is_Entity_Name (N) then
            return True;

         elsif Nkind (N) in N_Explicit_Dereference | N_Selected_Component
           and then Safe_Left_Hand_Side (Prefix (N))
         then
            return True;

         elsif Nkind (N) = N_Indexed_Component
           and then Safe_Left_Hand_Side (Prefix (N))
           and then Is_Safe_Index (First (Expressions (N)))
         then
            return True;

         elsif Nkind (N) = N_Unchecked_Type_Conversion then
            return Safe_Left_Hand_Side (Expression (N));

         else
            return False;
         end if;
      end Safe_Left_Hand_Side;

      ----------------------------------
      -- Two_Pass_Aggregate_Expansion --
      ----------------------------------

      procedure Two_Pass_Aggregate_Expansion (N : Node_Id) is
         Loc        : constant Source_Ptr := Sloc (N);
         Comp_Type  : constant Entity_Id := Etype (N);
         Index_Id   : constant Entity_Id := Make_Temporary (Loc, 'I', N);
         Index_Type : constant Entity_Id := Etype (First_Index (Etype (N)));
         Size_Id    : constant Entity_Id := Make_Temporary (Loc, 'I', N);
         Size_Type  : constant Entity_Id :=
                        Integer_Type_For
                          (Esize (Index_Type), Is_Unsigned_Type (Index_Type));
         TmpE       : constant Entity_Id := Make_Temporary (Loc, 'A', N);

         Assoc    : Node_Id := First (Component_Associations (N));
         Incr     : Node_Id;
         Iter     : Node_Id;
         New_Comp : Node_Id;
         One_Loop : Node_Id;
         Iter_Id  : Entity_Id;

         Size_Expr_Code : List_Id;
         Insertion_Code : List_Id := New_List;

      begin
         Size_Expr_Code := New_List (
           Make_Object_Declaration (Loc,
             Defining_Identifier => Size_Id,
             Object_Definition   => New_Occurrence_Of (Size_Type, Loc),
             Expression          => Make_Integer_Literal (Loc, 0)));

         --  First pass: execute the iterators to count the number of elements
         --  that will be generated.

         while Present (Assoc) loop
            Iter := Iterator_Specification (Assoc);
            Iter_Id := Defining_Identifier (Iter);
            Incr := Make_Assignment_Statement (Loc,
                      Name => New_Occurrence_Of (Size_Id, Loc),
                      Expression =>
                        Make_Op_Add (Loc,
                         Left_Opnd  => New_Occurrence_Of (Size_Id, Loc),
                         Right_Opnd => Make_Integer_Literal (Loc, 1)));

            --  Avoid using the same iterator definition in both loops by
            --  creating a new iterator for each loop and mapping it over the
            --  original iterator references.

            One_Loop := Make_Implicit_Loop_Statement (N,
              Iteration_Scheme =>
                Make_Iteration_Scheme (Loc,
                  Iterator_Specification =>
                     New_Copy_Tree (Iter,
                        Map => New_Elmt_List (Iter_Id, New_Copy (Iter_Id)))),
                Statements => New_List (Incr));

            Append (One_Loop, Size_Expr_Code);
            Next (Assoc);
         end loop;

         Insert_Actions (N, Size_Expr_Code);

         --  Build a constrained subtype with the bounds deduced from
         --  the size computed above and declare the aggregate object.
         --  The index type is some discrete type, so the bounds of the
         --  constrained subtype are computed as T'Val (integer bounds).

         declare
            --  Pos_Lo := Index_Type'Pos (Index_Type'First)

            Pos_Lo : constant Node_Id :=
              Make_Attribute_Reference (Loc,
                Prefix         => New_Occurrence_Of (Index_Type, Loc),
                Attribute_Name => Name_Pos,
                Expressions    => New_List (
                  Make_Attribute_Reference (Loc,
                    Prefix => New_Occurrence_Of (Index_Type, Loc),
                    Attribute_Name => Name_First)));

            --  Corresponding index value, i.e. Index_Type'First

            Aggr_Lo : constant Node_Id :=
               Make_Attribute_Reference (Loc,
                 Prefix         => New_Occurrence_Of (Index_Type, Loc),
                 Attribute_Name => Name_First);

            --  Pos_Hi := Pos_Lo + Size - 1

            Pos_Hi : constant Node_Id :=
               Make_Op_Add (Loc,
                 Left_Opnd  => Pos_Lo,
                 Right_Opnd =>
                   Make_Op_Subtract (Loc,
                     Left_Opnd  => New_Occurrence_Of (Size_Id, Loc),
                     Right_Opnd => Make_Integer_Literal (Loc, 1)));

            --  Corresponding index value

            Aggr_Hi : constant Node_Id :=
               Make_Attribute_Reference (Loc,
                 Prefix => New_Occurrence_Of (Index_Type, Loc),
                 Attribute_Name => Name_Val,
                 Expressions    => New_List (Pos_Hi));

            SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
            SubD : constant Node_Id :=
              Make_Subtype_Declaration (Loc,
                Defining_Identifier => SubE,
                Subtype_Indication  =>
                  Make_Subtype_Indication (Loc,
                    Subtype_Mark =>
                      New_Occurrence_Of (Etype (Comp_Type), Loc),
                    Constraint =>
                      Make_Index_Or_Discriminant_Constraint
                        (Loc,
                         Constraints =>
                           New_List (Make_Range (Loc, Aggr_Lo, Aggr_Hi)))));

            --  Create a temporary array of the above subtype which
            --  will be used to capture the aggregate assignments.

            TmpD : constant Node_Id :=
              Make_Object_Declaration (Loc,
                Defining_Identifier => TmpE,
                Object_Definition   => New_Occurrence_Of (SubE, Loc));

         begin
            Insert_Actions (N, New_List (SubD, TmpD));
         end;

         --  Second pass: use the iterators to generate the elements of the
         --  aggregate. Insertion index starts at Index_Type'First. We
         --  assume that the second evaluation of each iterator generates
         --  the same number of elements as the first pass, and consider
         --  that the execution is erroneous (even if the RM does not state
         --  this explicitly) if the number of elements generated differs
         --  between first and second pass.

         Assoc := First (Component_Associations (N));

         --  Initialize insertion position to first array component.

         Insertion_Code := New_List (
           Make_Object_Declaration (Loc,
             Defining_Identifier => Index_Id,
             Object_Definition   =>
               New_Occurrence_Of (Index_Type, Loc),
             Expression =>
               Make_Attribute_Reference (Loc,
                 Prefix => New_Occurrence_Of (Index_Type, Loc),
                 Attribute_Name => Name_First)));

         while Present (Assoc) loop
            Iter := Iterator_Specification (Assoc);
            Iter_Id := Defining_Identifier (Iter);
            New_Comp := Make_Assignment_Statement (Loc,
               Name =>
                 Make_Indexed_Component (Loc,
                    Prefix => New_Occurrence_Of (TmpE, Loc),
                    Expressions =>
                      New_List (New_Occurrence_Of (Index_Id, Loc))),
               Expression => Copy_Separate_Tree (Expression (Assoc)));

            --  Advance index position for insertion.

            Incr := Make_Assignment_Statement (Loc,
                      Name => New_Occurrence_Of (Index_Id, Loc),
                      Expression =>
                        Make_Attribute_Reference (Loc,
                          Prefix =>
                            New_Occurrence_Of (Index_Type, Loc),
                          Attribute_Name => Name_Succ,
                          Expressions =>
                            New_List (New_Occurrence_Of (Index_Id, Loc))));

            --  Add guard to skip last increment when upper bound is reached.

            Incr := Make_If_Statement (Loc,
               Condition =>
                  Make_Op_Ne (Loc,
                  Left_Opnd  => New_Occurrence_Of (Index_Id, Loc),
                  Right_Opnd =>
                    Make_Attribute_Reference (Loc,
                      Prefix => New_Occurrence_Of (Index_Type, Loc),
                      Attribute_Name => Name_Last)),
               Then_Statements => New_List (Incr));

            --  Avoid using the same iterator definition in both loops by
            --  creating a new iterator for each loop and mapping it over the
            --  original iterator references.

            One_Loop := Make_Implicit_Loop_Statement (N,
              Iteration_Scheme =>
                Make_Iteration_Scheme (Loc,
                  Iterator_Specification =>
                     New_Copy_Tree (Iter,
                        Map => New_Elmt_List (Iter_Id, New_Copy (Iter_Id)))),
                Statements => New_List (New_Comp, Incr));

            Append (One_Loop, Insertion_Code);
            Next (Assoc);
         end loop;

         Insert_Actions (N, Insertion_Code);

         --  Depending on context this may not work for build-in-place
         --  arrays ???

         Rewrite (N, New_Occurrence_Of (TmpE, Loc));

      end Two_Pass_Aggregate_Expansion;

      --  Local variables

      Tmp : Entity_Id;
      --  Holds the temporary aggregate value

      Tmp_Decl : Node_Id;
      --  Holds the declaration of Tmp

      Parent_Node : Node_Id;
      Parent_Kind : Node_Kind;

   --  Start of processing for Expand_Array_Aggregate

   begin
      --  Do not touch the special aggregates of attributes used for Asm calls

      if Is_RTE (Ctyp, RE_Asm_Input_Operand)
        or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
      then
         return;

      elsif Is_Two_Pass_Aggregate (N) then
         Two_Pass_Aggregate_Expansion (N);
         return;

      --  Do not attempt expansion if error already detected. We may reach this
      --  point in spite of previous errors when compiling with -gnatq, to
      --  force all possible errors (this is the usual ACATS mode).

      elsif Error_Posted (N) then
         return;
      end if;

      --  If the semantic analyzer has determined that aggregate N will raise
      --  Constraint_Error at run time, then the aggregate node has been
      --  replaced with an N_Raise_Constraint_Error node and we should
      --  never get here.

      pragma Assert (not Raises_Constraint_Error (N));

      --  STEP 1a

      --  Check that the index range defined by aggregate bounds is
      --  compatible with corresponding index subtype.

      Index_Compatibility_Check : declare
         Aggr_Index_Range : Node_Id := First_Index (Typ);
         --  The current aggregate index range

         Index_Constraint : Node_Id := First_Index (Etype (Typ));
         --  The corresponding index constraint against which we have to
         --  check the above aggregate index range.

      begin
         Compute_Others_Present (N, 1);

         for J in 1 .. Aggr_Dimension loop
            --  There is no need to emit a check if an others choice is present
            --  for this array aggregate dimension since in this case one of
            --  N's subaggregates has taken its bounds from the context and
            --  these bounds must have been checked already. In addition all
            --  subaggregates corresponding to the same dimension must all have
            --  the same bounds (checked in (c) below).

            if not Range_Checks_Suppressed (Etype (Index_Constraint))
              and then not Others_Present (J)
            then
               --  We don't use Checks.Apply_Range_Check here because it emits
               --  a spurious check. Namely it checks that the range defined by
               --  the aggregate bounds is nonempty. But we know this already
               --  if we get here.

               Check_Bounds (Aggr_Index_Range, Index_Constraint);
            end if;

            --  Save the low and high bounds of the aggregate index as well as
            --  the index type for later use in checks (b) and (c) below.

            Get_Index_Bounds
              (Aggr_Index_Range, L => Aggr_Low (J), H => Aggr_High (J));

            Aggr_Index_Typ (J) := Etype (Index_Constraint);

            Next_Index (Aggr_Index_Range);
            Next_Index (Index_Constraint);
         end loop;
      end Index_Compatibility_Check;

      --  STEP 1b

      --  If an others choice is present check that no aggregate index is
      --  outside the bounds of the index constraint.

      Others_Check (N, 1);

      --  STEP 1c

      --  For multidimensional arrays make sure that all subaggregates
      --  corresponding to the same dimension have the same bounds.

      if Aggr_Dimension > 1 then
         Check_Same_Aggr_Bounds (N, 1);
      end if;

      --  STEP 1d

      --  If we have a default component value, or simple initialization is
      --  required for the component type, then we replace <> in component
      --  associations by the required default value.

      declare
         Default_Val : Node_Id;
         Assoc       : Node_Id;

      begin
         if (Present (Default_Aspect_Component_Value (Typ))
              or else Needs_Simple_Initialization (Ctyp))
           and then Present (Component_Associations (N))
         then
            Assoc := First (Component_Associations (N));
            while Present (Assoc) loop
               if Nkind (Assoc) = N_Component_Association
                 and then Box_Present (Assoc)
               then
                  Set_Box_Present (Assoc, False);

                  if Present (Default_Aspect_Component_Value (Typ)) then
                     Default_Val := Default_Aspect_Component_Value (Typ);
                  else
                     Default_Val := Get_Simple_Init_Val (Ctyp, N);
                  end if;

                  Set_Expression (Assoc, New_Copy_Tree (Default_Val));
                  Analyze_And_Resolve (Expression (Assoc), Ctyp);
               end if;

               Next (Assoc);
            end loop;
         end if;
      end;

      --  STEP 2

      --  Here we test for is packed array aggregate that we can handle at
      --  compile time. If so, return with transformation done. Note that we do
      --  this even if the aggregate is nested, because once we have done this
      --  processing, there is no more nested aggregate.

      if Packed_Array_Aggregate_Handled (N) then
         return;
      end if;

      --  At this point we try to convert to positional form

      Convert_To_Positional (N);

      --  If the result is no longer an aggregate (e.g. it may be a string
      --  literal, or a temporary which has the needed value), then we are
      --  done, since there is no longer a nested aggregate.

      if Nkind (N) /= N_Aggregate then
         return;

      --  We are also done if the result is an analyzed aggregate, indicating
      --  that Convert_To_Positional succeeded and reanalyzed the rewritten
      --  aggregate.

      elsif Analyzed (N) and then Is_Rewrite_Substitution (N) then
         return;
      end if;

      --  If all aggregate components are compile-time known and the aggregate
      --  has been flattened, nothing left to do. The same occurs if the
      --  aggregate is used to initialize the components of a statically
      --  allocated dispatch table.

      if Compile_Time_Known_Aggregate (N)
        or else Is_Static_Dispatch_Table_Aggregate (N)
      then
         Set_Expansion_Delayed (N, False);
         return;
      end if;

      --  STEP 3

      --  Now see if back end processing is possible

      if Backend_Processing_Possible (N) then

         --  If the aggregate is static but the constraints are not, build
         --  a static subtype for the aggregate, so that Gigi can place it
         --  in static memory. Perform an unchecked_conversion to the non-
         --  static type imposed by the context.

         declare
            Itype      : constant Entity_Id := Etype (N);
            Index      : Node_Id;
            Needs_Type : Boolean := False;

         begin
            Index := First_Index (Itype);
            while Present (Index) loop
               if not Is_OK_Static_Subtype (Etype (Index)) then
                  Needs_Type := True;
                  exit;
               else
                  Next_Index (Index);
               end if;
            end loop;

            if Needs_Type then
               Build_Constrained_Type (Positional => True);
               Rewrite (N, Unchecked_Convert_To (Itype, N));
               Analyze (N);
            end if;
         end;

         return;
      end if;

      --  STEP 4

      --  Set the Expansion_Delayed flag in the cases where the transformation
      --  will be done top down from above.

      Parent_Node := Parent (N);
      Parent_Kind := Nkind (Parent_Node);

      if Parent_Kind = N_Qualified_Expression then
         Parent_Node := Parent (Parent_Node);
         Parent_Kind := Nkind (Parent_Node);
      end if;

      if
         --  Internal aggregates (transformed when expanding the parent),
         --  excluding container aggregates as these are transformed into
         --  subprogram calls later. So far aggregates with self-references
         --  are not supported if they appear in a conditional expression.

         (Parent_Kind = N_Component_Association
           and then not Is_Container_Aggregate (Parent (Parent_Node)))

         or else (Parent_Kind in N_Aggregate | N_Extension_Aggregate
                   and then not Is_Container_Aggregate (Parent_Node))

         --  Allocator (see Convert_Aggr_In_Allocator). Sliding cannot be done
         --  in place for the time being.

         or else (Nkind (Parent_Node) = N_Allocator
                   and then
                     (Aggr_Assignment_OK_For_Backend (N)
                       or else Is_Limited_Type (Typ)
                       or else Needs_Finalization (Typ)
                       or else not Must_Slide
                                     (N,
                                      Designated_Type (Etype (Parent_Node)),
                                      Typ)))

         --  Object declaration (see Convert_Aggr_In_Object_Decl). Sliding
         --  cannot be done in place for the time being.

         or else (Parent_Kind = N_Object_Declaration
                   and then
                     (Aggr_Assignment_OK_For_Backend (N)
                       or else Is_Limited_Type (Typ)
                       or else Needs_Finalization (Typ)
                       or else Is_Special_Return_Object
                                 (Defining_Identifier (Parent_Node))
                       or else not Must_Slide
                                     (N,
                                      Etype
                                        (Defining_Identifier (Parent_Node)),
                                      Typ)))

         --  Safe assignment (see Convert_Aggr_In_Assignment). So far only the
         --  assignments in init procs are taken into account, as well those
         --  directly performed by the back end.

         or else (Parent_Kind = N_Assignment_Statement
                   and then
                     (Inside_Init_Proc
                       or else
                      Aggr_Assignment_OK_For_Backend (N, Name (Parent_Node))))

         --  Simple return statement, which will be handled in a build-in-place
         --  fashion and will ultimately be rewritten as an extended return.

         or else Is_Build_In_Place_Aggregate_Return (Parent_Node)
      then
         Set_Expansion_Delayed (N, not Static_Array_Aggregate (N));
         return;
      end if;

      --  Otherwise, if a transient scope is required, create it now

      if Requires_Transient_Scope (Typ) then
         Establish_Transient_Scope (N, Manage_Sec_Stack => False);
      end if;

      --  STEP 5

      --  Check whether in-place aggregate expansion is possible

      --  We do assignments in place if all the component associations have
      --  known safe values, or have default-initialized limited values, e.g.
      --  protected objects or tasks. For other cases we create a temporary.

      Maybe_In_Place_OK :=
        Parent_Kind = N_Assignment_Statement
          and then (Is_Limited_Type (Typ)
                     or else (not Has_Default_Init_Comps (N)
                               and then not Is_Bit_Packed_Array (Typ)
                               and then
                                 In_Place_Assign_OK
                                   (N, Get_Base_Object (Name (Parent_Node)))));

      --  If this is an array of tasks, it will be expanded into build-in-place
      --  assignments. Build an activation chain for the tasks now.

      if Has_Task (Typ) then
         Build_Activation_Chain_Entity (N);
      end if;

      --  Check that the target of the assignment is also safe

      if Maybe_In_Place_OK
        and then Safe_Left_Hand_Side (Name (Parent_Node))
      then
         Tmp := Name (Parent_Node);

         if Etype (Tmp) /= Etype (N) then
            Apply_Length_Check (N, Etype (Tmp));

            if Nkind (N) = N_Raise_Constraint_Error then

               --  Static error, nothing further to expand

               return;
            end if;
         end if;

      --  If a slice assignment has an aggregate with a single others_choice,
      --  the assignment can be done in place even if bounds are not static,
      --  by converting it into a loop over the discrete range of the slice.

      elsif Maybe_In_Place_OK
        and then Nkind (Name (Parent_Node)) = N_Slice
        and then Is_Others_Aggregate (N)
      then
         Tmp := Name (Parent_Node);

         --  Set type of aggregate to be type of lhs in assignment, in order
         --  to suppress redundant length checks.

         Set_Etype (N, Etype (Tmp));

      --  In-place aggregate expansion is not possible

      else
         Maybe_In_Place_OK := False;
         Tmp := Make_Temporary (Loc, 'A', N);
         Tmp_Decl :=
           Make_Object_Declaration (Loc,
             Defining_Identifier => Tmp,
             Object_Definition   => New_Occurrence_Of (Typ, Loc));
         Set_No_Initialization (Tmp_Decl, True);

         --  If we are within a loop, the temporary will be pushed on the
         --  stack at each iteration. If the aggregate is the expression
         --  for an allocator, it will be immediately copied to the heap
         --  and can be reclaimed at once. We create a transient scope
         --  around the aggregate for this purpose.

         if Ekind (Current_Scope) = E_Loop
           and then Parent_Kind = N_Allocator
         then
            Establish_Transient_Scope (N, Manage_Sec_Stack => False);

         --  If the parent is an assignment for which no controlled actions
         --  should take place, prevent the temporary from being finalized.

         elsif Parent_Kind = N_Assignment_Statement
           and then No_Ctrl_Actions (Parent_Node)
         then
            Mutate_Ekind (Tmp, E_Variable);
            Set_Is_Ignored_For_Finalization (Tmp);
         end if;

         Insert_Action (N, Tmp_Decl);
      end if;

      --  STEP 6

      --  Build and insert the aggregate code

      declare
         Aggr_Code : List_Id;
         Target    : Node_Id;

      begin
         if Nkind (Tmp) = N_Defining_Identifier then
            Target := New_Occurrence_Of (Tmp, Loc);

         else
            if Has_Default_Init_Comps (N)
              and then not Maybe_In_Place_OK
            then
               --  Ada 2005 (AI-287): This case has not been analyzed???

               raise Program_Error;
            end if;

            --  Name in assignment is explicit dereference

            Target := New_Copy_Tree (Tmp);
         end if;

         Aggr_Code :=
           Build_Array_Aggr_Code (N,
             Ctype       => Ctyp,
             Index       => First_Index (Typ),
             Into        => Target,
             Scalar_Comp => Is_Scalar_Type (Ctyp));

         --  Save the last assignment statement associated with the aggregate
         --  when building a controlled object. This reference is utilized by
         --  the finalization machinery when marking an object as successfully
         --  initialized.

         if Needs_Finalization (Typ)
           and then Is_Entity_Name (Target)
           and then Present (Entity (Target))
           and then Ekind (Entity (Target)) in E_Constant | E_Variable
         then
            Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
         end if;

         Insert_Actions (N, Aggr_Code);
      end;

      --  If the aggregate has been assigned in place, remove the original
      --  assignment. Otherwise replace the aggregate with the temporary.

      if Maybe_In_Place_OK then
         Rewrite (Parent_Node, Make_Null_Statement (Loc));

      else
         Rewrite (N, New_Occurrence_Of (Tmp, Loc));
         Analyze_And_Resolve (N, Typ);
      end if;
   end Expand_Array_Aggregate;

   ------------------------
   -- Expand_N_Aggregate --
   ------------------------

   procedure Expand_N_Aggregate (N : Node_Id) is
      T : constant Entity_Id := Etype (N);

   begin
      --  Record aggregate case

      if Is_Record_Type (T)
        and then not Is_Private_Type (T)
        and then not Is_Homogeneous_Aggregate (N)
      then
         Expand_Record_Aggregate (N);

      --  Container aggregate case

      elsif Has_Aspect (T, Aspect_Aggregate) then
         Expand_Container_Aggregate (N);

      --  Array aggregate case

      else
         --  A special case, if we have a string subtype with bounds 1 .. N,
         --  where N is known at compile time, and the aggregate is of the
         --  form (others => 'x'), with a single choice and no expressions,
         --  and N is less than 80 (an arbitrary limit for now), then replace
         --  the aggregate by the equivalent string literal (but do not mark
         --  it as static since it is not).

         --  Note: this entire circuit is redundant with respect to code in
         --  Expand_Array_Aggregate that collapses others choices to positional
         --  form, but there are two problems with that circuit:

         --    a) It is limited to very small cases due to ill-understood
         --       interactions with bootstrapping. That limit is removed by
         --       use of the No_Implicit_Loops restriction.

         --    b) It incorrectly ends up with the resulting expressions being
         --       considered static when they are not. For example, the
         --       following test should fail:

         --           pragma Restrictions (No_Implicit_Loops);
         --           package NonSOthers4 is
         --              B  : constant String (1 .. 6) := (others => 'A');
         --              DH : constant String (1 .. 8) := B & "BB";
         --              X : Integer;
         --              pragma Export (C, X, Link_Name => DH);
         --           end;

         --       But it succeeds (DH looks static to pragma Export)

         --    To be sorted out ???

         if Present (Component_Associations (N)) then
            declare
               CA : constant Node_Id := First (Component_Associations (N));
               MX : constant         := 80;

            begin
               if Present (CA)
                 and then Nkind (First (Choice_List (CA))) = N_Others_Choice
                 and then Nkind (Expression (CA)) = N_Character_Literal
                 and then No (Expressions (N))
               then
                  declare
                     X  : constant Node_Id   := First_Index (T);
                     EC : constant Node_Id   := Expression (CA);
                     CV : constant Uint      := Char_Literal_Value (EC);
                     CC : constant Char_Code := UI_To_CC (CV);

                  begin
                     if Nkind (X) = N_Range
                       and then Compile_Time_Known_Value (Low_Bound (X))
                       and then Expr_Value (Low_Bound (X)) = 1
                       and then Compile_Time_Known_Value (High_Bound (X))
                     then
                        declare
                           Hi : constant Uint := Expr_Value (High_Bound (X));

                        begin
                           if Hi <= MX then
                              Start_String;

                              for J in 1 .. UI_To_Int (Hi) loop
                                 Store_String_Char (CC);
                              end loop;

                              Rewrite (N,
                                Make_String_Literal (Sloc (N),
                                  Strval => End_String));

                              if In_Character_Range (CC) then
                                 null;
                              elsif In_Wide_Character_Range (CC) then
                                 Set_Has_Wide_Character (N);
                              else
                                 Set_Has_Wide_Wide_Character (N);
                              end if;

                              Analyze_And_Resolve (N, T);
                              Set_Is_Static_Expression (N, False);
                              return;
                           end if;
                        end;
                     end if;
                  end;
               end if;
            end;
         end if;

         --  Not that special case, so normal expansion of array aggregate

         Expand_Array_Aggregate (N);
      end if;

   exception
      when RE_Not_Available =>
         return;
   end Expand_N_Aggregate;

   -------------------------------
   -- Build_Container_Aggr_Code --
   -------------------------------

   function Build_Container_Aggr_Code
     (N    : Node_Id;
      Typ  : Entity_Id;
      Lhs  : Node_Id;
      Init : out Node_Id) return List_Id
   is
      Loc       : constant Source_Ptr := Sloc (N);
      Aggr_Code : constant List_Id    := New_List;
      Asp       : constant Node_Id    :=
                    Find_Value_Of_Aspect (Typ, Aspect_Aggregate);

      Empty_Subp          : Node_Id := Empty;
      Add_Named_Subp      : Node_Id := Empty;
      Add_Unnamed_Subp    : Node_Id := Empty;
      New_Indexed_Subp    : Node_Id := Empty;
      Assign_Indexed_Subp : Node_Id := Empty;
      --  Identifiers for the subprograms referenced in the aggregate

      Choice_Lo : Node_Id := Empty;
      Choice_Hi : Node_Id := Empty;
      --  These variables are used to determine the smallest and largest
      --  choice values. Choice_Lo and Choice_Hi are passed to the New_Indexed
      --  function, for allocating an indexed aggregate object.

      function Aggregate_Size return Node_Id;
      --  Compute number of entries in aggregate, including choices
      --  that cover a range or subtype, as well as iterated constructs.
      --  The size of the aggregate can either be a statically known in which
      --  case it is returned as an integer literal, or it can be a dynamic
      --  expression in which case an empty node is returned.
      --
      --  It is not possible to determine the size for all case. When that
      --  happens this function returns an empty node. In that case we will
      --  later just allocate a default size for the aggregate.

      function Build_Size_Expr (Comp : Node_Id) return Node_Id;
      --  When the aggregate contains a single Iterated_Component_Association
      --  or Element_Association with non-static bounds, build an expression
      --  to be used as the allocated size of the container. This may be an
      --  overestimate if a filter is present, but is a safe approximation.
      --  If bounds are dynamic the aggregate is created in two passes, and
      --  the first generates a loop for the sole purpose of computing the
      --  number of elements that will be generated on the second pass.

      procedure Expand_Iterated_Component (Comp : Node_Id);
      --  Handle iterated_component_association and iterated_Element
      --  association by generating a loop over the specified range,
      --  given either by a loop parameter specification or an iterator
      --  specification.

      function Expand_Range_Component
        (Rng       : Node_Id;
         Expr      : Node_Id;
         Insert_Op : Entity_Id) return Node_Id;
      --  Transform a component association with a range into an explicit loop
      --  that calls the appropriate operation Insert_Op to add the value of
      --  Expr to each container element with an index in the range.

      function To_Int (Expr : N_Subexpr_Id) return Int;
      --  Return the Int value corresponding to the bound Expr

      --------------------
      -- Aggregate_Size --
      --------------------

      function Aggregate_Size return Node_Id is
         Comp         : Node_Id;
         Comp_Siz_Exp : Node_Id;
         Siz_Exp      : Node_Id;

      begin
         --  Aggregate is either all positional or all named

         Siz_Exp := Make_Integer_Literal (Loc, List_Length (Expressions (N)));
         Set_Is_Static_Expression (Siz_Exp);

         if Present (Component_Associations (N)) then
            Comp := First (Component_Associations (N));

            while Present (Comp) loop
               Comp_Siz_Exp := Build_Size_Expr (Comp);

               if No (Comp_Siz_Exp) then

                  --  If the size of the component cannot be determined then
                  --  we cannot continue with the dynamic evalution and we
                  --  should use the default value instead.

                  return Empty;

               else
                  if Is_Static_Expression (Siz_Exp)
                     and then Is_Static_Expression (Comp_Siz_Exp)
                  then
                     --  Create a simpler version of the expression

                     Siz_Exp := Make_Integer_Literal (Loc,
                                  To_Int (Siz_Exp) + To_Int (Comp_Siz_Exp));

                     Set_Is_Static_Expression (Siz_Exp);

                  else
                     Siz_Exp := Make_Op_Add (Sloc (Comp),
                                  Left_Opnd  => Siz_Exp,
                                  Right_Opnd => Comp_Siz_Exp);
                  end if;
               end if;

               Next (Comp);
            end loop;
         end if;

         return Siz_Exp;
      end Aggregate_Size;

      ---------------------
      -- Build_Size_Expr --
      ---------------------

      function Build_Size_Expr (Comp : Node_Id) return Node_Id is
         Lo, Hi       : Node_Id;
         It           : Node_Id;
         Siz_Exp      : Node_Id := Empty;
         Choice       : Node_Id;
         Temp_Siz_Exp : Node_Id;
         Siz          : Int;

         procedure Update_Choices (Lo : Node_Id; Hi : Node_Id);
         --  Update the Choice_Lo and Choice_Hi variables with the smallest
         --  and largest possible node values.

         --------------------
         -- Update_Choices --
         --------------------

         procedure Update_Choices (Lo : Node_Id; Hi : Node_Id) is
            Range_Int_Lo : constant Int := To_Int (Lo);
            Range_Int_Hi : constant Int := To_Int (Hi);

         begin
            if No (Choice_Lo)
              or else (Is_Static_Expression (Choice_Lo)
                        and then Range_Int_Lo < To_Int (Choice_Lo))
            then
               Choice_Lo := Lo;
            end if;

            if No (Choice_Hi)
              or else (Is_Static_Expression (Choice_Hi)
                        and then Range_Int_Hi > To_Int (Choice_Hi))
            then
               Choice_Hi := Hi;
            end if;
         end Update_Choices;

      --  Start of processing for Build_Size_Expr

      begin
         if Nkind (Comp) = N_Range then
            Lo := Low_Bound (Comp);
            Hi := High_Bound (Comp);
            Analyze (Lo);
            Analyze (Hi);

            --  Compute static size when possible.

            if Is_Static_Expression (Lo)
              and then Is_Static_Expression (Hi)
            then
               Update_Choices (Lo, Hi);

               Siz := To_Int (Hi) - To_Int (Lo) + 1;
               Siz_Exp := Make_Integer_Literal (Loc, Siz);
               Set_Is_Static_Expression (Siz_Exp);

               return Siz_Exp;

            else
               --  Capture the nonstatic bounds, for later use in passing on
               --  the call to New_Indexed.

               Choice_Lo := Lo;
               Choice_Hi := Hi;

               return Make_Op_Add (Sloc (Comp),
                   Left_Opnd =>
                     Make_Op_Subtract (Sloc (Comp),
                       Left_Opnd => New_Copy_Tree (Hi),
                       Right_Opnd => New_Copy_Tree (Lo)),
                   Right_Opnd =>
                     Make_Integer_Literal (Loc, 1));
            end if;

         elsif Nkind (Comp) = N_Iterated_Component_Association then
            if Present (Iterator_Specification (Comp)) then

               --  If the static size of the iterable object is known,
               --  attempt to return it.

               It := Name (Iterator_Specification (Comp));
               Preanalyze (It);

               --  Handle the simplest cases for now where It denotes an array
               --  object.

               if Nkind (It) in N_Identifier
                 and then Ekind (Etype (It)) = E_Array_Subtype
               then
                  declare
                     Idx_N : Node_Id := First_Index (Etype (It));
                     Siz_Exp : Node_Id := Empty;
                  begin
                     while Present (Idx_N) loop
                        Temp_Siz_Exp := Build_Size_Expr (Idx_N);

                        pragma Assert (Present (Temp_Siz_Exp));

                        if Present (Siz_Exp) then
                           if Is_Static_Expression (Siz_Exp)
                             and then Is_Static_Expression (Temp_Siz_Exp)
                           then

                              --  Create a simpler version of the expression

                              Siz_Exp := Make_Integer_Literal (Loc,
                                           To_Int (Siz_Exp) *
                                           To_Int (Temp_Siz_Exp));

                              Set_Is_Static_Expression (Siz_Exp);
                           else
                              Siz_Exp := Make_Op_Multiply (Sloc (Comp),
                                           Left_Opnd  => Siz_Exp,
                                           Right_Opnd => Temp_Siz_Exp);
                           end if;
                        else
                           Siz_Exp := Temp_Siz_Exp;
                        end if;

                        Next_Index (Idx_N);
                     end loop;

                     return Siz_Exp;
                  end;
               end if;

               return Empty;

            else
               return Build_Size_Expr (First (Discrete_Choices (Comp)));
            end if;

         elsif Nkind (Comp) = N_Component_Association then
            Choice := First (Choices (Comp));

            while Present (Choice) loop
               Analyze (Choice);

               if Nkind (Choice) = N_Range then

                  Temp_Siz_Exp := Build_Size_Expr (Choice);

               --  Choice is subtype_mark; add range based on its bounds

               elsif Is_Entity_Name (Choice)
                 and then Is_Type (Entity (Choice))
               then
                  Lo := Type_Low_Bound (Entity (Choice));
                  Hi := Type_High_Bound (Entity (Choice));

                  Rewrite (Choice,
                    Make_Range (Loc,
                      New_Copy_Tree (Lo),
                      New_Copy_Tree (Hi)));

                  Temp_Siz_Exp := Build_Size_Expr (Choice);

               --  Choice is a single discrete value

               elsif Is_Discrete_Type (Etype (Choice)) then
                  Update_Choices (Choice, Choice);

                  Temp_Siz_Exp := Make_Integer_Literal (Loc, 1);
                  Set_Is_Static_Expression (Temp_Siz_Exp);

               --  Choice is a single value of some nondiscrete type

               else
                  Temp_Siz_Exp := Make_Integer_Literal (Loc, 1);
                  Set_Is_Static_Expression (Temp_Siz_Exp);
               end if;

               if Present (Siz_Exp) then

                  if Is_Static_Expression (Siz_Exp)
                    and then Is_Static_Expression (Temp_Siz_Exp)
                  then
                     --  Create a simpler version of the expression

                     Siz_Exp := Make_Integer_Literal
                        (Loc, To_Int (Siz_Exp) + To_Int (Temp_Siz_Exp));

                     Set_Is_Static_Expression (Siz_Exp);
                  else
                     Siz_Exp := Make_Op_Add
                        (Sloc (Comp),
                           Left_Opnd  => Siz_Exp,
                           Right_Opnd => Temp_Siz_Exp);
                  end if;
               else
                  Siz_Exp := Temp_Siz_Exp;
               end if;

               Next (Choice);
            end loop;

            return Siz_Exp;

         elsif Nkind (Comp) = N_Iterated_Element_Association then
            return Empty;

            --  ??? Need to create code for a loop and add to generated code,
            --  as is done for array aggregates with iterated element
            --  associations, instead of using Append operations.

         else
            return Empty;
         end if;
      end Build_Size_Expr;

      -------------------------------
      -- Expand_Iterated_Component --
      -------------------------------

      procedure Expand_Iterated_Component (Comp : Node_Id) is
         Expr : constant Node_Id := Expression (Comp);

         Key_Expr           : Node_Id := Empty;
         Loop_Id            : Entity_Id;
         L_Range            : Node_Id;
         L_Iteration_Scheme : Node_Id;
         Loop_Stat          : Node_Id;
         Params             : List_Id;
         Stats              : List_Id;

      begin
         if Nkind (Comp) = N_Iterated_Element_Association then
            Key_Expr := Key_Expression (Comp);

            --  We create a new entity as loop identifier in all cases,
            --  as is done for generated loops elsewhere, as the loop
            --  structure has been previously analyzed.

            if Present (Iterator_Specification (Comp)) then

               --  Either an Iterator_Specification or a Loop_Parameter_
               --  Specification is present.

               L_Iteration_Scheme :=
                 Make_Iteration_Scheme (Loc,
                   Iterator_Specification => Iterator_Specification (Comp));
               Loop_Id :=
                  Make_Defining_Identifier (Loc,
                    Chars => Chars (Defining_Identifier
                               (Iterator_Specification (Comp))));
               Set_Defining_Identifier
                  (Iterator_Specification (L_Iteration_Scheme), Loop_Id);

            else
               L_Iteration_Scheme :=
                 Make_Iteration_Scheme (Loc,
                   Loop_Parameter_Specification =>
                     Loop_Parameter_Specification (Comp));
               Loop_Id :=
                 Make_Defining_Identifier (Loc,
                   Chars => Chars (Defining_Identifier
                              (Loop_Parameter_Specification (Comp))));
               Set_Defining_Identifier
                 (Loop_Parameter_Specification
                    (L_Iteration_Scheme), Loop_Id);
            end if;

         else
            --  Iterated_Component_Association.

            if Present (Iterator_Specification (Comp)) then
               Loop_Id :=
                 Make_Defining_Identifier (Loc,
                   Chars => Chars (Defining_Identifier
                              (Iterator_Specification (Comp))));
               L_Iteration_Scheme :=
                 Make_Iteration_Scheme (Loc,
                   Iterator_Specification => Iterator_Specification (Comp));
               Set_Defining_Identifier
                  (Iterator_Specification (L_Iteration_Scheme), Loop_Id);

            else
               --  Loop_Parameter_Specification is parsed with a choice list.
               --  where the range is the first (and only) choice.

               Loop_Id :=
                 Make_Defining_Identifier (Loc,
                   Chars => Chars (Defining_Identifier (Comp)));
               L_Range := Relocate_Node (First (Discrete_Choices (Comp)));

               L_Iteration_Scheme :=
                 Make_Iteration_Scheme (Loc,
                   Loop_Parameter_Specification =>
                     Make_Loop_Parameter_Specification (Loc,
                       Defining_Identifier => Loop_Id,
                       Reverse_Present => Reverse_Present (Comp),
                       Discrete_Subtype_Definition => L_Range));
            end if;
         end if;

         --  Build insertion statement. For a positional aggregate, only the
         --  expression is needed. For a named aggregate, the loop variable,
         --  whose type is that of the key, is an additional parameter for
         --  the insertion operation.
         --  If a Key_Expression is present, it serves as the additional
         --  parameter. Otherwise the key is given by the loop parameter
         --  itself.

         if Present (Add_Unnamed_Subp)
           and then No (Add_Named_Subp)
         then
            Stats := New_List
              (Make_Procedure_Call_Statement (Loc,
                 Name => New_Occurrence_Of (Entity (Add_Unnamed_Subp), Loc),
                 Parameter_Associations =>
                   New_List (New_Copy_Tree (Lhs),
                     New_Copy_Tree (Expr))));

         else
            --  Named or indexed aggregate, for which a key is present,
            --  possibly with a specified key_expression.

            if Present (Key_Expr) then
               Params := New_List (New_Copy_Tree (Lhs),
                           New_Copy_Tree (Key_Expr),
                           New_Copy_Tree (Expr));
            else
               Params := New_List (New_Copy_Tree (Lhs),
                           New_Occurrence_Of (Loop_Id, Loc),
                           New_Copy_Tree (Expr));
            end if;

            Stats := New_List
              (Make_Procedure_Call_Statement (Loc,
                 Name => New_Occurrence_Of (Entity (Add_Named_Subp), Loc),
                 Parameter_Associations => Params));
         end if;

         Loop_Stat := Make_Implicit_Loop_Statement
                        (Node             => N,
                         Identifier       => Empty,
                         Iteration_Scheme => L_Iteration_Scheme,
                         Statements       => Stats);

         Append (Loop_Stat, Aggr_Code);
      end Expand_Iterated_Component;

      ----------------------------
      -- Expand_Range_Component --
      ----------------------------

      function Expand_Range_Component
        (Rng       : Node_Id;
         Expr      : Node_Id;
         Insert_Op : Entity_Id) return Node_Id
      is
         Loop_Id : constant Entity_Id := Make_Temporary (Loc, 'T');

         L_Iteration_Scheme : Node_Id;
         Stats              : List_Id;

      begin
         L_Iteration_Scheme :=
           Make_Iteration_Scheme (Loc,
             Loop_Parameter_Specification =>
               Make_Loop_Parameter_Specification (Loc,
                 Defining_Identifier => Loop_Id,
                 Discrete_Subtype_Definition => New_Copy_Tree (Rng)));

         Stats := New_List
           (Make_Procedure_Call_Statement (Loc,
              Name =>
                New_Occurrence_Of (Insert_Op, Loc),
              Parameter_Associations =>
                New_List (New_Copy_Tree (Lhs),
                  New_Occurrence_Of (Loop_Id, Loc),
                  New_Copy_Tree (Expr))));

         return Make_Implicit_Loop_Statement
                   (Node             => N,
                    Identifier       => Empty,
                    Iteration_Scheme => L_Iteration_Scheme,
                    Statements       => Stats);
      end Expand_Range_Component;

      ------------
      -- To_Int --
      ------------

      --  The bounds of the discrete range are integers or enumeration literals

      function To_Int (Expr : N_Subexpr_Id) return Int is
      begin
         return UI_To_Int ((if Nkind (Expr) = N_Integer_Literal
                            then Intval (Expr)
                            else Enumeration_Pos (Expr)));
      end To_Int;

      --  Local variables

      Is_Indexed_Aggregate : Boolean;
      --  True if the aggregate is indexed as per RM 4.3.5(25/5)

   --  Start of processing for Build_Container_Aggr_Code

   begin
      Parse_Aspect_Aggregate (Asp,
        Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
        New_Indexed_Subp, Assign_Indexed_Subp);

      --  Determine whether this is an indexed aggregate

      Is_Indexed_Aggregate :=
        Sem_Aggr.Is_Indexed_Aggregate
          (N, Add_Unnamed_Subp, New_Indexed_Subp);

      --  Build the function call that initializes the anonymous object

      declare
         Empty_First_Formal : constant Entity_Id :=
                                First_Formal (Entity (Empty_Subp));

         Count_Type : Entity_Id;
         Default    : Node_Id;
         Param_List : List_Id;
         Siz_Exp    : Node_Id;

      begin
         --  The constructor for bounded containers is a function with
         --  a parameter that sets the size of the container. If the
         --  size cannot be determined statically we use a default value
         --  or a dynamic expression.

         Siz_Exp := Aggregate_Size;

         --  If aggregate size is not static, we use the default value of the
         --  Empty operation's formal parameter for the allocation. We assume
         --  that this (implementation-dependent) value is static, even though
         --  the AI does not require it.

         if Present (Empty_First_Formal) then
            Default    := Default_Value (Empty_First_Formal);
            Count_Type := Etype (Empty_First_Formal);

         else
            Default    := Empty;
            Count_Type := Standard_Natural;
         end if;

         --  Create an object initialized by the aggregate's determined size
         --  (number of elements): a constant literal in the simple case, an
         --  expression if iterated component associations may be involved,
         --  and the default otherwise.

         if Present (Siz_Exp) then
            Siz_Exp :=
              Make_Type_Conversion (Loc,
                Subtype_Mark => New_Occurrence_Of (Count_Type, Loc),
                Expression   => Siz_Exp);

         elsif Present (Default) then
            Siz_Exp := New_Copy_Tree (Default);

         --  If the length isn't known and there's not a default, then use
         --  zero for the initial container length.

         else
            Siz_Exp := Make_Integer_Literal (Loc, 0);
         end if;

         --  In the case of an indexed aggregate, the aggregate is allocated
         --  with the New_Indexed operation, passing the bounds.

         if Is_Indexed_Aggregate then
            declare
               Insert     : constant Entity_Id :=
                              Entity (Assign_Indexed_Subp);
               Index_Type : constant Entity_Id :=
                              Etype (Next_Formal (First_Formal (Insert)));

            begin
               if No (Choice_Lo) then
                  pragma Assert (No (Choice_Hi));

                  Choice_Lo := New_Copy_Tree (Type_Low_Bound (Index_Type));

                  Choice_Hi := Make_Op_Add (Loc,
                    Left_Opnd => New_Copy_Tree (Type_Low_Bound (Index_Type)),
                    Right_Opnd =>
                      Make_Op_Subtract (Loc,
                        Left_Opnd  => Make_Type_Conversion (Loc,
                                        Subtype_Mark =>
                                          New_Occurrence_Of (Index_Type, Loc),
                                        Expression => Siz_Exp),
                        Right_Opnd => Make_Integer_Literal (Loc, 1)));

               else
                  Choice_Lo := New_Copy_Tree (Choice_Lo);
                  Choice_Hi := New_Copy_Tree (Choice_Hi);
               end if;

               Init :=
                 Make_Function_Call (Loc,
                   Name => New_Occurrence_Of (Entity (New_Indexed_Subp), Loc),
                   Parameter_Associations => New_List (Choice_Lo, Choice_Hi));
            end;

         --  Otherwise we generate a call to the Empty function, passing the
         --  determined number of elements Siz_Exp if the function has a formal
         --  parameter, and otherwise making a parameterless call.

         else
            if Present (Empty_First_Formal) then
               Param_List := New_List (Siz_Exp);
            else
               Param_List := No_List;
            end if;

            Init :=
              Make_Function_Call (Loc,
                Name => New_Occurrence_Of (Entity (Empty_Subp), Loc),
                Parameter_Associations => Param_List);
         end if;
      end;

      --  Report warning on infinite recursion if an empty container aggregate
      --  appears in the return statement of its Empty function.

      if Ekind (Entity (Empty_Subp)) = E_Function
        and then Nkind (Parent (N)) = N_Simple_Return_Statement
        and then Is_Empty_List (Expressions (N))
        and then Is_Empty_List (Component_Associations (N))
        and then Entity (Empty_Subp) = Current_Scope
      then
         Error_Msg_Warn := SPARK_Mode /= On;
         Error_Msg_N
           ("!empty aggregate returned by the empty function of a container"
            & " aggregate<<", Parent (N));
         Error_Msg_N
           ("\this will result in infinite recursion<<", Parent (N));
      end if;

      ---------------------------
      --  Positional aggregate --
      ---------------------------

      --  If the aggregate is positional, then the aspect must include
      --  an Add_Unnamed or Assign_Indexed procedure.

      if not Is_Null_Aggregate (N)
        and then
          (Present (Add_Unnamed_Subp) or else Present (Assign_Indexed_Subp))
      then
         if Present (Expressions (N)) then
            declare
               Insert : constant Entity_Id :=
                 (if Is_Indexed_Aggregate
                  then Entity (Assign_Indexed_Subp)
                  else Entity (Add_Unnamed_Subp));
               Comp   : Node_Id;
               Stat   : Node_Id;
               Param_List : List_Id;
               Key_Type   : Entity_Id;
               Key_Index  : Entity_Id;

            begin
               --  For an indexed aggregate, use Etype of the Assign_Indexed
               --  procedure's second formal as the key type, and declare an
               --  index object of that type, which will iterate over the key
               --  type values while traversing the component associations.

               if Is_Indexed_Aggregate then
                  Key_Type :=
                    Etype (Next_Formal
                             (First_Formal (Entity (Assign_Indexed_Subp))));

                  Key_Index := Make_Temporary (Loc, 'I', N);

                  Append_To (Aggr_Code,
                     Make_Object_Declaration (Loc,
                       Defining_Identifier => Key_Index,
                       Object_Definition   =>
                         New_Occurrence_Of (Key_Type, Loc)));
               end if;

               Comp := First (Expressions (N));
               while Present (Comp) loop
                  if Is_Indexed_Aggregate then

                     --  Generate an assignment to set the first key value of
                     --  the key index object from the key type's lower bound.

                     if Comp = First (Expressions (N)) then
                        Append_To (Aggr_Code,
                          Make_Assignment_Statement (Loc,
                            Name       => New_Occurrence_Of (Key_Index, Loc),
                          Expression          =>
                            New_Copy (Type_Low_Bound (Key_Type))));

                     --  Generate an assignment to increment the key value
                     --  for the subsequent component assignments.

                     else
                        Append_To (Aggr_Code,
                          Make_Assignment_Statement (Loc,
                            Name       => New_Occurrence_Of (Key_Index, Loc),
                            Expression =>
                              Make_Attribute_Reference (Loc,
                                Prefix         =>
                                  New_Occurrence_Of (Key_Type, Loc),
                                Attribute_Name => Name_Succ,
                                Expressions    => New_List (
                                  New_Occurrence_Of (Key_Index, Loc)))));
                     end if;

                     Param_List :=
                       New_List (New_Copy_Tree (Lhs),
                                 New_Occurrence_Of (Key_Index, Loc),
                                 New_Copy_Tree (Comp));
                  else
                     Param_List :=
                       New_List (New_Copy_Tree (Lhs),
                                 New_Copy_Tree (Comp));
                  end if;

                  Stat := Make_Procedure_Call_Statement (Loc,
                    Name => New_Occurrence_Of (Insert, Loc),
                    Parameter_Associations => Param_List);
                  Append (Stat, Aggr_Code);
                  Next (Comp);
               end loop;
            end;

         --  Indexed aggregates are handled below. Unnamed aggregates
         --  such as sets may include iterated component associations.

         elsif not Is_Indexed_Aggregate then
            declare
               Comp : Node_Id;

            begin
               Comp := First (Component_Associations (N));
               while Present (Comp) loop
                  if Nkind (Comp) = N_Iterated_Component_Association
                    or else Nkind (Comp) = N_Iterated_Element_Association
                  then
                     Expand_Iterated_Component (Comp);
                  end if;
                  Next (Comp);
               end loop;
            end;
         end if;

      ---------------------
      -- Named_Aggregate --
      ---------------------

      elsif Present (Add_Named_Subp) then
         declare
            Insert : constant Entity_Id := Entity (Add_Named_Subp);

            Comp : Node_Id;
            Key  : Node_Id;
            Stat : Node_Id;

         begin
            Comp := First (Component_Associations (N));

            --  Each component association may contain several choices;
            --  generate an insertion statement for each.

            while Present (Comp) loop
               if Nkind (Comp) in N_Iterated_Component_Association
                                | N_Iterated_Element_Association
               then
                  Expand_Iterated_Component (Comp);
               else
                  Key := First (Choices (Comp));

                  while Present (Key) loop
                     if Nkind (Key) = N_Range then

                        --  Create loop for the specified range, with copies of
                        --  the expression.

                        Stat := Expand_Range_Component
                                  (Key, Expression (Comp), Insert);

                     else
                        Stat := Make_Procedure_Call_Statement (Loc,
                          Name => New_Occurrence_Of (Insert, Loc),
                          Parameter_Associations =>
                            New_List (New_Copy_Tree (Lhs),
                              New_Copy_Tree (Key),
                              New_Copy_Tree (Expression (Comp))));
                     end if;

                     Append (Stat, Aggr_Code);

                     Next (Key);
                  end loop;
               end if;

               Next (Comp);
            end loop;
         end;
      end if;

      -----------------------
      -- Indexed_Aggregate --
      -----------------------

      --  For an indexed aggregate there must be an Assigned_Indexed
      --  subprogram. Note that unlike array aggregates, a container
      --  aggregate must be fully positional or fully indexed. In the
      --  first case the expansion has already taken place.
      --  TBA: the keys for an indexed aggregate must provide a dense
      --  range with no repetitions.

      if Is_Indexed_Aggregate
        and then Present (Component_Associations (N))
        and then not Is_Empty_List (Component_Associations (N))
      then
         declare
            Insert : constant Entity_Id := Entity (Assign_Indexed_Subp);
            Comp   : Node_Id;
            Stat   : Node_Id;
            Key    : Node_Id;

         begin
            pragma Assert (No (Expressions (N)));

            Comp := First (Component_Associations (N));

            --  The choice may be a static value, or a range with
            --  static bounds.

            while Present (Comp) loop
               if Nkind (Comp) = N_Component_Association then
                  Key := First (Choices (Comp));
                  while Present (Key) loop

                     --  If the expression is a box, the corresponding
                     --  component (s) is left uninitialized.

                     if Box_Present (Comp) then
                        goto Next_Key;

                     elsif Nkind (Key) = N_Range then

                        --  Create loop for the specified range,
                        --  with copies of the expression.

                        Stat :=
                          Expand_Range_Component
                            (Key, Expression (Comp), Insert);

                     else
                        Stat := Make_Procedure_Call_Statement (Loc,
                          Name => New_Occurrence_Of (Insert, Loc),
                          Parameter_Associations =>
                            New_List (New_Copy_Tree (Lhs),
                            New_Copy_Tree (Key),
                            New_Copy_Tree (Expression (Comp))));
                     end if;

                     Append (Stat, Aggr_Code);

                     <<Next_Key>>
                     Next (Key);
                  end loop;

               else
                  --  Iterated component association. Discard
                  --  positional insertion procedure.

                  if No (Iterator_Specification (Comp)) then
                     Add_Unnamed_Subp := Empty;
                  end if;

                  Add_Named_Subp := Assign_Indexed_Subp;

                  Expand_Iterated_Component (Comp);
               end if;

               Next (Comp);
            end loop;
         end;
      end if;

      return Aggr_Code;
   end Build_Container_Aggr_Code;

   --------------------------------
   -- Expand_Container_Aggregate --
   --------------------------------

   procedure Expand_Container_Aggregate (N : Node_Id) is
      Loc : constant Source_Ptr := Sloc (N);
      Typ : constant Entity_Id  := Etype (N);

      Aggr_Code : List_Id;
      Init      : Node_Id;
      Lhs       : Node_Id;
      Obj_Id    : Entity_Id;
      Par       : Node_Id;

   begin
      Par := Parent (N);
      while Nkind (Par) = N_Qualified_Expression loop
         Par := Parent (Par);
      end loop;

      --  If the aggregate is the initialization expression of an object
      --  declaration, we always build the aggregate in place, although
      --  this is required only for immutably limited types and types
      --  that need finalization, see RM 7.6(17.2/3-17.3/3).

      if Nkind (Par) = N_Object_Declaration then
         Obj_Id := Defining_Identifier (Par);
         Lhs := New_Occurrence_Of (Obj_Id, Loc);
         Set_Assignment_OK (Lhs);
         Aggr_Code := Build_Container_Aggr_Code (N, Typ, Lhs, Init);

         --  Save the last assignment statement associated with the aggregate
         --  when building a controlled object. This reference is utilized by
         --  the finalization machinery when marking an object as successfully
         --  initialized.

         if Needs_Finalization (Typ) then
            Mutate_Ekind (Obj_Id, E_Variable);
            Set_Last_Aggregate_Assignment (Obj_Id, Last (Aggr_Code));
         end if;

         --  If a transient scope has been created around the declaration, we
         --  need to attach the code to it so that the finalization actions of
         --  the declaration will be inserted after it. Otherwise, we directly
         --  insert it after the declaration and it will be analyzed only once
         --  the declaration is processed.

         if Scope_Is_Transient and then Par = Node_To_Be_Wrapped then
            Insert_Actions_After (Par, Aggr_Code);
         else
            Insert_List_After (Par, Aggr_Code);
         end if;

         Rewrite (N, Init);
         Analyze_And_Resolve (N, Typ);

      --  Likewise if the aggregate is the qualified expression of an allocator
      --  but, in this case, we wait until after Expand_Allocator_Expression
      --  rewrites the allocator as the initialization expression of an object
      --  declaration to have the left hand side.

      elsif Nkind (Par) = N_Allocator then
         if Nkind (Parent (Par)) = N_Object_Declaration
           and then not Comes_From_Source (Defining_Identifier (Parent (Par)))
         then
            Obj_Id := Defining_Identifier (Parent (Par));
            Lhs :=
              Make_Explicit_Dereference (Loc,
                Prefix => New_Occurrence_Of (Obj_Id, Loc));
            Set_Assignment_OK (Lhs);
            Aggr_Code := Build_Container_Aggr_Code (N, Typ, Lhs, Init);

            Insert_Actions_After (Parent (Par), Aggr_Code);

            Rewrite (N, Init);
            Analyze_And_Resolve (N, Typ);
         end if;

      --  Otherwise we create a temporary for the anonymous object and replace
      --  the aggregate with the temporary.

      else
         Obj_Id := Make_Temporary (Loc, 'A', N);
         Lhs := New_Occurrence_Of (Obj_Id, Loc);
         Set_Assignment_OK (Lhs);

         Aggr_Code := Build_Container_Aggr_Code (N, Typ, Lhs, Init);
         Prepend_To (Aggr_Code,
           Make_Object_Declaration (Loc,
             Defining_Identifier => Obj_Id,
             Object_Definition   => New_Occurrence_Of (Typ, Loc),
             Expression          => Init));

         Insert_Actions (N, Aggr_Code);

         Rewrite (N, Lhs);
         Analyze_And_Resolve (N, Typ);
      end if;
   end Expand_Container_Aggregate;

   ------------------------------
   -- Expand_N_Delta_Aggregate --
   ------------------------------

   procedure Expand_N_Delta_Aggregate (N : Node_Id) is
      Loc  : constant Source_Ptr := Sloc (N);
      Typ  : constant Entity_Id  := Etype (Expression (N));
      Decl : Node_Id;

   begin
      Decl :=
        Make_Object_Declaration (Loc,
          Defining_Identifier => Make_Temporary (Loc, 'T'),
          Object_Definition   => New_Occurrence_Of (Typ, Loc),
          Expression          => New_Copy_Tree (Expression (N)));

      if Is_Array_Type (Etype (N)) then
         Expand_Delta_Array_Aggregate (N, New_List (Decl));
      else
         Expand_Delta_Record_Aggregate (N, New_List (Decl));
      end if;
   end Expand_N_Delta_Aggregate;

   ----------------------------------
   -- Expand_Delta_Array_Aggregate --
   ----------------------------------

   procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id) is
      Loc   : constant Source_Ptr := Sloc (N);
      Temp  : constant Entity_Id  := Defining_Identifier (First (Deltas));
      Assoc : Node_Id;

      function Generate_Loop (C : Node_Id) return Node_Id;
      --  Generate a loop containing individual component assignments for
      --  choices that are ranges, subtype indications, subtype names, and
      --  iterated component associations.

      function Make_Array_Delta_Assignment_LHS
        (Choice : Node_Id; Temp : Entity_Id) return Node_Id;
      --  Generate the LHS for the assignment associated with one
      --  component association. This can be more complex than just an
      --  indexed component in the case of a deep delta aggregate.

      -------------------
      -- Generate_Loop --
      -------------------

      function Generate_Loop (C : Node_Id) return Node_Id is
         Sl : constant Source_Ptr := Sloc (C);
         Ix : Entity_Id;

      begin
         if Nkind (Parent (C)) = N_Iterated_Component_Association then
            Ix :=
              Make_Defining_Identifier (Loc,
                Chars => (Chars (Defining_Identifier (Parent (C)))));
         else
            Ix := Make_Temporary (Sl, 'I');
         end if;

         return
           Make_Implicit_Loop_Statement (C,
             Iteration_Scheme =>
               Make_Iteration_Scheme (Sl,
                 Loop_Parameter_Specification =>
                   Make_Loop_Parameter_Specification (Sl,
                     Defining_Identifier         => Ix,
                     Discrete_Subtype_Definition => New_Copy_Tree (C))),

              Statements      => New_List (
                Make_Assignment_Statement (Sl,
                  Name       =>
                    Make_Indexed_Component (Sl,
                      Prefix      => New_Occurrence_Of (Temp, Sl),
                      Expressions => New_List (New_Occurrence_Of (Ix, Sl))),
                  Expression => New_Copy_Tree (Expression (Assoc)))),
              End_Label       => Empty);
      end Generate_Loop;

      function Make_Array_Delta_Assignment_LHS
        (Choice : Node_Id; Temp : Entity_Id) return Node_Id
      is
         function Make_Delta_Choice_LHS
           (Choice      : Node_Id;
            Deep_Choice : Boolean) return Node_Id;
         --  Recursively (but recursion only in deep delta aggregate case)
         --  build up the LHS by successively applying selectors.

         ---------------------------
         -- Make_Delta_Choice_LHS --
         ---------------------------

         function Make_Delta_Choice_LHS
           (Choice      : Node_Id;
            Deep_Choice : Boolean) return Node_Id
         is
         begin
            if not Deep_Choice
              or else Is_Root_Prefix_Of_Deep_Choice (Choice)
            then
               return Make_Indexed_Component (Sloc (Choice),
                        Prefix      => New_Occurrence_Of (Temp, Loc),
                        Expressions => New_List (New_Copy_Tree (Choice)));

            else
               --  a deep delta aggregate choice
               pragma Assert (All_Extensions_Allowed);

               declare
                  --  recursively get name for prefix
                  LHS_Prefix : constant Node_Id :=
                    Make_Delta_Choice_LHS (Prefix (Choice), Deep_Choice);
               begin
                  if Nkind (Choice) = N_Indexed_Component then
                     return Make_Indexed_Component (Sloc (Choice),
                        Prefix      => LHS_Prefix,
                        Expressions => New_Copy_List (Expressions (Choice)));
                  else
                     return Make_Selected_Component (Sloc (Choice),
                              Prefix        => LHS_Prefix,
                              Selector_Name =>
                                Make_Identifier
                                  (Sloc (Choice),
                                   Chars (Selector_Name (Choice))));
                  end if;
               end;
            end if;
         end Make_Delta_Choice_LHS;
      begin
         return Make_Delta_Choice_LHS
           (Choice, Is_Deep_Choice (Choice, Etype (N)));
      end Make_Array_Delta_Assignment_LHS;

      --  Local variables

      Choice : Node_Id;

   --  Start of processing for Expand_Delta_Array_Aggregate

   begin
      Assoc := First (Component_Associations (N));
      while Present (Assoc) loop
         Choice := First (Choice_List (Assoc));
         if Nkind (Assoc) = N_Iterated_Component_Association then
            while Present (Choice) loop
               Append_To (Deltas, Generate_Loop (Choice));
               Next (Choice);
            end loop;

         else
            while Present (Choice) loop

               --  Choice can be given by a range, a subtype indication, a
               --  subtype name, a scalar value, or an entity.

               if Nkind (Choice) = N_Range
                 or else (Is_Entity_Name (Choice)
                           and then Is_Type (Entity (Choice)))
               then
                  Append_To (Deltas, Generate_Loop (Choice));

               elsif Nkind (Choice) = N_Subtype_Indication then
                  Append_To (Deltas,
                    Generate_Loop (Range_Expression (Constraint (Choice))));

               else
                  Append_To (Deltas,
                    Make_Assignment_Statement (Sloc (Choice),
                      Name       =>
                        Make_Array_Delta_Assignment_LHS (Choice, Temp),
                      Expression => New_Copy_Tree (Expression (Assoc))));
               end if;

               Next (Choice);
            end loop;
         end if;

         Next (Assoc);
      end loop;

      Insert_Actions (N, Deltas);
      Rewrite (N, New_Occurrence_Of (Temp, Loc));
   end Expand_Delta_Array_Aggregate;

   -----------------------------------
   -- Expand_Delta_Record_Aggregate --
   -----------------------------------

   procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id) is
      Loc    : constant Source_Ptr := Sloc (N);
      Temp   : constant Entity_Id  := Defining_Identifier (First (Deltas));
      Assoc  : Node_Id;
      Choice : Node_Id;

      function Make_Record_Delta_Assignment_LHS
        (Selector : Node_Id) return Node_Id;
      --  Generate the LHS for an assignment to a component (or subcomponent
      --  if -gnatX specified) of the result object.

      --------------------------------------
      -- Make_Record_Delta_Assignment_LHS --
      --------------------------------------

      function Make_Record_Delta_Assignment_LHS
        (Selector : Node_Id) return Node_Id
      is
      begin
         if Nkind (Selector) = N_Selected_Component then
            --  a deep delta aggregate, requires -gnatX0
            return
              Make_Selected_Component
                (Sloc (Choice),
                 Prefix        => Make_Record_Delta_Assignment_LHS
                                    (Prefix (Selector)),
                 Selector_Name =>
                   Make_Identifier (Loc, Chars (Selector_Name (Selector))));
         elsif Nkind (Selector) = N_Indexed_Component then
            --  a deep delta aggregate, requires -gnatX0
            return
              Make_Indexed_Component
                (Sloc (Choice),
                 Prefix        => Make_Record_Delta_Assignment_LHS
                                    (Prefix (Selector)),
                 Expressions   => Expressions (Selector));
         else
            return Make_Selected_Component
                    (Sloc (Choice),
                     Prefix        => New_Occurrence_Of (Temp, Loc),
                     Selector_Name => Make_Identifier (Loc, Chars (Selector)));
         end if;
      end Make_Record_Delta_Assignment_LHS;
   begin
      Assoc := First (Component_Associations (N));

      while Present (Assoc) loop
         Choice := First (Choice_List (Assoc));
         while Present (Choice) loop
            Append_To (Deltas,
              Make_Assignment_Statement (Sloc (Choice),
                Name       => Make_Record_Delta_Assignment_LHS (Choice),
                Expression => New_Copy_Tree (Expression (Assoc))));
            Next (Choice);
         end loop;

         Next (Assoc);
      end loop;

      Insert_Actions (N, Deltas);
      Rewrite (N, New_Occurrence_Of (Temp, Loc));
   end Expand_Delta_Record_Aggregate;

   ----------------------------------
   -- Expand_N_Extension_Aggregate --
   ----------------------------------

   --  If the ancestor part is an expression, add a component association for
   --  the parent field. If the type of the ancestor part is not the direct
   --  parent of the expected type, build recursively the needed ancestors.
   --  If the ancestor part is a subtype_mark, replace aggregate with a
   --  declaration for a temporary of the expected type, followed by
   --  individual assignments to the given components.

   procedure Expand_N_Extension_Aggregate (N : Node_Id) is
      A   : constant Node_Id    := Ancestor_Part (N);
      Loc : constant Source_Ptr := Sloc (N);
      Typ : constant Entity_Id  := Etype (N);

   begin
      --  If the ancestor is a subtype mark, an init proc must be called
      --  on the resulting object which thus has to be materialized in
      --  the front-end

      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
         Convert_To_Assignments (N, Typ);

      --  The extension aggregate is transformed into a record aggregate
      --  of the following form (c1 and c2 are inherited components)

      --   (Exp with c3 => a, c4 => b)
      --      ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)

      else
         Set_Etype (N, Typ);

         if Tagged_Type_Expansion then
            Expand_Record_Aggregate (N,
              Orig_Tag    =>
                New_Occurrence_Of
                  (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
              Parent_Expr => A);

         --  No tag is needed in the case of a VM

         else
            Expand_Record_Aggregate (N, Parent_Expr => A);
         end if;
      end if;

   exception
      when RE_Not_Available =>
         return;
   end Expand_N_Extension_Aggregate;

   -----------------------------
   -- Expand_Record_Aggregate --
   -----------------------------

   procedure Expand_Record_Aggregate
     (N           : Node_Id;
      Orig_Tag    : Node_Id := Empty;
      Parent_Expr : Node_Id := Empty)
   is
      Loc      : constant Source_Ptr := Sloc  (N);
      Comps    : constant List_Id    := Component_Associations (N);
      Typ      : constant Entity_Id  := Etype (N);
      Base_Typ : constant Entity_Id  := Base_Type (Typ);

      Static_Components : Boolean := True;
      --  Flag to indicate whether all components are compile-time known,
      --  and the aggregate can be constructed statically and handled by
      --  the back-end. Set to False by Component_OK_For_Backend.

      procedure Build_Back_End_Aggregate;
      --  Build a proper aggregate to be handled by the back-end

      function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
      --  Returns true if N is an expression of composite type which can be
      --  fully evaluated at compile time without raising constraint error.
      --  Such expressions can be passed as is to Gigi without any expansion.
      --
      --  This returns true for N_Aggregate with Compile_Time_Known_Aggregate
      --  set and constants whose expression is such an aggregate, recursively.

      function Component_OK_For_Backend return Boolean;
      --  Check for presence of a component which makes it impossible for the
      --  backend to process the aggregate, thus requiring the use of a series
      --  of assignment statements. Cases checked for are a nested aggregate
      --  needing Late_Expansion, the presence of a tagged component which may
      --  need tag adjustment, and a bit unaligned component reference.
      --
      --  We also force expansion into assignments if a component is of a
      --  mutable type (including a private type with discriminants) because
      --  in that case the size of the component to be copied may be smaller
      --  than the side of the target, and there is no simple way for gigi
      --  to compute the size of the object to be copied.
      --
      --  NOTE: This is part of the ongoing work to define precisely the
      --  interface between front-end and back-end handling of aggregates.
      --  In general it is desirable to pass aggregates as they are to gigi,
      --  in order to minimize elaboration code. This is one case where the
      --  semantics of Ada complicate the analysis and lead to anomalies in
      --  the gcc back-end if the aggregate is not expanded into assignments.
      --
      --  NOTE: This sets the global Static_Components to False in most, but
      --  not all, cases when it returns False.

      function Contains_Mutably_Tagged_Component
        (Typ : Entity_Id) return Boolean;
      --  Determine if some component of Typ is mutably tagged

      function Has_Visible_Private_Ancestor (Id : E) return Boolean;
      --  If any ancestor of the current type is private, the aggregate
      --  cannot be built in place. We cannot rely on Has_Private_Ancestor,
      --  because it will not be set when type and its parent are in the
      --  same scope, and the parent component needs expansion.

      function Top_Level_Aggregate (N : Node_Id) return Node_Id;
      --  For nested aggregates return the ultimate enclosing aggregate; for
      --  non-nested aggregates return N.

      ------------------------------
      -- Build_Back_End_Aggregate --
      ------------------------------

      procedure Build_Back_End_Aggregate is
         Comp      : Entity_Id;
         New_Comp  : Node_Id;
         Tag_Value : Node_Id;

      begin
         if Nkind (N) = N_Aggregate then

            --  If the aggregate is static and can be handled by the back-end,
            --  nothing left to do.

            if Static_Components then
               Set_Compile_Time_Known_Aggregate (N);
               Set_Expansion_Delayed (N, False);
            end if;
         end if;

         --  If no discriminants, nothing special to do

         if not Has_Discriminants (Typ) then
            null;

         --  Case of discriminants present

         elsif Is_Derived_Type (Typ) then

            --  For untagged types, non-stored discriminants are replaced with
            --  stored discriminants, which are the ones that gigi uses to
            --  describe the type and its components.

            Generate_Aggregate_For_Derived_Type : declare
               procedure Prepend_Stored_Values (T : Entity_Id);
               --  Scan the list of stored discriminants of the type, and add
               --  their values to the aggregate being built.

               ---------------------------
               -- Prepend_Stored_Values --
               ---------------------------

               procedure Prepend_Stored_Values (T : Entity_Id) is
                  Discr      : Entity_Id;
                  First_Comp : Node_Id := Empty;

               begin
                  Discr := First_Stored_Discriminant (T);
                  while Present (Discr) loop
                     New_Comp :=
                       Make_Component_Association (Loc,
                         Choices    => New_List (
                           New_Occurrence_Of (Discr, Loc)),
                         Expression =>
                           New_Copy_Tree
                             (Get_Discriminant_Value
                                (Discr,
                                 Typ,
                                 Discriminant_Constraint (Typ))));

                     if No (First_Comp) then
                        Prepend_To (Component_Associations (N), New_Comp);
                     else
                        Insert_After (First_Comp, New_Comp);
                     end if;

                     First_Comp := New_Comp;
                     Next_Stored_Discriminant (Discr);
                  end loop;
               end Prepend_Stored_Values;

               --  Local variables

               Constraints : constant List_Id := New_List;

               Discr    : Entity_Id;
               Decl     : Node_Id;
               Num_Disc : Nat := 0;
               Num_Stor : Nat := 0;

            --  Start of processing for Generate_Aggregate_For_Derived_Type

            begin
               --  Remove the associations for the discriminant of derived type

               declare
                  First_Comp : Node_Id;

               begin
                  First_Comp := First (Component_Associations (N));
                  while Present (First_Comp) loop
                     Comp := First_Comp;
                     Next (First_Comp);

                     if Ekind (Entity (First (Choices (Comp)))) =
                          E_Discriminant
                     then
                        Remove (Comp);
                        Num_Disc := Num_Disc + 1;
                     end if;
                  end loop;
               end;

               --  Insert stored discriminant associations in the correct
               --  order. If there are more stored discriminants than new
               --  discriminants, there is at least one new discriminant that
               --  constrains more than one of the stored discriminants. In
               --  this case we need to construct a proper subtype of the
               --  parent type, in order to supply values to all the
               --  components. Otherwise there is one-one correspondence
               --  between the constraints and the stored discriminants.

               Discr := First_Stored_Discriminant (Base_Type (Typ));
               while Present (Discr) loop
                  Num_Stor := Num_Stor + 1;
                  Next_Stored_Discriminant (Discr);
               end loop;

               --  Case of more stored discriminants than new discriminants

               if Num_Stor > Num_Disc then

                  --  Create a proper subtype of the parent type, which is the
                  --  proper implementation type for the aggregate, and convert
                  --  it to the intended target type.

                  Discr := First_Stored_Discriminant (Base_Type (Typ));
                  while Present (Discr) loop
                     New_Comp :=
                       New_Copy_Tree
                         (Get_Discriminant_Value
                            (Discr,
                             Typ,
                             Discriminant_Constraint (Typ)));

                     Append (New_Comp, Constraints);
                     Next_Stored_Discriminant (Discr);
                  end loop;

                  Decl :=
                    Make_Subtype_Declaration (Loc,
                      Defining_Identifier => Make_Temporary (Loc, 'T'),
                      Subtype_Indication  =>
                        Make_Subtype_Indication (Loc,
                          Subtype_Mark =>
                            New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
                          Constraint   =>
                            Make_Index_Or_Discriminant_Constraint
                              (Loc, Constraints)));

                  Insert_Action (N, Decl);
                  Prepend_Stored_Values (Base_Type (Typ));

                  Set_Etype (N, Defining_Identifier (Decl));
                  Set_Analyzed (N);

                  Rewrite (N, Unchecked_Convert_To (Typ, N));
                  Analyze (N);

               --  Case where we do not have fewer new discriminants than
               --  stored discriminants, so in this case we can simply use the
               --  stored discriminants of the subtype.

               else
                  Prepend_Stored_Values (Typ);
               end if;
            end Generate_Aggregate_For_Derived_Type;
         end if;

         if Is_Tagged_Type (Typ) then

            --  In the tagged case, _parent and _tag component must be created

            --  Reset Null_Present unconditionally. Tagged records always have
            --  at least one field (the tag or the parent).

            Set_Null_Record_Present (N, False);

            --  When the current aggregate comes from the expansion of an
            --  extension aggregate, the parent expr is replaced by an
            --  aggregate formed by selected components of this expr.

            if Present (Parent_Expr) and then Is_Empty_List (Comps) then
               Comp := First_Component_Or_Discriminant (Typ);
               while Present (Comp) loop

                  --  Skip all expander-generated components

                  if not Comes_From_Source (Original_Record_Component (Comp))
                  then
                     null;

                  else
                     New_Comp :=
                       Make_Selected_Component (Loc,
                         Prefix        =>
                           Unchecked_Convert_To (Typ,
                             Duplicate_Subexpr (Parent_Expr, True)),
                         Selector_Name => New_Occurrence_Of (Comp, Loc));

                     Append_To (Comps,
                       Make_Component_Association (Loc,
                         Choices    => New_List (
                           New_Occurrence_Of (Comp, Loc)),
                         Expression => New_Comp));

                     Analyze_And_Resolve (New_Comp, Etype (Comp));
                  end if;

                  Next_Component_Or_Discriminant (Comp);
               end loop;
            end if;

            --  Compute the value for the Tag now, if the type is a root it
            --  will be included in the aggregate right away, otherwise it will
            --  be propagated to the parent aggregate.

            if Present (Orig_Tag) then
               Tag_Value := Orig_Tag;

            elsif not Tagged_Type_Expansion then
               Tag_Value := Empty;

            else
               Tag_Value :=
                 New_Occurrence_Of
                   (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
            end if;

            --  For a derived type, an aggregate for the parent is formed with
            --  all the inherited components.

            if Is_Derived_Type (Typ) then
               declare
                  First_Comp   : Node_Id;
                  Parent_Comps : List_Id;
                  Parent_Aggr  : Node_Id;
                  Parent_Name  : Node_Id;

               begin
                  First_Comp   := First (Component_Associations (N));
                  Parent_Comps := New_List;

                  --  First skip the discriminants

                  while Present (First_Comp)
                    and then Ekind (Entity (First (Choices (First_Comp))))
                                                               = E_Discriminant
                  loop
                     Next (First_Comp);
                  end loop;

                  --  Then remove the inherited component association from the
                  --  aggregate and store them in the parent aggregate

                  while Present (First_Comp)
                    and then
                      Scope (Original_Record_Component
                               (Entity (First (Choices (First_Comp))))) /=
                                                                    Base_Typ
                  loop
                     Comp := First_Comp;
                     Next (First_Comp);
                     Remove (Comp);
                     Append (Comp, Parent_Comps);
                  end loop;

                  Parent_Aggr :=
                    Make_Aggregate (Loc,
                      Component_Associations => Parent_Comps);
                  Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));

                  --  Find the _parent component

                  Comp := First_Component (Typ);
                  while Chars (Comp) /= Name_uParent loop
                     Next_Component (Comp);
                  end loop;

                  Parent_Name := New_Occurrence_Of (Comp, Loc);

                  --  Insert the parent aggregate

                  Prepend_To (Component_Associations (N),
                    Make_Component_Association (Loc,
                      Choices    => New_List (Parent_Name),
                      Expression => Parent_Aggr));

                  --  Expand recursively the parent propagating the right Tag

                  Expand_Record_Aggregate
                    (Parent_Aggr, Tag_Value, Parent_Expr);

                  --  The ancestor part may be a nested aggregate that has
                  --  delayed expansion: recheck now.

                  if not Component_OK_For_Backend then
                     Convert_To_Assignments (N, Typ);
                  end if;
               end;

            --  For a root type, the tag component is added (unless compiling
            --  for the VMs, where tags are implicit).

            elsif Tagged_Type_Expansion then
               declare
                  Tag_Name  : constant Node_Id :=
                                New_Occurrence_Of
                                  (First_Tag_Component (Typ), Loc);
                  Typ_Tag   : constant Entity_Id := RTE (RE_Tag);
                  Conv_Node : constant Node_Id :=
                                Unchecked_Convert_To (Typ_Tag, Tag_Value);

               begin
                  Set_Etype (Conv_Node, Typ_Tag);
                  Prepend_To (Component_Associations (N),
                    Make_Component_Association (Loc,
                      Choices    => New_List (Tag_Name),
                      Expression => Conv_Node));
               end;
            end if;
         end if;
      end Build_Back_End_Aggregate;

      ----------------------------------------
      -- Compile_Time_Known_Composite_Value --
      ----------------------------------------

      function Compile_Time_Known_Composite_Value
        (N : Node_Id) return Boolean
      is
      begin
         --  If we have an entity name, then see if it is the name of a
         --  constant and if so, test the corresponding constant value.

         if Is_Entity_Name (N) then
            declare
               E : constant Entity_Id := Entity (N);
               V : Node_Id;
            begin
               if Ekind (E) /= E_Constant then
                  return False;
               else
                  V := Constant_Value (E);
                  return Present (V)
                    and then Compile_Time_Known_Composite_Value (V);
               end if;
            end;

         --  We have a value, see if it is compile time known

         else
            if Nkind (N) = N_Aggregate then
               return Compile_Time_Known_Aggregate (N);
            end if;

            --  All other types of values are not known at compile time

            return False;
         end if;

      end Compile_Time_Known_Composite_Value;

      ------------------------------
      -- Component_OK_For_Backend --
      ------------------------------

      function Component_OK_For_Backend return Boolean is
         C      : Node_Id;
         Expr_Q : Node_Id;

      begin
         C := First (Comps);
         while Present (C) loop

            --  If the component has box initialization, expansion is needed
            --  and component is not ready for backend.

            if Box_Present (C) then
               return False;
            end if;

            Expr_Q := Unqualify (Expression (C));

            --  Return False for array components whose bounds raise
            --  constraint error.

            declare
               Comp : constant Entity_Id := First (Choices (C));
               Indx : Node_Id;

            begin
               if Present (Etype (Comp))
                 and then Is_Array_Type (Etype (Comp))
               then
                  Indx := First_Index (Etype (Comp));
                  while Present (Indx) loop
                     if Nkind (Type_Low_Bound (Etype (Indx))) =
                          N_Raise_Constraint_Error
                       or else Nkind (Type_High_Bound (Etype (Indx))) =
                                 N_Raise_Constraint_Error
                     then
                        return False;
                     end if;

                     Next_Index (Indx);
                  end loop;
               end if;
            end;

            --  Return False if the aggregate has any associations for tagged
            --  components that may require tag adjustment.

            --  These are cases where the source expression may have a tag that
            --  could differ from the component tag (e.g., can occur for type
            --  conversions and formal parameters). (Tag adjustment not needed
            --  if Tagged_Type_Expansion because object tags are implicit in
            --  the machine.)

            if Is_Tagged_Type (Etype (Expr_Q))
              and then
                (Nkind (Expr_Q) = N_Type_Conversion
                  or else
                    (Is_Entity_Name (Expr_Q)
                      and then Is_Formal (Entity (Expr_Q))))
              and then Tagged_Type_Expansion
            then
               Static_Components := False;
               return False;

            elsif Is_Delayed_Aggregate (Expr_Q)
              or else Is_Delayed_Conditional_Expression (Expr_Q)
            then
               Static_Components := False;
               return False;

            elsif Nkind (Expr_Q) = N_Quantified_Expression then
               Static_Components := False;
               return False;

            elsif Possible_Bit_Aligned_Component (Expr_Q) then
               Static_Components := False;
               return False;
            end if;

            if Is_Elementary_Type (Etype (Expr_Q)) then
               if not Compile_Time_Known_Value (Expr_Q) then
                  Static_Components := False;
               end if;

            elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
               Static_Components := False;

               if Is_Private_Type (Etype (Expr_Q))
                 and then Has_Discriminants (Etype (Expr_Q))
               then
                  return False;
               end if;
            end if;

            Next (C);
         end loop;

         return True;
      end Component_OK_For_Backend;

      ---------------------------------------
      -- Contains_Mutably_Tagged_Component --
      ---------------------------------------

      function Contains_Mutably_Tagged_Component
        (Typ : Entity_Id) return Boolean
      is
         Comp : Entity_Id;
      begin
         --  Move through Typ's components looking for mutably tagged ones

         Comp := First_Component (Typ);
         while Present (Comp) loop
            --  When we find one, return True

            if Is_Mutably_Tagged_CW_Equivalent_Type (Etype (Comp)) then
               return True;
            end if;

            Next_Component (Comp);
         end loop;
         return False;
      end Contains_Mutably_Tagged_Component;

      -----------------------------------
      --  Has_Visible_Private_Ancestor --
      -----------------------------------

      function Has_Visible_Private_Ancestor (Id : E) return Boolean is
         R  : constant Entity_Id := Root_Type (Id);
         T1 : Entity_Id := Id;

      begin
         loop
            if Is_Private_Type (T1) then
               return True;

            elsif T1 = R then
               return False;

            else
               T1 := Etype (T1);
            end if;
         end loop;
      end Has_Visible_Private_Ancestor;

      -------------------------
      -- Top_Level_Aggregate --
      -------------------------

      function Top_Level_Aggregate (N : Node_Id) return Node_Id is
         Aggr : Node_Id;

      begin
         Aggr := N;
         while Present (Parent (Aggr))
           and then Nkind (Parent (Aggr)) in
                      N_Aggregate | N_Component_Association
         loop
            Aggr := Parent (Aggr);
         end loop;

         return Aggr;
      end Top_Level_Aggregate;

      --  Local variables

      Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);

   --  Start of processing for Expand_Record_Aggregate

   begin
      --  No special management required for aggregates used to initialize
      --  statically allocated dispatch tables

      if Is_Static_Dispatch_Table_Aggregate (N) then
         return;

      --  Case pattern aggregates need to remain as aggregates

      elsif Is_Case_Choice_Pattern (N) then
         return;
      end if;

      --  If the pragma Aggregate_Individually_Assign is set, always convert to
      --  assignments so that proper tag assignments and conversions can be
      --  generated.

      if Aggregate_Individually_Assign then
         Convert_To_Assignments (N, Typ);

      --  Ada 2005 (AI-318-2): We need to convert to assignments if components
      --  are build-in-place function calls. The assignments will each turn
      --  into a build-in-place function call. If components are all static,
      --  we can pass the aggregate to the back end regardless of limitedness.

      --  Extension aggregates, aggregates in extended return statements, and
      --  aggregates for C++ imported types must be expanded.

      elsif Ada_Version >= Ada_2005
        and then Is_Inherently_Limited_Type (Typ)
      then
         if Nkind (Parent (N)) not in
              N_Component_Association | N_Object_Declaration
         then
            Convert_To_Assignments (N, Typ);

         elsif Nkind (N) = N_Extension_Aggregate
           or else Convention (Typ) = Convention_CPP
         then
            Convert_To_Assignments (N, Typ);

         elsif not Size_Known_At_Compile_Time (Typ)
           or else not Component_OK_For_Backend
           or else not Static_Components
         then
            Convert_To_Assignments (N, Typ);

         --  In all other cases, build a proper aggregate to be handled by
         --  the back-end.

         else
            Build_Back_End_Aggregate;
         end if;

      --  When we have any components which are mutably tagged types then
      --  special processing is required.

      elsif Contains_Mutably_Tagged_Component (Typ) then
         Convert_To_Assignments (N, Typ);

      --  Gigi doesn't properly handle temporaries of variable size so we
      --  generate it in the front-end

      elsif not Size_Known_At_Compile_Time (Typ)
        and then Tagged_Type_Expansion
      then
         Convert_To_Assignments (N, Typ);

      --  An aggregate used to initialize a controlled object must be turned
      --  into component assignments as the components themselves may require
      --  finalization actions such as adjustment.

      elsif Needs_Finalization (Typ) then
         Convert_To_Assignments (N, Typ);

      --  Ada 2005 (AI-287): In case of default initialized components we
      --  convert the aggregate into assignments.

      elsif Has_Default_Init_Comps (N) then
         Convert_To_Assignments (N, Typ);

      --  Check components

      elsif not Component_OK_For_Backend then
         Convert_To_Assignments (N, Typ);

      --  If an ancestor is private, some components are not inherited and we
      --  cannot expand into a record aggregate.

      elsif Has_Visible_Private_Ancestor (Typ) then
         Convert_To_Assignments (N, Typ);

      --  ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
      --  is not able to handle the aggregate for Late_Request.

      elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
         Convert_To_Assignments (N, Typ);

      --  If the tagged types covers interface types we need to initialize all
      --  hidden components containing pointers to secondary dispatch tables.

      elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
         Convert_To_Assignments (N, Typ);

      --  If some components are mutable, the size of the aggregate component
      --  may be distinct from the default size of the type component, so
      --  we need to expand to insure that the back-end copies the proper
      --  size of the data. However, if the aggregate is the initial value of
      --  a constant, the target is immutable and might be built statically
      --  if components are appropriate.

      elsif Has_Mutable_Components (Typ)
        and then
          (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
            or else not Constant_Present (Parent (Top_Level_Aggr))
            or else not Static_Components)
      then
         Convert_To_Assignments (N, Typ);

      --  If the type involved has bit aligned components, then we are not sure
      --  that the back end can handle this case correctly.

      elsif Type_May_Have_Bit_Aligned_Components (Typ) then
         Convert_To_Assignments (N, Typ);

      --  In all other cases, build a proper aggregate to be handled by gigi

      else
         Build_Back_End_Aggregate;
      end if;
   end Expand_Record_Aggregate;

   ---------------------
   -- Get_Base_Object --
   ---------------------

   function Get_Base_Object (N : Node_Id) return Entity_Id is
      R : Node_Id;

   begin
      R := Get_Referenced_Object (N);

      while Nkind (R) in N_Indexed_Component | N_Selected_Component | N_Slice
      loop
         R := Get_Referenced_Object (Prefix (R));
      end loop;

      if Is_Entity_Name (R) and then Is_Object (Entity (R)) then
         return Entity (R);
      else
         return Empty;
      end if;
   end Get_Base_Object;

   ----------------------------
   -- Has_Default_Init_Comps --
   ----------------------------

   function Has_Default_Init_Comps (N : Node_Id) return Boolean is
      Assoc : Node_Id;
      Expr  : Node_Id;
      --  Component association and expression, respectively

   begin
      pragma Assert (Nkind (N) in N_Aggregate | N_Extension_Aggregate);

      if Has_Self_Reference (N) then
         return True;
      end if;

      Assoc := First (Component_Associations (N));
      while Present (Assoc) loop
         --  Each component association has either a box or an expression

         pragma Assert (Box_Present (Assoc) xor Present (Expression (Assoc)));

         --  Check if any direct component has default initialized components

         if Box_Present (Assoc) then
            return True;

         --  Recursive call in case of aggregate expression

         else
            Expr := Expression (Assoc);

            if Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
              and then Has_Default_Init_Comps (Expr)
            then
               return True;
            end if;
         end if;

         Next (Assoc);
      end loop;

      return False;
   end Has_Default_Init_Comps;

   --------------------------
   -- Initialize_Component --
   --------------------------

   procedure Initialize_Component
     (N         : Node_Id;
      Comp      : Node_Id;
      Comp_Typ  : Node_Id;
      Init_Expr : Node_Id;
      Stmts     : List_Id)
   is
      Exceptions_OK   : constant Boolean :=
                          not Restriction_Active (No_Exception_Propagation);
      Finalization_OK : constant Boolean :=
                          Present (Comp_Typ)
                            and then Needs_Finalization (Comp_Typ);
      Loc             : constant Source_Ptr := Sloc (N);

      Blk_Stmts : List_Id;
      Init_Stmt : Node_Id;

   begin
      pragma Assert (Nkind (Init_Expr) in N_Subexpr);

      --  Protect the initialization statements from aborts. Generate:

      --    Abort_Defer;

      if Finalization_OK and Abort_Allowed then
         if Exceptions_OK then
            Blk_Stmts := New_List;
         else
            Blk_Stmts := Stmts;
         end if;

         Append_To (Blk_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));

      --  Otherwise aborts are not allowed. All generated code is added
      --  directly to the input list.

      else
         Blk_Stmts := Stmts;
      end if;

      --  Initialize the component. Generate:

      --    Comp := Init_Expr;

      --  Note that the initialization expression is not duplicated because
      --  either only a single component may be initialized by it (record)
      --  or it has already been duplicated if need be (array).

      Init_Stmt :=
        Make_OK_Assignment_Statement (Loc,
          Name       => New_Copy_Tree (Comp),
          Expression => Relocate_Node (Init_Expr));

      --  If the initialization expression is a conditional expression whose
      --  expansion has been delayed, analyze it again and expand it.

      if Is_Delayed_Conditional_Expression (Expression (Init_Stmt)) then
         Set_Analyzed (Expression (Init_Stmt), False);
      end if;

      Append_To (Blk_Stmts, Init_Stmt);

      --  Arrange for the component to be adjusted if need be (the call will be
      --  generated by Make_Tag_Ctrl_Assignment). But, in the case of an array
      --  aggregate, controlled subaggregates are not considered because each
      --  of their individual elements will receive an adjustment of its own.

      if Finalization_OK
        and then not Is_Inherently_Limited_Type (Comp_Typ)
        and then not
          (Is_Array_Type (Etype (N))
            and then Is_Array_Type (Comp_Typ)
            and then Needs_Finalization (Component_Type (Comp_Typ))
            and then Nkind (Unqualify (Init_Expr)) = N_Aggregate)
      then
         Set_No_Finalize_Actions (Init_Stmt);

      --  Or else, only adjust the tag due to a possible view conversion

      else
         Set_No_Ctrl_Actions (Init_Stmt);

         if Tagged_Type_Expansion and then Is_Tagged_Type (Comp_Typ) then
            declare
               Typ : Entity_Id := Underlying_Type (Comp_Typ);

            begin
               if Is_Concurrent_Type (Typ) then
                  Typ := Corresponding_Record_Type (Typ);
               end if;

               Append_To (Blk_Stmts,
                 Make_Tag_Assignment_From_Type
                   (Loc, New_Copy_Tree (Comp), Typ));
            end;
         end if;
      end if;

      --  Complete the protection of the initialization statements

      if Finalization_OK and Abort_Allowed then

         --  Wrap the initialization statements in a block to catch a
         --  potential exception. Generate:

         --    begin
         --       Abort_Defer;
         --       Comp := Init_Expr;
         --       Comp._tag := Full_TypP;
         --       [Deep_]Adjust (Comp);
         --    at end
         --       Abort_Undefer_Direct;
         --    end;

         if Exceptions_OK then
            Append_To (Stmts,
              Build_Abort_Undefer_Block (Loc,
                Stmts   => Blk_Stmts,
                Context => N));

         --  Otherwise exceptions are not propagated. Generate:

         --    Abort_Defer;
         --    Comp := Init_Expr;
         --    Comp._tag := Full_TypP;
         --    [Deep_]Adjust (Comp);
         --    Abort_Undefer;

         else
            Append_To (Blk_Stmts,
              Build_Runtime_Call (Loc, RE_Abort_Undefer));
         end if;
      end if;
   end Initialize_Component;

   ----------------------------------------
   -- Is_Build_In_Place_Aggregate_Return --
   ----------------------------------------

   function Is_Build_In_Place_Aggregate_Return (N : Node_Id) return Boolean is
      F : Entity_Id;

   begin
      if Nkind (N) /= N_Simple_Return_Statement then
         return False;
      end if;

      F := Return_Applies_To (Return_Statement_Entity (N));

      --  For a build-in-place function, all the returns are done in place
      --  by definition. We also return aggregates in place in other cases
      --  as an optimization, and they correspond to the cases where the
      --  return object is built in place (see Is_Special_Return_Object).

      return Is_Build_In_Place_Function (F)
        or else Needs_Secondary_Stack (Etype (F))
        or else (Back_End_Return_Slot
                  and then Is_By_Reference_Type (Etype (F)));
   end Is_Build_In_Place_Aggregate_Return;

   --------------------------
   -- Is_Delayed_Aggregate --
   --------------------------

   function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
      Unqual_N : constant Node_Id := Unqualify (N);

   begin
      return Nkind (Unqual_N) in N_Aggregate | N_Extension_Aggregate
        and then Expansion_Delayed (Unqual_N);
   end Is_Delayed_Aggregate;

   ---------------------------------------
   -- Is_Delayed_Conditional_Expression --
   ---------------------------------------

   function Is_Delayed_Conditional_Expression (N : Node_Id) return Boolean is
      Unqual_N : constant Node_Id := Unqualify (N);

   begin
      return Nkind (Unqual_N) in N_Case_Expression | N_If_Expression
        and then Expansion_Delayed (Unqual_N);
   end Is_Delayed_Conditional_Expression;

   ----------------------------------------
   -- Is_Static_Dispatch_Table_Aggregate --
   ----------------------------------------

   function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
      Typ : constant Entity_Id := Base_Type (Etype (N));

   begin
      return Building_Static_Dispatch_Tables
        and then Tagged_Type_Expansion

         --  Avoid circularity when rebuilding the compiler

        and then not Is_RTU (Cunit_Entity (Get_Source_Unit (N)), Ada_Tags)
        and then (Is_RTE (Typ, RE_Dispatch_Table_Wrapper)
                    or else
                  Is_RTE (Typ, RE_Address_Array)
                    or else
                  Is_RTE (Typ, RE_Type_Specific_Data)
                    or else
                  Is_RTE (Typ, RE_Tag_Table)
                    or else
                  Is_RTE (Typ, RE_Object_Specific_Data)
                    or else
                  Is_RTE (Typ, RE_Interface_Data)
                    or else
                  Is_RTE (Typ, RE_Interfaces_Array)
                    or else
                  Is_RTE (Typ, RE_Interface_Data_Element));
   end Is_Static_Dispatch_Table_Aggregate;

   -----------------------------
   -- Is_Two_Dim_Packed_Array --
   -----------------------------

   function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is
      C : constant Uint := Component_Size (Typ);

   begin
      return Number_Dimensions (Typ) = 2
        and then Is_Bit_Packed_Array (Typ)
        and then Is_Scalar_Type (Component_Type (Typ))
        and then C in Uint_1 | Uint_2 | Uint_4; -- False if No_Uint
   end Is_Two_Dim_Packed_Array;

   ---------------------------
   -- Is_Two_Pass_Aggregate --
   ---------------------------

   function Is_Two_Pass_Aggregate (N : Node_Id) return Boolean is
   begin
      return Nkind (N) = N_Aggregate
        and then Present (Component_Associations (N))
        and then Nkind (First (Component_Associations (N))) =
                   N_Iterated_Component_Association
        and then
          Present
            (Iterator_Specification (First (Component_Associations (N))));
   end Is_Two_Pass_Aggregate;

   --------------------
   -- Late_Expansion --
   --------------------

   function Late_Expansion
     (N      : Node_Id;
      Typ    : Entity_Id;
      Target : Node_Id) return List_Id
   is
      Aggr_Code : List_Id;

   begin
      if Is_Array_Type (Typ) then
         Aggr_Code :=
           Build_Array_Aggr_Code
             (N           => N,
              Ctype       => Component_Type (Typ),
              Index       => First_Index (Typ),
              Into        => Target,
              Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)));

      else
         Aggr_Code := Build_Record_Aggr_Code (N, Typ, Target);
      end if;

      --  Save the last assignment statement associated with the aggregate
      --  when building a controlled object. This reference is utilized by
      --  the finalization machinery when marking an object as successfully
      --  initialized.

      if Needs_Finalization (Typ)
        and then Is_Entity_Name (Target)
        and then Present (Entity (Target))
        and then Ekind (Entity (Target)) in E_Constant | E_Variable
      then
         Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
      end if;

      return Aggr_Code;
   end Late_Expansion;

   ----------------------------------
   -- Make_OK_Assignment_Statement --
   ----------------------------------

   function Make_OK_Assignment_Statement
     (Sloc       : Source_Ptr;
      Name       : Node_Id;
      Expression : Node_Id) return Node_Id
   is
   begin
      Set_Assignment_OK (Name);
      return Make_Assignment_Statement (Sloc, Name, Expression);
   end Make_OK_Assignment_Statement;

   ------------------------
   -- Max_Aggregate_Size --
   ------------------------

   function Max_Aggregate_Size
     (N            : Node_Id;
      Default_Size : Nat := 5000) return Nat
   is
      function Use_Small_Size (N : Node_Id) return Boolean;
      --  True if we should return a very small size, which means large
      --  aggregates will be implemented as a loop when possible (potentially
      --  transformed to memset calls).

      function Aggr_Context (N : Node_Id) return Node_Id;
      --  Return the context in which the aggregate appears, not counting
      --  qualified expressions and similar.

      ------------------
      -- Aggr_Context --
      ------------------

      function Aggr_Context (N : Node_Id) return Node_Id is
         Result : Node_Id := Parent (N);
      begin
         if Nkind (Result) in N_Qualified_Expression
                            | N_Type_Conversion
                            | N_Unchecked_Type_Conversion
                            | N_If_Expression
                            | N_Case_Expression
                            | N_Component_Association
                            | N_Aggregate
         then
            Result := Aggr_Context (Result);
         end if;

         return Result;
      end Aggr_Context;

      --------------------
      -- Use_Small_Size --
      --------------------

      function Use_Small_Size (N : Node_Id) return Boolean is
         C : constant Node_Id := Aggr_Context (N);
         --  The decision depends on the context in which the aggregate occurs,
         --  and for variable declarations, whether we are nested inside a
         --  subprogram.
      begin
         case Nkind (C) is
            --  True for assignment statements and similar

            when N_Assignment_Statement
               | N_Simple_Return_Statement
               | N_Allocator
               | N_Attribute_Reference
            =>
               return True;

            --  True for nested variable declarations. False for library level
            --  variables, and for constants (whether or not nested).

            when N_Object_Declaration =>
               return not Constant_Present (C)
                 and then Is_Subprogram (Current_Scope);

            --  False for all other contexts

            when others =>
               return False;
         end case;
      end Use_Small_Size;

      --  Local variables

      Typ : constant Entity_Id := Etype (N);

   --  Start of processing for Max_Aggregate_Size

   begin
      --  We use a small limit in CodePeer mode where we favor loops instead of
      --  thousands of single assignments (from large aggregates).

      --  We also increase the limit to 2**24 (about 16 million) if
      --  Restrictions (No_Elaboration_Code) or Restrictions
      --  (No_Implicit_Loops) is specified, since in either case we are at risk
      --  of declaring the program illegal because of this limit. We also
      --  increase the limit when Static_Elaboration_Desired, given that this
      --  means that objects are intended to be placed in data memory.

      --  Same if the aggregate is for a packed two-dimensional array, because
      --  if components are static it is much more efficient to construct a
      --  one-dimensional equivalent array with static components.

      if CodePeer_Mode then
         return 100;
      elsif Restriction_Active (No_Elaboration_Code)
        or else Restriction_Active (No_Implicit_Loops)
        or else Is_Two_Dim_Packed_Array (Typ)
        or else (Ekind (Current_Scope) = E_Package
                   and then Static_Elaboration_Desired (Current_Scope))
      then
         return 2 ** 24;
      elsif Use_Small_Size (N) then
         return 64;
      end if;

      return Default_Size;
   end Max_Aggregate_Size;

   -----------------------
   -- Number_Of_Choices --
   -----------------------

   function Number_Of_Choices (N : Node_Id) return Nat is
      Assoc  : Node_Id;
      Choice : Node_Id;

      Nb_Choices : Nat := 0;

   begin
      if Present (Expressions (N)) then
         return 0;
      end if;

      Assoc := First (Component_Associations (N));
      while Present (Assoc) loop
         Choice := First (Choice_List (Assoc));
         while Present (Choice) loop
            if Nkind (Choice) /= N_Others_Choice then
               Nb_Choices := Nb_Choices + 1;
            end if;

            Next (Choice);
         end loop;

         Next (Assoc);
      end loop;

      return Nb_Choices;
   end Number_Of_Choices;

   ------------------------------------
   -- Packed_Array_Aggregate_Handled --
   ------------------------------------

   --  The current version of this procedure will handle at compile time
   --  any array aggregate that meets these conditions:

   --    One and two dimensional, bit packed
   --    Underlying packed type is modular type
   --    Bounds are within 32-bit Int range
   --    All bounds and values are static

   --  Note: for now, in the 2-D case, we only handle component sizes of
   --  1, 2, 4 (cases where an integral number of elements occupies a byte).

   function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
      Loc  : constant Source_Ptr := Sloc (N);
      Typ  : constant Entity_Id  := Etype (N);
      Ctyp : constant Entity_Id  := Component_Type (Typ);

      Not_Handled : exception;
      --  Exception raised if this aggregate cannot be handled

   begin
      --  Handle one- or two dimensional bit packed array

      if not Is_Bit_Packed_Array (Typ)
        or else Number_Dimensions (Typ) > 2
      then
         return False;
      end if;

      --  If two-dimensional, check whether it can be folded, and transformed
      --  into a one-dimensional aggregate for the Packed_Array_Impl_Type of
      --  the original type.

      if Number_Dimensions (Typ) = 2 then
         return Two_Dim_Packed_Array_Handled (N);
      end if;

      if not Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)) then
         return False;
      end if;

      if not Is_Scalar_Type (Ctyp) then
         return False;
      end if;

      declare
         Csiz  : constant Nat := UI_To_Int (Component_Size (Typ));

         function Get_Component_Val (N : Node_Id) return Uint;
         --  Given a expression value N of the component type Ctyp, returns a
         --  value of Csiz (component size) bits representing this value. If
         --  the value is nonstatic or any other reason exists why the value
         --  cannot be returned, then Not_Handled is raised.

         -----------------------
         -- Get_Component_Val --
         -----------------------

         function Get_Component_Val (N : Node_Id) return Uint is
            Val : Uint;

         begin
            --  We have to analyze the expression here before doing any further
            --  processing here. The analysis of such expressions is deferred
            --  till expansion to prevent some problems of premature analysis.

            Analyze_And_Resolve (N, Ctyp);

            --  Must have a compile time value. String literals have to be
            --  converted into temporaries as well, because they cannot easily
            --  be converted into their bit representation.

            if not Compile_Time_Known_Value (N)
              or else Nkind (N) = N_String_Literal
            then
               raise Not_Handled;
            end if;

            Val := Expr_Rep_Value (N);

            --  Adjust for bias, and strip proper number of bits

            if Has_Biased_Representation (Ctyp) then
               Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
            end if;

            return Val mod Uint_2 ** Csiz;
         end Get_Component_Val;

         Bounds : constant Range_Nodes := Get_Index_Bounds (First_Index (Typ));

      --  Here we know we have a one dimensional bit packed array

      begin
         --  Cannot do anything if bounds are dynamic

         if not (Compile_Time_Known_Value (Bounds.First)
                   and then
                 Compile_Time_Known_Value (Bounds.Last))
         then
            return False;
         end if;

         declare
            Bounds_Vals : constant Range_Values :=
              (First => Expr_Value (Bounds.First),
               Last  => Expr_Value (Bounds.Last));
            --  Compile-time known values of bounds

         begin
            --  Guard against raising C_E in UI_To_Int

            if not UI_Are_In_Int_Range (Bounds_Vals.First, Bounds_Vals.Last)
            then
               return False;
            end if;

            --  At this stage we have a suitable aggregate for handling at
            --  compile time. The only remaining checks are that the values of
            --  expressions in the aggregate are compile-time known (checks are
            --  performed by Get_Component_Val), and that any subtypes or
            --  ranges are statically known.

            --  If the aggregate is not fully positional at this stage, then
            --  convert it to positional form. Either this will fail, in which
            --  case we can do nothing, or it will succeed, in which case we
            --  have succeeded in handling the aggregate and transforming it
            --  into a modular value, or it will stay an aggregate, in which
            --  case we have failed to create a packed value for it.

            if Present (Component_Associations (N)) then
               Convert_To_Positional (N, Handle_Bit_Packed => True);
               return Nkind (N) /= N_Aggregate;
            end if;

            --  Otherwise we are all positional, so convert to proper value

            declare
               Len : constant Nat :=
                 Int'Max (0, UI_To_Int (Bounds_Vals.Last) -
                             UI_To_Int (Bounds_Vals.First) + 1);
               --  The length of the array (number of elements)

               Aggregate_Val : Uint;
               --  Value of aggregate. The value is set in the low order bits
               --  of this value. For the little-endian case, the values are
               --  stored from low-order to high-order and for the big-endian
               --  case the values are stored from high order to low order.
               --  Note that gigi will take care of the conversions to left
               --  justify the value in the big endian case (because of left
               --  justified modular type processing), so we do not have to
               --  worry about that here.

               Lit : Node_Id;
               --  Integer literal for resulting constructed value

               Shift : Nat;
               --  Shift count from low order for next value

               Incr : Int;
               --  Shift increment for loop

               Expr : Node_Id;
               --  Next expression from positional parameters of aggregate

               Left_Justified : Boolean;
               --  Set True if we are filling the high order bits of the target
               --  value (i.e. the value is left justified).

            begin
               --  For little endian, we fill up the low order bits of the
               --  target value. For big endian we fill up the high order bits
               --  of the target value (which is a left justified modular
               --  value).

               Left_Justified := Bytes_Big_Endian;

               --  Switch justification if using -gnatd8

               if Debug_Flag_8 then
                  Left_Justified := not Left_Justified;
               end if;

               --  Switch justfification if reverse storage order

               if Reverse_Storage_Order (Base_Type (Typ)) then
                  Left_Justified := not Left_Justified;
               end if;

               if Left_Justified then
                  Shift := Csiz * (Len - 1);
                  Incr  := -Csiz;
               else
                  Shift := 0;
                  Incr  := +Csiz;
               end if;

               --  Loop to set the values

               if Len = 0 then
                  Aggregate_Val := Uint_0;
               else
                  Expr := First (Expressions (N));
                  Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;

                  for J in 2 .. Len loop
                     Shift := Shift + Incr;
                     Next (Expr);
                     Aggregate_Val :=
                       Aggregate_Val +
                       Get_Component_Val (Expr) * Uint_2 ** Shift;
                  end loop;
               end if;

               --  Now we can rewrite with the proper value

               Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val);
               Set_Print_In_Hex (Lit);

               --  Construct the expression using this literal. Note that it
               --  is important to qualify the literal with its proper modular
               --  type since universal integer does not have the required
               --  range and also this is a left justified modular type,
               --  which is important in the big-endian case.

               Rewrite (N,
                 Unchecked_Convert_To (Typ,
                   Make_Qualified_Expression (Loc,
                     Subtype_Mark =>
                       New_Occurrence_Of (Packed_Array_Impl_Type (Typ), Loc),
                     Expression   => Lit)));

               Analyze_And_Resolve (N, Typ);
               return True;
            end;
         end;
      end;

   exception
      when Not_Handled =>
         return False;
   end Packed_Array_Aggregate_Handled;

   ----------------------------
   -- Has_Mutable_Components --
   ----------------------------

   function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
      Comp : Entity_Id;
      Ctyp : Entity_Id;

   begin
      Comp := First_Component (Typ);
      while Present (Comp) loop
         Ctyp := Underlying_Type (Etype (Comp));
         if Is_Record_Type (Ctyp)
           and then Has_Discriminants (Ctyp)
           and then not Is_Constrained (Ctyp)
         then
            return True;
         end if;

         Next_Component (Comp);
      end loop;

      return False;
   end Has_Mutable_Components;

   ------------------------------
   -- Initialize_Discriminants --
   ------------------------------

   procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
      Loc  : constant Source_Ptr := Sloc (N);
      Bas  : constant Entity_Id  := Base_Type (Typ);
      Par  : constant Entity_Id  := Etype (Bas);
      Decl : constant Node_Id    := Parent (Par);
      Ref  : Node_Id;

   begin
      if Is_Tagged_Type (Bas)
        and then Is_Derived_Type (Bas)
        and then Has_Discriminants (Par)
        and then Has_Discriminants (Bas)
        and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
        and then Nkind (Decl) = N_Full_Type_Declaration
        and then Nkind (Type_Definition (Decl)) = N_Record_Definition
        and then
          Present (Variant_Part (Component_List (Type_Definition (Decl))))
        and then Nkind (N) /= N_Extension_Aggregate
      then
         --   Call init proc to set discriminants.
         --   There should eventually be a special procedure for this ???

         Ref := New_Occurrence_Of (Defining_Identifier (N), Loc);
         Insert_Actions_After (N, Build_Initialization_Call (N, Ref, Typ));
      end if;
   end Initialize_Discriminants;

   ----------------
   -- Must_Slide --
   ----------------

   function Must_Slide
     (Aggr     : Node_Id;
      Obj_Type : Entity_Id;
      Typ      : Entity_Id) return Boolean
   is
   begin
      --  No sliding if the type of the object is not established yet, if it is
      --  an unconstrained type whose actual subtype comes from the aggregate,
      --  or if the two types are identical. If the aggregate contains only
      --  an Others_Clause it gets its type from the context and no sliding
      --  is involved either.

      if not Is_Array_Type (Obj_Type) then
         return False;

      elsif not Is_Constrained (Obj_Type) then
         return False;

      elsif Typ = Obj_Type then
         return False;

      elsif Is_Others_Aggregate (Aggr) then
         return False;

      --  Check if sliding is required

      else
         declare
            Obj_Index  : Node_Id := First_Index (Obj_Type);
            Obj_Bounds : Range_Nodes;
            Typ_Index  : Node_Id := First_Index (Typ);
            Typ_Bounds : Range_Nodes;

         begin
            while Present (Typ_Index) loop
               pragma Assert (Present (Obj_Index));

               Typ_Bounds := Get_Index_Bounds (Typ_Index);
               Obj_Bounds := Get_Index_Bounds (Obj_Index);

               --  We require static bounds and their static matching

               if        not Compile_Time_Known_Value (Typ_Bounds.First)
                 or else not Compile_Time_Known_Value (Obj_Bounds.First)
                 or else not Compile_Time_Known_Value (Typ_Bounds.Last)
                 or else not Compile_Time_Known_Value (Obj_Bounds.Last)
                 or else Expr_Value (Typ_Bounds.First) /=
                           Expr_Value (Obj_Bounds.First)
                 or else Expr_Value (Typ_Bounds.Last) /=
                           Expr_Value (Obj_Bounds.Last)
               then
                  return True;
               end if;

               Next_Index (Typ_Index);
               Next_Index (Obj_Index);
            end loop;
         end;
      end if;

      return False;
   end Must_Slide;

   ---------------------
   -- Sort_Case_Table --
   ---------------------

   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
      L : constant Int := Case_Table'First;
      U : constant Int := Case_Table'Last;
      K : Int;
      J : Int;
      T : Case_Bounds;

   begin
      K := L;
      while K /= U loop
         T := Case_Table (K + 1);

         J := K + 1;
         while J /= L
           and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
                    Expr_Value (T.Choice_Lo)
         loop
            Case_Table (J) := Case_Table (J - 1);
            J := J - 1;
         end loop;

         Case_Table (J) := T;
         K := K + 1;
      end loop;
   end Sort_Case_Table;

   ----------------------------
   -- Static_Array_Aggregate --
   ----------------------------

   function Static_Array_Aggregate (N : Node_Id) return Boolean is
      function Is_Static_Component (Nod : Node_Id) return Boolean;
      --  Return True if Nod has a compile-time known value and can be passed
      --  as is to the back-end without further expansion.

      ---------------------------
      --  Is_Static_Component  --
      ---------------------------

      function Is_Static_Component (Nod : Node_Id) return Boolean is
      begin
         if Nkind (Nod) in N_Integer_Literal | N_Real_Literal then
            return True;

         elsif Is_Entity_Name (Nod)
           and then Present (Entity (Nod))
           and then Ekind (Entity (Nod)) = E_Enumeration_Literal
         then
            return True;

         elsif Nkind (Nod) = N_Aggregate
           and then Compile_Time_Known_Aggregate (Nod)
         then
            return True;

         else
            return False;
         end if;
      end Is_Static_Component;

      --  Local variables

      Bounds : constant Node_Id   := Aggregate_Bounds (N);
      Typ    : constant Entity_Id := Etype (N);

      Agg  : Node_Id;
      Expr : Node_Id;
      Lo   : Node_Id;
      Hi   : Node_Id;

   --  Start of processing for Static_Array_Aggregate

   begin
      if Is_Packed (Typ) or else Has_Discriminants (Component_Type (Typ)) then
         return False;
      end if;

      if Present (Bounds)
        and then Nkind (Bounds) = N_Range
        and then Nkind (Low_Bound  (Bounds)) = N_Integer_Literal
        and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
      then
         Lo := Low_Bound  (Bounds);
         Hi := High_Bound (Bounds);

         if No (Component_Associations (N)) then

            --  Verify that all components are static

            Expr := First (Expressions (N));
            while Present (Expr) loop
               if not Is_Static_Component (Expr) then
                  return False;
               end if;

               Next (Expr);
            end loop;

            return True;

         else
            --  We allow only a single named association, either a static
            --  range or an others_clause, with a static expression.

            Expr := First (Component_Associations (N));

            if Present (Expressions (N)) then
               return False;

            elsif Present (Next (Expr)) then
               return False;

            elsif Present (Next (First (Choice_List (Expr)))) then
               return False;

            else
               --  The aggregate is static if all components are literals,
               --  or else all its components are static aggregates for the
               --  component type. We also limit the size of a static aggregate
               --  to prevent runaway static expressions.

               if not Is_Static_Component (Expression (Expr)) then
                  return False;
               end if;

               if not Aggr_Size_OK (N) then
                  return False;
               end if;

               --  Guard against raising C_E in UI_To_Int

               if not UI_Are_In_Int_Range (Intval (Lo), Intval (Hi)) then
                  return False;
               end if;

               --  Create a positional aggregate with the right number of
               --  copies of the expression.

               Agg := Make_Aggregate (Sloc (N), New_List, No_List);

               for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
               loop
                  Append_To (Expressions (Agg), New_Copy (Expression (Expr)));

                  --  The copied expression must be analyzed and resolved.
                  --  Besides setting the type, this ensures that static
                  --  expressions are appropriately marked as such.

                  Analyze_And_Resolve
                    (Last (Expressions (Agg)), Component_Type (Typ));
               end loop;

               Set_Aggregate_Bounds (Agg, Bounds);
               Set_Etype (Agg, Typ);
               Set_Analyzed (Agg);
               Rewrite (N, Agg);
               Set_Compile_Time_Known_Aggregate (N);

               return True;
            end if;
         end if;

      else
         return False;
      end if;
   end Static_Array_Aggregate;

   ----------------------------------
   -- Two_Dim_Packed_Array_Handled --
   ----------------------------------

   function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is
      Loc          : constant Source_Ptr := Sloc (N);
      Typ          : constant Entity_Id  := Etype (N);
      Ctyp         : constant Entity_Id  := Component_Type (Typ);
      Comp_Size    : constant Int        := UI_To_Int (Component_Size (Typ));
      Packed_Array : constant Entity_Id  :=
                       Packed_Array_Impl_Type (Base_Type (Typ));

      One_Comp : Node_Id;
      --  Expression in original aggregate

      One_Dim : Node_Id;
      --  One-dimensional subaggregate

   begin
      --  For now, only deal with cases where an integral number of elements
      --  fit in a single byte. This includes the most common boolean case.

      if not (Comp_Size = 1 or else
              Comp_Size = 2 or else
              Comp_Size = 4)
      then
         return False;
      end if;

      Convert_To_Positional (N, Handle_Bit_Packed => True);

      --  Verify that all components are static

      if Nkind (N) = N_Aggregate
        and then Compile_Time_Known_Aggregate (N)
      then
         null;

      --  The aggregate may have been reanalyzed and converted already

      elsif Nkind (N) /= N_Aggregate then
         return True;

      --  If component associations remain, the aggregate is not static

      elsif Present (Component_Associations (N)) then
         return False;

      else
         One_Dim := First (Expressions (N));
         while Present (One_Dim) loop
            if Present (Component_Associations (One_Dim)) then
               return False;
            end if;

            One_Comp := First (Expressions (One_Dim));
            while Present (One_Comp) loop
               if not Is_OK_Static_Expression (One_Comp) then
                  return False;
               end if;

               Next (One_Comp);
            end loop;

            Next (One_Dim);
         end loop;
      end if;

      --  Two-dimensional aggregate is now fully positional so pack one
      --  dimension to create a static one-dimensional array, and rewrite
      --  as an unchecked conversion to the original type.

      declare
         Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array));
         --  The packed array type is a byte array

         Packed_Num : Nat;
         --  Number of components accumulated in current byte

         Comps : List_Id;
         --  Assembled list of packed values for equivalent aggregate

         Comp_Val : Uint;
         --  Integer value of component

         Incr : Int;
         --  Step size for packing

         Init_Shift : Int;
         --  Endian-dependent start position for packing

         Shift : Int;
         --  Current insertion position

         Val : Int;
         --  Component of packed array being assembled

      begin
         Comps := New_List;
         Val   := 0;
         Packed_Num := 0;

         --  Account for endianness. See corresponding comment in
         --  Packed_Array_Aggregate_Handled concerning the following.

         if Bytes_Big_Endian
           xor Debug_Flag_8
           xor Reverse_Storage_Order (Base_Type (Typ))
         then
            Init_Shift := Byte_Size - Comp_Size;
            Incr := -Comp_Size;
         else
            Init_Shift := 0;
            Incr := +Comp_Size;
         end if;

         --  Iterate over each subaggregate

         Shift := Init_Shift;
         One_Dim := First (Expressions (N));
         while Present (One_Dim) loop
            One_Comp := First (Expressions (One_Dim));
            while Present (One_Comp) loop
               if Packed_Num = Byte_Size / Comp_Size then

                  --  Byte is complete, add to list of expressions

                  Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
                  Val := 0;
                  Shift := Init_Shift;
                  Packed_Num := 0;

               else
                  Comp_Val := Expr_Rep_Value (One_Comp);

                  --  Adjust for bias, and strip proper number of bits

                  if Has_Biased_Representation (Ctyp) then
                     Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp));
                  end if;

                  Comp_Val := Comp_Val mod Uint_2 ** Comp_Size;
                  Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift);
                  Shift := Shift + Incr;
                  Next (One_Comp);
                  Packed_Num := Packed_Num + 1;
               end if;
            end loop;

            Next (One_Dim);
         end loop;

         if Packed_Num > 0 then

            --  Add final incomplete byte if present

            Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
         end if;

         Rewrite (N,
             Unchecked_Convert_To (Typ,
               Make_Qualified_Expression (Loc,
                 Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc),
                 Expression   => Make_Aggregate (Loc, Expressions => Comps))));
         Analyze_And_Resolve (N);
         return True;
      end;
   end Two_Dim_Packed_Array_Handled;

end Exp_Aggr;