aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/einfo-utils.adb
blob: cbd957bd9b99e810aabb63370069c4a5c20949e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                           E I N F O . U T I L S                          --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--           Copyright (C) 2020-2021, Free Software Foundation, Inc.        --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Atree;          use Atree;
with Elists;         use Elists;
with Nlists;         use Nlists;
with Output;         use Output;
with Sinfo;          use Sinfo;
with Sinfo.Nodes;    use Sinfo.Nodes;
with Sinfo.Utils;    use Sinfo.Utils;

package body Einfo.Utils is

   -----------------------
   -- Local subprograms --
   -----------------------

   function Has_Option
     (State_Id   : Entity_Id;
      Option_Nam : Name_Id) return Boolean;
   --  Determine whether abstract state State_Id has particular option denoted
   --  by the name Option_Nam.

   -----------------------------------
   -- Renamings of Renamed_Or_Alias --
   -----------------------------------

   function Alias (N : Entity_Id) return Node_Id is
   begin
      pragma Assert
        (Is_Overloadable (N) or else Ekind (N) = E_Subprogram_Type);
      return Renamed_Or_Alias (N);
   end Alias;

   procedure Set_Alias (N : Entity_Id; Val : Node_Id) is
   begin
      pragma Assert
        (Is_Overloadable (N) or else Ekind (N) = E_Subprogram_Type);
      Set_Renamed_Or_Alias (N, Val);
   end Set_Alias;

   ----------------
   -- Has_Option --
   ----------------

   function Has_Option
     (State_Id   : Entity_Id;
      Option_Nam : Name_Id) return Boolean
   is
      Decl    : constant Node_Id := Parent (State_Id);
      Opt     : Node_Id;
      Opt_Nam : Node_Id;

   begin
      pragma Assert (Ekind (State_Id) = E_Abstract_State);

      --  The declaration of abstract states with options appear as an
      --  extension aggregate. If this is not the case, the option is not
      --  available.

      if Nkind (Decl) /= N_Extension_Aggregate then
         return False;
      end if;

      --  Simple options

      Opt := First (Expressions (Decl));
      while Present (Opt) loop
         if Nkind (Opt) = N_Identifier and then Chars (Opt) = Option_Nam then
            return True;
         end if;

         Next (Opt);
      end loop;

      --  Complex options with various specifiers

      Opt := First (Component_Associations (Decl));
      while Present (Opt) loop
         Opt_Nam := First (Choices (Opt));

         if Nkind (Opt_Nam) = N_Identifier
           and then Chars (Opt_Nam) = Option_Nam
         then
            return True;
         end if;

         Next (Opt);
      end loop;

      return False;
   end Has_Option;

   ------------------------------
   -- Classification Functions --
   ------------------------------

   function Is_Access_Object_Type               (Id : E) return B is
   begin
      return Is_Access_Type (Id)
        and then Ekind (Directly_Designated_Type (Id)) /= E_Subprogram_Type;
   end Is_Access_Object_Type;

   function Is_Access_Type                      (Id : E) return B is
   begin
      return Ekind (Id) in Access_Kind;
   end Is_Access_Type;

   function Is_Access_Protected_Subprogram_Type (Id : E) return B is
   begin
      return Ekind (Id) in Access_Protected_Kind;
   end Is_Access_Protected_Subprogram_Type;

   function Is_Access_Subprogram_Type           (Id : E) return B is
   begin
      return Is_Access_Type (Id)
        and then Ekind (Directly_Designated_Type (Id)) = E_Subprogram_Type;
   end Is_Access_Subprogram_Type;

   function Is_Aggregate_Type                   (Id : E) return B is
   begin
      return Ekind (Id) in Aggregate_Kind;
   end Is_Aggregate_Type;

   function Is_Anonymous_Access_Type            (Id : E) return B is
   begin
      return Ekind (Id) in Anonymous_Access_Kind;
   end Is_Anonymous_Access_Type;

   function Is_Array_Type                       (Id : E) return B is
   begin
      return Ekind (Id) in Array_Kind;
   end Is_Array_Type;

   function Is_Assignable                       (Id : E) return B is
   begin
      return Ekind (Id) in Assignable_Kind;
   end Is_Assignable;

   function Is_Class_Wide_Type                  (Id : E) return B is
   begin
      return Ekind (Id) in Class_Wide_Kind;
   end Is_Class_Wide_Type;

   function Is_Composite_Type                   (Id : E) return B is
   begin
      return Ekind (Id) in Composite_Kind;
   end Is_Composite_Type;

   function Is_Concurrent_Body                  (Id : E) return B is
   begin
      return Ekind (Id) in Concurrent_Body_Kind;
   end Is_Concurrent_Body;

   function Is_Concurrent_Type                  (Id : E) return B is
   begin
      return Ekind (Id) in Concurrent_Kind;
   end Is_Concurrent_Type;

   function Is_Decimal_Fixed_Point_Type         (Id : E) return B is
   begin
      return Ekind (Id) in Decimal_Fixed_Point_Kind;
   end Is_Decimal_Fixed_Point_Type;

   function Is_Digits_Type                      (Id : E) return B is
   begin
      return Ekind (Id) in Digits_Kind;
   end Is_Digits_Type;

   function Is_Discrete_Or_Fixed_Point_Type     (Id : E) return B is
   begin
      return Ekind (Id) in Discrete_Or_Fixed_Point_Kind;
   end Is_Discrete_Or_Fixed_Point_Type;

   function Is_Discrete_Type                    (Id : E) return B is
   begin
      return Ekind (Id) in Discrete_Kind;
   end Is_Discrete_Type;

   function Is_Elementary_Type                  (Id : E) return B is
   begin
      return Ekind (Id) in Elementary_Kind;
   end Is_Elementary_Type;

   function Is_Entry                            (Id : E) return B is
   begin
      return Ekind (Id) in Entry_Kind;
   end Is_Entry;

   function Is_Enumeration_Type                 (Id : E) return B is
   begin
      return Ekind (Id) in Enumeration_Kind;
   end Is_Enumeration_Type;

   function Is_Fixed_Point_Type                 (Id : E) return B is
   begin
      return Ekind (Id) in Fixed_Point_Kind;
   end Is_Fixed_Point_Type;

   function Is_Floating_Point_Type              (Id : E) return B is
   begin
      return Ekind (Id) in Float_Kind;
   end Is_Floating_Point_Type;

   function Is_Formal                           (Id : E) return B is
   begin
      return Ekind (Id) in Formal_Kind;
   end Is_Formal;

   function Is_Formal_Object                    (Id : E) return B is
   begin
      return Ekind (Id) in Formal_Object_Kind;
   end Is_Formal_Object;

   function Is_Generic_Subprogram               (Id : E) return B is
   begin
      return Ekind (Id) in Generic_Subprogram_Kind;
   end Is_Generic_Subprogram;

   function Is_Generic_Unit                     (Id : E) return B is
   begin
      return Ekind (Id) in Generic_Unit_Kind;
   end Is_Generic_Unit;

   function Is_Ghost_Entity (Id : Entity_Id) return Boolean is
   begin
      return Is_Checked_Ghost_Entity (Id) or else Is_Ignored_Ghost_Entity (Id);
   end Is_Ghost_Entity;

   function Is_Incomplete_Or_Private_Type       (Id : E) return B is
   begin
      return Ekind (Id) in Incomplete_Or_Private_Kind;
   end Is_Incomplete_Or_Private_Type;

   function Is_Incomplete_Type                  (Id : E) return B is
   begin
      return Ekind (Id) in Incomplete_Kind;
   end Is_Incomplete_Type;

   function Is_Integer_Type                     (Id : E) return B is
   begin
      return Ekind (Id) in Integer_Kind;
   end Is_Integer_Type;

   function Is_Modular_Integer_Type             (Id : E) return B is
   begin
      return Ekind (Id) in Modular_Integer_Kind;
   end Is_Modular_Integer_Type;

   function Is_Named_Access_Type                (Id : E) return B is
   begin
      return Ekind (Id) in Named_Access_Kind;
   end Is_Named_Access_Type;

   function Is_Named_Number                     (Id : E) return B is
   begin
      return Ekind (Id) in Named_Kind;
   end Is_Named_Number;

   function Is_Numeric_Type                     (Id : E) return B is
   begin
      return Ekind (Id) in Numeric_Kind;
   end Is_Numeric_Type;

   function Is_Object                           (Id : E) return B is
   begin
      return Ekind (Id) in Object_Kind;
   end Is_Object;

   function Is_Ordinary_Fixed_Point_Type        (Id : E) return B is
   begin
      return Ekind (Id) in Ordinary_Fixed_Point_Kind;
   end Is_Ordinary_Fixed_Point_Type;

   function Is_Overloadable                     (Id : E) return B is
   begin
      return Ekind (Id) in Overloadable_Kind;
   end Is_Overloadable;

   function Is_Private_Type                     (Id : E) return B is
   begin
      return Ekind (Id) in Private_Kind;
   end Is_Private_Type;

   function Is_Protected_Type                   (Id : E) return B is
   begin
      return Ekind (Id) in Protected_Kind;
   end Is_Protected_Type;

   function Is_Real_Type                        (Id : E) return B is
   begin
      return Ekind (Id) in Real_Kind;
   end Is_Real_Type;

   function Is_Record_Type                      (Id : E) return B is
   begin
      return Ekind (Id) in Record_Kind;
   end Is_Record_Type;

   function Is_Scalar_Type                      (Id : E) return B is
   begin
      return Ekind (Id) in Scalar_Kind;
   end Is_Scalar_Type;

   function Is_Signed_Integer_Type              (Id : E) return B is
   begin
      return Ekind (Id) in Signed_Integer_Kind;
   end Is_Signed_Integer_Type;

   function Is_Subprogram                       (Id : E) return B is
   begin
      return Ekind (Id) in Subprogram_Kind;
   end Is_Subprogram;

   function Is_Subprogram_Or_Entry              (Id : E) return B is
   begin
      return Ekind (Id) in Subprogram_Kind
               or else
             Ekind (Id) in Entry_Kind;
   end Is_Subprogram_Or_Entry;

   function Is_Subprogram_Or_Generic_Subprogram (Id : E) return B is
   begin
      return Ekind (Id) in Subprogram_Kind
               or else
             Ekind (Id) in Generic_Subprogram_Kind;
   end Is_Subprogram_Or_Generic_Subprogram;

   function Is_Task_Type                        (Id : E) return B is
   begin
      return Ekind (Id) in Task_Kind;
   end Is_Task_Type;

   function Is_Type                             (Id : E) return B is
   begin
      return Ekind (Id) in Type_Kind;
   end Is_Type;

   ------------------------------------------
   -- Type Representation Attribute Fields --
   ------------------------------------------

   function Known_Alignment (E : Entity_Id) return B is
   begin
      return not Field_Is_Initial_Zero (E, F_Alignment);
   end Known_Alignment;

   procedure Reinit_Alignment (Id : E) is
   begin
      Reinit_Field_To_Zero (Id, F_Alignment);
   end Reinit_Alignment;

   procedure Copy_Alignment (To, From : E) is
   begin
      if Known_Alignment (From) then
         Set_Alignment (To, Alignment (From));
      else
         Reinit_Alignment (To);
      end if;
   end Copy_Alignment;

   function Known_Component_Bit_Offset (E : Entity_Id) return B is
   begin
      return Present (Component_Bit_Offset (E));
   end Known_Component_Bit_Offset;

   function Known_Static_Component_Bit_Offset (E : Entity_Id) return B is
   begin
      return Present (Component_Bit_Offset (E))
        and then Component_Bit_Offset (E) >= Uint_0;
   end Known_Static_Component_Bit_Offset;

   function Known_Component_Size (E : Entity_Id) return B is
   begin
      return Component_Size (E) /= Uint_0
        and then Present (Component_Size (E));
   end Known_Component_Size;

   function Known_Static_Component_Size (E : Entity_Id) return B is
   begin
      return Component_Size (E) > Uint_0;
   end Known_Static_Component_Size;

   Use_New_Unknown_Rep : constant Boolean := False;
   --  If False, we represent "unknown" as Uint_0, which is wrong.
   --  We intend to make it True (and remove it), and represent
   --  "unknown" as Field_Is_Initial_Zero. We also need to change
   --  the type of Esize and RM_Size from Uint to Valid_Uint.

   function Known_Esize (E : Entity_Id) return B is
   begin
      if Use_New_Unknown_Rep then
         return not Field_Is_Initial_Zero (E, F_Esize);
      else
         return Present (Esize (E)) and then Esize (E) /= Uint_0;
      end if;
   end Known_Esize;

   function Known_Static_Esize (E : Entity_Id) return B is
   begin
      return Known_Esize (E)
        and then Esize (E) >= Uint_0
        and then not Is_Generic_Type (E);
   end Known_Static_Esize;

   procedure Reinit_Esize (Id : E) is
   begin
      if Use_New_Unknown_Rep then
         Reinit_Field_To_Zero (Id, F_Esize);
      else
         Set_Esize (Id, Uint_0);
      end if;
   end Reinit_Esize;

   procedure Copy_Esize (To, From : E) is
   begin
      if Known_Esize (From) then
         Set_Esize (To, Esize (From));
      else
         Reinit_Esize (To);
      end if;
   end Copy_Esize;

   function Known_Normalized_First_Bit (E : Entity_Id) return B is
   begin
      return Present (Normalized_First_Bit (E));
   end Known_Normalized_First_Bit;

   function Known_Static_Normalized_First_Bit (E : Entity_Id) return B is
   begin
      return Present (Normalized_First_Bit (E))
        and then Normalized_First_Bit (E) >= Uint_0;
   end Known_Static_Normalized_First_Bit;

   function Known_Normalized_Position (E : Entity_Id) return B is
   begin
      return Present (Normalized_Position (E));
   end Known_Normalized_Position;

   function Known_Static_Normalized_Position (E : Entity_Id) return B is
   begin
      return Present (Normalized_Position (E))
        and then Normalized_Position (E) >= Uint_0;
   end Known_Static_Normalized_Position;

   function Known_RM_Size (E : Entity_Id) return B is
   begin
      if Use_New_Unknown_Rep then
         return not Field_Is_Initial_Zero (E, F_RM_Size);
      else
         return Present (RM_Size (E))
           and then (RM_Size (E) /= Uint_0
                       or else Is_Discrete_Type (E)
                       or else Is_Fixed_Point_Type (E));
      end if;
   end Known_RM_Size;

   function Known_Static_RM_Size (E : Entity_Id) return B is
   begin
      if Use_New_Unknown_Rep then
         return Known_RM_Size (E)
           and then RM_Size (E) >= Uint_0
           and then not Is_Generic_Type (E);
      else
         return (RM_Size (E) > Uint_0
                   or else Is_Discrete_Type (E)
                   or else Is_Fixed_Point_Type (E))
           and then not Is_Generic_Type (E);
      end if;
   end Known_Static_RM_Size;

   procedure Reinit_RM_Size (Id : E) is
   begin
      if Use_New_Unknown_Rep then
         Reinit_Field_To_Zero (Id, F_RM_Size);
      else
         Set_RM_Size (Id, Uint_0);
      end if;
   end Reinit_RM_Size;

   procedure Copy_RM_Size (To, From : E) is
   begin
      if Known_RM_Size (From) then
         Set_RM_Size (To, RM_Size (From));
      else
         Reinit_RM_Size (To);
      end if;
   end Copy_RM_Size;

   -------------------------------
   -- Reinit_Component_Location --
   -------------------------------

   procedure Reinit_Component_Location (Id : E) is
   begin
      Set_Normalized_First_Bit (Id, No_Uint);
      Set_Component_Bit_Offset (Id, No_Uint);
      Reinit_Esize (Id);
      Set_Normalized_Position (Id, No_Uint);
   end Reinit_Component_Location;

   ------------------------------
   -- Reinit_Object_Size_Align --
   ------------------------------

   procedure Reinit_Object_Size_Align (Id : E) is
   begin
      Reinit_Esize (Id);
      Reinit_Alignment (Id);
   end Reinit_Object_Size_Align;

   ---------------
   -- Init_Size --
   ---------------

   procedure Init_Size (Id : E; V : Int) is
   begin
      pragma Assert (Is_Type (Id));
      pragma Assert (not Known_Esize (Id) or else Esize (Id) = V);
      if Use_New_Unknown_Rep then
         pragma Assert (not Known_RM_Size (Id) or else RM_Size (Id) = V);
      end if;
      Set_Esize (Id, UI_From_Int (V));
      Set_RM_Size (Id, UI_From_Int (V));
   end Init_Size;

   -----------------------
   -- Reinit_Size_Align --
   -----------------------

   procedure Reinit_Size_Align (Id : E) is
   begin
      pragma Assert (Ekind (Id) in Type_Kind | E_Void);
      Reinit_Esize (Id);
      Reinit_RM_Size (Id);
      Reinit_Alignment (Id);
   end Reinit_Size_Align;

   --------------------
   -- Address_Clause --
   --------------------

   function Address_Clause (Id : E) return N is
   begin
      return Get_Attribute_Definition_Clause (Id, Attribute_Address);
   end Address_Clause;

   ---------------
   -- Aft_Value --
   ---------------

   function Aft_Value (Id : E) return U is
      Result    : Nat := 1;
      Delta_Val : Ureal := Delta_Value (Id);
   begin
      while Delta_Val < Ureal_Tenth loop
         Delta_Val := Delta_Val * Ureal_10;
         Result := Result + 1;
      end loop;

      return UI_From_Int (Result);
   end Aft_Value;

   ----------------------
   -- Alignment_Clause --
   ----------------------

   function Alignment_Clause (Id : E) return N is
   begin
      return Get_Attribute_Definition_Clause (Id, Attribute_Alignment);
   end Alignment_Clause;

   -------------------
   -- Append_Entity --
   -------------------

   procedure Append_Entity (Id : Entity_Id; Scop : Entity_Id) is
      Last : constant Entity_Id := Last_Entity (Scop);

   begin
      Set_Scope (Id, Scop);
      Set_Prev_Entity (Id, Empty);  --  Empty <-- Id

      --  The entity chain is empty

      if No (Last) then
         Set_First_Entity (Scop, Id);

      --  Otherwise the entity chain has at least one element

      else
         Link_Entities (Last, Id);  --  Last <-- Id, Last --> Id
      end if;

      --  NOTE: The setting of the Next_Entity attribute of Id must happen
      --  here as opposed to at the beginning of the routine because doing
      --  so causes the binder to hang. It is not clear why ???

      Set_Next_Entity (Id, Empty);  --  Id --> Empty

      Set_Last_Entity (Scop, Id);
   end Append_Entity;

   ---------------
   -- Base_Type --
   ---------------

   function Base_Type (Id : E) return E is
   begin
      if Is_Base_Type (Id) then
         return Id;
      else
         pragma Assert (Is_Type (Id));
         return Etype (Id);
      end if;
   end Base_Type;

   ----------------------
   -- Declaration_Node --
   ----------------------

   function Declaration_Node (Id : E) return N is
      P : Node_Id;

   begin
      if Ekind (Id) = E_Incomplete_Type
        and then Present (Full_View (Id))
      then
         P := Parent (Full_View (Id));
      else
         P := Parent (Id);
      end if;

      loop
         if Nkind (P) in N_Selected_Component | N_Expanded_Name
           or else (Nkind (P) = N_Defining_Program_Unit_Name
                     and then Is_Child_Unit (Id))
         then
            P := Parent (P);
         else
            return P;
         end if;
      end loop;
   end Declaration_Node;

   ---------------------
   -- Designated_Type --
   ---------------------

   function Designated_Type (Id : E) return E is
      Desig_Type : Entity_Id;

   begin
      Desig_Type := Directly_Designated_Type (Id);

      if No (Desig_Type) then
         pragma Assert (Error_Posted (Id));
         return Any_Type;
      end if;

      if Is_Incomplete_Type (Desig_Type)
        and then Present (Full_View (Desig_Type))
      then
         return Full_View (Desig_Type);
      end if;

      if Is_Class_Wide_Type (Desig_Type)
        and then Is_Incomplete_Type (Etype (Desig_Type))
        and then Present (Full_View (Etype (Desig_Type)))
        and then Present (Class_Wide_Type (Full_View (Etype (Desig_Type))))
      then
         return Class_Wide_Type (Full_View (Etype (Desig_Type)));
      end if;

      return Desig_Type;
   end Designated_Type;

   ----------------------
   -- Entry_Index_Type --
   ----------------------

   function Entry_Index_Type (Id : E) return N is
   begin
      pragma Assert (Ekind (Id) = E_Entry_Family);
      return Etype (Discrete_Subtype_Definition (Parent (Id)));
   end Entry_Index_Type;

   ---------------------
   -- First_Component --
   ---------------------

   function First_Component (Id : E) return E is
      Comp_Id : Entity_Id;

   begin
      pragma Assert
        (Is_Concurrent_Type (Id)
          or else Is_Incomplete_Or_Private_Type (Id)
          or else Is_Record_Type (Id));

      Comp_Id := First_Entity (Id);
      while Present (Comp_Id) loop
         exit when Ekind (Comp_Id) = E_Component;
         Next_Entity (Comp_Id);
      end loop;

      return Comp_Id;
   end First_Component;

   -------------------------------------
   -- First_Component_Or_Discriminant --
   -------------------------------------

   function First_Component_Or_Discriminant (Id : E) return E is
      Comp_Id : Entity_Id;

   begin
      pragma Assert
        (Is_Concurrent_Type (Id)
          or else Is_Incomplete_Or_Private_Type (Id)
          or else Is_Record_Type (Id)
          or else Has_Discriminants (Id));

      Comp_Id := First_Entity (Id);
      while Present (Comp_Id) loop
         exit when Ekind (Comp_Id) in E_Component | E_Discriminant;
         Next_Entity (Comp_Id);
      end loop;

      return Comp_Id;
   end First_Component_Or_Discriminant;

   ------------------
   -- First_Formal --
   ------------------

   function First_Formal (Id : E) return E is
      Formal : Entity_Id;

   begin
      pragma Assert
        (Is_Generic_Subprogram (Id)
           or else Is_Overloadable (Id)
           or else Ekind (Id) in E_Entry_Family
                               | E_Subprogram_Body
                               | E_Subprogram_Type);

      if Ekind (Id) = E_Enumeration_Literal then
         return Empty;

      else
         Formal := First_Entity (Id);

         --  Deal with the common, non-generic case first

         if No (Formal) or else Is_Formal (Formal) then
            return Formal;
         end if;

         --  The first/next entity chain of a generic subprogram contains all
         --  generic formal parameters, followed by the formal parameters.

         if Is_Generic_Subprogram (Id) then
            while Present (Formal) and then not Is_Formal (Formal) loop
               Next_Entity (Formal);
            end loop;
            return Formal;
         else
            return Empty;
         end if;
      end if;
   end First_Formal;

   ------------------------------
   -- First_Formal_With_Extras --
   ------------------------------

   function First_Formal_With_Extras (Id : E) return E is
      Formal : Entity_Id;

   begin
      pragma Assert
        (Is_Generic_Subprogram (Id)
           or else Is_Overloadable (Id)
           or else Ekind (Id) in E_Entry_Family
                               | E_Subprogram_Body
                               | E_Subprogram_Type);

      if Ekind (Id) = E_Enumeration_Literal then
         return Empty;

      else
         Formal := First_Entity (Id);

         --  The first/next entity chain of a generic subprogram contains all
         --  generic formal parameters, followed by the formal parameters. Go
         --  directly to the parameters by skipping the formal part.

         if Is_Generic_Subprogram (Id) then
            while Present (Formal) and then not Is_Formal (Formal) loop
               Next_Entity (Formal);
            end loop;
         end if;

         if Present (Formal) and then Is_Formal (Formal) then
            return Formal;
         else
            return Extra_Formals (Id);  -- Empty if no extra formals
         end if;
      end if;
   end First_Formal_With_Extras;

   ---------------
   -- Float_Rep --
   ---------------

   function Float_Rep (N : Entity_Id) return Float_Rep_Kind is
      pragma Unreferenced (N);
      pragma Assert (Float_Rep_Kind'First = Float_Rep_Kind'Last);

      --  There is only one value, so we don't need to store it, see types.ads.

      Val : constant Float_Rep_Kind := IEEE_Binary;

   begin
      return Val;
   end Float_Rep;

   -------------------------------------
   -- Get_Attribute_Definition_Clause --
   -------------------------------------

   function Get_Attribute_Definition_Clause
     (E  : Entity_Id;
      Id : Attribute_Id) return Node_Id
   is
      N : Node_Id;

   begin
      N := First_Rep_Item (E);
      while Present (N) loop
         if Nkind (N) = N_Attribute_Definition_Clause
           and then Get_Attribute_Id (Chars (N)) = Id
         then
            return N;
         else
            Next_Rep_Item (N);
         end if;
      end loop;

      return Empty;
   end Get_Attribute_Definition_Clause;

   ---------------------------
   -- Get_Class_Wide_Pragma --
   ---------------------------

   function Get_Class_Wide_Pragma
     (E  : Entity_Id;
      Id : Pragma_Id) return Node_Id
    is
      Item  : Node_Id;
      Items : Node_Id;

   begin
      Items := Contract (E);

      if No (Items) then
         return Empty;
      end if;

      Item := Pre_Post_Conditions (Items);
      while Present (Item) loop
         if Nkind (Item) = N_Pragma
           and then Get_Pragma_Id (Pragma_Name_Unmapped (Item)) = Id
           and then Class_Present (Item)
         then
            return Item;
         end if;

         Item := Next_Pragma (Item);
      end loop;

      return Empty;
   end Get_Class_Wide_Pragma;

   -------------------
   -- Get_Full_View --
   -------------------

   function Get_Full_View (T : Entity_Id) return Entity_Id is
   begin
      if Is_Incomplete_Type (T) and then Present (Full_View (T)) then
         return Full_View (T);

      elsif Is_Class_Wide_Type (T)
        and then Is_Incomplete_Type (Root_Type (T))
        and then Present (Full_View (Root_Type (T)))
      then
         return Class_Wide_Type (Full_View (Root_Type (T)));

      else
         return T;
      end if;
   end Get_Full_View;

   ----------------
   -- Get_Pragma --
   ----------------

   function Get_Pragma (E : Entity_Id; Id : Pragma_Id) return Node_Id is

      --  Classification pragmas

      Is_CLS : constant Boolean :=
                 Id = Pragma_Abstract_State             or else
                 Id = Pragma_Attach_Handler             or else
                 Id = Pragma_Async_Readers              or else
                 Id = Pragma_Async_Writers              or else
                 Id = Pragma_Constant_After_Elaboration or else
                 Id = Pragma_Depends                    or else
                 Id = Pragma_Effective_Reads            or else
                 Id = Pragma_Effective_Writes           or else
                 Id = Pragma_Extensions_Visible         or else
                 Id = Pragma_Global                     or else
                 Id = Pragma_Initial_Condition          or else
                 Id = Pragma_Initializes                or else
                 Id = Pragma_Interrupt_Handler          or else
                 Id = Pragma_No_Caching                 or else
                 Id = Pragma_Part_Of                    or else
                 Id = Pragma_Refined_Depends            or else
                 Id = Pragma_Refined_Global             or else
                 Id = Pragma_Refined_State              or else
                 Id = Pragma_Volatile_Function;

      --  Contract / subprogram variant / test case pragmas

      Is_CTC : constant Boolean :=
                  Id = Pragma_Contract_Cases            or else
                  Id = Pragma_Subprogram_Variant        or else
                  Id = Pragma_Test_Case;

      --  Pre / postcondition pragmas

      Is_PPC : constant Boolean :=
                  Id = Pragma_Precondition              or else
                  Id = Pragma_Postcondition             or else
                  Id = Pragma_Refined_Post;

      In_Contract : constant Boolean := Is_CLS or Is_CTC or Is_PPC;

      Item  : Node_Id;
      Items : Node_Id;

   begin
      --  Handle pragmas that appear in N_Contract nodes. Those have to be
      --  extracted from their specialized list.

      if In_Contract then
         Items := Contract (E);

         if No (Items) then
            return Empty;

         elsif Is_CLS then
            Item := Classifications (Items);

         elsif Is_CTC then
            Item := Contract_Test_Cases (Items);

         else
            Item := Pre_Post_Conditions (Items);
         end if;

      --  Regular pragmas

      else
         Item := First_Rep_Item (E);
      end if;

      while Present (Item) loop
         if Nkind (Item) = N_Pragma
           and then Get_Pragma_Id (Pragma_Name_Unmapped (Item)) = Id
         then
            return Item;

         --  All nodes in N_Contract are chained using Next_Pragma

         elsif In_Contract then
            Item := Next_Pragma (Item);

         --  Regular pragmas

         else
            Next_Rep_Item (Item);
         end if;
      end loop;

      return Empty;
   end Get_Pragma;

   --------------------------------------
   -- Get_Record_Representation_Clause --
   --------------------------------------

   function Get_Record_Representation_Clause (E : Entity_Id) return Node_Id is
      N : Node_Id;

   begin
      N := First_Rep_Item (E);
      while Present (N) loop
         if Nkind (N) = N_Record_Representation_Clause then
            return N;
         end if;

         Next_Rep_Item (N);
      end loop;

      return Empty;
   end Get_Record_Representation_Clause;

   ------------------------
   -- Has_Attach_Handler --
   ------------------------

   function Has_Attach_Handler (Id : E) return B is
      Ritem : Node_Id;

   begin
      pragma Assert (Is_Protected_Type (Id));

      Ritem := First_Rep_Item (Id);
      while Present (Ritem) loop
         if Nkind (Ritem) = N_Pragma
           and then Pragma_Name (Ritem) = Name_Attach_Handler
         then
            return True;
         else
            Next_Rep_Item (Ritem);
         end if;
      end loop;

      return False;
   end Has_Attach_Handler;

   -------------
   -- Has_DIC --
   -------------

   function Has_DIC (Id : E) return B is
   begin
      return Has_Own_DIC (Id) or else Has_Inherited_DIC (Id);
   end Has_DIC;

   -----------------
   -- Has_Entries --
   -----------------

   function Has_Entries (Id : E) return B is
      Ent : Entity_Id;

   begin
      pragma Assert (Is_Concurrent_Type (Id));

      Ent := First_Entity (Id);
      while Present (Ent) loop
         if Is_Entry (Ent) then
            return True;
         end if;

         Next_Entity (Ent);
      end loop;

      return False;
   end Has_Entries;

   ----------------------------
   -- Has_Foreign_Convention --
   ----------------------------

   function Has_Foreign_Convention (Id : E) return B is
   begin
      --  While regular Intrinsics such as the Standard operators fit in the
      --  "Ada" convention, those with an Interface_Name materialize GCC
      --  builtin imports for which Ada special treatments shouldn't apply.

      return Convention (Id) in Foreign_Convention
        or else (Convention (Id) = Convention_Intrinsic
                   and then Present (Interface_Name (Id)));
   end Has_Foreign_Convention;

   ---------------------------
   -- Has_Interrupt_Handler --
   ---------------------------

   function Has_Interrupt_Handler (Id : E) return B is
      Ritem : Node_Id;

   begin
      pragma Assert (Is_Protected_Type (Id));

      Ritem := First_Rep_Item (Id);
      while Present (Ritem) loop
         if Nkind (Ritem) = N_Pragma
           and then Pragma_Name (Ritem) = Name_Interrupt_Handler
         then
            return True;
         else
            Next_Rep_Item (Ritem);
         end if;
      end loop;

      return False;
   end Has_Interrupt_Handler;

   --------------------
   -- Has_Invariants --
   --------------------

   function Has_Invariants (Id : E) return B is
   begin
      return Has_Own_Invariants (Id) or else Has_Inherited_Invariants (Id);
   end Has_Invariants;

   --------------------------
   -- Has_Limited_View --
   --------------------------

   function Has_Limited_View (Id : E) return B is
   begin
      return Ekind (Id) = E_Package
        and then not Is_Generic_Instance (Id)
        and then Present (Limited_View (Id));
   end Has_Limited_View;

   --------------------------
   -- Has_Non_Limited_View --
   --------------------------

   function Has_Non_Limited_View (Id : E) return B is
   begin
      return (Ekind (Id) in Incomplete_Kind
               or else Ekind (Id) in Class_Wide_Kind
               or else Ekind (Id) = E_Abstract_State)
        and then Present (Non_Limited_View (Id));
   end Has_Non_Limited_View;

   ---------------------------------
   -- Has_Non_Null_Abstract_State --
   ---------------------------------

   function Has_Non_Null_Abstract_State (Id : E) return B is
   begin
      pragma Assert (Is_Package_Or_Generic_Package (Id));

      return
        Present (Abstract_States (Id))
          and then
            not Is_Null_State (Node (First_Elmt (Abstract_States (Id))));
   end Has_Non_Null_Abstract_State;

   -------------------------------------
   -- Has_Non_Null_Visible_Refinement --
   -------------------------------------

   function Has_Non_Null_Visible_Refinement (Id : E) return B is
      Constits : Elist_Id;

   begin
      --  "Refinement" is a concept applicable only to abstract states

      pragma Assert (Ekind (Id) = E_Abstract_State);
      Constits := Refinement_Constituents (Id);

      --  A partial refinement is always non-null. For a full refinement to be
      --  non-null, the first constituent must be anything other than null.

      return
        Has_Partial_Visible_Refinement (Id)
          or else (Has_Visible_Refinement (Id)
                    and then Present (Constits)
                    and then Nkind (Node (First_Elmt (Constits))) /= N_Null);
   end Has_Non_Null_Visible_Refinement;

   -----------------------------
   -- Has_Null_Abstract_State --
   -----------------------------

   function Has_Null_Abstract_State (Id : E) return B is
      pragma Assert (Is_Package_Or_Generic_Package (Id));

      States : constant Elist_Id := Abstract_States (Id);

   begin
      --  Check first available state of related package. A null abstract
      --  state always appears as the sole element of the state list.

      return
        Present (States)
          and then Is_Null_State (Node (First_Elmt (States)));
   end Has_Null_Abstract_State;

   ---------------------------------
   -- Has_Null_Visible_Refinement --
   ---------------------------------

   function Has_Null_Visible_Refinement (Id : E) return B is
      Constits : Elist_Id;

   begin
      --  "Refinement" is a concept applicable only to abstract states

      pragma Assert (Ekind (Id) = E_Abstract_State);
      Constits := Refinement_Constituents (Id);

      --  For a refinement to be null, the state's sole constituent must be a
      --  null.

      return
        Has_Visible_Refinement (Id)
          and then Present (Constits)
          and then Nkind (Node (First_Elmt (Constits))) = N_Null;
   end Has_Null_Visible_Refinement;

   --------------------
   -- Has_Unmodified --
   --------------------

   function Has_Unmodified (E : Entity_Id) return Boolean is
   begin
      if Has_Pragma_Unmodified (E) then
         return True;
      elsif Warnings_Off (E) then
         Set_Warnings_Off_Used_Unmodified (E);
         return True;
      else
         return False;
      end if;
   end Has_Unmodified;

   ---------------------
   -- Has_Unreferenced --
   ---------------------

   function Has_Unreferenced (E : Entity_Id) return Boolean is
   begin
      if Has_Pragma_Unreferenced (E) then
         return True;
      elsif Warnings_Off (E) then
         Set_Warnings_Off_Used_Unreferenced (E);
         return True;
      else
         return False;
      end if;
   end Has_Unreferenced;

   ----------------------
   -- Has_Warnings_Off --
   ----------------------

   function Has_Warnings_Off (E : Entity_Id) return Boolean is
   begin
      if Warnings_Off (E) then
         Set_Warnings_Off_Used (E);
         return True;
      else
         return False;
      end if;
   end Has_Warnings_Off;

   ------------------------------
   -- Implementation_Base_Type --
   ------------------------------

   function Implementation_Base_Type (Id : E) return E is
      Bastyp : Entity_Id;
      Imptyp : Entity_Id;

   begin
      Bastyp := Base_Type (Id);

      if Is_Incomplete_Or_Private_Type (Bastyp) then
         Imptyp := Underlying_Type (Bastyp);

         --  If we have an implementation type, then just return it,
         --  otherwise we return the Base_Type anyway. This can only
         --  happen in error situations and should avoid some error bombs.

         if Present (Imptyp) then
            return Base_Type (Imptyp);
         else
            return Bastyp;
         end if;

      else
         return Bastyp;
      end if;
   end Implementation_Base_Type;

   -------------------------
   -- Invariant_Procedure --
   -------------------------

   function Invariant_Procedure (Id : E) return E is
      Subp_Elmt : Elmt_Id;
      Subp_Id   : Entity_Id;
      Subps     : Elist_Id;

   begin
      pragma Assert (Is_Type (Id));

      Subps := Subprograms_For_Type (Base_Type (Id));

      if Present (Subps) then
         Subp_Elmt := First_Elmt (Subps);
         while Present (Subp_Elmt) loop
            Subp_Id := Node (Subp_Elmt);

            if Is_Invariant_Procedure (Subp_Id) then
               return Subp_Id;
            end if;

            Next_Elmt (Subp_Elmt);
         end loop;
      end if;

      return Empty;
   end Invariant_Procedure;

   ------------------
   -- Is_Base_Type --
   ------------------

   --  Global flag table allowing rapid computation of this function

   Entity_Is_Base_Type : constant array (Entity_Kind) of Boolean :=
     (E_Enumeration_Subtype          |
      E_Incomplete_Subtype           |
      E_Signed_Integer_Subtype       |
      E_Modular_Integer_Subtype      |
      E_Floating_Point_Subtype       |
      E_Ordinary_Fixed_Point_Subtype |
      E_Decimal_Fixed_Point_Subtype  |
      E_Array_Subtype                |
      E_Record_Subtype               |
      E_Private_Subtype              |
      E_Record_Subtype_With_Private  |
      E_Limited_Private_Subtype      |
      E_Access_Subtype               |
      E_Protected_Subtype            |
      E_Task_Subtype                 |
      E_String_Literal_Subtype       |
      E_Class_Wide_Subtype           => False,
      others                         => True);

   function Is_Base_Type (Id : E) return Boolean is
   begin
      return Entity_Is_Base_Type (Ekind (Id));
   end Is_Base_Type;

   ---------------------
   -- Is_Boolean_Type --
   ---------------------

   function Is_Boolean_Type (Id : E) return B is
   begin
      return Root_Type (Id) = Standard_Boolean;
   end Is_Boolean_Type;

   ------------------------
   -- Is_Constant_Object --
   ------------------------

   function Is_Constant_Object (Id : E) return B is
   begin
      return Ekind (Id) in E_Constant | E_In_Parameter | E_Loop_Parameter;
   end Is_Constant_Object;

   -------------------
   -- Is_Controlled --
   -------------------

   function Is_Controlled (Id : E) return B is
   begin
      return Is_Controlled_Active (Id) and then not Disable_Controlled (Id);
   end Is_Controlled;

   --------------------
   -- Is_Discriminal --
   --------------------

   function Is_Discriminal (Id : E) return B is
   begin
      return Ekind (Id) in E_Constant | E_In_Parameter
               and then Present (Discriminal_Link (Id));
   end Is_Discriminal;

   ----------------------
   -- Is_Dynamic_Scope --
   ----------------------

   function Is_Dynamic_Scope (Id : E) return B is
   begin
      return
        Ekind (Id) = E_Block
          or else
        Ekind (Id) = E_Function
          or else
        Ekind (Id) = E_Procedure
          or else
        Ekind (Id) = E_Subprogram_Body
          or else
        Ekind (Id) = E_Task_Type
          or else
       (Ekind (Id) = E_Limited_Private_Type
         and then Present (Full_View (Id))
         and then Ekind (Full_View (Id)) = E_Task_Type)
          or else
        Ekind (Id) = E_Entry
          or else
        Ekind (Id) = E_Entry_Family
          or else
        Ekind (Id) = E_Return_Statement;
   end Is_Dynamic_Scope;

   --------------------
   -- Is_Entity_Name --
   --------------------

   function Is_Entity_Name (N : Node_Id) return Boolean is
      Kind : constant Node_Kind := Nkind (N);

   begin
      --  Identifiers, operator symbols, expanded names are entity names

      return Kind = N_Identifier
        or else Kind = N_Operator_Symbol
        or else Kind = N_Expanded_Name

      --  Attribute references are entity names if they refer to an entity.
      --  Note that we don't do this by testing for the presence of the
      --  Entity field in the N_Attribute_Reference node, since it may not
      --  have been set yet.

        or else (Kind = N_Attribute_Reference
                  and then Is_Entity_Attribute_Name (Attribute_Name (N)));
   end Is_Entity_Name;

   ---------------------------
   -- Is_Elaboration_Target --
   ---------------------------

   function Is_Elaboration_Target (Id : Entity_Id) return Boolean is
   begin
      return
        Ekind (Id) in E_Constant | E_Package | E_Variable
          or else Is_Entry        (Id)
          or else Is_Generic_Unit (Id)
          or else Is_Subprogram   (Id)
          or else Is_Task_Type    (Id);
   end Is_Elaboration_Target;

   -----------------------
   -- Is_External_State --
   -----------------------

   function Is_External_State (Id : E) return B is
   begin
      --  To qualify, the abstract state must appear with option "external" or
      --  "synchronous" (SPARK RM 7.1.4(7) and (9)).

      return
        Ekind (Id) = E_Abstract_State
          and then (Has_Option (Id, Name_External)
                      or else
                    Has_Option (Id, Name_Synchronous));
   end Is_External_State;

   ------------------
   -- Is_Finalizer --
   ------------------

   function Is_Finalizer (Id : E) return B is
   begin
      return Ekind (Id) = E_Procedure and then Chars (Id) = Name_uFinalizer;
   end Is_Finalizer;

   ----------------------
   -- Is_Full_Access --
   ----------------------

   function Is_Full_Access (Id : E) return B is
   begin
      return Is_Atomic (Id) or else Is_Volatile_Full_Access (Id);
   end Is_Full_Access;

   -------------------
   -- Is_Null_State --
   -------------------

   function Is_Null_State (Id : E) return B is
   begin
      return
        Ekind (Id) = E_Abstract_State and then Nkind (Parent (Id)) = N_Null;
   end Is_Null_State;

   -----------------------------------
   -- Is_Package_Or_Generic_Package --
   -----------------------------------

   function Is_Package_Or_Generic_Package (Id : E) return B is
   begin
      return Ekind (Id) in E_Generic_Package | E_Package;
   end Is_Package_Or_Generic_Package;

   ---------------------
   -- Is_Packed_Array --
   ---------------------

   function Is_Packed_Array (Id : E) return B is
   begin
      return Is_Array_Type (Id) and then Is_Packed (Id);
   end Is_Packed_Array;

   ---------------
   -- Is_Prival --
   ---------------

   function Is_Prival (Id : E) return B is
   begin
      return Ekind (Id) in E_Constant | E_Variable
               and then Present (Prival_Link (Id));
   end Is_Prival;

   ----------------------------
   -- Is_Protected_Component --
   ----------------------------

   function Is_Protected_Component (Id : E) return B is
   begin
      return Ekind (Id) = E_Component and then Is_Protected_Type (Scope (Id));
   end Is_Protected_Component;

   ----------------------------
   -- Is_Protected_Interface --
   ----------------------------

   function Is_Protected_Interface (Id : E) return B is
      Typ : constant Entity_Id := Base_Type (Id);
   begin
      if not Is_Interface (Typ) then
         return False;
      elsif Is_Class_Wide_Type (Typ) then
         return Is_Protected_Interface (Etype (Typ));
      else
         return Protected_Present (Type_Definition (Parent (Typ)));
      end if;
   end Is_Protected_Interface;

   ------------------------------
   -- Is_Protected_Record_Type --
   ------------------------------

   function Is_Protected_Record_Type (Id : E) return B is
   begin
      return
        Is_Concurrent_Record_Type (Id)
          and then Is_Protected_Type (Corresponding_Concurrent_Type (Id));
   end Is_Protected_Record_Type;

   -------------------------------------
   -- Is_Relaxed_Initialization_State --
   -------------------------------------

   function Is_Relaxed_Initialization_State (Id : E) return B is
   begin
      --  To qualify, the abstract state must appear with simple option
      --  "Relaxed_Initialization" (SPARK RM 6.10).

      return
        Ekind (Id) = E_Abstract_State
          and then Has_Option (Id, Name_Relaxed_Initialization);
   end Is_Relaxed_Initialization_State;

   --------------------------------
   -- Is_Standard_Character_Type --
   --------------------------------

   function Is_Standard_Character_Type (Id : E) return B is
   begin
      return Is_Type (Id)
        and then Root_Type (Id) in Standard_Character
                                 | Standard_Wide_Character
                                 | Standard_Wide_Wide_Character;
   end Is_Standard_Character_Type;

   -----------------------------
   -- Is_Standard_String_Type --
   -----------------------------

   function Is_Standard_String_Type (Id : E) return B is
   begin
      return Is_Type (Id)
        and then Root_Type (Id) in Standard_String
                                 | Standard_Wide_String
                                 | Standard_Wide_Wide_String;
   end Is_Standard_String_Type;

   --------------------
   -- Is_String_Type --
   --------------------

   function Is_String_Type (Id : E) return B is
   begin
      return Is_Array_Type (Id)
        and then Id /= Any_Composite
        and then Number_Dimensions (Id) = 1
        and then Is_Character_Type (Component_Type (Id));
   end Is_String_Type;

   -------------------------------
   -- Is_Synchronized_Interface --
   -------------------------------

   function Is_Synchronized_Interface (Id : E) return B is
      Typ : constant Entity_Id := Base_Type (Id);

   begin
      if not Is_Interface (Typ) then
         return False;

      elsif Is_Class_Wide_Type (Typ) then
         return Is_Synchronized_Interface (Etype (Typ));

      else
         return    Protected_Present    (Type_Definition (Parent (Typ)))
           or else Synchronized_Present (Type_Definition (Parent (Typ)))
           or else Task_Present         (Type_Definition (Parent (Typ)));
      end if;
   end Is_Synchronized_Interface;

   ---------------------------
   -- Is_Synchronized_State --
   ---------------------------

   function Is_Synchronized_State (Id : E) return B is
   begin
      --  To qualify, the abstract state must appear with simple option
      --  "synchronous" (SPARK RM 7.1.4(9)).

      return
        Ekind (Id) = E_Abstract_State
          and then Has_Option (Id, Name_Synchronous);
   end Is_Synchronized_State;

   -----------------------
   -- Is_Task_Interface --
   -----------------------

   function Is_Task_Interface (Id : E) return B is
      Typ : constant Entity_Id := Base_Type (Id);
   begin
      if not Is_Interface (Typ) then
         return False;
      elsif Is_Class_Wide_Type (Typ) then
         return Is_Task_Interface (Etype (Typ));
      else
         return Task_Present (Type_Definition (Parent (Typ)));
      end if;
   end Is_Task_Interface;

   -------------------------
   -- Is_Task_Record_Type --
   -------------------------

   function Is_Task_Record_Type (Id : E) return B is
   begin
      return
        Is_Concurrent_Record_Type (Id)
          and then Is_Task_Type (Corresponding_Concurrent_Type (Id));
   end Is_Task_Record_Type;

   ------------------------
   -- Is_Wrapper_Package --
   ------------------------

   function Is_Wrapper_Package (Id : E) return B is
   begin
      return Ekind (Id) = E_Package and then Present (Related_Instance (Id));
   end Is_Wrapper_Package;

   -----------------
   -- Last_Formal --
   -----------------

   function Last_Formal (Id : E) return E is
      Formal : Entity_Id;

   begin
      pragma Assert
        (Is_Overloadable (Id)
          or else Ekind (Id) in E_Entry_Family
                              | E_Subprogram_Body
                              | E_Subprogram_Type);

      if Ekind (Id) = E_Enumeration_Literal then
         return Empty;

      else
         Formal := First_Formal (Id);

         if Present (Formal) then
            while Present (Next_Formal (Formal)) loop
               Next_Formal (Formal);
            end loop;
         end if;

         return Formal;
      end if;
   end Last_Formal;

   -------------------
   -- Link_Entities --
   -------------------

   procedure Link_Entities (First : Entity_Id; Second : Node_Id) is
   begin
      if Present (Second) then
         Set_Prev_Entity (Second, First);  --  First <-- Second
      end if;

      Set_Next_Entity (First, Second);     --  First --> Second
   end Link_Entities;

   ------------------------
   -- Machine_Emax_Value --
   ------------------------

   function Machine_Emax_Value (Id : E) return Uint is
      Digs : constant Pos := UI_To_Int (Digits_Value (Base_Type (Id)));

   begin
      case Float_Rep (Id) is
         when IEEE_Binary =>
            case Digs is
               when  1 ..  6 => return Uint_128;
               when  7 .. 15 => return 2**10;
               when 16 .. 33 => return 2**14;
               when others   => return No_Uint;
            end case;
      end case;
   end Machine_Emax_Value;

   ------------------------
   -- Machine_Emin_Value --
   ------------------------

   function Machine_Emin_Value (Id : E) return Uint is
   begin
      case Float_Rep (Id) is
         when IEEE_Binary => return Uint_3 - Machine_Emax_Value (Id);
      end case;
   end Machine_Emin_Value;

   ----------------------------
   -- Machine_Mantissa_Value --
   ----------------------------

   function Machine_Mantissa_Value (Id : E) return Uint is
      Digs : constant Pos := UI_To_Int (Digits_Value (Base_Type (Id)));

   begin
      case Float_Rep (Id) is
         when IEEE_Binary =>
            case Digs is
               when  1 ..  6 => return Uint_24;
               when  7 .. 15 => return UI_From_Int (53);
               when 16 .. 18 => return Uint_64;
               when 19 .. 33 => return UI_From_Int (113);
               when others   => return No_Uint;
            end case;
      end case;
   end Machine_Mantissa_Value;

   -------------------------
   -- Machine_Radix_Value --
   -------------------------

   function Machine_Radix_Value (Id : E) return U is
   begin
      case Float_Rep (Id) is
         when IEEE_Binary =>
            return Uint_2;
      end case;
   end Machine_Radix_Value;

   ----------------------
   -- Model_Emin_Value --
   ----------------------

   function Model_Emin_Value (Id : E) return Uint is
   begin
      return Machine_Emin_Value (Id);
   end Model_Emin_Value;

   -------------------------
   -- Model_Epsilon_Value --
   -------------------------

   function Model_Epsilon_Value (Id : E) return Ureal is
      Radix : constant Ureal := UR_From_Uint (Machine_Radix_Value (Id));
   begin
      return Radix ** (1 - Model_Mantissa_Value (Id));
   end Model_Epsilon_Value;

   --------------------------
   -- Model_Mantissa_Value --
   --------------------------

   function Model_Mantissa_Value (Id : E) return Uint is
   begin
      return Machine_Mantissa_Value (Id);
   end Model_Mantissa_Value;

   -----------------------
   -- Model_Small_Value --
   -----------------------

   function Model_Small_Value (Id : E) return Ureal is
      Radix : constant Ureal := UR_From_Uint (Machine_Radix_Value (Id));
   begin
      return Radix ** (Model_Emin_Value (Id) - 1);
   end Model_Small_Value;

   --------------------
   -- Next_Component --
   --------------------

   function Next_Component (Id : E) return E is
      Comp_Id : Entity_Id;

   begin
      Comp_Id := Next_Entity (Id);
      while Present (Comp_Id) loop
         exit when Ekind (Comp_Id) = E_Component;
         Next_Entity (Comp_Id);
      end loop;

      return Comp_Id;
   end Next_Component;

   ------------------------------------
   -- Next_Component_Or_Discriminant --
   ------------------------------------

   function Next_Component_Or_Discriminant (Id : E) return E is
      Comp_Id : Entity_Id;

   begin
      Comp_Id := Next_Entity (Id);
      while Present (Comp_Id) loop
         exit when Ekind (Comp_Id) in E_Component | E_Discriminant;
         Next_Entity (Comp_Id);
      end loop;

      return Comp_Id;
   end Next_Component_Or_Discriminant;

   -----------------------
   -- Next_Discriminant --
   -----------------------

   --  This function actually implements both Next_Discriminant and
   --  Next_Stored_Discriminant by making sure that the Discriminant
   --  returned is of the same variety as Id.

   function Next_Discriminant (Id : E) return E is

      --  Derived Tagged types with private extensions look like this...

      --       E_Discriminant d1
      --       E_Discriminant d2
      --       E_Component    _tag
      --       E_Discriminant d1
      --       E_Discriminant d2
      --       ...

      --  so it is critical not to go past the leading discriminants

      D : E := Id;

   begin
      pragma Assert (Ekind (Id) = E_Discriminant);

      loop
         Next_Entity (D);
         if No (D)
           or else (Ekind (D) /= E_Discriminant
                      and then not Is_Itype (D))
         then
            return Empty;
         end if;

         exit when Ekind (D) = E_Discriminant
           and then (Is_Completely_Hidden (D) = Is_Completely_Hidden (Id));
      end loop;

      return D;
   end Next_Discriminant;

   -----------------
   -- Next_Formal --
   -----------------

   function Next_Formal (Id : E) return E is
      P : Entity_Id;

   begin
      --  Follow the chain of declared entities as long as the kind of the
      --  entity corresponds to a formal parameter. Skip internal entities
      --  that may have been created for implicit subtypes, in the process
      --  of analyzing default expressions.

      P := Id;
      loop
         Next_Entity (P);

         if No (P) or else Is_Formal (P) then
            return P;
         elsif not Is_Internal (P) then
            return Empty;
         end if;
      end loop;
   end Next_Formal;

   -----------------------------
   -- Next_Formal_With_Extras --
   -----------------------------

   function Next_Formal_With_Extras (Id : E) return E is
   begin
      if Present (Extra_Formal (Id)) then
         return Extra_Formal (Id);
      else
         return Next_Formal (Id);
      end if;
   end Next_Formal_With_Extras;

   ----------------
   -- Next_Index --
   ----------------

   function Next_Index (Id : Node_Id) return Node_Id is
   begin
      return Next (Id);
   end Next_Index;

   ------------------
   -- Next_Literal --
   ------------------

   function Next_Literal (Id : E) return E is
   begin
      pragma Assert (Nkind (Id) in N_Entity);
      return Next (Id);
   end Next_Literal;

   ------------------------------
   -- Next_Stored_Discriminant --
   ------------------------------

   function Next_Stored_Discriminant (Id : E) return E is
   begin
      --  See comment in Next_Discriminant

      return Next_Discriminant (Id);
   end Next_Stored_Discriminant;

   -----------------------
   -- Number_Dimensions --
   -----------------------

   function Number_Dimensions (Id : E) return Pos is
      N : Int;
      T : Node_Id;

   begin
      if Ekind (Id) = E_String_Literal_Subtype then
         return 1;

      else
         N := 0;
         T := First_Index (Id);
         while Present (T) loop
            N := N + 1;
            Next_Index (T);
         end loop;

         return N;
      end if;
   end Number_Dimensions;

   --------------------
   -- Number_Entries --
   --------------------

   function Number_Entries (Id : E) return Nat is
      N   : Int;
      Ent : Entity_Id;

   begin
      pragma Assert (Is_Concurrent_Type (Id));

      N := 0;
      Ent := First_Entity (Id);
      while Present (Ent) loop
         if Is_Entry (Ent) then
            N := N + 1;
         end if;

         Next_Entity (Ent);
      end loop;

      return N;
   end Number_Entries;

   --------------------
   -- Number_Formals --
   --------------------

   function Number_Formals (Id : E) return Pos is
      N      : Int;
      Formal : Entity_Id;

   begin
      N := 0;
      Formal := First_Formal (Id);
      while Present (Formal) loop
         N := N + 1;
         Next_Formal (Formal);
      end loop;

      return N;
   end Number_Formals;

   ------------------------
   -- Object_Size_Clause --
   ------------------------

   function Object_Size_Clause (Id : E) return N is
   begin
      return Get_Attribute_Definition_Clause (Id, Attribute_Object_Size);
   end Object_Size_Clause;

   --------------------
   -- Parameter_Mode --
   --------------------

   function Parameter_Mode (Id : E) return Formal_Kind is
   begin
      return Ekind (Id);
   end Parameter_Mode;

   -------------------
   -- DIC_Procedure --
   -------------------

   function DIC_Procedure (Id : E) return E is
      Subp_Elmt : Elmt_Id;
      Subp_Id   : Entity_Id;
      Subps     : Elist_Id;

   begin
      pragma Assert (Is_Type (Id));

      Subps := Subprograms_For_Type (Base_Type (Id));

      if Present (Subps) then
         Subp_Elmt := First_Elmt (Subps);
         while Present (Subp_Elmt) loop
            Subp_Id := Node (Subp_Elmt);

            --  Currently the flag Is_DIC_Procedure is set for both normal DIC
            --  check procedures as well as for partial DIC check procedures,
            --  and we don't have a flag for the partial procedures.

            if Is_DIC_Procedure (Subp_Id)
              and then not Is_Partial_DIC_Procedure (Subp_Id)
            then
               return Subp_Id;
            end if;

            Next_Elmt (Subp_Elmt);
         end loop;
      end if;

      return Empty;
   end DIC_Procedure;

   function Partial_DIC_Procedure (Id : E) return E is
      Subp_Elmt : Elmt_Id;
      Subp_Id   : Entity_Id;
      Subps     : Elist_Id;

   begin
      pragma Assert (Is_Type (Id));

      Subps := Subprograms_For_Type (Base_Type (Id));

      if Present (Subps) then
         Subp_Elmt := First_Elmt (Subps);
         while Present (Subp_Elmt) loop
            Subp_Id := Node (Subp_Elmt);

            if Is_Partial_DIC_Procedure (Subp_Id) then
               return Subp_Id;
            end if;

            Next_Elmt (Subp_Elmt);
         end loop;
      end if;

      return Empty;
   end Partial_DIC_Procedure;

   function Is_Partial_DIC_Procedure (Id : E) return B is
      Partial_DIC_Suffix : constant String := "Partial_DIC";
      DIC_Nam            : constant String := Get_Name_String (Chars (Id));

   begin
      pragma Assert (Ekind (Id) in E_Function | E_Procedure);

      --  Instead of adding a new Entity_Id flag (which are in short supply),
      --  we test the form of the subprogram name. When the node field and flag
      --  situation is eased, this should be replaced with a flag. ???

      if DIC_Nam'Length > Partial_DIC_Suffix'Length
        and then
          DIC_Nam
            (DIC_Nam'Last - Partial_DIC_Suffix'Length + 1 .. DIC_Nam'Last) =
               Partial_DIC_Suffix
      then
         return True;
      else
         return False;
      end if;
   end Is_Partial_DIC_Procedure;

   ---------------------------------
   -- Partial_Invariant_Procedure --
   ---------------------------------

   function Partial_Invariant_Procedure (Id : E) return E is
      Subp_Elmt : Elmt_Id;
      Subp_Id   : Entity_Id;
      Subps     : Elist_Id;

   begin
      pragma Assert (Is_Type (Id));

      Subps := Subprograms_For_Type (Base_Type (Id));

      if Present (Subps) then
         Subp_Elmt := First_Elmt (Subps);
         while Present (Subp_Elmt) loop
            Subp_Id := Node (Subp_Elmt);

            if Is_Partial_Invariant_Procedure (Subp_Id) then
               return Subp_Id;
            end if;

            Next_Elmt (Subp_Elmt);
         end loop;
      end if;

      return Empty;
   end Partial_Invariant_Procedure;

   -------------------------------------
   -- Partial_Refinement_Constituents --
   -------------------------------------

   function Partial_Refinement_Constituents (Id : E) return L is
      Constits : Elist_Id := No_Elist;

      procedure Add_Usable_Constituents (Item : E);
      --  Add global item Item and/or its constituents to list Constits when
      --  they can be used in a global refinement within the current scope. The
      --  criteria are:
      --    1) If Item is an abstract state with full refinement visible, add
      --       its constituents.
      --    2) If Item is an abstract state with only partial refinement
      --       visible, add both Item and its constituents.
      --    3) If Item is an abstract state without a visible refinement, add
      --       it.
      --    4) If Id is not an abstract state, add it.

      procedure Add_Usable_Constituents (List : Elist_Id);
      --  Apply Add_Usable_Constituents to every constituent in List

      -----------------------------
      -- Add_Usable_Constituents --
      -----------------------------

      procedure Add_Usable_Constituents (Item : E) is
      begin
         if Ekind (Item) = E_Abstract_State then
            if Has_Visible_Refinement (Item) then
               Add_Usable_Constituents (Refinement_Constituents (Item));

            elsif Has_Partial_Visible_Refinement (Item) then
               Append_New_Elmt (Item, Constits);
               Add_Usable_Constituents (Part_Of_Constituents (Item));

            else
               Append_New_Elmt (Item, Constits);
            end if;

         else
            Append_New_Elmt (Item, Constits);
         end if;
      end Add_Usable_Constituents;

      procedure Add_Usable_Constituents (List : Elist_Id) is
         Constit_Elmt : Elmt_Id;
      begin
         if Present (List) then
            Constit_Elmt := First_Elmt (List);
            while Present (Constit_Elmt) loop
               Add_Usable_Constituents (Node (Constit_Elmt));
               Next_Elmt (Constit_Elmt);
            end loop;
         end if;
      end Add_Usable_Constituents;

   --  Start of processing for Partial_Refinement_Constituents

   begin
      --  "Refinement" is a concept applicable only to abstract states

      pragma Assert (Ekind (Id) = E_Abstract_State);

      if Has_Visible_Refinement (Id) then
         Constits := Refinement_Constituents (Id);

      --  A refinement may be partially visible when objects declared in the
      --  private part of a package are subject to a Part_Of indicator.

      elsif Has_Partial_Visible_Refinement (Id) then
         Add_Usable_Constituents (Part_Of_Constituents (Id));

      --  Function should only be called when full or partial refinement is
      --  visible.

      else
         raise Program_Error;
      end if;

      return Constits;
   end Partial_Refinement_Constituents;

   ------------------------
   -- Predicate_Function --
   ------------------------

   function Predicate_Function (Id : E) return E is
      Subp_Elmt : Elmt_Id;
      Subp_Id   : Entity_Id;
      Subps     : Elist_Id;
      Typ       : Entity_Id;

   begin
      pragma Assert (Is_Type (Id));

      --  If type is private and has a completion, predicate may be defined on
      --  the full view.

      if Is_Private_Type (Id)
         and then
           (not Has_Predicates (Id) or else No (Subprograms_For_Type (Id)))
         and then Present (Full_View (Id))
      then
         Typ := Full_View (Id);

      elsif Ekind (Id) in E_Array_Subtype
                        | E_Record_Subtype
                        | E_Record_Subtype_With_Private
        and then Present (Predicated_Parent (Id))
      then
         Typ := Predicated_Parent (Id);

      else
         Typ := Id;
      end if;

      Subps := Subprograms_For_Type (Typ);

      if Present (Subps) then
         Subp_Elmt := First_Elmt (Subps);
         while Present (Subp_Elmt) loop
            Subp_Id := Node (Subp_Elmt);

            if Ekind (Subp_Id) = E_Function
              and then Is_Predicate_Function (Subp_Id)
            then
               return Subp_Id;
            end if;

            Next_Elmt (Subp_Elmt);
         end loop;
      end if;

      return Empty;
   end Predicate_Function;

   --------------------------
   -- Predicate_Function_M --
   --------------------------

   function Predicate_Function_M (Id : E) return E is
      Subp_Elmt : Elmt_Id;
      Subp_Id   : Entity_Id;
      Subps     : Elist_Id;
      Typ       : Entity_Id;

   begin
      pragma Assert (Is_Type (Id));

      --  If type is private and has a completion, predicate may be defined on
      --  the full view.

      if Is_Private_Type (Id)
         and then
           (not Has_Predicates (Id) or else No (Subprograms_For_Type (Id)))
         and then Present (Full_View (Id))
      then
         Typ := Full_View (Id);

      else
         Typ := Id;
      end if;

      Subps := Subprograms_For_Type (Typ);

      if Present (Subps) then
         Subp_Elmt := First_Elmt (Subps);
         while Present (Subp_Elmt) loop
            Subp_Id := Node (Subp_Elmt);

            if Ekind (Subp_Id) = E_Function
              and then Is_Predicate_Function_M (Subp_Id)
            then
               return Subp_Id;
            end if;

            Next_Elmt (Subp_Elmt);
         end loop;
      end if;

      return Empty;
   end Predicate_Function_M;

   -------------------------
   -- Present_In_Rep_Item --
   -------------------------

   function Present_In_Rep_Item (E : Entity_Id; N : Node_Id) return Boolean is
      Ritem : Node_Id;

   begin
      Ritem := First_Rep_Item (E);

      while Present (Ritem) loop
         if Ritem = N then
            return True;
         end if;

         Next_Rep_Item (Ritem);
      end loop;

      return False;
   end Present_In_Rep_Item;

   --------------------------
   -- Primitive_Operations --
   --------------------------

   function Primitive_Operations (Id : E) return L is
   begin
      if Is_Concurrent_Type (Id) then
         if Present (Corresponding_Record_Type (Id)) then
            return Direct_Primitive_Operations
              (Corresponding_Record_Type (Id));

         --  When expansion is disabled, the corresponding record type is
         --  absent, but if this is a tagged type with ancestors, or if the
         --  extension of prefixed calls for untagged types is enabled, then
         --  it may have associated primitive operations.

         else
            return Direct_Primitive_Operations (Id);
         end if;

      else
         return Direct_Primitive_Operations (Id);
      end if;
   end Primitive_Operations;

   ---------------------
   -- Record_Rep_Item --
   ---------------------

   procedure Record_Rep_Item (E : Entity_Id; N : Node_Id) is
   begin
      Set_Next_Rep_Item (N, First_Rep_Item (E));
      Set_First_Rep_Item (E, N);
   end Record_Rep_Item;

   -------------------
   -- Remove_Entity --
   -------------------

   procedure Remove_Entity (Id : Entity_Id) is
      Next  : constant Entity_Id := Next_Entity (Id);
      Prev  : constant Entity_Id := Prev_Entity (Id);
      Scop  : constant Entity_Id := Scope (Id);
      First : constant Entity_Id := First_Entity (Scop);
      Last  : constant Entity_Id := Last_Entity  (Scop);

   begin
      --  Eliminate any existing linkages from the entity

      Set_Prev_Entity (Id, Empty);  --  Empty <-- Id
      Set_Next_Entity (Id, Empty);  --  Id --> Empty

      --  The eliminated entity was the only element in the entity chain

      if Id = First and then Id = Last then
         Set_First_Entity (Scop, Empty);
         Set_Last_Entity  (Scop, Empty);

      --  The eliminated entity was the head of the entity chain

      elsif Id = First then
         Set_First_Entity (Scop, Next);

      --  The eliminated entity was the tail of the entity chain

      elsif Id = Last then
         Set_Last_Entity (Scop, Prev);

      --  Otherwise the eliminated entity comes from the middle of the entity
      --  chain.

      else
         Link_Entities (Prev, Next);  --  Prev <-- Next, Prev --> Next
      end if;
   end Remove_Entity;

   ---------------
   -- Root_Type --
   ---------------

   function Root_Type (Id : E) return E is
      T, Etyp : Entity_Id;

   begin
      pragma Assert (Nkind (Id) in N_Entity);

      T := Base_Type (Id);

      if Ekind (T) = E_Class_Wide_Type then
         return Etype (T);

      --  Other cases

      else
         loop
            Etyp := Etype (T);

            if T = Etyp then
               return T;

            --  Following test catches some error cases resulting from
            --  previous errors.

            elsif No (Etyp) then
               Check_Error_Detected;
               return T;

            elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
               return T;

            elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
               return T;
            end if;

            T := Etyp;

            --  Return if there is a circularity in the inheritance chain. This
            --  happens in some error situations and we do not want to get
            --  stuck in this loop.

            if T = Base_Type (Id) then
               return T;
            end if;
         end loop;
      end if;
   end Root_Type;

   ---------------------
   -- Safe_Emax_Value --
   ---------------------

   function Safe_Emax_Value (Id : E) return Uint is
   begin
      return Machine_Emax_Value (Id);
   end Safe_Emax_Value;

   ----------------------
   -- Safe_First_Value --
   ----------------------

   function Safe_First_Value (Id : E) return Ureal is
   begin
      return -Safe_Last_Value (Id);
   end Safe_First_Value;

   ---------------------
   -- Safe_Last_Value --
   ---------------------

   function Safe_Last_Value (Id : E) return Ureal is
      Radix       : constant Uint := Machine_Radix_Value (Id);
      Mantissa    : constant Uint := Machine_Mantissa_Value (Id);
      Emax        : constant Uint := Safe_Emax_Value (Id);
      Significand : constant Uint := Radix ** Mantissa - 1;
      Exponent    : constant Uint := Emax - Mantissa;

   begin
      if Radix = 2 then
         return
           UR_From_Components
             (Num   => Significand * 2 ** (Exponent mod 4),
              Den   => -Exponent / 4,
              Rbase => 16);
      else
         return
           UR_From_Components
             (Num => Significand,
              Den => -Exponent,
              Rbase => 16);
      end if;
   end Safe_Last_Value;

   -----------------
   -- Scope_Depth --
   -----------------

   function Scope_Depth (Id : E) return Uint is
      Scop : Entity_Id;

   begin
      Scop := Id;
      while Is_Record_Type (Scop) loop
         Scop := Scope (Scop);
      end loop;

      return Scope_Depth_Value (Scop);
   end Scope_Depth;

   ---------------------
   -- Scope_Depth_Set --
   ---------------------

   function Scope_Depth_Set (Id : E) return B is
   begin
      return not Is_Record_Type (Id)
        and then not Field_Is_Initial_Zero (Id, F_Scope_Depth_Value);
      --  We can't call Scope_Depth_Value here, because Empty is not a valid
      --  value of type Uint.
   end Scope_Depth_Set;

   --------------------
   -- Set_Convention --
   --------------------

   procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
   begin
      Set_Basic_Convention (E, Val);

      if Ekind (E) in Access_Subprogram_Kind
        and then Has_Foreign_Convention (E)
      then
         Set_Can_Use_Internal_Rep (E, False);
      end if;

      --  If E is an object, including a component, and the type of E is an
      --  anonymous access type with no convention set, then also set the
      --  convention of the anonymous access type. We do not do this for
      --  anonymous protected types, since protected types always have the
      --  default convention.

      if Present (Etype (E))
        and then (Is_Object (E)

                   --  Allow E_Void (happens for pragma Convention appearing
                   --  in the middle of a record applying to a component)

                   or else Ekind (E) = E_Void)
      then
         declare
            Typ : constant Entity_Id := Etype (E);

         begin
            if Ekind (Typ) in E_Anonymous_Access_Type
                            | E_Anonymous_Access_Subprogram_Type
              and then not Has_Convention_Pragma (Typ)
            then
               Set_Basic_Convention (Typ, Val);
               Set_Has_Convention_Pragma (Typ);

               --  And for the access subprogram type, deal similarly with the
               --  designated E_Subprogram_Type, which is always internal.

               if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
                  declare
                     Dtype : constant Entity_Id := Designated_Type (Typ);
                  begin
                     if Ekind (Dtype) = E_Subprogram_Type
                       and then not Has_Convention_Pragma (Dtype)
                     then
                        Set_Basic_Convention (Dtype, Val);
                        Set_Has_Convention_Pragma (Dtype);
                     end if;
                  end;
               end if;
            end if;
         end;
      end if;
   end Set_Convention;

   -----------------------
   -- Set_DIC_Procedure --
   -----------------------

   procedure Set_DIC_Procedure (Id : E; V : E) is
      Base_Typ  : Entity_Id;
      Subps     : Elist_Id;

   begin
      pragma Assert (Is_Type (Id));

      Base_Typ := Base_Type (Id);
      Subps    := Subprograms_For_Type (Base_Typ);

      if No (Subps) then
         Subps := New_Elmt_List;
         Set_Subprograms_For_Type (Base_Typ, Subps);
      end if;

      Prepend_Elmt (V, Subps);
   end Set_DIC_Procedure;

   procedure Set_Partial_DIC_Procedure (Id : E; V : E) is
   begin
      Set_DIC_Procedure (Id, V);
   end Set_Partial_DIC_Procedure;

   -------------------
   -- Set_Float_Rep --
   -------------------

   procedure Set_Float_Rep
     (Ignore_N : Entity_Id; Ignore_Val : Float_Rep_Kind) is
   begin
      pragma Assert (Float_Rep_Kind'First = Float_Rep_Kind'Last);
      --  There is only one value, so we don't need to store it (see
      --  types.ads).
   end Set_Float_Rep;

   -----------------------------
   -- Set_Invariant_Procedure --
   -----------------------------

   procedure Set_Invariant_Procedure (Id : E; V : E) is
      Base_Typ  : Entity_Id;
      Subp_Elmt : Elmt_Id;
      Subp_Id   : Entity_Id;
      Subps     : Elist_Id;

   begin
      pragma Assert (Is_Type (Id));

      Base_Typ := Base_Type (Id);
      Subps    := Subprograms_For_Type (Base_Typ);

      if No (Subps) then
         Subps := New_Elmt_List;
         Set_Subprograms_For_Type (Base_Typ, Subps);
      end if;

      Subp_Elmt := First_Elmt (Subps);
      Prepend_Elmt (V, Subps);

      --  Check for a duplicate invariant procedure

      while Present (Subp_Elmt) loop
         Subp_Id := Node (Subp_Elmt);

         if Is_Invariant_Procedure (Subp_Id) then
            raise Program_Error;
         end if;

         Next_Elmt (Subp_Elmt);
      end loop;
   end Set_Invariant_Procedure;

   -------------------------------------
   -- Set_Partial_Invariant_Procedure --
   -------------------------------------

   procedure Set_Partial_Invariant_Procedure (Id : E; V : E) is
      Base_Typ  : Entity_Id;
      Subp_Elmt : Elmt_Id;
      Subp_Id   : Entity_Id;
      Subps     : Elist_Id;

   begin
      pragma Assert (Is_Type (Id));

      Base_Typ := Base_Type (Id);
      Subps    := Subprograms_For_Type (Base_Typ);

      if No (Subps) then
         Subps := New_Elmt_List;
         Set_Subprograms_For_Type (Base_Typ, Subps);
      end if;

      Subp_Elmt := First_Elmt (Subps);
      Prepend_Elmt (V, Subps);

      --  Check for a duplicate partial invariant procedure

      while Present (Subp_Elmt) loop
         Subp_Id := Node (Subp_Elmt);

         if Is_Partial_Invariant_Procedure (Subp_Id) then
            raise Program_Error;
         end if;

         Next_Elmt (Subp_Elmt);
      end loop;
   end Set_Partial_Invariant_Procedure;

   ----------------------------
   -- Set_Predicate_Function --
   ----------------------------

   procedure Set_Predicate_Function (Id : E; V : E) is
      Subp_Elmt : Elmt_Id;
      Subp_Id   : Entity_Id;
      Subps     : Elist_Id;

   begin
      pragma Assert (Is_Type (Id) and then Has_Predicates (Id));

      Subps := Subprograms_For_Type (Id);

      if No (Subps) then
         Subps := New_Elmt_List;
         Set_Subprograms_For_Type (Id, Subps);
      end if;

      Subp_Elmt := First_Elmt (Subps);
      Prepend_Elmt (V, Subps);

      --  Check for a duplicate predication function

      while Present (Subp_Elmt) loop
         Subp_Id := Node (Subp_Elmt);

         if Ekind (Subp_Id) = E_Function
           and then Is_Predicate_Function (Subp_Id)
         then
            raise Program_Error;
         end if;

         Next_Elmt (Subp_Elmt);
      end loop;
   end Set_Predicate_Function;

   ------------------------------
   -- Set_Predicate_Function_M --
   ------------------------------

   procedure Set_Predicate_Function_M (Id : E; V : E) is
      Subp_Elmt : Elmt_Id;
      Subp_Id   : Entity_Id;
      Subps     : Elist_Id;

   begin
      pragma Assert (Is_Type (Id) and then Has_Predicates (Id));

      Subps := Subprograms_For_Type (Id);

      if No (Subps) then
         Subps := New_Elmt_List;
         Set_Subprograms_For_Type (Id, Subps);
      end if;

      Subp_Elmt := First_Elmt (Subps);
      Prepend_Elmt (V, Subps);

      --  Check for a duplicate predication function

      while Present (Subp_Elmt) loop
         Subp_Id := Node (Subp_Elmt);

         if Ekind (Subp_Id) = E_Function
           and then Is_Predicate_Function_M (Subp_Id)
         then
            raise Program_Error;
         end if;

         Next_Elmt (Subp_Elmt);
      end loop;
   end Set_Predicate_Function_M;

   -----------------
   -- Size_Clause --
   -----------------

   function Size_Clause (Id : E) return N is
      Result : N := Get_Attribute_Definition_Clause (Id, Attribute_Size);
   begin
      if No (Result) then
         Result := Get_Attribute_Definition_Clause (Id, Attribute_Value_Size);
      end if;

      return Result;
   end Size_Clause;

   ------------------------
   -- Stream_Size_Clause --
   ------------------------

   function Stream_Size_Clause (Id : E) return N is
   begin
      return Get_Attribute_Definition_Clause (Id, Attribute_Stream_Size);
   end Stream_Size_Clause;

   ------------------
   -- Subtype_Kind --
   ------------------

   function Subtype_Kind (K : Entity_Kind) return Entity_Kind is
      Kind : Entity_Kind;

   begin
      case K is
         when Access_Kind =>
            Kind := E_Access_Subtype;

         when E_Array_Subtype
            | E_Array_Type
         =>
            Kind := E_Array_Subtype;

         when E_Class_Wide_Subtype
            | E_Class_Wide_Type
         =>
            Kind := E_Class_Wide_Subtype;

         when E_Decimal_Fixed_Point_Subtype
            | E_Decimal_Fixed_Point_Type
         =>
            Kind := E_Decimal_Fixed_Point_Subtype;

         when E_Ordinary_Fixed_Point_Subtype
            | E_Ordinary_Fixed_Point_Type
         =>
            Kind := E_Ordinary_Fixed_Point_Subtype;

         when E_Private_Subtype
            | E_Private_Type
         =>
            Kind := E_Private_Subtype;

         when E_Limited_Private_Subtype
            | E_Limited_Private_Type
         =>
            Kind := E_Limited_Private_Subtype;

         when E_Record_Subtype_With_Private
            | E_Record_Type_With_Private
         =>
            Kind := E_Record_Subtype_With_Private;

         when E_Record_Subtype
            | E_Record_Type
         =>
            Kind := E_Record_Subtype;

         when Enumeration_Kind =>
            Kind := E_Enumeration_Subtype;

         when E_Incomplete_Type =>
            Kind := E_Incomplete_Subtype;

         when Float_Kind =>
            Kind := E_Floating_Point_Subtype;

         when Signed_Integer_Kind =>
            Kind := E_Signed_Integer_Subtype;

         when Modular_Integer_Kind =>
            Kind := E_Modular_Integer_Subtype;

         when Protected_Kind =>
            Kind := E_Protected_Subtype;

         when Task_Kind =>
            Kind := E_Task_Subtype;

         when others =>
            raise Program_Error;
      end case;

      return Kind;
   end Subtype_Kind;

   ---------------------
   -- Type_High_Bound --
   ---------------------

   function Type_High_Bound (Id : E) return Node_Id is
      Rng : constant Node_Id := Scalar_Range (Id);
   begin
      if Nkind (Rng) = N_Subtype_Indication then
         return High_Bound (Range_Expression (Constraint (Rng)));
      else
         return High_Bound (Rng);
      end if;
   end Type_High_Bound;

   --------------------
   -- Type_Low_Bound --
   --------------------

   function Type_Low_Bound (Id : E) return Node_Id is
      Rng : constant Node_Id := Scalar_Range (Id);
   begin
      if Nkind (Rng) = N_Subtype_Indication then
         return Low_Bound (Range_Expression (Constraint (Rng)));
      else
         return Low_Bound (Rng);
      end if;
   end Type_Low_Bound;

   ---------------------
   -- Underlying_Type --
   ---------------------

   function Underlying_Type (Id : E) return E is
   begin
      --  For record_with_private the underlying type is always the direct full
      --  view. Never try to take the full view of the parent it does not make
      --  sense.

      if Ekind (Id) = E_Record_Type_With_Private then
         return Full_View (Id);

      --  If we have a class-wide type that comes from the limited view then we
      --  return the Underlying_Type of its nonlimited view.

      elsif Ekind (Id) = E_Class_Wide_Type
        and then From_Limited_With (Id)
        and then Present (Non_Limited_View (Id))
      then
         return Underlying_Type (Non_Limited_View (Id));

      elsif Ekind (Id) in Incomplete_Or_Private_Kind then

         --  If we have an incomplete or private type with a full view, then we
         --  return the Underlying_Type of this full view.

         if Present (Full_View (Id)) then
            if Id = Full_View (Id) then

               --  Previous error in declaration

               return Empty;

            else
               return Underlying_Type (Full_View (Id));
            end if;

         --  If we have a private type with an underlying full view, then we
         --  return the Underlying_Type of this underlying full view.

         elsif Ekind (Id) in Private_Kind
           and then Present (Underlying_Full_View (Id))
         then
            return Underlying_Type (Underlying_Full_View (Id));

         --  If we have an incomplete entity that comes from the limited view
         --  then we return the Underlying_Type of its nonlimited view.

         elsif From_Limited_With (Id)
           and then Present (Non_Limited_View (Id))
         then
            return Underlying_Type (Non_Limited_View (Id));

         --  Otherwise check for the case where we have a derived type or
         --  subtype, and if so get the Underlying_Type of the parent type.

         elsif Etype (Id) /= Id then
            return Underlying_Type (Etype (Id));

         --  Otherwise we have an incomplete or private type that has no full
         --  view, which means that we have not encountered the completion, so
         --  return Empty to indicate the underlying type is not yet known.

         else
            return Empty;
         end if;

      --  For non-incomplete, non-private types, return the type itself. Also
      --  for entities that are not types at all return the entity itself.

      else
         return Id;
      end if;
   end Underlying_Type;

   ------------------------
   -- Unlink_Next_Entity --
   ------------------------

   procedure Unlink_Next_Entity (Id : Entity_Id) is
      Next : constant Entity_Id := Next_Entity (Id);

   begin
      if Present (Next) then
         Set_Prev_Entity (Next, Empty);  --  Empty <-- Next
      end if;

      Set_Next_Entity (Id, Empty);       --  Id --> Empty
   end Unlink_Next_Entity;

   ----------------------------------
   -- Is_Volatile, Set_Is_Volatile --
   ----------------------------------

   function Is_Volatile (Id : E) return B is
   begin
      pragma Assert (Nkind (Id) in N_Entity);

      if Is_Type (Id) then
         return Is_Volatile_Type (Base_Type (Id));
      else
         return Is_Volatile_Object (Id);
      end if;
   end Is_Volatile;

   procedure Set_Is_Volatile (Id : E; V : B := True) is
   begin
      pragma Assert (Nkind (Id) in N_Entity);

      if Is_Type (Id) then
         Set_Is_Volatile_Type (Id, V);
      else
         Set_Is_Volatile_Object (Id, V);
      end if;
   end Set_Is_Volatile;

   -----------------------
   -- Write_Entity_Info --
   -----------------------

   procedure Write_Entity_Info (Id : Entity_Id; Prefix : String) is

      procedure Write_Attribute (Which : String; Nam : E);
      --  Write attribute value with given string name

      procedure Write_Kind (Id : Entity_Id);
      --  Write Ekind field of entity

      ---------------------
      -- Write_Attribute --
      ---------------------

      procedure Write_Attribute (Which : String; Nam : E) is
      begin
         Write_Str (Prefix);
         Write_Str (Which);
         Write_Int (Int (Nam));
         Write_Str (" ");
         Write_Name (Chars (Nam));
         Write_Str (" ");
      end Write_Attribute;

      ----------------
      -- Write_Kind --
      ----------------

      procedure Write_Kind (Id : Entity_Id) is
         K : constant String := Entity_Kind'Image (Ekind (Id));

      begin
         Write_Str (Prefix);
         Write_Str ("   Kind    ");

         if Is_Type (Id) and then Is_Tagged_Type (Id) then
            Write_Str ("TAGGED ");
         end if;

         Write_Str (K (3 .. K'Length));
         Write_Str (" ");

         if Is_Type (Id) and then Depends_On_Private (Id) then
            Write_Str ("Depends_On_Private ");
         end if;
      end Write_Kind;

   --  Start of processing for Write_Entity_Info

   begin
      Write_Eol;
      Write_Attribute ("Name ", Id);
      Write_Int (Int (Id));
      Write_Eol;
      Write_Kind (Id);
      Write_Eol;
      Write_Attribute ("   Type    ", Etype (Id));
      Write_Eol;
      if Id /= Standard_Standard then
         Write_Attribute ("   Scope   ", Scope (Id));
      end if;
      Write_Eol;

      case Ekind (Id) is
         when Discrete_Kind =>
            Write_Str ("Bounds: Id = ");

            if Present (Scalar_Range (Id)) then
               Write_Int (Int (Type_Low_Bound (Id)));
               Write_Str (" .. Id = ");
               Write_Int (Int (Type_High_Bound (Id)));
            else
               Write_Str ("Empty");
            end if;

            Write_Eol;

         when Array_Kind =>
            declare
               Index : Entity_Id;

            begin
               Write_Attribute
                 ("   Component Type    ", Component_Type (Id));
               Write_Eol;
               Write_Str (Prefix);
               Write_Str ("   Indexes ");

               Index := First_Index (Id);
               while Present (Index) loop
                  Write_Attribute (" ", Etype (Index));
                  Index := Next_Index (Index);
               end loop;

               Write_Eol;
            end;

         when Access_Kind =>
               Write_Attribute
                 ("   Directly Designated Type ",
                  Directly_Designated_Type (Id));
               Write_Eol;

         when Overloadable_Kind =>
            if Present (Homonym (Id)) then
               Write_Str ("   Homonym   ");
               Write_Name (Chars (Homonym (Id)));
               Write_Str ("   ");
               Write_Int (Int (Homonym (Id)));
               Write_Eol;
            end if;

            Write_Eol;

         when E_Component =>
            if Ekind (Scope (Id)) in Record_Kind then
               Write_Attribute (
                  "   Original_Record_Component   ",
                  Original_Record_Component (Id));
               Write_Int (Int (Original_Record_Component (Id)));
               Write_Eol;
            end if;

         when others =>
            null;
      end case;
   end Write_Entity_Info;

   -------------------------
   -- Iterator Procedures --
   -------------------------

   procedure Proc_Next_Component                 (N : in out Node_Id) is
   begin
      N := Next_Component (N);
   end Proc_Next_Component;

   procedure Proc_Next_Component_Or_Discriminant (N : in out Node_Id) is
   begin
      N := Next_Entity (N);
      while Present (N) loop
         exit when Ekind (N) in E_Component | E_Discriminant;
         N := Next_Entity (N);
      end loop;
   end Proc_Next_Component_Or_Discriminant;

   procedure Proc_Next_Discriminant              (N : in out Node_Id) is
   begin
      N := Next_Discriminant (N);
   end Proc_Next_Discriminant;

   procedure Proc_Next_Formal                    (N : in out Node_Id) is
   begin
      N := Next_Formal (N);
   end Proc_Next_Formal;

   procedure Proc_Next_Formal_With_Extras        (N : in out Node_Id) is
   begin
      N := Next_Formal_With_Extras (N);
   end Proc_Next_Formal_With_Extras;

   procedure Proc_Next_Index                     (N : in out Node_Id) is
   begin
      N := Next_Index (N);
   end Proc_Next_Index;

   procedure Proc_Next_Inlined_Subprogram        (N : in out Node_Id) is
   begin
      N := Next_Inlined_Subprogram (N);
   end Proc_Next_Inlined_Subprogram;

   procedure Proc_Next_Literal                   (N : in out Node_Id) is
   begin
      N := Next_Literal (N);
   end Proc_Next_Literal;

   procedure Proc_Next_Stored_Discriminant       (N : in out Node_Id) is
   begin
      N := Next_Stored_Discriminant (N);
   end Proc_Next_Stored_Discriminant;

end Einfo.Utils;