aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/checks.adb
blob: bada3dffcbfc0bb46576820666055b93ffd2a8e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                               C H E C K S                                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2024, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Atree;          use Atree;
with Debug;          use Debug;
with Einfo;          use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils;    use Einfo.Utils;
with Elists;         use Elists;
with Eval_Fat;       use Eval_Fat;
with Exp_Ch11;       use Exp_Ch11;
with Exp_Ch4;        use Exp_Ch4;
with Exp_Pakd;       use Exp_Pakd;
with Exp_Util;       use Exp_Util;
with Expander;       use Expander;
with Freeze;         use Freeze;
with Lib;            use Lib;
with Nlists;         use Nlists;
with Nmake;          use Nmake;
with Opt;            use Opt;
with Output;         use Output;
with Restrict;       use Restrict;
with Rident;         use Rident;
with Rtsfind;        use Rtsfind;
with Sem;            use Sem;
with Sem_Aux;        use Sem_Aux;
with Sem_Ch3;        use Sem_Ch3;
with Sem_Ch8;        use Sem_Ch8;
with Sem_Cat;        use Sem_Cat;
with Sem_Disp;       use Sem_Disp;
with Sem_Eval;       use Sem_Eval;
with Sem_Mech;       use Sem_Mech;
with Sem_Res;        use Sem_Res;
with Sem_Util;       use Sem_Util;
with Sem_Warn;       use Sem_Warn;
with Sinfo;          use Sinfo;
with Sinfo.Nodes;    use Sinfo.Nodes;
with Sinfo.Utils;    use Sinfo.Utils;
with Sinput;         use Sinput;
with Snames;         use Snames;
with Sprint;         use Sprint;
with Stand;          use Stand;
with Stringt;        use Stringt;
with Targparm;       use Targparm;
with Tbuild;         use Tbuild;
with Ttypes;         use Ttypes;
with Validsw;        use Validsw;

package body Checks is

   --  General note: many of these routines are concerned with generating
   --  checking code to make sure that constraint error is raised at runtime.
   --  Clearly this code is only needed if the expander is active, since
   --  otherwise we will not be generating code or going into the runtime
   --  execution anyway.

   --  We therefore disconnect most of these checks if the expander is
   --  inactive. This has the additional benefit that we do not need to
   --  worry about the tree being messed up by previous errors (since errors
   --  turn off expansion anyway).

   --  There are a few exceptions to the above rule. For instance routines
   --  such as Apply_Scalar_Range_Check that do not insert any code can be
   --  safely called even when the Expander is inactive (but Errors_Detected
   --  is 0). The benefit of executing this code when expansion is off, is
   --  the ability to emit constraint error warnings for static expressions
   --  even when we are not generating code.

   --  The above is modified in gnatprove mode to ensure that proper check
   --  flags are always placed, even if expansion is off.

   -------------------------------------
   -- Suppression of Redundant Checks --
   -------------------------------------

   --  This unit implements a limited circuit for removal of redundant
   --  checks. The processing is based on a tracing of simple sequential
   --  flow. For any sequence of statements, we save expressions that are
   --  marked to be checked, and then if the same expression appears later
   --  with the same check, then under certain circumstances, the second
   --  check can be suppressed.

   --  Basically, we can suppress the check if we know for certain that
   --  the previous expression has been elaborated (together with its
   --  check), and we know that the exception frame is the same, and that
   --  nothing has happened to change the result of the exception.

   --  Let us examine each of these three conditions in turn to describe
   --  how we ensure that this condition is met.

   --  First, we need to know for certain that the previous expression has
   --  been executed. This is done principally by the mechanism of calling
   --  Conditional_Statements_Begin at the start of any statement sequence
   --  and Conditional_Statements_End at the end. The End call causes all
   --  checks remembered since the Begin call to be discarded. This does
   --  miss a few cases, notably the case of a nested BEGIN-END block with
   --  no exception handlers. But the important thing is to be conservative.
   --  The other protection is that all checks are discarded if a label
   --  is encountered, since then the assumption of sequential execution
   --  is violated, and we don't know enough about the flow.

   --  Second, we need to know that the exception frame is the same. We
   --  do this by killing all remembered checks when we enter a new frame.
   --  Again, that's over-conservative, but generally the cases we can help
   --  with are pretty local anyway (like the body of a loop for example).

   --  Third, we must be sure to forget any checks which are no longer valid.
   --  This is done by two mechanisms, first the Kill_Checks_Variable call is
   --  used to note any changes to local variables. We only attempt to deal
   --  with checks involving local variables, so we do not need to worry
   --  about global variables. Second, a call to any non-global procedure
   --  causes us to abandon all stored checks, since such a all may affect
   --  the values of any local variables.

   --  The following define the data structures used to deal with remembering
   --  checks so that redundant checks can be eliminated as described above.

   --  Right now, the only expressions that we deal with are of the form of
   --  simple local objects (either declared locally, or IN parameters) or
   --  such objects plus/minus a compile time known constant. We can do
   --  more later on if it seems worthwhile, but this catches many simple
   --  cases in practice.

   --  The following record type reflects a single saved check. An entry
   --  is made in the stack of saved checks if and only if the expression
   --  has been elaborated with the indicated checks.

   type Saved_Check is record
      Killed : Boolean;
      --  Set True if entry is killed by Kill_Checks

      Entity : Entity_Id;
      --  The entity involved in the expression that is checked

      Offset : Uint;
      --  A compile time value indicating the result of adding or
      --  subtracting a compile time value. This value is to be
      --  added to the value of the Entity. A value of zero is
      --  used for the case of a simple entity reference.

      Check_Type : Character;
      --  This is set to 'R' for a range check (in which case Target_Type
      --  is set to the target type for the range check) or to 'O' for an
      --  overflow check (in which case Target_Type is set to Empty).

      Target_Type : Entity_Id;
      --  Used only if Do_Range_Check is set. Records the target type for
      --  the check. We need this, because a check is a duplicate only if
      --  it has the same target type (or more accurately one with a
      --  range that is smaller or equal to the stored target type of a
      --  saved check).
   end record;

   --  The following table keeps track of saved checks. Rather than use an
   --  extensible table, we just use a table of fixed size, and we discard
   --  any saved checks that do not fit. That's very unlikely to happen and
   --  this is only an optimization in any case.

   Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
   --  Array of saved checks

   Num_Saved_Checks : Nat := 0;
   --  Number of saved checks

   --  The following stack keeps track of statement ranges. It is treated
   --  as a stack. When Conditional_Statements_Begin is called, an entry
   --  is pushed onto this stack containing the value of Num_Saved_Checks
   --  at the time of the call. Then when Conditional_Statements_End is
   --  called, this value is popped off and used to reset Num_Saved_Checks.

   --  Note: again, this is a fixed length stack with a size that should
   --  always be fine. If the value of the stack pointer goes above the
   --  limit, then we just forget all saved checks.

   Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
   Saved_Checks_TOS : Nat := 0;

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
   --  Used to apply arithmetic overflow checks for all cases except operators
   --  on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
   --  call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
   --  signed integer arithmetic operator (but not an if or case expression).
   --  It is also called for types other than signed integers.

   procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
   --  Used to apply arithmetic overflow checks for the case where the overflow
   --  checking mode is MINIMIZED or ELIMINATED and we have a signed integer
   --  arithmetic op (which includes the case of if and case expressions). Note
   --  that Do_Overflow_Check may or may not be set for node Op. In these modes
   --  we have work to do even if overflow checking is suppressed.

   procedure Apply_Division_Check
     (N   : Node_Id;
      Rlo : Uint;
      Rhi : Uint;
      ROK : Boolean);
   --  N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
   --  division checks as required if the Do_Division_Check flag is set.
   --  Rlo and Rhi give the possible range of the right operand, these values
   --  can be referenced and trusted only if ROK is set True.

   procedure Apply_Float_Conversion_Check
     (Expr       : Node_Id;
      Target_Typ : Entity_Id);
   --  The checks on a conversion from a floating-point type to an integer
   --  type are delicate. They have to be performed before conversion, they
   --  have to raise an exception when the operand is a NaN, and rounding must
   --  be taken into account to determine the safe bounds of the operand.

   procedure Apply_Selected_Length_Checks
     (Expr       : Node_Id;
      Target_Typ : Entity_Id;
      Source_Typ : Entity_Id;
      Do_Static  : Boolean);
   --  This is the subprogram that does all the work for Apply_Length_Check
   --  and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
   --  described for the above routines. The Do_Static flag indicates that
   --  only a static check is to be done.

   procedure Compute_Range_For_Arithmetic_Op
     (Op       : Node_Kind;
      Lo_Left  : Uint;
      Hi_Left  : Uint;
      Lo_Right : Uint;
      Hi_Right : Uint;
      OK       : out Boolean;
      Lo       : out Uint;
      Hi       : out Uint);
   --  Given an integer arithmetical operation Op and the range of values of
   --  its operand(s), try to compute a conservative estimate of the possible
   --  range of values for the result of the operation. Thus if OK is True on
   --  return, the result is known to lie in the range Lo .. Hi (inclusive).
   --  If OK is false, both Lo and Hi are set to No_Uint.

   type Check_Type is new Check_Id range Access_Check .. Division_Check;
   function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
   --  This function is used to see if an access or division by zero check is
   --  needed. The check is to be applied to a single variable appearing in the
   --  source, and N is the node for the reference. If N is not of this form,
   --  True is returned with no further processing. If N is of the right form,
   --  then further processing determines if the given Check is needed.
   --
   --  The particular circuit is to see if we have the case of a check that is
   --  not needed because it appears in the right operand of a short circuited
   --  conditional where the left operand guards the check. For example:
   --
   --    if Var = 0 or else Q / Var > 12 then
   --       ...
   --    end if;
   --
   --  In this example, the division check is not required. At the same time
   --  we can issue warnings for suspicious use of non-short-circuited forms,
   --  such as:
   --
   --    if Var = 0 or Q / Var > 12 then
   --       ...
   --    end if;

   procedure Find_Check
     (Expr        : Node_Id;
      Check_Type  : Character;
      Target_Type : Entity_Id;
      Entry_OK    : out Boolean;
      Check_Num   : out Nat;
      Ent         : out Entity_Id;
      Ofs         : out Uint);
   --  This routine is used by Enable_Range_Check and Enable_Overflow_Check
   --  to see if a check is of the form for optimization, and if so, to see
   --  if it has already been performed. Expr is the expression to check,
   --  and Check_Type is 'R' for a range check, 'O' for an overflow check.
   --  Target_Type is the target type for a range check, and Empty for an
   --  overflow check. If the entry is not of the form for optimization,
   --  then Entry_OK is set to False, and the remaining out parameters
   --  are undefined. If the entry is OK, then Ent/Ofs are set to the
   --  entity and offset from the expression. Check_Num is the number of
   --  a matching saved entry in Saved_Checks, or zero if no such entry
   --  is located.

   function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
   --  If a discriminal is used in constraining a prival, Return reference
   --  to the discriminal of the protected body (which renames the parameter
   --  of the enclosing protected operation). This clumsy transformation is
   --  needed because privals are created too late and their actual subtypes
   --  are not available when analysing the bodies of the protected operations.
   --  This function is called whenever the bound is an entity and the scope
   --  indicates a protected operation. If the bound is an in-parameter of
   --  a protected operation that is not a prival, the function returns the
   --  bound itself.
   --  To be cleaned up???

   function Guard_Access
     (Cond : Node_Id;
      Loc  : Source_Ptr;
      Expr : Node_Id) return Node_Id;
   --  In the access type case, guard the test with a test to ensure
   --  that the access value is non-null, since the checks do not
   --  not apply to null access values.

   procedure Install_Static_Check
     (R_Cno : Node_Id; Loc : Source_Ptr; Reason : RT_Exception_Code);
   --  Called by Apply_{Length,Range}_Checks to rewrite the tree with the
   --  Constraint_Error node.

   function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
   --  Returns True if node N is for an arithmetic operation with signed
   --  integer operands. This includes unary and binary operators, and also
   --  if and case expression nodes where the dependent expressions are of
   --  a signed integer type. These are the kinds of nodes for which special
   --  handling applies in MINIMIZED or ELIMINATED overflow checking mode.

   function Range_Or_Validity_Checks_Suppressed
     (Expr : Node_Id) return Boolean;
   --  Returns True if either range or validity checks or both are suppressed
   --  for the type of the given expression, or, if the expression is the name
   --  of an entity, if these checks are suppressed for the entity.

   function Selected_Length_Checks
     (Expr       : Node_Id;
      Target_Typ : Entity_Id;
      Source_Typ : Entity_Id;
      Warn_Node  : Node_Id) return Check_Result;
   --  Like Apply_Selected_Length_Checks, except it doesn't modify
   --  anything, just returns a list of nodes as described in the spec of
   --  this package for the Get_Range_Checks function.
   --  ??? In fact it does construct the test and insert it into the tree,
   --  and insert actions in various ways (calling Insert_Action directly
   --  in particular) so we do not call it in GNATprove mode, contrary to
   --  Selected_Range_Checks.

   function Selected_Range_Checks
     (Expr       : Node_Id;
      Target_Typ : Entity_Id;
      Source_Typ : Entity_Id;
      Warn_Node  : Node_Id) return Check_Result;
   --  Like Apply_Range_Check, except it does not modify anything, just
   --  returns a list of nodes as described in the spec of this package
   --  for the Get_Range_Checks function.

   ------------------------------
   -- Access_Checks_Suppressed --
   ------------------------------

   function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Access_Check);
      else
         return Scope_Suppress.Suppress (Access_Check);
      end if;
   end Access_Checks_Suppressed;

   -------------------------------------
   -- Accessibility_Checks_Suppressed --
   -------------------------------------

   function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if No_Dynamic_Accessibility_Checks_Enabled (E) then
         return True;

      elsif Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Accessibility_Check);

      else
         return Scope_Suppress.Suppress (Accessibility_Check);
      end if;
   end Accessibility_Checks_Suppressed;

   -----------------------------
   -- Activate_Division_Check --
   -----------------------------

   procedure Activate_Division_Check (N : Node_Id) is
   begin
      Set_Do_Division_Check (N, True);
      Possible_Local_Raise (N, Standard_Constraint_Error);
   end Activate_Division_Check;

   -----------------------------
   -- Activate_Overflow_Check --
   -----------------------------

   procedure Activate_Overflow_Check (N : Node_Id) is
      Typ : constant Entity_Id := Etype (N);

   begin
      --  Floating-point case. If Etype is not set (this can happen when we
      --  activate a check on a node that has not yet been analyzed), then
      --  we assume we do not have a floating-point type (as per our spec).

      if Present (Typ) and then Is_Floating_Point_Type (Typ) then

         --  Ignore call if we have no automatic overflow checks on the target
         --  and Check_Float_Overflow mode is not set. These are the cases in
         --  which we expect to generate infinities and NaN's with no check.

         if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
            return;

         --  Ignore for unary operations ("+", "-", abs) since these can never
         --  result in overflow for floating-point cases.

         elsif Nkind (N) in N_Unary_Op then
            return;

         --  Otherwise we will set the flag

         else
            null;
         end if;

      --  Discrete case

      else
         --  Nothing to do for Rem/Mod/Plus (overflow not possible, the check
         --  for zero-divide is a divide check, not an overflow check).

         if Nkind (N) in N_Op_Rem | N_Op_Mod | N_Op_Plus then
            return;
         end if;
      end if;

      --  Fall through for cases where we do set the flag

      Set_Do_Overflow_Check (N);
      Possible_Local_Raise (N, Standard_Constraint_Error);
   end Activate_Overflow_Check;

   --------------------------
   -- Activate_Range_Check --
   --------------------------

   procedure Activate_Range_Check (N : Node_Id) is
   begin
      Set_Do_Range_Check (N);
      Possible_Local_Raise (N, Standard_Constraint_Error);
   end Activate_Range_Check;

   ---------------------------------
   -- Alignment_Checks_Suppressed --
   ---------------------------------

   function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Alignment_Check);
      else
         return Scope_Suppress.Suppress (Alignment_Check);
      end if;
   end Alignment_Checks_Suppressed;

   ----------------------------------
   -- Allocation_Checks_Suppressed --
   ----------------------------------

   --  Note: at the current time there are no calls to this function, because
   --  the relevant check is in the run-time, so it is not a check that the
   --  compiler can suppress anyway, but we still have to recognize the check
   --  name Allocation_Check since it is part of the standard.

   function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Allocation_Check);
      else
         return Scope_Suppress.Suppress (Allocation_Check);
      end if;
   end Allocation_Checks_Suppressed;

   -------------------------
   -- Append_Range_Checks --
   -------------------------

   procedure Append_Range_Checks
     (Checks       : Check_Result;
      Stmts        : List_Id;
      Suppress_Typ : Entity_Id;
      Static_Sloc  : Source_Ptr)
   is
      Checks_On : constant Boolean :=
                    not Index_Checks_Suppressed (Suppress_Typ)
                      or else
                    not Range_Checks_Suppressed (Suppress_Typ);

   begin
      --  For now we just return if Checks_On is false, however this could be
      --  enhanced to check for an always True value in the condition and to
      --  generate a compilation warning.

      if not Checks_On then
         return;
      end if;

      for J in 1 .. 2 loop
         exit when No (Checks (J));

         if Nkind (Checks (J)) = N_Raise_Constraint_Error
           and then Present (Condition (Checks (J)))
         then
            Append_To (Stmts, Checks (J));
         else
            Append_To
              (Stmts,
                Make_Raise_Constraint_Error (Static_Sloc,
                  Reason => CE_Range_Check_Failed));
         end if;
      end loop;
   end Append_Range_Checks;

   ------------------------
   -- Apply_Access_Check --
   ------------------------

   procedure Apply_Access_Check (N : Node_Id) is
      P : constant Node_Id := Prefix (N);

   begin
      --  We do not need checks if we are not generating code (i.e. the
      --  expander is not active). This is not just an optimization, there
      --  are cases (e.g. with pragma Debug) where generating the checks
      --  can cause real trouble.

      if not Expander_Active then
         return;
      end if;

      --  No check if short circuiting makes check unnecessary

      if not Check_Needed (P, Access_Check) then
         return;
      end if;

      --  No check if accessing the Offset_To_Top component of a dispatch
      --  table. They are safe by construction.

      if Tagged_Type_Expansion
        and then Present (Etype (P))
        and then Is_RTE (Etype (P), RE_Offset_To_Top_Ptr)
      then
         return;
      end if;

      --  Otherwise go ahead and install the check

      Install_Null_Excluding_Check (P);
   end Apply_Access_Check;

   --------------------------------
   -- Apply_Address_Clause_Check --
   --------------------------------

   procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
      pragma Assert (Nkind (N) = N_Freeze_Entity);

      AC  : constant Node_Id    := Address_Clause (E);
      Loc : constant Source_Ptr := Sloc (AC);
      Typ : constant Entity_Id  := Etype (E);

      Expr : Node_Id;
      --  Address expression (not necessarily the same as Aexp, for example
      --  when Aexp is a reference to a constant, in which case Expr gets
      --  reset to reference the value expression of the constant).

   begin
      --  See if alignment check needed. Note that we never need a check if the
      --  maximum alignment is one, since the check will always succeed.

      --  Note: we do not check for checks suppressed here, since that check
      --  was done in Sem_Ch13 when the address clause was processed. We are
      --  only called if checks were not suppressed. The reason for this is
      --  that we have to delay the call to Apply_Alignment_Check till freeze
      --  time (so that all types etc are elaborated), but we have to check
      --  the status of check suppressing at the point of the address clause.

      if No (AC)
        or else not Check_Address_Alignment (AC)
        or else Maximum_Alignment = 1
      then
         return;
      end if;

      --  Obtain expression from address clause

      Expr := Address_Value (Expression (AC));

      --  See if we know that Expr has an acceptable value at compile time. If
      --  it hasn't or we don't know, we defer issuing the warning until the
      --  end of the compilation to take into account back end annotations.

      if Compile_Time_Known_Value (Expr)
        and then (Known_Alignment (E) or else Known_Alignment (Typ))
      then
         declare
            AL : Uint := Alignment (Typ);

         begin
            --  The object alignment might be more restrictive than the type
            --  alignment.

            if Known_Alignment (E) then
               AL := Alignment (E);
            end if;

            if Expr_Value (Expr) mod AL = 0 then
               return;
            end if;
         end;

      --  If the expression has the form X'Address, then we can find out if the
      --  object X has an alignment that is compatible with the object E. If it
      --  hasn't or we don't know, we defer issuing the warning until the end
      --  of the compilation to take into account back end annotations.

      elsif Nkind (Expr) = N_Attribute_Reference
        and then Attribute_Name (Expr) = Name_Address
        and then
          Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
      then
         return;
      end if;

      --  Here we do not know if the value is acceptable. Strictly we don't
      --  have to do anything, since if the alignment is bad, we have an
      --  erroneous program. However we are allowed to check for erroneous
      --  conditions and we decide to do this by default if the check is not
      --  suppressed.

      --  However, don't do the check if elaboration code is unwanted

      if Restriction_Active (No_Elaboration_Code) then
         return;

      --  Generate a check to raise PE if alignment may be inappropriate

      else
         --  If the original expression is a nonstatic constant, use the name
         --  of the constant itself rather than duplicating its initialization
         --  expression, which was extracted above.

         --  Note: Expr is empty if the address-clause is applied to in-mode
         --  actuals (allowed by 13.1(22)).

         if No (Expr)
           or else
             (Is_Entity_Name (Expression (AC))
               and then Ekind (Entity (Expression (AC))) = E_Constant
               and then Nkind (Parent (Entity (Expression (AC)))) =
                          N_Object_Declaration)
         then
            Expr := New_Copy_Tree (Expression (AC));
         else
            Remove_Side_Effects (Expr);
         end if;

         if No (Actions (N)) then
            Set_Actions (N, New_List);
         end if;

         Prepend_To (Actions (N),
           Make_Raise_Program_Error (Loc,
             Condition =>
               Make_Op_Ne (Loc,
                 Left_Opnd  =>
                   Make_Op_Mod (Loc,
                     Left_Opnd  =>
                       Unchecked_Convert_To
                         (RTE (RE_Integer_Address), Expr),
                     Right_Opnd =>
                       Make_Attribute_Reference (Loc,
                         Prefix         => New_Occurrence_Of (E, Loc),
                         Attribute_Name => Name_Alignment)),
                 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
             Reason    => PE_Misaligned_Address_Value));

         Warning_Msg := No_Error_Msg;
         Analyze (First (Actions (N)), Suppress => All_Checks);

         --  If the above raise action generated a warning message (for example
         --  from Warn_On_Non_Local_Exception mode with the active restriction
         --  No_Exception_Propagation).

         if Warning_Msg /= No_Error_Msg then

            --  If the expression has a known at compile time value, then
            --  once we know the alignment of the type, we can check if the
            --  exception will be raised or not, and if not, we don't need
            --  the warning so we will kill the warning later on.

            if Compile_Time_Known_Value (Expr) then
               Alignment_Warnings.Append
                 ((E => E,
                   A => Expr_Value (Expr),
                   P => Empty,
                   W => Warning_Msg));

            --  Likewise if the expression is of the form X'Address

            elsif Nkind (Expr) = N_Attribute_Reference
              and then Attribute_Name (Expr) = Name_Address
            then
               Alignment_Warnings.Append
                 ((E => E,
                   A => No_Uint,
                   P => Prefix (Expr),
                   W => Warning_Msg));

            --  Add explanation of the warning generated by the check

            else
               Error_Msg_N
                 ("\address value may be incompatible with alignment of "
                  & "object?.x?", AC);
            end if;
         end if;

         return;
      end if;

   exception

      --  If we have some missing run time component in configurable run time
      --  mode then just skip the check (it is not required in any case).

      when RE_Not_Available =>
         return;
   end Apply_Address_Clause_Check;

   -------------------------------------
   -- Apply_Arithmetic_Overflow_Check --
   -------------------------------------

   procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
   begin
      --  Use old routine in almost all cases (the only case we are treating
      --  specially is the case of a signed integer arithmetic op with the
      --  overflow checking mode set to MINIMIZED or ELIMINATED).

      if Overflow_Check_Mode = Strict
        or else not Is_Signed_Integer_Arithmetic_Op (N)
      then
         Apply_Arithmetic_Overflow_Strict (N);

      --  Otherwise use the new routine for the case of a signed integer
      --  arithmetic op, with Do_Overflow_Check set to True, and the checking
      --  mode is MINIMIZED or ELIMINATED.

      else
         Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
      end if;
   end Apply_Arithmetic_Overflow_Check;

   --------------------------------------
   -- Apply_Arithmetic_Overflow_Strict --
   --------------------------------------

   --  This routine is called only if the type is an integer type and an
   --  arithmetic overflow check may be needed for op (add, subtract, or
   --  multiply). This check is performed if Backend_Overflow_Checks_On_Target
   --  is not enabled and Do_Overflow_Check is set. In this case we expand the
   --  operation into a more complex sequence of tests that ensures that
   --  overflow is properly caught.

   --  This is used in CHECKED modes. It is identical to the code for this
   --  cases before the big overflow earthquake, thus ensuring that in this
   --  modes we have compatible behavior (and reliability) to what was there
   --  before. It is also called for types other than signed integers, and if
   --  the Do_Overflow_Check flag is off.

   --  Note: we also call this routine if we decide in the MINIMIZED case
   --  to give up and just generate an overflow check without any fuss.

   procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
      Loc  : constant Source_Ptr := Sloc (N);
      Typ  : constant Entity_Id  := Etype (N);
      Rtyp : constant Entity_Id  := Root_Type (Typ);

   begin
      --  Nothing to do if Do_Overflow_Check not set or overflow checks
      --  suppressed.

      if not Do_Overflow_Check (N) then
         return;
      end if;

      --  An interesting special case. If the arithmetic operation appears as
      --  the operand of a type conversion:

      --    type1 (x op y)

      --  and all the following conditions apply:

      --    arithmetic operation is for a signed integer type
      --    target type type1 is a static integer subtype
      --    range of x and y are both included in the range of type1
      --    range of x op y is included in the range of type1
      --    size of type1 is at least twice the result size of op

      --  then we don't do an overflow check in any case. Instead, we transform
      --  the operation so that we end up with:

      --    type1 (type1 (x) op type1 (y))

      --  This avoids intermediate overflow before the conversion. It is
      --  explicitly permitted by RM 3.5.4(24):

      --    For the execution of a predefined operation of a signed integer
      --    type, the implementation need not raise Constraint_Error if the
      --    result is outside the base range of the type, so long as the
      --    correct result is produced.

      --  It's hard to imagine that any programmer counts on the exception
      --  being raised in this case, and in any case it's wrong coding to
      --  have this expectation, given the RM permission. Furthermore, other
      --  Ada compilers do allow such out of range results.

      --  Note that we do this transformation even if overflow checking is
      --  off, since this is precisely about giving the "right" result and
      --  avoiding the need for an overflow check.

      --  Note: this circuit is partially redundant with respect to the similar
      --  processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
      --  with cases that do not come through here. We still need the following
      --  processing even with the Exp_Ch4 code in place, since we want to be
      --  sure not to generate the arithmetic overflow check in these cases
      --  (Exp_Ch4 would have a hard time removing them once generated).

      if Is_Signed_Integer_Type (Typ)
        and then Nkind (Parent (N)) = N_Type_Conversion
      then
         Conversion_Optimization : declare
            Target_Type : constant Entity_Id :=
              Base_Type (Entity (Subtype_Mark (Parent (N))));

            Llo, Lhi : Uint;
            Rlo, Rhi : Uint;
            LOK, ROK : Boolean;

            Vlo : Uint;
            Vhi : Uint;
            VOK : Boolean;

            Tlo : Uint;
            Thi : Uint;

         begin
            if Is_Integer_Type (Target_Type)
              and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
            then
               Tlo := Expr_Value (Type_Low_Bound  (Target_Type));
               Thi := Expr_Value (Type_High_Bound (Target_Type));

               Determine_Range
                 (Left_Opnd  (N), LOK, Llo, Lhi, Assume_Valid => True);
               Determine_Range
                 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);

               if (LOK and ROK)
                 and then Tlo <= Llo and then Lhi <= Thi
                 and then Tlo <= Rlo and then Rhi <= Thi
               then
                  Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);

                  if VOK and then Tlo <= Vlo and then Vhi <= Thi then
                     --  Rewrite the conversion operand so that the original
                     --  node is retained, in order to avoid the warning for
                     --  redundant conversions in Resolve_Type_Conversion.

                     declare
                        Op : constant Node_Id := New_Op_Node (Nkind (N), Loc);
                     begin
                        Set_Left_Opnd (Op,
                          Make_Type_Conversion (Loc,
                            Subtype_Mark =>
                              New_Occurrence_Of (Target_Type, Loc),
                            Expression   => Relocate_Node (Left_Opnd (N))));
                        Set_Right_Opnd (Op,
                          Make_Type_Conversion (Loc,
                            Subtype_Mark =>
                              New_Occurrence_Of (Target_Type, Loc),
                            Expression   => Relocate_Node (Right_Opnd (N))));

                        Rewrite (N, Op);
                     end;

                     Set_Etype (N, Target_Type);

                     Analyze_And_Resolve (Left_Opnd  (N), Target_Type);
                     Analyze_And_Resolve (Right_Opnd (N), Target_Type);

                     --  Given that the target type is twice the size of the
                     --  source type, overflow is now impossible, so we can
                     --  safely kill the overflow check and return.

                     Set_Do_Overflow_Check (N, False);
                     return;
                  end if;
               end if;
            end if;
         end Conversion_Optimization;
      end if;

      --  Now see if an overflow check is required

      declare
         Dsiz  : constant Uint := 2 * Esize (Rtyp);
         Opnod : Node_Id;
         Ctyp  : Entity_Id;
         Opnd  : Node_Id;
         Cent  : RE_Id;

      begin
         --  Skip check if back end does overflow checks, or the overflow flag
         --  is not set anyway, or we are not doing code expansion, or the
         --  parent node is a type conversion whose operand is an arithmetic
         --  operation on signed integers on which the expander can promote
         --  later the operands to type Integer (see Expand_N_Type_Conversion).

         if Backend_Overflow_Checks_On_Target
           or else not Do_Overflow_Check (N)
           or else not Expander_Active
           or else (Present (Parent (N))
                     and then Nkind (Parent (N)) = N_Type_Conversion
                     and then Integer_Promotion_Possible (Parent (N)))
         then
            return;
         end if;

         --  Otherwise, generate the full general code for front end overflow
         --  detection, which works by doing arithmetic in a larger type:

         --    x op y

         --  is expanded into

         --    Typ (Checktyp (x) op Checktyp (y));

         --  where Typ is the type of the original expression, and Checktyp is
         --  an integer type of sufficient length to hold the largest possible
         --  result.

         --  If the size of the check type exceeds the maximum integer size,
         --  we use a different approach, expanding to:

         --    typ (xxx_With_Ovflo_Check (Integer_NN (x), Integer_NN (y)))

         --  where xxx is Add, Multiply or Subtract as appropriate

         --  Find check type if one exists

         if Dsiz <= System_Max_Integer_Size then
            Ctyp := Integer_Type_For (Dsiz, Uns => False);

         --  No check type exists, use runtime call

         else
            if System_Max_Integer_Size = 64 then
               Ctyp := RTE (RE_Integer_64);
            else
               Ctyp := RTE (RE_Integer_128);
            end if;

            if Nkind (N) = N_Op_Add then
               if System_Max_Integer_Size = 64 then
                  Cent := RE_Add_With_Ovflo_Check64;
               else
                  Cent := RE_Add_With_Ovflo_Check128;
               end if;

            elsif Nkind (N) = N_Op_Subtract then
               if System_Max_Integer_Size = 64 then
                  Cent := RE_Subtract_With_Ovflo_Check64;
               else
                  Cent := RE_Subtract_With_Ovflo_Check128;
               end if;

            else pragma Assert (Nkind (N) = N_Op_Multiply);
               if System_Max_Integer_Size = 64 then
                  Cent := RE_Multiply_With_Ovflo_Check64;
               else
                  Cent := RE_Multiply_With_Ovflo_Check128;
               end if;
            end if;

            Rewrite (N,
              OK_Convert_To (Typ,
                Make_Function_Call (Loc,
                  Name => New_Occurrence_Of (RTE (Cent), Loc),
                  Parameter_Associations => New_List (
                    OK_Convert_To (Ctyp, Left_Opnd  (N)),
                    OK_Convert_To (Ctyp, Right_Opnd (N))))));

            Analyze_And_Resolve (N, Typ);
            return;
         end if;

         --  If we fall through, we have the case where we do the arithmetic
         --  in the next higher type and get the check by conversion. In these
         --  cases Ctyp is set to the type to be used as the check type.

         Opnod := Relocate_Node (N);

         Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));

         Analyze (Opnd);
         Set_Etype (Opnd, Ctyp);
         Set_Analyzed (Opnd, True);
         Set_Left_Opnd (Opnod, Opnd);

         Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));

         Analyze (Opnd);
         Set_Etype (Opnd, Ctyp);
         Set_Analyzed (Opnd, True);
         Set_Right_Opnd (Opnod, Opnd);

         --  The type of the operation changes to the base type of the check
         --  type, and we reset the overflow check indication, since clearly no
         --  overflow is possible now that we are using a double length type.
         --  We also set the Analyzed flag to avoid a recursive attempt to
         --  expand the node.

         Set_Etype             (Opnod, Base_Type (Ctyp));
         Set_Do_Overflow_Check (Opnod, False);
         Set_Analyzed          (Opnod, True);

         --  Now build the outer conversion

         Opnd := OK_Convert_To (Typ, Opnod);
         Analyze (Opnd);
         Set_Etype (Opnd, Typ);

         --  In the discrete type case, we directly generate the range check
         --  for the outer operand. This range check will implement the
         --  required overflow check.

         if Is_Discrete_Type (Typ) then
            Rewrite (N, Opnd);
            Generate_Range_Check
              (Expression (N), Typ, CE_Overflow_Check_Failed);

         --  For other types, we enable overflow checking on the conversion,
         --  after setting the node as analyzed to prevent recursive attempts
         --  to expand the conversion node.

         else
            Set_Analyzed (Opnd, True);
            Enable_Overflow_Check (Opnd);
            Rewrite (N, Opnd);
         end if;

      exception
         when RE_Not_Available =>
            return;
      end;
   end Apply_Arithmetic_Overflow_Strict;

   ----------------------------------------------------
   -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
   ----------------------------------------------------

   procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
      pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));

      Loc : constant Source_Ptr := Sloc (Op);
      P   : constant Node_Id    := Parent (Op);

      LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
      --  Operands and results are of this type when we convert

      Result_Type : constant Entity_Id := Etype (Op);
      --  Original result type

      Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
      pragma Assert (Check_Mode in Minimized_Or_Eliminated);

      Lo, Hi : Uint;
      --  Ranges of values for result

   begin
      --  Nothing to do if our parent is one of the following:

      --    Another signed integer arithmetic op
      --    A membership operation
      --    A comparison operation

      --  In all these cases, we will process at the higher level (and then
      --  this node will be processed during the downwards recursion that
      --  is part of the processing in Minimize_Eliminate_Overflows).

      if Is_Signed_Integer_Arithmetic_Op (P)
        or else Nkind (P) in N_Membership_Test
        or else Nkind (P) in N_Op_Compare

        --  This is also true for an alternative in a case expression

        or else Nkind (P) = N_Case_Expression_Alternative

        --  This is also true for a range operand in a membership test

        or else (Nkind (P) = N_Range
                  and then Nkind (Parent (P)) in N_Membership_Test)
      then
         --  If_Expressions and Case_Expressions are treated as arithmetic
         --  ops, but if they appear in an assignment or similar contexts
         --  there is no overflow check that starts from that parent node,
         --  so apply check now.
         --  Similarly, if these expressions are nested, we should go on.

         if Nkind (P) in N_If_Expression | N_Case_Expression
           and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
         then
            null;
         elsif Nkind (P) in N_If_Expression | N_Case_Expression
            and then Nkind (Op) in N_If_Expression | N_Case_Expression
         then
            null;
         else
            return;
         end if;
      end if;

      --  Otherwise, we have a top level arithmetic operation node, and this
      --  is where we commence the special processing for MINIMIZED/ELIMINATED
      --  modes. This is the case where we tell the machinery not to move into
      --  Bignum mode at this top level (of course the top level operation
      --  will still be in Bignum mode if either of its operands are of type
      --  Bignum).

      Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);

      --  That call may but does not necessarily change the result type of Op.
      --  It is the job of this routine to undo such changes, so that at the
      --  top level, we have the proper type. This "undoing" is a point at
      --  which a final overflow check may be applied.

      --  If the result type was not fiddled we are all set. We go to base
      --  types here because things may have been rewritten to generate the
      --  base type of the operand types.

      if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
         return;

      --  Bignum case

      elsif Is_RTE (Etype (Op), RE_Bignum) then

         --  We need a sequence that looks like:

         --    Rnn : Result_Type;

         --    declare
         --       M : Mark_Id := SS_Mark;
         --    begin
         --       Rnn := Long_Long_Integer'Base (From_Bignum (Op));
         --       SS_Release (M);
         --    end;

         --  This block is inserted (using Insert_Actions), and then the node
         --  is replaced with a reference to Rnn.

         --  If our parent is a conversion node then there is no point in
         --  generating a conversion to Result_Type. Instead, we let the parent
         --  handle this. Note that this special case is not just about
         --  optimization. Consider

         --      A,B,C : Integer;
         --      ...
         --      X := Long_Long_Integer'Base (A * (B ** C));

         --  Now the product may fit in Long_Long_Integer but not in Integer.
         --  In MINIMIZED/ELIMINATED mode, we don't want to introduce an
         --  overflow exception for this intermediate value.

         declare
            Blk : constant Node_Id  := Make_Bignum_Block (Loc);
            Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
            RHS : Node_Id;

            Rtype : Entity_Id;

         begin
            RHS := Convert_From_Bignum (Op);

            if Nkind (P) /= N_Type_Conversion then
               Convert_To_And_Rewrite (Result_Type, RHS);
               Rtype := Result_Type;

               --  Interesting question, do we need a check on that conversion
               --  operation. Answer, not if we know the result is in range.
               --  At the moment we are not taking advantage of this. To be
               --  looked at later ???

            else
               Rtype := LLIB;
            end if;

            Insert_Before
              (First (Statements (Handled_Statement_Sequence (Blk))),
               Make_Assignment_Statement (Loc,
                 Name       => New_Occurrence_Of (Rnn, Loc),
                 Expression => RHS));

            Insert_Actions (Op, New_List (
              Make_Object_Declaration (Loc,
                Defining_Identifier => Rnn,
                Object_Definition   => New_Occurrence_Of (Rtype, Loc)),
              Blk));

            Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
            Analyze_And_Resolve (Op);
         end;

      --  Here we know the result is Long_Long_Integer'Base, or that it has
      --  been rewritten because the parent operation is a conversion. See
      --  Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.

      else
         pragma Assert
           (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);

         --  All we need to do here is to convert the result to the proper
         --  result type. As explained above for the Bignum case, we can
         --  omit this if our parent is a type conversion.

         if Nkind (P) /= N_Type_Conversion then
            Convert_To_And_Rewrite (Result_Type, Op);
         end if;

         Analyze_And_Resolve (Op);
      end if;
   end Apply_Arithmetic_Overflow_Minimized_Eliminated;

   ----------------------------
   -- Apply_Constraint_Check --
   ----------------------------

   procedure Apply_Constraint_Check
     (N          : Node_Id;
      Typ        : Entity_Id;
      No_Sliding : Boolean := False)
   is
      Desig_Typ : Entity_Id;

   begin
      --  No checks inside a generic (check the instantiations)

      if Inside_A_Generic then
         return;
      end if;

      --  Apply required constraint checks

      if Is_Scalar_Type (Typ) then
         Apply_Scalar_Range_Check (N, Typ);

      elsif Is_Array_Type (Typ) then

         --  A useful optimization: an aggregate with only an others clause
         --  always has the right bounds.

         if Nkind (N) = N_Aggregate
           and then No (Expressions (N))
           and then Nkind (First (Component_Associations (N))) =
             N_Component_Association
           and then Nkind
            (First (Choices (First (Component_Associations (N)))))
              = N_Others_Choice
         then
            return;
         end if;

         if Is_Constrained (Typ) then
            Apply_Length_Check (N, Typ);

            if No_Sliding then
               Apply_Range_Check (N, Typ);
            end if;
         else
            Apply_Range_Check (N, Typ);
         end if;

      elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
        and then Has_Discriminants (Base_Type (Typ))
        and then Is_Constrained (Typ)
      then
         Apply_Discriminant_Check (N, Typ);

      elsif Is_Access_Type (Typ) then

         Desig_Typ := Designated_Type (Typ);

         --  No checks necessary if expression statically null

         if Known_Null (N) then
            if Can_Never_Be_Null (Typ) then
               Install_Null_Excluding_Check (N);
            end if;

         --  No sliding possible on access to arrays

         elsif Is_Array_Type (Desig_Typ) then
            if Is_Constrained (Desig_Typ) then
               Apply_Length_Check (N, Typ);
            end if;

            Apply_Range_Check (N, Typ);

         --  Do not install a discriminant check for a constrained subtype
         --  created for an unconstrained nominal type because the subtype
         --  has the correct constraints by construction.

         elsif Has_Discriminants (Base_Type (Desig_Typ))
           and then Is_Constrained (Desig_Typ)
           and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
         then
            Apply_Discriminant_Check (N, Typ);
         end if;

         --  Apply the 2005 Null_Excluding check. Note that we do not apply
         --  this check if the constraint node is illegal, as shown by having
         --  an error posted. This additional guard prevents cascaded errors
         --  and compiler aborts on illegal programs involving Ada 2005 checks.

         if Can_Never_Be_Null (Typ)
           and then not Can_Never_Be_Null (Etype (N))
           and then not Error_Posted (N)
         then
            Install_Null_Excluding_Check (N);
         end if;
      end if;
   end Apply_Constraint_Check;

   ------------------------------
   -- Apply_Discriminant_Check --
   ------------------------------

   procedure Apply_Discriminant_Check
     (N   : Node_Id;
      Typ : Entity_Id;
      Lhs : Node_Id := Empty)
   is
      Loc       : constant Source_Ptr := Sloc (N);
      Do_Access : constant Boolean    := Is_Access_Type (Typ);
      S_Typ     : Entity_Id  := Etype (N);
      Cond      : Node_Id;
      T_Typ     : Entity_Id;

      function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
      --  A heap object with an indefinite subtype is constrained by its
      --  initial value, and assigning to it requires a constraint_check.
      --  The target may be an explicit dereference, or a renaming of one.

      function Is_Aliased_Unconstrained_Component return Boolean;
      --  It is possible for an aliased component to have a nominal
      --  unconstrained subtype (through instantiation). If this is a
      --  discriminated component assigned in the expansion of an aggregate
      --  in an initialization, the check must be suppressed. This unusual
      --  situation requires a predicate of its own.

      ----------------------------------
      -- Denotes_Explicit_Dereference --
      ----------------------------------

      function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
      begin
         if Is_Entity_Name (Obj) then
            return Present (Renamed_Object (Entity (Obj)))
              and then
                Denotes_Explicit_Dereference (Renamed_Object (Entity (Obj)));

         --  This routine uses the rules of the language so we need to exclude
         --  rewritten constructs that introduce artificial dereferences.

         elsif Nkind (Obj) = N_Explicit_Dereference then
            return not Is_Captured_Function_Call (Obj)
              and then not
                (Nkind (Parent (Obj)) = N_Object_Renaming_Declaration
                  and then Is_Return_Object (Defining_Entity (Parent (Obj))));

         else
            return False;
         end if;
      end Denotes_Explicit_Dereference;

      ----------------------------------------
      -- Is_Aliased_Unconstrained_Component --
      ----------------------------------------

      function Is_Aliased_Unconstrained_Component return Boolean is
         Comp : Entity_Id;
         Pref : Node_Id;

      begin
         if Nkind (Lhs) /= N_Selected_Component then
            return False;
         else
            Comp := Entity (Selector_Name (Lhs));
            Pref := Prefix (Lhs);
         end if;

         if Ekind (Comp) /= E_Component
           or else not Is_Aliased (Comp)
         then
            return False;
         end if;

         return not Comes_From_Source (Pref)
           and then In_Instance
           and then not Is_Constrained (Etype (Comp));
      end Is_Aliased_Unconstrained_Component;

   --  Start of processing for Apply_Discriminant_Check

   begin
      if Do_Access then
         T_Typ := Designated_Type (Typ);
      else
         T_Typ := Typ;
      end if;

      --  If the expression is a function call that returns a limited object
      --  it cannot be copied. It is not clear how to perform the proper
      --  discriminant check in this case because the discriminant value must
      --  be retrieved from the constructed object itself.

      if Nkind (N) = N_Function_Call
        and then Is_Limited_Type (Typ)
        and then Is_Entity_Name (Name (N))
        and then Returns_By_Ref (Entity (Name (N)))
      then
         return;
      end if;

      --  Only apply checks when generating code and discriminant checks are
      --  not suppressed. In GNATprove mode, we do not apply the checks, but we
      --  still analyze the expression to possibly issue errors on SPARK code
      --  when a run-time error can be detected at compile time.

      if not GNATprove_Mode then
         if not Expander_Active
           or else Discriminant_Checks_Suppressed (T_Typ)
         then
            return;
         end if;
      end if;

      --  No discriminant checks necessary for an access when expression is
      --  statically Null. This is not only an optimization, it is fundamental
      --  because otherwise discriminant checks may be generated in init procs
      --  for types containing an access to a not-yet-frozen record, causing a
      --  deadly forward reference.

      --  Also, if the expression is of an access type whose designated type is
      --  incomplete, then the access value must be null and we suppress the
      --  check.

      if Known_Null (N) then
         return;

      elsif Is_Access_Type (S_Typ) then
         S_Typ := Designated_Type (S_Typ);

         if Ekind (S_Typ) = E_Incomplete_Type then
            return;
         end if;
      end if;

      --  If an assignment target is present, then we need to generate the
      --  actual subtype if the target is a parameter or aliased object with
      --  an unconstrained nominal subtype.

      --  Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
      --  subtype to the parameter and dereference cases, since other aliased
      --  objects are unconstrained (unless the nominal subtype is explicitly
      --  constrained).

      if Present (Lhs)
        and then (Present (Param_Entity (Lhs))
                   or else (Ada_Version < Ada_2005
                             and then not Is_Constrained (T_Typ)
                             and then Is_Aliased_View (Lhs)
                             and then not Is_Aliased_Unconstrained_Component)
                   or else (Ada_Version >= Ada_2005
                             and then not Is_Constrained (T_Typ)
                             and then Denotes_Explicit_Dereference (Lhs)))
      then
         T_Typ := Get_Actual_Subtype (Lhs);
      end if;

      --  Nothing to do if the type is unconstrained (this is the case where
      --  the actual subtype in the RM sense of N is unconstrained and no check
      --  is required).

      if not Is_Constrained (T_Typ) then
         return;

      --  Ada 2005: nothing to do if the type is one for which there is a
      --  partial view that is constrained.

      elsif Ada_Version >= Ada_2005
        and then Object_Type_Has_Constrained_Partial_View
                   (Typ  => Base_Type (T_Typ),
                    Scop => Current_Scope)
      then
         return;
      end if;

      --  Nothing to do if the type is an Unchecked_Union

      if Is_Unchecked_Union (Base_Type (T_Typ)) then
         return;
      end if;

      --  Suppress checks if the subtypes are the same. The check must be
      --  preserved in an assignment to a formal, because the constraint is
      --  given by the actual.

      if Nkind (Original_Node (N)) /= N_Allocator
        and then (No (Lhs)
                   or else not Is_Entity_Name (Lhs)
                   or else No (Param_Entity (Lhs)))
      then
         if (Etype (N) = Typ
              or else (Do_Access and then Designated_Type (Typ) = S_Typ))
           and then not Is_Aliased_View (Lhs)
         then
            return;
         end if;

      --  We can also eliminate checks on allocators with a subtype mark that
      --  coincides with the context type. The context type may be a subtype
      --  without a constraint (common case, a generic actual).

      elsif Nkind (Original_Node (N)) = N_Allocator
        and then Is_Entity_Name (Expression (Original_Node (N)))
      then
         declare
            Alloc_Typ : constant Entity_Id :=
              Entity (Expression (Original_Node (N)));

         begin
            if Alloc_Typ = T_Typ
              or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
                        and then Is_Entity_Name (
                          Subtype_Indication (Parent (T_Typ)))
                        and then Alloc_Typ = Base_Type (T_Typ))

            then
               return;
            end if;
         end;
      end if;

      --  See if we have a case where the types are both constrained, and all
      --  the constraints are constants. In this case, we can do the check
      --  successfully at compile time.

      --  We skip this check for the case where the node is rewritten as
      --  an allocator, because it already carries the context subtype,
      --  and extracting the discriminants from the aggregate is messy.

      if Is_Constrained (S_Typ)
        and then Nkind (Original_Node (N)) /= N_Allocator
      then
         declare
            DconT : Elmt_Id;
            Discr : Entity_Id;
            DconS : Elmt_Id;
            ItemS : Node_Id;
            ItemT : Node_Id;

         begin
            --  S_Typ may not have discriminants in the case where it is a
            --  private type completed by a default discriminated type. In that
            --  case, we need to get the constraints from the underlying type.
            --  If the underlying type is unconstrained (i.e. has no default
            --  discriminants) no check is needed.

            if Has_Discriminants (S_Typ) then
               Discr := First_Discriminant (S_Typ);
               DconS := First_Elmt (Discriminant_Constraint (S_Typ));

            else
               Discr := First_Discriminant (Underlying_Type (S_Typ));
               DconS :=
                 First_Elmt
                   (Discriminant_Constraint (Underlying_Type (S_Typ)));

               if No (DconS) then
                  return;
               end if;

               --  A further optimization: if T_Typ is derived from S_Typ
               --  without imposing a constraint, no check is needed.

               if Nkind (Original_Node (Parent (T_Typ))) =
                 N_Full_Type_Declaration
               then
                  declare
                     Type_Def : constant Node_Id :=
                       Type_Definition (Original_Node (Parent (T_Typ)));
                  begin
                     if Nkind (Type_Def) = N_Derived_Type_Definition
                       and then Is_Entity_Name (Subtype_Indication (Type_Def))
                       and then Entity (Subtype_Indication (Type_Def)) = S_Typ
                     then
                        return;
                     end if;
                  end;
               end if;
            end if;

            --  Constraint may appear in full view of type

            if Ekind (T_Typ) = E_Private_Subtype
              and then Present (Full_View (T_Typ))
            then
               DconT :=
                 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
            else
               DconT :=
                 First_Elmt (Discriminant_Constraint (T_Typ));
            end if;

            while Present (Discr) loop
               ItemS := Node (DconS);
               ItemT := Node (DconT);

               --  For a discriminated component type constrained by the
               --  current instance of an enclosing type, there is no
               --  applicable discriminant check.

               if Nkind (ItemT) = N_Attribute_Reference
                 and then Is_Access_Type (Etype (ItemT))
                 and then Is_Entity_Name (Prefix (ItemT))
                 and then Is_Type (Entity (Prefix (ItemT)))
               then
                  return;
               end if;

               --  If the expressions for the discriminants are identical
               --  and it is side-effect-free (for now just an entity),
               --  this may be a shared constraint, e.g. from a subtype
               --  without a constraint introduced as a generic actual.
               --  Examine other discriminants if any.

               if ItemS = ItemT
                 and then Is_Entity_Name (ItemS)
               then
                  null;

               elsif not Is_OK_Static_Expression (ItemS)
                 or else not Is_OK_Static_Expression (ItemT)
               then
                  exit;

               elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
                  if Do_Access then   --  needs run-time check.
                     exit;
                  else
                     Apply_Compile_Time_Constraint_Error
                       (N, "incorrect value for discriminant&??",
                        CE_Discriminant_Check_Failed, Ent => Discr);
                     return;
                  end if;
               end if;

               Next_Elmt (DconS);
               Next_Elmt (DconT);
               Next_Discriminant (Discr);
            end loop;

            if No (Discr) then
               return;
            end if;
         end;
      end if;

      --  In GNATprove mode, we do not apply the checks

      if GNATprove_Mode then
         return;
      end if;

      --  Here we need a discriminant check. First build the expression
      --  for the comparisons of the discriminants:

      --    (n.disc1 /= typ.disc1) or else
      --    (n.disc2 /= typ.disc2) or else
      --     ...
      --    (n.discn /= typ.discn)

      Cond := Build_Discriminant_Checks (N, T_Typ);

      --  If Lhs is set and is a parameter, then the condition is guarded by:
      --  lhs'constrained and then (condition built above)

      if Present (Param_Entity (Lhs)) then
         Cond :=
           Make_And_Then (Loc,
             Left_Opnd =>
               Make_Attribute_Reference (Loc,
                 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
                 Attribute_Name => Name_Constrained),
             Right_Opnd => Cond);
      end if;

      if Do_Access then
         Cond := Guard_Access (Cond, Loc, N);
      end if;

      Insert_Action (N,
        Make_Raise_Constraint_Error (Loc,
          Condition => Cond,
          Reason    => CE_Discriminant_Check_Failed));
   end Apply_Discriminant_Check;

   -------------------------
   -- Apply_Divide_Checks --
   -------------------------

   procedure Apply_Divide_Checks (N : Node_Id) is
      Loc   : constant Source_Ptr := Sloc (N);
      Typ   : constant Entity_Id  := Etype (N);
      Left  : constant Node_Id    := Left_Opnd (N);
      Right : constant Node_Id    := Right_Opnd (N);

      Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
      --  Current overflow checking mode

      LLB : Uint;
      Llo : Uint;
      Lhi : Uint;
      LOK : Boolean;
      Rlo : Uint;
      Rhi : Uint;
      ROK : Boolean;

      pragma Warnings (Off, Lhi);
      --  Don't actually use this value

   begin
      --  If we are operating in MINIMIZED or ELIMINATED mode, and we are
      --  operating on signed integer types, then the only thing this routine
      --  does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
      --  procedure will (possibly later on during recursive downward calls),
      --  ensure that any needed overflow/division checks are properly applied.

      if Mode in Minimized_Or_Eliminated
        and then Is_Signed_Integer_Type (Typ)
      then
         Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
         return;
      end if;

      --  Proceed here in SUPPRESSED or CHECKED modes

      if Expander_Active
        and then not Backend_Divide_Checks_On_Target
        and then Check_Needed (Right, Division_Check)
      then
         Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);

         --  Deal with division check

         if Do_Division_Check (N)
           and then not Division_Checks_Suppressed (Typ)
         then
            Apply_Division_Check (N, Rlo, Rhi, ROK);
         end if;

         --  Deal with overflow check

         if Do_Overflow_Check (N)
           and then not Overflow_Checks_Suppressed (Etype (N))
         then
            Set_Do_Overflow_Check (N, False);

            --  Test for extremely annoying case of xxx'First divided by -1
            --  for division of signed integer types (only overflow case).

            if Nkind (N) = N_Op_Divide
              and then Is_Signed_Integer_Type (Typ)
            then
               Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
               LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));

               if (not ROK or else (Rlo <= (-1) and then (-1) <= Rhi))
                     and then
                  (not LOK or else Llo = LLB)
               then
                  --  Ensure that expressions are not evaluated twice (once
                  --  for their runtime checks and once for their regular
                  --  computation).

                  Force_Evaluation (Left, Mode => Strict);
                  Force_Evaluation (Right, Mode => Strict);

                  Insert_Action (N,
                    Make_Raise_Constraint_Error (Loc,
                      Condition =>
                        Make_And_Then (Loc,
                          Left_Opnd  =>
                            Make_Op_Eq (Loc,
                              Left_Opnd  =>
                                Duplicate_Subexpr_Move_Checks (Left),
                              Right_Opnd => Make_Integer_Literal (Loc, LLB)),

                          Right_Opnd =>
                            Make_Op_Eq (Loc,
                              Left_Opnd  => Duplicate_Subexpr (Right),
                              Right_Opnd => Make_Integer_Literal (Loc, -1))),

                      Reason => CE_Overflow_Check_Failed));
               end if;
            end if;
         end if;
      end if;
   end Apply_Divide_Checks;

   --------------------------
   -- Apply_Division_Check --
   --------------------------

   procedure Apply_Division_Check
     (N   : Node_Id;
      Rlo : Uint;
      Rhi : Uint;
      ROK : Boolean)
   is
      pragma Assert (Do_Division_Check (N));

      Loc   : constant Source_Ptr := Sloc (N);
      Right : constant Node_Id := Right_Opnd (N);
      Opnd  : Node_Id;

   begin
      if Expander_Active
        and then not Backend_Divide_Checks_On_Target
        and then Check_Needed (Right, Division_Check)

        --  See if division by zero possible, and if so generate test. This
        --  part of the test is not controlled by the -gnato switch, since it
        --  is a Division_Check and not an Overflow_Check.

        and then Do_Division_Check (N)
      then
         Set_Do_Division_Check (N, False);

         if not ROK or else (Rlo <= 0 and then 0 <= Rhi) then
            if Is_Floating_Point_Type (Etype (N)) then
               Opnd := Make_Real_Literal (Loc, Ureal_0);
            else
               Opnd := Make_Integer_Literal (Loc, 0);
            end if;

            Insert_Action (N,
              Make_Raise_Constraint_Error (Loc,
                Condition =>
                  Make_Op_Eq (Loc,
                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Right),
                    Right_Opnd => Opnd),
                Reason    => CE_Divide_By_Zero));
         end if;
      end if;
   end Apply_Division_Check;

   ----------------------------------
   -- Apply_Float_Conversion_Check --
   ----------------------------------

   --  Let F and I be the source and target types of the conversion. The RM
   --  specifies that a floating-point value X is rounded to the nearest
   --  integer, with halfway cases being rounded away from zero. The rounded
   --  value of X is checked against I'Range.

   --  The catch in the above paragraph is that there is no good way to know
   --  whether the round-to-integer operation resulted in overflow. A remedy is
   --  to perform a range check in the floating-point domain instead, however:

   --      (1)  The bounds may not be known at compile time
   --      (2)  The check must take into account rounding or truncation.
   --      (3)  The range of type I may not be exactly representable in F.
   --      (4)  For the rounding case, the end-points I'First - 0.5 and
   --           I'Last + 0.5 may or may not be in range, depending on the
   --           sign of  I'First and I'Last.
   --      (5)  X may be a NaN, which will fail any comparison

   --  The following steps correctly convert X with rounding:

   --      (1) If either I'First or I'Last is not known at compile time, use
   --          I'Base instead of I in the next three steps and perform a
   --          regular range check against I'Range after conversion.
   --      (2) If I'First - 0.5 is representable in F then let Lo be that
   --          value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
   --          F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
   --          In other words, take one of the closest floating-point numbers
   --          (which is an integer value) to I'First, and see if it is in
   --          range or not.
   --      (3) If I'Last + 0.5 is representable in F then let Hi be that value
   --          and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
   --          F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
   --      (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
   --                     or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)

   --  For the truncating case, replace steps (2) and (3) as follows:
   --      (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
   --          be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
   --          Lo_OK be True.
   --      (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
   --          be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
   --          Hi_OK be True.

   procedure Apply_Float_Conversion_Check
     (Expr       : Node_Id;
      Target_Typ : Entity_Id)
   is
      LB          : constant Node_Id    := Type_Low_Bound (Target_Typ);
      HB          : constant Node_Id    := Type_High_Bound (Target_Typ);
      Loc         : constant Source_Ptr := Sloc (Expr);
      Expr_Type   : constant Entity_Id  := Base_Type (Etype (Expr));
      Target_Base : constant Entity_Id  :=
        Implementation_Base_Type (Target_Typ);

      Par : constant Node_Id := Parent (Expr);
      pragma Assert (Nkind (Par) = N_Type_Conversion);
      --  Parent of check node, must be a type conversion

      Truncate  : constant Boolean := Float_Truncate (Par);
      Max_Bound : constant Uint :=
        UI_Expon
          (Machine_Radix_Value (Expr_Type),
           Machine_Mantissa_Value (Expr_Type) - 1) - 1;

      --  Largest bound, so bound plus or minus half is a machine number of F

      Ifirst, Ilast : Uint;
      --  Bounds of integer type

      Lo, Hi : Ureal;
      --  Bounds to check in floating-point domain

      Lo_OK, Hi_OK : Boolean;
      --  True iff Lo resp. Hi belongs to I'Range

      Lo_Chk, Hi_Chk : Node_Id;
      --  Expressions that are False iff check fails

      Reason : RT_Exception_Code;

   begin
      --  We do not need checks if we are not generating code (i.e. the full
      --  expander is not active). In SPARK mode, we specifically don't want
      --  the frontend to expand these checks, which are dealt with directly
      --  in the formal verification backend.

      if not Expander_Active then
         return;
      end if;

      --  Here we will generate an explicit range check, so we don't want to
      --  set the Do_Range check flag, since the range check is taken care of
      --  by the code we will generate.

      Set_Do_Range_Check (Expr, False);

      if not Compile_Time_Known_Value (LB)
          or not Compile_Time_Known_Value (HB)
      then
         declare
            --  First check that the value falls in the range of the base type,
            --  to prevent overflow during conversion and then perform a
            --  regular range check against the (dynamic) bounds.

            pragma Assert (Target_Base /= Target_Typ);

            Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);

         begin
            Apply_Float_Conversion_Check (Expr, Target_Base);
            Set_Etype (Temp, Target_Base);

            --  Note: Previously the declaration was inserted above the parent
            --  of the conversion, apparently as a small optimization for the
            --  subequent traversal in Insert_Actions. Unfortunately a similar
            --  optimization takes place in Insert_Actions, assuming that the
            --  insertion point must be above the expression that creates
            --  actions. This is not correct in the presence of conditional
            --  expressions, where the insertion must be in the list of actions
            --  attached to the current alternative.

            Insert_Action (Par,
              Make_Object_Declaration (Loc,
                Defining_Identifier => Temp,
                Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
                Expression => New_Copy_Tree (Par)),
                Suppress => All_Checks);

            Insert_Action (Par,
              Make_Raise_Constraint_Error (Loc,
                Condition =>
                  Make_Not_In (Loc,
                    Left_Opnd  => New_Occurrence_Of (Temp, Loc),
                    Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
                Reason => CE_Range_Check_Failed));
            Rewrite (Par, New_Occurrence_Of (Temp, Loc));

            return;
         end;
      end if;

      --  Get the (static) bounds of the target type

      Ifirst := Expr_Value (LB);
      Ilast  := Expr_Value (HB);

      --  A simple optimization: if the expression is a universal literal,
      --  we can do the comparison with the bounds and the conversion to
      --  an integer type statically. The range checks are unchanged.

      if Nkind (Expr) = N_Real_Literal
        and then Etype (Expr) = Universal_Real
        and then Is_Integer_Type (Target_Typ)
      then
         declare
            Int_Val : constant Uint := UR_To_Uint (Realval (Expr));

         begin
            if Int_Val <= Ilast and then Int_Val >= Ifirst then

               --  Conversion is safe

               Rewrite (Parent (Expr),
                 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
               Analyze_And_Resolve (Parent (Expr), Target_Typ);
               return;
            end if;
         end;
      end if;

      --  Check against lower bound

      if Truncate and then Ifirst > 0 then
         Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
         Lo_OK := False;

      elsif Truncate then
         Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
         Lo_OK := True;

      elsif abs (Ifirst) < Max_Bound then
         Lo := UR_From_Uint (Ifirst) - Ureal_Half;
         Lo_OK := (Ifirst > 0);

      else
         Lo := Machine_Number (Expr_Type, UR_From_Uint (Ifirst), Expr);
         Lo_OK := (Lo >= UR_From_Uint (Ifirst));
      end if;

      --  Saturate the lower bound to that of the expression's type, because
      --  we do not want to create an out-of-range value but we still need to
      --  do a comparison to catch NaNs.

      if Lo < Expr_Value_R (Type_Low_Bound (Expr_Type)) then
         Lo := Expr_Value_R (Type_Low_Bound (Expr_Type));
         Lo_OK := True;
      end if;

      if Lo_OK then

         --  Lo_Chk := (X >= Lo)

         Lo_Chk := Make_Op_Ge (Loc,
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
                     Right_Opnd => Make_Real_Literal (Loc, Lo));

      else
         --  Lo_Chk := (X > Lo)

         Lo_Chk := Make_Op_Gt (Loc,
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
                     Right_Opnd => Make_Real_Literal (Loc, Lo));
      end if;

      --  Check against higher bound

      if Truncate and then Ilast < 0 then
         Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
         Hi_OK := False;

      elsif Truncate then
         Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
         Hi_OK := True;

      elsif abs (Ilast) < Max_Bound then
         Hi := UR_From_Uint (Ilast) + Ureal_Half;
         Hi_OK := (Ilast < 0);
      else
         Hi := Machine_Number (Expr_Type, UR_From_Uint (Ilast), Expr);
         Hi_OK := (Hi <= UR_From_Uint (Ilast));
      end if;

      --  Saturate the higher bound to that of the expression's type, because
      --  we do not want to create an out-of-range value but we still need to
      --  do a comparison to catch NaNs.

      if Hi > Expr_Value_R (Type_High_Bound (Expr_Type)) then
         Hi := Expr_Value_R (Type_High_Bound (Expr_Type));
         Hi_OK := True;
      end if;

      if Hi_OK then

         --  Hi_Chk := (X <= Hi)

         Hi_Chk := Make_Op_Le (Loc,
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
                     Right_Opnd => Make_Real_Literal (Loc, Hi));

      else
         --  Hi_Chk := (X < Hi)

         Hi_Chk := Make_Op_Lt (Loc,
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
                     Right_Opnd => Make_Real_Literal (Loc, Hi));
      end if;

      --  If the bounds of the target type are the same as those of the base
      --  type, the check is an overflow check as a range check is not
      --  performed in these cases.

      if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
        and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
      then
         Reason := CE_Overflow_Check_Failed;
      else
         Reason := CE_Range_Check_Failed;
      end if;

      --  Raise CE if either conditions does not hold

      Insert_Action (Expr,
        Make_Raise_Constraint_Error (Loc,
          Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
          Reason    => Reason));
   end Apply_Float_Conversion_Check;

   ------------------------
   -- Apply_Length_Check --
   ------------------------

   procedure Apply_Length_Check
     (Expr       : Node_Id;
      Target_Typ : Entity_Id;
      Source_Typ : Entity_Id := Empty)
   is
   begin
      Apply_Selected_Length_Checks
        (Expr, Target_Typ, Source_Typ, Do_Static => False);
   end Apply_Length_Check;

   --------------------------------------
   -- Apply_Length_Check_On_Assignment --
   --------------------------------------

   procedure Apply_Length_Check_On_Assignment
     (Expr       : Node_Id;
      Target_Typ : Entity_Id;
      Target     : Node_Id;
      Source_Typ : Entity_Id := Empty)
   is
      Assign : constant Node_Id := Parent (Target);

   begin
      --  Do not apply length checks if parent is still an assignment statement
      --  with Suppress_Assignment_Checks flag set.

      if Nkind (Assign) = N_Assignment_Statement
        and then Suppress_Assignment_Checks (Assign)
      then
         return;
      end if;

      --  No check is needed for the initialization of an object whose
      --  nominal subtype is unconstrained.

      if Is_Constr_Subt_For_U_Nominal (Target_Typ)
        and then Nkind (Parent (Assign)) = N_Freeze_Entity
        and then Is_Entity_Name (Target)
        and then Entity (Target) = Entity (Parent (Assign))
      then
         return;
      end if;

      Apply_Selected_Length_Checks
        (Expr, Target_Typ, Source_Typ, Do_Static => False);
   end Apply_Length_Check_On_Assignment;

   -------------------------------------
   -- Apply_Parameter_Aliasing_Checks --
   -------------------------------------

   procedure Apply_Parameter_Aliasing_Checks
     (Call : Node_Id;
      Subp : Entity_Id)
   is
      Loc : constant Source_Ptr := Sloc (Call);

      function Parameter_Passing_Mechanism_Specified
        (Typ : Entity_Id)
         return Boolean;
      --  Returns True if parameter-passing mechanism is specified for type Typ

      function May_Cause_Aliasing
        (Formal_1 : Entity_Id;
         Formal_2 : Entity_Id) return Boolean;
      --  Determine whether two formal parameters can alias each other
      --  depending on their modes.

      function Original_Actual (N : Node_Id) return Node_Id;
      --  The expander may replace an actual with a temporary for the sake of
      --  side effect removal. The temporary may hide a potential aliasing as
      --  it does not share the address of the actual. This routine attempts
      --  to retrieve the original actual.

      procedure Overlap_Check
        (Actual_1 : Node_Id;
         Actual_2 : Node_Id;
         Formal_1 : Entity_Id;
         Formal_2 : Entity_Id;
         Check    : in out Node_Id);
      --  Create a check to determine whether Actual_1 overlaps with Actual_2.
      --  If detailed exception messages are enabled, the check is augmented to
      --  provide information about the names of the corresponding formals. See
      --  the body for details. Actual_1 and Actual_2 denote the two actuals to
      --  be tested. Formal_1 and Formal_2 denote the corresponding formals.
      --  Check contains all and-ed simple tests generated so far or remains
      --  unchanged in the case of detailed exception messaged.

      -------------------------------------------
      -- Parameter_Passing_Mechanism_Specified --
      -------------------------------------------

      function Parameter_Passing_Mechanism_Specified
        (Typ : Entity_Id)
         return Boolean
      is
      begin
         return Is_Elementary_Type (Typ)
           or else Is_By_Reference_Type (Typ);
      end Parameter_Passing_Mechanism_Specified;

      ------------------------
      -- May_Cause_Aliasing --
      ------------------------

      function May_Cause_Aliasing
        (Formal_1 : Entity_Id;
         Formal_2 : Entity_Id) return Boolean
      is
      begin
         --  The following combination cannot lead to aliasing

         --     Formal 1    Formal 2
         --     IN          IN

         if Ekind (Formal_1) = E_In_Parameter
              and then
            Ekind (Formal_2) = E_In_Parameter
         then
            return False;

         --  The following combinations may lead to aliasing

         --     Formal 1    Formal 2
         --     IN          OUT
         --     IN          IN OUT
         --     OUT         IN
         --     OUT         IN OUT
         --     OUT         OUT

         else
            return True;
         end if;
      end May_Cause_Aliasing;

      ---------------------
      -- Original_Actual --
      ---------------------

      function Original_Actual (N : Node_Id) return Node_Id is
      begin
         if Nkind (N) = N_Type_Conversion then
            return Expression (N);

         --  The expander created a temporary to capture the result of a type
         --  conversion where the expression is the real actual.

         elsif Nkind (N) = N_Identifier
           and then Present (Original_Node (N))
           and then Nkind (Original_Node (N)) = N_Type_Conversion
         then
            return Expression (Original_Node (N));
         end if;

         return N;
      end Original_Actual;

      -------------------
      -- Overlap_Check --
      -------------------

      procedure Overlap_Check
        (Actual_1 : Node_Id;
         Actual_2 : Node_Id;
         Formal_1 : Entity_Id;
         Formal_2 : Entity_Id;
         Check    : in out Node_Id)
      is
         Cond        : Node_Id;
         Formal_Name : Bounded_String;

      begin
         --  Generate:
         --    Actual_1'Overlaps_Storage (Actual_2)

         Cond :=
           Make_Attribute_Reference (Loc,
             Prefix         => New_Copy_Tree (Original_Actual (Actual_1)),
             Attribute_Name => Name_Overlaps_Storage,
             Expressions    =>
               New_List (New_Copy_Tree (Original_Actual (Actual_2))));

         --  Generate the following check when detailed exception messages are
         --  enabled:

         --    if Actual_1'Overlaps_Storage (Actual_2) then
         --       raise Program_Error with <detailed message>;
         --    end if;

         if Exception_Extra_Info then
            Start_String;

            --  Do not generate location information for internal calls

            if Comes_From_Source (Call) then
               Store_String_Chars (Build_Location_String (Loc));
               Store_String_Char (' ');
            end if;

            Store_String_Chars ("aliased parameters, actuals for """);

            Append (Formal_Name, Chars (Formal_1));
            Adjust_Name_Case (Formal_Name, Sloc (Formal_1));
            Store_String_Chars (To_String (Formal_Name));

            Store_String_Chars (""" and """);

            Formal_Name.Length := 0;

            Append (Formal_Name, Chars (Formal_2));
            Adjust_Name_Case (Formal_Name, Sloc (Formal_2));
            Store_String_Chars (To_String (Formal_Name));

            Store_String_Chars (""" overlap");

            Insert_Action (Call,
              Make_If_Statement (Loc,
                Condition       => Cond,
                Then_Statements => New_List (
                  Make_Raise_Statement (Loc,
                    Name       =>
                      New_Occurrence_Of (Standard_Program_Error, Loc),
                    Expression => Make_String_Literal (Loc, End_String)))));

         --  Create a sequence of overlapping checks by and-ing them all
         --  together.

         else
            if No (Check) then
               Check := Cond;
            else
               Check :=
                 Make_And_Then (Loc,
                   Left_Opnd  => Check,
                   Right_Opnd => Cond);
            end if;
         end if;
      end Overlap_Check;

      --  Local variables

      Actual_1   : Node_Id;
      Actual_2   : Node_Id;
      Check      : Node_Id;
      Formal_1   : Entity_Id;
      Formal_2   : Entity_Id;
      Orig_Act_1 : Node_Id;
      Orig_Act_2 : Node_Id;

   --  Start of processing for Apply_Parameter_Aliasing_Checks

   begin
      Check := Empty;

      Actual_1 := First_Actual (Call);
      Formal_1 := First_Formal (Subp);
      while Present (Actual_1) and then Present (Formal_1) loop
         Orig_Act_1 := Original_Actual (Actual_1);

         if Is_Name_Reference (Orig_Act_1) then
            Actual_2 := Next_Actual (Actual_1);
            Formal_2 := Next_Formal (Formal_1);
            while Present (Actual_2) and then Present (Formal_2) loop
               Orig_Act_2 := Original_Actual (Actual_2);

               --  Generate the check only when the mode of the two formals may
               --  lead to aliasing.

               if Is_Name_Reference (Orig_Act_2)
                 and then May_Cause_Aliasing (Formal_1, Formal_2)
               then

                  --  The aliasing check only applies when some of the formals
                  --  have their passing mechanism unspecified; RM 6.2 (12/3).

                  if Parameter_Passing_Mechanism_Specified (Etype (Orig_Act_1))
                       and then
                     Parameter_Passing_Mechanism_Specified (Etype (Orig_Act_2))
                  then
                     null;
                  else
                     Remove_Side_Effects (Actual_1);
                     Remove_Side_Effects (Actual_2);

                     Overlap_Check
                       (Actual_1 => Actual_1,
                        Actual_2 => Actual_2,
                        Formal_1 => Formal_1,
                        Formal_2 => Formal_2,
                        Check    => Check);
                  end if;
               end if;

               Next_Actual (Actual_2);
               Next_Formal (Formal_2);
            end loop;
         end if;

         Next_Actual (Actual_1);
         Next_Formal (Formal_1);
      end loop;

      --  Place a simple check right before the call

      if Present (Check) and then not Exception_Extra_Info then
         Insert_Action (Call,
           Make_Raise_Program_Error (Loc,
             Condition => Check,
             Reason    => PE_Aliased_Parameters));
      end if;
   end Apply_Parameter_Aliasing_Checks;

   -------------------------------------
   -- Apply_Parameter_Validity_Checks --
   -------------------------------------

   procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
      Subp_Decl : Node_Id;

      procedure Add_Validity_Check
        (Formal     : Entity_Id;
         Prag_Nam   : Name_Id;
         For_Result : Boolean := False);
      --  Add a single 'Valid[_Scalars] check which verifies the initialization
      --  of Formal. Prag_Nam denotes the pre or post condition pragma name.
      --  Set flag For_Result when to verify the result of a function.

      ------------------------
      -- Add_Validity_Check --
      ------------------------

      procedure Add_Validity_Check
        (Formal     : Entity_Id;
         Prag_Nam   : Name_Id;
         For_Result : Boolean := False)
      is
         procedure Build_Pre_Post_Condition (Expr : Node_Id);
         --  Create a pre/postcondition pragma that tests expression Expr

         ------------------------------
         -- Build_Pre_Post_Condition --
         ------------------------------

         procedure Build_Pre_Post_Condition (Expr : Node_Id) is
            Loc   : constant Source_Ptr := Sloc (Subp);
            Decls : List_Id;
            Prag  : Node_Id;

         begin
            Prag :=
              Make_Pragma (Loc,
                Chars                        => Prag_Nam,
                Pragma_Argument_Associations => New_List (
                  Make_Pragma_Argument_Association (Loc,
                    Chars      => Name_Check,
                    Expression => Expr)));

            --  Add a message unless exception messages are suppressed

            if not Exception_Locations_Suppressed then
               Append_To (Pragma_Argument_Associations (Prag),
                 Make_Pragma_Argument_Association (Loc,
                   Chars      => Name_Message,
                   Expression =>
                     Make_String_Literal (Loc,
                       Strval => "failed "
                                 & Get_Name_String (Prag_Nam)
                                 & " from "
                                 & Build_Location_String (Loc))));
            end if;

            --  Insert the pragma in the tree

            if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
               Add_Global_Declaration (Prag);
               Analyze (Prag);

            --  PPC pragmas associated with subprogram bodies must be inserted
            --  in the declarative part of the body.

            elsif Nkind (Subp_Decl) = N_Subprogram_Body then
               Decls := Declarations (Subp_Decl);

               if No (Decls) then
                  Decls := New_List;
                  Set_Declarations (Subp_Decl, Decls);
               end if;

               Prepend_To (Decls, Prag);
               Analyze (Prag);

            --  For subprogram declarations insert the PPC pragma right after
            --  the declarative node.

            else
               Insert_After_And_Analyze (Subp_Decl, Prag);
            end if;
         end Build_Pre_Post_Condition;

         --  Local variables

         Loc   : constant Source_Ptr := Sloc (Subp);
         Typ   : constant Entity_Id  := Etype (Formal);
         Check : Node_Id;
         Nam   : Name_Id;

      --  Start of processing for Add_Validity_Check

      begin
         --  For scalars, generate 'Valid test

         if Is_Scalar_Type (Typ) then
            Nam := Name_Valid;

         --  For any non-scalar with scalar parts, generate 'Valid_Scalars test

         elsif Scalar_Part_Present (Typ) then
            Nam := Name_Valid_Scalars;

         --  No test needed for other cases (no scalars to test)

         else
            return;
         end if;

         --  Step 1: Create the expression to verify the validity of the
         --  context.

         Check := New_Occurrence_Of (Formal, Loc);

         --  When processing a function result, use 'Result. Generate
         --    Context'Result

         if For_Result then
            Check :=
              Make_Attribute_Reference (Loc,
                Prefix         => Check,
                Attribute_Name => Name_Result);
         end if;

         --  Generate:
         --    Context['Result]'Valid[_Scalars]

         Check :=
           Make_Attribute_Reference (Loc,
             Prefix         => Check,
             Attribute_Name => Nam);

         --  Step 2: Create a pre or post condition pragma

         Build_Pre_Post_Condition (Check);
      end Add_Validity_Check;

      --  Local variables

      Formal    : Entity_Id;
      Subp_Spec : Node_Id;

   --  Start of processing for Apply_Parameter_Validity_Checks

   begin
      --  Extract the subprogram specification and declaration nodes

      Subp_Spec := Parent (Subp);

      if No (Subp_Spec) then
         return;
      end if;

      if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
         Subp_Spec := Parent (Subp_Spec);
      end if;

      Subp_Decl := Parent (Subp_Spec);

      if not Comes_From_Source (Subp)

        --  Do not process formal subprograms because the corresponding actual
        --  will receive the proper checks when the instance is analyzed.

        or else Is_Formal_Subprogram (Subp)

        --  Do not process imported subprograms since pre and postconditions
        --  are never verified on routines coming from a different language.

        or else Is_Imported (Subp)
        or else Is_Intrinsic_Subprogram (Subp)

        --  The PPC pragmas generated by this routine do not correspond to
        --  source aspects, therefore they cannot be applied to abstract
        --  subprograms.

        or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration

        --  Do not consider subprogram renaminds because the renamed entity
        --  already has the proper PPC pragmas.

        or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration

        --  Do not process null procedures because there is no benefit of
        --  adding the checks to a no action routine.

        or else (Nkind (Subp_Spec) = N_Procedure_Specification
                  and then Null_Present (Subp_Spec))
      then
         return;
      end if;

      --  Inspect all the formals applying aliasing and scalar initialization
      --  checks where applicable.

      Formal := First_Formal (Subp);
      while Present (Formal) loop

         --  Generate the following scalar initialization checks for each
         --  formal parameter:

         --    mode IN     - Pre       => Formal'Valid[_Scalars]
         --    mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
         --    mode    OUT -      Post => Formal'Valid[_Scalars]

         if Ekind (Formal) in E_In_Parameter | E_In_Out_Parameter then
            Add_Validity_Check (Formal, Name_Precondition, False);
         end if;

         if Ekind (Formal) in E_In_Out_Parameter | E_Out_Parameter then
            Add_Validity_Check (Formal, Name_Postcondition, False);
         end if;

         Next_Formal (Formal);
      end loop;

      --  Generate following scalar initialization check for function result:

      --    Post => Subp'Result'Valid[_Scalars]

      if Ekind (Subp) = E_Function then
         Add_Validity_Check (Subp, Name_Postcondition, True);
      end if;
   end Apply_Parameter_Validity_Checks;

   ---------------------------
   -- Apply_Predicate_Check --
   ---------------------------

   procedure Apply_Predicate_Check
     (N     : Node_Id;
      Typ   : Entity_Id;
      Deref : Boolean := False;
      Fun   : Entity_Id := Empty)
   is
      Loc            : constant Source_Ptr := Sloc (N);
      Check_Disabled : constant Boolean :=
        not Predicate_Enabled (Typ)
          or else not Predicate_Check_In_Scope (N);

      Expr : Node_Id;
      Par  : Node_Id;
      S    : Entity_Id;

   begin
      S := Current_Scope;
      while Present (S) and then not Is_Subprogram (S) loop
         S := Scope (S);
      end loop;

      --  If the check appears within the predicate function itself, it means
      --  that the user specified a check whose formal is the predicated
      --  subtype itself, rather than some covering type. This is likely to be
      --  a common error, and thus deserves a warning. We want to emit this
      --  warning even if predicate checking is disabled (in which case the
      --  warning is still useful even if it is not strictly accurate).

      if Present (S) and then S = Predicate_Function (Typ) then
         Error_Msg_NE
           ("predicate check includes a call to& that requires a "
            & "predicate check??", Parent (N), Fun);
         Error_Msg_N
           ("\this will result in infinite recursion??", Parent (N));

         if Is_First_Subtype (Typ) then
            Error_Msg_NE
              ("\use an explicit subtype of& to carry the predicate",
               Parent (N), Typ);
         end if;

         if not Check_Disabled then
            Insert_Action (N,
              Make_Raise_Storage_Error (Loc,
                Reason => SE_Infinite_Recursion));
            return;
         end if;
      end if;

      if Check_Disabled then
         return;
      end if;

      --  Normal case of predicate active

      --  If the expression is an IN parameter, the predicate will have
      --  been applied at the point of call. An additional check would
      --  be redundant, or will lead to out-of-scope references if the
      --  call appears within an aspect specification for a precondition.

      --  However, if the reference is within the body of the subprogram
      --  that declares the formal, the predicate can safely be applied,
      --  which may be necessary for a nested call whose formal has a
      --  different predicate.

      if Is_Entity_Name (N)
        and then Ekind (Entity (N)) = E_In_Parameter
      then
         declare
            In_Body : Boolean := False;
            P       : Node_Id := Parent (N);

         begin
            while Present (P) loop
               if Nkind (P) = N_Subprogram_Body
                 and then
                   ((Present (Corresponding_Spec (P))
                      and then
                        Corresponding_Spec (P) = Scope (Entity (N)))
                      or else
                        Defining_Unit_Name (Specification (P)) =
                          Scope (Entity (N)))
               then
                  In_Body := True;
                  exit;
               end if;

               P := Parent (P);
            end loop;

            if not In_Body then
               return;
            end if;
         end;
      end if;

      --  If the type has a static predicate and the expression is known
      --  at compile time, see if the expression satisfies the predicate.

      Check_Expression_Against_Static_Predicate (N, Typ);

      if not Expander_Active then
         return;
      end if;

      Par := Parent (N);
      if Nkind (Par) = N_Qualified_Expression then
         Par := Parent (Par);
      end if;

      --  Try to avoid creating a temporary if the expression is an aggregate

      if Nkind (N) in N_Aggregate | N_Extension_Aggregate then

         --  If the expression is an aggregate in an assignment, apply the
         --  check to the LHS after the assignment, rather than create a
         --  redundant temporary. This is only necessary in rare cases
         --  of array types (including strings) initialized with an
         --  aggregate with an "others" clause, either coming from source
         --  or generated by an Initialize_Scalars pragma.

         if Nkind (Par) = N_Assignment_Statement then
            Insert_Action_After (Par,
              Make_Predicate_Check
                (Typ, Duplicate_Subexpr (Name (Par))));
            return;

         --  Similarly, if the expression is an aggregate in an object
         --  declaration, apply it to the object after the declaration.

         --  This is only necessary in cases of tagged extensions
         --  initialized with an aggregate with an "others => <>" clause,
         --  when the subtypes of LHS and RHS do not statically match or
         --  when we know the object's type will be rewritten later.
         --  The condition for the later is copied from the
         --  Analyze_Object_Declaration procedure when it actually builds the
         --  subtype.

         elsif Nkind (Par) = N_Object_Declaration then
            if Subtypes_Statically_Match
                 (Etype (Defining_Identifier (Par)), Typ)
              and then (Nkind (N) = N_Extension_Aggregate
                         or else (Is_Definite_Subtype (Typ)
                                   and then Build_Default_Subtype_OK (Typ)))
            then
               Insert_Action_After (Par,
                  Make_Predicate_Check (Typ,
                    New_Occurrence_Of (Defining_Identifier (Par), Loc)));
               return;
            end if;

         end if;
      end if;

      --  For an entity of the type, generate a call to the predicate
      --  function, unless its type is an actual subtype, which is not
      --  visible outside of the enclosing subprogram.

      if Is_Entity_Name (N) and then not Is_Actual_Subtype (Typ) then
         Expr := New_Occurrence_Of (Entity (N), Loc);

      --  If the expression is not an entity, it may have side effects

      else
         Expr := Duplicate_Subexpr (N);
      end if;

      --  Make the dereference if requested

      if Deref then
         Expr := Make_Explicit_Dereference (Loc, Prefix => Expr);
      end if;

      --  Disable checks to prevent an infinite recursion

      Insert_Action
        (N, Make_Predicate_Check (Typ, Expr), Suppress => All_Checks);
   end Apply_Predicate_Check;

   -----------------------
   -- Apply_Range_Check --
   -----------------------

   procedure Apply_Range_Check
     (Expr        : Node_Id;
      Target_Typ  : Entity_Id;
      Source_Typ  : Entity_Id := Empty;
      Insert_Node : Node_Id   := Empty)
   is
      Checks_On : constant Boolean :=
                    not Index_Checks_Suppressed (Target_Typ)
                      or else
                    not Range_Checks_Suppressed (Target_Typ);

      Loc : constant Source_Ptr := Sloc (Expr);

      Cond     : Node_Id;
      R_Cno    : Node_Id;
      R_Result : Check_Result;

   begin
      --  Only apply checks when generating code. In GNATprove mode, we do not
      --  apply the checks, but we still call Selected_Range_Checks to possibly
      --  issue errors on SPARK code when a run-time error can be detected at
      --  compile time.

      if not GNATprove_Mode then
         if not Expander_Active or not Checks_On then
            return;
         end if;
      end if;

      R_Result :=
        Selected_Range_Checks (Expr, Target_Typ, Source_Typ, Insert_Node);

      if GNATprove_Mode then
         return;
      end if;

      for J in 1 .. 2 loop
         R_Cno := R_Result (J);
         exit when No (R_Cno);

         --  The range check requires runtime evaluation. Depending on what its
         --  triggering condition is, the check may be converted into a compile
         --  time constraint check.

         if Nkind (R_Cno) = N_Raise_Constraint_Error
           and then Present (Condition (R_Cno))
         then
            Cond := Condition (R_Cno);

            --  Insert the range check before the related context. Note that
            --  this action analyses the triggering condition.

            if Present (Insert_Node) then
               Insert_Action (Insert_Node, R_Cno);
            else
               Insert_Action (Expr, R_Cno);
            end if;

            --  The triggering condition evaluates to True, the range check
            --  can be converted into a compile time constraint check.

            if Is_Entity_Name (Cond)
              and then Entity (Cond) = Standard_True
            then
               --  Since an N_Range is technically not an expression, we have
               --  to set one of the bounds to C_E and then just flag the
               --  N_Range. The warning message will point to the lower bound
               --  and complain about a range, which seems OK.

               if Nkind (Expr) = N_Range then
                  Apply_Compile_Time_Constraint_Error
                    (Low_Bound (Expr),
                     "static range out of bounds of}??",
                     CE_Range_Check_Failed,
                     Ent => Target_Typ,
                     Typ => Target_Typ);

                  Set_Raises_Constraint_Error (Expr);

               else
                  Apply_Compile_Time_Constraint_Error
                    (Expr,
                     "static value out of range of}??",
                     CE_Range_Check_Failed,
                     Ent => Target_Typ,
                     Typ => Target_Typ);
               end if;
            end if;

         --  The range check raises Constraint_Error explicitly

         elsif Present (Insert_Node) then
            R_Cno :=
              Make_Raise_Constraint_Error (Sloc (Insert_Node),
                Reason => CE_Range_Check_Failed);

            Insert_Action (Insert_Node, R_Cno);

         else
            Install_Static_Check (R_Cno, Loc, CE_Range_Check_Failed);
         end if;
      end loop;
   end Apply_Range_Check;

   ------------------------------
   -- Apply_Scalar_Range_Check --
   ------------------------------

   --  Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
   --  off if it is already set on.

   procedure Apply_Scalar_Range_Check
     (Expr       : Node_Id;
      Target_Typ : Entity_Id;
      Source_Typ : Entity_Id := Empty;
      Fixed_Int  : Boolean   := False)
   is
      Parnt   : constant Node_Id := Parent (Expr);
      S_Typ   : Entity_Id;
      Arr     : Node_Id   := Empty;  -- initialize to prevent warning
      Arr_Typ : Entity_Id := Empty;  -- initialize to prevent warning

      Is_Subscr_Ref : Boolean;
      --  Set true if Expr is a subscript

      Is_Unconstrained_Subscr_Ref : Boolean;
      --  Set true if Expr is a subscript of an unconstrained array. In this
      --  case we do not attempt to do an analysis of the value against the
      --  range of the subscript, since we don't know the actual subtype.

      Int_Real : Boolean;
      --  Set to True if Expr should be regarded as a real value even though
      --  the type of Expr might be discrete.

      procedure Bad_Value (Warn : Boolean := False);
      --  Procedure called if value is determined to be out of range. Warn is
      --  True to force a warning instead of an error, even when SPARK_Mode is
      --  On.

      ---------------
      -- Bad_Value --
      ---------------

      procedure Bad_Value (Warn : Boolean := False) is
      begin
         Apply_Compile_Time_Constraint_Error
           (Expr, "value not in range of}??", CE_Range_Check_Failed,
            Ent  => Target_Typ,
            Typ  => Target_Typ,
            Warn => Warn);
      end Bad_Value;

   --  Start of processing for Apply_Scalar_Range_Check

   begin
      --  Return if check obviously not needed

      if
         --  Not needed inside generic

         Inside_A_Generic

         --  Not needed if previous error

         or else Target_Typ = Any_Type
         or else Nkind (Expr) = N_Error

         --  Not needed for non-scalar type

         or else not Is_Scalar_Type (Target_Typ)

         --  Not needed if we know node raises CE already

         or else Raises_Constraint_Error (Expr)
      then
         return;
      end if;

      --  Now, see if checks are suppressed

      Is_Subscr_Ref :=
        Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;

      if Is_Subscr_Ref then
         Arr := Prefix (Parnt);
         Arr_Typ := Get_Actual_Subtype_If_Available (Arr);

         if Is_Access_Type (Arr_Typ) then
            Arr_Typ := Designated_Type (Arr_Typ);
         end if;
      end if;

      if not Do_Range_Check (Expr) then

         --  Subscript reference. Check for Index_Checks suppressed

         if Is_Subscr_Ref then

            --  Check array type and its base type

            if Index_Checks_Suppressed (Arr_Typ)
              or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
            then
               return;

            --  Check array itself if it is an entity name

            elsif Is_Entity_Name (Arr)
              and then Index_Checks_Suppressed (Entity (Arr))
            then
               return;

            --  Check expression itself if it is an entity name

            elsif Is_Entity_Name (Expr)
              and then Index_Checks_Suppressed (Entity (Expr))
            then
               return;
            end if;

         --  All other cases, check for Range_Checks suppressed

         else
            --  Check target type and its base type

            if Range_Checks_Suppressed (Target_Typ)
              or else Range_Checks_Suppressed (Base_Type (Target_Typ))
            then
               return;

            --  Check expression itself if it is an entity name

            elsif Is_Entity_Name (Expr)
              and then Range_Checks_Suppressed (Entity (Expr))
            then
               return;

            --  If Expr is part of an assignment statement, then check left
            --  side of assignment if it is an entity name.

            elsif Nkind (Parnt) = N_Assignment_Statement
              and then Is_Entity_Name (Name (Parnt))
              and then Range_Checks_Suppressed (Entity (Name (Parnt)))
            then
               return;
            end if;
         end if;
      end if;

      --  Do not set range checks if they are killed

      if Nkind (Expr) = N_Unchecked_Type_Conversion
        and then Kill_Range_Check (Expr)
      then
         return;
      end if;

      --  Do not set range checks for any values from System.Scalar_Values
      --  since the whole idea of such values is to avoid checking them.

      if Is_Entity_Name (Expr)
        and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
      then
         return;
      end if;

      --  Now see if we need a check

      if No (Source_Typ) then
         S_Typ := Etype (Expr);
      else
         S_Typ := Source_Typ;
      end if;

      if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
         return;
      end if;

      Is_Unconstrained_Subscr_Ref :=
        Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);

      --  Special checks for floating-point type

      if Is_Floating_Point_Type (S_Typ) then

         --  Always do a range check if the source type includes infinities and
         --  the target type does not include infinities. We do not do this if
         --  range checks are killed.
         --  If the expression is a literal and the bounds of the type are
         --  static constants it may be possible to optimize the check.

         if Has_Infinities (S_Typ)
           and then not Has_Infinities (Target_Typ)
         then
            --  If the expression is a literal and the bounds of the type are
            --  static constants it may be possible to optimize the check.

            if Nkind (Expr) = N_Real_Literal then
               declare
                  Tlo : constant Node_Id := Type_Low_Bound  (Target_Typ);
                  Thi : constant Node_Id := Type_High_Bound (Target_Typ);

               begin
                  if Compile_Time_Known_Value (Tlo)
                    and then Compile_Time_Known_Value (Thi)
                    and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
                    and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
                  then
                     return;
                  else
                     Enable_Range_Check (Expr);
                  end if;
               end;

            else
               Enable_Range_Check (Expr);
            end if;
         end if;
      end if;

      --  Return if we know expression is definitely in the range of the target
      --  type as determined by Determine_Range_To_Discrete. Right now we only
      --  do this for discrete target types, i.e. neither for fixed-point nor
      --  for floating-point types. But the additional less precise tests below
      --  catch these cases.

      --  Note: skip this if we are given a source_typ, since the point of
      --  supplying a Source_Typ is to stop us looking at the expression.
      --  We could sharpen this test to be out parameters only ???

      if Is_Discrete_Type (Target_Typ)
        and then not Is_Unconstrained_Subscr_Ref
        and then No (Source_Typ)
      then
         declare
            Thi : constant Node_Id := Type_High_Bound (Target_Typ);
            Tlo : constant Node_Id := Type_Low_Bound  (Target_Typ);

         begin
            if Compile_Time_Known_Value (Tlo)
              and then Compile_Time_Known_Value (Thi)
            then
               declare
                  OK  : Boolean := False;  -- initialize to prevent warning
                  Hiv : constant Uint := Expr_Value (Thi);
                  Lov : constant Uint := Expr_Value (Tlo);
                  Hi  : Uint := No_Uint;
                  Lo  : Uint := No_Uint;

               begin
                  --  If range is null, we for sure have a constraint error (we
                  --  don't even need to look at the value involved, since all
                  --  possible values will raise CE).

                  if Lov > Hiv then

                     --  When SPARK_Mode is On, force a warning instead of
                     --  an error in that case, as this likely corresponds
                     --  to deactivated code.

                     Bad_Value (Warn => SPARK_Mode = On);

                     return;
                  end if;

                  --  Otherwise determine range of value

                  Determine_Range_To_Discrete
                    (Expr, OK, Lo, Hi, Fixed_Int, Assume_Valid => True);

                  if OK then

                     --  If definitely in range, all OK

                     if Lo >= Lov and then Hi <= Hiv then
                        return;

                     --  If definitely not in range, warn

                     elsif Lov > Hi or else Hiv < Lo then

                        --  Ignore out of range values for System.Priority in
                        --  CodePeer mode since the actual target compiler may
                        --  provide a wider range.

                        if not CodePeer_Mode
                          or else not Is_RTE (Target_Typ, RE_Priority)
                        then
                           Bad_Value;
                        end if;

                        return;

                     --  Otherwise we don't know

                     else
                        null;
                     end if;
                  end if;
               end;
            end if;
         end;
      end if;

      Int_Real :=
        Is_Floating_Point_Type (S_Typ)
          or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);

      --  Check if we can determine at compile time whether Expr is in the
      --  range of the target type. Note that if S_Typ is within the bounds
      --  of Target_Typ then this must be the case. This check is meaningful
      --  only if this is not a conversion between integer and real types,
      --  unless for a fixed-point type if Fixed_Int is set.

      if not Is_Unconstrained_Subscr_Ref
        and then (Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
                   or else (Fixed_Int and then Is_Discrete_Type (Target_Typ)))
        and then
          (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)

             --  Also check if the expression itself is in the range of the
             --  target type if it is a known at compile time value. We skip
             --  this test if S_Typ is set since for OUT and IN OUT parameters
             --  the Expr itself is not relevant to the checking.

             or else
               (No (Source_Typ)
                  and then Is_In_Range (Expr, Target_Typ,
                                        Assume_Valid => True,
                                        Fixed_Int    => Fixed_Int,
                                        Int_Real     => Int_Real)))
      then
         return;

      elsif Is_Out_Of_Range (Expr, Target_Typ,
                             Assume_Valid => True,
                             Fixed_Int    => Fixed_Int,
                             Int_Real     => Int_Real)
      then
         Bad_Value;
         return;

      --  Floating-point case
      --  In the floating-point case, we only do range checks if the type is
      --  constrained. We definitely do NOT want range checks for unconstrained
      --  types, since we want to have infinities, except when
      --  Check_Float_Overflow is set.

      elsif Is_Floating_Point_Type (S_Typ) then
         if Is_Constrained (S_Typ) or else Check_Float_Overflow then
            Enable_Range_Check (Expr);
         end if;

      --  For all other cases we enable a range check unconditionally

      else
         Enable_Range_Check (Expr);
         return;
      end if;
   end Apply_Scalar_Range_Check;

   ----------------------------------
   -- Apply_Selected_Length_Checks --
   ----------------------------------

   procedure Apply_Selected_Length_Checks
     (Expr       : Node_Id;
      Target_Typ : Entity_Id;
      Source_Typ : Entity_Id;
      Do_Static  : Boolean)
   is
      Checks_On : constant Boolean :=
                    not Index_Checks_Suppressed (Target_Typ)
                      or else
                    not Length_Checks_Suppressed (Target_Typ);

      Loc : constant Source_Ptr := Sloc (Expr);

      Cond     : Node_Id;
      R_Cno    : Node_Id;
      R_Result : Check_Result;

   begin
      --  Only apply checks when generating code

      --  Note: this means that we lose some useful warnings if the expander
      --  is not active.

      if not Expander_Active then
         return;
      end if;

      R_Result :=
        Selected_Length_Checks (Expr, Target_Typ, Source_Typ, Empty);

      for J in 1 .. 2 loop
         R_Cno := R_Result (J);
         exit when No (R_Cno);

         --  A length check may mention an Itype which is attached to a
         --  subsequent node. At the top level in a package this can cause
         --  an order-of-elaboration problem, so we make sure that the itype
         --  is referenced now.

         if Ekind (Current_Scope) = E_Package
           and then Is_Compilation_Unit (Current_Scope)
         then
            Ensure_Defined (Target_Typ, Expr);

            if Present (Source_Typ) then
               Ensure_Defined (Source_Typ, Expr);

            elsif Is_Itype (Etype (Expr)) then
               Ensure_Defined (Etype (Expr), Expr);
            end if;
         end if;

         if Nkind (R_Cno) = N_Raise_Constraint_Error
           and then Present (Condition (R_Cno))
         then
            Cond := Condition (R_Cno);

            --  Case where node does not now have a dynamic check

            if not Has_Dynamic_Length_Check (Expr) then

               --  If checks are on, just insert the check

               if Checks_On then
                  Insert_Action (Expr, R_Cno);

                  if not Do_Static then
                     Set_Has_Dynamic_Length_Check (Expr);
                  end if;

               --  If checks are off, then analyze the length check after
               --  temporarily attaching it to the tree in case the relevant
               --  condition can be evaluated at compile time. We still want a
               --  compile time warning in this case.

               else
                  Set_Parent (R_Cno, Expr);
                  Analyze (R_Cno);
               end if;
            end if;

            --  Output a warning if the condition is known to be True

            if Is_Entity_Name (Cond)
              and then Entity (Cond) = Standard_True
            then
               Apply_Compile_Time_Constraint_Error
                 (Expr, "wrong length for array of}??",
                  CE_Length_Check_Failed,
                  Ent => Target_Typ,
                  Typ => Target_Typ);

            --  If we were only doing a static check, or if checks are not
            --  on, then we want to delete the check, since it is not needed.
            --  We do this by replacing the if statement by a null statement

            elsif Do_Static or else not Checks_On then
               Remove_Warning_Messages (R_Cno);
               Rewrite (R_Cno, Make_Null_Statement (Loc));
            end if;

         else
            Install_Static_Check (R_Cno, Loc, CE_Length_Check_Failed);
         end if;
      end loop;
   end Apply_Selected_Length_Checks;

   -------------------------------
   -- Apply_Static_Length_Check --
   -------------------------------

   procedure Apply_Static_Length_Check
     (Expr       : Node_Id;
      Target_Typ : Entity_Id;
      Source_Typ : Entity_Id := Empty)
   is
   begin
      Apply_Selected_Length_Checks
        (Expr, Target_Typ, Source_Typ, Do_Static => True);
   end Apply_Static_Length_Check;

   -------------------------------------
   -- Apply_Subscript_Validity_Checks --
   -------------------------------------

   procedure Apply_Subscript_Validity_Checks
     (Expr            : Node_Id;
      No_Check_Needed : Dimension_Set := Empty_Dimension_Set) is
      Sub : Node_Id;

      Dimension : Pos := 1;
   begin
      pragma Assert (Nkind (Expr) = N_Indexed_Component);

      --  Loop through subscripts

      Sub := First (Expressions (Expr));
      while Present (Sub) loop

         --  Check one subscript. Note that we do not worry about enumeration
         --  type with holes, since we will convert the value to a Pos value
         --  for the subscript, and that convert will do the necessary validity
         --  check.

         if No_Check_Needed = Empty_Dimension_Set
           or else not No_Check_Needed.Elements (Dimension)
         then
            Ensure_Valid (Sub, Holes_OK => True);
         end if;

         --  Move to next subscript

         Next (Sub);
         Dimension := Dimension + 1;
      end loop;
   end Apply_Subscript_Validity_Checks;

   ----------------------------------
   -- Apply_Type_Conversion_Checks --
   ----------------------------------

   procedure Apply_Type_Conversion_Checks (N : Node_Id) is
      Target_Type : constant Entity_Id := Etype (N);
      Target_Base : constant Entity_Id := Base_Type (Target_Type);
      Expr        : constant Node_Id   := Expression (N);

      Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
      --  Note: if Etype (Expr) is a private type without discriminants, its
      --  full view might have discriminants with defaults, so we need the
      --  full view here to retrieve the constraints.

      procedure Make_Discriminant_Constraint_Check
        (Target_Type : Entity_Id;
         Expr_Type   : Entity_Id);
      --  Generate a discriminant check based on the target type and expression
      --  type for Expr.

      ----------------------------------------
      -- Make_Discriminant_Constraint_Check --
      ----------------------------------------

      procedure Make_Discriminant_Constraint_Check
        (Target_Type : Entity_Id;
         Expr_Type   : Entity_Id)
      is
         Loc         : constant Source_Ptr := Sloc (N);
         Cond        : Node_Id;
         Constraint  : Elmt_Id;
         Discr_Value : Node_Id;
         Discr       : Entity_Id;

         New_Constraints : constant Elist_Id := New_Elmt_List;
         Old_Constraints : constant Elist_Id :=
           Discriminant_Constraint (Expr_Type);

      begin
         --  Build an actual discriminant constraint list using the stored
         --  constraint, to verify that the expression of the parent type
         --  satisfies the constraints imposed by the (unconstrained) derived
         --  type. This applies to value conversions, not to view conversions
         --  of tagged types.

         Constraint := First_Elmt (Stored_Constraint (Target_Type));
         while Present (Constraint) loop
            Discr_Value := Node (Constraint);

            if Is_Entity_Name (Discr_Value)
              and then Ekind (Entity (Discr_Value)) = E_Discriminant
            then
               Discr := Corresponding_Discriminant (Entity (Discr_Value));

               if Present (Discr)
                 and then Scope (Discr) = Base_Type (Expr_Type)
               then
                  --  Parent is constrained by new discriminant. Obtain
                  --  Value of original discriminant in expression. If the
                  --  new discriminant has been used to constrain more than
                  --  one of the stored discriminants, this will provide the
                  --  required consistency check.

                  Append_Elmt
                    (Make_Selected_Component (Loc,
                       Prefix        =>
                         Duplicate_Subexpr_No_Checks
                           (Expr, Name_Req => True),
                       Selector_Name =>
                         Make_Identifier (Loc, Chars (Discr))),
                     New_Constraints);

               else
                  --  Discriminant of more remote ancestor ???

                  return;
               end if;

            --  Derived type definition has an explicit value for this
            --  stored discriminant.

            else
               Append_Elmt
                 (Duplicate_Subexpr_No_Checks (Discr_Value),
                  New_Constraints);
            end if;

            Next_Elmt (Constraint);
         end loop;

         --  Use the unconstrained expression type to retrieve the
         --  discriminants of the parent, and apply momentarily the
         --  discriminant constraint synthesized above.

         --  Note: We use Expr_Type instead of Target_Type since the number of
         --  actual discriminants may be different due to the presence of
         --  stored discriminants and cause Build_Discriminant_Checks to fail.

         Set_Discriminant_Constraint (Expr_Type, New_Constraints);
         Cond := Build_Discriminant_Checks (Expr, Expr_Type);
         Set_Discriminant_Constraint (Expr_Type, Old_Constraints);

         --  Conversion between access types requires that we check for null
         --  before checking discriminants.

         if Is_Access_Type (Etype (Expr)) then
            Cond := Make_And_Then (Loc,
                      Left_Opnd  =>
                        Make_Op_Ne (Loc,
                          Left_Opnd  =>
                            Duplicate_Subexpr_No_Checks
                              (Expr, Name_Req => True),
                          Right_Opnd => Make_Null (Loc)),
                      Right_Opnd => Cond);
         end if;

         Insert_Action (N,
           Make_Raise_Constraint_Error (Loc,
             Condition => Cond,
             Reason    => CE_Discriminant_Check_Failed));
      end Make_Discriminant_Constraint_Check;

   --  Start of processing for Apply_Type_Conversion_Checks

   begin
      if Inside_A_Generic then
         return;

      --  Skip these checks if serious errors detected, there are some nasty
      --  situations of incomplete trees that blow things up.

      elsif Serious_Errors_Detected > 0 then
         return;

      --  Never generate discriminant checks for Unchecked_Union types

      elsif Present (Expr_Type)
        and then Is_Unchecked_Union (Expr_Type)
      then
         return;

      --  Scalar type conversions of the form Target_Type (Expr) require a
      --  range check if we cannot be sure that Expr is in the base type of
      --  Target_Typ and also that Expr is in the range of Target_Typ. These
      --  are not quite the same condition from an implementation point of
      --  view, but clearly the second includes the first.

      elsif Is_Scalar_Type (Target_Type) then
         declare
            Conv_OK : constant Boolean := Conversion_OK (N);
            --  If the Conversion_OK flag on the type conversion is set and no
            --  floating-point type is involved in the type conversion then
            --  fixed-point values must be read as integral values.

            Float_To_Int : constant Boolean :=
              Is_Floating_Point_Type (Expr_Type)
              and then Is_Integer_Type (Target_Type);

         begin
            if not Overflow_Checks_Suppressed (Target_Base)
              and then not Overflow_Checks_Suppressed (Target_Type)
              and then not
                In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
              and then not Float_To_Int
            then
               --  A small optimization: the attribute 'Pos applied to an
               --  enumeration type has a known range, even though its type is
               --  Universal_Integer. So in numeric conversions it is usually
               --  within range of the target integer type. Use the static
               --  bounds of the base types to check. Disable this optimization
               --  in case of a descendant of a generic formal discrete type,
               --  because we don't necessarily know the upper bound yet.

               if Nkind (Expr) = N_Attribute_Reference
                 and then Attribute_Name (Expr) = Name_Pos
                 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
                 and then
                   not Is_Generic_Type (Root_Type (Etype (Prefix (Expr))))
                 and then Is_Integer_Type (Target_Type)
               then
                  declare
                     Enum_T : constant Entity_Id :=
                                Root_Type (Etype (Prefix (Expr)));
                     Int_T  : constant Entity_Id := Base_Type (Target_Type);
                     Last_I : constant Uint      :=
                                Intval (High_Bound (Scalar_Range (Int_T)));
                     Last_E : Uint;

                  begin
                     --  Character types have no explicit literals, so we use
                     --  the known number of characters in the type.

                     if Root_Type (Enum_T) = Standard_Character then
                        Last_E := UI_From_Int (255);

                     elsif Enum_T = Standard_Wide_Character
                       or else Enum_T = Standard_Wide_Wide_Character
                     then
                        Last_E := UI_From_Int (65535);

                     else
                        Last_E :=
                          Enumeration_Pos
                            (Entity (High_Bound (Scalar_Range (Enum_T))));
                     end if;

                     if Last_E > Last_I then
                        Activate_Overflow_Check (N);
                     end if;
                  end;
               else
                  Activate_Overflow_Check (N);
               end if;
            end if;

            if not Range_Checks_Suppressed (Target_Type)
              and then not Range_Checks_Suppressed (Expr_Type)
            then
               if Float_To_Int
                 and then not GNATprove_Mode
               then
                  Apply_Float_Conversion_Check (Expr, Target_Type);
               else
                  --  Raw conversions involving fixed-point types are expanded
                  --  separately and do not need a Range_Check flag yet, except
                  --  in GNATprove_Mode where this expansion is not performed.
                  --  This does not apply to conversion where fixed-point types
                  --  are treated as integers, which are precisely generated by
                  --  this expansion.

                  if GNATprove_Mode
                    or else Conv_OK
                    or else (not Is_Fixed_Point_Type (Expr_Type)
                              and then not Is_Fixed_Point_Type (Target_Type))
                  then
                     Apply_Scalar_Range_Check
                       (Expr, Target_Type, Fixed_Int => Conv_OK);

                  else
                     Set_Do_Range_Check (Expr, False);
                  end if;

                  --  If the target type has predicates, we need to indicate
                  --  the need for a check, even if Determine_Range finds that
                  --  the value is within bounds. This may be the case e.g for
                  --  a division with a constant denominator.

                  if Has_Predicates (Target_Type) then
                     Enable_Range_Check (Expr);
                  end if;
               end if;
            end if;
         end;

      --  Generate discriminant constraint checks for access types on the
      --  designated target type's stored constraints.

      --  Do we need to generate subtype predicate checks here as well ???

      elsif Comes_From_Source (N)
        and then Ekind (Target_Type) = E_General_Access_Type

        --  Check that both of the designated types have known discriminants,
        --  and that such checks on the target type are not suppressed.

        and then Has_Discriminants (Directly_Designated_Type (Target_Type))
        and then Has_Discriminants (Directly_Designated_Type (Expr_Type))
        and then not Discriminant_Checks_Suppressed
                       (Directly_Designated_Type (Target_Type))

        --  Verify the designated type of the target has stored constraints

        and then Present
                   (Stored_Constraint (Directly_Designated_Type (Target_Type)))
      then
         Make_Discriminant_Constraint_Check
           (Target_Type => Directly_Designated_Type (Target_Type),
            Expr_Type   => Directly_Designated_Type (Expr_Type));

      --  Create discriminant checks for the Target_Type's stored constraints

      elsif Comes_From_Source (N)
        and then not Discriminant_Checks_Suppressed (Target_Type)
        and then Is_Record_Type (Target_Type)
        and then Is_Derived_Type (Target_Type)
        and then not Is_Tagged_Type (Target_Type)
        and then not Is_Constrained (Target_Type)
        and then Present (Stored_Constraint (Target_Type))
      then
         Make_Discriminant_Constraint_Check (Target_Type, Expr_Type);

      --  For arrays, checks are set now, but conversions are applied during
      --  expansion, to take into accounts changes of representation. The
      --  checks become range checks on the base type or length checks on the
      --  subtype, depending on whether the target type is unconstrained or
      --  constrained. Note that the range check is put on the expression of a
      --  type conversion, while the length check is put on the type conversion
      --  itself.

      elsif Is_Array_Type (Target_Type) then
         if Is_Constrained (Target_Type) then
            Set_Do_Length_Check (N);
         else
            Set_Do_Range_Check (Expr);
         end if;
      end if;
   end Apply_Type_Conversion_Checks;

   ----------------------------------------------
   -- Apply_Universal_Integer_Attribute_Checks --
   ----------------------------------------------

   procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
      Loc : constant Source_Ptr := Sloc (N);
      Typ : constant Entity_Id  := Etype (N);

   begin
      if Inside_A_Generic then
         return;

      --  Nothing to do if the result type is universal integer

      elsif Typ = Universal_Integer then
         return;

      --  Nothing to do if checks are suppressed

      elsif Range_Checks_Suppressed (Typ)
        and then Overflow_Checks_Suppressed (Typ)
      then
         return;

      --  Nothing to do if the attribute does not come from source. The
      --  internal attributes we generate of this type do not need checks,
      --  and furthermore the attempt to check them causes some circular
      --  elaboration orders when dealing with packed types.

      elsif not Comes_From_Source (N) then
         return;

      --  If the prefix is a selected component that depends on a discriminant
      --  the check may improperly expose a discriminant instead of using
      --  the bounds of the object itself. Set the type of the attribute to
      --  the base type of the context, so that a check will be imposed when
      --  needed (e.g. if the node appears as an index).

      elsif Nkind (Prefix (N)) = N_Selected_Component
        and then Ekind (Typ) = E_Signed_Integer_Subtype
        and then Depends_On_Discriminant (Scalar_Range (Typ))
      then
         Set_Etype (N, Base_Type (Typ));

      --  Otherwise, replace the attribute node with a type conversion node
      --  whose expression is the attribute, retyped to universal integer, and
      --  whose subtype mark is the target type. The call to analyze this
      --  conversion will set range and overflow checks as required for proper
      --  detection of an out of range value.

      else
         Set_Etype    (N, Universal_Integer);
         Set_Analyzed (N, True);

         Rewrite (N,
           Make_Type_Conversion (Loc,
             Subtype_Mark => New_Occurrence_Of (Typ, Loc),
             Expression   => Relocate_Node (N)));

         Analyze_And_Resolve (N, Typ);
         return;
      end if;
   end Apply_Universal_Integer_Attribute_Checks;

   -------------------------------------
   -- Atomic_Synchronization_Disabled --
   -------------------------------------

   --  Note: internally Disable/Enable_Atomic_Synchronization is implemented
   --  using a bogus check called Atomic_Synchronization. This is to make it
   --  more convenient to get exactly the same semantics as [Un]Suppress.

   function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
   begin
      --  If debug flag d.e is set, always return False, i.e. all atomic sync
      --  looks enabled, since it is never disabled.

      if Debug_Flag_Dot_E then
         return False;

      --  If debug flag d.d is set then always return True, i.e. all atomic
      --  sync looks disabled, since it always tests True.

      elsif Debug_Flag_Dot_D then
         return True;

      --  If entity present, then check result for that entity

      elsif Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Atomic_Synchronization);

      --  Otherwise result depends on current scope setting

      else
         return Scope_Suppress.Suppress (Atomic_Synchronization);
      end if;
   end Atomic_Synchronization_Disabled;

   -------------------------------
   -- Build_Discriminant_Checks --
   -------------------------------

   function Build_Discriminant_Checks
     (N     : Node_Id;
      T_Typ : Entity_Id) return Node_Id
   is
      Loc      : constant Source_Ptr := Sloc (N);
      Cond     : Node_Id;
      Disc     : Elmt_Id;
      Disc_Ent : Entity_Id;
      Dref     : Node_Id;
      Dval     : Node_Id;

      function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;

      function Replace_Current_Instance
        (N : Node_Id) return Traverse_Result;
      --  Replace a reference to the current instance of the type with the
      --  corresponding _init formal of the initialization procedure. Note:
      --  this function relies on us currently being within the initialization
      --  procedure.

      --------------------------------
      -- Aggregate_Discriminant_Val --
      --------------------------------

      function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
         Assoc : Node_Id;

      begin
         --  The aggregate has been normalized with named associations. We use
         --  the Chars field to locate the discriminant to take into account
         --  discriminants in derived types, which carry the same name as those
         --  in the parent.

         Assoc := First (Component_Associations (N));
         while Present (Assoc) loop
            if Chars (First (Choices (Assoc))) = Chars (Disc) then
               return Expression (Assoc);
            else
               Next (Assoc);
            end if;
         end loop;

         --  Discriminant must have been found in the loop above

         raise Program_Error;
      end Aggregate_Discriminant_Val;

      ------------------------------
      -- Replace_Current_Instance --
      ------------------------------

      function Replace_Current_Instance
        (N : Node_Id) return Traverse_Result is
      begin
         if Is_Entity_Name (N)
           and then Etype (N) = Entity (N)
         then
            Rewrite (N,
              New_Occurrence_Of (First_Formal (Current_Subprogram), Loc));
         end if;

         return OK;
      end Replace_Current_Instance;

      procedure Search_And_Replace_Current_Instance is new
        Traverse_Proc (Replace_Current_Instance);

   --  Start of processing for Build_Discriminant_Checks

   begin
      --  Loop through discriminants evolving the condition

      Cond := Empty;
      Disc := First_Elmt (Discriminant_Constraint (T_Typ));

      --  For a fully private type, use the discriminants of the parent type

      if Is_Private_Type (T_Typ)
        and then No (Full_View (T_Typ))
      then
         Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
      else
         Disc_Ent := First_Discriminant (T_Typ);
      end if;

      while Present (Disc) loop
         Dval := Node (Disc);

         if Nkind (Dval) = N_Identifier
           and then Ekind (Entity (Dval)) = E_Discriminant
         then
            Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
         else
            Dval := Duplicate_Subexpr_No_Checks (Dval);
         end if;

         --  Replace references to the current instance of the type with the
         --  corresponding _init formal of the initialization procedure.

         if Within_Init_Proc then
            Search_And_Replace_Current_Instance (Dval);
         end if;

         --  If we have an Unchecked_Union node, we can infer the discriminants
         --  of the node.

         if Is_Unchecked_Union (Base_Type (T_Typ)) then
            Dref := New_Copy (
              Get_Discriminant_Value (
                First_Discriminant (T_Typ),
                T_Typ,
                Stored_Constraint (T_Typ)));

         elsif Nkind (N) = N_Aggregate then
            Dref :=
               Duplicate_Subexpr_No_Checks
                 (Aggregate_Discriminant_Val (Disc_Ent));

         elsif Is_Access_Type (Etype (N)) then
            Dref :=
              Make_Selected_Component (Loc,
                Prefix        =>
                  Make_Explicit_Dereference (Loc,
                    Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
                Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));

            Set_Is_In_Discriminant_Check (Dref);
         else
            Dref :=
              Make_Selected_Component (Loc,
                Prefix        =>
                  Duplicate_Subexpr_No_Checks (N, Name_Req => True),
                Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));

            Set_Is_In_Discriminant_Check (Dref);
         end if;

         Evolve_Or_Else (Cond,
           Make_Op_Ne (Loc,
             Left_Opnd  => Dref,
             Right_Opnd => Dval));

         Next_Elmt (Disc);
         Next_Discriminant (Disc_Ent);
      end loop;

      return Cond;
   end Build_Discriminant_Checks;

   ------------------
   -- Check_Needed --
   ------------------

   function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
      N : Node_Id;
      P : Node_Id;
      K : Node_Kind;
      L : Node_Id;
      R : Node_Id;

      function Left_Expression (Op : Node_Id) return Node_Id;
      --  Return the relevant expression from the left operand of the given
      --  short circuit form: this is LO itself, except if LO is a qualified
      --  expression, a type conversion, or an expression with actions, in
      --  which case this is Left_Expression (Expression (LO)).

      ---------------------
      -- Left_Expression --
      ---------------------

      function Left_Expression (Op : Node_Id) return Node_Id is
         LE : Node_Id := Left_Opnd (Op);
      begin
         while Nkind (LE) in N_Qualified_Expression
                           | N_Type_Conversion
                           | N_Expression_With_Actions
         loop
            LE := Expression (LE);
         end loop;

         return LE;
      end Left_Expression;

   --  Start of processing for Check_Needed

   begin
      --  Always check if not simple entity

      if Nkind (Nod) not in N_Has_Entity
        or else not Comes_From_Source (Nod)
      then
         return True;
      end if;

      --  Look up tree for short circuit

      N := Nod;
      loop
         P := Parent (N);
         K := Nkind (P);

         --  Done if out of subexpression (note that we allow generated stuff
         --  such as itype declarations in this context, to keep the loop going
         --  since we may well have generated such stuff in complex situations.
         --  Also done if no parent (probably an error condition, but no point
         --  in behaving nasty if we find it).

         if No (P)
           or else (K not in N_Subexpr and then Comes_From_Source (P))
         then
            return True;

         --  Or/Or Else case, where test is part of the right operand, or is
         --  part of one of the actions associated with the right operand, and
         --  the left operand is an equality test.

         elsif K = N_Op_Or then
            exit when N = Right_Opnd (P)
              and then Nkind (Left_Expression (P)) = N_Op_Eq;

         elsif K = N_Or_Else then
            exit when (N = Right_Opnd (P)
                        or else
                          (Is_List_Member (N)
                             and then List_Containing (N) = Actions (P)))
              and then Nkind (Left_Expression (P)) = N_Op_Eq;

         --  Similar test for the And/And then case, where the left operand
         --  is an inequality test.

         elsif K = N_Op_And then
            exit when N = Right_Opnd (P)
              and then Nkind (Left_Expression (P)) = N_Op_Ne;

         elsif K = N_And_Then then
            exit when (N = Right_Opnd (P)
                        or else
                          (Is_List_Member (N)
                            and then List_Containing (N) = Actions (P)))
              and then Nkind (Left_Expression (P)) = N_Op_Ne;
         end if;

         N := P;
      end loop;

      --  If we fall through the loop, then we have a conditional with an
      --  appropriate test as its left operand, so look further.

      L := Left_Expression (P);

      --  L is an "=" or "/=" operator: extract its operands

      R := Right_Opnd (L);
      L := Left_Opnd (L);

      --  Left operand of test must match original variable

      if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
         return True;
      end if;

      --  Right operand of test must be key value (zero or null)

      case Check is
         when Access_Check =>
            if not Known_Null (R) then
               return True;
            end if;

         when Division_Check =>
            if not Compile_Time_Known_Value (R)
              or else Expr_Value (R) /= Uint_0
            then
               return True;
            end if;

         when others =>
            raise Program_Error;
      end case;

      --  Here we have the optimizable case, warn if not short-circuited

      if K = N_Op_And or else K = N_Op_Or then
         Error_Msg_Warn := SPARK_Mode /= On;

         case Check is
            when Access_Check =>
               if GNATprove_Mode then
                  Error_Msg_N
                    ("Constraint_Error might have been raised (access check)",
                     Parent (Nod));
               else
                  Error_Msg_N
                    ("Constraint_Error may be raised (access check)??",
                     Parent (Nod));
               end if;

            when Division_Check =>
               if GNATprove_Mode then
                  Error_Msg_N
                    ("Constraint_Error might have been raised (zero divide)",
                     Parent (Nod));
               else
                  Error_Msg_N
                    ("Constraint_Error may be raised (zero divide)??",
                     Parent (Nod));
               end if;

            when others =>
               raise Program_Error;
         end case;

         if K = N_Op_And then
            Error_Msg_N -- CODEFIX
              ("use `AND THEN` instead of AND??", P);
         else
            Error_Msg_N -- CODEFIX
              ("use `OR ELSE` instead of OR??", P);
         end if;

         --  If not short-circuited, we need the check

         return True;

      --  If short-circuited, we can omit the check

      else
         return False;
      end if;
   end Check_Needed;

   -----------------------------------
   -- Check_Valid_Lvalue_Subscripts --
   -----------------------------------

   procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
   begin
      --  Skip this if range checks are suppressed

      if Range_Checks_Suppressed (Etype (Expr)) then
         return;

      --  Only do this check for expressions that come from source. We assume
      --  that expander generated assignments explicitly include any necessary
      --  checks. Note that this is not just an optimization, it avoids
      --  infinite recursions.

      elsif not Comes_From_Source (Expr) then
         return;

      --  For a selected component, check the prefix

      elsif Nkind (Expr) = N_Selected_Component then
         Check_Valid_Lvalue_Subscripts (Prefix (Expr));
         return;

      --  Case of indexed component

      elsif Nkind (Expr) = N_Indexed_Component then
         Apply_Subscript_Validity_Checks (Expr);

         --  Prefix may itself be or contain an indexed component, and these
         --  subscripts need checking as well.

         Check_Valid_Lvalue_Subscripts (Prefix (Expr));
      end if;
   end Check_Valid_Lvalue_Subscripts;

   ----------------------------------
   -- Null_Exclusion_Static_Checks --
   ----------------------------------

   procedure Null_Exclusion_Static_Checks
     (N          : Node_Id;
      Comp       : Node_Id := Empty;
      Array_Comp : Boolean := False)
   is
      Has_Null  : constant Boolean   := Has_Null_Exclusion (N);
      Kind      : constant Node_Kind := Nkind (N);
      Error_Nod : Node_Id;
      Expr      : Node_Id;
      Typ       : Entity_Id;

   begin
      pragma Assert
        (Kind in N_Component_Declaration
               | N_Discriminant_Specification
               | N_Function_Specification
               | N_Object_Declaration
               | N_Parameter_Specification);

      if Kind = N_Function_Specification then
         Typ := Etype (Defining_Entity (N));
      else
         Typ := Etype (Defining_Identifier (N));
      end if;

      case Kind is
         when N_Component_Declaration =>
            if Present (Access_Definition (Component_Definition (N))) then
               Error_Nod := Component_Definition (N);
            else
               Error_Nod := Subtype_Indication (Component_Definition (N));
            end if;

         when N_Discriminant_Specification =>
            Error_Nod := Discriminant_Type (N);

         when N_Function_Specification =>
            Error_Nod := Result_Definition (N);

         when N_Object_Declaration =>
            Error_Nod := Object_Definition (N);

         when N_Parameter_Specification =>
            Error_Nod := Parameter_Type (N);

         when others =>
            raise Program_Error;
      end case;

      if Has_Null then

         --  Enforce legality rule 3.10 (13): A null exclusion can only be
         --  applied to an access [sub]type.

         if not Is_Access_Type (Typ) then
            Error_Msg_N
              ("`NOT NULL` allowed only for an access type", Error_Nod);

         --  Enforce legality rule RM 3.10(14/1): A null exclusion can only
         --  be applied to a [sub]type that does not exclude null already.

         elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
            Error_Msg_NE
              ("`NOT NULL` not allowed (& already excludes null)",
               Error_Nod, Typ);
         end if;
      end if;

      --  Check that null-excluding objects are always initialized, except for
      --  deferred constants, for which the expression will appear in the full
      --  declaration.

      if Kind = N_Object_Declaration
        and then No (Expression (N))
        and then not Constant_Present (N)
        and then not No_Initialization (N)
      then
         if Present (Comp) then

            --  Specialize the warning message to indicate that we are dealing
            --  with an uninitialized composite object that has a defaulted
            --  null-excluding component.

            Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
            Error_Msg_Name_2 := Chars (Defining_Identifier (N));

            Discard_Node
              (Compile_Time_Constraint_Error
                 (N   => N,
                  Msg =>
                    "(Ada 2005) null-excluding component % of object % must "
                    & "be initialized??",
                  Ent => Defining_Identifier (Comp)));

         --  This is a case of an array with null-excluding components, so
         --  indicate that in the warning.

         elsif Array_Comp then
            Discard_Node
              (Compile_Time_Constraint_Error
                 (N   => N,
                  Msg =>
                    "(Ada 2005) null-excluding array components must "
                    & "be initialized??",
                  Ent => Defining_Identifier (N)));

         --  Normal case of object of a null-excluding access type

         else
            --  Add an expression that assigns null. This node is needed by
            --  Apply_Compile_Time_Constraint_Error, which will replace this
            --  with a Constraint_Error node.

            Set_Expression (N, Make_Null (Sloc (N)));
            Set_Etype (Expression (N), Etype (Defining_Identifier (N)));

            Apply_Compile_Time_Constraint_Error
              (N      => Expression (N),
               Msg    =>
                 "(Ada 2005) null-excluding objects must be initialized??",
               Reason => CE_Null_Not_Allowed);
         end if;
      end if;

      --  Check that a null-excluding component, formal or object is not being
      --  assigned a null value. Otherwise generate a warning message and
      --  replace Expression (N) by an N_Constraint_Error node.

      if Kind /= N_Function_Specification then
         Expr := Expression (N);

         if Present (Expr) and then Known_Null (Expr) then
            case Kind is
               when N_Component_Declaration
                  | N_Discriminant_Specification
               =>
                  Apply_Compile_Time_Constraint_Error
                    (N      => Expr,
                     Msg    =>
                       "(Ada 2005) NULL not allowed in null-excluding "
                       & "components??",
                     Reason => CE_Null_Not_Allowed);

               when N_Object_Declaration =>
                  Apply_Compile_Time_Constraint_Error
                    (N      => Expr,
                     Msg    =>
                       "(Ada 2005) NULL not allowed in null-excluding "
                       & "objects??",
                     Reason => CE_Null_Not_Allowed);

               when N_Parameter_Specification =>
                  Apply_Compile_Time_Constraint_Error
                    (N      => Expr,
                     Msg    =>
                       "(Ada 2005) NULL not allowed in null-excluding "
                       & "formals??",
                     Reason => CE_Null_Not_Allowed);

               when others =>
                  null;
            end case;
         end if;
      end if;
   end Null_Exclusion_Static_Checks;

   -------------------------------------
   -- Compute_Range_For_Arithmetic_Op --
   -------------------------------------

   procedure Compute_Range_For_Arithmetic_Op
     (Op       : Node_Kind;
      Lo_Left  : Uint;
      Hi_Left  : Uint;
      Lo_Right : Uint;
      Hi_Right : Uint;
      OK       : out Boolean;
      Lo       : out Uint;
      Hi       : out Uint)
   is
      --  Use local variables for possible adjustments

      Llo : Uint renames Lo_Left;
      Lhi : Uint renames Hi_Left;
      Rlo : Uint := Lo_Right;
      Rhi : Uint := Hi_Right;

   begin
      --  We will compute a range for the result in almost all cases

      OK := True;

      case Op is

         --  Absolute value

         when N_Op_Abs =>
            Lo := Uint_0;
            Hi := UI_Max (abs Rlo, abs Rhi);

         --  Addition

         when N_Op_Add =>
            Lo := Llo + Rlo;
            Hi := Lhi + Rhi;

         --  Division

         when N_Op_Divide =>

            --  If the right operand can only be zero, set 0..0

            if Rlo = 0 and then Rhi = 0 then
               Lo := Uint_0;
               Hi := Uint_0;

            --  Possible bounds of division must come from dividing end
            --  values of the input ranges (four possibilities), provided
            --  zero is not included in the possible values of the right
            --  operand.

            --  Otherwise, we just consider two intervals of values for
            --  the right operand: the interval of negative values (up to
            --  -1) and the interval of positive values (starting at 1).
            --  Since division by 1 is the identity, and division by -1
            --  is negation, we get all possible bounds of division in that
            --  case by considering:
            --    - all values from the division of end values of input
            --      ranges;
            --    - the end values of the left operand;
            --    - the negation of the end values of the left operand.

            else
               declare
                  Mrk : constant Uintp.Save_Mark := Mark;
                  --  Mark so we can release the RR and Ev values

                  Ev1 : Uint;
                  Ev2 : Uint;
                  Ev3 : Uint;
                  Ev4 : Uint;

               begin
                  --  Discard extreme values of zero for the divisor, since
                  --  they will simply result in an exception in any case.

                  if Rlo = 0 then
                     Rlo := Uint_1;
                  elsif Rhi = 0 then
                     Rhi := -Uint_1;
                  end if;

                  --  Compute possible bounds coming from dividing end
                  --  values of the input ranges.

                  Ev1 := Llo / Rlo;
                  Ev2 := Llo / Rhi;
                  Ev3 := Lhi / Rlo;
                  Ev4 := Lhi / Rhi;

                  Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
                  Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));

                  --  If the right operand can be both negative or positive,
                  --  include the end values of the left operand in the
                  --  extreme values, as well as their negation.

                  if Rlo < 0 and then Rhi > 0 then
                     Ev1 := Llo;
                     Ev2 := -Llo;
                     Ev3 := Lhi;
                     Ev4 := -Lhi;

                     Lo := UI_Min (Lo,
                             UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
                     Hi := UI_Max (Hi,
                             UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
                  end if;

                  --  Release the RR and Ev values

                  Release_And_Save (Mrk, Lo, Hi);
               end;
            end if;

         --  Exponentiation

         when N_Op_Expon =>

            --  Discard negative values for the exponent, since they will
            --  simply result in an exception in any case.

            if Rhi < 0 then
               Rhi := Uint_0;
            elsif Rlo < 0 then
               Rlo := Uint_0;
            end if;

            --  Estimate number of bits in result before we go computing
            --  giant useless bounds. Basically the number of bits in the
            --  result is the number of bits in the base multiplied by the
            --  value of the exponent. If this is big enough that the result
            --  definitely won't fit in Long_Long_Integer, return immediately
            --  and avoid computing giant bounds.

            --  The comparison here is approximate, but conservative, it
            --  only clicks on cases that are sure to exceed the bounds.

            if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
               Lo := No_Uint;
               Hi := No_Uint;
               OK := False;
               return;

            --  If right operand is zero then result is 1

            elsif Rhi = 0 then
               Lo := Uint_1;
               Hi := Uint_1;

            else
               --  High bound comes either from exponentiation of largest
               --  positive value to largest exponent value, or from
               --  the exponentiation of most negative value to an
               --  even exponent.

               declare
                  Hi1, Hi2 : Uint;

               begin
                  if Lhi > 0 then
                     Hi1 := Lhi ** Rhi;
                  else
                     Hi1 := Uint_0;
                  end if;

                  if Llo < 0 then
                     if Rhi mod 2 = 0 then
                        Hi2 := Llo ** Rhi;
                     else
                        Hi2 := Llo ** (Rhi - 1);
                     end if;
                  else
                     Hi2 := Uint_0;
                  end if;

                  Hi := UI_Max (Hi1, Hi2);
               end;

               --  Result can only be negative if base can be negative

               if Llo < 0 then
                  if Rhi mod 2 = 0 then
                     Lo := Llo ** (Rhi - 1);
                  else
                     Lo := Llo ** Rhi;
                  end if;

               --  Otherwise low bound is minimum ** minimum

               else
                  Lo := Llo ** Rlo;
               end if;
            end if;

         --  Negation

         when N_Op_Minus =>
            Lo := -Rhi;
            Hi := -Rlo;

         --  Mod

         when N_Op_Mod =>
            declare
               Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
               --  This is the maximum absolute value of the result

            begin
               Lo := Uint_0;
               Hi := Uint_0;

               --  The result depends only on the sign and magnitude of
               --  the right operand, it does not depend on the sign or
               --  magnitude of the left operand.

               if Rlo < 0 then
                  Lo := -Maxabs;
               end if;

               if Rhi > 0 then
                  Hi := Maxabs;
               end if;
            end;

         --  Multiplication

         when N_Op_Multiply =>

            --  Possible bounds of multiplication must come from multiplying
            --  end values of the input ranges (four possibilities).

            declare
               Mrk : constant Uintp.Save_Mark := Mark;
               --  Mark so we can release the Ev values

               Ev1 : constant Uint := Llo * Rlo;
               Ev2 : constant Uint := Llo * Rhi;
               Ev3 : constant Uint := Lhi * Rlo;
               Ev4 : constant Uint := Lhi * Rhi;

            begin
               Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
               Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));

               --  Release the Ev values

               Release_And_Save (Mrk, Lo, Hi);
            end;

         --  Plus operator (affirmation)

         when N_Op_Plus =>
            Lo := Rlo;
            Hi := Rhi;

         --  Remainder

         when N_Op_Rem =>
            declare
               Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
               --  This is the maximum absolute value of the result. Note
               --  that the result range does not depend on the sign of the
               --  right operand.

            begin
               Lo := Uint_0;
               Hi := Uint_0;

               --  Case of left operand negative, which results in a range
               --  of -Maxabs .. 0 for those negative values. If there are
               --  no negative values then Lo value of result is always 0.

               if Llo < 0 then
                  Lo := -Maxabs;
               end if;

               --  Case of left operand positive

               if Lhi > 0 then
                  Hi := Maxabs;
               end if;
            end;

         --  Subtract

         when N_Op_Subtract =>
            Lo := Llo - Rhi;
            Hi := Lhi - Rlo;

         --  Nothing else should be possible

         when others =>
            raise Program_Error;
      end case;
   end Compute_Range_For_Arithmetic_Op;

   ----------------------------------
   -- Conditional_Statements_Begin --
   ----------------------------------

   procedure Conditional_Statements_Begin is
   begin
      Saved_Checks_TOS := Saved_Checks_TOS + 1;

      --  If stack overflows, kill all checks, that way we know to simply reset
      --  the number of saved checks to zero on return. This should never occur
      --  in practice.

      if Saved_Checks_TOS > Saved_Checks_Stack'Last then
         Kill_All_Checks;

      --  In the normal case, we just make a new stack entry saving the current
      --  number of saved checks for a later restore.

      else
         Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;

         if Debug_Flag_CC then
            w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
               Num_Saved_Checks);
         end if;
      end if;
   end Conditional_Statements_Begin;

   --------------------------------
   -- Conditional_Statements_End --
   --------------------------------

   procedure Conditional_Statements_End is
   begin
      pragma Assert (Saved_Checks_TOS > 0);

      --  If the saved checks stack overflowed, then we killed all checks, so
      --  setting the number of saved checks back to zero is correct. This
      --  should never occur in practice.

      if Saved_Checks_TOS > Saved_Checks_Stack'Last then
         Num_Saved_Checks := 0;

      --  In the normal case, restore the number of saved checks from the top
      --  stack entry.

      else
         Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);

         if Debug_Flag_CC then
            w ("Conditional_Statements_End: Num_Saved_Checks = ",
               Num_Saved_Checks);
         end if;
      end if;

      Saved_Checks_TOS := Saved_Checks_TOS - 1;
   end Conditional_Statements_End;

   -------------------------
   -- Convert_From_Bignum --
   -------------------------

   function Convert_From_Bignum (N : Node_Id) return Node_Id is
      Loc : constant Source_Ptr := Sloc (N);

   begin
      pragma Assert (Is_RTE (Etype (N), RE_Bignum));

      --  Construct call From Bignum

      return
        Make_Function_Call (Loc,
          Name                   =>
            New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
          Parameter_Associations => New_List (Relocate_Node (N)));
   end Convert_From_Bignum;

   -----------------------
   -- Convert_To_Bignum --
   -----------------------

   function Convert_To_Bignum (N : Node_Id) return Node_Id is
      Loc : constant Source_Ptr := Sloc (N);

   begin
      --  Nothing to do if Bignum already except call Relocate_Node

      if Is_RTE (Etype (N), RE_Bignum) then
         return Relocate_Node (N);

      --  Otherwise construct call to To_Bignum, converting the operand to the
      --  required Long_Long_Integer form.

      else
         pragma Assert (Is_Signed_Integer_Type (Etype (N)));
         return
           Make_Function_Call (Loc,
             Name                   =>
               New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
             Parameter_Associations => New_List (
               Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
      end if;
   end Convert_To_Bignum;

   ---------------------
   -- Determine_Range --
   ---------------------

   Cache_Size : constant := 2 ** 10;
   type Cache_Index is range 0 .. Cache_Size - 1;
   --  Determine size of below cache (power of 2 is more efficient)

   Determine_Range_Cache_N    : array (Cache_Index) of Node_Id;
   Determine_Range_Cache_O    : array (Cache_Index) of Node_Id;
   Determine_Range_Cache_V    : array (Cache_Index) of Boolean;
   Determine_Range_Cache_Lo   : array (Cache_Index) of Uint;
   Determine_Range_Cache_Hi   : array (Cache_Index) of Uint;
   Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
   Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
   --  The above arrays are used to implement a small direct cache for
   --  Determine_Range and Determine_Range_R calls. Because of the way these
   --  subprograms recursively traces subexpressions, and because overflow
   --  checking calls the routine on the way up the tree, a quadratic behavior
   --  can otherwise be encountered in large expressions. The cache entry for
   --  node N is stored in the (N mod Cache_Size) entry, and can be validated
   --  by checking the actual node value stored there. The Range_Cache_O array
   --  records the setting of Original_Node (N) so that the cache entry does
   --  not become stale when the node N is rewritten. The Range_Cache_V array
   --  records the setting of Assume_Valid for the cache entry.

   procedure Determine_Range
     (N            : Node_Id;
      OK           : out Boolean;
      Lo           : out Uint;
      Hi           : out Uint;
      Assume_Valid : Boolean := False)
   is
      Kind : constant Node_Kind := Nkind (N);
      --  Kind of node

      function Half_Address_Space return Uint;
      --  The size of half the total addressable memory space in storage units
      --  (minus one, so that the size fits in a signed integer whose size is
      --  System_Address_Size, which helps in various cases).

      ------------------------
      -- Half_Address_Space --
      ------------------------

      function Half_Address_Space return Uint is
      begin
         return Uint_2 ** (System_Address_Size - 1) - 1;
      end Half_Address_Space;

      --  Local variables

      Typ : Entity_Id := Etype (N);
      --  Type to use, may get reset to base type for possibly invalid entity

      Lo_Left : Uint := No_Uint;
      Hi_Left : Uint := No_Uint;
      --  Lo and Hi bounds of left operand

      Lo_Right : Uint := No_Uint;
      Hi_Right : Uint := No_Uint;
      --  Lo and Hi bounds of right (or only) operand

      Bound : Node_Id;
      --  Temp variable used to hold a bound node

      Hbound : Uint;
      --  High bound of base type of expression

      Lor : Uint;
      Hir : Uint;
      --  Refined values for low and high bounds, after tightening

      OK1 : Boolean;
      --  Used in lower level calls to indicate if call succeeded

      Cindex : Cache_Index;
      --  Used to search cache

      Btyp : Entity_Id;
      --  Base type

   --  Start of processing for Determine_Range

   begin
      --  Prevent junk warnings by initializing range variables

      Lo  := No_Uint;
      Hi  := No_Uint;
      Lor := No_Uint;
      Hir := No_Uint;

      --  For temporary constants internally generated to remove side effects
      --  we must use the corresponding expression to determine the range of
      --  the expression. But note that the expander can also generate
      --  constants in other cases, including deferred constants.

      if Is_Entity_Name (N)
        and then Nkind (Parent (Entity (N))) = N_Object_Declaration
        and then Ekind (Entity (N)) = E_Constant
        and then Is_Internal_Name (Chars (Entity (N)))
      then
         if Present (Expression (Parent (Entity (N)))) then
            Determine_Range
              (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);

         elsif Present (Full_View (Entity (N))) then
            Determine_Range
              (Expression (Parent (Full_View (Entity (N)))),
               OK, Lo, Hi, Assume_Valid);

         else
            OK := False;
         end if;
         return;
      end if;

      --  If type is not defined, we can't determine its range

      if No (Typ)

        --  We don't deal with anything except discrete types

        or else not Is_Discrete_Type (Typ)

        --  Don't deal with enumerated types with non-standard representation

        or else (Is_Enumeration_Type (Typ)
                   and then Present (Enum_Pos_To_Rep
                                       (Implementation_Base_Type (Typ))))

        --  Ignore type for which an error has been posted, since range in
        --  this case may well be a bogosity deriving from the error. Also
        --  ignore if error posted on the reference node.

        or else Error_Posted (N) or else Error_Posted (Typ)
      then
         OK := False;
         return;
      end if;

      --  For all other cases, we can determine the range

      OK := True;

      --  If value is compile time known, then the possible range is the one
      --  value that we know this expression definitely has.

      if Compile_Time_Known_Value (N) then
         Lo := Expr_Value (N);
         Hi := Lo;
         return;
      end if;

      --  Return if already in the cache

      Cindex := Cache_Index (N mod Cache_Size);

      if Determine_Range_Cache_N (Cindex) = N
           and then
         Determine_Range_Cache_O (Cindex) = Original_Node (N)
           and then
         Determine_Range_Cache_V (Cindex) = Assume_Valid
      then
         Lo := Determine_Range_Cache_Lo (Cindex);
         Hi := Determine_Range_Cache_Hi (Cindex);
         return;
      end if;

      --  Otherwise, start by finding the bounds of the type of the expression,
      --  the value cannot be outside this range (if it is, then we have an
      --  overflow situation, which is a separate check, we are talking here
      --  only about the expression value).

      --  First a check, never try to find the bounds of a generic type, since
      --  these bounds are always junk values, and it is only valid to look at
      --  the bounds in an instance.

      if Is_Generic_Type (Typ) then
         OK := False;
         return;
      end if;

      --  First step, change to use base type unless we know the value is valid

      if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
        or else Assume_No_Invalid_Values
        or else Assume_Valid
      then
         --  If this is a known valid constant with a nonstatic value, it may
         --  have inherited a narrower subtype from its initial value; use this
         --  saved subtype (see sem_ch3.adb).

         if Is_Entity_Name (N)
           and then Ekind (Entity (N)) = E_Constant
           and then Present (Actual_Subtype (Entity (N)))
         then
            Typ := Actual_Subtype (Entity (N));
         end if;

      else
         Typ := Underlying_Type (Base_Type (Typ));
      end if;

      --  Retrieve the base type. Handle the case where the base type is a
      --  private enumeration type.

      Btyp := Base_Type (Typ);

      if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
         Btyp := Full_View (Btyp);
      end if;

      --  We use the actual bound unless it is dynamic, in which case use the
      --  corresponding base type bound if possible. If we can't get a bound
      --  then we figure we can't determine the range (a peculiar case, that
      --  perhaps cannot happen, but there is no point in bombing in this
      --  optimization circuit).

      --  First the low bound

      Bound := Type_Low_Bound (Typ);

      if Compile_Time_Known_Value (Bound) then
         Lo := Expr_Value (Bound);

      elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
         Lo := Expr_Value (Type_Low_Bound (Btyp));

      else
         OK := False;
         return;
      end if;

      --  Now the high bound

      Bound := Type_High_Bound (Typ);

      --  We need the high bound of the base type later on, and this should
      --  always be compile time known. Again, it is not clear that this
      --  can ever be false, but no point in bombing.

      if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
         Hbound := Expr_Value (Type_High_Bound (Btyp));
         Hi := Hbound;

      else
         OK := False;
         return;
      end if;

      --  If we have a static subtype, then that may have a tighter bound so
      --  use the upper bound of the subtype instead in this case.

      if Compile_Time_Known_Value (Bound) then
         Hi := Expr_Value (Bound);
      end if;

      --  We may be able to refine this value in certain situations. If any
      --  refinement is possible, then Lor and Hir are set to possibly tighter
      --  bounds, and OK1 is set to True.

      case Kind is

         --  Unary operation case

         when N_Op_Abs
            | N_Op_Minus
            | N_Op_Plus
         =>
            Determine_Range
              (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);

            if OK1 then
               Compute_Range_For_Arithmetic_Op
                 (Kind, Lo_Left, Hi_Left, Lo_Right, Hi_Right, OK1, Lor, Hir);
            end if;

         --  Binary operation case

         when N_Op_Add
            | N_Op_Divide
            | N_Op_Expon
            | N_Op_Mod
            | N_Op_Multiply
            | N_Op_Rem
            | N_Op_Subtract
         =>
            Determine_Range
              (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);

            if OK1 then
               Determine_Range
                 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
            end if;

            if OK1 then
               Compute_Range_For_Arithmetic_Op
                 (Kind, Lo_Left, Hi_Left, Lo_Right, Hi_Right, OK1, Lor, Hir);
            end if;

         --  Attribute reference cases

         when N_Attribute_Reference =>
            case Get_Attribute_Id (Attribute_Name (N)) is

               --  For Min/Max attributes, we can refine the range using the
               --  possible range of values of the attribute expressions.

               when Attribute_Min
                  | Attribute_Max
               =>
                  Determine_Range
                    (First (Expressions (N)),
                     OK1, Lo_Left, Hi_Left, Assume_Valid);

                  if OK1 then
                     Determine_Range
                       (Next (First (Expressions (N))),
                        OK1, Lo_Right, Hi_Right, Assume_Valid);
                  end if;

                  if OK1 then
                     Lor := UI_Min (Lo_Left, Lo_Right);
                     Hir := UI_Max (Hi_Left, Hi_Right);
                  end if;

               --  For Pos/Val attributes, we can refine the range using the
               --  possible range of values of the attribute expression.

               when Attribute_Pos
                  | Attribute_Val
               =>
                  Determine_Range
                    (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);

               --  For Length and Range_Length attributes, use the bounds of
               --  the (corresponding index) type to refine the range.

               when Attribute_Length
                  | Attribute_Range_Length
               =>
                  declare
                     Ptyp : Entity_Id;
                     Ityp : Entity_Id;

                     LL, LU : Uint;
                     UL, UU : Uint;

                  begin
                     Ptyp := Etype (Prefix (N));
                     if Is_Access_Type (Ptyp) then
                        Ptyp := Designated_Type (Ptyp);
                     end if;

                     --  For string literal, we know exact value

                     if Ekind (Ptyp) = E_String_Literal_Subtype then
                        OK := True;
                        Lo := String_Literal_Length (Ptyp);
                        Hi := String_Literal_Length (Ptyp);
                        return;
                     end if;

                     if Is_Array_Type (Ptyp) then
                        Ityp := Get_Index_Subtype (N);
                     else
                        Ityp := Ptyp;
                     end if;

                     --  If the (index) type is a formal type or derived from
                     --  one, the bounds are not static.

                     if Is_Generic_Type (Root_Type (Ityp)) then
                        OK := False;
                        return;
                     end if;

                     Determine_Range
                       (Type_Low_Bound (Ityp), OK1, LL, LU, Assume_Valid);

                     if OK1 then
                        Determine_Range
                          (Type_High_Bound (Ityp), OK1, UL, UU, Assume_Valid);

                        if OK1 then
                           --  The maximum value for Length is the biggest
                           --  possible gap between the values of the bounds.
                           --  But of course, this value cannot be negative.

                           Hir := UI_Max (Uint_0, UU - LL + 1);

                           --  For a constrained array, the minimum value for
                           --  Length is taken from the actual value of the
                           --  bounds, since the index will be exactly of this
                           --  subtype.

                           if Is_Constrained (Ptyp) then
                              Lor := UI_Max (Uint_0, UL - LU + 1);

                           --  For an unconstrained array, the minimum value
                           --  for length is always zero.

                           else
                              Lor := Uint_0;
                           end if;
                        end if;
                     end if;

                     --  Small optimization: the maximum size in storage units
                     --  an object can have with GNAT is half of the address
                     --  space, so we can bound the length of an array declared
                     --  in Interfaces (or its children) because its component
                     --  size is at least the storage unit and it is meant to
                     --  be used to interface actual array objects.

                     if Is_Array_Type (Ptyp) then
                        declare
                           S : constant Entity_Id := Scope (Base_Type (Ptyp));
                        begin
                           if Is_RTU (S, Interfaces)
                             or else (S /= Standard_Standard
                                       and then Is_RTU (Scope (S), Interfaces))
                           then
                              Hir := UI_Min (Hir, Half_Address_Space);
                           end if;
                        end;
                     end if;
                  end;

               --  The maximum default alignment is quite low, but GNAT accepts
               --  alignment clauses that are fairly large, but not as large as
               --  the maximum size of objects, see below.

               when Attribute_Alignment =>
                  Lor := Uint_0;
                  Hir := Half_Address_Space;
                  OK1 := True;

               --  The attribute should have been folded if a component clause
               --  was specified, so we assume there is none.

               when Attribute_Bit
                  | Attribute_First_Bit
               =>
                  Lor := Uint_0;
                  Hir := UI_From_Int (System_Storage_Unit - 1);
                  OK1 := True;

               --  Likewise about the component clause. Note that Last_Bit
               --  yields -1 for a field of size 0 if First_Bit is 0.

               when Attribute_Last_Bit =>
                  Lor := Uint_Minus_1;
                  Hir := Hi;
                  OK1 := True;

               --  Likewise about the component clause for Position. The
               --  maximum size in storage units that an object can have
               --  with GNAT is half of the address space.

               when Attribute_Max_Size_In_Storage_Elements
                  | Attribute_Position
               =>
                  Lor := Uint_0;
                  Hir := Half_Address_Space;
                  OK1 := True;

               --  These attributes yield a nonnegative value (we do not set
               --  the maximum value because it is too large to be useful).

               when Attribute_Bit_Position
                  | Attribute_Component_Size
                  | Attribute_Object_Size
                  | Attribute_Size
                  | Attribute_Value_Size
               =>
                  Lor := Uint_0;
                  Hir := Hi;
                  OK1 := True;

               --  The maximum size is the sum of twice the size of the largest
               --  integer for every dimension, rounded up to the next multiple
               --  of the maximum alignment, but we add instead of rounding.

               when Attribute_Descriptor_Size =>
                  declare
                     Max_Align : constant Pos :=
                                   Maximum_Alignment * System_Storage_Unit;
                     Max_Size  : constant Uint :=
                                   2 * Esize (Universal_Integer);
                     Ndims     : constant Pos :=
                                   Number_Dimensions (Etype (Prefix (N)));
                  begin
                     Lor := Uint_0;
                     Hir := Max_Size * Ndims + Max_Align;
                     OK1 := True;
                  end;

               --  No special handling for other attributes for now

               when others =>
                  OK1 := False;

            end case;

         when N_Type_Conversion =>
            --  For a type conversion, we can try to refine the range using the
            --  converted value.

            Determine_Range_To_Discrete
              (Expression (N), OK1, Lor, Hir, Conversion_OK (N), Assume_Valid);

         --  Nothing special to do for all other expression kinds

         when others =>
            OK1 := False;
            Lor := No_Uint;
            Hir := No_Uint;
      end case;

      --  At this stage, if OK1 is true, then we know that the actual result of
      --  the computed expression is in the range Lor .. Hir. We can use this
      --  to restrict the possible range of results.

      if OK1 then

         --  If the refined value of the low bound is greater than the type
         --  low bound, then reset it to the more restrictive value. However,
         --  we do NOT do this for the case of a modular type where the
         --  possible upper bound on the value is above the base type high
         --  bound, because that means the result could wrap.
         --  Same applies for the lower bound if it is negative.

         if Is_Modular_Integer_Type (Typ) then
            if Lor > Lo and then Hir <= Hbound then
               Lo := Lor;
            end if;

            if Hir < Hi and then Lor >= Uint_0 then
               Hi := Hir;
            end if;

         else
            if Lor > Hi or else Hir < Lo then

               --  If the ranges are disjoint, return the computed range.

               --  The current range-constraining logic would require returning
               --  the base type's bounds. However, this would miss an
               --  opportunity to warn about out-of-range values for some cases
               --  (e.g. when type's upper bound is equal to base type upper
               --  bound).

               --  The alternative of always returning the computed values,
               --  even when ranges are intersecting, has unwanted effects
               --  (mainly useless constraint checks are inserted) in the
               --  Enable_Overflow_Check and Apply_Scalar_Range_Check as these
               --  bounds have a special interpretation.

               Lo := Lor;
               Hi := Hir;
            else

               --  If the ranges Lor .. Hir and Lo .. Hi intersect, try to
               --  refine the returned range.

               if Lor > Lo then
                  Lo := Lor;
               end if;

               if Hir < Hi then
                  Hi := Hir;
               end if;
            end if;
         end if;
      end if;

      --  Set cache entry for future call and we are all done

      Determine_Range_Cache_N  (Cindex) := N;
      Determine_Range_Cache_O  (Cindex) := Original_Node (N);
      Determine_Range_Cache_V  (Cindex) := Assume_Valid;
      Determine_Range_Cache_Lo (Cindex) := Lo;
      Determine_Range_Cache_Hi (Cindex) := Hi;
      return;

   --  If any exception occurs, it means that we have some bug in the compiler,
   --  possibly triggered by a previous error, or by some unforeseen peculiar
   --  occurrence. However, this is only an optimization attempt, so there is
   --  really no point in crashing the compiler. Instead we just decide, too
   --  bad, we can't figure out a range in this case after all.

   exception
      when others =>

         --  Debug flag K disables this behavior (useful for debugging)

         if Debug_Flag_K then
            raise;
         else
            OK := False;
            Lo := No_Uint;
            Hi := No_Uint;
            return;
         end if;
   end Determine_Range;

   -----------------------
   -- Determine_Range_R --
   -----------------------

   procedure Determine_Range_R
     (N            : Node_Id;
      OK           : out Boolean;
      Lo           : out Ureal;
      Hi           : out Ureal;
      Assume_Valid : Boolean := False)
   is
      Typ : Entity_Id := Etype (N);
      --  Type to use, may get reset to base type for possibly invalid entity

      Lo_Left : Ureal;
      Hi_Left : Ureal;
      --  Lo and Hi bounds of left operand

      Lo_Right : Ureal := No_Ureal;
      Hi_Right : Ureal := No_Ureal;
      --  Lo and Hi bounds of right (or only) operand

      Bound : Node_Id;
      --  Temp variable used to hold a bound node

      Hbound : Ureal;
      --  High bound of base type of expression

      Lor : Ureal;
      Hir : Ureal;
      --  Refined values for low and high bounds, after tightening

      OK1 : Boolean;
      --  Used in lower level calls to indicate if call succeeded

      Cindex : Cache_Index;
      --  Used to search cache

      Btyp : Entity_Id;
      --  Base type

      function OK_Operands return Boolean;
      --  Used for binary operators. Determines the ranges of the left and
      --  right operands, and if they are both OK, returns True, and puts
      --  the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.

      function Round_Machine (B : Ureal) return Ureal;
      --  B is a real bound. Round it to the nearest machine number.

      -----------------
      -- OK_Operands --
      -----------------

      function OK_Operands return Boolean is
      begin
         Determine_Range_R
           (Left_Opnd  (N), OK1, Lo_Left,  Hi_Left, Assume_Valid);

         if not OK1 then
            return False;
         end if;

         Determine_Range_R
           (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
         return OK1;
      end OK_Operands;

      -------------------
      -- Round_Machine --
      -------------------

      function Round_Machine (B : Ureal) return Ureal is
      begin
         return Machine_Number (Typ, B, N);
      end Round_Machine;

   --  Start of processing for Determine_Range_R

   begin
      --  Prevent junk warnings by initializing range variables

      Lo  := No_Ureal;
      Hi  := No_Ureal;
      Lor := No_Ureal;
      Hir := No_Ureal;

      --  For temporary constants internally generated to remove side effects
      --  we must use the corresponding expression to determine the range of
      --  the expression. But note that the expander can also generate
      --  constants in other cases, including deferred constants.

      if Is_Entity_Name (N)
        and then Nkind (Parent (Entity (N))) = N_Object_Declaration
        and then Ekind (Entity (N)) = E_Constant
        and then Is_Internal_Name (Chars (Entity (N)))
      then
         if Present (Expression (Parent (Entity (N)))) then
            Determine_Range_R
              (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);

         elsif Present (Full_View (Entity (N))) then
            Determine_Range_R
              (Expression (Parent (Full_View (Entity (N)))),
               OK, Lo, Hi, Assume_Valid);

         else
            OK := False;
         end if;

         return;
      end if;

      --  If type is not defined, we can't determine its range

      pragma Warnings (Off, "condition can only be True if invalid");
      --  Otherwise the compiler warns on the check of Float_Rep below, because
      --  there is only one value (see types.ads).

      if No (Typ)

        --  We don't deal with anything except IEEE floating-point types

        or else not Is_Floating_Point_Type (Typ)
        or else Float_Rep (Typ) /= IEEE_Binary

        --  Ignore type for which an error has been posted, since range in
        --  this case may well be a bogosity deriving from the error. Also
        --  ignore if error posted on the reference node.

        or else Error_Posted (N) or else Error_Posted (Typ)
      then
         pragma Warnings (On, "condition can only be True if invalid");
         OK := False;
         return;
      end if;

      --  For all other cases, we can determine the range

      OK := True;

      --  If value is compile time known, then the possible range is the one
      --  value that we know this expression definitely has.

      if Compile_Time_Known_Value (N) then
         Lo := Expr_Value_R (N);
         Hi := Lo;
         return;
      end if;

      --  Return if already in the cache

      Cindex := Cache_Index (N mod Cache_Size);

      if Determine_Range_Cache_N (Cindex) = N
           and then
         Determine_Range_Cache_O (Cindex) = Original_Node (N)
           and then
         Determine_Range_Cache_V (Cindex) = Assume_Valid
      then
         Lo := Determine_Range_Cache_Lo_R (Cindex);
         Hi := Determine_Range_Cache_Hi_R (Cindex);
         return;
      end if;

      --  Otherwise, start by finding the bounds of the type of the expression,
      --  the value cannot be outside this range (if it is, then we have an
      --  overflow situation, which is a separate check, we are talking here
      --  only about the expression value).

      --  First a check, never try to find the bounds of a generic type, since
      --  these bounds are always junk values, and it is only valid to look at
      --  the bounds in an instance.

      if Is_Generic_Type (Typ) then
         OK := False;
         return;
      end if;

      --  First step, change to use base type unless we know the value is valid

      if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
        or else Assume_No_Invalid_Values
        or else Assume_Valid
      then
         null;
      else
         Typ := Underlying_Type (Base_Type (Typ));
      end if;

      --  Retrieve the base type. Handle the case where the base type is a
      --  private type.

      Btyp := Base_Type (Typ);

      if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
         Btyp := Full_View (Btyp);
      end if;

      --  We use the actual bound unless it is dynamic, in which case use the
      --  corresponding base type bound if possible. If we can't get a bound
      --  then we figure we can't determine the range (a peculiar case, that
      --  perhaps cannot happen, but there is no point in bombing in this
      --  optimization circuit).

      --  First the low bound

      Bound := Type_Low_Bound (Typ);

      if Compile_Time_Known_Value (Bound) then
         Lo := Expr_Value_R (Bound);

      elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
         Lo := Expr_Value_R (Type_Low_Bound (Btyp));

      else
         OK := False;
         return;
      end if;

      --  Now the high bound

      Bound := Type_High_Bound (Typ);

      --  We need the high bound of the base type later on, and this should
      --  always be compile time known. Again, it is not clear that this
      --  can ever be false, but no point in bombing.

      if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
         Hbound := Expr_Value_R (Type_High_Bound (Btyp));
         Hi := Hbound;

      else
         OK := False;
         return;
      end if;

      --  If we have a static subtype, then that may have a tighter bound so
      --  use the upper bound of the subtype instead in this case.

      if Compile_Time_Known_Value (Bound) then
         Hi := Expr_Value_R (Bound);
      end if;

      --  We may be able to refine this value in certain situations. If any
      --  refinement is possible, then Lor and Hir are set to possibly tighter
      --  bounds, and OK1 is set to True.

      case Nkind (N) is

         --  For unary plus, result is limited by range of operand

         when N_Op_Plus =>
            Determine_Range_R
              (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);

         --  For unary minus, determine range of operand, and negate it

         when N_Op_Minus =>
            Determine_Range_R
              (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);

            if OK1 then
               Lor := -Hi_Right;
               Hir := -Lo_Right;
            end if;

         --  For binary addition, get range of each operand and do the
         --  addition to get the result range.

         when N_Op_Add =>
            if OK_Operands then
               Lor := Round_Machine (Lo_Left + Lo_Right);
               Hir := Round_Machine (Hi_Left + Hi_Right);
            end if;

         --  For binary subtraction, get range of each operand and do the worst
         --  case subtraction to get the result range.

         when N_Op_Subtract =>
            if OK_Operands then
               Lor := Round_Machine (Lo_Left - Hi_Right);
               Hir := Round_Machine (Hi_Left - Lo_Right);
            end if;

         --  For multiplication, get range of each operand and do the
         --  four multiplications to get the result range.

         when N_Op_Multiply =>
            if OK_Operands then
               declare
                  M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
                  M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
                  M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
                  M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);

               begin
                  Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
                  Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
               end;
            end if;

         --  For division, consider separately the cases where the right
         --  operand is positive or negative. Otherwise, the right operand
         --  can be arbitrarily close to zero, so the result is likely to
         --  be unbounded in one direction, do not attempt to compute it.

         when N_Op_Divide =>
            if OK_Operands then

               --  Right operand is positive

               if Lo_Right > Ureal_0 then

                  --  If the low bound of the left operand is negative, obtain
                  --  the overall low bound by dividing it by the smallest
                  --  value of the right operand, and otherwise by the largest
                  --  value of the right operand.

                  if Lo_Left < Ureal_0 then
                     Lor := Round_Machine (Lo_Left / Lo_Right);
                  else
                     Lor := Round_Machine (Lo_Left / Hi_Right);
                  end if;

                  --  If the high bound of the left operand is negative, obtain
                  --  the overall high bound by dividing it by the largest
                  --  value of the right operand, and otherwise by the
                  --  smallest value of the right operand.

                  if Hi_Left < Ureal_0 then
                     Hir := Round_Machine (Hi_Left / Hi_Right);
                  else
                     Hir := Round_Machine (Hi_Left / Lo_Right);
                  end if;

               --  Right operand is negative

               elsif Hi_Right < Ureal_0 then

                  --  If the low bound of the left operand is negative, obtain
                  --  the overall low bound by dividing it by the largest
                  --  value of the right operand, and otherwise by the smallest
                  --  value of the right operand.

                  if Lo_Left < Ureal_0 then
                     Lor := Round_Machine (Lo_Left / Hi_Right);
                  else
                     Lor := Round_Machine (Lo_Left / Lo_Right);
                  end if;

                  --  If the high bound of the left operand is negative, obtain
                  --  the overall high bound by dividing it by the smallest
                  --  value of the right operand, and otherwise by the
                  --  largest value of the right operand.

                  if Hi_Left < Ureal_0 then
                     Hir := Round_Machine (Hi_Left / Lo_Right);
                  else
                     Hir := Round_Machine (Hi_Left / Hi_Right);
                  end if;

               else
                  OK1 := False;
               end if;
            end if;

         when N_Type_Conversion =>

            --  For type conversion from one floating-point type to another, we
            --  can refine the range using the converted value.

            if Is_Floating_Point_Type (Etype (Expression (N))) then
               Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);

            --  When converting an integer to a floating-point type, determine
            --  the range in integer first, and then convert the bounds.

            elsif Is_Discrete_Type (Etype (Expression (N))) then
               declare
                  Hir_Int : Uint;
                  Lor_Int : Uint;

               begin
                  Determine_Range
                    (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);

                  if OK1 then
                     Lor := Round_Machine (UR_From_Uint (Lor_Int));
                     Hir := Round_Machine (UR_From_Uint (Hir_Int));
                  end if;
               end;

            else
               OK1 := False;
            end if;

         --  Nothing special to do for all other expression kinds

         when others =>
            OK1 := False;
            Lor := No_Ureal;
            Hir := No_Ureal;
      end case;

      --  At this stage, if OK1 is true, then we know that the actual result of
      --  the computed expression is in the range Lor .. Hir. We can use this
      --  to restrict the possible range of results.

      if OK1 then

         --  If the refined value of the low bound is greater than the type
         --  low bound, then reset it to the more restrictive value.

         if Lor > Lo then
            Lo := Lor;
         end if;

         --  Similarly, if the refined value of the high bound is less than the
         --  value so far, then reset it to the more restrictive value.

         if Hir < Hi then
            Hi := Hir;
         end if;
      end if;

      --  Set cache entry for future call and we are all done

      Determine_Range_Cache_N    (Cindex) := N;
      Determine_Range_Cache_O    (Cindex) := Original_Node (N);
      Determine_Range_Cache_V    (Cindex) := Assume_Valid;
      Determine_Range_Cache_Lo_R (Cindex) := Lo;
      Determine_Range_Cache_Hi_R (Cindex) := Hi;
      return;

   --  If any exception occurs, it means that we have some bug in the compiler,
   --  possibly triggered by a previous error, or by some unforeseen peculiar
   --  occurrence. However, this is only an optimization attempt, so there is
   --  really no point in crashing the compiler. Instead we just decide, too
   --  bad, we can't figure out a range in this case after all.

   exception
      when others =>

         --  Debug flag K disables this behavior (useful for debugging)

         if Debug_Flag_K then
            raise;
         else
            OK := False;
            Lo := No_Ureal;
            Hi := No_Ureal;
            return;
         end if;
   end Determine_Range_R;

   ---------------------------------
   -- Determine_Range_To_Discrete --
   ---------------------------------

   procedure Determine_Range_To_Discrete
     (N            : Node_Id;
      OK           : out Boolean;
      Lo           : out Uint;
      Hi           : out Uint;
      Fixed_Int    : Boolean := False;
      Assume_Valid : Boolean := False)
   is
      Typ : constant Entity_Id := Etype (N);

   begin
      --  For a discrete type, simply defer to Determine_Range

      if Is_Discrete_Type (Typ) then
         Determine_Range (N, OK, Lo, Hi, Assume_Valid);

      --  For a fixed point type treated as an integer, we can determine the
      --  range using the Corresponding_Integer_Value of the bounds of the
      --  type or base type. This is done by the calls to Expr_Value below.

      elsif Is_Fixed_Point_Type (Typ) and then Fixed_Int then
         declare
            Btyp, Ftyp : Entity_Id;
            Bound      : Node_Id;

         begin
            if Assume_Valid then
               Ftyp := Typ;
            else
               Ftyp := Underlying_Type (Base_Type (Typ));
            end if;

            Btyp := Base_Type (Ftyp);

            --  First the low bound

            Bound := Type_Low_Bound (Ftyp);

            if Compile_Time_Known_Value (Bound) then
               Lo := Expr_Value (Bound);
            else
               Lo := Expr_Value (Type_Low_Bound (Btyp));
            end if;

            --  Then the high bound

            Bound := Type_High_Bound (Ftyp);

            if Compile_Time_Known_Value (Bound) then
               Hi := Expr_Value (Bound);
            else
               Hi := Expr_Value (Type_High_Bound (Btyp));
            end if;

            OK := True;
         end;

      --  For a floating-point type, we can determine the range in real first,
      --  and then convert the bounds using UR_To_Uint, which correctly rounds
      --  away from zero when half way between two integers, as required by
      --  normal Ada 95 rounding semantics. But this is only possible because
      --  GNATprove's analysis rules out the possibility of a NaN or infinite.

      elsif GNATprove_Mode and then Is_Floating_Point_Type (Typ) then
         declare
            Lo_Real, Hi_Real : Ureal;

         begin
            Determine_Range_R (N, OK, Lo_Real, Hi_Real, Assume_Valid);

            if OK then
               Lo := UR_To_Uint (Lo_Real);
               Hi := UR_To_Uint (Hi_Real);
            else
               Lo := No_Uint;
               Hi := No_Uint;
            end if;
         end;

      else
         Lo := No_Uint;
         Hi := No_Uint;
         OK := False;
      end if;
   end Determine_Range_To_Discrete;

   ------------------------------------
   -- Discriminant_Checks_Suppressed --
   ------------------------------------

   function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) then
         if Is_Unchecked_Union (E) then
            return True;
         elsif Checks_May_Be_Suppressed (E) then
            return Is_Check_Suppressed (E, Discriminant_Check);
         end if;
      end if;

      return Scope_Suppress.Suppress (Discriminant_Check);
   end Discriminant_Checks_Suppressed;

   --------------------------------
   -- Division_Checks_Suppressed --
   --------------------------------

   function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Division_Check);
      else
         return Scope_Suppress.Suppress (Division_Check);
      end if;
   end Division_Checks_Suppressed;

   --------------------------------------
   -- Duplicated_Tag_Checks_Suppressed --
   --------------------------------------

   function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Duplicated_Tag_Check);
      else
         return Scope_Suppress.Suppress (Duplicated_Tag_Check);
      end if;
   end Duplicated_Tag_Checks_Suppressed;

   -----------------------------------
   -- Elaboration_Checks_Suppressed --
   -----------------------------------

   function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      --  The complication in this routine is that if we are in the dynamic
      --  model of elaboration, we also check All_Checks, since All_Checks
      --  does not set Elaboration_Check explicitly.

      if Present (E) then
         if Kill_Elaboration_Checks (E) then
            return True;

         elsif Checks_May_Be_Suppressed (E) then
            if Is_Check_Suppressed (E, Elaboration_Check) then
               return True;

            elsif Dynamic_Elaboration_Checks then
               return Is_Check_Suppressed (E, All_Checks);

            else
               return False;
            end if;
         end if;
      end if;

      if Scope_Suppress.Suppress (Elaboration_Check) then
         return True;

      elsif Dynamic_Elaboration_Checks then
         return Scope_Suppress.Suppress (All_Checks);

      else
         return False;
      end if;
   end Elaboration_Checks_Suppressed;

   ---------------------------
   -- Enable_Overflow_Check --
   ---------------------------

   procedure Enable_Overflow_Check (N : Node_Id) is
      Typ  : constant Entity_Id          := Base_Type (Etype (N));
      Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
      Chk  : Nat;
      OK   : Boolean;
      Ent  : Entity_Id;
      Ofs  : Uint;
      Lo   : Uint;
      Hi   : Uint;

      Do_Ovflow_Check : Boolean;

   begin
      if Debug_Flag_CC then
         w ("Enable_Overflow_Check for node ", Int (N));
         Write_Str ("  Source location = ");
         wl (Sloc (N));
         pg (Union_Id (N));
      end if;

      --  No check if overflow checks suppressed for type of node

      if Overflow_Checks_Suppressed (Etype (N)) then
         return;

      --  Nothing to do for unsigned integer types, which do not overflow

      elsif Is_Modular_Integer_Type (Typ) then
         return;
      end if;

      --  This is the point at which processing for STRICT mode diverges
      --  from processing for MINIMIZED/ELIMINATED modes. This divergence is
      --  probably more extreme that it needs to be, but what is going on here
      --  is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
      --  to leave the processing for STRICT mode untouched. There were
      --  two reasons for this. First it avoided any incompatible change of
      --  behavior. Second, it guaranteed that STRICT mode continued to be
      --  legacy reliable.

      --  The big difference is that in STRICT mode there is a fair amount of
      --  circuitry to try to avoid setting the Do_Overflow_Check flag if we
      --  know that no check is needed. We skip all that in the two new modes,
      --  since really overflow checking happens over a whole subtree, and we
      --  do the corresponding optimizations later on when applying the checks.

      if Mode in Minimized_Or_Eliminated then
         if not (Overflow_Checks_Suppressed (Etype (N)))
           and then not (Is_Entity_Name (N)
                          and then Overflow_Checks_Suppressed (Entity (N)))
         then
            Activate_Overflow_Check (N);
         end if;

         if Debug_Flag_CC then
            w ("Minimized/Eliminated mode");
         end if;

         return;
      end if;

      --  Remainder of processing is for STRICT case, and is unchanged from
      --  earlier versions preceding the addition of MINIMIZED/ELIMINATED.

      --  Nothing to do if the range of the result is known OK. We skip this
      --  for conversions, since the caller already did the check, and in any
      --  case the condition for deleting the check for a type conversion is
      --  different.

      if Nkind (N) /= N_Type_Conversion then
         Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);

         --  Note in the test below that we assume that the range is not OK
         --  if a bound of the range is equal to that of the type. That's not
         --  quite accurate but we do this for the following reasons:

         --   a) The way that Determine_Range works, it will typically report
         --      the bounds of the value as being equal to the bounds of the
         --      type, because it either can't tell anything more precise, or
         --      does not think it is worth the effort to be more precise.

         --   b) It is very unusual to have a situation in which this would
         --      generate an unnecessary overflow check (an example would be
         --      a subtype with a range 0 .. Integer'Last - 1 to which the
         --      literal value one is added).

         --   c) The alternative is a lot of special casing in this routine
         --      which would partially duplicate Determine_Range processing.

         if OK then
            Do_Ovflow_Check := True;

            --  Note that the following checks are quite deliberately > and <
            --  rather than >= and <= as explained above.

            if  Lo > Expr_Value (Type_Low_Bound  (Typ))
                  and then
                Hi < Expr_Value (Type_High_Bound (Typ))
            then
               Do_Ovflow_Check := False;

            --  Despite the comments above, it is worth dealing specially with
            --  division. The only case where integer division can overflow is
            --  (largest negative number) / (-1). So we will do an extra range
            --  analysis to see if this is possible.

            elsif Nkind (N) = N_Op_Divide then
               Determine_Range
                 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);

               if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
                  Do_Ovflow_Check := False;

               else
                  Determine_Range
                    (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);

                  if OK and then (Lo > Uint_Minus_1
                                    or else
                                  Hi < Uint_Minus_1)
                  then
                     Do_Ovflow_Check := False;
                  end if;
               end if;

            --  Likewise for Abs/Minus, the only case where the operation can
            --  overflow is when the operand is the largest negative number.

            elsif Nkind (N) in N_Op_Abs | N_Op_Minus then
               Determine_Range
                 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);

               if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
                  Do_Ovflow_Check := False;
               end if;
            end if;

            --  If no overflow check required, we are done

            if not Do_Ovflow_Check then
               if Debug_Flag_CC then
                  w ("No overflow check required");
               end if;

               return;
            end if;
         end if;
      end if;

      --  If not in optimizing mode, set flag and we are done. We are also done
      --  (and just set the flag) if the type is not a discrete type, since it
      --  is not worth the effort to eliminate checks for other than discrete
      --  types. In addition, we take this same path if we have stored the
      --  maximum number of checks possible already (a very unlikely situation,
      --  but we do not want to blow up).

      if Optimization_Level = 0
        or else not Is_Discrete_Type (Etype (N))
        or else Num_Saved_Checks = Saved_Checks'Last
      then
         Activate_Overflow_Check (N);

         if Debug_Flag_CC then
            w ("Optimization off");
         end if;

         return;
      end if;

      --  Otherwise evaluate and check the expression

      Find_Check
        (Expr        => N,
         Check_Type  => 'O',
         Target_Type => Empty,
         Entry_OK    => OK,
         Check_Num   => Chk,
         Ent         => Ent,
         Ofs         => Ofs);

      if Debug_Flag_CC then
         w ("Called Find_Check");
         w ("  OK = ", OK);

         if OK then
            w ("  Check_Num = ", Chk);
            w ("  Ent       = ", Int (Ent));
            Write_Str ("  Ofs       = ");
            pid (Ofs);
         end if;
      end if;

      --  If check is not of form to optimize, then set flag and we are done

      if not OK then
         Activate_Overflow_Check (N);
         return;
      end if;

      --  If check is already performed, then return without setting flag

      if Chk /= 0 then
         if Debug_Flag_CC then
            w ("Check suppressed!");
         end if;

         return;
      end if;

      --  Here we will make a new entry for the new check

      Activate_Overflow_Check (N);
      Num_Saved_Checks := Num_Saved_Checks + 1;
      Saved_Checks (Num_Saved_Checks) :=
        (Killed      => False,
         Entity      => Ent,
         Offset      => Ofs,
         Check_Type  => 'O',
         Target_Type => Empty);

      if Debug_Flag_CC then
         w ("Make new entry, check number = ", Num_Saved_Checks);
         w ("  Entity = ", Int (Ent));
         Write_Str ("  Offset = ");
         pid (Ofs);
         w ("  Check_Type = O");
         w ("  Target_Type = Empty");
      end if;

   --  If we get an exception, then something went wrong, probably because of
   --  an error in the structure of the tree due to an incorrect program. Or
   --  it may be a bug in the optimization circuit. In either case the safest
   --  thing is simply to set the check flag unconditionally.

   exception
      when others =>
         Activate_Overflow_Check (N);

         if Debug_Flag_CC then
            w ("  exception occurred, overflow flag set");
         end if;

         return;
   end Enable_Overflow_Check;

   ------------------------
   -- Enable_Range_Check --
   ------------------------

   procedure Enable_Range_Check (N : Node_Id) is
      Chk  : Nat;
      OK   : Boolean;
      Ent  : Entity_Id;
      Ofs  : Uint;
      Ttyp : Entity_Id;
      P    : Node_Id;

   begin
      --  Return if unchecked type conversion with range check killed. In this
      --  case we never set the flag (that's what Kill_Range_Check is about).

      if Nkind (N) = N_Unchecked_Type_Conversion
        and then Kill_Range_Check (N)
      then
         return;
      end if;

      --  Do not set range check flag if parent is assignment statement or
      --  object declaration with Suppress_Assignment_Checks flag set.

      if Nkind (Parent (N)) in N_Assignment_Statement | N_Object_Declaration
        and then Suppress_Assignment_Checks (Parent (N))
      then
         return;
      end if;

      --  Check for various cases where we should suppress the range check

      --  No check if range checks suppressed for type of node

      if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
         return;

      --  No check if node is an entity name, and range checks are suppressed
      --  for this entity, or for the type of this entity.

      elsif Is_Entity_Name (N)
        and then (Range_Checks_Suppressed (Entity (N))
                   or else Range_Checks_Suppressed (Etype (Entity (N))))
      then
         return;

      --  No checks if index of array, and index checks are suppressed for
      --  the array object or the type of the array.

      elsif Nkind (Parent (N)) = N_Indexed_Component then
         declare
            Pref : constant Node_Id := Prefix (Parent (N));
         begin
            if Is_Entity_Name (Pref)
              and then Index_Checks_Suppressed (Entity (Pref))
            then
               return;
            elsif Index_Checks_Suppressed (Etype (Pref)) then
               return;
            end if;
         end;
      end if;

      --  Debug trace output

      if Debug_Flag_CC then
         w ("Enable_Range_Check for node ", Int (N));
         Write_Str ("  Source location = ");
         wl (Sloc (N));
         pg (Union_Id (N));
      end if;

      --  If not in optimizing mode, set flag and we are done. We are also done
      --  (and just set the flag) if the type is not a discrete type, since it
      --  is not worth the effort to eliminate checks for other than discrete
      --  types. In addition, we take this same path if we have stored the
      --  maximum number of checks possible already (a very unlikely situation,
      --  but we do not want to blow up).

      if Optimization_Level = 0
        or else No (Etype (N))
        or else not Is_Discrete_Type (Etype (N))
        or else Num_Saved_Checks = Saved_Checks'Last
      then
         Activate_Range_Check (N);

         if Debug_Flag_CC then
            w ("Optimization off");
         end if;

         return;
      end if;

      --  Otherwise find out the target type

      P := Parent (N);

      --  For assignment, use left side subtype

      if Nkind (P) = N_Assignment_Statement
        and then Expression (P) = N
      then
         Ttyp := Etype (Name (P));

      --  For indexed component, use subscript subtype

      elsif Nkind (P) = N_Indexed_Component then
         declare
            Atyp : Entity_Id;
            Indx : Node_Id;
            Subs : Node_Id;

         begin
            Atyp := Etype (Prefix (P));

            if Is_Access_Type (Atyp) then
               Atyp := Designated_Type (Atyp);

               --  If the prefix is an access to an unconstrained array,
               --  perform check unconditionally: it depends on the bounds of
               --  an object and we cannot currently recognize whether the test
               --  may be redundant.

               if not Is_Constrained (Atyp) then
                  Activate_Range_Check (N);
                  return;
               end if;

            --  Ditto if prefix is simply an unconstrained array. We used
            --  to think this case was OK, if the prefix was not an explicit
            --  dereference, but we have now seen a case where this is not
            --  true, so it is safer to just suppress the optimization in this
            --  case. The back end is getting better at eliminating redundant
            --  checks in any case, so the loss won't be important.

            elsif Is_Array_Type (Atyp)
              and then not Is_Constrained (Atyp)
            then
               Activate_Range_Check (N);
               return;
            end if;

            Indx := First_Index (Atyp);
            Subs := First (Expressions (P));
            loop
               if Subs = N then
                  Ttyp := Etype (Indx);
                  exit;
               end if;

               Next_Index (Indx);
               Next (Subs);
            end loop;
         end;

      --  For now, ignore all other cases, they are not so interesting

      else
         if Debug_Flag_CC then
            w ("  target type not found, flag set");
         end if;

         Activate_Range_Check (N);
         return;
      end if;

      --  Evaluate and check the expression

      Find_Check
        (Expr        => N,
         Check_Type  => 'R',
         Target_Type => Ttyp,
         Entry_OK    => OK,
         Check_Num   => Chk,
         Ent         => Ent,
         Ofs         => Ofs);

      if Debug_Flag_CC then
         w ("Called Find_Check");
         w ("Target_Typ = ", Int (Ttyp));
         w ("  OK = ", OK);

         if OK then
            w ("  Check_Num = ", Chk);
            w ("  Ent       = ", Int (Ent));
            Write_Str ("  Ofs       = ");
            pid (Ofs);
         end if;
      end if;

      --  If check is not of form to optimize, then set flag and we are done

      if not OK then
         if Debug_Flag_CC then
            w ("  expression not of optimizable type, flag set");
         end if;

         Activate_Range_Check (N);
         return;
      end if;

      --  If check is already performed, then return without setting flag

      if Chk /= 0 then
         if Debug_Flag_CC then
            w ("Check suppressed!");
         end if;

         return;
      end if;

      --  Here we will make a new entry for the new check

      Activate_Range_Check (N);
      Num_Saved_Checks := Num_Saved_Checks + 1;
      Saved_Checks (Num_Saved_Checks) :=
        (Killed      => False,
         Entity      => Ent,
         Offset      => Ofs,
         Check_Type  => 'R',
         Target_Type => Ttyp);

      if Debug_Flag_CC then
         w ("Make new entry, check number = ", Num_Saved_Checks);
         w ("  Entity = ", Int (Ent));
         Write_Str ("  Offset = ");
         pid (Ofs);
         w ("  Check_Type = R");
         w ("  Target_Type = ", Int (Ttyp));
         pg (Union_Id (Ttyp));
      end if;

   --  If we get an exception, then something went wrong, probably because of
   --  an error in the structure of the tree due to an incorrect program. Or
   --  it may be a bug in the optimization circuit. In either case the safest
   --  thing is simply to set the check flag unconditionally.

   exception
      when others =>
         Activate_Range_Check (N);

         if Debug_Flag_CC then
            w ("  exception occurred, range flag set");
         end if;

         return;
   end Enable_Range_Check;

   ------------------
   -- Ensure_Valid --
   ------------------

   procedure Ensure_Valid
     (Expr          : Node_Id;
      Holes_OK      : Boolean   := False;
      Related_Id    : Entity_Id := Empty;
      Is_Low_Bound  : Boolean   := False;
      Is_High_Bound : Boolean   := False)
   is
      Typ : constant Entity_Id  := Etype (Expr);

   begin
      --  Ignore call if we are not doing any validity checking

      if not Validity_Checks_On then
         return;

      --  Ignore call if range or validity checks suppressed on entity or type

      elsif Range_Or_Validity_Checks_Suppressed (Expr) then
         return;

      --  No check required if expression is from the expander, we assume the
      --  expander will generate whatever checks are needed. Note that this is
      --  not just an optimization, it avoids infinite recursions.

      --  Unchecked conversions must be checked, unless they are initialized
      --  scalar values, as in a component assignment in an init proc.

      --  In addition, we force a check if Force_Validity_Checks is set

      elsif not Comes_From_Source (Expr)
        and then not
          (Nkind (Expr) = N_Identifier
            and then Present (Renamed_Entity_Or_Object (Entity (Expr)))
            and then
              Comes_From_Source (Renamed_Entity_Or_Object (Entity (Expr))))
        and then not Force_Validity_Checks
        and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
                    or else Kill_Range_Check (Expr))
      then
         return;

      --  No check required if expression is known to have valid value

      elsif Expr_Known_Valid (Expr) then
         return;

      --  No check needed within a generated predicate function. Validity
      --  of input value will have been checked earlier.

      elsif Ekind (Current_Scope) = E_Function
        and then Is_Predicate_Function (Current_Scope)
      then
         return;

      --  Ignore case of enumeration with holes where the flag is set not to
      --  worry about holes, since no special validity check is needed

      elsif Is_Enumeration_Type (Typ)
        and then Has_Non_Standard_Rep (Typ)
        and then Holes_OK
      then
         return;

      --  No check required on the left-hand side of an assignment

      elsif Nkind (Parent (Expr)) = N_Assignment_Statement
        and then Expr = Name (Parent (Expr))
      then
         return;

      --  No check on a universal real constant. The context will eventually
      --  convert it to a machine number for some target type, or report an
      --  illegality.

      elsif Nkind (Expr) = N_Real_Literal
        and then Etype (Expr) = Universal_Real
      then
         return;

      --  If the expression denotes a component of a packed boolean array,
      --  no possible check applies. We ignore the old ACATS chestnuts that
      --  involve Boolean range True..True.

      --  Note: validity checks are generated for expressions that yield a
      --  scalar type, when it is possible to create a value that is outside of
      --  the type. If this is a one-bit boolean no such value exists. This is
      --  an optimization, and it also prevents compiler blowing up during the
      --  elaboration of improperly expanded packed array references.

      elsif Nkind (Expr) = N_Indexed_Component
        and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
        and then Root_Type (Etype (Expr)) = Standard_Boolean
      then
         return;

      --  For an expression with actions, we want to insert the validity check
      --  on the final Expression.

      elsif Nkind (Expr) = N_Expression_With_Actions then
         Ensure_Valid (Expression (Expr));
         return;

      --  An annoying special case. If this is an out parameter of a scalar
      --  type, then the value is not going to be accessed, therefore it is
      --  inappropriate to do any validity check at the call site. Likewise
      --  if the parameter is passed by reference.

      else
         --  Only need to worry about scalar types

         if Is_Scalar_Type (Typ) then
            declare
               P : Node_Id;
               N : Node_Id;
               E : Entity_Id;
               F : Entity_Id;
               A : Node_Id;
               L : List_Id;

            begin
               --  Find actual argument (which may be a parameter association)
               --  and the parent of the actual argument (the call statement)

               N := Expr;
               P := Parent (Expr);

               if Nkind (P) = N_Parameter_Association then
                  N := P;
                  P := Parent (N);
               end if;

               --  If this is an indirect or dispatching call, get signature
               --  from the subprogram type.

               if Nkind (P) in N_Entry_Call_Statement
                             | N_Function_Call
                             | N_Procedure_Call_Statement
               then
                  E := Get_Called_Entity (P);
                  L := Parameter_Associations (P);

                  --  Only need to worry if there are indeed actuals, and if
                  --  this could be a subprogram call, otherwise we cannot get
                  --  a match (either we are not an argument, or the mode of
                  --  the formal is not OUT). This test also filters out the
                  --  generic case.

                  if Is_Non_Empty_List (L) and then Is_Subprogram (E) then

                     --  This is the loop through parameters, looking for an
                     --  OUT parameter for which we are the argument.

                     F := First_Formal (E);
                     A := First (L);
                     while Present (F) loop
                        if A = N
                          and then (Ekind (F) = E_Out_Parameter
                                     or else Mechanism (F) = By_Reference)
                        then
                           return;
                        end if;

                        Next_Formal (F);
                        Next (A);
                     end loop;
                  end if;
               end if;
            end;
         end if;
      end if;

      --  If this is a boolean expression, only its elementary operands need
      --  checking: if they are valid, a boolean or short-circuit operation
      --  with them will be valid as well.

      if Base_Type (Typ) = Standard_Boolean
        and then
         (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
      then
         return;
      end if;

      --  If we fall through, a validity check is required

      Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);

      if Is_Entity_Name (Expr)
        and then Safe_To_Capture_Value (Expr, Entity (Expr))
      then
         Set_Is_Known_Valid (Entity (Expr));
      end if;
   end Ensure_Valid;

   ----------------------
   -- Expr_Known_Valid --
   ----------------------

   function Expr_Known_Valid (Expr : Node_Id) return Boolean is
      Typ : constant Entity_Id := Etype (Expr);

   begin
      --  Non-scalar types are always considered valid, since they never give
      --  rise to the issues of erroneous or bounded error behavior that are
      --  the concern. In formal reference manual terms the notion of validity
      --  only applies to scalar types. Note that even when packed arrays are
      --  represented using modular types, they are still arrays semantically,
      --  so they are also always valid (in particular, the unused bits can be
      --  random rubbish without affecting the validity of the array value).

      if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
         return True;

      --  If no validity checking, then everything is considered valid

      elsif not Validity_Checks_On then
         return True;

      --  Floating-point types are considered valid unless floating-point
      --  validity checks have been specifically turned on.

      elsif Is_Floating_Point_Type (Typ)
        and then not Validity_Check_Floating_Point
      then
         return True;

      elsif Is_Static_Expression (Expr) then
         return True;

      --  If the expression is the value of an object that is known to be
      --  valid, then clearly the expression value itself is valid.

      elsif Is_Entity_Name (Expr)
        and then Is_Known_Valid (Entity (Expr))

        --  Exclude volatile variables

        and then not Treat_As_Volatile (Entity (Expr))
      then
         return True;

      --  References to discriminants are always considered valid. The value
      --  of a discriminant gets checked when the object is built. Within the
      --  record, we consider it valid, and it is important to do so, since
      --  otherwise we can try to generate bogus validity checks which
      --  reference discriminants out of scope. Discriminants of concurrent
      --  types are excluded for the same reason.

      elsif Is_Entity_Name (Expr)
        and then Denotes_Discriminant (Expr, Check_Concurrent => True)
      then
         return True;

      --  If the type is one for which all values are known valid, then we are
      --  sure that the value is valid except in the slightly odd case where
      --  the expression is a reference to a variable whose size has been
      --  explicitly set to a value greater than the object size.

      elsif Is_Known_Valid (Typ) then
         if Is_Entity_Name (Expr)
           and then Ekind (Entity (Expr)) = E_Variable
           and then Known_Esize (Entity (Expr))
           and then Esize (Entity (Expr)) > Esize (Typ)
         then
            return False;
         else
            return True;
         end if;

      --  Integer and character literals always have valid values, where
      --  appropriate these will be range checked in any case.

      elsif Nkind (Expr) in N_Integer_Literal | N_Character_Literal then
         return True;

      --  If we have a type conversion or a qualification of a known valid
      --  value, then the result will always be valid.

      elsif Nkind (Expr) in N_Type_Conversion | N_Qualified_Expression then
         return Expr_Known_Valid (Expression (Expr));

      --  Case of expression is a non-floating-point operator. In this case we
      --  can assume the result is valid the generated code for the operator
      --  will include whatever checks are needed (e.g. range checks) to ensure
      --  validity. This assumption does not hold for the floating-point case,
      --  since floating-point operators can generate Infinite or NaN results
      --  which are considered invalid.

      --  Historical note: in older versions, the exemption of floating-point
      --  types from this assumption was done only in cases where the parent
      --  was an assignment, function call or parameter association. Presumably
      --  the idea was that in other contexts, the result would be checked
      --  elsewhere, but this list of cases was missing tests (at least the
      --  N_Object_Declaration case, as shown by a reported missing validity
      --  check), and it is not clear why function calls but not procedure
      --  calls were tested for. It really seems more accurate and much
      --  safer to recognize that expressions which are the result of a
      --  floating-point operator can never be assumed to be valid.

      elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
         return True;

      --  The result of a membership test is always valid, since it is true or
      --  false, there are no other possibilities.

      elsif Nkind (Expr) in N_Membership_Test then
         return True;

      --  For all other cases, we do not know the expression is valid

      else
         return False;
      end if;
   end Expr_Known_Valid;

   ----------------
   -- Find_Check --
   ----------------

   procedure Find_Check
     (Expr        : Node_Id;
      Check_Type  : Character;
      Target_Type : Entity_Id;
      Entry_OK    : out Boolean;
      Check_Num   : out Nat;
      Ent         : out Entity_Id;
      Ofs         : out Uint)
   is
      function Within_Range_Of
        (Target_Type : Entity_Id;
         Check_Type  : Entity_Id) return Boolean;
      --  Given a requirement for checking a range against Target_Type, and
      --  and a range Check_Type against which a check has already been made,
      --  determines if the check against check type is sufficient to ensure
      --  that no check against Target_Type is required.

      ---------------------
      -- Within_Range_Of --
      ---------------------

      function Within_Range_Of
        (Target_Type : Entity_Id;
         Check_Type  : Entity_Id) return Boolean
      is
      begin
         if Target_Type = Check_Type then
            return True;

         else
            declare
               Tlo : constant Node_Id := Type_Low_Bound  (Target_Type);
               Thi : constant Node_Id := Type_High_Bound (Target_Type);
               Clo : constant Node_Id := Type_Low_Bound  (Check_Type);
               Chi : constant Node_Id := Type_High_Bound (Check_Type);

            begin
               if (Tlo = Clo
                     or else (Compile_Time_Known_Value (Tlo)
                                and then
                              Compile_Time_Known_Value (Clo)
                                and then
                              Expr_Value (Clo) >= Expr_Value (Tlo)))
                 and then
                  (Thi = Chi
                     or else (Compile_Time_Known_Value (Thi)
                                and then
                              Compile_Time_Known_Value (Chi)
                                and then
                              Expr_Value (Chi) <= Expr_Value (Clo)))
               then
                  return True;
               else
                  return False;
               end if;
            end;
         end if;
      end Within_Range_Of;

   --  Start of processing for Find_Check

   begin
      --  Establish default, in case no entry is found

      Check_Num := 0;

      --  Case of expression is simple entity reference

      if Is_Entity_Name (Expr) then
         Ent := Entity (Expr);
         Ofs := Uint_0;

      --  Case of expression is entity + known constant

      elsif Nkind (Expr) = N_Op_Add
        and then Compile_Time_Known_Value (Right_Opnd (Expr))
        and then Is_Entity_Name (Left_Opnd (Expr))
      then
         Ent := Entity (Left_Opnd (Expr));
         Ofs := Expr_Value (Right_Opnd (Expr));

      --  Case of expression is entity - known constant

      elsif Nkind (Expr) = N_Op_Subtract
        and then Compile_Time_Known_Value (Right_Opnd (Expr))
        and then Is_Entity_Name (Left_Opnd (Expr))
      then
         Ent := Entity (Left_Opnd (Expr));
         Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));

      --  Any other expression is not of the right form

      else
         Ent := Empty;
         Ofs := Uint_0;
         Entry_OK := False;
         return;
      end if;

      --  Come here with expression of appropriate form, check if entity is an
      --  appropriate one for our purposes.

      if (Ekind (Ent) = E_Variable
            or else Is_Constant_Object (Ent))
        and then not Is_Library_Level_Entity (Ent)
      then
         Entry_OK := True;
      else
         Entry_OK := False;
         return;
      end if;

      --  See if there is matching check already

      for J in reverse 1 .. Num_Saved_Checks loop
         declare
            SC : Saved_Check renames Saved_Checks (J);
         begin
            if SC.Killed = False
              and then SC.Entity = Ent
              and then SC.Offset = Ofs
              and then SC.Check_Type = Check_Type
              and then Within_Range_Of (Target_Type, SC.Target_Type)
            then
               Check_Num := J;
               return;
            end if;
         end;
      end loop;

      --  If we fall through entry was not found

      return;
   end Find_Check;

   ---------------------------------
   -- Generate_Discriminant_Check --
   ---------------------------------

   procedure Generate_Discriminant_Check (N : Node_Id) is
      Loc  : constant Source_Ptr := Sloc (N);
      Pref : constant Node_Id    := Prefix (N);
      Sel  : constant Node_Id    := Selector_Name (N);

      Orig_Comp : constant Entity_Id :=
        Original_Record_Component (Entity (Sel));
      --  The original component to be checked

      Discr_Fct : constant Entity_Id :=
        Discriminant_Checking_Func (Orig_Comp);
      --  The discriminant checking function

      Discr : Entity_Id;
      --  One discriminant to be checked in the type

      Real_Discr : Entity_Id;
      --  Actual discriminant in the call

      Pref_Type : Entity_Id;
      --  Type of relevant prefix (ignoring private/access stuff)

      Args : List_Id;
      --  List of arguments for function call

      Formal : Entity_Id;
      --  Keep track of the formal corresponding to the actual we build for
      --  each discriminant, in order to be able to perform the necessary type
      --  conversions.

      Scomp : Node_Id;
      --  Selected component reference for checking function argument

   begin
      Pref_Type := Etype (Pref);

      --  Force evaluation of the prefix, so that it does not get evaluated
      --  twice (once for the check, once for the actual reference). Such a
      --  double evaluation is always a potential source of inefficiency, and
      --  is functionally incorrect in the volatile case, or when the prefix
      --  may have side effects. A nonvolatile entity or a component of a
      --  nonvolatile entity requires no evaluation.

      if Is_Entity_Name (Pref) then
         if Treat_As_Volatile (Entity (Pref)) then
            Force_Evaluation (Pref, Name_Req => True);
         end if;

      elsif Treat_As_Volatile (Etype (Pref)) then
         Force_Evaluation (Pref, Name_Req => True);

      elsif Nkind (Pref) = N_Selected_Component
        and then Is_Entity_Name (Prefix (Pref))
      then
         null;

      else
         Force_Evaluation (Pref, Name_Req => True);
      end if;

      --  For a tagged type, use the scope of the original component to
      --  obtain the type, because ???

      if Is_Tagged_Type (Scope (Orig_Comp)) then
         Pref_Type := Scope (Orig_Comp);

      --  For an untagged derived type, use the discriminants of the parent
      --  which have been renamed in the derivation, possibly by a one-to-many
      --  discriminant constraint. For untagged type, initially get the Etype
      --  of the prefix

      else
         if Is_Derived_Type (Pref_Type)
           and then Number_Discriminants (Pref_Type) /=
                    Number_Discriminants (Etype (Base_Type (Pref_Type)))
         then
            Pref_Type := Etype (Base_Type (Pref_Type));
         end if;
      end if;

      --  We definitely should have a checking function, This routine should
      --  not be called if no discriminant checking function is present.

      pragma Assert (Present (Discr_Fct));

      --  Create the list of the actual parameters for the call. This list
      --  is the list of the discriminant fields of the record expression to
      --  be discriminant checked.

      Args   := New_List;
      Formal := First_Formal (Discr_Fct);
      Discr  := First_Discriminant (Pref_Type);
      while Present (Discr) loop

         --  If we have a corresponding discriminant field, and a parent
         --  subtype is present, then we want to use the corresponding
         --  discriminant since this is the one with the useful value.

         if Present (Corresponding_Discriminant (Discr))
           and then Ekind (Pref_Type) = E_Record_Type
           and then Present (Parent_Subtype (Pref_Type))
         then
            Real_Discr := Corresponding_Discriminant (Discr);
         else
            Real_Discr := Discr;
         end if;

         --  Construct the reference to the discriminant

         Scomp :=
           Make_Selected_Component (Loc,
             Prefix =>
               Unchecked_Convert_To (Pref_Type,
                 Duplicate_Subexpr (Pref)),
             Selector_Name => New_Occurrence_Of (Real_Discr, Loc));

         --  Manually analyze and resolve this selected component. We really
         --  want it just as it appears above, and do not want the expander
         --  playing discriminal games etc with this reference. Then we append
         --  the argument to the list we are gathering.

         Set_Etype (Scomp, Etype (Real_Discr));
         Set_Analyzed (Scomp, True);
         Append_To (Args, Convert_To (Etype (Formal), Scomp));

         Next_Formal_With_Extras (Formal);
         Next_Discriminant (Discr);
      end loop;

      --  Now build and insert the call

      Insert_Action (N,
        Make_Raise_Constraint_Error (Loc,
          Condition =>
            Make_Function_Call (Loc,
              Name                   => New_Occurrence_Of (Discr_Fct, Loc),
              Parameter_Associations => Args),
          Reason => CE_Discriminant_Check_Failed));
   end Generate_Discriminant_Check;

   ---------------------------
   -- Generate_Index_Checks --
   ---------------------------

   procedure Generate_Index_Checks
     (N                : Node_Id;
      Checks_Generated : out Dimension_Set)
   is

      function Entity_Of_Prefix return Entity_Id;
      --  Returns the entity of the prefix of N (or Empty if not found)

      ----------------------
      -- Entity_Of_Prefix --
      ----------------------

      function Entity_Of_Prefix return Entity_Id is
         P : Node_Id;

      begin
         P := Prefix (N);
         while not Is_Entity_Name (P) loop
            if Nkind (P) not in N_Selected_Component | N_Indexed_Component then
               return Empty;
            end if;

            P := Prefix (P);
         end loop;

         return Entity (P);
      end Entity_Of_Prefix;

      --  Local variables

      Loc   : constant Source_Ptr := Sloc (N);
      A     : constant Node_Id    := Prefix (N);
      A_Ent : constant Entity_Id  := Entity_Of_Prefix;
      Sub   : Node_Id;

   --  Start of processing for Generate_Index_Checks

   begin
      Checks_Generated.Elements := (others => False);

      --  Ignore call if the prefix is not an array since we have a serious
      --  error in the sources. Ignore it also if index checks are suppressed
      --  for array object or type.

      if not Is_Array_Type (Etype (A))
        or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
        or else Index_Checks_Suppressed (Etype (A))
      then
         return;

      --  The indexed component we are dealing with contains 'Loop_Entry in its
      --  prefix. This case arises when analysis has determined that constructs
      --  such as

      --     Prefix'Loop_Entry (Expr)
      --     Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)

      --  require rewriting for error detection purposes. A side effect of this
      --  action is the generation of index checks that mention 'Loop_Entry.
      --  Delay the generation of the check until 'Loop_Entry has been properly
      --  expanded. This is done in Expand_Loop_Entry_Attributes.

      elsif Nkind (Prefix (N)) = N_Attribute_Reference
        and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
      then
         return;
      end if;

      --  Generate a raise of constraint error with the appropriate reason and
      --  a condition of the form:

      --    Base_Type (Sub) not in Array'Range (Subscript)

      --  Note that the reason we generate the conversion to the base type here
      --  is that we definitely want the range check to take place, even if it
      --  looks like the subtype is OK. Optimization considerations that allow
      --  us to omit the check have already been taken into account in the
      --  setting of the Do_Range_Check flag earlier on.

      Sub := First (Expressions (N));

      --  Handle string literals

      if Ekind (Etype (A)) = E_String_Literal_Subtype then
         if Do_Range_Check (Sub) then
            Set_Do_Range_Check (Sub, False);

            --  For string literals we obtain the bounds of the string from the
            --  associated subtype.

            Insert_Action (N,
              Make_Raise_Constraint_Error (Loc,
                Condition =>
                   Make_Not_In (Loc,
                     Left_Opnd  =>
                       Convert_To (Base_Type (Etype (Sub)),
                         Duplicate_Subexpr_Move_Checks (Sub)),
                     Right_Opnd =>
                       Make_Attribute_Reference (Loc,
                         Prefix         => New_Occurrence_Of (Etype (A), Loc),
                         Attribute_Name => Name_Range)),
                Reason => CE_Index_Check_Failed));

            Checks_Generated.Elements (1) := True;
         end if;

      --  General case

      else
         declare
            A_Idx   : Node_Id;
            A_Range : Node_Id;
            Ind     : Pos;
            Num     : List_Id;
            Range_N : Node_Id;

         begin
            A_Idx := First_Index (Etype (A));
            Ind   := 1;
            while Present (Sub) loop
               if Do_Range_Check (Sub) then
                  Set_Do_Range_Check (Sub, False);

                  --  Force evaluation except for the case of a simple name of
                  --  a nonvolatile entity.

                  if not Is_Entity_Name (Sub)
                    or else Treat_As_Volatile (Entity (Sub))
                  then
                     Force_Evaluation (Sub);
                  end if;

                  if Nkind (A_Idx) = N_Range then
                     A_Range := A_Idx;

                  elsif Nkind (A_Idx) in N_Identifier | N_Expanded_Name then
                     A_Range := Scalar_Range (Entity (A_Idx));

                     if Nkind (A_Range) = N_Subtype_Indication then
                        A_Range := Range_Expression (Constraint (A_Range));
                     end if;

                  else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
                     A_Range := Range_Expression (Constraint (A_Idx));
                  end if;

                  --  For array objects with constant bounds we can generate
                  --  the index check using the bounds of the type of the index

                  if Present (A_Ent)
                    and then Ekind (A_Ent) = E_Variable
                    and then Is_Constant_Bound (Low_Bound (A_Range))
                    and then Is_Constant_Bound (High_Bound (A_Range))
                  then
                     Range_N :=
                       Make_Attribute_Reference (Loc,
                         Prefix         =>
                           New_Occurrence_Of (Etype (A_Idx), Loc),
                         Attribute_Name => Name_Range);

                  --  For arrays with non-constant bounds we cannot generate
                  --  the index check using the bounds of the type of the index
                  --  since it may reference discriminants of some enclosing
                  --  type. We obtain the bounds directly from the prefix
                  --  object.

                  else
                     if Ind = 1 then
                        Num := No_List;
                     else
                        Num := New_List (Make_Integer_Literal (Loc, Ind));
                     end if;

                     Range_N :=
                       Make_Attribute_Reference (Loc,
                         Prefix =>
                           Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
                         Attribute_Name => Name_Range,
                         Expressions    => Num);
                  end if;

                  Insert_Action (N,
                    Make_Raise_Constraint_Error (Loc,
                      Condition =>
                         Make_Not_In (Loc,
                           Left_Opnd  =>
                             Convert_To (Base_Type (Etype (Sub)),
                               Duplicate_Subexpr_Move_Checks (Sub)),
                           Right_Opnd => Range_N),
                      Reason => CE_Index_Check_Failed));

                  Checks_Generated.Elements (Ind) := True;
               end if;

               Next_Index (A_Idx);
               Ind := Ind + 1;
               Next (Sub);
            end loop;
         end;
      end if;
   end Generate_Index_Checks;

   --------------------------
   -- Generate_Range_Check --
   --------------------------

   procedure Generate_Range_Check
     (N           : Node_Id;
      Target_Type : Entity_Id;
      Reason      : RT_Exception_Code)
   is
      Loc              : constant Source_Ptr := Sloc (N);
      Source_Type      : constant Entity_Id  := Etype (N);
      Source_Base_Type : constant Entity_Id  := Base_Type (Source_Type);
      Target_Base_Type : constant Entity_Id  := Base_Type (Target_Type);

      procedure Convert_And_Check_Range (Suppress : Check_Id);
      --  Convert N to the target base type and save the result in a temporary.
      --  The action is analyzed using the default checks as modified by the
      --  given Suppress argument. Then check the converted value against the
      --  range of the target subtype.

      function Is_Single_Attribute_Reference (N : Node_Id) return Boolean;
      --  Return True if N is an expression that contains a single attribute
      --  reference, possibly as operand among only integer literal operands.

      -----------------------------
      -- Convert_And_Check_Range --
      -----------------------------

      procedure Convert_And_Check_Range (Suppress : Check_Id) is
         Tnn    : constant Entity_Id := Make_Temporary (Loc, 'T', N);
         Conv_N : Node_Id;

      begin
         --  For enumeration types with non-standard representation this is a
         --  direct conversion from the enumeration type to the target integer
         --  type, which is treated by the back end as a normal integer type
         --  conversion, treating the enumeration type as an integer, which is
         --  exactly what we want. We set Conversion_OK to make sure that the
         --  analyzer does not complain about what otherwise might be an
         --  illegal conversion.

         if Is_Enumeration_Type (Source_Base_Type)
           and then Present (Enum_Pos_To_Rep (Source_Base_Type))
           and then Is_Integer_Type (Target_Base_Type)
         then
            Conv_N := OK_Convert_To (Target_Base_Type, Duplicate_Subexpr (N));
         else
            Conv_N := Convert_To (Target_Base_Type, Duplicate_Subexpr (N));
         end if;

         --  We make a temporary to hold the value of the conversion to the
         --  target base type, and then do the test against this temporary.
         --  N itself is replaced by an occurrence of Tnn and followed by
         --  the explicit range check.

         --     Tnn : constant Target_Base_Type := Target_Base_Type (N);
         --     [constraint_error when Tnn not in Target_Type]
         --     Tnn

         Insert_Actions (N, New_List (
           Make_Object_Declaration (Loc,
             Defining_Identifier => Tnn,
             Object_Definition   => New_Occurrence_Of (Target_Base_Type, Loc),
             Constant_Present    => True,
             Expression          => Conv_N),

           Make_Raise_Constraint_Error (Loc,
             Condition =>
               Make_Not_In (Loc,
                 Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
                 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
             Reason => Reason)),
           Suppress => Suppress);

         Rewrite (N, New_Occurrence_Of (Tnn, Loc));

         --  Set the type of N, because the declaration for Tnn might not
         --  be analyzed yet, as is the case if N appears within a record
         --  declaration, as a discriminant constraint or expression.

         Set_Etype (N, Target_Base_Type);
      end Convert_And_Check_Range;

      -------------------------------------
      --  Is_Single_Attribute_Reference  --
      -------------------------------------

      function Is_Single_Attribute_Reference (N : Node_Id) return Boolean is
      begin
         if Nkind (N) = N_Attribute_Reference then
            return True;

         elsif Nkind (N) in N_Binary_Op then
            if Nkind (Right_Opnd (N)) = N_Integer_Literal then
               return Is_Single_Attribute_Reference (Left_Opnd (N));

            elsif Nkind (Left_Opnd (N)) = N_Integer_Literal then
               return Is_Single_Attribute_Reference (Right_Opnd (N));

            else
               return False;
            end if;

         else
            return False;
         end if;
      end Is_Single_Attribute_Reference;

   --  Start of processing for Generate_Range_Check

   begin
      --  First special case, if the source type is already within the range
      --  of the target type, then no check is needed (probably we should have
      --  stopped Do_Range_Check from being set in the first place, but better
      --  late than never in preventing junk code and junk flag settings).

      if In_Subrange_Of (Source_Type, Target_Type)

        --  We do NOT apply this if the source node is a literal, since in this
        --  case the literal has already been labeled as having the subtype of
        --  the target.

        and then not
          (Nkind (N) in
               N_Integer_Literal | N_Real_Literal | N_Character_Literal
             or else
               (Is_Entity_Name (N)
                 and then Ekind (Entity (N)) = E_Enumeration_Literal))
      then
         Set_Do_Range_Check (N, False);
         return;
      end if;

      --  Here a check is needed. If the expander is not active (which is also
      --  the case in GNATprove mode), then simply set the Do_Range_Check flag
      --  and we are done. We just want to see the range check flag set, we do
      --  not want to generate the explicit range check code.

      if not Expander_Active then
         Set_Do_Range_Check (N);
         return;
      end if;

      --  Here we will generate an explicit range check, so we don't want to
      --  set the Do_Range check flag, since the range check is taken care of
      --  by the code we will generate.

      Set_Do_Range_Check (N, False);

      --  Force evaluation of the node, so that it does not get evaluated twice
      --  (once for the check, once for the actual reference). Such a double
      --  evaluation is always a potential source of inefficiency, and is
      --  functionally incorrect in the volatile case.

      --  We skip the evaluation of attribute references because, after these
      --  runtime checks are generated, the expander may need to rewrite this
      --  node (for example, see Attribute_Max_Size_In_Storage_Elements in
      --  Expand_N_Attribute_Reference) and, in many cases, their return type
      --  is universal integer, which is a very large type for a temporary.

      if not Is_Single_Attribute_Reference (N)
        and then (not Is_Entity_Name (N)
                   or else Treat_As_Volatile (Entity (N)))
      then
         Force_Evaluation (N, Mode => Strict);
      end if;

      --  The easiest case is when Source_Base_Type and Target_Base_Type are
      --  the same since in this case we can simply do a direct check of the
      --  value of N against the bounds of Target_Type.

      --    [constraint_error when N not in Target_Type]

      --  Note: this is by far the most common case, for example all cases of
      --  checks on the RHS of assignments are in this category, but not all
      --  cases are like this. Notably conversions can involve two types.

      if Source_Base_Type = Target_Base_Type then

         --  Insert the explicit range check. Note that we suppress checks for
         --  this code, since we don't want a recursive range check popping up.

         Insert_Action (N,
           Make_Raise_Constraint_Error (Loc,
             Condition =>
               Make_Not_In (Loc,
                 Left_Opnd  => Duplicate_Subexpr (N),
                 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
             Reason => Reason),
           Suppress => All_Checks);

      --  Next test for the case where the target type is within the bounds
      --  of the base type of the source type, since in this case we can
      --  simply convert the bounds of the target type to this base type
      --  to do the test.

      --    [constraint_error when N not in
      --       Source_Base_Type (Target_Type'First)
      --         ..
      --       Source_Base_Type(Target_Type'Last))]

      --  The conversions will always work and need no check

      --  Unchecked_Convert_To is used instead of Convert_To to handle the case
      --  of converting from an enumeration value to an integer type, such as
      --  occurs for the case of generating a range check on Enum'Val(Exp)
      --  (which used to be handled by gigi). This is OK, since the conversion
      --  itself does not require a check.

      elsif In_Subrange_Of (Target_Type, Source_Base_Type) then

         --  Insert the explicit range check. Note that we suppress checks for
         --  this code, since we don't want a recursive range check popping up.

         if Is_Discrete_Type (Source_Base_Type)
              and then
            Is_Discrete_Type (Target_Base_Type)
         then
            Insert_Action (N,
              Make_Raise_Constraint_Error (Loc,
                Condition =>
                  Make_Not_In (Loc,
                    Left_Opnd  => Duplicate_Subexpr (N),

                    Right_Opnd =>
                      Make_Range (Loc,
                        Low_Bound  =>
                          Unchecked_Convert_To (Source_Base_Type,
                            Make_Attribute_Reference (Loc,
                              Prefix         =>
                                New_Occurrence_Of (Target_Type, Loc),
                              Attribute_Name => Name_First)),

                        High_Bound =>
                          Unchecked_Convert_To (Source_Base_Type,
                            Make_Attribute_Reference (Loc,
                              Prefix         =>
                                New_Occurrence_Of (Target_Type, Loc),
                              Attribute_Name => Name_Last)))),
                Reason    => Reason),
              Suppress => All_Checks);

         --  For conversions involving at least one type that is not discrete,
         --  first convert to the target base type and then generate the range
         --  check. This avoids problems with values that are close to a bound
         --  of the target type that would fail a range check when done in a
         --  larger source type before converting but pass if converted with
         --  rounding and then checked (such as in float-to-float conversions).

         --  Note that overflow checks are not suppressed for this code because
         --  we do not know whether the source type is in range of the target
         --  base type (unlike in the next case below).

         else
            Convert_And_Check_Range (Suppress => Range_Check);
         end if;

      --  Note that at this stage we know that the Target_Base_Type is not in
      --  the range of the Source_Base_Type (since even the Target_Type itself
      --  is not in this range). It could still be the case that Source_Type is
      --  in range of the target base type since we have not checked that case.

      --  If that is the case, we can freely convert the source to the target,
      --  and then test the target result against the bounds. Note that checks
      --  are suppressed for this code, since we don't want a recursive range
      --  check popping up.

      elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
         Convert_And_Check_Range (Suppress => All_Checks);

      --  At this stage, we know that we have two scalar types, which are
      --  directly convertible, and where neither scalar type has a base
      --  range that is in the range of the other scalar type.

      --  The only way this can happen is with a signed and unsigned type.
      --  So test for these two cases:

      else
         --  Case of the source is unsigned and the target is signed

         if Is_Unsigned_Type (Source_Base_Type)
           and then not Is_Unsigned_Type (Target_Base_Type)
         then
            --  If the source is unsigned and the target is signed, then we
            --  know that the source is not shorter than the target (otherwise
            --  the source base type would be in the target base type range).

            --  In other words, the unsigned type is either the same size as
            --  the target, or it is larger. It cannot be smaller.

            pragma Assert
              (Esize (Source_Base_Type) >= Esize (Target_Base_Type));

            --  We only need to check the low bound if the low bound of the
            --  target type is non-negative. If the low bound of the target
            --  type is negative, then we know that we will fit fine.

            --  If the high bound of the target type is negative, then we
            --  know we have a constraint error, since we can't possibly
            --  have a negative source.

            --  With these two checks out of the way, we can do the check
            --  using the source type safely

            --  This is definitely the most annoying case.

            --    [constraint_error
            --       when (Target_Type'First >= 0
            --               and then
            --                 N < Source_Base_Type (Target_Type'First))
            --         or else Target_Type'Last < 0
            --         or else N > Source_Base_Type (Target_Type'Last)];

            --  We turn off all checks since we know that the conversions
            --  will work fine, given the guards for negative values.

            Insert_Action (N,
              Make_Raise_Constraint_Error (Loc,
                Condition =>
                  Make_Or_Else (Loc,
                    Make_Or_Else (Loc,
                      Left_Opnd =>
                        Make_And_Then (Loc,
                          Left_Opnd => Make_Op_Ge (Loc,
                            Left_Opnd =>
                              Make_Attribute_Reference (Loc,
                                Prefix =>
                                  New_Occurrence_Of (Target_Type, Loc),
                                Attribute_Name => Name_First),
                            Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),

                          Right_Opnd =>
                            Make_Op_Lt (Loc,
                              Left_Opnd => Duplicate_Subexpr (N),
                              Right_Opnd =>
                                Convert_To (Source_Base_Type,
                                  Make_Attribute_Reference (Loc,
                                    Prefix =>
                                      New_Occurrence_Of (Target_Type, Loc),
                                    Attribute_Name => Name_First)))),

                      Right_Opnd =>
                        Make_Op_Lt (Loc,
                          Left_Opnd =>
                            Make_Attribute_Reference (Loc,
                              Prefix => New_Occurrence_Of (Target_Type, Loc),
                              Attribute_Name => Name_Last),
                            Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),

                    Right_Opnd =>
                      Make_Op_Gt (Loc,
                        Left_Opnd => Duplicate_Subexpr (N),
                        Right_Opnd =>
                          Convert_To (Source_Base_Type,
                            Make_Attribute_Reference (Loc,
                              Prefix => New_Occurrence_Of (Target_Type, Loc),
                              Attribute_Name => Name_Last)))),

                Reason => Reason),
              Suppress  => All_Checks);

         --  Only remaining possibility is that the source is signed and
         --  the target is unsigned.

         else
            pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
                            and then Is_Unsigned_Type (Target_Base_Type));

            --  If the source is signed and the target is unsigned, then we
            --  know that the target is not shorter than the source (otherwise
            --  the target base type would be in the source base type range).

            --  In other words, the unsigned type is either the same size as
            --  the target, or it is larger. It cannot be smaller.

            --  Clearly we have an error if the source value is negative since
            --  no unsigned type can have negative values. If the source type
            --  is non-negative, then the check can be done using the target
            --  type.

            --    Tnn : constant Target_Base_Type (N) := Target_Type;

            --    [constraint_error
            --       when N < 0 or else Tnn not in Target_Type];

            --  We turn off all checks for the conversion of N to the target
            --  base type, since we generate the explicit check to ensure that
            --  the value is non-negative

            declare
               Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);

            begin
               Insert_Actions (N, New_List (
                 Make_Object_Declaration (Loc,
                   Defining_Identifier => Tnn,
                   Object_Definition   =>
                     New_Occurrence_Of (Target_Base_Type, Loc),
                   Constant_Present    => True,
                   Expression          =>
                     Unchecked_Convert_To
                       (Target_Base_Type, Duplicate_Subexpr (N))),

                 Make_Raise_Constraint_Error (Loc,
                   Condition =>
                     Make_Or_Else (Loc,
                       Left_Opnd =>
                         Make_Op_Lt (Loc,
                           Left_Opnd  => Duplicate_Subexpr (N),
                           Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),

                       Right_Opnd =>
                         Make_Not_In (Loc,
                           Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
                           Right_Opnd =>
                             New_Occurrence_Of (Target_Type, Loc))),

                   Reason     => Reason)),
                 Suppress => All_Checks);

               --  Set the Etype explicitly, because Insert_Actions may have
               --  placed the declaration in the freeze list for an enclosing
               --  construct, and thus it is not analyzed yet.

               Set_Etype (Tnn, Target_Base_Type);
               Rewrite (N, New_Occurrence_Of (Tnn, Loc));
            end;
         end if;
      end if;
   end Generate_Range_Check;

   ------------------
   -- Get_Check_Id --
   ------------------

   function Get_Check_Id (N : Name_Id) return Check_Id is
   begin
      --  For standard check name, we can do a direct computation

      if N in First_Check_Name .. Last_Check_Name then
         return Check_Id (N - (First_Check_Name - 1));

      --  For non-standard names added by pragma Check_Name, search table

      else
         for J in All_Checks + 1 .. Check_Names.Last loop
            if Check_Names.Table (J) = N then
               return J;
            end if;
         end loop;
      end if;

      --  No matching name found

      return No_Check_Id;
   end Get_Check_Id;

   ---------------------
   -- Get_Discriminal --
   ---------------------

   function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
      Loc : constant Source_Ptr := Sloc (E);
      D   : Entity_Id;
      Sc  : Entity_Id;

   begin
      --  The bound can be a bona fide parameter of a protected operation,
      --  rather than a prival encoded as an in-parameter.

      if No (Discriminal_Link (Entity (Bound))) then
         return Bound;
      end if;

      --  Climb the scope stack looking for an enclosing protected type. If
      --  we run out of scopes, return the bound itself.

      Sc := Scope (E);
      while Present (Sc) loop
         if Sc = Standard_Standard then
            return Bound;
         elsif Ekind (Sc) = E_Protected_Type then
            exit;
         end if;

         Sc := Scope (Sc);
      end loop;

      D := First_Discriminant (Sc);
      while Present (D) loop
         if Chars (D) = Chars (Bound) then
            return New_Occurrence_Of (Discriminal (D), Loc);
         end if;

         Next_Discriminant (D);
      end loop;

      return Bound;
   end Get_Discriminal;

   ----------------------
   -- Get_Range_Checks --
   ----------------------

   function Get_Range_Checks
     (Expr       : Node_Id;
      Target_Typ : Entity_Id;
      Source_Typ : Entity_Id := Empty;
      Warn_Node  : Node_Id   := Empty) return Check_Result
   is
   begin
      return
        Selected_Range_Checks (Expr, Target_Typ, Source_Typ, Warn_Node);
   end Get_Range_Checks;

   ------------------
   -- Guard_Access --
   ------------------

   function Guard_Access
     (Cond : Node_Id;
      Loc  : Source_Ptr;
      Expr : Node_Id) return Node_Id
   is
   begin
      if Nkind (Cond) = N_Or_Else then
         Set_Paren_Count (Cond, 1);
      end if;

      if Nkind (Expr) = N_Allocator then
         return Cond;

      else
         return
           Make_And_Then (Loc,
             Left_Opnd =>
               Make_Op_Ne (Loc,
                 Left_Opnd  => Duplicate_Subexpr_No_Checks (Expr),
                 Right_Opnd => Make_Null (Loc)),
             Right_Opnd => Cond);
      end if;
   end Guard_Access;

   -----------------------------
   -- Index_Checks_Suppressed --
   -----------------------------

   function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Index_Check);
      else
         return Scope_Suppress.Suppress (Index_Check);
      end if;
   end Index_Checks_Suppressed;

   ----------------
   -- Initialize --
   ----------------

   procedure Initialize is
   begin
      for J in Determine_Range_Cache_N'Range loop
         Determine_Range_Cache_N (J) := Empty;
      end loop;

      Check_Names.Init;

      for J in Int range 1 .. All_Checks loop
         Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
      end loop;
   end Initialize;

   -------------------------
   -- Insert_Range_Checks --
   -------------------------

   procedure Insert_Range_Checks
     (Checks       : Check_Result;
      Node         : Node_Id;
      Suppress_Typ : Entity_Id;
      Static_Sloc  : Source_Ptr;
      Do_Before    : Boolean    := False)
   is
      Checks_On  : constant Boolean :=
                     not Index_Checks_Suppressed (Suppress_Typ)
                       or else
                     not Range_Checks_Suppressed (Suppress_Typ);

      Check_Node : Node_Id;

   begin
      --  For now we just return if Checks_On is false, however this should be
      --  enhanced to check for an always True value in the condition and to
      --  generate a compilation warning.

      if not Expander_Active or not Checks_On then
         return;
      end if;

      for J in 1 .. 2 loop
         exit when No (Checks (J));

         if Nkind (Checks (J)) = N_Raise_Constraint_Error
           and then Present (Condition (Checks (J)))
         then
            Check_Node := Checks (J);
         else
            Check_Node :=
              Make_Raise_Constraint_Error (Static_Sloc,
                Reason => CE_Range_Check_Failed);
         end if;

         Mark_Rewrite_Insertion (Check_Node);

         if Do_Before then
            Insert_Before_And_Analyze (Node, Check_Node);
         else
            Insert_After_And_Analyze (Node, Check_Node);
         end if;
      end loop;
   end Insert_Range_Checks;

   ------------------------
   -- Insert_Valid_Check --
   ------------------------

   procedure Insert_Valid_Check
     (Expr          : Node_Id;
      Related_Id    : Entity_Id := Empty;
      Is_Low_Bound  : Boolean   := False;
      Is_High_Bound : Boolean   := False)
   is
      Loc : constant Source_Ptr := Sloc (Expr);
      Typ : Entity_Id           := Etype (Expr);
      Exp : Node_Id;

   begin
      --  Do not insert if checks off, or if not checking validity or if
      --  expression is known to be valid.

      if not Validity_Checks_On
        or else Range_Or_Validity_Checks_Suppressed (Expr)
        or else Expr_Known_Valid (Expr)
      then
         return;

      --  Do not insert checks within a predicate function. This will arise
      --  if the current unit and the predicate function are being compiled
      --  with validity checks enabled.

      elsif Present (Predicate_Function (Typ))
        and then Current_Scope = Predicate_Function (Typ)
      then
         return;

      --  If the expression is a packed component of a modular type of the
      --  right size, the data is always valid.

      elsif Nkind (Expr) = N_Selected_Component
        and then Present (Component_Clause (Entity (Selector_Name (Expr))))
        and then Is_Modular_Integer_Type (Typ)
        and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
      then
         return;

      --  Do not generate a validity check when inside a generic unit as this
      --  is an expansion activity.

      elsif Inside_A_Generic then
         return;
      end if;

      --  Entities declared in Lock_free protected types must be treated as
      --  volatile, and we must inhibit validity checks to prevent improper
      --  constant folding.

      if Is_Entity_Name (Expr)
        and then Is_Subprogram (Scope (Entity (Expr)))
        and then Present (Protected_Subprogram (Scope (Entity (Expr))))
        and then Uses_Lock_Free
                   (Scope (Protected_Subprogram (Scope (Entity (Expr)))))
      then
         return;
      end if;

      --  If we have a checked conversion, then validity check applies to
      --  the expression inside the conversion, not the result, since if
      --  the expression inside is valid, then so is the conversion result.

      Exp := Expr;
      while Nkind (Exp) = N_Type_Conversion loop
         Exp := Expression (Exp);
      end loop;
      Typ := Etype (Exp);

      --  Do not generate a check for a variable which already validates the
      --  value of an assignable object.

      if Is_Validation_Variable_Reference (Exp) then
         return;
      end if;

      declare
         CE     : Node_Id;
         PV     : Node_Id;
         Var_Id : Entity_Id;

      begin
         --  If the expression denotes an assignable object, capture its value
         --  in a variable and replace the original expression by the variable.
         --  This approach has several effects:

         --    1) The evaluation of the object results in only one read in the
         --       case where the object is atomic or volatile.

         --         Var ... := Object;  --  read

         --    2) The captured value is the one verified by attribute 'Valid.
         --       As a result the object is not evaluated again, which would
         --       result in an unwanted read in the case where the object is
         --       atomic or volatile.

         --         if not Var'Valid then     --  OK, no read of Object

         --         if not Object'Valid then  --  Wrong, extra read of Object

         --    3) The captured value replaces the original object reference.
         --       As a result the object is not evaluated again, in the same
         --       vein as 2).

         --         ... Var ...     --  OK, no read of Object

         --         ... Object ...  --  Wrong, extra read of Object

         --    4) The use of a variable to capture the value of the object
         --       allows the propagation of any changes back to the original
         --       object.

         --         procedure Call (Val : in out ...);

         --         Var : ... := Object;   --  read Object
         --         if not Var'Valid then  --  validity check
         --         Call (Var);            --  modify Var
         --         Object := Var;         --  update Object

         if Is_Variable (Exp) then
            Var_Id := Make_Temporary (Loc, 'T', Exp);

            --  Because we could be dealing with a transient scope which would
            --  cause our object declaration to remain unanalyzed we must do
            --  some manual decoration.

            Mutate_Ekind (Var_Id, E_Variable);
            Set_Etype (Var_Id, Typ);

            Insert_Action (Exp,
              Make_Object_Declaration (Loc,
                Defining_Identifier => Var_Id,
                Object_Definition   => New_Occurrence_Of (Typ, Loc),
                Expression          => New_Copy_Tree (Exp)),
              Suppress => Validity_Check);

            Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));

            Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));

            --  Move the Do_Range_Check flag over to the new Exp so it doesn't
            --  get lost and doesn't leak elsewhere.

            if Do_Range_Check (Validated_Object (Var_Id)) then
               Set_Do_Range_Check (Exp);
               Set_Do_Range_Check (Validated_Object (Var_Id), False);
            end if;

            --  In case of a type conversion, an expansion of the expr may be
            --  needed (eg. fixed-point as actual).

            if Exp /= Expr then
               pragma Assert (Nkind (Expr) = N_Type_Conversion);
               Analyze_And_Resolve (Expr);
            end if;

            PV := New_Occurrence_Of (Var_Id, Loc);

         --  Otherwise the expression does not denote a variable. Force its
         --  evaluation by capturing its value in a constant. Generate:

         --    Temp : constant ... := Exp;

         else
            Force_Evaluation
              (Exp           => Exp,
               Related_Id    => Related_Id,
               Is_Low_Bound  => Is_Low_Bound,
               Is_High_Bound => Is_High_Bound);

            PV := New_Copy_Tree (Exp);
         end if;

         --  A rather specialized test. If PV is an analyzed expression which
         --  is an indexed component of a packed array that has not been
         --  properly expanded, turn off its Analyzed flag to make sure it
         --  gets properly reexpanded. If the prefix is an access value,
         --  the dereference will be added later.

         --  The reason this arises is that Duplicate_Subexpr_No_Checks did
         --  an analyze with the old parent pointer. This may point e.g. to
         --  a subprogram call, which deactivates this expansion.

         if Analyzed (PV)
           and then Nkind (PV) = N_Indexed_Component
           and then Is_Array_Type (Etype (Prefix (PV)))
           and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
         then
            Set_Analyzed (PV, False);
         end if;

         --  Build the raise CE node to check for validity. We build a type
         --  qualification for the prefix, since it may not be of the form of
         --  a name, and we don't care in this context!

         CE :=
           Make_Raise_Constraint_Error (Loc,
             Condition =>
               Make_Op_Not (Loc,
                 Right_Opnd =>
                   Make_Attribute_Reference (Loc,
                     Prefix         => PV,
                     Attribute_Name => Name_Valid)),
             Reason    => CE_Invalid_Data);

         --  Insert the validity check. Note that we do this with validity
         --  checks turned off, to avoid recursion, we do not want validity
         --  checks on the validity checking code itself.

         Insert_Action (Expr, CE, Suppress => Validity_Check);

         --  If the expression is a reference to an element of a bit-packed
         --  array, then it is rewritten as a renaming declaration. If the
         --  expression is an actual in a call, it has not been expanded,
         --  waiting for the proper point at which to do it. The same happens
         --  with renamings, so that we have to force the expansion now. This
         --  non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
         --  and exp_ch6.adb.

         if Is_Entity_Name (Exp)
           and then Nkind (Parent (Entity (Exp))) =
                                                 N_Object_Renaming_Declaration
         then
            declare
               Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
            begin
               if Nkind (Old_Exp) = N_Indexed_Component
                 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
               then
                  Expand_Packed_Element_Reference (Old_Exp);
               end if;
            end;
         end if;
      end;
   end Insert_Valid_Check;

   -------------------------------------
   -- Is_Signed_Integer_Arithmetic_Op --
   -------------------------------------

   function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
   begin
      case Nkind (N) is
         when N_Op_Abs
            | N_Op_Add
            | N_Op_Divide
            | N_Op_Expon
            | N_Op_Minus
            | N_Op_Mod
            | N_Op_Multiply
            | N_Op_Plus
            | N_Op_Rem
            | N_Op_Subtract
         =>
            return Is_Signed_Integer_Type (Etype (N));

         when N_Case_Expression
            | N_If_Expression
         =>
            return Is_Signed_Integer_Type (Etype (N));

         when others =>
            return False;
      end case;
   end Is_Signed_Integer_Arithmetic_Op;

   ----------------------------------
   -- Install_Null_Excluding_Check --
   ----------------------------------

   procedure Install_Null_Excluding_Check (N : Node_Id) is
      Loc : constant Source_Ptr := Sloc (Parent (N));
      Typ : constant Entity_Id  := Etype (N);

      procedure Mark_Non_Null;
      --  After installation of check, if the node in question is an entity
      --  name, then mark this entity as non-null if possible.

      -------------------
      -- Mark_Non_Null --
      -------------------

      procedure Mark_Non_Null is
      begin
         --  Only case of interest is if node N is an entity name

         if Is_Entity_Name (N) then

            --  For sure, we want to clear an indication that this is known to
            --  be null, since if we get past this check, it definitely is not.

            Set_Is_Known_Null (Entity (N), False);

            --  We can mark the entity as known to be non-null if it is safe to
            --  capture the value.

            if Safe_To_Capture_Value (N, Entity (N)) then
               Set_Is_Known_Non_Null (Entity (N));
            end if;
         end if;
      end Mark_Non_Null;

   --  Start of processing for Install_Null_Excluding_Check

   begin
      --  No need to add null-excluding checks when the tree may not be fully
      --  decorated.

      if Serious_Errors_Detected > 0 then
         return;
      end if;

      pragma Assert (Is_Access_Type (Typ));

      --  No check inside a generic, check will be emitted in instance

      if Inside_A_Generic then
         return;
      end if;

      --  No check needed if known to be non-null

      if Known_Non_Null (N) then
         return;
      end if;

      --  If known to be null, here is where we generate a compile time check

      if Known_Null (N) then

         --  Avoid generating warning message inside init procs. In SPARK mode
         --  we can go ahead and call Apply_Compile_Time_Constraint_Error
         --  since it will be turned into an error in any case.

         if (not Inside_Init_Proc or else SPARK_Mode = On)

           --  Do not emit the warning within a conditional expression,
           --  where the expression might not be evaluated, and the warning
           --  appear as extraneous noise.

           and then not Within_Case_Or_If_Expression (N)
         then
            Apply_Compile_Time_Constraint_Error
              (N, "null value not allowed here??", CE_Access_Check_Failed);

         --  Remaining cases, where we silently insert the raise

         else
            Insert_Action (N,
              Make_Raise_Constraint_Error (Loc,
                Reason => CE_Access_Check_Failed));
         end if;

         Mark_Non_Null;
         return;
      end if;

      --  If entity is never assigned, for sure a warning is appropriate

      if Is_Entity_Name (N) then
         Check_Unset_Reference (N);
      end if;

      --  No check needed if checks are suppressed on the range. Note that we
      --  don't set Is_Known_Non_Null in this case (we could legitimately do
      --  so, since the program is erroneous, but we don't like to casually
      --  propagate such conclusions from erroneosity).

      if Access_Checks_Suppressed (Typ) then
         return;
      end if;

      --  No check needed for access to concurrent record types generated by
      --  the expander. This is not just an optimization (though it does indeed
      --  remove junk checks). It also avoids generation of junk warnings.

      if Nkind (N) in N_Has_Chars
        and then Chars (N) = Name_uObject
        and then Is_Concurrent_Record_Type
                   (Directly_Designated_Type (Etype (N)))
      then
         return;
      end if;

      --  No check needed in interface thunks since the runtime check is
      --  already performed at the caller side.

      if Is_Thunk (Current_Scope) then
         return;
      end if;

      --  In GNATprove mode, we do not apply the check

      if GNATprove_Mode then
         return;
      end if;

      --  Otherwise install access check

      Insert_Action (N,
        Make_Raise_Constraint_Error (Loc,
          Condition =>
            Make_Op_Eq (Loc,
              Left_Opnd  => Duplicate_Subexpr_Move_Checks (N),
              Right_Opnd => Make_Null (Loc)),
          Reason => CE_Access_Check_Failed));

      --  Mark the entity of N "non-null" except when assertions are enabled -
      --  since expansion becomes much more complicated (especially when it
      --  comes to contracts) due to the generation of wrappers and wholesale
      --  moving of declarations and statements which may happen.

      --  Additionally, it is assumed that extra checks will exist with
      --  assertions enabled so some potentially redundant checks are
      --  acceptable.

      if not Assertions_Enabled then
         Mark_Non_Null;
      end if;
   end Install_Null_Excluding_Check;

   -----------------------------------------
   -- Install_Primitive_Elaboration_Check --
   -----------------------------------------

   procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
      function Within_Compilation_Unit_Instance
        (Subp_Id : Entity_Id) return Boolean;
      --  Determine whether subprogram Subp_Id appears within an instance which
      --  acts as a compilation unit.

      --------------------------------------
      -- Within_Compilation_Unit_Instance --
      --------------------------------------

      function Within_Compilation_Unit_Instance
        (Subp_Id : Entity_Id) return Boolean
      is
         Pack : Entity_Id;

      begin
         --  Examine the scope chain looking for a compilation-unit-level
         --  instance.

         Pack := Scope (Subp_Id);
         while Present (Pack) and then Pack /= Standard_Standard loop
            if Ekind (Pack) = E_Package
              and then Is_Generic_Instance (Pack)
              and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
                         N_Compilation_Unit
            then
               return True;
            end if;

            Pack := Scope (Pack);
         end loop;

         return False;
      end Within_Compilation_Unit_Instance;

      --  Local declarations

      Context   : constant Node_Id    := Parent (Subp_Body);
      Loc       : constant Source_Ptr := Sloc (Subp_Body);
      Subp_Id   : constant Entity_Id  := Unique_Defining_Entity (Subp_Body);
      Subp_Decl : constant Node_Id    := Unit_Declaration_Node (Subp_Id);

      Decls    : List_Id;
      Flag_Id  : Entity_Id;
      Set_Ins  : Node_Id;
      Set_Stmt : Node_Id;
      Tag_Typ  : Entity_Id;

   --  Start of processing for Install_Primitive_Elaboration_Check

   begin
      --  Do not generate an elaboration check in compilation modes where
      --  expansion is not desirable.

      if GNATprove_Mode then
         return;

      --  Do not generate an elaboration check if all checks have been
      --  suppressed.

      elsif Suppress_Checks then
         return;

      --  Do not generate an elaboration check if the related subprogram is
      --  not subject to elaboration checks.

      elsif Elaboration_Checks_Suppressed (Subp_Id) then
         return;

      --  Do not generate an elaboration check if such code is not desirable

      elsif Restriction_Active (No_Elaboration_Code) then
         return;

      --  If pragma Pure or Preelaborate applies, then these elaboration checks
      --  cannot fail, so do not generate them.

      elsif In_Preelaborated_Unit then
         return;

      --  Do not generate an elaboration check if exceptions cannot be used,
      --  caught, or propagated.

      elsif not Exceptions_OK then
         return;

      --  Do not consider subprograms that are compilation units, because they
      --  cannot be the target of a dispatching call.

      elsif Nkind (Context) = N_Compilation_Unit then
         return;

      --  Do not consider anything other than nonabstract library-level source
      --  primitives.

      elsif not
        (Comes_From_Source (Subp_Id)
          and then Is_Library_Level_Entity (Subp_Id)
          and then Is_Primitive (Subp_Id)
          and then not Is_Abstract_Subprogram (Subp_Id))
      then
         return;

      --  Do not consider inlined primitives, because once the body is inlined
      --  the reference to the elaboration flag will be out of place and will
      --  result in an undefined symbol.

      elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
         return;

      --  Do not generate a duplicate elaboration check. This happens only in
      --  the case of primitives completed by an expression function, as the
      --  corresponding body is apparently analyzed and expanded twice.

      elsif Analyzed (Subp_Body) then
         return;

      --  Do not consider primitives that occur within an instance that is a
      --  compilation unit. Such an instance defines its spec and body out of
      --  order (body is first) within the tree, which causes the reference to
      --  the elaboration flag to appear as an undefined symbol.

      elsif Within_Compilation_Unit_Instance (Subp_Id) then
         return;
      end if;

      Tag_Typ := Find_Dispatching_Type (Subp_Id);

      --  Only tagged primitives may be the target of a dispatching call

      if No (Tag_Typ) then
         return;

      --  Do not consider finalization-related primitives, because they may
      --  need to be called while elaboration is taking place.

      elsif Is_Controlled (Tag_Typ)
        and then
          Chars (Subp_Id) in Name_Adjust | Name_Finalize | Name_Initialize
      then
         return;
      end if;

      --  Create the declaration of the elaboration flag. The name carries a
      --  unique counter in case of name overloading.

      Flag_Id :=
        Make_Defining_Identifier (Loc,
          Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
      Set_Is_Frozen (Flag_Id);

      --  Insert the declaration of the elaboration flag in front of the
      --  primitive spec and analyze it in the proper context.

      Push_Scope (Scope (Subp_Id));

      --  Generate:
      --    E : Boolean := False;

      Insert_Action (Subp_Decl,
        Make_Object_Declaration (Loc,
          Defining_Identifier => Flag_Id,
          Object_Definition   => New_Occurrence_Of (Standard_Boolean, Loc),
          Expression          => New_Occurrence_Of (Standard_False, Loc)));
      Pop_Scope;

      --  Prevent the compiler from optimizing the elaboration check by killing
      --  the current value of the flag and the associated assignment.

      Set_Current_Value   (Flag_Id, Empty);
      Set_Last_Assignment (Flag_Id, Empty);

      --  Add a check at the top of the body declarations to ensure that the
      --  elaboration flag has been set.

      Decls := Declarations (Subp_Body);

      if No (Decls) then
         Decls := New_List;
         Set_Declarations (Subp_Body, Decls);
      end if;

      --  Generate:
      --    if not F then
      --       raise Program_Error with "access before elaboration";
      --    end if;

      Prepend_To (Decls,
        Make_Raise_Program_Error (Loc,
          Condition =>
            Make_Op_Not (Loc,
              Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
          Reason    => PE_Access_Before_Elaboration));

      Analyze (First (Decls));

      --  Set the elaboration flag once the body has been elaborated. Insert
      --  the statement after the subprogram stub when the primitive body is
      --  a subunit.

      if Nkind (Context) = N_Subunit then
         Set_Ins := Corresponding_Stub (Context);
      else
         Set_Ins := Subp_Body;
      end if;

      --  Generate:
      --    E := True;

      Set_Stmt :=
        Make_Assignment_Statement (Loc,
          Name       => New_Occurrence_Of (Flag_Id, Loc),
          Expression => New_Occurrence_Of (Standard_True, Loc));

      --  Mark the assignment statement as elaboration code. This allows the
      --  early call region mechanism (see Sem_Elab) to properly ignore such
      --  assignments even though they are non-preelaborable code.

      Set_Is_Elaboration_Code (Set_Stmt);

      Insert_After_And_Analyze (Set_Ins, Set_Stmt);
   end Install_Primitive_Elaboration_Check;

   --------------------------
   -- Install_Static_Check --
   --------------------------

   procedure Install_Static_Check
     (R_Cno : Node_Id; Loc : Source_Ptr; Reason : RT_Exception_Code)
   is
      Stat : constant Boolean   := Is_OK_Static_Expression (R_Cno);
      Typ  : constant Entity_Id := Etype (R_Cno);

   begin
      Rewrite (R_Cno,
        Make_Raise_Constraint_Error (Loc,
          Reason => Reason));
      Set_Analyzed (R_Cno);
      Set_Etype (R_Cno, Typ);
      Set_Raises_Constraint_Error (R_Cno);
      Set_Is_Static_Expression (R_Cno, Stat);

      --  Now deal with possible local raise handling

      Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
   end Install_Static_Check;

   -------------------------
   -- Is_Check_Suppressed --
   -------------------------

   function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
      Ptr : Suppress_Stack_Entry_Ptr;

   begin
      --  First search the local entity suppress stack. We search this from the
      --  top of the stack down so that we get the innermost entry that applies
      --  to this case if there are nested entries.

      Ptr := Local_Suppress_Stack_Top;
      while Ptr /= null loop
         if (Ptr.Entity = Empty or else Ptr.Entity = E)
           and then (Ptr.Check = All_Checks or else Ptr.Check = C)
         then
            return Ptr.Suppress;
         end if;

         Ptr := Ptr.Prev;
      end loop;

      --  Now search the global entity suppress table for a matching entry.
      --  We also search this from the top down so that if there are multiple
      --  pragmas for the same entity, the last one applies (not clear what
      --  or whether the RM specifies this handling, but it seems reasonable).

      Ptr := Global_Suppress_Stack_Top;
      while Ptr /= null loop
         if (Ptr.Entity = Empty or else Ptr.Entity = E)
           and then (Ptr.Check = All_Checks or else Ptr.Check = C)
         then
            return Ptr.Suppress;
         end if;

         Ptr := Ptr.Prev;
      end loop;

      --  If we did not find a matching entry, then use the normal scope
      --  suppress value after all (actually this will be the global setting
      --  since it clearly was not overridden at any point). For a predefined
      --  check, we test the specific flag. For a user defined check, we check
      --  the All_Checks flag. The Overflow flag requires special handling to
      --  deal with the General vs Assertion case.

      if C = Overflow_Check then
         return Overflow_Checks_Suppressed (Empty);

      elsif C in Predefined_Check_Id then
         return Scope_Suppress.Suppress (C);

      else
         return Scope_Suppress.Suppress (All_Checks);
      end if;
   end Is_Check_Suppressed;

   ---------------------
   -- Kill_All_Checks --
   ---------------------

   procedure Kill_All_Checks is
   begin
      if Debug_Flag_CC then
         w ("Kill_All_Checks");
      end if;

      --  We reset the number of saved checks to zero, and also modify all
      --  stack entries for statement ranges to indicate that the number of
      --  checks at each level is now zero.

      Num_Saved_Checks := 0;

      --  Note: the Int'Min here avoids any possibility of J being out of
      --  range when called from e.g. Conditional_Statements_Begin.

      for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
         Saved_Checks_Stack (J) := 0;
      end loop;
   end Kill_All_Checks;

   -----------------
   -- Kill_Checks --
   -----------------

   procedure Kill_Checks (V : Entity_Id) is
   begin
      if Debug_Flag_CC then
         w ("Kill_Checks for entity", Int (V));
      end if;

      for J in 1 .. Num_Saved_Checks loop
         if Saved_Checks (J).Entity = V then
            if Debug_Flag_CC then
               w ("   Checks killed for saved check ", J);
            end if;

            Saved_Checks (J).Killed := True;
         end if;
      end loop;
   end Kill_Checks;

   ------------------------------
   -- Length_Checks_Suppressed --
   ------------------------------

   function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Length_Check);
      else
         return Scope_Suppress.Suppress (Length_Check);
      end if;
   end Length_Checks_Suppressed;

   -----------------------
   -- Make_Bignum_Block --
   -----------------------

   function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
      M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
   begin
      return
        Make_Block_Statement (Loc,
          Declarations               =>
            New_List (Build_SS_Mark_Call (Loc, M)),
          Handled_Statement_Sequence =>
            Make_Handled_Sequence_Of_Statements (Loc,
              Statements => New_List (Build_SS_Release_Call (Loc, M))));
   end Make_Bignum_Block;

   ----------------------------------
   -- Minimize_Eliminate_Overflows --
   ----------------------------------

   --  This is a recursive routine that is called at the top of an expression
   --  tree to properly process overflow checking for a whole subtree by making
   --  recursive calls to process operands. This processing may involve the use
   --  of bignum or long long integer arithmetic, which will change the types
   --  of operands and results. That's why we can't do this bottom up (since
   --  it would interfere with semantic analysis).

   --  What happens is that if MINIMIZED/ELIMINATED mode is in effect then
   --  the operator expansion routines, as well as the expansion routines for
   --  if/case expression, do nothing (for the moment) except call the routine
   --  to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
   --  routine does nothing for non top-level nodes, so at the point where the
   --  call is made for the top level node, the entire expression subtree has
   --  not been expanded, or processed for overflow. All that has to happen as
   --  a result of the top level call to this routine.

   --  As noted above, the overflow processing works by making recursive calls
   --  for the operands, and figuring out what to do, based on the processing
   --  of these operands (e.g. if a bignum operand appears, the parent op has
   --  to be done in bignum mode), and the determined ranges of the operands.

   --  After possible rewriting of a constituent subexpression node, a call is
   --  made to either reexpand the node (if nothing has changed) or reanalyze
   --  the node (if it has been modified by the overflow check processing). The
   --  Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
   --  a recursive call into the whole overflow apparatus, an important rule
   --  for this call is that the overflow handling mode must be temporarily set
   --  to STRICT.

   procedure Minimize_Eliminate_Overflows
     (N         : Node_Id;
      Lo        : out Uint;
      Hi        : out Uint;
      Top_Level : Boolean)
   is
      Rtyp : constant Entity_Id := Etype (N);
      pragma Assert (Is_Signed_Integer_Type (Rtyp));
      --  Result type, must be a signed integer type

      Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
      pragma Assert (Check_Mode in Minimized_Or_Eliminated);

      Loc : constant Source_Ptr := Sloc (N);

      Rlo, Rhi : Uint;
      --  Ranges of values for right operand (operator case)

      Llo : Uint := No_Uint;  -- initialize to prevent warning
      Lhi : Uint := No_Uint;  -- initialize to prevent warning
      --  Ranges of values for left operand (operator case)

      LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
      --  Operands and results are of this type when we convert

      LLLo : constant Uint := Intval (Type_Low_Bound  (LLIB));
      LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
      --  Bounds of Long_Long_Integer

      Binary : constant Boolean := Nkind (N) in N_Binary_Op;
      --  Indicates binary operator case

      OK : Boolean;
      --  Used in call to Determine_Range

      Bignum_Operands : Boolean;
      --  Set True if one or more operands is already of type Bignum, meaning
      --  that for sure (regardless of Top_Level setting) we are committed to
      --  doing the operation in Bignum mode (or in the case of a case or if
      --  expression, converting all the dependent expressions to Bignum).

      Long_Long_Integer_Operands : Boolean;
      --  Set True if one or more operands is already of type Long_Long_Integer
      --  which means that if the result is known to be in the result type
      --  range, then we must convert such operands back to the result type.

      procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
      --  This is called when we have modified the node and we therefore need
      --  to reanalyze it. It is important that we reset the mode to STRICT for
      --  this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
      --  we would reenter this routine recursively which would not be good.
      --  The argument Suppress is set True if we also want to suppress
      --  overflow checking for the reexpansion (this is set when we know
      --  overflow is not possible). Typ is the type for the reanalysis.

      procedure Reexpand (Suppress : Boolean := False);
      --  This is like Reanalyze, but does not do the Analyze step, it only
      --  does a reexpansion. We do this reexpansion in STRICT mode, so that
      --  instead of reentering the MINIMIZED/ELIMINATED mode processing, we
      --  follow the normal expansion path (e.g. converting A**4 to A**2**2).
      --  Note that skipping reanalysis is not just an optimization, testing
      --  has showed up several complex cases in which reanalyzing an already
      --  analyzed node causes incorrect behavior.

      function In_Result_Range return Boolean;
      --  Returns True iff Lo .. Hi are within range of the result type

      procedure Max (A : in out Uint; B : Uint);
      --  If A is No_Uint, sets A to B, else to UI_Max (A, B)

      procedure Min (A : in out Uint; B : Uint);
      --  If A is No_Uint, sets A to B, else to UI_Min (A, B)

      ---------------------
      -- In_Result_Range --
      ---------------------

      function In_Result_Range return Boolean is
      begin
         if No (Lo) or else No (Hi) then
            return False;

         elsif Is_OK_Static_Subtype (Etype (N)) then
            return Lo >= Expr_Value (Type_Low_Bound  (Rtyp))
                     and then
                   Hi <= Expr_Value (Type_High_Bound (Rtyp));

         else
            return Lo >= Expr_Value (Type_Low_Bound  (Base_Type (Rtyp)))
                     and then
                   Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
         end if;
      end In_Result_Range;

      ---------
      -- Max --
      ---------

      procedure Max (A : in out Uint; B : Uint) is
      begin
         if No (A) or else B > A then
            A := B;
         end if;
      end Max;

      ---------
      -- Min --
      ---------

      procedure Min (A : in out Uint; B : Uint) is
      begin
         if No (A) or else B < A then
            A := B;
         end if;
      end Min;

      ---------------
      -- Reanalyze --
      ---------------

      procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
         Svg : constant Overflow_Mode_Type :=
                 Scope_Suppress.Overflow_Mode_General;
         Sva : constant Overflow_Mode_Type :=
                 Scope_Suppress.Overflow_Mode_Assertions;
         Svo : constant Boolean             :=
                 Scope_Suppress.Suppress (Overflow_Check);

      begin
         Scope_Suppress.Overflow_Mode_General    := Strict;
         Scope_Suppress.Overflow_Mode_Assertions := Strict;

         if Suppress then
            Scope_Suppress.Suppress (Overflow_Check) := True;
         end if;

         Analyze_And_Resolve (N, Typ);

         Scope_Suppress.Suppress (Overflow_Check) := Svo;
         Scope_Suppress.Overflow_Mode_General     := Svg;
         Scope_Suppress.Overflow_Mode_Assertions  := Sva;
      end Reanalyze;

      --------------
      -- Reexpand --
      --------------

      procedure Reexpand (Suppress : Boolean := False) is
         Svg : constant Overflow_Mode_Type :=
                 Scope_Suppress.Overflow_Mode_General;
         Sva : constant Overflow_Mode_Type :=
                 Scope_Suppress.Overflow_Mode_Assertions;
         Svo : constant Boolean             :=
                 Scope_Suppress.Suppress (Overflow_Check);

      begin
         Scope_Suppress.Overflow_Mode_General    := Strict;
         Scope_Suppress.Overflow_Mode_Assertions := Strict;
         Set_Analyzed (N, False);

         if Suppress then
            Scope_Suppress.Suppress (Overflow_Check) := True;
         end if;

         Expand (N);

         Scope_Suppress.Suppress (Overflow_Check) := Svo;
         Scope_Suppress.Overflow_Mode_General     := Svg;
         Scope_Suppress.Overflow_Mode_Assertions  := Sva;
      end Reexpand;

   --  Start of processing for Minimize_Eliminate_Overflows

   begin
      --  Default initialize Lo and Hi since these are not guaranteed to be
      --  set otherwise.

      Lo := No_Uint;
      Hi := No_Uint;

      --  Case where we do not have a signed integer arithmetic operation

      if not Is_Signed_Integer_Arithmetic_Op (N) then

         --  Use the normal Determine_Range routine to get the range. We
         --  don't require operands to be valid, invalid values may result in
         --  rubbish results where the result has not been properly checked for
         --  overflow, that's fine.

         Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);

         --  If Determine_Range did not work (can this in fact happen? Not
         --  clear but might as well protect), use type bounds.

         if not OK then
            Lo := Intval (Type_Low_Bound  (Base_Type (Etype (N))));
            Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
         end if;

         --  If we don't have a binary operator, all we have to do is to set
         --  the Hi/Lo range, so we are done.

         return;

      --  Processing for if expression

      elsif Nkind (N) = N_If_Expression then
         declare
            Then_DE : constant Node_Id := Next (First (Expressions (N)));
            Else_DE : constant Node_Id := Next (Then_DE);

         begin
            Bignum_Operands := False;

            Minimize_Eliminate_Overflows
              (Then_DE, Lo, Hi, Top_Level => False);

            if No (Lo) then
               Bignum_Operands := True;
            end if;

            Minimize_Eliminate_Overflows
              (Else_DE, Rlo, Rhi, Top_Level => False);

            if No (Rlo) then
               Bignum_Operands := True;
            else
               Long_Long_Integer_Operands :=
                 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;

               Min (Lo, Rlo);
               Max (Hi, Rhi);
            end if;

            --  If at least one of our operands is now Bignum, we must rebuild
            --  the if expression to use Bignum operands. We will analyze the
            --  rebuilt if expression with overflow checks off, since once we
            --  are in bignum mode, we are all done with overflow checks.

            if Bignum_Operands then
               Rewrite (N,
                 Make_If_Expression (Loc,
                   Expressions => New_List (
                     Remove_Head (Expressions (N)),
                     Convert_To_Bignum (Then_DE),
                     Convert_To_Bignum (Else_DE)),
                   Is_Elsif    => Is_Elsif (N)));

               Reanalyze (RTE (RE_Bignum), Suppress => True);

            --  If we have no Long_Long_Integer operands, then we are in result
            --  range, since it means that none of our operands felt the need
            --  to worry about overflow (otherwise it would have already been
            --  converted to long long integer or bignum). We reexpand to
            --  complete the expansion of the if expression (but we do not
            --  need to reanalyze).

            elsif not Long_Long_Integer_Operands then
               Set_Do_Overflow_Check (N, False);
               Reexpand;

            --  Otherwise convert us to long long integer mode. Note that we
            --  don't need any further overflow checking at this level.

            else
               Convert_To_And_Rewrite (LLIB, Then_DE);
               Convert_To_And_Rewrite (LLIB, Else_DE);
               Set_Etype (N, LLIB);

               --  Now reanalyze with overflow checks off

               Set_Do_Overflow_Check (N, False);
               Reanalyze (LLIB, Suppress => True);
            end if;
         end;

         return;

      --  Here for case expression

      elsif Nkind (N) = N_Case_Expression then
         Bignum_Operands := False;
         Long_Long_Integer_Operands := False;

         declare
            Alt : Node_Id;

         begin
            --  Loop through expressions applying recursive call

            Alt := First (Alternatives (N));
            while Present (Alt) loop
               declare
                  Aexp : constant Node_Id := Expression (Alt);

               begin
                  Minimize_Eliminate_Overflows
                    (Aexp, Lo, Hi, Top_Level => False);

                  if No (Lo) then
                     Bignum_Operands := True;
                  elsif Etype (Aexp) = LLIB then
                     Long_Long_Integer_Operands := True;
                  end if;
               end;

               Next (Alt);
            end loop;

            --  If we have no bignum or long long integer operands, it means
            --  that none of our dependent expressions could raise overflow.
            --  In this case, we simply return with no changes except for
            --  resetting the overflow flag, since we are done with overflow
            --  checks for this node. We will reexpand to get the needed
            --  expansion for the case expression, but we do not need to
            --  reanalyze, since nothing has changed.

            if not (Bignum_Operands or Long_Long_Integer_Operands) then
               Set_Do_Overflow_Check (N, False);
               Reexpand (Suppress => True);

            --  Otherwise we are going to rebuild the case expression using
            --  either bignum or long long integer operands throughout.

            else
               declare
                  Rtype    : Entity_Id := Empty;
                  New_Alts : List_Id;
                  New_Exp  : Node_Id;

               begin
                  New_Alts := New_List;
                  Alt := First (Alternatives (N));
                  while Present (Alt) loop
                     if Bignum_Operands then
                        New_Exp := Convert_To_Bignum (Expression (Alt));
                        Rtype   := RTE (RE_Bignum);
                     else
                        New_Exp := Convert_To (LLIB, Expression (Alt));
                        Rtype   := LLIB;
                     end if;

                     Append_To (New_Alts,
                       Make_Case_Expression_Alternative (Sloc (Alt),
                         Discrete_Choices => Discrete_Choices (Alt),
                         Expression       => New_Exp));

                     Next (Alt);
                  end loop;

                  Rewrite (N,
                    Make_Case_Expression (Loc,
                      Expression   => Expression (N),
                      Alternatives => New_Alts));

                  pragma Assert (Present (Rtype));
                  Reanalyze (Rtype, Suppress => True);
               end;
            end if;
         end;

         return;
      end if;

      --  If we have an arithmetic operator we make recursive calls on the
      --  operands to get the ranges (and to properly process the subtree
      --  that lies below us).

      Minimize_Eliminate_Overflows
        (Right_Opnd (N), Rlo, Rhi, Top_Level => False);

      if Binary then
         Minimize_Eliminate_Overflows
           (Left_Opnd (N), Llo, Lhi, Top_Level => False);
      end if;

      --  Record if we have Long_Long_Integer operands

      Long_Long_Integer_Operands :=
        Etype (Right_Opnd (N)) = LLIB
          or else (Binary and then Etype (Left_Opnd (N)) = LLIB);

      --  If either operand is a bignum, then result will be a bignum and we
      --  don't need to do any range analysis. As previously discussed we could
      --  do range analysis in such cases, but it could mean working with giant
      --  numbers at compile time for very little gain (the number of cases
      --  in which we could slip back from bignum mode is small).

      if No (Rlo) or else (Binary and then No (Llo)) then
         Lo := No_Uint;
         Hi := No_Uint;
         Bignum_Operands := True;

      --  Otherwise compute result range

      else
         Compute_Range_For_Arithmetic_Op
           (Nkind (N), Llo, Lhi, Rlo, Rhi, OK, Lo, Hi);
         Bignum_Operands := False;
      end if;

      --  Here for the case where we have not rewritten anything (no bignum
      --  operands or long long integer operands), and we know the result.
      --  If we know we are in the result range, and we do not have Bignum
      --  operands or Long_Long_Integer operands, we can just reexpand with
      --  overflow checks turned off (since we know we cannot have overflow).
      --  As always the reexpansion is required to complete expansion of the
      --  operator, but we do not need to reanalyze, and we prevent recursion
      --  by suppressing the check.

      if not (Bignum_Operands or Long_Long_Integer_Operands)
        and then In_Result_Range
      then
         Set_Do_Overflow_Check (N, False);
         Reexpand (Suppress => True);
         return;

      --  Here we know that we are not in the result range, and in the general
      --  case we will move into either the Bignum or Long_Long_Integer domain
      --  to compute the result. However, there is one exception. If we are
      --  at the top level, and we do not have Bignum or Long_Long_Integer
      --  operands, we will have to immediately convert the result back to
      --  the result type, so there is no point in Bignum/Long_Long_Integer
      --  fiddling.

      elsif Top_Level
        and then not (Bignum_Operands or Long_Long_Integer_Operands)

        --  One further refinement. If we are at the top level, but our parent
        --  is a type conversion, then go into bignum or long long integer node
        --  since the result will be converted to that type directly without
        --  going through the result type, and we may avoid an overflow. This
        --  is the case for example of Long_Long_Integer (A ** 4), where A is
        --  of type Integer, and the result A ** 4 fits in Long_Long_Integer
        --  but does not fit in Integer.

        and then Nkind (Parent (N)) /= N_Type_Conversion
      then
         --  Here keep original types, but we need to complete analysis

         --  One subtlety. We can't just go ahead and do an analyze operation
         --  here because it will cause recursion into the whole MINIMIZED/
         --  ELIMINATED overflow processing which is not what we want. Here
         --  we are at the top level, and we need a check against the result
         --  mode (i.e. we want to use STRICT mode). So do exactly that.
         --  Also, we have not modified the node, so this is a case where
         --  we need to reexpand, but not reanalyze.

         Reexpand;
         return;

      --  Cases where we do the operation in Bignum mode. This happens either
      --  because one of our operands is in Bignum mode already, or because
      --  the computed bounds are outside the bounds of Long_Long_Integer,
      --  which in some cases can be indicated by Hi and Lo being No_Uint.

      --  Note: we could do better here and in some cases switch back from
      --  Bignum mode to normal mode, e.g. big mod 2 must be in the range
      --  0 .. 1, but the cases are rare and it is not worth the effort.
      --  Failing to do this switching back is only an efficiency issue.

      elsif No (Lo) or else Lo < LLLo or else Hi > LLHi then

         --  OK, we are definitely outside the range of Long_Long_Integer. The
         --  question is whether to move to Bignum mode, or stay in the domain
         --  of Long_Long_Integer, signalling that an overflow check is needed.

         --  Obviously in MINIMIZED mode we stay with LLI, since we are not in
         --  the Bignum business. In ELIMINATED mode, we will normally move
         --  into Bignum mode, but there is an exception if neither of our
         --  operands is Bignum now, and we are at the top level (Top_Level
         --  set True). In this case, there is no point in moving into Bignum
         --  mode to prevent overflow if the caller will immediately convert
         --  the Bignum value back to LLI with an overflow check. It's more
         --  efficient to stay in LLI mode with an overflow check (if needed)

         if Check_Mode = Minimized
           or else (Top_Level and not Bignum_Operands)
         then
            if Do_Overflow_Check (N) then
               Enable_Overflow_Check (N);
            end if;

            --  The result now has to be in Long_Long_Integer mode, so adjust
            --  the possible range to reflect this. Note these calls also
            --  change No_Uint values from the top level case to LLI bounds.

            Max (Lo, LLLo);
            Min (Hi, LLHi);

         --  Otherwise we are in ELIMINATED mode and we switch to Bignum mode

         else
            pragma Assert (Check_Mode = Eliminated);

            declare
               Fent : Entity_Id;
               Args : List_Id;

            begin
               case Nkind (N) is
                  when N_Op_Abs =>
                     Fent := RTE (RE_Big_Abs);

                  when N_Op_Add =>
                     Fent := RTE (RE_Big_Add);

                  when N_Op_Divide =>
                     Fent := RTE (RE_Big_Div);

                  when N_Op_Expon =>
                     Fent := RTE (RE_Big_Exp);

                  when N_Op_Minus =>
                     Fent := RTE (RE_Big_Neg);

                  when N_Op_Mod =>
                     Fent := RTE (RE_Big_Mod);

                  when N_Op_Multiply =>
                     Fent := RTE (RE_Big_Mul);

                  when N_Op_Rem =>
                     Fent := RTE (RE_Big_Rem);

                  when N_Op_Subtract =>
                     Fent := RTE (RE_Big_Sub);

                  --  Anything else is an internal error, this includes the
                  --  N_Op_Plus case, since how can plus cause the result
                  --  to be out of range if the operand is in range?

                  when others =>
                     raise Program_Error;
               end case;

               --  Construct argument list for Bignum call, converting our
               --  operands to Bignum form if they are not already there.

               Args := New_List;

               if Binary then
                  Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
               end if;

               Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));

               --  Now rewrite the arithmetic operator with a call to the
               --  corresponding bignum function.

               Rewrite (N,
                 Make_Function_Call (Loc,
                   Name                   => New_Occurrence_Of (Fent, Loc),
                   Parameter_Associations => Args));
               Reanalyze (RTE (RE_Bignum), Suppress => True);

               --  Indicate result is Bignum mode

               Lo := No_Uint;
               Hi := No_Uint;
               return;
            end;
         end if;

      --  Otherwise we are in range of Long_Long_Integer, so no overflow
      --  check is required, at least not yet.

      else
         Set_Do_Overflow_Check (N, False);
      end if;

      --  Here we are not in Bignum territory, but we may have long long
      --  integer operands that need special handling. First a special check:
      --  If an exponentiation operator exponent is of type Long_Long_Integer,
      --  it means we converted it to prevent overflow, but exponentiation
      --  requires a Natural right operand, so convert it back to Natural.
      --  This conversion may raise an exception which is fine.

      if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
         Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
      end if;

      --  Here we will do the operation in Long_Long_Integer. We do this even
      --  if we know an overflow check is required, better to do this in long
      --  long integer mode, since we are less likely to overflow.

      --  Convert right or only operand to Long_Long_Integer, except that
      --  we do not touch the exponentiation right operand.

      if Nkind (N) /= N_Op_Expon then
         Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
      end if;

      --  Convert left operand to Long_Long_Integer for binary case

      if Binary then
         Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
      end if;

      --  Reset node to unanalyzed

      Set_Analyzed (N, False);
      Set_Etype (N, Empty);
      Set_Entity (N, Empty);

      --  Now analyze this new node. This reanalysis will complete processing
      --  for the node. In particular we will complete the expansion of an
      --  exponentiation operator (e.g. changing A ** 2 to A * A), and also
      --  we will complete any division checks (since we have not changed the
      --  setting of the Do_Division_Check flag).

      --  We do this reanalysis in STRICT mode to avoid recursion into the
      --  MINIMIZED/ELIMINATED handling, since we are now done with that.

      declare
         SG : constant Overflow_Mode_Type :=
                Scope_Suppress.Overflow_Mode_General;
         SA : constant Overflow_Mode_Type :=
                Scope_Suppress.Overflow_Mode_Assertions;

      begin
         Scope_Suppress.Overflow_Mode_General    := Strict;
         Scope_Suppress.Overflow_Mode_Assertions := Strict;

         if not Do_Overflow_Check (N) then
            Reanalyze (LLIB, Suppress => True);
         else
            Reanalyze (LLIB);
         end if;

         Scope_Suppress.Overflow_Mode_General    := SG;
         Scope_Suppress.Overflow_Mode_Assertions := SA;
      end;
   end Minimize_Eliminate_Overflows;

   -------------------------
   -- Overflow_Check_Mode --
   -------------------------

   function Overflow_Check_Mode return Overflow_Mode_Type is
   begin
      if In_Assertion_Expr = 0 then
         return Scope_Suppress.Overflow_Mode_General;
      else
         return Scope_Suppress.Overflow_Mode_Assertions;
      end if;
   end Overflow_Check_Mode;

   --------------------------------
   -- Overflow_Checks_Suppressed --
   --------------------------------

   function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Overflow_Check);
      else
         return Scope_Suppress.Suppress (Overflow_Check);
      end if;
   end Overflow_Checks_Suppressed;

   ---------------------------------
   -- Predicate_Checks_Suppressed --
   ---------------------------------

   function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Predicate_Check);
      else
         return Scope_Suppress.Suppress (Predicate_Check);
      end if;
   end Predicate_Checks_Suppressed;

   -----------------------------
   -- Range_Checks_Suppressed --
   -----------------------------

   function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) then
         if Kill_Range_Checks (E) then
            return True;

         elsif Checks_May_Be_Suppressed (E) then
            return Is_Check_Suppressed (E, Range_Check);
         end if;
      end if;

      return Scope_Suppress.Suppress (Range_Check);
   end Range_Checks_Suppressed;

   -----------------------------------------
   -- Range_Or_Validity_Checks_Suppressed --
   -----------------------------------------

   --  Note: the coding would be simpler here if we simply made appropriate
   --  calls to Range/Validity_Checks_Suppressed, but that would result in
   --  duplicated checks which we prefer to avoid.

   function Range_Or_Validity_Checks_Suppressed
     (Expr : Node_Id) return Boolean
   is
   begin
      --  Immediate return if scope checks suppressed for either check

      if Scope_Suppress.Suppress (Range_Check)
           or
         Scope_Suppress.Suppress (Validity_Check)
      then
         return True;
      end if;

      --  If no expression, that's odd, decide that checks are suppressed,
      --  since we don't want anyone trying to do checks in this case, which
      --  is most likely the result of some other error.

      if No (Expr) then
         return True;
      end if;

      --  Expression is present, so perform suppress checks on type

      declare
         Typ : constant Entity_Id := Etype (Expr);
      begin
         if Checks_May_Be_Suppressed (Typ)
           and then (Is_Check_Suppressed (Typ, Range_Check)
                       or else
                     Is_Check_Suppressed (Typ, Validity_Check))
         then
            return True;
         end if;
      end;

      --  If expression is an entity name, perform checks on this entity

      if Is_Entity_Name (Expr) then
         declare
            Ent : constant Entity_Id := Entity (Expr);
         begin
            if Checks_May_Be_Suppressed (Ent) then
               return Is_Check_Suppressed (Ent, Range_Check)
                 or else Is_Check_Suppressed (Ent, Validity_Check);
            end if;
         end;
      end if;

      --  If we fall through, no checks suppressed

      return False;
   end Range_Or_Validity_Checks_Suppressed;

   -------------------
   -- Remove_Checks --
   -------------------

   procedure Remove_Checks (Expr : Node_Id) is
      function Process (N : Node_Id) return Traverse_Result;
      --  Process a single node during the traversal

      procedure Traverse is new Traverse_Proc (Process);
      --  The traversal procedure itself

      -------------
      -- Process --
      -------------

      function Process (N : Node_Id) return Traverse_Result is
      begin
         if Nkind (N) not in N_Subexpr then
            return Skip;
         end if;

         Set_Do_Range_Check (N, False);

         case Nkind (N) is
            when N_And_Then =>
               Traverse (Left_Opnd (N));
               return Skip;

            when N_Attribute_Reference =>
               Set_Do_Overflow_Check (N, False);

            when N_Op =>
               Set_Do_Overflow_Check (N, False);

               case Nkind (N) is
                  when N_Op_Divide =>
                     Set_Do_Division_Check (N, False);

                  when N_Op_And =>
                     Set_Do_Length_Check (N, False);

                  when N_Op_Mod =>
                     Set_Do_Division_Check (N, False);

                  when N_Op_Or =>
                     Set_Do_Length_Check (N, False);

                  when N_Op_Rem =>
                     Set_Do_Division_Check (N, False);

                  when N_Op_Xor =>
                     Set_Do_Length_Check (N, False);

                  when others =>
                     null;
               end case;

            when N_Or_Else =>
               Traverse (Left_Opnd (N));
               return Skip;

            when N_Selected_Component =>
               Set_Do_Discriminant_Check (N, False);

            when N_Type_Conversion =>
               Set_Do_Length_Check   (N, False);
               Set_Do_Overflow_Check (N, False);

            when others =>
               null;
         end case;

         return OK;
      end Process;

   --  Start of processing for Remove_Checks

   begin
      Traverse (Expr);
   end Remove_Checks;

   ----------------------------
   -- Selected_Length_Checks --
   ----------------------------

   function Selected_Length_Checks
     (Expr       : Node_Id;
      Target_Typ : Entity_Id;
      Source_Typ : Entity_Id;
      Warn_Node  : Node_Id) return Check_Result
   is
      Loc         : constant Source_Ptr := Sloc (Expr);
      S_Typ       : Entity_Id;
      T_Typ       : Entity_Id;
      Expr_Actual : Node_Id;
      Exptyp      : Entity_Id;
      Cond        : Node_Id := Empty;
      Do_Access   : Boolean := False;
      Wnode       : Node_Id := Warn_Node;
      Ret_Result  : Check_Result := (Empty, Empty);
      Num_Checks  : Natural := 0;

      procedure Add_Check (N : Node_Id);
      --  Adds the action given to Ret_Result if N is non-Empty

      function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
      --  Return E'Length (Indx)

      function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
      --  Return N'Length (Indx)

      function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
      --  True for equal literals and for nodes that denote the same constant
      --  entity, even if its value is not a static constant. This includes the
      --  case of a discriminal reference within an init proc. Removes some
      --  obviously superfluous checks.

      function Length_E_Cond
        (Exptyp : Entity_Id;
         Typ    : Entity_Id;
         Indx   : Nat) return Node_Id;
      --  Returns expression to compute:
      --    Typ'Length /= Exptyp'Length

      function Length_N_Cond
        (Exp  : Node_Id;
         Typ  : Entity_Id;
         Indx : Nat) return Node_Id;
      --  Returns expression to compute:
      --    Typ'Length /= Exp'Length

      function Length_Mismatch_Info_Message
        (Left_Element_Count  : Unat;
         Right_Element_Count : Unat) return String;
      --  Returns a message indicating how many elements were expected
      --  (Left_Element_Count) and how many were found (Right_Element_Count).

      ---------------
      -- Add_Check --
      ---------------

      procedure Add_Check (N : Node_Id) is
      begin
         if Present (N) then

            --  We do not support inserting more than 2 checks on the same
            --  node. If this happens it means we have already added an
            --  unconditional raise, so we can skip the other checks safely
            --  since N will always raise an exception.

            if Num_Checks = 2 then
               return;
            end if;

            pragma Assert (Num_Checks <= 1);
            Num_Checks := Num_Checks + 1;
            Ret_Result (Num_Checks) := N;
         end if;
      end Add_Check;

      ------------------
      -- Get_E_Length --
      ------------------

      function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
         SE : constant Entity_Id := Scope (E);
         N  : Node_Id;
         E1 : Entity_Id := E;

      begin
         if Ekind (Scope (E)) = E_Record_Type
           and then Has_Discriminants (Scope (E))
         then
            N := Build_Discriminal_Subtype_Of_Component (E);

            if Present (N) then
               Insert_Action (Expr, N);
               E1 := Defining_Identifier (N);
            end if;
         end if;

         if Ekind (E1) = E_String_Literal_Subtype then
            return
              Make_Integer_Literal (Loc,
                Intval => String_Literal_Length (E1));

         elsif SE /= Standard_Standard
           and then Ekind (Scope (SE)) = E_Protected_Type
           and then Has_Discriminants (Scope (SE))
           and then Has_Completion (Scope (SE))
           and then not Inside_Init_Proc
         then
            --  If the type whose length is needed is a private component
            --  constrained by a discriminant, we must expand the 'Length
            --  attribute into an explicit computation, using the discriminal
            --  of the current protected operation. This is because the actual
            --  type of the prival is constructed after the protected opera-
            --  tion has been fully expanded.

            declare
               Indx_Type : Node_Id;
               Bounds    : Range_Nodes;
               Do_Expand : Boolean := False;

            begin
               Indx_Type := First_Index (E);

               for J in 1 .. Indx - 1 loop
                  Next_Index (Indx_Type);
               end loop;

               Bounds := Get_Index_Bounds (Indx_Type);

               if Nkind (Bounds.First) = N_Identifier
                 and then Ekind (Entity (Bounds.First)) = E_In_Parameter
               then
                  Bounds.First := Get_Discriminal (E, Bounds.First);
                  Do_Expand := True;
               end if;

               if Nkind (Bounds.Last) = N_Identifier
                 and then Ekind (Entity (Bounds.Last)) = E_In_Parameter
               then
                  Bounds.Last := Get_Discriminal (E, Bounds.Last);
                  Do_Expand := True;
               end if;

               if Do_Expand then
                  if not Is_Entity_Name (Bounds.First) then
                     Bounds.First :=
                       Duplicate_Subexpr_No_Checks (Bounds.First);
                  end if;

                  if not Is_Entity_Name (Bounds.Last) then
                     Bounds.First := Duplicate_Subexpr_No_Checks (Bounds.Last);
                  end if;

                  N :=
                    Make_Op_Add (Loc,
                      Left_Opnd =>
                        Make_Op_Subtract (Loc,
                          Left_Opnd  => Bounds.Last,
                          Right_Opnd => Bounds.First),

                      Right_Opnd => Make_Integer_Literal (Loc, 1));
                  return N;

               else
                  N :=
                    Make_Attribute_Reference (Loc,
                      Attribute_Name => Name_Length,
                      Prefix =>
                        New_Occurrence_Of (E1, Loc));

                  if Indx > 1 then
                     Set_Expressions (N, New_List (
                       Make_Integer_Literal (Loc, Indx)));
                  end if;

                  return N;
               end if;
            end;

         else
            N :=
              Make_Attribute_Reference (Loc,
                Attribute_Name => Name_Length,
                Prefix =>
                  New_Occurrence_Of (E1, Loc));

            if Indx > 1 then
               Set_Expressions (N, New_List (
                 Make_Integer_Literal (Loc, Indx)));
            end if;

            return N;
         end if;
      end Get_E_Length;

      ------------------
      -- Get_N_Length --
      ------------------

      function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
      begin
         return
           Make_Attribute_Reference (Loc,
             Attribute_Name => Name_Length,
             Prefix =>
               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
             Expressions => New_List (
               Make_Integer_Literal (Loc, Indx)));
      end Get_N_Length;

      -------------------
      -- Length_E_Cond --
      -------------------

      function Length_E_Cond
        (Exptyp : Entity_Id;
         Typ    : Entity_Id;
         Indx   : Nat) return Node_Id
      is
      begin
         return
           Make_Op_Ne (Loc,
             Left_Opnd  => Get_E_Length (Typ, Indx),
             Right_Opnd => Get_E_Length (Exptyp, Indx));
      end Length_E_Cond;

      -------------------
      -- Length_N_Cond --
      -------------------

      function Length_N_Cond
        (Exp  : Node_Id;
         Typ  : Entity_Id;
         Indx : Nat) return Node_Id
      is
      begin
         return
           Make_Op_Ne (Loc,
             Left_Opnd  => Get_E_Length (Typ, Indx),
             Right_Opnd => Get_N_Length (Exp, Indx));
      end Length_N_Cond;

      ----------------------------------
      -- Length_Mismatch_Info_Message --
      ----------------------------------

      function Length_Mismatch_Info_Message
        (Left_Element_Count  : Unat;
         Right_Element_Count : Unat) return String
      is

         function Plural_Vs_Singular_Ending (Count : Unat) return String;
         --  Returns an empty string if Count is 1; otherwise returns "s"

         function Plural_Vs_Singular_Ending (Count : Unat) return String is
         begin
            if Count = 1 then
               return "";
            else
               return "s";
            end if;
         end Plural_Vs_Singular_Ending;

      begin
         return "expected "
                  & UI_Image (Left_Element_Count, Format => Decimal)
                  & " element"
                  & Plural_Vs_Singular_Ending (Left_Element_Count)
                  & "; found "
                  & UI_Image (Right_Element_Count, Format => Decimal)
                  & " element"
                  & Plural_Vs_Singular_Ending (Right_Element_Count);
         --  "Format => Decimal" above is needed because otherwise UI_Image
         --  can sometimes return a hexadecimal number 16#...#, but "#" means
         --  something special to Errout. A previous version used the default
         --  Auto, which was essentially the same bug as documented here:
         --  https://xkcd.com/327/ .
      end Length_Mismatch_Info_Message;

      -----------------
      -- Same_Bounds --
      -----------------

      function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
      begin
         return
           (Nkind (L) = N_Integer_Literal
             and then Nkind (R) = N_Integer_Literal
             and then Intval (L) = Intval (R))

          or else
            (Is_Entity_Name (L)
              and then Ekind (Entity (L)) = E_Constant
              and then ((Is_Entity_Name (R)
                         and then Entity (L) = Entity (R))
                        or else
                       (Nkind (R) = N_Type_Conversion
                         and then Is_Entity_Name (Expression (R))
                         and then Entity (L) = Entity (Expression (R)))))

          or else
            (Is_Entity_Name (R)
              and then Ekind (Entity (R)) = E_Constant
              and then Nkind (L) = N_Type_Conversion
              and then Is_Entity_Name (Expression (L))
              and then Entity (R) = Entity (Expression (L)))

         or else
            (Is_Entity_Name (L)
              and then Is_Entity_Name (R)
              and then Entity (L) = Entity (R)
              and then Ekind (Entity (L)) = E_In_Parameter
              and then Inside_Init_Proc);
      end Same_Bounds;

   --  Start of processing for Selected_Length_Checks

   begin
      --  Checks will be applied only when generating code

      if not Expander_Active then
         return Ret_Result;
      end if;

      if Target_Typ = Any_Type
        or else Target_Typ = Any_Composite
        or else Raises_Constraint_Error (Expr)
      then
         return Ret_Result;
      end if;

      if No (Wnode) then
         Wnode := Expr;
      end if;

      T_Typ := Target_Typ;

      if No (Source_Typ) then
         S_Typ := Etype (Expr);
      else
         S_Typ := Source_Typ;
      end if;

      if S_Typ = Any_Type or else S_Typ = Any_Composite then
         return Ret_Result;
      end if;

      if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
         S_Typ := Designated_Type (S_Typ);
         T_Typ := Designated_Type (T_Typ);
         Do_Access := True;

         --  A simple optimization for the null case

         if Known_Null (Expr) then
            return Ret_Result;
         end if;
      end if;

      if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
         if Is_Constrained (T_Typ) then

            --  The checking code to be generated will freeze the corresponding
            --  array type. However, we must freeze the type now, so that the
            --  freeze node does not appear within the generated if expression,
            --  but ahead of it.

            Freeze_Before (Expr, T_Typ);

            Expr_Actual := Get_Referenced_Object (Expr);
            Exptyp      := Get_Actual_Subtype (Expr);

            if Is_Access_Type (Exptyp) then
               Exptyp := Designated_Type (Exptyp);
            end if;

            --  String_Literal case. This needs to be handled specially be-
            --  cause no index types are available for string literals. The
            --  condition is simply:

            --    T_Typ'Length = string-literal-length

            if Nkind (Expr_Actual) = N_String_Literal
              and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
            then
               Cond :=
                 Make_Op_Ne (Loc,
                   Left_Opnd  => Get_E_Length (T_Typ, 1),
                   Right_Opnd =>
                     Make_Integer_Literal (Loc,
                       Intval =>
                         String_Literal_Length (Etype (Expr_Actual))));

            --  General array case. Here we have a usable actual subtype for
            --  the expression, and the condition is built from the two types
            --  (Do_Length):

            --     T_Typ'Length     /= Exptyp'Length     or else
            --     T_Typ'Length (2) /= Exptyp'Length (2) or else
            --     T_Typ'Length (3) /= Exptyp'Length (3) or else
            --     ...

            elsif Is_Constrained (Exptyp) then
               declare
                  Ndims : constant Nat := Number_Dimensions (T_Typ);

                  L_Index  : Node_Id;
                  R_Index  : Node_Id;
                  L_Bounds : Range_Nodes;
                  R_Bounds : Range_Nodes;
                  L_Length : Uint;
                  R_Length : Uint;
                  Ref_Node : Node_Id;

               begin
                  --  At the library level, we need to ensure that the type of
                  --  the object is elaborated before the check itself is
                  --  emitted. This is only done if the object is in the
                  --  current compilation unit, otherwise the type is frozen
                  --  and elaborated in its unit.

                  if Is_Itype (Exptyp)
                    and then
                      Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
                    and then
                      not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
                    and then In_Open_Scopes (Scope (Exptyp))
                  then
                     Ref_Node := Make_Itype_Reference (Sloc (Expr));
                     Set_Itype (Ref_Node, Exptyp);
                     Insert_Action (Expr, Ref_Node);
                  end if;

                  L_Index := First_Index (T_Typ);
                  R_Index := First_Index (Exptyp);

                  for Indx in 1 .. Ndims loop
                     if not (Nkind (L_Index) = N_Raise_Constraint_Error
                               or else
                             Nkind (R_Index) = N_Raise_Constraint_Error)
                     then
                        L_Bounds := Get_Index_Bounds (L_Index);
                        R_Bounds := Get_Index_Bounds (R_Index);

                        --  Deal with compile time length check. Note that we
                        --  skip this in the access case, because the access
                        --  value may be null, so we cannot know statically.

                        if not Do_Access
                          and then Compile_Time_Known_Value (L_Bounds.First)
                          and then Compile_Time_Known_Value (L_Bounds.Last)
                          and then Compile_Time_Known_Value (R_Bounds.First)
                          and then Compile_Time_Known_Value (R_Bounds.Last)
                        then
                           if Expr_Value (L_Bounds.Last) >=
                              Expr_Value (L_Bounds.First)
                           then
                              L_Length := Expr_Value (L_Bounds.Last) -
                                          Expr_Value (L_Bounds.First) + 1;
                           else
                              L_Length := UI_From_Int (0);
                           end if;

                           if Expr_Value (R_Bounds.Last) >=
                              Expr_Value (R_Bounds.First)
                           then
                              R_Length := Expr_Value (R_Bounds.Last) -
                                          Expr_Value (R_Bounds.First) + 1;
                           else
                              R_Length := UI_From_Int (0);
                           end if;

                           if L_Length > R_Length then
                              Add_Check
                                (Compile_Time_Constraint_Error
                                  (Wnode, "too few elements for}!!??", T_Typ,
                                   Extra_Msg => Length_Mismatch_Info_Message
                                                  (L_Length, R_Length)));

                           elsif L_Length < R_Length then
                              Add_Check
                                (Compile_Time_Constraint_Error
                                  (Wnode, "too many elements for}!!??", T_Typ,
                                   Extra_Msg => Length_Mismatch_Info_Message
                                                  (L_Length, R_Length)));
                           end if;

                        --  The comparison for an individual index subtype
                        --  is omitted if the corresponding index subtypes
                        --  statically match, since the result is known to
                        --  be true. Note that this test is worth while even
                        --  though we do static evaluation, because non-static
                        --  subtypes can statically match.

                        elsif not
                          Subtypes_Statically_Match
                            (Etype (L_Index), Etype (R_Index))

                          and then not
                            (Same_Bounds (L_Bounds.First, R_Bounds.First)
                              and then
                             Same_Bounds (L_Bounds.Last, R_Bounds.Last))
                        then
                           Evolve_Or_Else
                             (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
                        end if;

                        Next (L_Index);
                        Next (R_Index);
                     end if;
                  end loop;
               end;

            --  Handle cases where we do not get a usable actual subtype that
            --  is constrained. This happens for example in the function call
            --  and explicit dereference cases. In these cases, we have to get
            --  the length or range from the expression itself, making sure we
            --  do not evaluate it more than once.

            --  Here Expr is the original expression, or more properly the
            --  result of applying Duplicate_Expr to the original tree, forcing
            --  the result to be a name.

            else
               declare
                  Ndims : constant Pos := Number_Dimensions (T_Typ);

               begin
                  --  Build the condition for the explicit dereference case

                  for Indx in 1 .. Ndims loop
                     Evolve_Or_Else
                       (Cond, Length_N_Cond (Expr, T_Typ, Indx));
                  end loop;
               end;
            end if;
         end if;
      end if;

      --  Construct the test and insert into the tree

      if Present (Cond) then
         if Do_Access then
            Cond := Guard_Access (Cond, Loc, Expr);
         end if;

         Add_Check
           (Make_Raise_Constraint_Error (Loc,
              Condition => Cond,
              Reason => CE_Length_Check_Failed));
      end if;

      return Ret_Result;
   end Selected_Length_Checks;

   ---------------------------
   -- Selected_Range_Checks --
   ---------------------------

   function Selected_Range_Checks
     (Expr       : Node_Id;
      Target_Typ : Entity_Id;
      Source_Typ : Entity_Id;
      Warn_Node  : Node_Id) return Check_Result
   is
      Loc         : constant Source_Ptr := Sloc (Expr);
      S_Typ       : Entity_Id;
      T_Typ       : Entity_Id;
      Expr_Actual : Node_Id;
      Exptyp      : Entity_Id;
      Cond        : Node_Id := Empty;
      Do_Access   : Boolean := False;
      Wnode       : Node_Id := Warn_Node;
      Ret_Result  : Check_Result := (Empty, Empty);
      Num_Checks  : Natural := 0;

      procedure Add_Check (N : Node_Id);
      --  Adds the action given to Ret_Result if N is non-Empty

      function Discrete_Range_Cond
        (Exp : Node_Id;
         Typ : Entity_Id) return Node_Id;
      --  Returns expression to compute:
      --    Low_Bound (Exp) < Typ'First
      --      or else
      --    High_Bound (Exp) > Typ'Last

      function Discrete_Expr_Cond
        (Exp : Node_Id;
         Typ : Entity_Id) return Node_Id;
      --  Returns expression to compute:
      --    Exp < Typ'First
      --      or else
      --    Exp > Typ'Last

      function Get_E_First_Or_Last
        (Loc  : Source_Ptr;
         E    : Entity_Id;
         Indx : Nat;
         Nam  : Name_Id) return Node_Id;
      --  Returns an attribute reference
      --    E'First or E'Last
      --  with a source location of Loc.
      --
      --  Nam is Name_First or Name_Last, according to which attribute is
      --  desired. If Indx is non-zero, it is passed as a literal in the
      --  Expressions of the attribute reference (identifying the desired
      --  array dimension).

      function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
      function Get_N_Last  (N : Node_Id; Indx : Nat) return Node_Id;
      --  Returns expression to compute:
      --    N'First or N'Last using Duplicate_Subexpr_No_Checks

      function Is_Cond_Expr_Ge (N : Node_Id; V : Node_Id) return Boolean;
      function Is_Cond_Expr_Le (N : Node_Id; V : Node_Id) return Boolean;
      --  Return True if N is a conditional expression whose dependent
      --  expressions are all known and greater/lower than or equal to V.

      function Range_E_Cond
        (Exptyp : Entity_Id;
         Typ    : Entity_Id;
         Indx   : Nat)
         return   Node_Id;
      --  Returns expression to compute:
      --    Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last

      function Range_Equal_E_Cond
        (Exptyp : Entity_Id;
         Typ    : Entity_Id;
         Indx   : Nat) return Node_Id;
      --  Returns expression to compute:
      --    Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last

      function Range_N_Cond
        (Exp  : Node_Id;
         Typ  : Entity_Id;
         Indx : Nat) return Node_Id;
      --  Return expression to compute:
      --    Exp'First < Typ'First or else Exp'Last > Typ'Last

      function "<" (Left, Right : Node_Id) return Boolean
      is (if Is_Floating_Point_Type (S_Typ)
          then Expr_Value_R (Left) < Expr_Value_R (Right)
          else Expr_Value   (Left) < Expr_Value   (Right));
      function "<=" (Left, Right : Node_Id) return Boolean
      is (if Is_Floating_Point_Type (S_Typ)
          then Expr_Value_R (Left) <= Expr_Value_R (Right)
          else Expr_Value   (Left) <= Expr_Value   (Right));
      --  Convenience comparison functions of integer or floating point values

      ---------------
      -- Add_Check --
      ---------------

      procedure Add_Check (N : Node_Id) is
      begin
         if Present (N) then

            --  We do not support inserting more than 2 checks on the same
            --  node. If this happens it means we have already added an
            --  unconditional raise, so we can skip the other checks safely
            --  since N will always raise an exception.

            if Num_Checks = 2 then
               return;
            end if;

            pragma Assert (Num_Checks <= 1);
            Num_Checks := Num_Checks + 1;
            Ret_Result (Num_Checks) := N;
         end if;
      end Add_Check;

      -------------------------
      -- Discrete_Expr_Cond --
      -------------------------

      function Discrete_Expr_Cond
        (Exp : Node_Id;
         Typ : Entity_Id) return Node_Id
      is
      begin
         return
           Make_Or_Else (Loc,
             Left_Opnd =>
               Make_Op_Lt (Loc,
                 Left_Opnd =>
                   Convert_To (Base_Type (Typ),
                     Duplicate_Subexpr_No_Checks (Exp)),
                 Right_Opnd =>
                   Convert_To (Base_Type (Typ),
                               Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),

             Right_Opnd =>
               Make_Op_Gt (Loc,
                 Left_Opnd =>
                   Convert_To (Base_Type (Typ),
                     Duplicate_Subexpr_No_Checks (Exp)),
                 Right_Opnd =>
                   Convert_To
                     (Base_Type (Typ),
                      Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
      end Discrete_Expr_Cond;

      -------------------------
      -- Discrete_Range_Cond --
      -------------------------

      function Discrete_Range_Cond
        (Exp : Node_Id;
         Typ : Entity_Id) return Node_Id
      is
         LB : Node_Id := Low_Bound (Exp);
         HB : Node_Id := High_Bound (Exp);

         Left_Opnd  : Node_Id;
         Right_Opnd : Node_Id;

      begin
         if Nkind (LB) = N_Identifier
           and then Ekind (Entity (LB)) = E_Discriminant
         then
            LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
         end if;

         --  If the index type has a fixed lower bound, then we require an
         --  exact match of the range's lower bound against that fixed lower
         --  bound.

         if Is_Fixed_Lower_Bound_Index_Subtype (Typ) then
            Left_Opnd :=
              Make_Op_Ne (Loc,
                Left_Opnd  =>
                  Convert_To
                    (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),

                Right_Opnd =>
                  Convert_To
                    (Base_Type (Typ),
                     Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));

         --  Otherwise we do the expected less-than comparison

         else
            Left_Opnd :=
              Make_Op_Lt (Loc,
                Left_Opnd  =>
                  Convert_To
                    (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),

                Right_Opnd =>
                  Convert_To
                    (Base_Type (Typ),
                     Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
         end if;

         if Nkind (HB) = N_Identifier
           and then Ekind (Entity (HB)) = E_Discriminant
         then
            HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
         end if;

         Right_Opnd :=
           Make_Op_Gt (Loc,
             Left_Opnd  =>
               Convert_To
                 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),

             Right_Opnd =>
               Convert_To
                 (Base_Type (Typ),
                  Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));

         return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
      end Discrete_Range_Cond;

      -------------------------
      -- Get_E_First_Or_Last --
      -------------------------

      function Get_E_First_Or_Last
        (Loc  : Source_Ptr;
         E    : Entity_Id;
         Indx : Nat;
         Nam  : Name_Id) return Node_Id
      is
         Exprs : List_Id;
      begin
         if Indx > 0 then
            Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
         else
            Exprs := No_List;
         end if;

         return Make_Attribute_Reference (Loc,
                  Prefix         => New_Occurrence_Of (E, Loc),
                  Attribute_Name => Nam,
                  Expressions    => Exprs);
      end Get_E_First_Or_Last;

      -----------------
      -- Get_N_First --
      -----------------

      function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
      begin
         return
           Make_Attribute_Reference (Loc,
             Attribute_Name => Name_First,
             Prefix =>
               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
             Expressions => New_List (
               Make_Integer_Literal (Loc, Indx)));
      end Get_N_First;

      ----------------
      -- Get_N_Last --
      ----------------

      function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
      begin
         return
           Make_Attribute_Reference (Loc,
             Attribute_Name => Name_Last,
             Prefix =>
               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
             Expressions => New_List (
              Make_Integer_Literal (Loc, Indx)));
      end Get_N_Last;

      ---------------------
      -- Is_Cond_Expr_Ge --
      ---------------------

      function Is_Cond_Expr_Ge (N : Node_Id; V : Node_Id) return Boolean is
      begin
         --  Only if expressions are relevant for the time being

         if Nkind (N) = N_If_Expression then
            declare
               Cond  : constant Node_Id := First (Expressions (N));
               Thenx : constant Node_Id := Next (Cond);
               Elsex : constant Node_Id := Next (Thenx);

            begin
               return Compile_Time_Known_Value (Thenx)
                 and then V <= Thenx
                 and then
                   ((Compile_Time_Known_Value (Elsex) and then V <= Elsex)
                    or else Is_Cond_Expr_Ge (Elsex, V));
            end;

         else
            return False;
         end if;
      end Is_Cond_Expr_Ge;

      ---------------------
      -- Is_Cond_Expr_Le --
      ---------------------

      function Is_Cond_Expr_Le (N : Node_Id; V : Node_Id) return Boolean is
      begin
         --  Only if expressions are relevant for the time being

         if Nkind (N) = N_If_Expression then
            declare
               Cond  : constant Node_Id := First (Expressions (N));
               Thenx : constant Node_Id := Next (Cond);
               Elsex : constant Node_Id := Next (Thenx);

            begin
               return Compile_Time_Known_Value (Thenx)
                 and then Thenx <= V
                 and then
                   ((Compile_Time_Known_Value (Elsex) and then Elsex <= V)
                    or else Is_Cond_Expr_Le (Elsex, V));
            end;

         else
            return False;
         end if;
      end Is_Cond_Expr_Le;

      ------------------
      -- Range_E_Cond --
      ------------------

      function Range_E_Cond
        (Exptyp : Entity_Id;
         Typ    : Entity_Id;
         Indx   : Nat) return Node_Id
      is
      begin
         return
           Make_Or_Else (Loc,
             Left_Opnd =>
               Make_Op_Lt (Loc,
                 Left_Opnd   =>
                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
                 Right_Opnd  =>
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),

             Right_Opnd =>
               Make_Op_Gt (Loc,
                 Left_Opnd   =>
                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
                 Right_Opnd  =>
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
      end Range_E_Cond;

      ------------------------
      -- Range_Equal_E_Cond --
      ------------------------

      function Range_Equal_E_Cond
        (Exptyp : Entity_Id;
         Typ    : Entity_Id;
         Indx   : Nat) return Node_Id
      is
      begin
         return
           Make_Or_Else (Loc,
             Left_Opnd =>
               Make_Op_Ne (Loc,
                 Left_Opnd   =>
                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
                 Right_Opnd  =>
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),

             Right_Opnd =>
               Make_Op_Ne (Loc,
                 Left_Opnd   =>
                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
                 Right_Opnd  =>
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
      end Range_Equal_E_Cond;

      ------------------
      -- Range_N_Cond --
      ------------------

      function Range_N_Cond
        (Exp  : Node_Id;
         Typ  : Entity_Id;
         Indx : Nat) return Node_Id
      is
      begin
         return
           Make_Or_Else (Loc,
             Left_Opnd =>
               Make_Op_Lt (Loc,
                 Left_Opnd  =>
                   Get_N_First (Exp, Indx),
                 Right_Opnd =>
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),

             Right_Opnd =>
               Make_Op_Gt (Loc,
                 Left_Opnd  =>
                   Get_N_Last (Exp, Indx),
                 Right_Opnd =>
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
      end Range_N_Cond;

   --  Start of processing for Selected_Range_Checks

   begin
      --  Checks will be applied only when generating code. In GNATprove mode,
      --  we do not apply the checks, but we still call Selected_Range_Checks
      --  outside of generics to possibly issue errors on SPARK code when a
      --  run-time error can be detected at compile time.

      if Inside_A_Generic or (not GNATprove_Mode and not Expander_Active) then
         return Ret_Result;
      end if;

      if Target_Typ = Any_Type
        or else Target_Typ = Any_Composite
        or else Raises_Constraint_Error (Expr)
      then
         return Ret_Result;
      end if;

      if No (Wnode) then
         Wnode := Expr;
      end if;

      T_Typ := Target_Typ;

      if No (Source_Typ) then
         S_Typ := Etype (Expr);
      else
         S_Typ := Source_Typ;
      end if;

      if S_Typ = Any_Type or else S_Typ = Any_Composite then
         return Ret_Result;
      end if;

      --  The order of evaluating T_Typ before S_Typ seems to be critical
      --  because S_Typ can be derived from Etype (Expr), if it's not passed
      --  in, and since Node can be an N_Range node, it might be invalid.
      --  Should there be an assert check somewhere for taking the Etype of
      --  an N_Range node ???

      if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
         S_Typ := Designated_Type (S_Typ);
         T_Typ := Designated_Type (T_Typ);
         Do_Access := True;

         --  A simple optimization for the null case

         if Known_Null (Expr) then
            return Ret_Result;
         end if;
      end if;

      --  For an N_Range Node, check for a null range and then if not
      --  null generate a range check action.

      if Nkind (Expr) = N_Range then

         --  There's no point in checking a range against itself

         if Expr = Scalar_Range (T_Typ) then
            return Ret_Result;
         end if;

         declare
            T_LB       : constant Node_Id := Type_Low_Bound  (T_Typ);
            T_HB       : constant Node_Id := Type_High_Bound (T_Typ);
            Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
            Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);

            LB          : Node_Id := Low_Bound (Expr);
            HB          : Node_Id := High_Bound (Expr);
            Known_LB    : Boolean := False;
            Known_HB    : Boolean := False;
            Check_Added : Boolean := False;

            Out_Of_Range_L : Boolean := False;
            Out_Of_Range_H : Boolean := False;

         begin
            --  Compute what is known at compile time

            if Known_T_LB and Known_T_HB then
               if Compile_Time_Known_Value (LB) then
                  Known_LB := True;

               --  There's no point in checking that a bound is within its
               --  own range so pretend that it is known in this case. First
               --  deal with low bound.

               elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
                 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
               then
                  LB := T_LB;
                  Known_LB := True;

               --  Similarly; deal with the case where the low bound is a
               --  conditional expression whose result is greater than or
               --  equal to the target low bound.

               elsif Is_Cond_Expr_Ge (LB, T_LB) then
                  LB := T_LB;
                  Known_LB := True;
               end if;

               --  Likewise for the high bound

               if Compile_Time_Known_Value (HB) then
                  Known_HB := True;

               elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
                 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
               then
                  HB := T_HB;
                  Known_HB := True;

               elsif Is_Cond_Expr_Le (HB, T_HB) then
                  HB := T_HB;
                  Known_HB := True;
               end if;
            end if;

            --  Check for the simple cases where we can do the check at
            --  compile time. This is skipped if we have an access type, since
            --  the access value may be null.

            if not Do_Access and then Not_Null_Range (LB, HB) then
               if Known_LB then
                  if Known_T_LB then
                     Out_Of_Range_L := LB < T_LB;
                  end if;

                  if Known_T_HB and not Out_Of_Range_L then
                     Out_Of_Range_L := T_HB < LB;
                  end if;

                  if Out_Of_Range_L then
                     if No (Warn_Node) then
                        Add_Check
                          (Compile_Time_Constraint_Error
                             (Low_Bound (Expr),
                              "static value out of range of}??", T_Typ));
                        Check_Added := True;

                     else
                        Add_Check
                          (Compile_Time_Constraint_Error
                            (Wnode,
                             "static range out of bounds of}??", T_Typ));
                        Check_Added := True;
                     end if;
                  end if;
               end if;

               --  Flag the case of a fixed-lower-bound index where the static
               --  bounds are not equal.

               if not Check_Added
                 and then Is_Fixed_Lower_Bound_Index_Subtype (T_Typ)
                 and then Known_LB
                 and then Known_T_LB
                 and then Expr_Value (LB) /= Expr_Value (T_LB)
               then
                  Add_Check
                    (Compile_Time_Constraint_Error
                       ((if Present (Warn_Node)
                         then Warn_Node else Low_Bound (Expr)),
                         "static value does not equal lower bound of}??",
                        T_Typ));
                  Check_Added := True;
               end if;

               if Known_HB then
                  if Known_T_HB then
                     Out_Of_Range_H := T_HB < HB;
                  end if;

                  if Known_T_LB and not Out_Of_Range_H then
                     Out_Of_Range_H := HB < T_LB;
                  end if;

                  if Out_Of_Range_H then
                     if No (Warn_Node) then
                        Add_Check
                          (Compile_Time_Constraint_Error
                             (High_Bound (Expr),
                              "static value out of range of}??", T_Typ));
                        Check_Added := True;

                     else
                        Add_Check
                          (Compile_Time_Constraint_Error
                             (Wnode,
                              "static range out of bounds of}??", T_Typ));
                        Check_Added := True;
                     end if;
                  end if;
               end if;
            end if;

            --  Check for the case where not everything is static

            if not Check_Added
              and then
                (Do_Access
                  or else not Known_T_LB
                  or else not Known_LB
                  or else not Known_T_HB
                  or else not Known_HB)
            then
               declare
                  LB : Node_Id := Low_Bound (Expr);
                  HB : Node_Id := High_Bound (Expr);

               begin
                  --  If either bound is a discriminant and we are within the
                  --  record declaration, it is a use of the discriminant in a
                  --  constraint of a component, and nothing can be checked
                  --  here. The check will be emitted within the init proc.
                  --  Before then, the discriminal has no real meaning.
                  --  Similarly, if the entity is a discriminal, there is no
                  --  check to perform yet.

                  --  The same holds within a discriminated synchronized type,
                  --  where the discriminant may constrain a component or an
                  --  entry family.

                  if Nkind (LB) = N_Identifier
                    and then Denotes_Discriminant (LB, True)
                  then
                     if Current_Scope = Scope (Entity (LB))
                       or else Is_Concurrent_Type (Current_Scope)
                       or else Ekind (Entity (LB)) /= E_Discriminant
                     then
                        return Ret_Result;
                     else
                        LB :=
                          New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
                     end if;
                  end if;

                  if Nkind (HB) = N_Identifier
                    and then Denotes_Discriminant (HB, True)
                  then
                     if Current_Scope = Scope (Entity (HB))
                       or else Is_Concurrent_Type (Current_Scope)
                       or else Ekind (Entity (HB)) /= E_Discriminant
                     then
                        return Ret_Result;
                     else
                        HB :=
                          New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
                     end if;
                  end if;

                  Cond := Discrete_Range_Cond (Expr, T_Typ);
                  Set_Paren_Count (Cond, 1);

                  Cond :=
                    Make_And_Then (Loc,
                      Left_Opnd =>
                        Make_Op_Ge (Loc,
                          Left_Opnd  =>
                            Convert_To (Base_Type (Etype (HB)),
                              Duplicate_Subexpr_No_Checks (HB)),
                          Right_Opnd =>
                            Convert_To (Base_Type (Etype (LB)),
                              Duplicate_Subexpr_No_Checks (LB))),
                      Right_Opnd => Cond);
               end;
            end if;
         end;

      elsif Is_Scalar_Type (S_Typ) then

         --  This somewhat duplicates what Apply_Scalar_Range_Check does,
         --  except the above simply sets a flag in the node and lets the
         --  check be generated based on the Etype of the expression.
         --  Sometimes, however we want to do a dynamic check against an
         --  arbitrary target type, so we do that here.

         if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
            Cond := Discrete_Expr_Cond (Expr, T_Typ);

         --  For literals, we can tell if the constraint error will be
         --  raised at compile time, so we never need a dynamic check, but
         --  if the exception will be raised, then post the usual warning,
         --  and replace the literal with a raise constraint error
         --  expression. As usual, skip this for access types

         elsif Compile_Time_Known_Value (Expr) and then not Do_Access then
            if Is_Out_Of_Range (Expr, T_Typ) then

               --  Bounds of the type are static and the literal is out of
               --  range so output a warning message.

               if No (Warn_Node) then
                  Add_Check
                    (Compile_Time_Constraint_Error
                       (Expr, "static value out of range of}??", T_Typ));

               else
                  Add_Check
                    (Compile_Time_Constraint_Error
                       (Wnode, "static value out of range of}??", T_Typ));
               end if;
            else
               Cond := Discrete_Expr_Cond (Expr, T_Typ);
            end if;

         --  Here for the case of a non-static expression, we need a runtime
         --  check unless the source type range is guaranteed to be in the
         --  range of the target type.

         else
            if not In_Subrange_Of (S_Typ, T_Typ) then
               Cond := Discrete_Expr_Cond (Expr, T_Typ);
            end if;
         end if;
      end if;

      if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
         if Is_Constrained (T_Typ) then
            Expr_Actual := Get_Referenced_Object (Expr);
            Exptyp      := Get_Actual_Subtype (Expr_Actual);

            if Is_Access_Type (Exptyp) then
               Exptyp := Designated_Type (Exptyp);
            end if;

            --  String_Literal case. This needs to be handled specially be-
            --  cause no index types are available for string literals. The
            --  condition is simply:

            --    T_Typ'Length = string-literal-length

            if Nkind (Expr_Actual) = N_String_Literal then
               null;

            --  General array case. Here we have a usable actual subtype for
            --  the expression, and the condition is built from the two types

            --     T_Typ'First     < Exptyp'First     or else
            --     T_Typ'Last      > Exptyp'Last      or else
            --     T_Typ'First(1)  < Exptyp'First(1)  or else
            --     T_Typ'Last(1)   > Exptyp'Last(1)   or else
            --     ...

            elsif Is_Constrained (Exptyp) then
               declare
                  Ndims : constant Pos := Number_Dimensions (T_Typ);

                  L_Index : Node_Id;
                  R_Index : Node_Id;

               begin
                  L_Index := First_Index (T_Typ);
                  R_Index := First_Index (Exptyp);

                  for Indx in 1 .. Ndims loop
                     if not (Nkind (L_Index) = N_Raise_Constraint_Error
                               or else
                             Nkind (R_Index) = N_Raise_Constraint_Error)
                     then
                        --  Deal with compile time length check. Note that we
                        --  skip this in the access case, because the access
                        --  value may be null, so we cannot know statically.

                        if not
                          Subtypes_Statically_Match
                            (Etype (L_Index), Etype (R_Index))
                        then
                           --  If the target type is constrained then we
                           --  have to check for exact equality of bounds
                           --  (required for qualified expressions).

                           if Is_Constrained (T_Typ) then
                              Evolve_Or_Else
                                (Cond,
                                 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
                           else
                              Evolve_Or_Else
                                (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
                           end if;
                        end if;

                        Next (L_Index);
                        Next (R_Index);
                     end if;
                  end loop;
               end;

            --  Handle cases where we do not get a usable actual subtype that
            --  is constrained. This happens for example in the function call
            --  and explicit dereference cases. In these cases, we have to get
            --  the length or range from the expression itself, making sure we
            --  do not evaluate it more than once.

            --  Here Expr is the original expression, or more properly the
            --  result of applying Duplicate_Expr to the original tree,
            --  forcing the result to be a name.

            else
               declare
                  Ndims : constant Pos := Number_Dimensions (T_Typ);

               begin
                  --  Build the condition for the explicit dereference case

                  for Indx in 1 .. Ndims loop
                     Evolve_Or_Else
                       (Cond, Range_N_Cond (Expr, T_Typ, Indx));
                  end loop;
               end;
            end if;

         --  If the context is a qualified_expression where the subtype is
         --  an unconstrained array subtype with fixed-lower-bound indexes,
         --  then consistency checks must be done between the lower bounds
         --  of any such indexes and the corresponding lower bounds of the
         --  qualified array object.

         elsif Is_Fixed_Lower_Bound_Array_Subtype (T_Typ)
           and then Nkind (Parent (Expr)) = N_Qualified_Expression
           and then not Do_Access
         then
            declare
               Ndims : constant Pos := Number_Dimensions (T_Typ);

               Qual_Index : Node_Id;
               Expr_Index : Node_Id;

            begin
               Expr_Actual := Get_Referenced_Object (Expr);
               Exptyp      := Get_Actual_Subtype (Expr_Actual);

               Qual_Index := First_Index (T_Typ);
               Expr_Index := First_Index (Exptyp);

               for Indx in 1 .. Ndims loop
                  if Nkind (Expr_Index) /= N_Raise_Constraint_Error then

                     --  If this index of the qualifying array subtype has
                     --  a fixed lower bound, then apply a check that the
                     --  corresponding lower bound of the array expression
                     --  is equal to it.

                     if Is_Fixed_Lower_Bound_Index_Subtype (Etype (Qual_Index))
                     then
                        Evolve_Or_Else
                          (Cond,
                           Make_Op_Ne (Loc,
                             Left_Opnd   =>
                               Get_E_First_Or_Last
                                 (Loc, Exptyp, Indx, Name_First),
                             Right_Opnd  =>
                               New_Copy_Tree
                                 (Type_Low_Bound (Etype (Qual_Index)))));
                     end if;

                     Next (Qual_Index);
                     Next (Expr_Index);
                  end if;
               end loop;
            end;

         else
            --  For a conversion to an unconstrained array type, generate an
            --  Action to check that the bounds of the source value are within
            --  the constraints imposed by the target type (RM 4.6(38)). No
            --  check is needed for a conversion to an access to unconstrained
            --  array type, as 4.6(24.15/2) requires the designated subtypes
            --  of the two access types to statically match.

            if Nkind (Parent (Expr)) = N_Type_Conversion
              and then not Do_Access
            then
               declare
                  Opnd_Index : Node_Id;
                  Targ_Index : Node_Id;
                  Opnd_Range : Node_Id;

               begin
                  Opnd_Index := First_Index (Get_Actual_Subtype (Expr));
                  Targ_Index := First_Index (T_Typ);
                  while Present (Opnd_Index) loop

                     --  If the index is a range, use its bounds. If it is an
                     --  entity (as will be the case if it is a named subtype
                     --  or an itype created for a slice) retrieve its range.

                     if Is_Entity_Name (Opnd_Index)
                       and then Is_Type (Entity (Opnd_Index))
                     then
                        Opnd_Range := Scalar_Range (Entity (Opnd_Index));
                     else
                        Opnd_Range := Opnd_Index;
                     end if;

                     if Nkind (Opnd_Range) = N_Range then
                        if  Is_In_Range
                             (Low_Bound (Opnd_Range), Etype (Targ_Index),
                              Assume_Valid => True)
                          and then
                            Is_In_Range
                             (High_Bound (Opnd_Range), Etype (Targ_Index),
                              Assume_Valid => True)
                        then
                           null;

                        --  If null range, no check needed

                        elsif
                          Compile_Time_Known_Value (High_Bound (Opnd_Range))
                            and then
                          Compile_Time_Known_Value (Low_Bound (Opnd_Range))
                            and then
                              Expr_Value (High_Bound (Opnd_Range)) <
                                  Expr_Value (Low_Bound (Opnd_Range))
                        then
                           null;

                        elsif Is_Out_Of_Range
                                (Low_Bound (Opnd_Range), Etype (Targ_Index),
                                 Assume_Valid => True)
                          or else
                              Is_Out_Of_Range
                                (High_Bound (Opnd_Range), Etype (Targ_Index),
                                 Assume_Valid => True)
                        then
                           Add_Check
                             (Compile_Time_Constraint_Error
                               (Wnode, "value out of range of}??", T_Typ));

                        else
                           Evolve_Or_Else
                             (Cond,
                              Discrete_Range_Cond
                                (Opnd_Range, Etype (Targ_Index)));
                        end if;
                     end if;

                     Next_Index (Opnd_Index);
                     Next_Index (Targ_Index);
                  end loop;
               end;
            end if;
         end if;
      end if;

      --  Construct the test and insert into the tree

      if Present (Cond) then
         if Do_Access then
            Cond := Guard_Access (Cond, Loc, Expr);
         end if;

         Add_Check
           (Make_Raise_Constraint_Error (Loc,
             Condition => Cond,
             Reason    => CE_Range_Check_Failed));
      end if;

      return Ret_Result;
   end Selected_Range_Checks;

   -------------------------------
   -- Storage_Checks_Suppressed --
   -------------------------------

   function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E) and then Checks_May_Be_Suppressed (E) then
         return Is_Check_Suppressed (E, Storage_Check);
      else
         return Scope_Suppress.Suppress (Storage_Check);
      end if;
   end Storage_Checks_Suppressed;

   ---------------------------
   -- Tag_Checks_Suppressed --
   ---------------------------

   function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
   begin
      if Present (E)
        and then Checks_May_Be_Suppressed (E)
      then
         return Is_Check_Suppressed (E, Tag_Check);
      else
         return Scope_Suppress.Suppress (Tag_Check);
      end if;
   end Tag_Checks_Suppressed;

   ---------------------------------------
   -- Validate_Alignment_Check_Warnings --
   ---------------------------------------

   procedure Validate_Alignment_Check_Warnings is
   begin
      for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
         declare
            AWR : Alignment_Warnings_Record
                    renames Alignment_Warnings.Table (J);
         begin
            if Known_Alignment (AWR.E)
              and then ((Present (AWR.A)
                          and then AWR.A mod Alignment (AWR.E) = 0)
                        or else (Present (AWR.P)
                                  and then Has_Compatible_Alignment
                                             (AWR.E, AWR.P, True) =
                                               Known_Compatible))
            then
               Delete_Warning_And_Continuations (AWR.W);
            end if;
         end;
      end loop;
   end Validate_Alignment_Check_Warnings;

   --------------------------
   -- Validity_Check_Range --
   --------------------------

   procedure Validity_Check_Range
     (N          : Node_Id;
      Related_Id : Entity_Id := Empty) is
   begin
      if Validity_Checks_On and Validity_Check_Operands then
         if Nkind (N) = N_Range then
            Ensure_Valid
              (Expr          => Low_Bound (N),
               Related_Id    => Related_Id,
               Is_Low_Bound  => True);

            Ensure_Valid
              (Expr          => High_Bound (N),
               Related_Id    => Related_Id,
               Is_High_Bound => True);
         end if;
      end if;
   end Validity_Check_Range;

end Checks;