1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- B I N D O . G R A P H S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2019-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Unchecked_Deallocation;
with Butil; use Butil;
with Debug; use Debug;
with Output; use Output;
with Bindo.Writers;
use Bindo.Writers;
use Bindo.Writers.Phase_Writers;
package body Bindo.Graphs is
-----------------------
-- Local subprograms --
-----------------------
function Sequence_Next_Cycle return Library_Graph_Cycle_Id;
pragma Inline (Sequence_Next_Cycle);
-- Generate a new unique library graph cycle handle
function Sequence_Next_Edge return Invocation_Graph_Edge_Id;
pragma Inline (Sequence_Next_Edge);
-- Generate a new unique invocation graph edge handle
function Sequence_Next_Edge return Library_Graph_Edge_Id;
pragma Inline (Sequence_Next_Edge);
-- Generate a new unique library graph edge handle
function Sequence_Next_Vertex return Invocation_Graph_Vertex_Id;
pragma Inline (Sequence_Next_Vertex);
-- Generate a new unique invocation graph vertex handle
function Sequence_Next_Vertex return Library_Graph_Vertex_Id;
pragma Inline (Sequence_Next_Vertex);
-- Generate a new unique library graph vertex handle
-----------------------------------
-- Destroy_Invocation_Graph_Edge --
-----------------------------------
procedure Destroy_Invocation_Graph_Edge
(Edge : in out Invocation_Graph_Edge_Id)
is
pragma Unreferenced (Edge);
begin
null;
end Destroy_Invocation_Graph_Edge;
---------------------------------
-- Destroy_Library_Graph_Cycle --
---------------------------------
procedure Destroy_Library_Graph_Cycle
(Cycle : in out Library_Graph_Cycle_Id)
is
pragma Unreferenced (Cycle);
begin
null;
end Destroy_Library_Graph_Cycle;
--------------------------------
-- Destroy_Library_Graph_Edge --
--------------------------------
procedure Destroy_Library_Graph_Edge
(Edge : in out Library_Graph_Edge_Id)
is
pragma Unreferenced (Edge);
begin
null;
end Destroy_Library_Graph_Edge;
----------------------------------
-- Destroy_Library_Graph_Vertex --
----------------------------------
procedure Destroy_Library_Graph_Vertex
(Vertex : in out Library_Graph_Vertex_Id)
is
pragma Unreferenced (Vertex);
begin
null;
end Destroy_Library_Graph_Vertex;
--------------------------------
-- Hash_Invocation_Graph_Edge --
--------------------------------
function Hash_Invocation_Graph_Edge
(Edge : Invocation_Graph_Edge_Id) return Bucket_Range_Type
is
begin
pragma Assert (Present (Edge));
return Bucket_Range_Type (Edge);
end Hash_Invocation_Graph_Edge;
----------------------------------
-- Hash_Invocation_Graph_Vertex --
----------------------------------
function Hash_Invocation_Graph_Vertex
(Vertex : Invocation_Graph_Vertex_Id) return Bucket_Range_Type
is
begin
pragma Assert (Present (Vertex));
return Bucket_Range_Type (Vertex);
end Hash_Invocation_Graph_Vertex;
------------------------------
-- Hash_Library_Graph_Cycle --
------------------------------
function Hash_Library_Graph_Cycle
(Cycle : Library_Graph_Cycle_Id) return Bucket_Range_Type
is
begin
pragma Assert (Present (Cycle));
return Bucket_Range_Type (Cycle);
end Hash_Library_Graph_Cycle;
-----------------------------
-- Hash_Library_Graph_Edge --
-----------------------------
function Hash_Library_Graph_Edge
(Edge : Library_Graph_Edge_Id) return Bucket_Range_Type
is
begin
pragma Assert (Present (Edge));
return Bucket_Range_Type (Edge);
end Hash_Library_Graph_Edge;
-------------------------------
-- Hash_Library_Graph_Vertex --
-------------------------------
function Hash_Library_Graph_Vertex
(Vertex : Library_Graph_Vertex_Id) return Bucket_Range_Type
is
begin
pragma Assert (Present (Vertex));
return Bucket_Range_Type (Vertex);
end Hash_Library_Graph_Vertex;
--------------------
-- Library_Graphs --
--------------------
package body Library_Graphs is
-----------------------
-- Local subprograms --
-----------------------
procedure Add_Body_Before_Spec_Edge
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Edges : LGE_Lists.Doubly_Linked_List);
pragma Inline (Add_Body_Before_Spec_Edge);
-- Create a new edge in library graph G between vertex Vertex and its
-- corresponding spec or body, where the body is a predecessor and the
-- spec a successor. Add the edge to list Edges.
procedure Add_Body_Before_Spec_Edges
(G : Library_Graph;
Edges : LGE_Lists.Doubly_Linked_List);
pragma Inline (Add_Body_Before_Spec_Edges);
-- Create new edges in library graph G for all vertices and their
-- corresponding specs or bodies, where the body is a predecessor
-- and the spec is a successor. Add all edges to list Edges.
procedure Add_Edge_Kind_Check
(G : Library_Graph;
Pred : Library_Graph_Vertex_Id;
Succ : Library_Graph_Vertex_Id;
New_Kind : Library_Graph_Edge_Kind);
-- This is called by Add_Edge in the case where there is already a
-- Pred-->Succ edge, to assert that the New_Kind is appropriate. Raises
-- Program_Error if a bug is detected. The purpose is to prevent bugs
-- where calling Add_Edge in different orders produces different output.
function Add_Edge
(G : Library_Graph;
Pred : Library_Graph_Vertex_Id;
Succ : Library_Graph_Vertex_Id;
Kind : Library_Graph_Edge_Kind;
Activates_Task : Boolean) return Library_Graph_Edge_Id;
pragma Inline (Add_Edge);
-- Create a new edge in library graph G with source vertex Pred and
-- destination vertex Succ, and return its handle. Kind denotes the
-- nature of the edge. Activates_Task should be set when the edge
-- involves a task activation. If Pred and Succ are already related,
-- no edge is created and No_Library_Graph_Edge is returned, but if
-- Activates_Task is True, then the flag of the existing edge is
-- updated.
function At_Least_One_Edge_Satisfies
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id;
Predicate : LGE_Predicate_Ptr) return Boolean;
pragma Inline (At_Least_One_Edge_Satisfies);
-- Determine whether at least one edge of cycle Cycle of library graph G
-- satisfies predicate Predicate.
function Copy_Cycle_Path
(Cycle_Path : LGE_Lists.Doubly_Linked_List)
return LGE_Lists.Doubly_Linked_List;
pragma Inline (Copy_Cycle_Path);
-- Create a deep copy of list Cycle_Path
function Cycle_End_Vertices
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Elaborate_All_Active : Boolean) return LGV_Sets.Membership_Set;
pragma Inline (Cycle_End_Vertices);
-- Part of Tarjan's enumeration of the elementary circuits of a directed
-- graph algorithm. Collect the vertices that terminate a cycle starting
-- from vertex Vertex of library graph G in a set. This is usually the
-- vertex itself, unless the vertex is part of an Elaborate_Body pair,
-- or flag Elaborate_All_Active is set. In that case the complementary
-- vertex is also added to the set.
function Cycle_Kind_Of
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Library_Graph_Cycle_Kind;
pragma Inline (Cycle_Kind_Of);
-- Determine the cycle kind of edge Edge of library graph G if the edge
-- participated in a circuit.
function Cycle_Kind_Precedence
(Kind : Library_Graph_Cycle_Kind;
Compared_To : Library_Graph_Cycle_Kind) return Precedence_Kind;
pragma Inline (Cycle_Kind_Precedence);
-- Determine the precedence of cycle kind Kind compared to cycle kind
-- Compared_To.
function Cycle_Path_Precedence
(G : Library_Graph;
Path : LGE_Lists.Doubly_Linked_List;
Compared_To : LGE_Lists.Doubly_Linked_List) return Precedence_Kind;
pragma Inline (Cycle_Path_Precedence);
-- Determine the precedence of cycle path Path of library graph G
-- compared to path Compared_To.
function Cycle_Precedence
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id;
Compared_To : Library_Graph_Cycle_Id) return Precedence_Kind;
pragma Inline (Cycle_Precedence);
-- Determine the precedence of cycle Cycle of library graph G compared
-- to cycle Compared_To.
procedure Decrement_Library_Graph_Edge_Count
(G : Library_Graph;
Kind : Library_Graph_Edge_Kind);
pragma Inline (Decrement_Library_Graph_Edge_Count);
-- Decrement the number of edges of kind King in library graph G by one
procedure Delete_Body_Before_Spec_Edges
(G : Library_Graph;
Edges : LGE_Lists.Doubly_Linked_List);
pragma Inline (Delete_Body_Before_Spec_Edges);
-- Delete all edges in list Edges from library graph G, that link spec
-- and bodies, where the body acts as the predecessor and the spec as a
-- successor.
procedure Delete_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id);
pragma Inline (Delete_Edge);
-- Delete edge Edge from library graph G
function Edge_Precedence
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
Compared_To : Library_Graph_Edge_Id) return Precedence_Kind;
pragma Inline (Edge_Precedence);
-- Determine the precedence of edge Edge of library graph G compared to
-- edge Compared_To.
procedure Find_Cycles_From_Successor
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
End_Vertices : LGV_Sets.Membership_Set;
Deleted_Vertices : LGV_Sets.Membership_Set;
Most_Significant_Edge : Library_Graph_Edge_Id;
Invocation_Edge_Count : Natural;
Cycle_Path_Stack : LGE_Lists.Doubly_Linked_List;
Visited_Set : LGV_Sets.Membership_Set;
Visited_Stack : LGV_Lists.Doubly_Linked_List;
Cycle_Count : in out Natural;
Cycle_Limit : Natural;
Elaborate_All_Active : Boolean;
Has_Cycle : out Boolean;
Indent : Indentation_Level);
pragma Inline (Find_Cycles_From_Successor);
-- Part of Tarjan's enumeration of the elementary circuits of a directed
-- graph algorithm. Find all cycles from the successor indicated by edge
-- Edge of library graph G. If at least one cycle exists, set Has_Cycle
-- to True. The remaining parameters are as follows:
--
-- * End vertices is the set of vertices that terminate a potential
-- cycle.
--
-- * Deleted vertices is the set of vertices that have been expanded
-- during previous depth-first searches and should not be visited
-- for the rest of the algorithm.
--
-- * Most_Significant_Edge is the current highest-precedence edge on
-- the path of the potential cycle.
--
-- * Invocation_Edge_Count is the number of invocation edges on the
-- path of the potential cycle.
--
-- * Cycle_Path_Stack is the path of the potential cycle.
--
-- * Visited_Set is the set of vertices that have been visited during
-- the current depth-first search.
--
-- * Visited_Stack maintains the vertices of Visited_Set in a stack
-- for later unvisiting.
--
-- * Cycle_Count is the number of cycles discovered so far.
--
-- * Cycle_Limit is the upper bound of the number of cycles to be
-- discovered.
--
-- * Elaborate_All_Active should be set when the component currently
-- being examined for cycles contains an Elaborate_All edge.
--
-- * Indent in the desired indentation level for tracing.
procedure Find_Cycles_From_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
End_Vertices : LGV_Sets.Membership_Set;
Deleted_Vertices : LGV_Sets.Membership_Set;
Most_Significant_Edge : Library_Graph_Edge_Id;
Invocation_Edge_Count : Natural;
Cycle_Path_Stack : LGE_Lists.Doubly_Linked_List;
Visited_Set : LGV_Sets.Membership_Set;
Visited_Stack : LGV_Lists.Doubly_Linked_List;
Cycle_Count : in out Natural;
Cycle_Limit : Natural;
Elaborate_All_Active : Boolean;
Is_Start_Vertex : Boolean;
Has_Cycle : out Boolean;
Indent : Indentation_Level);
pragma Inline (Find_Cycles_From_Vertex);
-- Part of Tarjan's enumeration of the elementary circuits of a directed
-- graph algorithm. Find all cycles from vertex Vertex of library graph
-- G. If at least one cycle exists, set Has_Cycle to True. The remaining
-- parameters are as follows:
--
-- * End_Vertices is the set of vertices that terminate a potential
-- cycle.
--
-- * Deleted_Vertices is the set of vertices that have been expanded
-- during previous depth-first searches and should not be visited
-- for the rest of the algorithm.
--
-- * Most_Significant_Edge is the current highest-precedence edge on
-- the path of the potential cycle.
--
-- * Invocation_Edge_Count is the number of invocation edges on the
-- path of the potential cycle.
--
-- * Cycle_Path_Stack is the path of the potential cycle.
--
-- * Visited_Set is the set of vertices that have been visited during
-- the current depth-first search.
--
-- * Visited_Stack maintains the vertices of Visited_Set in a stack
-- for later unvisiting.
--
-- * Cycle_Count is the number of cycles discovered so far.
--
-- * Cycle_Limit is the upper bound of the number of cycles to be
-- discovered.
--
-- * Elaborate_All_Active should be set when the component currently
-- being examined for cycles contains an Elaborate_All edge.
--
-- * Indent in the desired indentation level for tracing.
procedure Find_Cycles_In_Component
(G : Library_Graph;
Comp : Component_Id;
Cycle_Count : in out Natural;
Cycle_Limit : Natural);
pragma Inline (Find_Cycles_In_Component);
-- Part of Tarjan's enumeration of the elementary circuits of a directed
-- graph algorithm. Find all cycles in component Comp of library graph
-- G. The remaining parameters are as follows:
--
-- * Cycle_Count is the number of cycles discovered so far.
--
-- * Cycle_Limit is the upper bound of the number of cycles to be
-- discovered.
function Find_Edge
(G : Library_Graph;
Pred : Library_Graph_Vertex_Id;
Succ : Library_Graph_Vertex_Id) return Library_Graph_Edge_Id;
-- There must be an edge Pred-->Succ; this returns it
function Find_First_Lower_Precedence_Cycle
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return Library_Graph_Cycle_Id;
pragma Inline (Find_First_Lower_Precedence_Cycle);
-- Inspect the list of cycles of library graph G and return the first
-- cycle whose precedence is lower than that of cycle Cycle. If there
-- is no such cycle, return No_Library_Graph_Cycle.
procedure Free is
new Ada.Unchecked_Deallocation
(Library_Graph_Attributes, Library_Graph);
function Get_Component_Attributes
(G : Library_Graph;
Comp : Component_Id) return Component_Attributes;
pragma Inline (Get_Component_Attributes);
-- Obtain the attributes of component Comp of library graph G
function Get_LGC_Attributes
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return Library_Graph_Cycle_Attributes;
pragma Inline (Get_LGC_Attributes);
-- Obtain the attributes of cycle Cycle of library graph G
function Get_LGE_Attributes
(G : Library_Graph;
Edge : Library_Graph_Edge_Id)
return Library_Graph_Edge_Attributes;
pragma Inline (Get_LGE_Attributes);
-- Obtain the attributes of edge Edge of library graph G
function Get_LGV_Attributes
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id)
return Library_Graph_Vertex_Attributes;
pragma Inline (Get_LGV_Attributes);
-- Obtain the attributes of vertex Edge of library graph G
function Has_Elaborate_Body
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean;
pragma Inline (Has_Elaborate_Body);
-- Determine whether vertex Vertex of library graph G is subject to
-- pragma Elaborate_Body.
function Has_Elaborate_All_Edge
(G : Library_Graph;
Comp : Component_Id) return Boolean;
pragma Inline (Has_Elaborate_All_Edge);
-- Determine whether component Comp of library graph G contains an
-- Elaborate_All edge that links two vertices in the same component.
function Has_Elaborate_All_Edge
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean;
pragma Inline (Has_Elaborate_All_Edge);
-- Determine whether vertex Vertex of library graph G contains an
-- Elaborate_All edge to a successor where both the vertex and the
-- successor reside in the same component.
function Highest_Precedence_Edge
(G : Library_Graph;
Left : Library_Graph_Edge_Id;
Right : Library_Graph_Edge_Id) return Library_Graph_Edge_Id;
pragma Inline (Highest_Precedence_Edge);
-- Return the edge with highest precedence among edges Left and Right of
-- library graph G.
procedure Increment_Library_Graph_Edge_Count
(G : Library_Graph;
Kind : Library_Graph_Edge_Kind);
pragma Inline (Increment_Library_Graph_Edge_Count);
-- Increment the number of edges of king Kind in library graph G by one
procedure Increment_Pending_Predecessors
(G : Library_Graph;
Comp : Component_Id;
Edge : Library_Graph_Edge_Id);
pragma Inline (Increment_Pending_Predecessors);
-- Increment the number of pending predecessors component Comp which was
-- reached via edge Edge of library graph G must wait on before it can
-- be elaborated by one.
procedure Increment_Pending_Predecessors
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Edge : Library_Graph_Edge_Id);
pragma Inline (Increment_Pending_Predecessors);
-- Increment the number of pending predecessors vertex Vertex which was
-- reached via edge Edge of library graph G must wait on before it can
-- be elaborated by one.
procedure Initialize_Components (G : Library_Graph);
pragma Inline (Initialize_Components);
-- Initialize on the initial call or re-initialize on subsequent calls
-- all components of library graph G.
function Is_Cycle_Initiating_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean;
pragma Inline (Is_Cycle_Initiating_Edge);
-- Determine whether edge Edge of library graph G starts a cycle
function Is_Cyclic_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean;
pragma Inline (Is_Cyclic_Edge);
-- Determine whether edge Edge of library graph G participates in a
-- cycle.
function Is_Cyclic_Elaborate_All_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean;
pragma Inline (Is_Cyclic_Elaborate_All_Edge);
-- Determine whether edge Edge of library graph G participates in a
-- cycle and has a predecessor that is subject to pragma Elaborate_All.
function Is_Cyclic_Elaborate_Body_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean;
pragma Inline (Is_Cyclic_Elaborate_Body_Edge);
-- Determine whether edge Edge of library graph G participates in a
-- cycle and has a successor that is either a spec subject to pragma
-- Elaborate_Body, or a body that completes such a spec.
function Is_Cyclic_Elaborate_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean;
pragma Inline (Is_Cyclic_Elaborate_Edge);
-- Determine whether edge Edge of library graph G participates in a
-- cycle and has a predecessor that is subject to pragma Elaborate.
function Is_Cyclic_Forced_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean;
pragma Inline (Is_Cyclic_Forced_Edge);
-- Determine whether edge Edge of library graph G participates in a
-- cycle and came from the forced-elaboration-order file.
function Is_Cyclic_Invocation_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean;
pragma Inline (Is_Cyclic_Invocation_Edge);
-- Determine whether edge Edge of library graph G participates in a
-- cycle and came from the traversal of the invocation graph.
function Is_Cyclic_With_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean;
pragma Inline (Is_Cyclic_With_Edge);
-- Determine whether edge Edge of library graph G participates in a
-- cycle and is the result of a with dependency between its successor
-- and predecessor.
function Is_Recorded_Edge
(G : Library_Graph;
Rel : Predecessor_Successor_Relation) return Boolean;
pragma Inline (Is_Recorded_Edge);
-- Determine whether a predecessor vertex and a successor vertex
-- described by relation Rel are already linked in library graph G.
function Is_Static_Successor_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean;
pragma Inline (Is_Static_Successor_Edge);
-- Determine whether the successor of invocation edge Edge represents a
-- unit that was compiled with the static model.
function Is_Vertex_With_Elaborate_Body
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean;
pragma Inline (Is_Vertex_With_Elaborate_Body);
-- Determine whether vertex Vertex of library graph G denotes a spec
-- subject to pragma Elaborate_Body or the completing body of such a
-- spec.
function Links_Vertices_In_Same_Component
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean;
pragma Inline (Links_Vertices_In_Same_Component);
-- Determine whether edge Edge of library graph G links a predecessor
-- and successor that reside in the same component.
function Maximum_Invocation_Edge_Count
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
Count : Natural) return Natural;
pragma Inline (Maximum_Invocation_Edge_Count);
-- Determine whether edge Edge of library graph G is an invocation edge,
-- and if it is return Count + 1, otherwise return Count.
procedure Normalize_Cycle_Path
(Cycle_Path : LGE_Lists.Doubly_Linked_List;
Most_Significant_Edge : Library_Graph_Edge_Id);
pragma Inline (Normalize_Cycle_Path);
-- Normalize cycle path Path by rotating it until its starting edge is
-- Sig_Edge.
procedure Order_Cycle
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id);
pragma Inline (Order_Cycle);
-- Insert cycle Cycle in library graph G and sort it based on its
-- precedence relative to all recorded cycles.
function Path
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return LGE_Lists.Doubly_Linked_List;
pragma Inline (Path);
-- Obtain the path of edges which comprises cycle Cycle of library
-- graph G.
procedure Record_Cycle
(G : Library_Graph;
Most_Significant_Edge : Library_Graph_Edge_Id;
Invocation_Edge_Count : Natural;
Cycle_Path : LGE_Lists.Doubly_Linked_List;
Indent : Indentation_Level);
pragma Inline (Record_Cycle);
-- Normalize a cycle described by its path Cycle_Path and add it to
-- library graph G. Most_Significant_Edge denotes the edge with the
-- highest significance along the cycle path. Invocation_Edge_Count
-- is the number of invocation edges along the cycle path. Indent is
-- the desired indentation level for tracing.
procedure Set_Activates_Task
(G : Library_Graph;
Edge : Library_Graph_Edge_Id);
-- Set the Activates_Task flag of the Edge to True
procedure Set_Component_Attributes
(G : Library_Graph;
Comp : Component_Id;
Val : Component_Attributes);
pragma Inline (Set_Component_Attributes);
-- Set the attributes of component Comp of library graph G to value Val
procedure Set_Corresponding_Vertex
(G : Library_Graph;
U_Id : Unit_Id;
Val : Library_Graph_Vertex_Id);
pragma Inline (Set_Corresponding_Vertex);
-- Associate vertex Val of library graph G with unit U_Id
procedure Set_Is_Recorded_Edge
(G : Library_Graph;
Rel : Predecessor_Successor_Relation);
pragma Inline (Set_Is_Recorded_Edge);
-- Mark a predecessor vertex and a successor vertex described by
-- relation Rel as already linked.
procedure Set_LGC_Attributes
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id;
Val : Library_Graph_Cycle_Attributes);
pragma Inline (Set_LGC_Attributes);
-- Set the attributes of cycle Cycle of library graph G to value Val
procedure Set_LGE_Attributes
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
Val : Library_Graph_Edge_Attributes);
pragma Inline (Set_LGE_Attributes);
-- Set the attributes of edge Edge of library graph G to value Val
procedure Set_LGV_Attributes
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Val : Library_Graph_Vertex_Attributes);
pragma Inline (Set_LGV_Attributes);
-- Set the attributes of vertex Vertex of library graph G to value Val
procedure Trace_Component
(G : Library_Graph;
Comp : Component_Id;
Indent : Indentation_Level);
pragma Inline (Trace_Component);
-- Write the contents of component Comp of library graph G to standard
-- output. Indent is the desired indentation level for tracing.
procedure Trace_Cycle
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id;
Indent : Indentation_Level);
pragma Inline (Trace_Cycle);
-- Write the contents of cycle Cycle of library graph G to standard
-- output. Indent is the desired indentation level for tracing.
procedure Trace_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
Indent : Indentation_Level);
pragma Inline (Trace_Edge);
-- Write the contents of edge Edge of library graph G to standard
-- output. Indent is the desired indentation level for tracing.
procedure Trace_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Indent : Indentation_Level);
pragma Inline (Trace_Vertex);
-- Write the contents of vertex Vertex of library graph G to standard
-- output. Indent is the desired indentation level for tracing.
procedure Unvisit
(Vertex : Library_Graph_Vertex_Id;
Visited_Set : LGV_Sets.Membership_Set;
Visited_Stack : LGV_Lists.Doubly_Linked_List);
pragma Inline (Unvisit);
-- Part of Tarjan's enumeration of the elementary circuits of a directed
-- graph algorithm. Unwind the Visited_Stack by removing the top vertex
-- from set Visited_Set until vertex Vertex is reached, inclusive.
procedure Update_Pending_Predecessors
(Strong_Predecessors : in out Natural;
Weak_Predecessors : in out Natural;
Update_Weak : Boolean;
Value : Integer);
pragma Inline (Update_Pending_Predecessors);
-- Update the number of pending strong or weak predecessors denoted by
-- Strong_Predecessors and Weak_Predecessors respectively depending on
-- flag Update_Weak by adding value Value.
procedure Update_Pending_Predecessors_Of_Components (G : Library_Graph);
pragma Inline (Update_Pending_Predecessors_Of_Components);
-- Update the number of pending predecessors all components of library
-- graph G must wait on before they can be elaborated.
procedure Update_Pending_Predecessors_Of_Components
(G : Library_Graph;
Edge : Library_Graph_Edge_Id);
pragma Inline (Update_Pending_Predecessors_Of_Components);
-- Update the number of pending predecessors the component of edge
-- LGE_Is's successor vertex of library graph G must wait on before
-- it can be elaborated.
function Vertex_Precedence
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Compared_To : Library_Graph_Vertex_Id) return Precedence_Kind;
pragma Inline (Vertex_Precedence);
-- Determine the precedence of vertex Vertex of library graph G compared
-- to vertex Compared_To.
procedure Visit
(Vertex : Library_Graph_Vertex_Id;
Visited_Set : LGV_Sets.Membership_Set;
Visited_Stack : LGV_Lists.Doubly_Linked_List);
pragma Inline (Visit);
-- Part of Tarjan's enumeration of the elementary circuits of a directed
-- graph algorithm. Push vertex Vertex on the Visited_Stack and add it
-- to set Visited_Set.
--------------------
-- Activates_Task --
--------------------
function Activates_Task
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
return Get_LGE_Attributes (G, Edge).Activates_Task;
end Activates_Task;
-------------------------------
-- Add_Body_Before_Spec_Edge --
-------------------------------
procedure Add_Body_Before_Spec_Edge
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Edges : LGE_Lists.Doubly_Linked_List)
is
Edge : Library_Graph_Edge_Id;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
pragma Assert (LGE_Lists.Present (Edges));
-- A vertex requires a special Body_Before_Spec edge to its
-- Corresponding_Item when it either denotes a
--
-- * Body that completes a previous spec
--
-- * Spec with a completing body
--
-- The edge creates an intentional circularity between the spec and
-- body in order to emulate a library unit, and guarantees that both
-- will appear in the same component.
--
-- Due to the structure of the library graph, either the spec or
-- the body may be visited first, yet Corresponding_Item will still
-- attempt to create the Body_Before_Spec edge. This is OK because
-- successor and predecessor are kept consistent in both cases, and
-- Add_Edge will prevent the creation of the second edge.
-- Assume that no Body_Before_Spec is necessary
Edge := No_Library_Graph_Edge;
-- A body that completes a previous spec
if Is_Body_With_Spec (G, Vertex) then
Edge :=
Add_Edge
(G => G,
Pred => Vertex,
Succ => Corresponding_Item (G, Vertex),
Kind => Body_Before_Spec_Edge,
Activates_Task => False);
-- A spec with a completing body
elsif Is_Spec_With_Body (G, Vertex) then
Edge :=
Add_Edge
(G => G,
Pred => Corresponding_Item (G, Vertex),
Succ => Vertex,
Kind => Body_Before_Spec_Edge,
Activates_Task => False);
end if;
if Present (Edge) then
LGE_Lists.Append (Edges, Edge);
end if;
end Add_Body_Before_Spec_Edge;
--------------------------------
-- Add_Body_Before_Spec_Edges --
--------------------------------
procedure Add_Body_Before_Spec_Edges
(G : Library_Graph;
Edges : LGE_Lists.Doubly_Linked_List)
is
Iter : Elaborable_Units_Iterator;
U_Id : Unit_Id;
begin
pragma Assert (Present (G));
pragma Assert (LGE_Lists.Present (Edges));
Iter := Iterate_Elaborable_Units;
while Has_Next (Iter) loop
Next (Iter, U_Id);
Add_Body_Before_Spec_Edge
(G => G,
Vertex => Corresponding_Vertex (G, U_Id),
Edges => Edges);
end loop;
end Add_Body_Before_Spec_Edges;
--------------
-- Add_Edge --
--------------
procedure Add_Edge
(G : Library_Graph;
Pred : Library_Graph_Vertex_Id;
Succ : Library_Graph_Vertex_Id;
Kind : Library_Graph_Edge_Kind;
Activates_Task : Boolean)
is
Ignore : constant Library_Graph_Edge_Id :=
Add_Edge
(G => G,
Pred => Pred,
Succ => Succ,
Kind => Kind,
Activates_Task => Activates_Task);
begin
null;
end Add_Edge;
-------------------------
-- Add_Edge_Kind_Check --
-------------------------
procedure Add_Edge_Kind_Check
(G : Library_Graph;
Pred : Library_Graph_Vertex_Id;
Succ : Library_Graph_Vertex_Id;
New_Kind : Library_Graph_Edge_Kind)
is
Old_Edge : constant Library_Graph_Edge_Id :=
Find_Edge (G, Pred, Succ);
Old_Kind : constant Library_Graph_Edge_Kind :=
Get_LGE_Attributes (G, Old_Edge).Kind;
OK : Boolean;
begin
case New_Kind is
when Spec_Before_Body_Edge =>
OK := False;
-- Spec_Before_Body_Edge comes first, and there is never more
-- than one Spec_Before_Body_Edge for a given unit, so we can't
-- have a preexisting edge in the Spec_Before_Body_Edge case.
when With_Edge | Elaborate_Edge | Elaborate_All_Edge
| Forced_Edge | Invocation_Edge =>
OK := Old_Kind <= New_Kind;
-- These edges are created in the order of the enumeration
-- type, and there can be duplicates; hence "<=".
when Body_Before_Spec_Edge =>
OK := Old_Kind = Body_Before_Spec_Edge
-- We call Add_Edge with Body_Before_Spec_Edge twice -- once
-- for the spec and once for the body.
or else Old_Kind = Forced_Edge
or else Old_Kind = Invocation_Edge;
-- The old one can be Forced_Edge or Invocation_Edge, which
-- necessarily results in an elaboration cycle (in the static
-- model), but this assertion happens before cycle detection,
-- so we need to allow these cases.
when No_Edge =>
OK := False;
end case;
if not OK then
raise Program_Error with Old_Kind'Img & "-->" & New_Kind'Img;
end if;
end Add_Edge_Kind_Check;
--------------
-- Add_Edge --
--------------
function Add_Edge
(G : Library_Graph;
Pred : Library_Graph_Vertex_Id;
Succ : Library_Graph_Vertex_Id;
Kind : Library_Graph_Edge_Kind;
Activates_Task : Boolean) return Library_Graph_Edge_Id
is
pragma Assert (Present (G));
pragma Assert (Present (Pred));
pragma Assert (Present (Succ));
pragma Assert (Kind = Invocation_Edge or else not Activates_Task);
-- Only invocation edges can activate tasks
Rel : constant Predecessor_Successor_Relation :=
(Predecessor => Pred, Successor => Succ);
Edge : Library_Graph_Edge_Id;
begin
-- If we already have a Pred-->Succ edge, we don't add another
-- one. But we need to update Activates_Task, in order to avoid
-- depending on the order of processing of edges. If we have
-- Pred-->Succ with Activates_Task=True, and another Pred-->Succ with
-- Activates_Task=False, we want Activates_Task to be True no matter
-- which order we processed those two Add_Edge calls.
if Is_Recorded_Edge (G, Rel) then
pragma Debug (Add_Edge_Kind_Check (G, Pred, Succ, Kind));
if Activates_Task then
Set_Activates_Task (G, Find_Edge (G, Pred, Succ));
end if;
return No_Library_Graph_Edge;
end if;
Edge := Sequence_Next_Edge;
-- Add the edge to the underlying graph. Note that the predecessor
-- is the source of the edge because it will later need to notify
-- all its successors that it has been elaborated.
DG.Add_Edge
(G => G.Graph,
E => Edge,
Source => Pred,
Destination => Succ);
-- Construct and save the attributes of the edge
Set_LGE_Attributes
(G => G,
Edge => Edge,
Val =>
(Activates_Task => Activates_Task,
Kind => Kind));
-- Mark the predecessor and successor as related by the new edge.
-- This prevents all further attempts to link the same predecessor
-- and successor.
Set_Is_Recorded_Edge (G, Rel);
-- Update the number of pending predecessors the successor must wait
-- on before it is elaborated.
Increment_Pending_Predecessors
(G => G,
Vertex => Succ,
Edge => Edge);
-- Update the edge statistics
Increment_Library_Graph_Edge_Count (G, Kind);
return Edge;
end Add_Edge;
----------------
-- Add_Vertex --
----------------
procedure Add_Vertex
(G : Library_Graph;
U_Id : Unit_Id)
is
Vertex : Library_Graph_Vertex_Id;
begin
pragma Assert (Present (G));
pragma Assert (Present (U_Id));
-- Nothing to do when the unit already has a vertex
if Present (Corresponding_Vertex (G, U_Id)) then
return;
end if;
Vertex := Sequence_Next_Vertex;
-- Add the vertex to the underlying graph
DG.Add_Vertex (G.Graph, Vertex);
-- Construct and save the attributes of the vertex
Set_LGV_Attributes
(G => G,
Vertex => Vertex,
Val =>
(Corresponding_Item => No_Library_Graph_Vertex,
In_Elaboration_Order => False,
Pending_Strong_Predecessors => 0,
Pending_Weak_Predecessors => 0,
Unit => U_Id));
-- Associate the unit with its corresponding vertex
Set_Corresponding_Vertex (G, U_Id, Vertex);
end Add_Vertex;
---------------------------------
-- At_Least_One_Edge_Satisfies --
---------------------------------
function At_Least_One_Edge_Satisfies
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id;
Predicate : LGE_Predicate_Ptr) return Boolean
is
Edge : Library_Graph_Edge_Id;
Iter : Edges_Of_Cycle_Iterator;
Satisfied : Boolean;
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
pragma Assert (Predicate /= null);
-- Assume that the predicate cannot be satisfied
Satisfied := False;
-- IMPORTANT:
--
-- * The iteration must run to completion in order to unlock the
-- edges of the cycle.
Iter := Iterate_Edges_Of_Cycle (G, Cycle);
while Has_Next (Iter) loop
Next (Iter, Edge);
Satisfied := Satisfied or else Predicate.all (G, Edge);
end loop;
return Satisfied;
end At_Least_One_Edge_Satisfies;
--------------------------
-- Complementary_Vertex --
--------------------------
function Complementary_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Force_Complement : Boolean) return Library_Graph_Vertex_Id
is
Complement : Library_Graph_Vertex_Id;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
-- Assume that there is no complementary vertex
Complement := No_Library_Graph_Vertex;
-- The caller requests the complement explicitly
if Force_Complement then
Complement := Corresponding_Item (G, Vertex);
-- The vertex is a completing body of a spec subject to pragma
-- Elaborate_Body. The complementary vertex is the spec.
elsif Is_Body_Of_Spec_With_Elaborate_Body (G, Vertex) then
Complement := Proper_Spec (G, Vertex);
-- The vertex is a spec subject to pragma Elaborate_Body. The
-- complementary vertex is the body.
elsif Is_Spec_With_Elaborate_Body (G, Vertex) then
Complement := Proper_Body (G, Vertex);
end if;
return Complement;
end Complementary_Vertex;
---------------
-- Component --
---------------
function Component
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Component_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return DG.Component (G.Graph, Vertex);
end Component;
---------------------------------
-- Contains_Elaborate_All_Edge --
---------------------------------
function Contains_Elaborate_All_Edge
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
return
At_Least_One_Edge_Satisfies
(G => G,
Cycle => Cycle,
Predicate => Is_Elaborate_All_Edge'Access);
end Contains_Elaborate_All_Edge;
------------------------------------
-- Contains_Static_Successor_Edge --
------------------------------------
function Contains_Static_Successor_Edge
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
return
At_Least_One_Edge_Satisfies
(G => G,
Cycle => Cycle,
Predicate => Is_Static_Successor_Edge'Access);
end Contains_Static_Successor_Edge;
------------------------------
-- Contains_Task_Activation --
------------------------------
function Contains_Task_Activation
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
return
At_Least_One_Edge_Satisfies
(G => G,
Cycle => Cycle,
Predicate => Activates_Task'Access);
end Contains_Task_Activation;
---------------------
-- Copy_Cycle_Path --
---------------------
function Copy_Cycle_Path
(Cycle_Path : LGE_Lists.Doubly_Linked_List)
return LGE_Lists.Doubly_Linked_List
is
Edge : Library_Graph_Edge_Id;
Iter : LGE_Lists.Iterator;
Path : LGE_Lists.Doubly_Linked_List;
begin
pragma Assert (LGE_Lists.Present (Cycle_Path));
Path := LGE_Lists.Create;
Iter := LGE_Lists.Iterate (Cycle_Path);
while LGE_Lists.Has_Next (Iter) loop
LGE_Lists.Next (Iter, Edge);
LGE_Lists.Append (Path, Edge);
end loop;
return Path;
end Copy_Cycle_Path;
------------------------
-- Corresponding_Item --
------------------------
function Corresponding_Item
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Library_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Get_LGV_Attributes (G, Vertex).Corresponding_Item;
end Corresponding_Item;
--------------------------
-- Corresponding_Vertex --
--------------------------
function Corresponding_Vertex
(G : Library_Graph;
U_Id : Unit_Id) return Library_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (U_Id));
return Unit_Tables.Get (G.Unit_To_Vertex, U_Id);
end Corresponding_Vertex;
------------
-- Create --
------------
function Create
(Initial_Vertices : Positive;
Initial_Edges : Positive) return Library_Graph
is
G : constant Library_Graph := new Library_Graph_Attributes;
begin
G.Component_Attributes := Component_Tables.Create (Initial_Vertices);
G.Cycle_Attributes := LGC_Tables.Create (Initial_Vertices);
G.Cycles := LGC_Lists.Create;
G.Edge_Attributes := LGE_Tables.Create (Initial_Edges);
G.Graph :=
DG.Create
(Initial_Vertices => Initial_Vertices,
Initial_Edges => Initial_Edges);
G.Recorded_Edges := RE_Sets.Create (Initial_Edges);
G.Unit_To_Vertex := Unit_Tables.Create (Initial_Vertices);
G.Vertex_Attributes := LGV_Tables.Create (Initial_Vertices);
return G;
end Create;
------------------------
-- Cycle_End_Vertices --
------------------------
function Cycle_End_Vertices
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Elaborate_All_Active : Boolean) return LGV_Sets.Membership_Set
is
Complement : Library_Graph_Vertex_Id;
End_Vertices : LGV_Sets.Membership_Set := LGV_Sets.Nil;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
End_Vertices := LGV_Sets.Create (2);
-- The input vertex always terminates a cycle path
LGV_Sets.Insert (End_Vertices, Vertex);
-- Add the complementary vertex to the set of cycle terminating
-- vertices when either Elaborate_All is in effect, or the input
-- vertex is part of an Elaborat_Body pair.
if Elaborate_All_Active
or else Is_Vertex_With_Elaborate_Body (G, Vertex)
then
Complement :=
Complementary_Vertex
(G => G,
Vertex => Vertex,
Force_Complement => Elaborate_All_Active);
if Present (Complement) then
LGV_Sets.Insert (End_Vertices, Complement);
end if;
end if;
return End_Vertices;
end Cycle_End_Vertices;
-------------------
-- Cycle_Kind_Of --
-------------------
function Cycle_Kind_Of
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Library_Graph_Cycle_Kind
is
pragma Assert (Present (G));
pragma Assert (Present (Edge));
begin
if Is_Cyclic_Elaborate_All_Edge (G, Edge) then
return Elaborate_All_Cycle;
elsif Is_Cyclic_Elaborate_Body_Edge (G, Edge) then
return Elaborate_Body_Cycle;
elsif Is_Cyclic_Elaborate_Edge (G, Edge) then
return Elaborate_Cycle;
elsif Is_Cyclic_Forced_Edge (G, Edge) then
return Forced_Cycle;
elsif Is_Cyclic_Invocation_Edge (G, Edge) then
return Invocation_Cycle;
else
return No_Cycle_Kind;
end if;
end Cycle_Kind_Of;
---------------------------
-- Cycle_Kind_Precedence --
---------------------------
function Cycle_Kind_Precedence
(Kind : Library_Graph_Cycle_Kind;
Compared_To : Library_Graph_Cycle_Kind) return Precedence_Kind
is
Comp_Pos : constant Integer :=
Library_Graph_Cycle_Kind'Pos (Compared_To);
Kind_Pos : constant Integer := Library_Graph_Cycle_Kind'Pos (Kind);
begin
-- A lower ordinal indicates a higher precedence
if Kind_Pos < Comp_Pos then
return Higher_Precedence;
elsif Kind_Pos > Comp_Pos then
return Lower_Precedence;
else
return Equal_Precedence;
end if;
end Cycle_Kind_Precedence;
---------------------------
-- Cycle_Path_Precedence --
---------------------------
function Cycle_Path_Precedence
(G : Library_Graph;
Path : LGE_Lists.Doubly_Linked_List;
Compared_To : LGE_Lists.Doubly_Linked_List) return Precedence_Kind
is
procedure Next_Available
(Iter : in out LGE_Lists.Iterator;
Edge : out Library_Graph_Edge_Id);
pragma Inline (Next_Available);
-- Obtain the next edge available through iterator Iter, or return
-- No_Library_Graph_Edge if the iterator has been exhausted.
--------------------
-- Next_Available --
--------------------
procedure Next_Available
(Iter : in out LGE_Lists.Iterator;
Edge : out Library_Graph_Edge_Id)
is
begin
-- Assume that the iterator has been exhausted
Edge := No_Library_Graph_Edge;
if LGE_Lists.Has_Next (Iter) then
LGE_Lists.Next (Iter, Edge);
end if;
end Next_Available;
-- Local variables
Comp_Edge : Library_Graph_Edge_Id;
Comp_Iter : LGE_Lists.Iterator;
Path_Edge : Library_Graph_Edge_Id;
Path_Iter : LGE_Lists.Iterator;
Prec : Precedence_Kind;
-- Start of processing for Cycle_Path_Precedence
begin
pragma Assert (Present (G));
pragma Assert (LGE_Lists.Present (Path));
pragma Assert (LGE_Lists.Present (Compared_To));
-- Assume that the paths have equal precedence
Prec := Equal_Precedence;
Comp_Iter := LGE_Lists.Iterate (Compared_To);
Path_Iter := LGE_Lists.Iterate (Path);
Next_Available (Comp_Iter, Comp_Edge);
Next_Available (Path_Iter, Path_Edge);
-- IMPORTANT:
--
-- * The iteration must run to completion in order to unlock the
-- edges of both paths.
while Present (Comp_Edge) or else Present (Path_Edge) loop
if Prec = Equal_Precedence
and then Present (Comp_Edge)
and then Present (Path_Edge)
then
Prec :=
Edge_Precedence
(G => G,
Edge => Path_Edge,
Compared_To => Comp_Edge);
end if;
Next_Available (Comp_Iter, Comp_Edge);
Next_Available (Path_Iter, Path_Edge);
end loop;
return Prec;
end Cycle_Path_Precedence;
----------------------
-- Cycle_Precedence --
----------------------
function Cycle_Precedence
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id;
Compared_To : Library_Graph_Cycle_Id) return Precedence_Kind
is
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
pragma Assert (Present (Compared_To));
Comp_Invs : constant Natural :=
Invocation_Edge_Count (G, Compared_To);
Comp_Len : constant Natural := Length (G, Compared_To);
Cycle_Invs : constant Natural := Invocation_Edge_Count (G, Cycle);
Cycle_Len : constant Natural := Length (G, Cycle);
Kind_Prec : constant Precedence_Kind :=
Cycle_Kind_Precedence
(Kind => Kind (G, Cycle),
Compared_To => Kind (G, Compared_To));
begin
-- Prefer a cycle with higher precedence based on its kind
if Kind_Prec = Higher_Precedence
or else
Kind_Prec = Lower_Precedence
then
return Kind_Prec;
-- Prefer a shorter cycle
elsif Cycle_Len < Comp_Len then
return Higher_Precedence;
elsif Cycle_Len > Comp_Len then
return Lower_Precedence;
-- Prefer a cycle wih fewer invocation edges
elsif Cycle_Invs < Comp_Invs then
return Higher_Precedence;
elsif Cycle_Invs > Comp_Invs then
return Lower_Precedence;
-- Prefer a cycle with a higher path precedence
else
return
Cycle_Path_Precedence
(G => G,
Path => Path (G, Cycle),
Compared_To => Path (G, Compared_To));
end if;
end Cycle_Precedence;
----------------------------------------
-- Decrement_Library_Graph_Edge_Count --
----------------------------------------
procedure Decrement_Library_Graph_Edge_Count
(G : Library_Graph;
Kind : Library_Graph_Edge_Kind)
is
pragma Assert (Present (G));
Count : Natural renames G.Counts (Kind);
begin
Count := Count - 1;
end Decrement_Library_Graph_Edge_Count;
------------------------------------
-- Decrement_Pending_Predecessors --
------------------------------------
procedure Decrement_Pending_Predecessors
(G : Library_Graph;
Comp : Component_Id;
Edge : Library_Graph_Edge_Id)
is
Attrs : Component_Attributes;
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
Attrs := Get_Component_Attributes (G, Comp);
Update_Pending_Predecessors
(Strong_Predecessors => Attrs.Pending_Strong_Predecessors,
Weak_Predecessors => Attrs.Pending_Weak_Predecessors,
Update_Weak => Is_Invocation_Edge (G, Edge),
Value => -1);
Set_Component_Attributes (G, Comp, Attrs);
end Decrement_Pending_Predecessors;
------------------------------------
-- Decrement_Pending_Predecessors --
------------------------------------
procedure Decrement_Pending_Predecessors
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Edge : Library_Graph_Edge_Id)
is
Attrs : Library_Graph_Vertex_Attributes;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
Attrs := Get_LGV_Attributes (G, Vertex);
Update_Pending_Predecessors
(Strong_Predecessors => Attrs.Pending_Strong_Predecessors,
Weak_Predecessors => Attrs.Pending_Weak_Predecessors,
Update_Weak => Is_Invocation_Edge (G, Edge),
Value => -1);
Set_LGV_Attributes (G, Vertex, Attrs);
end Decrement_Pending_Predecessors;
-----------------------------------
-- Delete_Body_Before_Spec_Edges --
-----------------------------------
procedure Delete_Body_Before_Spec_Edges
(G : Library_Graph;
Edges : LGE_Lists.Doubly_Linked_List)
is
Edge : Library_Graph_Edge_Id;
Iter : LGE_Lists.Iterator;
begin
pragma Assert (Present (G));
pragma Assert (LGE_Lists.Present (Edges));
Iter := LGE_Lists.Iterate (Edges);
while LGE_Lists.Has_Next (Iter) loop
LGE_Lists.Next (Iter, Edge);
pragma Assert (Kind (G, Edge) = Body_Before_Spec_Edge);
Delete_Edge (G, Edge);
end loop;
end Delete_Body_Before_Spec_Edges;
-----------------
-- Delete_Edge --
-----------------
procedure Delete_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id)
is
pragma Assert (Present (G));
pragma Assert (Present (Edge));
Pred : constant Library_Graph_Vertex_Id := Predecessor (G, Edge);
Succ : constant Library_Graph_Vertex_Id := Successor (G, Edge);
Rel : constant Predecessor_Successor_Relation :=
(Predecessor => Pred,
Successor => Succ);
begin
-- Update the edge statistics
Decrement_Library_Graph_Edge_Count (G, Kind (G, Edge));
-- Update the number of pending predecessors the successor must wait
-- on before it is elaborated.
Decrement_Pending_Predecessors
(G => G,
Vertex => Succ,
Edge => Edge);
-- Delete the link between the predecessor and successor. This allows
-- for further attempts to link the same predecessor and successor.
RE_Sets.Delete (G.Recorded_Edges, Rel);
-- Delete the attributes of the edge
LGE_Tables.Delete (G.Edge_Attributes, Edge);
-- Delete the edge from the underlying graph
DG.Delete_Edge (G.Graph, Edge);
end Delete_Edge;
-------------
-- Destroy --
-------------
procedure Destroy (G : in out Library_Graph) is
begin
pragma Assert (Present (G));
Component_Tables.Destroy (G.Component_Attributes);
LGC_Tables.Destroy (G.Cycle_Attributes);
LGC_Lists.Destroy (G.Cycles);
LGE_Tables.Destroy (G.Edge_Attributes);
DG.Destroy (G.Graph);
RE_Sets.Destroy (G.Recorded_Edges);
Unit_Tables.Destroy (G.Unit_To_Vertex);
LGV_Tables.Destroy (G.Vertex_Attributes);
Free (G);
end Destroy;
----------------------------------
-- Destroy_Component_Attributes --
----------------------------------
procedure Destroy_Component_Attributes
(Attrs : in out Component_Attributes)
is
pragma Unreferenced (Attrs);
begin
null;
end Destroy_Component_Attributes;
--------------------------------------------
-- Destroy_Library_Graph_Cycle_Attributes --
--------------------------------------------
procedure Destroy_Library_Graph_Cycle_Attributes
(Attrs : in out Library_Graph_Cycle_Attributes)
is
begin
LGE_Lists.Destroy (Attrs.Path);
end Destroy_Library_Graph_Cycle_Attributes;
-------------------------------------------
-- Destroy_Library_Graph_Edge_Attributes --
-------------------------------------------
procedure Destroy_Library_Graph_Edge_Attributes
(Attrs : in out Library_Graph_Edge_Attributes)
is
pragma Unreferenced (Attrs);
begin
null;
end Destroy_Library_Graph_Edge_Attributes;
---------------------------------------------
-- Destroy_Library_Graph_Vertex_Attributes --
---------------------------------------------
procedure Destroy_Library_Graph_Vertex_Attributes
(Attrs : in out Library_Graph_Vertex_Attributes)
is
pragma Unreferenced (Attrs);
begin
null;
end Destroy_Library_Graph_Vertex_Attributes;
---------------------
-- Edge_Precedence --
---------------------
function Edge_Precedence
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
Compared_To : Library_Graph_Edge_Id) return Precedence_Kind
is
pragma Assert (Present (G));
pragma Assert (Present (Edge));
pragma Assert (Present (Compared_To));
Comp_Succ : constant Library_Graph_Vertex_Id :=
Successor (G, Compared_To);
Edge_Succ : constant Library_Graph_Vertex_Id :=
Successor (G, Edge);
Kind_Prec : constant Precedence_Kind :=
Cycle_Kind_Precedence
(Kind => Cycle_Kind_Of (G, Edge),
Compared_To => Cycle_Kind_Of (G, Compared_To));
Succ_Prec : constant Precedence_Kind :=
Vertex_Precedence
(G => G,
Vertex => Edge_Succ,
Compared_To => Comp_Succ);
begin
-- Prefer an edge with a higher cycle kind precedence
if Kind_Prec = Higher_Precedence
or else
Kind_Prec = Lower_Precedence
then
return Kind_Prec;
-- Prefer an edge whose successor has a higher precedence
elsif Comp_Succ /= Edge_Succ
and then (Succ_Prec = Higher_Precedence
or else
Succ_Prec = Lower_Precedence)
then
return Succ_Prec;
-- Prefer an edge whose predecessor has a higher precedence
else
return
Vertex_Precedence
(G => G,
Vertex => Predecessor (G, Edge),
Compared_To => Predecessor (G, Compared_To));
end if;
end Edge_Precedence;
---------------
-- File_Name --
---------------
function File_Name
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return File_Name_Type
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return File_Name (Unit (G, Vertex));
end File_Name;
---------------------
-- Find_Components --
---------------------
procedure Find_Components (G : Library_Graph) is
Edges : LGE_Lists.Doubly_Linked_List;
begin
pragma Assert (Present (G));
Start_Phase (Component_Discovery);
-- Initialize or reinitialize the components of the graph
Initialize_Components (G);
-- Create a set of special edges that link a predecessor body with a
-- successor spec. This is an illegal dependency, however using such
-- edges eliminates the need to create yet another graph, where both
-- spec and body are collapsed into a single vertex.
Edges := LGE_Lists.Create;
Add_Body_Before_Spec_Edges (G, Edges);
DG.Find_Components (G.Graph);
-- Remove the special edges that link a predecessor body with a
-- successor spec because they cause unresolvable circularities.
Delete_Body_Before_Spec_Edges (G, Edges);
LGE_Lists.Destroy (Edges);
-- Update the number of predecessors various components must wait on
-- before they can be elaborated.
Update_Pending_Predecessors_Of_Components (G);
End_Phase (Component_Discovery);
end Find_Components;
-----------------
-- Find_Cycles --
-----------------
procedure Find_Cycles (G : Library_Graph) is
All_Cycle_Limit : constant Natural := 64;
-- The performance of Tarjan's algorithm may degrate to exponential
-- when pragma Elaborate_All is in effect, or some vertex is part of
-- an Elaborate_Body pair. In this case the algorithm discovers all
-- combinations of edges that close a circuit starting and ending on
-- some start vertex while going through different vertices. Use a
-- limit on the total number of cycles within a component to guard
-- against such degradation.
Comp : Component_Id;
Cycle_Count : Natural;
Iter : Component_Iterator;
begin
pragma Assert (Present (G));
Start_Phase (Cycle_Discovery);
-- The cycles of graph G are discovered using Tarjan's enumeration
-- of the elementary circuits of a directed-graph algorithm. Do not
-- modify this code unless you intimately understand the algorithm.
--
-- The logic of the algorithm is split among the following routines:
--
-- Cycle_End_Vertices
-- Find_Cycles_From_Successor
-- Find_Cycles_From_Vertex
-- Find_Cycles_In_Component
-- Unvisit
-- Visit
--
-- The original algorithm has been significantly modified in order to
--
-- * Accommodate the semantics of Elaborate_All and Elaborate_Body.
--
-- * Capture cycle paths as edges rather than vertices.
--
-- * Take advantage of graph components.
-- Assume that the graph does not contain a cycle
Cycle_Count := 0;
-- Run the modified version of the algorithm on each component of the
-- graph.
Iter := Iterate_Components (G);
while Has_Next (Iter) loop
Next (Iter, Comp);
Find_Cycles_In_Component
(G => G,
Comp => Comp,
Cycle_Count => Cycle_Count,
Cycle_Limit => All_Cycle_Limit);
end loop;
End_Phase (Cycle_Discovery);
end Find_Cycles;
--------------------------------
-- Find_Cycles_From_Successor --
--------------------------------
procedure Find_Cycles_From_Successor
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
End_Vertices : LGV_Sets.Membership_Set;
Deleted_Vertices : LGV_Sets.Membership_Set;
Most_Significant_Edge : Library_Graph_Edge_Id;
Invocation_Edge_Count : Natural;
Cycle_Path_Stack : LGE_Lists.Doubly_Linked_List;
Visited_Set : LGV_Sets.Membership_Set;
Visited_Stack : LGV_Lists.Doubly_Linked_List;
Cycle_Count : in out Natural;
Cycle_Limit : Natural;
Elaborate_All_Active : Boolean;
Has_Cycle : out Boolean;
Indent : Indentation_Level)
is
pragma Assert (Present (G));
pragma Assert (Present (Edge));
pragma Assert (LGV_Sets.Present (End_Vertices));
pragma Assert (LGV_Sets.Present (Deleted_Vertices));
pragma Assert (LGE_Lists.Present (Cycle_Path_Stack));
pragma Assert (LGV_Sets.Present (Visited_Set));
pragma Assert (LGV_Lists.Present (Visited_Stack));
Succ : constant Library_Graph_Vertex_Id := Successor (G, Edge);
Succ_Indent : constant Indentation_Level :=
Indent + Nested_Indentation;
begin
-- Assume that the successor reached via the edge does not result in
-- a cycle.
Has_Cycle := False;
-- Nothing to do when the edge connects two vertices residing in two
-- different components.
if not Is_Cyclic_Edge (G, Edge) then
return;
end if;
Trace_Edge (G, Edge, Indent);
-- The modified version does not place vertices on the "point stack",
-- but instead collects the edges comprising the cycle. Prepare the
-- edge for backtracking.
LGE_Lists.Prepend (Cycle_Path_Stack, Edge);
Find_Cycles_From_Vertex
(G => G,
Vertex => Succ,
End_Vertices => End_Vertices,
Deleted_Vertices => Deleted_Vertices,
Most_Significant_Edge => Most_Significant_Edge,
Invocation_Edge_Count => Invocation_Edge_Count,
Cycle_Path_Stack => Cycle_Path_Stack,
Visited_Set => Visited_Set,
Visited_Stack => Visited_Stack,
Cycle_Count => Cycle_Count,
Cycle_Limit => Cycle_Limit,
Elaborate_All_Active => Elaborate_All_Active,
Is_Start_Vertex => False,
Has_Cycle => Has_Cycle,
Indent => Succ_Indent);
-- The modified version does not place vertices on the "point stack",
-- but instead collects the edges comprising the cycle. Backtrack the
-- edge.
LGE_Lists.Delete_First (Cycle_Path_Stack);
end Find_Cycles_From_Successor;
-----------------------------
-- Find_Cycles_From_Vertex --
-----------------------------
procedure Find_Cycles_From_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
End_Vertices : LGV_Sets.Membership_Set;
Deleted_Vertices : LGV_Sets.Membership_Set;
Most_Significant_Edge : Library_Graph_Edge_Id;
Invocation_Edge_Count : Natural;
Cycle_Path_Stack : LGE_Lists.Doubly_Linked_List;
Visited_Set : LGV_Sets.Membership_Set;
Visited_Stack : LGV_Lists.Doubly_Linked_List;
Cycle_Count : in out Natural;
Cycle_Limit : Natural;
Elaborate_All_Active : Boolean;
Is_Start_Vertex : Boolean;
Has_Cycle : out Boolean;
Indent : Indentation_Level)
is
Edge_Indent : constant Indentation_Level :=
Indent + Nested_Indentation;
Complement : Library_Graph_Vertex_Id;
Edge : Library_Graph_Edge_Id;
Iter : Edges_To_Successors_Iterator;
Complement_Has_Cycle : Boolean;
-- This flag is set when either Elaborate_All is in effect or the
-- current vertex is part of an Elaborate_Body pair, and visiting
-- the "complementary" vertex resulted in a cycle.
Successor_Has_Cycle : Boolean;
-- This flag is set when visiting at least one successor of the
-- current vertex resulted in a cycle.
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
pragma Assert (LGV_Sets.Present (End_Vertices));
pragma Assert (LGV_Sets.Present (Deleted_Vertices));
pragma Assert (LGE_Lists.Present (Cycle_Path_Stack));
pragma Assert (LGV_Sets.Present (Visited_Set));
pragma Assert (LGV_Lists.Present (Visited_Stack));
-- Assume that the vertex does not close a circuit
Has_Cycle := False;
-- Nothing to do when the limit on the number of saved cycles has
-- been reached. This protects against a combinatorial explosion
-- in components with Elaborate_All cycles.
if Cycle_Count >= Cycle_Limit then
return;
-- The vertex closes the circuit, thus resulting in a cycle. Save
-- the cycle for later diagnostics. The initial invocation of the
-- routine always ignores the starting vertex, to prevent a spurious
-- self-cycle.
elsif not Is_Start_Vertex
and then LGV_Sets.Contains (End_Vertices, Vertex)
then
Trace_Vertex (G, Vertex, Indent);
Record_Cycle
(G => G,
Most_Significant_Edge => Most_Significant_Edge,
Invocation_Edge_Count => Invocation_Edge_Count,
Cycle_Path => Cycle_Path_Stack,
Indent => Indent);
Has_Cycle := True;
Cycle_Count := Cycle_Count + 1;
return;
-- Nothing to do when the vertex has already been deleted. This
-- indicates that all available cycles involving the vertex have
-- been discovered, and the vertex cannot contribute further to
-- the depth-first search.
elsif LGV_Sets.Contains (Deleted_Vertices, Vertex) then
return;
-- Nothing to do when the vertex has already been visited. This
-- indicates that the depth-first search initiated from some start
-- vertex already encountered this vertex, and the visited stack has
-- not been unrolled yet.
elsif LGV_Sets.Contains (Visited_Set, Vertex) then
return;
end if;
Trace_Vertex (G, Vertex, Indent);
-- Mark the vertex as visited
Visit
(Vertex => Vertex,
Visited_Set => Visited_Set,
Visited_Stack => Visited_Stack);
-- Extend the depth-first search via all the edges to successors
Iter := Iterate_Edges_To_Successors (G, Vertex);
while Has_Next (Iter) loop
Next (Iter, Edge);
Find_Cycles_From_Successor
(G => G,
Edge => Edge,
End_Vertices => End_Vertices,
Deleted_Vertices => Deleted_Vertices,
-- The edge may be more important than the most important edge
-- up to this point, thus "upgrading" the nature of the cycle,
-- and shifting its point of normalization.
Most_Significant_Edge =>
Highest_Precedence_Edge
(G => G,
Left => Edge,
Right => Most_Significant_Edge),
-- The edge may be an invocation edge, in which case the count
-- of invocation edges increases by one.
Invocation_Edge_Count =>
Maximum_Invocation_Edge_Count
(G => G,
Edge => Edge,
Count => Invocation_Edge_Count),
Cycle_Path_Stack => Cycle_Path_Stack,
Visited_Set => Visited_Set,
Visited_Stack => Visited_Stack,
Cycle_Count => Cycle_Count,
Cycle_Limit => Cycle_Limit,
Elaborate_All_Active => Elaborate_All_Active,
Has_Cycle => Successor_Has_Cycle,
Indent => Edge_Indent);
Has_Cycle := Has_Cycle or Successor_Has_Cycle;
end loop;
-- Visit the complementary vertex of the current vertex when pragma
-- Elaborate_All is in effect, or the current vertex is part of an
-- Elaborate_Body pair.
if Elaborate_All_Active
or else Is_Vertex_With_Elaborate_Body (G, Vertex)
then
Complement :=
Complementary_Vertex
(G => G,
Vertex => Vertex,
Force_Complement => Elaborate_All_Active);
if Present (Complement) then
Find_Cycles_From_Vertex
(G => G,
Vertex => Complement,
End_Vertices => End_Vertices,
Deleted_Vertices => Deleted_Vertices,
Most_Significant_Edge => Most_Significant_Edge,
Invocation_Edge_Count => Invocation_Edge_Count,
Cycle_Path_Stack => Cycle_Path_Stack,
Visited_Set => Visited_Set,
Visited_Stack => Visited_Stack,
Cycle_Count => Cycle_Count,
Cycle_Limit => Cycle_Limit,
Elaborate_All_Active => Elaborate_All_Active,
Is_Start_Vertex => Is_Start_Vertex,
Has_Cycle => Complement_Has_Cycle,
Indent => Indent);
Has_Cycle := Has_Cycle or Complement_Has_Cycle;
end if;
end if;
-- The original algorithm clears the "marked stack" in two places:
--
-- * When the depth-first search starting from the current vertex
-- discovers at least one cycle, and
--
-- * When the depth-first search initiated from a start vertex
-- completes.
--
-- The modified version handles both cases in one place.
if Has_Cycle or else Is_Start_Vertex then
Unvisit
(Vertex => Vertex,
Visited_Set => Visited_Set,
Visited_Stack => Visited_Stack);
end if;
-- Delete a start vertex from the graph once its depth-first search
-- completes. This action preserves the invariant where a cycle is
-- not rediscovered "later" in some permuted form.
if Is_Start_Vertex then
LGV_Sets.Insert (Deleted_Vertices, Vertex);
end if;
end Find_Cycles_From_Vertex;
------------------------------
-- Find_Cycles_In_Component --
------------------------------
procedure Find_Cycles_In_Component
(G : Library_Graph;
Comp : Component_Id;
Cycle_Count : in out Natural;
Cycle_Limit : Natural)
is
pragma Assert (Present (G));
pragma Assert (Present (Comp));
Num_Of_Vertices : constant Natural :=
Number_Of_Component_Vertices (G, Comp);
Elaborate_All_Active : constant Boolean :=
Has_Elaborate_All_Edge (G, Comp);
-- The presence of an Elaborate_All edge within a component causes
-- all spec-body pairs to be treated as one vertex.
Has_Cycle : Boolean;
Iter : Component_Vertex_Iterator;
Vertex : Library_Graph_Vertex_Id;
Cycle_Path_Stack : LGE_Lists.Doubly_Linked_List := LGE_Lists.Nil;
-- The "point stack" of Tarjan's algorithm. The original maintains
-- a stack of vertices, however for diagnostic purposes using edges
-- is preferable.
Deleted_Vertices : LGV_Sets.Membership_Set := LGV_Sets.Nil;
-- The original algorithm alters the graph by deleting vertices with
-- lower ordinals compared to some starting vertex. Since the graph
-- must remain intact for diagnostic purposes, vertices are instead
-- inserted in this set and treated as "deleted".
End_Vertices : LGV_Sets.Membership_Set := LGV_Sets.Nil;
-- The original algorithm uses a single vertex to indicate the start
-- and end vertex of a cycle. The semantics of pragmas Elaborate_All
-- and Elaborate_Body increase this number by one. The end vertices
-- are added to this set and treated as "cycle-terminating".
Visited_Set : LGV_Sets.Membership_Set := LGV_Sets.Nil;
-- The "mark" array of Tarjan's algorithm. Since the original visits
-- all vertices in increasing ordinal number 1 .. N, the array offers
-- a one-to-one mapping between a vertex and its "marked" state. The
-- modified version however visits vertices within components, where
-- their ordinals are not contiguous. Vertices are added to this set
-- and treated as "marked".
Visited_Stack : LGV_Lists.Doubly_Linked_List := LGV_Lists.Nil;
-- The "marked stack" of Tarjan's algorithm
begin
Trace_Component (G, Comp, No_Indentation);
-- Initialize all component-level data structures
Cycle_Path_Stack := LGE_Lists.Create;
Deleted_Vertices := LGV_Sets.Create (Num_Of_Vertices);
Visited_Set := LGV_Sets.Create (Num_Of_Vertices);
Visited_Stack := LGV_Lists.Create;
-- The modified version does not use ordinals to visit vertices in
-- 1 .. N fashion. To preserve the invariant of the original, this
-- version deletes a vertex after its depth-first search completes.
-- The timing of the deletion is sound because all cycles through
-- that vertex have already been discovered, thus the vertex cannot
-- contribute to any cycles discovered "later" in the algorithm.
Iter := Iterate_Component_Vertices (G, Comp);
while Has_Next (Iter) loop
Next (Iter, Vertex);
-- Construct the set of vertices (at most 2) that terminates a
-- potential cycle that starts from the current vertex.
End_Vertices :=
Cycle_End_Vertices
(G => G,
Vertex => Vertex,
Elaborate_All_Active => Elaborate_All_Active);
-- The modified version maintains two additional attributes while
-- performing the depth-first search:
--
-- * The most significant edge of the current potential cycle.
--
-- * The number of invocation edges encountered along the path
-- of the current potential cycle.
--
-- Both attributes are used in the heuristic that determines the
-- importance of cycles.
Find_Cycles_From_Vertex
(G => G,
Vertex => Vertex,
End_Vertices => End_Vertices,
Deleted_Vertices => Deleted_Vertices,
Most_Significant_Edge => No_Library_Graph_Edge,
Invocation_Edge_Count => 0,
Cycle_Path_Stack => Cycle_Path_Stack,
Visited_Set => Visited_Set,
Visited_Stack => Visited_Stack,
Cycle_Count => Cycle_Count,
Cycle_Limit => Cycle_Limit,
Elaborate_All_Active => Elaborate_All_Active,
Is_Start_Vertex => True,
Has_Cycle => Has_Cycle,
Indent => Nested_Indentation);
-- Destroy the cycle-terminating vertices because a new set must
-- be constructed for the next vertex.
LGV_Sets.Destroy (End_Vertices);
end loop;
-- Destroy all component-level data structures
LGE_Lists.Destroy (Cycle_Path_Stack);
LGV_Sets.Destroy (Deleted_Vertices);
LGV_Sets.Destroy (Visited_Set);
LGV_Lists.Destroy (Visited_Stack);
end Find_Cycles_In_Component;
---------------
-- Find_Edge --
---------------
function Find_Edge
(G : Library_Graph;
Pred : Library_Graph_Vertex_Id;
Succ : Library_Graph_Vertex_Id) return Library_Graph_Edge_Id
is
Result : Library_Graph_Edge_Id := No_Library_Graph_Edge;
Edge : Library_Graph_Edge_Id;
Iter : Edges_To_Successors_Iterator :=
Iterate_Edges_To_Successors (G, Pred);
begin
-- IMPORTANT:
--
-- * The iteration must run to completion in order to unlock the
-- edges to successors.
-- This does a linear search through the successors of Pred.
-- Efficiency is not a problem, because this is called only when
-- Activates_Task is True, which is rare, and anyway, there aren't
-- usually large numbers of successors.
while Has_Next (Iter) loop
Next (Iter, Edge);
if Succ = Successor (G, Edge) then
pragma Assert (not Present (Result));
Result := Edge;
end if;
end loop;
pragma Assert (Present (Result));
return Result;
end Find_Edge;
---------------------------------------
-- Find_First_Lower_Precedence_Cycle --
---------------------------------------
function Find_First_Lower_Precedence_Cycle
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return Library_Graph_Cycle_Id
is
Current_Cycle : Library_Graph_Cycle_Id;
Iter : All_Cycle_Iterator;
Lesser_Cycle : Library_Graph_Cycle_Id;
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
-- Assume that there is no lesser cycle
Lesser_Cycle := No_Library_Graph_Cycle;
-- Find a cycle with a slightly lower precedence than the input
-- cycle.
--
-- IMPORTANT:
--
-- * The iterator must run to completion in order to unlock the
-- list of all cycles.
Iter := Iterate_All_Cycles (G);
while Has_Next (Iter) loop
Next (Iter, Current_Cycle);
if not Present (Lesser_Cycle)
and then Cycle_Precedence
(G => G,
Cycle => Cycle,
Compared_To => Current_Cycle) = Higher_Precedence
then
Lesser_Cycle := Current_Cycle;
end if;
end loop;
return Lesser_Cycle;
end Find_First_Lower_Precedence_Cycle;
------------------------------
-- Get_Component_Attributes --
------------------------------
function Get_Component_Attributes
(G : Library_Graph;
Comp : Component_Id) return Component_Attributes
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
return Component_Tables.Get (G.Component_Attributes, Comp);
end Get_Component_Attributes;
------------------------
-- Get_LGC_Attributes --
------------------------
function Get_LGC_Attributes
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return Library_Graph_Cycle_Attributes
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
return LGC_Tables.Get (G.Cycle_Attributes, Cycle);
end Get_LGC_Attributes;
------------------------
-- Get_LGE_Attributes --
------------------------
function Get_LGE_Attributes
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Library_Graph_Edge_Attributes
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return LGE_Tables.Get (G.Edge_Attributes, Edge);
end Get_LGE_Attributes;
------------------------
-- Get_LGV_Attributes --
------------------------
function Get_LGV_Attributes
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id)
return Library_Graph_Vertex_Attributes
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return LGV_Tables.Get (G.Vertex_Attributes, Vertex);
end Get_LGV_Attributes;
-----------------------------
-- Has_Elaborate_All_Cycle --
-----------------------------
function Has_Elaborate_All_Cycle (G : Library_Graph) return Boolean is
Edge : Library_Graph_Edge_Id;
Iter : All_Edge_Iterator;
Seen : Boolean;
begin
pragma Assert (Present (G));
-- Assume that no cyclic Elaborate_All edge has been seen
Seen := False;
-- IMPORTANT:
--
-- * The iteration must run to completion in order to unlock the
-- graph.
Iter := Iterate_All_Edges (G);
while Has_Next (Iter) loop
Next (Iter, Edge);
if not Seen and then Is_Cyclic_Elaborate_All_Edge (G, Edge) then
Seen := True;
end if;
end loop;
return Seen;
end Has_Elaborate_All_Cycle;
----------------------------
-- Has_Elaborate_All_Edge --
----------------------------
function Has_Elaborate_All_Edge
(G : Library_Graph;
Comp : Component_Id) return Boolean
is
Has_Edge : Boolean;
Iter : Component_Vertex_Iterator;
Vertex : Library_Graph_Vertex_Id;
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
-- Assume that there is no Elaborate_All edge
Has_Edge := False;
-- IMPORTANT:
--
-- * The iteration must run to completion in order to unlock the
-- component vertices.
Iter := Iterate_Component_Vertices (G, Comp);
while Has_Next (Iter) loop
Next (Iter, Vertex);
Has_Edge := Has_Edge or else Has_Elaborate_All_Edge (G, Vertex);
end loop;
return Has_Edge;
end Has_Elaborate_All_Edge;
----------------------------
-- Has_Elaborate_All_Edge --
----------------------------
function Has_Elaborate_All_Edge
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
Edge : Library_Graph_Edge_Id;
Has_Edge : Boolean;
Iter : Edges_To_Successors_Iterator;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
-- Assume that there is no Elaborate_All edge
Has_Edge := False;
-- IMPORTANT:
--
-- * The iteration must run to completion in order to unlock the
-- edges to successors.
Iter := Iterate_Edges_To_Successors (G, Vertex);
while Has_Next (Iter) loop
Next (Iter, Edge);
Has_Edge :=
Has_Edge or else Is_Cyclic_Elaborate_All_Edge (G, Edge);
end loop;
return Has_Edge;
end Has_Elaborate_All_Edge;
------------------------
-- Has_Elaborate_Body --
------------------------
function Has_Elaborate_Body
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
U_Id : constant Unit_Id := Unit (G, Vertex);
U_Rec : Unit_Record renames ALI.Units.Table (U_Id);
begin
-- Treat the spec and body as decoupled when switch -d_b (ignore the
-- effects of pragma Elaborate_Body) is in effect.
return U_Rec.Elaborate_Body and not Debug_Flag_Underscore_B;
end Has_Elaborate_Body;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : All_Cycle_Iterator) return Boolean is
begin
return LGC_Lists.Has_Next (LGC_Lists.Iterator (Iter));
end Has_Next;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : All_Edge_Iterator) return Boolean is
begin
return DG.Has_Next (DG.All_Edge_Iterator (Iter));
end Has_Next;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : All_Vertex_Iterator) return Boolean is
begin
return DG.Has_Next (DG.All_Vertex_Iterator (Iter));
end Has_Next;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : Component_Iterator) return Boolean is
begin
return DG.Has_Next (DG.Component_Iterator (Iter));
end Has_Next;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : Component_Vertex_Iterator) return Boolean is
begin
return DG.Has_Next (DG.Component_Vertex_Iterator (Iter));
end Has_Next;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : Edges_Of_Cycle_Iterator) return Boolean is
begin
return LGE_Lists.Has_Next (LGE_Lists.Iterator (Iter));
end Has_Next;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : Edges_To_Successors_Iterator) return Boolean is
begin
return DG.Has_Next (DG.Outgoing_Edge_Iterator (Iter));
end Has_Next;
-----------------------------
-- Has_No_Elaboration_Code --
-----------------------------
function Has_No_Elaboration_Code
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Has_No_Elaboration_Code (Unit (G, Vertex));
end Has_No_Elaboration_Code;
-----------------------------------------
-- Hash_Library_Graph_Cycle_Attributes --
-----------------------------------------
function Hash_Library_Graph_Cycle_Attributes
(Attrs : Library_Graph_Cycle_Attributes) return Bucket_Range_Type
is
Edge : Library_Graph_Edge_Id;
Hash : Bucket_Range_Type;
Iter : LGE_Lists.Iterator;
begin
pragma Assert (LGE_Lists.Present (Attrs.Path));
-- The hash is obtained in the following manner:
--
-- (((edge1 * 31) + edge2) * 31) + edgeN
Hash := 0;
Iter := LGE_Lists.Iterate (Attrs.Path);
while LGE_Lists.Has_Next (Iter) loop
LGE_Lists.Next (Iter, Edge);
Hash := (Hash * 31) + Bucket_Range_Type (Edge);
end loop;
return Hash;
end Hash_Library_Graph_Cycle_Attributes;
-----------------------------------------
-- Hash_Predecessor_Successor_Relation --
-----------------------------------------
function Hash_Predecessor_Successor_Relation
(Rel : Predecessor_Successor_Relation) return Bucket_Range_Type
is
begin
pragma Assert (Present (Rel.Predecessor));
pragma Assert (Present (Rel.Successor));
return
Hash_Two_Keys
(Bucket_Range_Type (Rel.Predecessor),
Bucket_Range_Type (Rel.Successor));
end Hash_Predecessor_Successor_Relation;
------------------------------
-- Highest_Precedence_Cycle --
------------------------------
function Highest_Precedence_Cycle
(G : Library_Graph) return Library_Graph_Cycle_Id
is
begin
pragma Assert (Present (G));
pragma Assert (LGC_Lists.Present (G.Cycles));
if LGC_Lists.Is_Empty (G.Cycles) then
return No_Library_Graph_Cycle;
-- The highest precedence cycle is always the first in the list of
-- all cycles.
else
return LGC_Lists.First (G.Cycles);
end if;
end Highest_Precedence_Cycle;
-----------------------------
-- Highest_Precedence_Edge --
-----------------------------
function Highest_Precedence_Edge
(G : Library_Graph;
Left : Library_Graph_Edge_Id;
Right : Library_Graph_Edge_Id) return Library_Graph_Edge_Id
is
Edge_Prec : Precedence_Kind;
begin
pragma Assert (Present (G));
-- Both edges are available, pick the one with highest precedence
if Present (Left) and then Present (Right) then
Edge_Prec :=
Edge_Precedence
(G => G,
Edge => Left,
Compared_To => Right);
if Edge_Prec = Higher_Precedence then
return Left;
-- The precedence rules for edges are such that no two edges can
-- ever have the same precedence.
else
pragma Assert (Edge_Prec = Lower_Precedence);
return Right;
end if;
-- Otherwise at least one edge must be present
elsif Present (Left) then
return Left;
else
pragma Assert (Present (Right));
return Right;
end if;
end Highest_Precedence_Edge;
--------------------------
-- In_Elaboration_Order --
--------------------------
function In_Elaboration_Order
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Get_LGV_Attributes (G, Vertex).In_Elaboration_Order;
end In_Elaboration_Order;
-----------------------
-- In_Same_Component --
-----------------------
function In_Same_Component
(G : Library_Graph;
Left : Library_Graph_Vertex_Id;
Right : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Left));
pragma Assert (Present (Right));
return Component (G, Left) = Component (G, Right);
end In_Same_Component;
----------------------------------------
-- Increment_Library_Graph_Edge_Count --
----------------------------------------
procedure Increment_Library_Graph_Edge_Count
(G : Library_Graph;
Kind : Library_Graph_Edge_Kind)
is
pragma Assert (Present (G));
Count : Natural renames G.Counts (Kind);
begin
Count := Count + 1;
end Increment_Library_Graph_Edge_Count;
------------------------------------
-- Increment_Pending_Predecessors --
------------------------------------
procedure Increment_Pending_Predecessors
(G : Library_Graph;
Comp : Component_Id;
Edge : Library_Graph_Edge_Id)
is
Attrs : Component_Attributes;
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
Attrs := Get_Component_Attributes (G, Comp);
Update_Pending_Predecessors
(Strong_Predecessors => Attrs.Pending_Strong_Predecessors,
Weak_Predecessors => Attrs.Pending_Weak_Predecessors,
Update_Weak => Is_Invocation_Edge (G, Edge),
Value => 1);
Set_Component_Attributes (G, Comp, Attrs);
end Increment_Pending_Predecessors;
------------------------------------
-- Increment_Pending_Predecessors --
------------------------------------
procedure Increment_Pending_Predecessors
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Edge : Library_Graph_Edge_Id)
is
Attrs : Library_Graph_Vertex_Attributes;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
Attrs := Get_LGV_Attributes (G, Vertex);
Update_Pending_Predecessors
(Strong_Predecessors => Attrs.Pending_Strong_Predecessors,
Weak_Predecessors => Attrs.Pending_Weak_Predecessors,
Update_Weak => Is_Invocation_Edge (G, Edge),
Value => 1);
Set_LGV_Attributes (G, Vertex, Attrs);
end Increment_Pending_Predecessors;
---------------------------
-- Initialize_Components --
---------------------------
procedure Initialize_Components (G : Library_Graph) is
begin
pragma Assert (Present (G));
-- The graph already contains a set of components. Reinitialize
-- them in order to accommodate the new set of components about to
-- be computed.
if Number_Of_Components (G) > 0 then
Component_Tables.Destroy (G.Component_Attributes);
G.Component_Attributes :=
Component_Tables.Create (Number_Of_Vertices (G));
end if;
end Initialize_Components;
---------------------------
-- Invocation_Edge_Count --
---------------------------
function Invocation_Edge_Count
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return Natural
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
return Get_LGC_Attributes (G, Cycle).Invocation_Edge_Count;
end Invocation_Edge_Count;
-------------------------------
-- Invocation_Graph_Encoding --
-------------------------------
function Invocation_Graph_Encoding
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id)
return Invocation_Graph_Encoding_Kind
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Invocation_Graph_Encoding (Unit (G, Vertex));
end Invocation_Graph_Encoding;
-------------
-- Is_Body --
-------------
function Is_Body
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
U_Id : constant Unit_Id := Unit (G, Vertex);
U_Rec : Unit_Record renames ALI.Units.Table (U_Id);
begin
return U_Rec.Utype = Is_Body or else U_Rec.Utype = Is_Body_Only;
end Is_Body;
-----------------------------------------
-- Is_Body_Of_Spec_With_Elaborate_Body --
-----------------------------------------
function Is_Body_Of_Spec_With_Elaborate_Body
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
if Is_Body_With_Spec (G, Vertex) then
return
Is_Spec_With_Elaborate_Body
(G => G,
Vertex => Proper_Spec (G, Vertex));
end if;
return False;
end Is_Body_Of_Spec_With_Elaborate_Body;
-----------------------
-- Is_Body_With_Spec --
-----------------------
function Is_Body_With_Spec
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
U_Id : constant Unit_Id := Unit (G, Vertex);
U_Rec : Unit_Record renames ALI.Units.Table (U_Id);
begin
return U_Rec.Utype = Is_Body;
end Is_Body_With_Spec;
------------------------------
-- Is_Cycle_Initiating_Edge --
------------------------------
function Is_Cycle_Initiating_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return
Is_Cyclic_Elaborate_All_Edge (G, Edge)
or else Is_Cyclic_Elaborate_Body_Edge (G, Edge)
or else Is_Cyclic_Elaborate_Edge (G, Edge)
or else Is_Cyclic_Forced_Edge (G, Edge)
or else Is_Cyclic_Invocation_Edge (G, Edge);
end Is_Cycle_Initiating_Edge;
--------------------
-- Is_Cyclic_Edge --
--------------------
function Is_Cyclic_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return
Is_Cycle_Initiating_Edge (G, Edge)
or else Is_Cyclic_With_Edge (G, Edge);
end Is_Cyclic_Edge;
----------------------------------
-- Is_Cyclic_Elaborate_All_Edge --
----------------------------------
function Is_Cyclic_Elaborate_All_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return
Is_Elaborate_All_Edge (G, Edge)
and then Links_Vertices_In_Same_Component (G, Edge);
end Is_Cyclic_Elaborate_All_Edge;
-----------------------------------
-- Is_Cyclic_Elaborate_Body_Edge --
-----------------------------------
function Is_Cyclic_Elaborate_Body_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return
Is_Elaborate_Body_Edge (G, Edge)
and then Links_Vertices_In_Same_Component (G, Edge);
end Is_Cyclic_Elaborate_Body_Edge;
------------------------------
-- Is_Cyclic_Elaborate_Edge --
------------------------------
function Is_Cyclic_Elaborate_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return
Is_Elaborate_Edge (G, Edge)
and then Links_Vertices_In_Same_Component (G, Edge);
end Is_Cyclic_Elaborate_Edge;
---------------------------
-- Is_Cyclic_Forced_Edge --
---------------------------
function Is_Cyclic_Forced_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return
Is_Forced_Edge (G, Edge)
and then Links_Vertices_In_Same_Component (G, Edge);
end Is_Cyclic_Forced_Edge;
-------------------------------
-- Is_Cyclic_Invocation_Edge --
-------------------------------
function Is_Cyclic_Invocation_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return
Is_Invocation_Edge (G, Edge)
and then Links_Vertices_In_Same_Component (G, Edge);
end Is_Cyclic_Invocation_Edge;
-------------------------
-- Is_Cyclic_With_Edge --
-------------------------
function Is_Cyclic_With_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
-- Ignore Elaborate_Body edges because they also appear as with
-- edges, but have special successors.
return
Is_With_Edge (G, Edge)
and then Links_Vertices_In_Same_Component (G, Edge)
and then not Is_Elaborate_Body_Edge (G, Edge);
end Is_Cyclic_With_Edge;
-------------------------------
-- Is_Dynamically_Elaborated --
-------------------------------
function Is_Dynamically_Elaborated
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Is_Dynamically_Elaborated (Unit (G, Vertex));
end Is_Dynamically_Elaborated;
-----------------------------
-- Is_Elaborable_Component --
-----------------------------
function Is_Elaborable_Component
(G : Library_Graph;
Comp : Component_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
-- A component is elaborable when:
--
-- * It is not waiting on strong predecessors, and
-- * It is not waiting on weak predecessors
return
Pending_Strong_Predecessors (G, Comp) = 0
and then Pending_Weak_Predecessors (G, Comp) = 0;
end Is_Elaborable_Component;
--------------------------
-- Is_Elaborable_Vertex --
--------------------------
function Is_Elaborable_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
Complement : constant Library_Graph_Vertex_Id :=
Complementary_Vertex
(G => G,
Vertex => Vertex,
Force_Complement => False);
Strong_Preds : Natural;
Weak_Preds : Natural;
begin
-- A vertex is elaborable when:
--
-- * It has not been elaborated yet, and
-- * The complement vertex of an Elaborate_Body pair has not been
-- elaborated yet, and
-- * It resides within an elaborable component, and
-- * It is not waiting on strong predecessors, and
-- * It is not waiting on weak predecessors
if In_Elaboration_Order (G, Vertex) then
return False;
elsif Present (Complement)
and then In_Elaboration_Order (G, Complement)
then
return False;
elsif not Is_Elaborable_Component (G, Component (G, Vertex)) then
return False;
end if;
Pending_Predecessors_For_Elaboration
(G => G,
Vertex => Vertex,
Strong_Preds => Strong_Preds,
Weak_Preds => Weak_Preds);
return Strong_Preds = 0 and then Weak_Preds = 0;
end Is_Elaborable_Vertex;
---------------------------
-- Is_Elaborate_All_Edge --
---------------------------
function Is_Elaborate_All_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return Kind (G, Edge) = Elaborate_All_Edge;
end Is_Elaborate_All_Edge;
----------------------------
-- Is_Elaborate_Body_Edge --
----------------------------
function Is_Elaborate_Body_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return
Kind (G, Edge) = With_Edge
and then Is_Vertex_With_Elaborate_Body (G, Successor (G, Edge));
end Is_Elaborate_Body_Edge;
-----------------------
-- Is_Elaborate_Edge --
-----------------------
function Is_Elaborate_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return Kind (G, Edge) = Elaborate_Edge;
end Is_Elaborate_Edge;
----------------------------
-- Is_Elaborate_Body_Pair --
----------------------------
function Is_Elaborate_Body_Pair
(G : Library_Graph;
Spec_Vertex : Library_Graph_Vertex_Id;
Body_Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Spec_Vertex));
pragma Assert (Present (Body_Vertex));
return
Is_Spec_With_Elaborate_Body (G, Spec_Vertex)
and then Is_Body_Of_Spec_With_Elaborate_Body (G, Body_Vertex)
and then Proper_Body (G, Spec_Vertex) = Body_Vertex;
end Is_Elaborate_Body_Pair;
--------------------
-- Is_Forced_Edge --
--------------------
function Is_Forced_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return Kind (G, Edge) = Forced_Edge;
end Is_Forced_Edge;
----------------------
-- Is_Internal_Unit --
----------------------
function Is_Internal_Unit
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Is_Internal_Unit (Unit (G, Vertex));
end Is_Internal_Unit;
------------------------
-- Is_Invocation_Edge --
------------------------
function Is_Invocation_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return Kind (G, Edge) = Invocation_Edge;
end Is_Invocation_Edge;
------------------------
-- Is_Predefined_Unit --
------------------------
function Is_Predefined_Unit
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Is_Predefined_Unit (Unit (G, Vertex));
end Is_Predefined_Unit;
---------------------------
-- Is_Preelaborated_Unit --
---------------------------
function Is_Preelaborated_Unit
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
U_Id : constant Unit_Id := Unit (G, Vertex);
U_Rec : Unit_Record renames ALI.Units.Table (U_Id);
begin
return U_Rec.Preelab or else U_Rec.Pure;
end Is_Preelaborated_Unit;
----------------------
-- Is_Recorded_Edge --
----------------------
function Is_Recorded_Edge
(G : Library_Graph;
Rel : Predecessor_Successor_Relation) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Rel.Predecessor));
pragma Assert (Present (Rel.Successor));
return RE_Sets.Contains (G.Recorded_Edges, Rel);
end Is_Recorded_Edge;
-------------
-- Is_Spec --
-------------
function Is_Spec
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
U_Id : constant Unit_Id := Unit (G, Vertex);
U_Rec : Unit_Record renames ALI.Units.Table (U_Id);
begin
return U_Rec.Utype = Is_Spec or else U_Rec.Utype = Is_Spec_Only;
end Is_Spec;
------------------------------
-- Is_Spec_Before_Body_Edge --
------------------------------
function Is_Spec_Before_Body_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return Kind (G, Edge) = Spec_Before_Body_Edge;
end Is_Spec_Before_Body_Edge;
-----------------------
-- Is_Spec_With_Body --
-----------------------
function Is_Spec_With_Body
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
U_Id : constant Unit_Id := Unit (G, Vertex);
U_Rec : Unit_Record renames ALI.Units.Table (U_Id);
begin
return U_Rec.Utype = Is_Spec;
end Is_Spec_With_Body;
---------------------------------
-- Is_Spec_With_Elaborate_Body --
---------------------------------
function Is_Spec_With_Elaborate_Body
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return
Is_Spec_With_Body (G, Vertex)
and then Has_Elaborate_Body (G, Vertex);
end Is_Spec_With_Elaborate_Body;
------------------------------
-- Is_Static_Successor_Edge --
------------------------------
function Is_Static_Successor_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return
Is_Invocation_Edge (G, Edge)
and then not Is_Dynamically_Elaborated (G, Successor (G, Edge));
end Is_Static_Successor_Edge;
-----------------------------------
-- Is_Vertex_With_Elaborate_Body --
-----------------------------------
function Is_Vertex_With_Elaborate_Body
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return
Is_Spec_With_Elaborate_Body (G, Vertex)
or else
Is_Body_Of_Spec_With_Elaborate_Body (G, Vertex);
end Is_Vertex_With_Elaborate_Body;
---------------------------------
-- Is_Weakly_Elaborable_Vertex --
----------------------------------
function Is_Weakly_Elaborable_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
Complement : constant Library_Graph_Vertex_Id :=
Complementary_Vertex
(G => G,
Vertex => Vertex,
Force_Complement => False);
Strong_Preds : Natural;
Weak_Preds : Natural;
begin
-- A vertex is weakly elaborable when:
--
-- * It has not been elaborated yet, and
-- * The complement vertex of an Elaborate_Body pair has not been
-- elaborated yet, and
-- * It resides within an elaborable component, and
-- * It is not waiting on strong predecessors, and
-- * It is waiting on at least one weak predecessor
if In_Elaboration_Order (G, Vertex) then
return False;
elsif Present (Complement)
and then In_Elaboration_Order (G, Complement)
then
return False;
elsif not Is_Elaborable_Component (G, Component (G, Vertex)) then
return False;
end if;
Pending_Predecessors_For_Elaboration
(G => G,
Vertex => Vertex,
Strong_Preds => Strong_Preds,
Weak_Preds => Weak_Preds);
return Strong_Preds = 0 and then Weak_Preds >= 1;
end Is_Weakly_Elaborable_Vertex;
------------------
-- Is_With_Edge --
------------------
function Is_With_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return Kind (G, Edge) = With_Edge;
end Is_With_Edge;
------------------------
-- Iterate_All_Cycles --
------------------------
function Iterate_All_Cycles
(G : Library_Graph) return All_Cycle_Iterator
is
begin
pragma Assert (Present (G));
return All_Cycle_Iterator (LGC_Lists.Iterate (G.Cycles));
end Iterate_All_Cycles;
-----------------------
-- Iterate_All_Edges --
-----------------------
function Iterate_All_Edges
(G : Library_Graph) return All_Edge_Iterator
is
begin
pragma Assert (Present (G));
return All_Edge_Iterator (DG.Iterate_All_Edges (G.Graph));
end Iterate_All_Edges;
--------------------------
-- Iterate_All_Vertices --
--------------------------
function Iterate_All_Vertices
(G : Library_Graph) return All_Vertex_Iterator
is
begin
pragma Assert (Present (G));
return All_Vertex_Iterator (DG.Iterate_All_Vertices (G.Graph));
end Iterate_All_Vertices;
------------------------
-- Iterate_Components --
------------------------
function Iterate_Components
(G : Library_Graph) return Component_Iterator
is
begin
pragma Assert (Present (G));
return Component_Iterator (DG.Iterate_Components (G.Graph));
end Iterate_Components;
--------------------------------
-- Iterate_Component_Vertices --
--------------------------------
function Iterate_Component_Vertices
(G : Library_Graph;
Comp : Component_Id) return Component_Vertex_Iterator
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
return
Component_Vertex_Iterator
(DG.Iterate_Component_Vertices (G.Graph, Comp));
end Iterate_Component_Vertices;
----------------------------
-- Iterate_Edges_Of_Cycle --
----------------------------
function Iterate_Edges_Of_Cycle
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return Edges_Of_Cycle_Iterator
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
return Edges_Of_Cycle_Iterator (LGE_Lists.Iterate (Path (G, Cycle)));
end Iterate_Edges_Of_Cycle;
---------------------------------
-- Iterate_Edges_To_Successors --
---------------------------------
function Iterate_Edges_To_Successors
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Edges_To_Successors_Iterator
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return
Edges_To_Successors_Iterator
(DG.Iterate_Outgoing_Edges (G.Graph, Vertex));
end Iterate_Edges_To_Successors;
----------
-- Kind --
----------
function Kind
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return Library_Graph_Cycle_Kind
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
return Get_LGC_Attributes (G, Cycle).Kind;
end Kind;
----------
-- Kind --
----------
function Kind
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Library_Graph_Edge_Kind
is
begin
return Get_LGE_Attributes (G, Edge).Kind;
end Kind;
------------
-- Length --
------------
function Length
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return Natural
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
return LGE_Lists.Size (Path (G, Cycle));
end Length;
------------------------------
-- Library_Graph_Edge_Count --
------------------------------
function Library_Graph_Edge_Count
(G : Library_Graph;
Kind : Library_Graph_Edge_Kind) return Natural
is
begin
pragma Assert (Present (G));
return G.Counts (Kind);
end Library_Graph_Edge_Count;
--------------------------------------
-- Links_Vertices_In_Same_Component --
--------------------------------------
function Links_Vertices_In_Same_Component
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
-- An edge is part of a cycle when both the successor and predecessor
-- reside in the same component.
return
In_Same_Component
(G => G,
Left => Predecessor (G, Edge),
Right => Successor (G, Edge));
end Links_Vertices_In_Same_Component;
-----------------------------------
-- Maximum_Invocation_Edge_Count --
-----------------------------------
function Maximum_Invocation_Edge_Count
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
Count : Natural) return Natural
is
New_Count : Natural;
begin
pragma Assert (Present (G));
New_Count := Count;
if Present (Edge) and then Is_Invocation_Edge (G, Edge) then
New_Count := New_Count + 1;
end if;
return New_Count;
end Maximum_Invocation_Edge_Count;
----------
-- Name --
----------
function Name
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Unit_Name_Type
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Name (Unit (G, Vertex));
end Name;
-----------------------
-- Needs_Elaboration --
-----------------------
function Needs_Elaboration
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Needs_Elaboration (Unit (G, Vertex));
end Needs_Elaboration;
----------
-- Next --
----------
procedure Next
(Iter : in out All_Cycle_Iterator;
Cycle : out Library_Graph_Cycle_Id)
is
begin
LGC_Lists.Next (LGC_Lists.Iterator (Iter), Cycle);
end Next;
----------
-- Next --
----------
procedure Next
(Iter : in out All_Edge_Iterator;
Edge : out Library_Graph_Edge_Id)
is
begin
DG.Next (DG.All_Edge_Iterator (Iter), Edge);
end Next;
----------
-- Next --
----------
procedure Next
(Iter : in out All_Vertex_Iterator;
Vertex : out Library_Graph_Vertex_Id)
is
begin
DG.Next (DG.All_Vertex_Iterator (Iter), Vertex);
end Next;
----------
-- Next --
----------
procedure Next
(Iter : in out Edges_Of_Cycle_Iterator;
Edge : out Library_Graph_Edge_Id)
is
begin
LGE_Lists.Next (LGE_Lists.Iterator (Iter), Edge);
end Next;
----------
-- Next --
----------
procedure Next
(Iter : in out Component_Iterator;
Comp : out Component_Id)
is
begin
DG.Next (DG.Component_Iterator (Iter), Comp);
end Next;
----------
-- Next --
----------
procedure Next
(Iter : in out Edges_To_Successors_Iterator;
Edge : out Library_Graph_Edge_Id)
is
begin
DG.Next (DG.Outgoing_Edge_Iterator (Iter), Edge);
end Next;
----------
-- Next --
----------
procedure Next
(Iter : in out Component_Vertex_Iterator;
Vertex : out Library_Graph_Vertex_Id)
is
begin
DG.Next (DG.Component_Vertex_Iterator (Iter), Vertex);
end Next;
--------------------------
-- Normalize_Cycle_Path --
--------------------------
procedure Normalize_Cycle_Path
(Cycle_Path : LGE_Lists.Doubly_Linked_List;
Most_Significant_Edge : Library_Graph_Edge_Id)
is
Edge : Library_Graph_Edge_Id;
begin
pragma Assert (LGE_Lists.Present (Cycle_Path));
pragma Assert (Present (Most_Significant_Edge));
-- Perform at most |Cycle_Path| rotations in case the cycle is
-- malformed and the significant edge does not appear within.
for Rotation in 1 .. LGE_Lists.Size (Cycle_Path) loop
Edge := LGE_Lists.First (Cycle_Path);
-- The cycle is already rotated such that the most significant
-- edge is first.
if Edge = Most_Significant_Edge then
return;
-- Otherwise rotate the cycle by relocating the current edge from
-- the start to the end of the path. This preserves the order of
-- the path.
else
LGE_Lists.Delete_First (Cycle_Path);
LGE_Lists.Append (Cycle_Path, Edge);
end if;
end loop;
pragma Assert (False);
end Normalize_Cycle_Path;
----------------------------------
-- Number_Of_Component_Vertices --
----------------------------------
function Number_Of_Component_Vertices
(G : Library_Graph;
Comp : Component_Id) return Natural
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
return DG.Number_Of_Component_Vertices (G.Graph, Comp);
end Number_Of_Component_Vertices;
--------------------------
-- Number_Of_Components --
--------------------------
function Number_Of_Components (G : Library_Graph) return Natural is
begin
pragma Assert (Present (G));
return DG.Number_Of_Components (G.Graph);
end Number_Of_Components;
----------------------
-- Number_Of_Cycles --
----------------------
function Number_Of_Cycles (G : Library_Graph) return Natural is
begin
pragma Assert (Present (G));
return LGC_Lists.Size (G.Cycles);
end Number_Of_Cycles;
---------------------
-- Number_Of_Edges --
---------------------
function Number_Of_Edges (G : Library_Graph) return Natural is
begin
pragma Assert (Present (G));
return DG.Number_Of_Edges (G.Graph);
end Number_Of_Edges;
-----------------------------------
-- Number_Of_Edges_To_Successors --
-----------------------------------
function Number_Of_Edges_To_Successors
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Natural
is
begin
pragma Assert (Present (G));
return DG.Number_Of_Outgoing_Edges (G.Graph, Vertex);
end Number_Of_Edges_To_Successors;
------------------------
-- Number_Of_Vertices --
------------------------
function Number_Of_Vertices (G : Library_Graph) return Natural is
begin
pragma Assert (Present (G));
return DG.Number_Of_Vertices (G.Graph);
end Number_Of_Vertices;
-----------------
-- Order_Cycle --
-----------------
procedure Order_Cycle
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id)
is
Lesser_Cycle : Library_Graph_Cycle_Id;
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
pragma Assert (LGC_Lists.Present (G.Cycles));
-- The input cycle is the first to be inserted
if LGC_Lists.Is_Empty (G.Cycles) then
LGC_Lists.Prepend (G.Cycles, Cycle);
-- Otherwise the list of all cycles contains at least one cycle.
-- Insert the input cycle based on its precedence.
else
Lesser_Cycle := Find_First_Lower_Precedence_Cycle (G, Cycle);
-- The list contains at least one cycle, and the input cycle has a
-- higher precedence compared to some cycle in the list.
if Present (Lesser_Cycle) then
LGC_Lists.Insert_Before
(L => G.Cycles,
Before => Lesser_Cycle,
Elem => Cycle);
-- Otherwise the input cycle has the lowest precedence among all
-- cycles.
else
LGC_Lists.Append (G.Cycles, Cycle);
end if;
end if;
end Order_Cycle;
----------
-- Path --
----------
function Path
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id) return LGE_Lists.Doubly_Linked_List
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
return Get_LGC_Attributes (G, Cycle).Path;
end Path;
------------------------------------------
-- Pending_Predecessors_For_Elaboration --
------------------------------------------
procedure Pending_Predecessors_For_Elaboration
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Strong_Preds : out Natural;
Weak_Preds : out Natural)
is
Complement : Library_Graph_Vertex_Id;
Spec_Vertex : Library_Graph_Vertex_Id;
Total_Strong_Preds : Natural;
Total_Weak_Preds : Natural;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
Total_Strong_Preds := Pending_Strong_Predecessors (G, Vertex);
Total_Weak_Preds := Pending_Weak_Predecessors (G, Vertex);
-- Assume that there is no complementary vertex that needs to be
-- examined.
Complement := No_Library_Graph_Vertex;
Spec_Vertex := No_Library_Graph_Vertex;
if Is_Body_Of_Spec_With_Elaborate_Body (G, Vertex) then
Complement := Proper_Spec (G, Vertex);
Spec_Vertex := Complement;
elsif Is_Spec_With_Elaborate_Body (G, Vertex) then
Complement := Proper_Body (G, Vertex);
Spec_Vertex := Vertex;
end if;
-- The vertex is part of an Elaborate_Body pair. Take into account
-- the strong and weak predecessors of the complementary vertex.
if Present (Complement) then
Total_Strong_Preds :=
Pending_Strong_Predecessors (G, Complement) + Total_Strong_Preds;
Total_Weak_Preds :=
Pending_Weak_Predecessors (G, Complement) + Total_Weak_Preds;
-- The body of an Elaborate_Body pair is the successor of a strong
-- edge where the predecessor is the spec. This edge must not be
-- considered for elaboration purposes because the pair is treated
-- as one vertex. Account for the edge only when the spec has not
-- been elaborated yet.
if not In_Elaboration_Order (G, Spec_Vertex) then
Total_Strong_Preds := Total_Strong_Preds - 1;
end if;
end if;
Strong_Preds := Total_Strong_Preds;
Weak_Preds := Total_Weak_Preds;
end Pending_Predecessors_For_Elaboration;
---------------------------------
-- Pending_Strong_Predecessors --
---------------------------------
function Pending_Strong_Predecessors
(G : Library_Graph;
Comp : Component_Id) return Natural
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
return Get_Component_Attributes (G, Comp).Pending_Strong_Predecessors;
end Pending_Strong_Predecessors;
---------------------------------
-- Pending_Strong_Predecessors --
---------------------------------
function Pending_Strong_Predecessors
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Natural
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Get_LGV_Attributes (G, Vertex).Pending_Strong_Predecessors;
end Pending_Strong_Predecessors;
-------------------------------
-- Pending_Weak_Predecessors --
-------------------------------
function Pending_Weak_Predecessors
(G : Library_Graph;
Comp : Component_Id) return Natural
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
return Get_Component_Attributes (G, Comp).Pending_Weak_Predecessors;
end Pending_Weak_Predecessors;
-------------------------------
-- Pending_Weak_Predecessors --
-------------------------------
function Pending_Weak_Predecessors
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Natural
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Get_LGV_Attributes (G, Vertex).Pending_Weak_Predecessors;
end Pending_Weak_Predecessors;
-----------------
-- Predecessor --
-----------------
function Predecessor
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Library_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return DG.Source_Vertex (G.Graph, Edge);
end Predecessor;
-------------
-- Present --
-------------
function Present (G : Library_Graph) return Boolean is
begin
return G /= Nil;
end Present;
-----------------
-- Proper_Body --
-----------------
function Proper_Body
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Library_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
-- When the vertex denotes a spec with a completing body, return the
-- body.
if Is_Spec_With_Body (G, Vertex) then
return Corresponding_Item (G, Vertex);
-- Otherwise the vertex must be a body
else
pragma Assert (Is_Body (G, Vertex));
return Vertex;
end if;
end Proper_Body;
-----------------
-- Proper_Spec --
-----------------
function Proper_Spec
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Library_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
-- When the vertex denotes a body that completes a spec, return the
-- spec.
if Is_Body_With_Spec (G, Vertex) then
return Corresponding_Item (G, Vertex);
-- Otherwise the vertex must denote a spec
else
pragma Assert (Is_Spec (G, Vertex));
return Vertex;
end if;
end Proper_Spec;
------------------
-- Record_Cycle --
------------------
procedure Record_Cycle
(G : Library_Graph;
Most_Significant_Edge : Library_Graph_Edge_Id;
Invocation_Edge_Count : Natural;
Cycle_Path : LGE_Lists.Doubly_Linked_List;
Indent : Indentation_Level)
is
Cycle : Library_Graph_Cycle_Id;
Path : LGE_Lists.Doubly_Linked_List;
begin
pragma Assert (Present (G));
pragma Assert (Present (Most_Significant_Edge));
pragma Assert (LGE_Lists.Present (Cycle_Path));
-- Replicate the path of the cycle in order to avoid sharing lists
Path := Copy_Cycle_Path (Cycle_Path);
-- Normalize the path of the cycle such that its most significant
-- edge is the first in the list of edges.
Normalize_Cycle_Path
(Cycle_Path => Path,
Most_Significant_Edge => Most_Significant_Edge);
-- Save the cycle for diagnostic purposes. Its kind is determined by
-- its most significant edge.
Cycle := Sequence_Next_Cycle;
Set_LGC_Attributes
(G => G,
Cycle => Cycle,
Val =>
(Invocation_Edge_Count => Invocation_Edge_Count,
Kind =>
Cycle_Kind_Of
(G => G,
Edge => Most_Significant_Edge),
Path => Path));
Trace_Cycle (G, Cycle, Indent);
-- Order the cycle based on its precedence relative to previously
-- discovered cycles.
Order_Cycle (G, Cycle);
end Record_Cycle;
-----------------------------------------
-- Same_Library_Graph_Cycle_Attributes --
-----------------------------------------
function Same_Library_Graph_Cycle_Attributes
(Left : Library_Graph_Cycle_Attributes;
Right : Library_Graph_Cycle_Attributes) return Boolean
is
begin
-- Two cycles are the same when
--
-- * They are of the same kind
-- * They have the same number of invocation edges in their paths
-- * Their paths are the same length
-- * The edges comprising their paths are the same
return
Left.Invocation_Edge_Count = Right.Invocation_Edge_Count
and then Left.Kind = Right.Kind
and then LGE_Lists.Equal (Left.Path, Right.Path);
end Same_Library_Graph_Cycle_Attributes;
------------------------
-- Set_Activates_Task --
------------------------
procedure Set_Activates_Task
(G : Library_Graph;
Edge : Library_Graph_Edge_Id)
is
Attributes : Library_Graph_Edge_Attributes :=
Get_LGE_Attributes (G, Edge);
begin
Attributes.Activates_Task := True;
Set_LGE_Attributes (G, Edge, Attributes);
end Set_Activates_Task;
------------------------------
-- Set_Component_Attributes --
------------------------------
procedure Set_Component_Attributes
(G : Library_Graph;
Comp : Component_Id;
Val : Component_Attributes)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
Component_Tables.Put (G.Component_Attributes, Comp, Val);
end Set_Component_Attributes;
----------------------------
-- Set_Corresponding_Item --
----------------------------
procedure Set_Corresponding_Item
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Val : Library_Graph_Vertex_Id)
is
Attrs : Library_Graph_Vertex_Attributes;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
Attrs := Get_LGV_Attributes (G, Vertex);
Attrs.Corresponding_Item := Val;
Set_LGV_Attributes (G, Vertex, Attrs);
end Set_Corresponding_Item;
------------------------------
-- Set_Corresponding_Vertex --
------------------------------
procedure Set_Corresponding_Vertex
(G : Library_Graph;
U_Id : Unit_Id;
Val : Library_Graph_Vertex_Id)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (U_Id));
Unit_Tables.Put (G.Unit_To_Vertex, U_Id, Val);
end Set_Corresponding_Vertex;
------------------------------
-- Set_In_Elaboration_Order --
------------------------------
procedure Set_In_Elaboration_Order
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Val : Boolean := True)
is
Attrs : Library_Graph_Vertex_Attributes;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
Attrs := Get_LGV_Attributes (G, Vertex);
Attrs.In_Elaboration_Order := Val;
Set_LGV_Attributes (G, Vertex, Attrs);
end Set_In_Elaboration_Order;
--------------------------
-- Set_Is_Recorded_Edge --
--------------------------
procedure Set_Is_Recorded_Edge
(G : Library_Graph;
Rel : Predecessor_Successor_Relation)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Rel.Predecessor));
pragma Assert (Present (Rel.Successor));
RE_Sets.Insert (G.Recorded_Edges, Rel);
end Set_Is_Recorded_Edge;
------------------------
-- Set_LGC_Attributes --
------------------------
procedure Set_LGC_Attributes
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id;
Val : Library_Graph_Cycle_Attributes)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
LGC_Tables.Put (G.Cycle_Attributes, Cycle, Val);
end Set_LGC_Attributes;
------------------------
-- Set_LGE_Attributes --
------------------------
procedure Set_LGE_Attributes
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
Val : Library_Graph_Edge_Attributes)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
LGE_Tables.Put (G.Edge_Attributes, Edge, Val);
end Set_LGE_Attributes;
------------------------
-- Set_LGV_Attributes --
------------------------
procedure Set_LGV_Attributes
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Val : Library_Graph_Vertex_Attributes)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
LGV_Tables.Put (G.Vertex_Attributes, Vertex, Val);
end Set_LGV_Attributes;
---------------
-- Successor --
---------------
function Successor
(G : Library_Graph;
Edge : Library_Graph_Edge_Id) return Library_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return DG.Destination_Vertex (G.Graph, Edge);
end Successor;
---------------------
-- Trace_Component --
---------------------
procedure Trace_Component
(G : Library_Graph;
Comp : Component_Id;
Indent : Indentation_Level)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
-- Nothing to do when switch -d_t (output cycle-detection trace
-- information) is not in effect.
if not Debug_Flag_Underscore_T then
return;
end if;
Write_Eol;
Indent_By (Indent);
Write_Str ("component (Comp_");
Write_Int (Int (Comp));
Write_Str (")");
Write_Eol;
end Trace_Component;
-----------------
-- Trace_Cycle --
-----------------
procedure Trace_Cycle
(G : Library_Graph;
Cycle : Library_Graph_Cycle_Id;
Indent : Indentation_Level)
is
Attr_Indent : constant Indentation_Level :=
Indent + Nested_Indentation;
Edge_Indent : constant Indentation_Level :=
Attr_Indent + Nested_Indentation;
Edge : Library_Graph_Edge_Id;
Iter : Edges_Of_Cycle_Iterator;
begin
pragma Assert (Present (G));
pragma Assert (Present (Cycle));
-- Nothing to do when switch -d_t (output cycle-detection trace
-- information) is not in effect.
if not Debug_Flag_Underscore_T then
return;
end if;
Indent_By (Indent);
Write_Str ("cycle (LGC_Id_");
Write_Int (Int (Cycle));
Write_Str (")");
Write_Eol;
Indent_By (Attr_Indent);
Write_Str ("kind = ");
Write_Str (Kind (G, Cycle)'Img);
Write_Eol;
Indent_By (Attr_Indent);
Write_Str ("invocation edges = ");
Write_Int (Int (Invocation_Edge_Count (G, Cycle)));
Write_Eol;
Indent_By (Attr_Indent);
Write_Str ("length: ");
Write_Int (Int (Length (G, Cycle)));
Write_Eol;
Iter := Iterate_Edges_Of_Cycle (G, Cycle);
while Has_Next (Iter) loop
Next (Iter, Edge);
Indent_By (Edge_Indent);
Write_Str ("library graph edge (LGE_Id_");
Write_Int (Int (Edge));
Write_Str (")");
Write_Eol;
end loop;
end Trace_Cycle;
----------------
-- Trace_Edge --
----------------
procedure Trace_Edge
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
Indent : Indentation_Level)
is
pragma Assert (Present (G));
pragma Assert (Present (Edge));
Attr_Indent : constant Indentation_Level :=
Indent + Nested_Indentation;
Pred : constant Library_Graph_Vertex_Id := Predecessor (G, Edge);
Succ : constant Library_Graph_Vertex_Id := Successor (G, Edge);
begin
-- Nothing to do when switch -d_t (output cycle-detection trace
-- information) is not in effect.
if not Debug_Flag_Underscore_T then
return;
end if;
Indent_By (Indent);
Write_Str ("library graph edge (LGE_Id_");
Write_Int (Int (Edge));
Write_Str (")");
Write_Eol;
Indent_By (Attr_Indent);
Write_Str ("kind = ");
Write_Str (Kind (G, Edge)'Img);
Write_Eol;
Indent_By (Attr_Indent);
Write_Str ("Predecessor (LGV_Id_");
Write_Int (Int (Pred));
Write_Str (") name = ");
Write_Name (Name (G, Pred));
Write_Eol;
Indent_By (Attr_Indent);
Write_Str ("Successor (LGV_Id_");
Write_Int (Int (Succ));
Write_Str (") name = ");
Write_Name (Name (G, Succ));
Write_Eol;
end Trace_Edge;
------------------
-- Trace_Vertex --
------------------
procedure Trace_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Indent : Indentation_Level)
is
Attr_Indent : constant Indentation_Level :=
Indent + Nested_Indentation;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
-- Nothing to do when switch -d_t (output cycle-detection trace
-- information) is not in effect.
if not Debug_Flag_Underscore_T then
return;
end if;
Indent_By (Indent);
Write_Str ("library graph vertex (LGV_Id_");
Write_Int (Int (Vertex));
Write_Str (")");
Write_Eol;
Indent_By (Attr_Indent);
Write_Str ("Unit (U_Id_");
Write_Int (Int (Unit (G, Vertex)));
Write_Str (") name = ");
Write_Name (Name (G, Vertex));
Write_Eol;
end Trace_Vertex;
----------
-- Unit --
----------
function Unit
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Unit_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Get_LGV_Attributes (G, Vertex).Unit;
end Unit;
-------------
-- Unvisit --
-------------
procedure Unvisit
(Vertex : Library_Graph_Vertex_Id;
Visited_Set : LGV_Sets.Membership_Set;
Visited_Stack : LGV_Lists.Doubly_Linked_List)
is
Current_Vertex : Library_Graph_Vertex_Id;
begin
pragma Assert (Present (Vertex));
pragma Assert (LGV_Sets.Present (Visited_Set));
pragma Assert (LGV_Lists.Present (Visited_Stack));
while not LGV_Lists.Is_Empty (Visited_Stack) loop
Current_Vertex := LGV_Lists.First (Visited_Stack);
LGV_Lists.Delete_First (Visited_Stack);
LGV_Sets.Delete (Visited_Set, Current_Vertex);
exit when Current_Vertex = Vertex;
end loop;
end Unvisit;
---------------------------------
-- Update_Pending_Predecessors --
---------------------------------
procedure Update_Pending_Predecessors
(Strong_Predecessors : in out Natural;
Weak_Predecessors : in out Natural;
Update_Weak : Boolean;
Value : Integer)
is
begin
if Update_Weak then
Weak_Predecessors := Weak_Predecessors + Value;
else
Strong_Predecessors := Strong_Predecessors + Value;
end if;
end Update_Pending_Predecessors;
-----------------------------------------------
-- Update_Pending_Predecessors_Of_Components --
-----------------------------------------------
procedure Update_Pending_Predecessors_Of_Components
(G : Library_Graph)
is
Edge : Library_Graph_Edge_Id;
Iter : All_Edge_Iterator;
begin
pragma Assert (Present (G));
Iter := Iterate_All_Edges (G);
while Has_Next (Iter) loop
Next (Iter, Edge);
Update_Pending_Predecessors_Of_Components (G, Edge);
end loop;
end Update_Pending_Predecessors_Of_Components;
-----------------------------------------------
-- Update_Pending_Predecessors_Of_Components --
-----------------------------------------------
procedure Update_Pending_Predecessors_Of_Components
(G : Library_Graph;
Edge : Library_Graph_Edge_Id)
is
pragma Assert (Present (G));
pragma Assert (Present (Edge));
Pred_Comp : constant Component_Id :=
Component (G, Predecessor (G, Edge));
Succ_Comp : constant Component_Id :=
Component (G, Successor (G, Edge));
pragma Assert (Present (Pred_Comp));
pragma Assert (Present (Succ_Comp));
begin
-- The edge links a successor and a predecessor coming from two
-- different SCCs. This indicates that the SCC of the successor
-- must wait on another predecessor until it can be elaborated.
if Pred_Comp /= Succ_Comp then
Increment_Pending_Predecessors
(G => G,
Comp => Succ_Comp,
Edge => Edge);
end if;
end Update_Pending_Predecessors_Of_Components;
-----------------------
-- Vertex_Precedence --
-----------------------
function Vertex_Precedence
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Compared_To : Library_Graph_Vertex_Id) return Precedence_Kind
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
pragma Assert (Present (Compared_To));
-- Use lexicographical order to determine precedence and ensure
-- deterministic behavior.
if Uname_Less (Name (G, Vertex), Name (G, Compared_To)) then
return Higher_Precedence;
else
return Lower_Precedence;
end if;
end Vertex_Precedence;
-----------
-- Visit --
-----------
procedure Visit
(Vertex : Library_Graph_Vertex_Id;
Visited_Set : LGV_Sets.Membership_Set;
Visited_Stack : LGV_Lists.Doubly_Linked_List)
is
begin
pragma Assert (Present (Vertex));
pragma Assert (LGV_Sets.Present (Visited_Set));
pragma Assert (LGV_Lists.Present (Visited_Stack));
LGV_Sets.Insert (Visited_Set, Vertex);
LGV_Lists.Prepend (Visited_Stack, Vertex);
end Visit;
end Library_Graphs;
-----------------------
-- Invocation_Graphs --
-----------------------
package body Invocation_Graphs is
-----------------------
-- Local subprograms --
-----------------------
procedure Free is
new Ada.Unchecked_Deallocation
(Invocation_Graph_Attributes, Invocation_Graph);
function Get_IGE_Attributes
(G : Invocation_Graph;
Edge : Invocation_Graph_Edge_Id)
return Invocation_Graph_Edge_Attributes;
pragma Inline (Get_IGE_Attributes);
-- Obtain the attributes of edge Edge of invocation graph G
function Get_IGV_Attributes
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id)
return Invocation_Graph_Vertex_Attributes;
pragma Inline (Get_IGV_Attributes);
-- Obtain the attributes of vertex Vertex of invocation graph G
procedure Increment_Invocation_Graph_Edge_Count
(G : Invocation_Graph;
Kind : Invocation_Kind);
pragma Inline (Increment_Invocation_Graph_Edge_Count);
-- Increment the number of edges of king Kind in invocation graph G by
-- one.
function Is_Elaboration_Root
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id) return Boolean;
pragma Inline (Is_Elaboration_Root);
-- Determine whether vertex Vertex of invocation graph denotes the
-- elaboration procedure of a spec or a body.
function Is_Existing_Source_Target_Relation
(G : Invocation_Graph;
Rel : Source_Target_Relation) return Boolean;
pragma Inline (Is_Existing_Source_Target_Relation);
-- Determine whether a source vertex and a target vertex described by
-- relation Rel are already related in invocation graph G.
procedure Save_Elaboration_Root
(G : Invocation_Graph;
Root : Invocation_Graph_Vertex_Id);
pragma Inline (Save_Elaboration_Root);
-- Save elaboration root Root of invocation graph G
procedure Set_Corresponding_Vertex
(G : Invocation_Graph;
IS_Id : Invocation_Signature_Id;
Vertex : Invocation_Graph_Vertex_Id);
pragma Inline (Set_Corresponding_Vertex);
-- Associate vertex Vertex of invocation graph G with signature IS_Id
procedure Set_Is_Existing_Source_Target_Relation
(G : Invocation_Graph;
Rel : Source_Target_Relation);
pragma Inline (Set_Is_Existing_Source_Target_Relation);
-- Mark a source vertex and a target vertex described by relation Rel as
-- already related in invocation graph G.
procedure Set_IGE_Attributes
(G : Invocation_Graph;
Edge : Invocation_Graph_Edge_Id;
Val : Invocation_Graph_Edge_Attributes);
pragma Inline (Set_IGE_Attributes);
-- Set the attributes of edge Edge of invocation graph G to value Val
procedure Set_IGV_Attributes
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id;
Val : Invocation_Graph_Vertex_Attributes);
pragma Inline (Set_IGV_Attributes);
-- Set the attributes of vertex Vertex of invocation graph G to value
-- Val.
--------------
-- Add_Edge --
--------------
procedure Add_Edge
(G : Invocation_Graph;
Source : Invocation_Graph_Vertex_Id;
Target : Invocation_Graph_Vertex_Id;
IR_Id : Invocation_Relation_Id)
is
pragma Assert (Present (G));
pragma Assert (Present (Source));
pragma Assert (Present (Target));
pragma Assert (Present (IR_Id));
Rel : constant Source_Target_Relation :=
(Source => Source,
Target => Target);
Edge : Invocation_Graph_Edge_Id;
begin
-- Nothing to do when the source and target are already related by an
-- edge.
if Is_Existing_Source_Target_Relation (G, Rel) then
return;
end if;
Edge := Sequence_Next_Edge;
-- Add the edge to the underlying graph
DG.Add_Edge
(G => G.Graph,
E => Edge,
Source => Source,
Destination => Target);
-- Build and save the attributes of the edge
Set_IGE_Attributes
(G => G,
Edge => Edge,
Val => (Relation => IR_Id));
-- Mark the source and target as related by the new edge. This
-- prevents all further attempts to link the same source and target.
Set_Is_Existing_Source_Target_Relation (G, Rel);
-- Update the edge statistics
Increment_Invocation_Graph_Edge_Count (G, Kind (IR_Id));
end Add_Edge;
----------------
-- Add_Vertex --
----------------
procedure Add_Vertex
(G : Invocation_Graph;
IC_Id : Invocation_Construct_Id;
Body_Vertex : Library_Graph_Vertex_Id;
Spec_Vertex : Library_Graph_Vertex_Id)
is
pragma Assert (Present (G));
pragma Assert (Present (IC_Id));
pragma Assert (Present (Body_Vertex));
pragma Assert (Present (Spec_Vertex));
Construct_Signature : constant Invocation_Signature_Id :=
Signature (IC_Id);
Vertex : Invocation_Graph_Vertex_Id;
begin
-- Nothing to do when the construct already has a vertex
if Present (Corresponding_Vertex (G, Construct_Signature)) then
return;
end if;
Vertex := Sequence_Next_Vertex;
-- Add the vertex to the underlying graph
DG.Add_Vertex (G.Graph, Vertex);
-- Build and save the attributes of the vertex
Set_IGV_Attributes
(G => G,
Vertex => Vertex,
Val => (Body_Vertex => Body_Vertex,
Construct => IC_Id,
Spec_Vertex => Spec_Vertex));
-- Associate the construct with its corresponding vertex
Set_Corresponding_Vertex (G, Construct_Signature, Vertex);
-- Save the vertex for later processing when it denotes a spec or
-- body elaboration procedure.
if Is_Elaboration_Root (G, Vertex) then
Save_Elaboration_Root (G, Vertex);
end if;
end Add_Vertex;
-----------------
-- Body_Vertex --
-----------------
function Body_Vertex
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id) return Library_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Get_IGV_Attributes (G, Vertex).Body_Vertex;
end Body_Vertex;
------------
-- Column --
------------
function Column
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id) return Nat
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Column (Signature (Construct (G, Vertex)));
end Column;
---------------
-- Construct --
---------------
function Construct
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id) return Invocation_Construct_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Get_IGV_Attributes (G, Vertex).Construct;
end Construct;
--------------------------
-- Corresponding_Vertex --
--------------------------
function Corresponding_Vertex
(G : Invocation_Graph;
IS_Id : Invocation_Signature_Id) return Invocation_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (IS_Id));
return Signature_Tables.Get (G.Signature_To_Vertex, IS_Id);
end Corresponding_Vertex;
------------
-- Create --
------------
function Create
(Initial_Vertices : Positive;
Initial_Edges : Positive;
Lib_Graph : Library_Graphs.Library_Graph)
return Invocation_Graph
is
G : constant Invocation_Graph := new Invocation_Graph_Attributes'
(Counts => <>,
Edge_Attributes => IGE_Tables.Create (Initial_Edges),
Graph =>
DG.Create
(Initial_Vertices => Initial_Vertices,
Initial_Edges => Initial_Edges),
Relations => Relation_Sets.Create (Initial_Edges),
Roots => IGV_Sets.Create (Initial_Vertices),
Signature_To_Vertex => Signature_Tables.Create (Initial_Vertices),
Vertex_Attributes => IGV_Tables.Create (Initial_Vertices),
Lib_Graph => Lib_Graph);
begin
return G;
end Create;
-------------
-- Destroy --
-------------
procedure Destroy (G : in out Invocation_Graph) is
begin
pragma Assert (Present (G));
IGE_Tables.Destroy (G.Edge_Attributes);
DG.Destroy (G.Graph);
Relation_Sets.Destroy (G.Relations);
IGV_Sets.Destroy (G.Roots);
Signature_Tables.Destroy (G.Signature_To_Vertex);
IGV_Tables.Destroy (G.Vertex_Attributes);
Free (G);
end Destroy;
-----------------------------------
-- Destroy_Invocation_Graph_Edge --
-----------------------------------
procedure Destroy_Invocation_Graph_Edge
(Edge : in out Invocation_Graph_Edge_Id)
is
pragma Unreferenced (Edge);
begin
null;
end Destroy_Invocation_Graph_Edge;
----------------------------------------------
-- Destroy_Invocation_Graph_Edge_Attributes --
----------------------------------------------
procedure Destroy_Invocation_Graph_Edge_Attributes
(Attrs : in out Invocation_Graph_Edge_Attributes)
is
pragma Unreferenced (Attrs);
begin
null;
end Destroy_Invocation_Graph_Edge_Attributes;
-------------------------------------
-- Destroy_Invocation_Graph_Vertex --
-------------------------------------
procedure Destroy_Invocation_Graph_Vertex
(Vertex : in out Invocation_Graph_Vertex_Id)
is
pragma Unreferenced (Vertex);
begin
null;
end Destroy_Invocation_Graph_Vertex;
------------------------------------------------
-- Destroy_Invocation_Graph_Vertex_Attributes --
------------------------------------------------
procedure Destroy_Invocation_Graph_Vertex_Attributes
(Attrs : in out Invocation_Graph_Vertex_Attributes)
is
pragma Unreferenced (Attrs);
begin
null;
end Destroy_Invocation_Graph_Vertex_Attributes;
-----------
-- Extra --
-----------
function Extra
(G : Invocation_Graph;
Edge : Invocation_Graph_Edge_Id) return Name_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return Extra (Relation (G, Edge));
end Extra;
------------------------
-- Get_IGE_Attributes --
------------------------
function Get_IGE_Attributes
(G : Invocation_Graph;
Edge : Invocation_Graph_Edge_Id)
return Invocation_Graph_Edge_Attributes
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return IGE_Tables.Get (G.Edge_Attributes, Edge);
end Get_IGE_Attributes;
------------------------
-- Get_IGV_Attributes --
------------------------
function Get_IGV_Attributes
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id)
return Invocation_Graph_Vertex_Attributes
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return IGV_Tables.Get (G.Vertex_Attributes, Vertex);
end Get_IGV_Attributes;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : All_Edge_Iterator) return Boolean is
begin
return DG.Has_Next (DG.All_Edge_Iterator (Iter));
end Has_Next;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : All_Vertex_Iterator) return Boolean is
begin
return DG.Has_Next (DG.All_Vertex_Iterator (Iter));
end Has_Next;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : Edges_To_Targets_Iterator) return Boolean is
begin
return DG.Has_Next (DG.Outgoing_Edge_Iterator (Iter));
end Has_Next;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : Elaboration_Root_Iterator) return Boolean is
begin
return IGV_Sets.Has_Next (IGV_Sets.Iterator (Iter));
end Has_Next;
-------------------------------
-- Hash_Invocation_Signature --
-------------------------------
function Hash_Invocation_Signature
(IS_Id : Invocation_Signature_Id) return Bucket_Range_Type
is
begin
pragma Assert (Present (IS_Id));
return Bucket_Range_Type (IS_Id);
end Hash_Invocation_Signature;
---------------------------------
-- Hash_Source_Target_Relation --
---------------------------------
function Hash_Source_Target_Relation
(Rel : Source_Target_Relation) return Bucket_Range_Type
is
begin
pragma Assert (Present (Rel.Source));
pragma Assert (Present (Rel.Target));
return
Hash_Two_Keys
(Bucket_Range_Type (Rel.Source),
Bucket_Range_Type (Rel.Target));
end Hash_Source_Target_Relation;
-------------------------------------------
-- Increment_Invocation_Graph_Edge_Count --
-------------------------------------------
procedure Increment_Invocation_Graph_Edge_Count
(G : Invocation_Graph;
Kind : Invocation_Kind)
is
pragma Assert (Present (G));
Count : Natural renames G.Counts (Kind);
begin
Count := Count + 1;
end Increment_Invocation_Graph_Edge_Count;
---------------------------------
-- Invocation_Graph_Edge_Count --
---------------------------------
function Invocation_Graph_Edge_Count
(G : Invocation_Graph;
Kind : Invocation_Kind) return Natural
is
begin
pragma Assert (Present (G));
return G.Counts (Kind);
end Invocation_Graph_Edge_Count;
-------------------------
-- Is_Elaboration_Root --
-------------------------
function Is_Elaboration_Root
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id) return Boolean
is
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
Vertex_Kind : constant Invocation_Construct_Kind :=
Kind (Construct (G, Vertex));
begin
return
Vertex_Kind = Elaborate_Body_Procedure
or else
Vertex_Kind = Elaborate_Spec_Procedure;
end Is_Elaboration_Root;
----------------------------------------
-- Is_Existing_Source_Target_Relation --
----------------------------------------
function Is_Existing_Source_Target_Relation
(G : Invocation_Graph;
Rel : Source_Target_Relation) return Boolean
is
begin
pragma Assert (Present (G));
return Relation_Sets.Contains (G.Relations, Rel);
end Is_Existing_Source_Target_Relation;
-----------------------
-- Iterate_All_Edges --
-----------------------
function Iterate_All_Edges
(G : Invocation_Graph) return All_Edge_Iterator
is
begin
pragma Assert (Present (G));
return All_Edge_Iterator (DG.Iterate_All_Edges (G.Graph));
end Iterate_All_Edges;
--------------------------
-- Iterate_All_Vertices --
--------------------------
function Iterate_All_Vertices
(G : Invocation_Graph) return All_Vertex_Iterator
is
begin
pragma Assert (Present (G));
return All_Vertex_Iterator (DG.Iterate_All_Vertices (G.Graph));
end Iterate_All_Vertices;
------------------------------
-- Iterate_Edges_To_Targets --
------------------------------
function Iterate_Edges_To_Targets
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id) return Edges_To_Targets_Iterator
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return
Edges_To_Targets_Iterator
(DG.Iterate_Outgoing_Edges (G.Graph, Vertex));
end Iterate_Edges_To_Targets;
-------------------------------
-- Iterate_Elaboration_Roots --
-------------------------------
function Iterate_Elaboration_Roots
(G : Invocation_Graph) return Elaboration_Root_Iterator
is
begin
pragma Assert (Present (G));
return Elaboration_Root_Iterator (IGV_Sets.Iterate (G.Roots));
end Iterate_Elaboration_Roots;
----------
-- Kind --
----------
function Kind
(G : Invocation_Graph;
Edge : Invocation_Graph_Edge_Id) return Invocation_Kind
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return Kind (Relation (G, Edge));
end Kind;
-------------------
-- Get_Lib_Graph --
-------------------
function Get_Lib_Graph
(G : Invocation_Graph) return Library_Graphs.Library_Graph
is
pragma Assert (Present (G));
begin
return G.Lib_Graph;
end Get_Lib_Graph;
----------
-- Line --
----------
function Line
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id) return Nat
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Line (Signature (Construct (G, Vertex)));
end Line;
----------
-- Name --
----------
function Name
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id) return Name_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Name (Signature (Construct (G, Vertex)));
end Name;
----------
-- Next --
----------
procedure Next
(Iter : in out All_Edge_Iterator;
Edge : out Invocation_Graph_Edge_Id)
is
begin
DG.Next (DG.All_Edge_Iterator (Iter), Edge);
end Next;
----------
-- Next --
----------
procedure Next
(Iter : in out All_Vertex_Iterator;
Vertex : out Invocation_Graph_Vertex_Id)
is
begin
DG.Next (DG.All_Vertex_Iterator (Iter), Vertex);
end Next;
----------
-- Next --
----------
procedure Next
(Iter : in out Edges_To_Targets_Iterator;
Edge : out Invocation_Graph_Edge_Id)
is
begin
DG.Next (DG.Outgoing_Edge_Iterator (Iter), Edge);
end Next;
----------
-- Next --
----------
procedure Next
(Iter : in out Elaboration_Root_Iterator;
Root : out Invocation_Graph_Vertex_Id)
is
begin
IGV_Sets.Next (IGV_Sets.Iterator (Iter), Root);
end Next;
---------------------
-- Number_Of_Edges --
---------------------
function Number_Of_Edges (G : Invocation_Graph) return Natural is
begin
pragma Assert (Present (G));
return DG.Number_Of_Edges (G.Graph);
end Number_Of_Edges;
--------------------------------
-- Number_Of_Edges_To_Targets --
--------------------------------
function Number_Of_Edges_To_Targets
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id) return Natural
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return DG.Number_Of_Outgoing_Edges (G.Graph, Vertex);
end Number_Of_Edges_To_Targets;
---------------------------------
-- Number_Of_Elaboration_Roots --
---------------------------------
function Number_Of_Elaboration_Roots
(G : Invocation_Graph) return Natural
is
begin
pragma Assert (Present (G));
return IGV_Sets.Size (G.Roots);
end Number_Of_Elaboration_Roots;
------------------------
-- Number_Of_Vertices --
------------------------
function Number_Of_Vertices (G : Invocation_Graph) return Natural is
begin
pragma Assert (Present (G));
return DG.Number_Of_Vertices (G.Graph);
end Number_Of_Vertices;
-------------
-- Present --
-------------
function Present (G : Invocation_Graph) return Boolean is
begin
return G /= Nil;
end Present;
--------------
-- Relation --
--------------
function Relation
(G : Invocation_Graph;
Edge : Invocation_Graph_Edge_Id) return Invocation_Relation_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return Get_IGE_Attributes (G, Edge).Relation;
end Relation;
---------------------------
-- Save_Elaboration_Root --
---------------------------
procedure Save_Elaboration_Root
(G : Invocation_Graph;
Root : Invocation_Graph_Vertex_Id)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Root));
IGV_Sets.Insert (G.Roots, Root);
end Save_Elaboration_Root;
------------------------------
-- Set_Corresponding_Vertex --
------------------------------
procedure Set_Corresponding_Vertex
(G : Invocation_Graph;
IS_Id : Invocation_Signature_Id;
Vertex : Invocation_Graph_Vertex_Id)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (IS_Id));
pragma Assert (Present (Vertex));
Signature_Tables.Put (G.Signature_To_Vertex, IS_Id, Vertex);
end Set_Corresponding_Vertex;
--------------------------------------------
-- Set_Is_Existing_Source_Target_Relation --
--------------------------------------------
procedure Set_Is_Existing_Source_Target_Relation
(G : Invocation_Graph;
Rel : Source_Target_Relation)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Rel.Source));
pragma Assert (Present (Rel.Target));
Relation_Sets.Insert (G.Relations, Rel);
end Set_Is_Existing_Source_Target_Relation;
------------------------
-- Set_IGE_Attributes --
------------------------
procedure Set_IGE_Attributes
(G : Invocation_Graph;
Edge : Invocation_Graph_Edge_Id;
Val : Invocation_Graph_Edge_Attributes)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
IGE_Tables.Put (G.Edge_Attributes, Edge, Val);
end Set_IGE_Attributes;
------------------------
-- Set_IGV_Attributes --
------------------------
procedure Set_IGV_Attributes
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id;
Val : Invocation_Graph_Vertex_Attributes)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
IGV_Tables.Put (G.Vertex_Attributes, Vertex, Val);
end Set_IGV_Attributes;
-----------------
-- Spec_Vertex --
-----------------
function Spec_Vertex
(G : Invocation_Graph;
Vertex : Invocation_Graph_Vertex_Id) return Library_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
return Get_IGV_Attributes (G, Vertex).Spec_Vertex;
end Spec_Vertex;
------------
-- Target --
------------
function Target
(G : Invocation_Graph;
Edge : Invocation_Graph_Edge_Id) return Invocation_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Edge));
return DG.Destination_Vertex (G.Graph, Edge);
end Target;
end Invocation_Graphs;
-------------
-- Present --
-------------
function Present (Edge : Invocation_Graph_Edge_Id) return Boolean is
begin
return Edge /= No_Invocation_Graph_Edge;
end Present;
-------------
-- Present --
-------------
function Present (Vertex : Invocation_Graph_Vertex_Id) return Boolean is
begin
return Vertex /= No_Invocation_Graph_Vertex;
end Present;
-------------
-- Present --
-------------
function Present (Cycle : Library_Graph_Cycle_Id) return Boolean is
begin
return Cycle /= No_Library_Graph_Cycle;
end Present;
-------------
-- Present --
-------------
function Present (Edge : Library_Graph_Edge_Id) return Boolean is
begin
return Edge /= No_Library_Graph_Edge;
end Present;
-------------
-- Present --
-------------
function Present (Vertex : Library_Graph_Vertex_Id) return Boolean is
begin
return Vertex /= No_Library_Graph_Vertex;
end Present;
--------------------------
-- Sequence_Next_Edge --
--------------------------
IGE_Sequencer : Invocation_Graph_Edge_Id := First_Invocation_Graph_Edge;
-- The counter for invocation graph edges. Do not directly manipulate its
-- value.
function Sequence_Next_Edge return Invocation_Graph_Edge_Id is
Edge : constant Invocation_Graph_Edge_Id := IGE_Sequencer;
begin
IGE_Sequencer := IGE_Sequencer + 1;
return Edge;
end Sequence_Next_Edge;
--------------------------
-- Sequence_Next_Vertex --
--------------------------
IGV_Sequencer : Invocation_Graph_Vertex_Id := First_Invocation_Graph_Vertex;
-- The counter for invocation graph vertices. Do not directly manipulate
-- its value.
function Sequence_Next_Vertex return Invocation_Graph_Vertex_Id is
Vertex : constant Invocation_Graph_Vertex_Id := IGV_Sequencer;
begin
IGV_Sequencer := IGV_Sequencer + 1;
return Vertex;
end Sequence_Next_Vertex;
--------------------------
-- Sequence_Next_Cycle --
--------------------------
LGC_Sequencer : Library_Graph_Cycle_Id := First_Library_Graph_Cycle;
-- The counter for library graph cycles. Do not directly manipulate its
-- value.
function Sequence_Next_Cycle return Library_Graph_Cycle_Id is
Cycle : constant Library_Graph_Cycle_Id := LGC_Sequencer;
begin
LGC_Sequencer := LGC_Sequencer + 1;
return Cycle;
end Sequence_Next_Cycle;
--------------------------
-- Sequence_Next_Edge --
--------------------------
LGE_Sequencer : Library_Graph_Edge_Id := First_Library_Graph_Edge;
-- The counter for library graph edges. Do not directly manipulate its
-- value.
function Sequence_Next_Edge return Library_Graph_Edge_Id is
Edge : constant Library_Graph_Edge_Id := LGE_Sequencer;
begin
LGE_Sequencer := LGE_Sequencer + 1;
return Edge;
end Sequence_Next_Edge;
--------------------------
-- Sequence_Next_Vertex --
--------------------------
LGV_Sequencer : Library_Graph_Vertex_Id := First_Library_Graph_Vertex;
-- The counter for library graph vertices. Do not directly manipulate its
-- value.
function Sequence_Next_Vertex return Library_Graph_Vertex_Id is
Vertex : constant Library_Graph_Vertex_Id := LGV_Sequencer;
begin
LGV_Sequencer := LGV_Sequencer + 1;
return Vertex;
end Sequence_Next_Vertex;
end Bindo.Graphs;
|