1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- B I N D E --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Binderr; use Binderr;
with Butil; use Butil;
with Debug; use Debug;
with Fname; use Fname;
with Opt; use Opt;
with Osint;
with Output; use Output;
with Table;
with System.Case_Util; use System.Case_Util;
with System.OS_Lib;
package body Binde is
-- We now have Elab_New, a new elaboration-order algorithm.
--
-- However, any change to elaboration order can break some programs.
-- Therefore, we are keeping the old algorithm in place, to be selected
-- by switches.
--
-- The new algorithm has the following interesting properties:
--
-- * The static and dynamic models use the same elaboration order. The
-- static model might get an error, but if it does not, it will use
-- the same order as the dynamic model.
--
-- * Each SCC (see below) is elaborated together; that is, units from
-- different SCCs are not interspersed.
--
-- * In particular, this implies that if an SCC contains just a spec and
-- the corresponding body, and nothing else, the body will be
-- elaborated immediately after the spec. This is expected to result
-- in a better elaboration order for most programs, because in this
-- case, a call from outside the library unit cannot get ABE.
--
-- * Pragmas Elaborate_All (explicit and implicit) are ignored. Instead,
-- we behave as if every legal pragma Elaborate_All were present. That
-- is, if it would be legal to have "pragma Elaborate_All(Y);" on X,
-- then we behave as if such a pragma exists, even if it does not.
Do_Old : constant Boolean := False;
Do_New : constant Boolean := True;
-- True to enable the old and new algorithms, respectively. Used for
-- debugging/experimentation.
Doing_New : Boolean := False;
-- True if we are currently doing the new algorithm. Print certain
-- messages only when doing the "new" elab order algorithm, so we don't get
-- duplicates. And use different heuristics in Better_Choice_Optimistic.
-- The following data structures are used to represent the graph that is
-- used to determine the elaboration order (using a topological sort).
-- The following structures are used to record successors. If B is a
-- successor of A in this table, it means that A must be elaborated before
-- B is elaborated. For example, if Y (body) says "with X;", then Y (body)
-- will be a successor of X (spec), and X (spec) will be a predecessor of
-- Y (body).
--
-- Note that we store the successors of each unit explicitly. We don't
-- store the predecessors, but we store a count of them.
--
-- The basic algorithm is to first compute a directed graph of units (type
-- Unit_Node_Record, below), with successors as edges. A unit is "ready"
-- (to be chosen as the next to be elaborated) if it has no predecessors
-- that have not yet been chosen. We use heuristics to decide which of the
-- ready units should be elaborated next, and "choose" that one (which
-- means we append it to the elaboration-order table).
type Successor_Id is new Nat;
-- Identification of single successor entry
No_Successor : constant Successor_Id := 0;
-- Used to indicate end of list of successors
type Elab_All_Id is new Nat;
-- Identification of Elab_All entry link
No_Elab_All_Link : constant Elab_All_Id := 0;
-- Used to indicate end of list
-- Succ_Reason indicates the reason for a particular elaboration link
type Succ_Reason is
(Withed,
-- After directly with's Before, so the spec of Before must be
-- elaborated before After is elaborated.
Forced,
-- Before and After come from a pair of lines in the forced elaboration
-- order file.
Elab,
-- After directly mentions Before in a pragma Elaborate, so the body of
-- Before must be elaborated before After is elaborated.
Elab_All,
-- After either mentions Before directly in a pragma Elaborate_All, or
-- mentions a third unit, X, which itself requires that Before be
-- elaborated before unit X is elaborated. The Elab_All_Link list traces
-- the dependencies in the latter case.
Elab_All_Desirable,
-- This is just like Elab_All, except that the Elaborate_All was not
-- explicitly present in the source, but rather was created by the front
-- end, which decided that it was "desirable".
Elab_Desirable,
-- This is just like Elab, except that the Elaborate was not explicitly
-- present in the source, but rather was created by the front end, which
-- decided that it was "desirable".
Spec_First);
-- After is a body, and Before is the corresponding spec
-- Successor_Link contains the information for one link
type Successor_Link is record
Before : Unit_Id;
-- Predecessor unit
After : Unit_Id;
-- Successor unit
Next : Successor_Id;
-- Next successor on this list
Reason : Succ_Reason;
-- Reason for this link
Elab_Body : Boolean;
-- Set True if this link is needed for the special Elaborate_Body
-- processing described below.
Reason_Unit : Unit_Id;
-- For Reason = Elab, or Elab_All or Elab_Desirable, records the unit
-- containing the pragma leading to the link.
Elab_All_Link : Elab_All_Id;
-- If Reason = Elab_All or Elab_Desirable, then this points to the
-- first element in a list of Elab_All entries that record the with
-- chain resulting in this particular dependency.
end record;
-- Note on handling of Elaborate_Body. Basically, if we have a pragma
-- Elaborate_Body in a unit, it means that the spec and body have to be
-- handled as a single entity from the point of view of determining an
-- elaboration order. What we do is to essentially remove the body from
-- consideration completely, and transfer all its links (other than the
-- spec link) to the spec. Then when the spec gets chosen, we choose the
-- body right afterwards. We mark the links that get moved from the body to
-- the spec by setting their Elab_Body flag True, so that we can understand
-- what is going on.
Succ_First : constant := 1;
package Succ is new Table.Table
(Table_Component_Type => Successor_Link,
Table_Index_Type => Successor_Id,
Table_Low_Bound => Succ_First,
Table_Initial => 500,
Table_Increment => 200,
Table_Name => "Succ");
-- For the case of Elaborate_All, the following table is used to record
-- chains of with relationships that lead to the Elab_All link. These are
-- used solely for diagnostic purposes
type Elab_All_Entry is record
Needed_By : Unit_Name_Type;
-- Name of unit from which referencing unit was with'ed or otherwise
-- needed as a result of Elaborate_All or Elaborate_Desirable.
Next_Elab : Elab_All_Id;
-- Link to next entry on chain (No_Elab_All_Link marks end of list)
end record;
package Elab_All_Entries is new Table.Table
(Table_Component_Type => Elab_All_Entry,
Table_Index_Type => Elab_All_Id,
Table_Low_Bound => 1,
Table_Initial => 2000,
Table_Increment => 200,
Table_Name => "Elab_All_Entries");
type Unit_Id_Array_Ptr is access Unit_Id_Array;
-- A Unit_Node_Record is built for each active unit
type Unit_Node_Record is record
Successors : Successor_Id;
-- Pointer to list of links for successor nodes
Num_Pred : Int;
-- Number of predecessors for this unit that have not yet been chosen.
-- Normally non-negative, but can go negative in the case of units
-- chosen by the diagnose error procedure (when cycles are being removed
-- from the graph).
Nextnp : Unit_Id;
-- Forward pointer for list of units with no predecessors
Visited : Boolean;
-- Used in computing transitive closure for Elaborate_All and also in
-- locating cycles and paths in the diagnose routines.
Elab_Position : Nat;
-- Initialized to zero. Set non-zero when a unit is chosen and placed in
-- the elaboration order. The value represents the ordinal position in
-- the elaboration order.
-- The following are for Elab_New. We compute the strongly connected
-- components (SCCs) of the directed graph of units. The edges are the
-- Successors, which do not include pragmas Elaborate_All (explicit or
-- implicit) in Elab_New. In addition, we assume there is a edge
-- pointing from a body to its corresponding spec; this edge is not
-- included in Successors, because of course a spec is elaborated BEFORE
-- its body, not after.
SCC_Root : Unit_Id;
-- Each unit points to the root of its SCC, which is just an arbitrary
-- member of the SCC. Two units are in the same SCC if and only if their
-- SCC_Roots are equal. U is the root of its SCC if and only if
-- SCC(U)=U.
Nodes : Unit_Id_Array_Ptr;
-- Present only in the root of an SCC. This is the set of units in the
-- SCC, in no particular order.
SCC_Num_Pred : Int;
-- Present only in the root of an SCC. This is the number of predecessor
-- units of the SCC that are in other SCCs, and that have not yet been
-- chosen.
Validate_Seen : Boolean := False;
-- See procedure Validate below
end record;
package UNR is new Table.Table
(Table_Component_Type => Unit_Node_Record,
Table_Index_Type => Unit_Id,
Table_Low_Bound => First_Unit_Entry,
Table_Initial => 500,
Table_Increment => 200,
Table_Name => "UNR");
No_Pred : Unit_Id;
-- Head of list of items with no predecessors
Num_Left : Int;
-- Number of entries not yet dealt with
Cur_Unit : Unit_Id;
-- Current unit, set by Gather_Dependencies, and picked up in Build_Link to
-- set the Reason_Unit field of the created dependency link.
Num_Chosen : Nat;
-- Number of units chosen in the elaboration order so far
Diagnose_Elaboration_Problem_Called : Boolean := False;
-- True if Diagnose_Elaboration_Problem was called. Used in an assertion.
-----------------------
-- Local Subprograms --
-----------------------
function Debug_Flag_Older return Boolean;
function Debug_Flag_Old return Boolean;
-- True if debug flags select the old or older algorithms. Pretty much any
-- change to elaboration order can break some programs. For example,
-- programs can depend on elaboration order even without failing
-- access-before-elaboration checks. A trivial example is a program that
-- prints text during elaboration. Therefore, we have flags to revert to
-- the old(er) algorithms.
procedure Validate (Order : Unit_Id_Array; Doing_New : Boolean);
-- Assert that certain properties are true
function Better_Choice_Optimistic
(U1 : Unit_Id;
U2 : Unit_Id) return Boolean;
-- U1 and U2 are both permitted candidates for selection as the next unit
-- to be elaborated. This function determines whether U1 is a better choice
-- than U2, i.e. should be elaborated in preference to U2, based on a set
-- of heuristics that establish a friendly and predictable order (see body
-- for details). The result is True if U1 is a better choice than U2, and
-- False if it is a worse choice, or there is no preference between them.
function Better_Choice_Pessimistic
(U1 : Unit_Id;
U2 : Unit_Id) return Boolean;
-- This is like Better_Choice_Optimistic, and has the same interface, but
-- returns true if U1 is a worse choice than U2 in the sense of the -p
-- (pessimistic elaboration order) switch. We still have to obey Ada rules,
-- so it is not quite the direct inverse of Better_Choice_Optimistic.
function Better_Choice (U1 : Unit_Id; U2 : Unit_Id) return Boolean;
-- Calls Better_Choice_Optimistic or Better_Choice_Pessimistic as
-- appropriate. Also takes care of the U2 = No_Unit_Id case.
procedure Build_Link
(Before : Unit_Id;
After : Unit_Id;
R : Succ_Reason;
Ea_Id : Elab_All_Id := No_Elab_All_Link);
-- Establish a successor link, Before must be elaborated before After, and
-- the reason for the link is R. Ea_Id is the contents to be placed in the
-- Elab_All_Link of the entry.
procedure Choose
(Elab_Order : in out Unit_Id_Table;
Chosen : Unit_Id;
Msg : String);
-- Chosen is the next entry chosen in the elaboration order. This procedure
-- updates all data structures appropriately.
function Corresponding_Body (U : Unit_Id) return Unit_Id;
pragma Inline (Corresponding_Body);
-- Given a unit that is a spec for which there is a separate body, return
-- the unit id of the body. It is an error to call this routine with a unit
-- that is not a spec, or that does not have a separate body.
function Corresponding_Spec (U : Unit_Id) return Unit_Id;
pragma Inline (Corresponding_Spec);
-- Given a unit that is a body for which there is a separate spec, return
-- the unit id of the spec. It is an error to call this routine with a unit
-- that is not a body, or that does not have a separate spec.
procedure Diagnose_Elaboration_Problem
(Elab_Order : in out Unit_Id_Table);
-- Called when no elaboration order can be found. Outputs an appropriate
-- diagnosis of the problem, and then abandons the bind.
procedure Elab_All_Links
(Before : Unit_Id;
After : Unit_Id;
Reason : Succ_Reason;
Link : Elab_All_Id);
-- Used to compute the transitive closure of elaboration links for an
-- Elaborate_All pragma (Reason = Elab_All) or for an indication of
-- Elaborate_All_Desirable (Reason = Elab_All_Desirable). Unit After has a
-- pragma Elaborate_All or the front end has determined that a reference
-- probably requires Elaborate_All, and unit Before must be previously
-- elaborated. First a link is built making sure that unit Before is
-- elaborated before After, then a recursive call ensures that we also
-- build links for any units needed by Before (i.e. these units must/should
-- also be elaborated before After). Link is used to build a chain of
-- Elab_All_Entries to explain the reason for a link. The value passed is
-- the chain so far.
procedure Elab_Error_Msg (S : Successor_Id);
-- Given a successor link, outputs an error message of the form
-- "$ must be elaborated before $ ..." where ... is the reason.
procedure Force_Elab_Order;
-- Gather dependencies from the forced elaboration order file (-f switch)
procedure Gather_Dependencies;
-- Compute dependencies, building the Succ and UNR tables
procedure Init;
-- Initialize global data structures in this package body
function Is_Body_Unit (U : Unit_Id) return Boolean;
pragma Inline (Is_Body_Unit);
-- Determines if given unit is a body
function Is_Pure_Or_Preelab_Unit (U : Unit_Id) return Boolean;
-- Returns True if corresponding unit is Pure or Preelaborate. Includes
-- dealing with testing flags on spec if it is given a body.
function Is_Waiting_Body (U : Unit_Id) return Boolean;
pragma Inline (Is_Waiting_Body);
-- Determines if U is a waiting body, defined as a body that has
-- not been elaborated, but whose spec has been elaborated.
function Make_Elab_All_Entry
(Unam : Unit_Name_Type;
Link : Elab_All_Id) return Elab_All_Id;
-- Make an Elab_All_Entries table entry with the given Unam and Link
function Unit_Id_Of (Uname : Unit_Name_Type) return Unit_Id;
-- This function uses the Info field set in the names table to obtain
-- the unit Id of a unit, given its name id value.
procedure Write_Closure (Order : Unit_Id_Array);
-- Write the closure. This is for the -R and -Ra switches, "list closure
-- display".
procedure Write_Dependencies;
-- Write out dependencies (called only if appropriate option is set)
procedure Write_Elab_All_Chain (S : Successor_Id);
-- If the reason for the link S is Elaborate_All or Elaborate_Desirable,
-- then this routine will output the "needed by" explanation chain.
procedure Write_Elab_Order (Order : Unit_Id_Array; Title : String);
-- Display elaboration order. This is for the -l switch. Title is a heading
-- to print; an empty string is passed to indicate Zero_Formatting.
package Elab_New is
-- Implementation of the new algorithm
procedure Write_SCC (U : Unit_Id);
-- Write the unit names of the units in the SCC in which U lives
procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table);
Elab_Cycle_Found : Boolean := False;
-- Set True if Find_Elab_Order found a cycle (usually an illegal pragma
-- Elaborate_All, explicit or implicit).
function SCC (U : Unit_Id) return Unit_Id;
-- The root of the strongly connected component containing U
function SCC_Num_Pred (U : Unit_Id) return Int;
-- The SCC_Num_Pred of the SCC in which U lives
function Nodes (U : Unit_Id) return Unit_Id_Array_Ptr;
-- The nodes of the strongly connected component containing U
end Elab_New;
use Elab_New;
package Elab_Old is
-- Implementation of the old algorithm
procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table);
end Elab_Old;
-- Most of the code is shared between old and new; such code is outside
-- packages Elab_Old and Elab_New.
-------------------
-- Better_Choice --
-------------------
function Better_Choice (U1 : Unit_Id; U2 : Unit_Id) return Boolean is
pragma Assert (U1 /= No_Unit_Id);
begin
if U2 = No_Unit_Id then
return True;
end if;
if Pessimistic_Elab_Order then
return Better_Choice_Pessimistic (U1, U2);
else
return Better_Choice_Optimistic (U1, U2);
end if;
end Better_Choice;
------------------------------
-- Better_Choice_Optimistic --
------------------------------
function Better_Choice_Optimistic
(U1 : Unit_Id;
U2 : Unit_Id) return Boolean
is
UT1 : Unit_Record renames Units.Table (U1);
UT2 : Unit_Record renames Units.Table (U2);
begin
if Debug_Flag_B then
Write_Str ("Better_Choice_Optimistic (");
Write_Unit_Name (UT1.Uname);
Write_Str (", ");
Write_Unit_Name (UT2.Uname);
Write_Line (")");
end if;
-- Note: the checks here are applied in sequence, and the ordering is
-- significant (i.e. the more important criteria are applied first).
-- Prefer a waiting body to one that is not a waiting body
if Is_Waiting_Body (U1) and then not Is_Waiting_Body (U2) then
if Debug_Flag_B then
Write_Line (" True: u1 is waiting body, u2 is not");
end if;
return True;
elsif Is_Waiting_Body (U2) and then not Is_Waiting_Body (U1) then
if Debug_Flag_B then
Write_Line (" False: u2 is waiting body, u1 is not");
end if;
return False;
-- Prefer a predefined unit to a non-predefined unit
elsif UT1.Predefined and then not UT2.Predefined then
if Debug_Flag_B then
Write_Line (" True: u1 is predefined, u2 is not");
end if;
return True;
elsif UT2.Predefined and then not UT1.Predefined then
if Debug_Flag_B then
Write_Line (" False: u2 is predefined, u1 is not");
end if;
return False;
-- Prefer an internal unit to a non-internal unit
elsif UT1.Internal and then not UT2.Internal then
if Debug_Flag_B then
Write_Line (" True: u1 is internal, u2 is not");
end if;
return True;
elsif UT2.Internal and then not UT1.Internal then
if Debug_Flag_B then
Write_Line (" False: u2 is internal, u1 is not");
end if;
return False;
-- Prefer a pure or preelaborated unit to one that is not. Pure should
-- come before preelaborated.
elsif Is_Pure_Or_Preelab_Unit (U1)
and then not
Is_Pure_Or_Preelab_Unit (U2)
then
if Debug_Flag_B then
Write_Line (" True: u1 is pure/preelab, u2 is not");
end if;
return True;
elsif Is_Pure_Or_Preelab_Unit (U2)
and then not
Is_Pure_Or_Preelab_Unit (U1)
then
if Debug_Flag_B then
Write_Line (" False: u2 is pure/preelab, u1 is not");
end if;
return False;
-- Prefer a body to a spec
elsif Is_Body_Unit (U1) and then not Is_Body_Unit (U2) then
if Debug_Flag_B then
Write_Line (" True: u1 is body, u2 is not");
end if;
return True;
elsif Is_Body_Unit (U2) and then not Is_Body_Unit (U1) then
if Debug_Flag_B then
Write_Line (" False: u2 is body, u1 is not");
end if;
return False;
-- If both are waiting bodies, then prefer the one whose spec is more
-- recently elaborated. Consider the following:
-- spec of A
-- spec of B
-- body of A or B?
-- The normal waiting body preference would have placed the body of A
-- before the spec of B if it could. Since it could not, then it must be
-- the case that A depends on B. It is therefore a good idea to put the
-- body of B first.
elsif Is_Waiting_Body (U1) and then Is_Waiting_Body (U2) then
declare
Result : constant Boolean :=
UNR.Table (Corresponding_Spec (U1)).Elab_Position >
UNR.Table (Corresponding_Spec (U2)).Elab_Position;
begin
if Debug_Flag_B then
if Result then
Write_Line (" True: based on waiting body elab positions");
else
Write_Line (" False: based on waiting body elab positions");
end if;
end if;
return Result;
end;
end if;
-- Remaining choice rules are disabled by Debug flag -do
if not Debug_Flag_Older then
-- The following deal with the case of specs that have been marked
-- as Elaborate_Body_Desirable. We generally want to delay these
-- specs as long as possible, so that the bodies have a better chance
-- of being elaborated closer to the specs.
-- If we have two units, one of which is a spec for which this flag
-- is set, and the other is not, we prefer to delay the spec for
-- which the flag is set.
if not UT1.Elaborate_Body_Desirable
and then UT2.Elaborate_Body_Desirable
then
if Debug_Flag_B then
Write_Line (" True: u1 is elab body desirable, u2 is not");
end if;
return True;
elsif not UT2.Elaborate_Body_Desirable
and then UT1.Elaborate_Body_Desirable
then
if Debug_Flag_B then
Write_Line (" False: u1 is elab body desirable, u2 is not");
end if;
return False;
-- If we have two specs that are both marked as Elaborate_Body
-- desirable, we prefer the one whose body is nearer to being able
-- to be elaborated, based on the Num_Pred count. This helps to
-- ensure bodies are as close to specs as possible.
elsif UT1.Elaborate_Body_Desirable
and then UT2.Elaborate_Body_Desirable
then
declare
Result : constant Boolean :=
UNR.Table (Corresponding_Body (U1)).Num_Pred <
UNR.Table (Corresponding_Body (U2)).Num_Pred;
begin
if Debug_Flag_B then
if Result then
Write_Line (" True based on Num_Pred compare");
else
Write_Line (" False based on Num_Pred compare");
end if;
end if;
return Result;
end;
end if;
end if;
-- If we have two specs in the same SCC, choose the one whose body is
-- closer to being ready.
if Doing_New
and then SCC (U1) = SCC (U2)
and then Units.Table (U1).Utype = Is_Spec
and then Units.Table (U2).Utype = Is_Spec
and then UNR.Table (Corresponding_Body (U1)).Num_Pred /=
UNR.Table (Corresponding_Body (U2)).Num_Pred
then
if UNR.Table (Corresponding_Body (U1)).Num_Pred <
UNR.Table (Corresponding_Body (U2)).Num_Pred
then
if Debug_Flag_B then
Write_Str (" True: same SCC; ");
Write_Int (UNR.Table (Corresponding_Body (U1)).Num_Pred);
Write_Str (" < ");
Write_Int (UNR.Table (Corresponding_Body (U2)).Num_Pred);
Write_Eol;
end if;
return True;
else
if Debug_Flag_B then
Write_Str (" False: same SCC; ");
Write_Int (UNR.Table (Corresponding_Body (U1)).Num_Pred);
Write_Str (" > ");
Write_Int (UNR.Table (Corresponding_Body (U2)).Num_Pred);
Write_Eol;
end if;
return False;
end if;
end if;
-- If we fall through, it means that no preference rule applies, so we
-- use alphabetical order to at least give a deterministic result.
if Debug_Flag_B then
Write_Line (" choose on alpha order");
end if;
return Uname_Less (UT1.Uname, UT2.Uname);
end Better_Choice_Optimistic;
-------------------------------
-- Better_Choice_Pessimistic --
-------------------------------
function Better_Choice_Pessimistic
(U1 : Unit_Id;
U2 : Unit_Id) return Boolean
is
UT1 : Unit_Record renames Units.Table (U1);
UT2 : Unit_Record renames Units.Table (U2);
begin
if Debug_Flag_B then
Write_Str ("Better_Choice_Pessimistic (");
Write_Unit_Name (UT1.Uname);
Write_Str (", ");
Write_Unit_Name (UT2.Uname);
Write_Line (")");
end if;
-- Note: the checks here are applied in sequence, and the ordering is
-- significant (i.e. the more important criteria are applied first).
-- If either unit is predefined or internal, then we use the normal
-- Better_Choice_Optimistic rule, since we don't want to disturb the
-- elaboration rules of the language with -p; same treatment for
-- Pure/Preelab.
-- Prefer a predefined unit to a non-predefined unit
if UT1.Predefined and then not UT2.Predefined then
if Debug_Flag_B then
Write_Line (" True: u1 is predefined, u2 is not");
end if;
return True;
elsif UT2.Predefined and then not UT1.Predefined then
if Debug_Flag_B then
Write_Line (" False: u2 is predefined, u1 is not");
end if;
return False;
-- Prefer an internal unit to a non-internal unit
elsif UT1.Internal and then not UT2.Internal then
if Debug_Flag_B then
Write_Line (" True: u1 is internal, u2 is not");
end if;
return True;
elsif UT2.Internal and then not UT1.Internal then
if Debug_Flag_B then
Write_Line (" False: u2 is internal, u1 is not");
end if;
return False;
-- Prefer a pure or preelaborated unit to one that is not
elsif Is_Pure_Or_Preelab_Unit (U1)
and then not
Is_Pure_Or_Preelab_Unit (U2)
then
if Debug_Flag_B then
Write_Line (" True: u1 is pure/preelab, u2 is not");
end if;
return True;
elsif Is_Pure_Or_Preelab_Unit (U2)
and then not
Is_Pure_Or_Preelab_Unit (U1)
then
if Debug_Flag_B then
Write_Line (" False: u2 is pure/preelab, u1 is not");
end if;
return False;
-- Prefer anything else to a waiting body. We want to make bodies wait
-- as long as possible, till we are forced to choose them.
elsif Is_Waiting_Body (U1) and then not Is_Waiting_Body (U2) then
if Debug_Flag_B then
Write_Line (" False: u1 is waiting body, u2 is not");
end if;
return False;
elsif Is_Waiting_Body (U2) and then not Is_Waiting_Body (U1) then
if Debug_Flag_B then
Write_Line (" True: u2 is waiting body, u1 is not");
end if;
return True;
-- Prefer a spec to a body (this is mandatory)
elsif Is_Body_Unit (U1) and then not Is_Body_Unit (U2) then
if Debug_Flag_B then
Write_Line (" False: u1 is body, u2 is not");
end if;
return False;
elsif Is_Body_Unit (U2) and then not Is_Body_Unit (U1) then
if Debug_Flag_B then
Write_Line (" True: u2 is body, u1 is not");
end if;
return True;
-- If both are waiting bodies, then prefer the one whose spec is less
-- recently elaborated. Consider the following:
-- spec of A
-- spec of B
-- body of A or B?
-- The normal waiting body preference would have placed the body of A
-- before the spec of B if it could. Since it could not, then it must be
-- the case that A depends on B. It is therefore a good idea to put the
-- body of B last so that if there is an elaboration order problem, we
-- will find it (that's what pessimistic order is about).
elsif Is_Waiting_Body (U1) and then Is_Waiting_Body (U2) then
declare
Result : constant Boolean :=
UNR.Table (Corresponding_Spec (U1)).Elab_Position <
UNR.Table (Corresponding_Spec (U2)).Elab_Position;
begin
if Debug_Flag_B then
if Result then
Write_Line (" True: based on waiting body elab positions");
else
Write_Line (" False: based on waiting body elab positions");
end if;
end if;
return Result;
end;
end if;
-- Remaining choice rules are disabled by Debug flag -do
if not Debug_Flag_Older then
-- The following deal with the case of specs that have been marked as
-- Elaborate_Body_Desirable. In the normal case, we generally want to
-- delay the elaboration of these specs as long as possible, so that
-- bodies have better chance of being elaborated closer to the specs.
-- Better_Choice_Pessimistic as usual wants to do the opposite and
-- elaborate such specs as early as possible.
-- If we have two units, one of which is a spec for which this flag
-- is set, and the other is not, we normally prefer to delay the spec
-- for which the flag is set, so again Better_Choice_Pessimistic does
-- the opposite.
if not UT1.Elaborate_Body_Desirable
and then UT2.Elaborate_Body_Desirable
then
if Debug_Flag_B then
Write_Line (" False: u1 is elab body desirable, u2 is not");
end if;
return False;
elsif not UT2.Elaborate_Body_Desirable
and then UT1.Elaborate_Body_Desirable
then
if Debug_Flag_B then
Write_Line (" True: u1 is elab body desirable, u2 is not");
end if;
return True;
-- If we have two specs that are both marked as Elaborate_Body
-- desirable, we normally prefer the one whose body is nearer to
-- being able to be elaborated, based on the Num_Pred count. This
-- helps to ensure bodies are as close to specs as possible. As
-- usual, Better_Choice_Pessimistic does the opposite.
elsif UT1.Elaborate_Body_Desirable
and then UT2.Elaborate_Body_Desirable
then
declare
Result : constant Boolean :=
UNR.Table (Corresponding_Body (U1)).Num_Pred >=
UNR.Table (Corresponding_Body (U2)).Num_Pred;
begin
if Debug_Flag_B then
if Result then
Write_Line (" True based on Num_Pred compare");
else
Write_Line (" False based on Num_Pred compare");
end if;
end if;
return Result;
end;
end if;
end if;
-- If we fall through, it means that no preference rule applies, so we
-- use alphabetical order to at least give a deterministic result. Since
-- Better_Choice_Pessimistic is in the business of stirring up the
-- order, we will use reverse alphabetical ordering.
if Debug_Flag_B then
Write_Line (" choose on reverse alpha order");
end if;
return Uname_Less (UT2.Uname, UT1.Uname);
end Better_Choice_Pessimistic;
----------------
-- Build_Link --
----------------
procedure Build_Link
(Before : Unit_Id;
After : Unit_Id;
R : Succ_Reason;
Ea_Id : Elab_All_Id := No_Elab_All_Link)
is
Cspec : Unit_Id;
begin
Succ.Append
((Before => Before,
After => No_Unit_Id, -- filled in below
Next => UNR.Table (Before).Successors,
Reason => R,
Elab_Body => False, -- set correctly below
Reason_Unit => Cur_Unit,
Elab_All_Link => Ea_Id));
UNR.Table (Before).Successors := Succ.Last;
-- Deal with special Elab_Body case. If the After of this link is
-- a body whose spec has Elaborate_All set, and this is not the link
-- directly from the body to the spec, then we make the After of the
-- link reference its spec instead, marking the link appropriately.
if Units.Table (After).Utype = Is_Body then
Cspec := Corresponding_Spec (After);
if Units.Table (Cspec).Elaborate_Body
and then Cspec /= Before
then
Succ.Table (Succ.Last).After := Cspec;
Succ.Table (Succ.Last).Elab_Body := True;
UNR.Table (Cspec).Num_Pred := UNR.Table (Cspec).Num_Pred + 1;
return;
end if;
end if;
-- Fall through on normal case
Succ.Table (Succ.Last).After := After;
Succ.Table (Succ.Last).Elab_Body := False;
UNR.Table (After).Num_Pred := UNR.Table (After).Num_Pred + 1;
end Build_Link;
------------
-- Choose --
------------
procedure Choose
(Elab_Order : in out Unit_Id_Table;
Chosen : Unit_Id;
Msg : String)
is
pragma Assert (Chosen /= No_Unit_Id);
S : Successor_Id;
U : Unit_Id;
begin
if Debug_Flag_C then
Write_Str ("Choosing Unit ");
Write_Unit_Name (Units.Table (Chosen).Uname);
Write_Str (Msg);
end if;
-- We shouldn't be choosing something with unelaborated predecessors,
-- and we shouldn't call this twice on the same unit. But that's not
-- true when this is called from Diagnose_Elaboration_Problem.
if Errors_Detected = 0 then
pragma Assert (UNR.Table (Chosen).Num_Pred = 0);
pragma Assert (UNR.Table (Chosen).Elab_Position = 0);
pragma Assert (not Doing_New or else SCC_Num_Pred (Chosen) = 0);
null;
end if;
-- Add to elaboration order. Note that units having no elaboration code
-- are not treated specially yet. The special casing of this is in
-- Bindgen, where Gen_Elab_Calls skips over them. Meanwhile we need them
-- here, because the object file list is also driven by the contents of
-- the Elab_Order table.
Append (Elab_Order, Chosen);
-- Remove from No_Pred list. This is a little inefficient and may be we
-- should doubly link the list, but it will do for now.
if No_Pred = Chosen then
No_Pred := UNR.Table (Chosen).Nextnp;
else
U := No_Pred;
while U /= No_Unit_Id loop
if UNR.Table (U).Nextnp = Chosen then
UNR.Table (U).Nextnp := UNR.Table (Chosen).Nextnp;
goto Done_Removal;
end if;
U := UNR.Table (U).Nextnp;
end loop;
-- Here if we didn't find it on the No_Pred list. This can happen
-- only in calls from the Diagnose_Elaboration_Problem routine,
-- where cycles are being removed arbitrarily from the graph.
pragma Assert (Errors_Detected > 0);
<<Done_Removal>> null;
end if;
-- For all successors, decrement the number of predecessors, and if it
-- becomes zero, then add to no-predecessor list.
S := UNR.Table (Chosen).Successors;
while S /= No_Successor loop
U := Succ.Table (S).After;
UNR.Table (U).Num_Pred := UNR.Table (U).Num_Pred - 1;
if Debug_Flag_N then
Write_Str (" decrementing Num_Pred for unit ");
Write_Unit_Name (Units.Table (U).Uname);
Write_Str (" new value = ");
Write_Int (UNR.Table (U).Num_Pred);
Write_Eol;
end if;
if UNR.Table (U).Num_Pred = 0 then
UNR.Table (U).Nextnp := No_Pred;
No_Pred := U;
end if;
if Doing_New and then SCC (U) /= SCC (Chosen) then
UNR.Table (SCC (U)).SCC_Num_Pred :=
UNR.Table (SCC (U)).SCC_Num_Pred - 1;
if Debug_Flag_N then
Write_Str (" decrementing SCC_Num_Pred for unit ");
Write_Unit_Name (Units.Table (U).Uname);
Write_Str (" new value = ");
Write_Int (SCC_Num_Pred (U));
Write_Eol;
end if;
end if;
S := Succ.Table (S).Next;
end loop;
-- All done, adjust number of units left count and set elaboration pos
Num_Left := Num_Left - 1;
Num_Chosen := Num_Chosen + 1;
pragma Assert
(Errors_Detected > 0 or else Num_Chosen = Last (Elab_Order));
pragma Assert (Units.Last = UNR.Last);
pragma Assert (Num_Chosen + Num_Left = Int (UNR.Last));
if Debug_Flag_C then
Write_Str (" ");
Write_Int (Int (Num_Chosen));
Write_Str ("+");
Write_Int (Num_Left);
Write_Str ("=");
Write_Int (Int (UNR.Last));
Write_Eol;
end if;
UNR.Table (Chosen).Elab_Position := Num_Chosen;
-- If we just chose a spec with Elaborate_Body set, then we must
-- immediately elaborate the body, before any other units.
if Units.Table (Chosen).Elaborate_Body then
-- If the unit is a spec only, then there is no body. This is a bit
-- odd given that Elaborate_Body is here, but it is valid in an RCI
-- unit, where we only have the interface in the stub bind.
if Units.Table (Chosen).Utype = Is_Spec_Only
and then Units.Table (Chosen).RCI
then
null;
else
Choose
(Elab_Order => Elab_Order,
Chosen => Corresponding_Body (Chosen),
Msg => " [Elaborate_Body]");
end if;
end if;
end Choose;
------------------------
-- Corresponding_Body --
------------------------
-- Currently if the body and spec are separate, then they appear as two
-- separate units in the same ALI file, with the body appearing first and
-- the spec appearing second.
function Corresponding_Body (U : Unit_Id) return Unit_Id is
begin
pragma Assert (Units.Table (U).Utype = Is_Spec);
return U - 1;
end Corresponding_Body;
------------------------
-- Corresponding_Spec --
------------------------
-- Currently if the body and spec are separate, then they appear as two
-- separate units in the same ALI file, with the body appearing first and
-- the spec appearing second.
function Corresponding_Spec (U : Unit_Id) return Unit_Id is
begin
pragma Assert (Units.Table (U).Utype = Is_Body);
return U + 1;
end Corresponding_Spec;
--------------------
-- Debug_Flag_Old --
--------------------
function Debug_Flag_Old return Boolean is
begin
-- If the user specified both flags, we want to use the older algorithm,
-- rather than some confusing mix of the two.
return Debug_Flag_P and not Debug_Flag_O;
end Debug_Flag_Old;
----------------------
-- Debug_Flag_Older --
----------------------
function Debug_Flag_Older return Boolean is
begin
return Debug_Flag_O;
end Debug_Flag_Older;
----------------------------------
-- Diagnose_Elaboration_Problem --
----------------------------------
procedure Diagnose_Elaboration_Problem
(Elab_Order : in out Unit_Id_Table)
is
function Find_Path
(Ufrom : Unit_Id;
Uto : Unit_Id;
ML : Nat) return Boolean;
-- Recursive routine used to find a path from node Ufrom to node Uto.
-- If a path exists, returns True and outputs an appropriate set of
-- error messages giving the path. Also calls Choose for each of the
-- nodes so that they get removed from the remaining set. There are
-- two cases of calls, either Ufrom = Uto for an attempt to find a
-- cycle, or Ufrom is a spec and Uto the corresponding body for the
-- case of an unsatisfiable Elaborate_Body pragma. ML is the minimum
-- acceptable length for a path.
---------------
-- Find_Path --
---------------
function Find_Path
(Ufrom : Unit_Id;
Uto : Unit_Id;
ML : Nat) return Boolean
is
function Find_Link (U : Unit_Id; PL : Nat) return Boolean;
-- This is the inner recursive routine, it determines if a path
-- exists from U to Uto, and if so returns True and outputs the
-- appropriate set of error messages. PL is the path length
---------------
-- Find_Link --
---------------
function Find_Link (U : Unit_Id; PL : Nat) return Boolean is
S : Successor_Id;
begin
-- Recursion ends if we are at terminating node and the path is
-- sufficiently long, generate error message and return True.
if U = Uto and then PL >= ML then
Choose (Elab_Order, U, " [Find_Link: base]");
return True;
-- All done if already visited
elsif UNR.Table (U).Visited then
return False;
-- Otherwise mark as visited and look at all successors
else
UNR.Table (U).Visited := True;
S := UNR.Table (U).Successors;
while S /= No_Successor loop
if Find_Link (Succ.Table (S).After, PL + 1) then
Elab_Error_Msg (S);
Choose (Elab_Order, U, " [Find_Link: recursive]");
return True;
end if;
S := Succ.Table (S).Next;
end loop;
-- Falling through means this does not lead to a path
return False;
end if;
end Find_Link;
-- Start of processing for Find_Path
begin
-- Initialize all non-chosen nodes to not visited yet
for U in Units.First .. Units.Last loop
UNR.Table (U).Visited := UNR.Table (U).Elab_Position /= 0;
end loop;
-- Now try to find the path
return Find_Link (Ufrom, 0);
end Find_Path;
-- Start of processing for Diagnose_Elaboration_Problem
begin
Diagnose_Elaboration_Problem_Called := True;
Set_Standard_Error;
-- Output state of things if debug flag N set
if Debug_Flag_N then
declare
NP : Int;
begin
Write_Eol;
Write_Eol;
Write_Line ("Diagnose_Elaboration_Problem called");
Write_Line ("List of remaining unchosen units and predecessors");
for U in Units.First .. Units.Last loop
if UNR.Table (U).Elab_Position = 0 then
NP := UNR.Table (U).Num_Pred;
Write_Eol;
Write_Str (" Unchosen unit: #");
Write_Int (Int (U));
Write_Str (" ");
Write_Unit_Name (Units.Table (U).Uname);
Write_Str (" (Num_Pred = ");
Write_Int (NP);
Write_Line (")");
if NP = 0 then
if Units.Table (U).Elaborate_Body then
Write_Line
(" (not chosen because of Elaborate_Body)");
else
Write_Line (" ****************** why not chosen?");
end if;
end if;
-- Search links list to find unchosen predecessors
for S in Succ.First .. Succ.Last loop
declare
SL : Successor_Link renames Succ.Table (S);
begin
if SL.After = U
and then UNR.Table (SL.Before).Elab_Position = 0
then
Write_Str (" unchosen predecessor: #");
Write_Int (Int (SL.Before));
Write_Str (" ");
Write_Unit_Name (Units.Table (SL.Before).Uname);
Write_Eol;
NP := NP - 1;
end if;
end;
end loop;
if NP /= 0 then
Write_Line (" **************** Num_Pred value wrong!");
end if;
end if;
end loop;
end;
end if;
-- Output the header for the error, and manually increment the error
-- count. We are using Error_Msg_Output rather than Error_Msg here for
-- two reasons:
-- This is really only one error, not one for each line
-- We want this output on standard output since it is voluminous
-- But we do need to deal with the error count manually in this case
Errors_Detected := Errors_Detected + 1;
Error_Msg_Output ("elaboration circularity detected", Info => False);
-- Try to find cycles starting with any of the remaining nodes that have
-- not yet been chosen. There must be at least one (there is some reason
-- we are being called).
for U in Units.First .. Units.Last loop
if UNR.Table (U).Elab_Position = 0 then
if Find_Path (U, U, 1) then
raise Unrecoverable_Error;
end if;
end if;
end loop;
-- We should never get here, since we were called for some reason, and
-- we should have found and eliminated at least one bad path.
raise Program_Error;
end Diagnose_Elaboration_Problem;
--------------------
-- Elab_All_Links --
--------------------
procedure Elab_All_Links
(Before : Unit_Id;
After : Unit_Id;
Reason : Succ_Reason;
Link : Elab_All_Id)
is
begin
if UNR.Table (Before).Visited then
return;
end if;
-- Build the direct link for Before
UNR.Table (Before).Visited := True;
Build_Link (Before, After, Reason, Link);
-- Process all units with'ed by Before recursively
for W in Units.Table (Before).First_With ..
Units.Table (Before).Last_With
loop
-- Skip if this with is an interface to a stand-alone library. Skip
-- also if no ALI file for this WITH, happens for language defined
-- generics while bootstrapping the compiler (see body of routine
-- Lib.Writ.Write_With_Lines). Finally, skip if it is a limited with
-- clause, which does not impose an elaboration link.
if not Withs.Table (W).SAL_Interface
and then Withs.Table (W).Afile /= No_File
and then not Withs.Table (W).Limited_With
then
declare
Info : constant Int :=
Get_Name_Table_Int (Withs.Table (W).Uname);
begin
-- If the unit is unknown, for some unknown reason, fail
-- graciously explaining that the unit is unknown. Without
-- this check, gnatbind will crash in Unit_Id_Of.
if Info = 0 or else Unit_Id (Info) = No_Unit_Id then
declare
Withed : String :=
Get_Name_String (Withs.Table (W).Uname);
Last_Withed : Natural := Withed'Last;
Withing : String :=
Get_Name_String
(Units.Table (Before).Uname);
Last_Withing : Natural := Withing'Last;
Spec_Body : String := " (Spec)";
begin
To_Mixed (Withed);
To_Mixed (Withing);
if Last_Withed > 2
and then Withed (Last_Withed - 1) = '%'
then
Last_Withed := Last_Withed - 2;
end if;
if Last_Withing > 2
and then Withing (Last_Withing - 1) = '%'
then
Last_Withing := Last_Withing - 2;
end if;
if Units.Table (Before).Utype = Is_Body
or else Units.Table (Before).Utype = Is_Body_Only
then
Spec_Body := " (Body)";
end if;
Osint.Fail
("could not find unit "
& Withed (Withed'First .. Last_Withed) & " needed by "
& Withing (Withing'First .. Last_Withing) & Spec_Body);
end;
end if;
Elab_All_Links
(Unit_Id_Of (Withs.Table (W).Uname),
After,
Reason,
Make_Elab_All_Entry (Withs.Table (W).Uname, Link));
end;
end if;
end loop;
-- Process corresponding body, if there is one
if Units.Table (Before).Utype = Is_Spec then
Elab_All_Links
(Corresponding_Body (Before),
After, Reason,
Make_Elab_All_Entry
(Units.Table (Corresponding_Body (Before)).Uname, Link));
end if;
end Elab_All_Links;
--------------------
-- Elab_Error_Msg --
--------------------
procedure Elab_Error_Msg (S : Successor_Id) is
SL : Successor_Link renames Succ.Table (S);
begin
-- Nothing to do if internal unit involved and no -da flag
if not Debug_Flag_A
and then
(Is_Internal_File_Name (Units.Table (SL.Before).Sfile)
or else
Is_Internal_File_Name (Units.Table (SL.After).Sfile))
then
return;
end if;
-- Here we want to generate output
Error_Msg_Unit_1 := Units.Table (SL.Before).Uname;
if SL.Elab_Body then
Error_Msg_Unit_2 := Units.Table (Corresponding_Body (SL.After)).Uname;
else
Error_Msg_Unit_2 := Units.Table (SL.After).Uname;
end if;
Error_Msg_Output (" $ must be elaborated before $", Info => True);
Error_Msg_Unit_1 := Units.Table (SL.Reason_Unit).Uname;
case SL.Reason is
when Withed =>
Error_Msg_Output
(" reason: with clause",
Info => True);
when Forced =>
Error_Msg_Output
(" reason: forced by -f switch",
Info => True);
when Elab =>
Error_Msg_Output
(" reason: pragma Elaborate in unit $",
Info => True);
when Elab_All =>
Error_Msg_Output
(" reason: pragma Elaborate_All in unit $",
Info => True);
when Elab_All_Desirable =>
Error_Msg_Output
(" reason: implicit Elaborate_All in unit $",
Info => True);
Error_Msg_Output
(" recompile $ with -gnatel for full details",
Info => True);
when Elab_Desirable =>
Error_Msg_Output
(" reason: implicit Elaborate in unit $",
Info => True);
Error_Msg_Output
(" recompile $ with -gnatel for full details",
Info => True);
when Spec_First =>
Error_Msg_Output
(" reason: spec always elaborated before body",
Info => True);
end case;
Write_Elab_All_Chain (S);
if SL.Elab_Body then
Error_Msg_Unit_1 := Units.Table (SL.Before).Uname;
Error_Msg_Unit_2 := Units.Table (SL.After).Uname;
Error_Msg_Output
(" $ must therefore be elaborated before $", True);
Error_Msg_Unit_1 := Units.Table (SL.After).Uname;
Error_Msg_Output
(" (because $ has a pragma Elaborate_Body)", True);
end if;
if not Zero_Formatting then
Write_Eol;
end if;
end Elab_Error_Msg;
---------------------
-- Find_Elab_Order --
---------------------
procedure Find_Elab_Order
(Elab_Order : out Unit_Id_Table;
First_Main_Lib_File : File_Name_Type)
is
function Num_Spec_Body_Pairs (Order : Unit_Id_Array) return Nat;
-- Number of cases where the body of a unit immediately follows the
-- corresponding spec. Such cases are good, because calls to that unit
-- from outside can't get ABE.
-------------------------
-- Num_Spec_Body_Pairs --
-------------------------
function Num_Spec_Body_Pairs (Order : Unit_Id_Array) return Nat is
Result : Nat := 0;
begin
for J in Order'First + 1 .. Order'Last loop
if Units.Table (Order (J - 1)).Utype = Is_Spec
and then Units.Table (Order (J)).Utype = Is_Body
and then Corresponding_Spec (Order (J)) = Order (J - 1)
then
Result := Result + 1;
end if;
end loop;
return Result;
end Num_Spec_Body_Pairs;
-- Local variables
Old_Elab_Order : Unit_Id_Table;
-- Start of processing for Find_Elab_Order
begin
-- Output warning if -p used with no -gnatE units
if Pessimistic_Elab_Order
and not Dynamic_Elaboration_Checks_Specified
then
Error_Msg ("?use of -p switch questionable");
Error_Msg ("?since all units compiled with static elaboration model");
end if;
if Do_New and not Debug_Flag_Old and not Debug_Flag_Older then
if Debug_Flag_V then
Write_Line ("Doing new...");
end if;
Doing_New := True;
Init;
Elab_New.Find_Elab_Order (Elab_Order);
end if;
-- Elab_New does not support the pessimistic order, so if that was
-- requested, use the old results. Use Elab_Old if -dp or -do was
-- selected. Elab_New does not yet give proper error messages for
-- illegal Elaborate_Alls, so if there is one, run Elab_Old.
if Do_Old
or Pessimistic_Elab_Order
or Debug_Flag_Old
or Debug_Flag_Older
or Elab_Cycle_Found
then
if Debug_Flag_V then
Write_Line ("Doing old...");
end if;
Doing_New := False;
Init;
Elab_Old.Find_Elab_Order (Old_Elab_Order);
end if;
pragma Assert (Elab_Cycle_Found <= -- implies
Diagnose_Elaboration_Problem_Called);
declare
Old_Order : Unit_Id_Array renames
Old_Elab_Order.Table (1 .. Last (Old_Elab_Order));
begin
if Do_Old and Do_New then
declare
New_Order : Unit_Id_Array renames
Elab_Order.Table (1 .. Last (Elab_Order));
Old_Pairs : constant Nat := Num_Spec_Body_Pairs (Old_Order);
New_Pairs : constant Nat := Num_Spec_Body_Pairs (New_Order);
begin
Write_Line (Get_Name_String (First_Main_Lib_File));
pragma Assert (Old_Order'Length = New_Order'Length);
pragma Debug (Validate (Old_Order, Doing_New => False));
pragma Debug (Validate (New_Order, Doing_New => True));
-- Misc debug printouts that can be used for experimentation by
-- changing the 'if's below.
if True then
if New_Order = Old_Order then
Write_Line ("Elab_New: same order.");
else
Write_Line ("Elab_New: diff order.");
end if;
end if;
if New_Order /= Old_Order and then False then
Write_Line ("Elaboration orders differ:");
Write_Elab_Order
(Old_Order, Title => "OLD ELABORATION ORDER");
Write_Elab_Order
(New_Order, Title => "NEW ELABORATION ORDER");
end if;
if True then
Write_Str ("Pairs: ");
Write_Int (Old_Pairs);
if Old_Pairs = New_Pairs then
Write_Str (" = ");
elsif Old_Pairs < New_Pairs then
Write_Str (" < ");
else
Write_Str (" > ");
end if;
Write_Int (New_Pairs);
Write_Eol;
end if;
if Old_Pairs /= New_Pairs and then False then
Write_Str ("Pairs: ");
Write_Int (Old_Pairs);
if Old_Pairs < New_Pairs then
Write_Str (" < ");
else
Write_Str (" > ");
end if;
Write_Int (New_Pairs);
Write_Eol;
if Old_Pairs /= New_Pairs and then Debug_Flag_V then
Write_Elab_Order
(Old_Order, Title => "OLD ELABORATION ORDER");
Write_Elab_Order
(New_Order, Title => "NEW ELABORATION ORDER");
pragma Assert (New_Pairs >= Old_Pairs);
end if;
end if;
end;
end if;
-- The Elab_New algorithm doesn't implement the -p switch, so if that
-- was used, use the results from the old algorithm. Likewise if the
-- user has requested the old algorithm.
if Pessimistic_Elab_Order or Debug_Flag_Old or Debug_Flag_Older then
pragma Assert
(Last (Elab_Order) = 0
or else Last (Elab_Order) = Old_Order'Last);
Init (Elab_Order);
Append_All (Elab_Order, Old_Order);
end if;
-- Now set the Elab_Positions in the Units table. It is important to
-- do this late, in case we're running both Elab_New and Elab_Old.
declare
New_Order : Unit_Id_Array renames
Elab_Order.Table (1 .. Last (Elab_Order));
Units_Array : Units.Table_Type renames
Units.Table (Units.First .. Units.Last);
begin
for J in New_Order'Range loop
pragma Assert
(UNR.Table (New_Order (J)).Elab_Position = J);
Units_Array (New_Order (J)).Elab_Position := J;
end loop;
if Errors_Detected = 0 then
-- Display elaboration order if -l was specified
if Elab_Order_Output then
if Zero_Formatting then
Write_Elab_Order (New_Order, Title => "");
else
Write_Elab_Order
(New_Order, Title => "ELABORATION ORDER");
end if;
end if;
-- Display list of sources in the closure (except predefined
-- sources) if -R was used. Include predefined sources if -Ra
-- was used.
if List_Closure then
Write_Closure (New_Order);
end if;
end if;
end;
end;
end Find_Elab_Order;
----------------------
-- Force_Elab_Order --
----------------------
procedure Force_Elab_Order is
use System.OS_Lib;
-- There is a lot of fiddly string manipulation below, because we don't
-- want to depend on misc utility packages like Ada.Characters.Handling.
function Get_Line return String;
-- Read the next line from the file content read by Read_File. Strip
-- all leading and trailing blanks. Convert "(spec)" or "(body)" to
-- "%s"/"%b". Remove comments (Ada style; "--" to end of line).
function Read_File (Name : String) return String_Ptr;
-- Read the entire contents of the named file
---------------
-- Read_File --
---------------
function Read_File (Name : String) return String_Ptr is
-- All of the following calls should succeed, because we checked the
-- file in Switch.B, but we double check and raise Program_Error on
-- failure, just in case.
F : constant File_Descriptor := Open_Read (Name, Binary);
begin
if F = Invalid_FD then
raise Program_Error;
end if;
declare
Len : constant Natural := Natural (File_Length (F));
Result : constant String_Ptr := new String (1 .. Len);
Len_Read : constant Natural :=
Read (F, Result (1)'Address, Len);
Status : Boolean;
begin
if Len_Read /= Len then
raise Program_Error;
end if;
Close (F, Status);
if not Status then
raise Program_Error;
end if;
return Result;
end;
end Read_File;
Cur : Positive := 1;
S : String_Ptr := Read_File (Force_Elab_Order_File.all);
--------------
-- Get_Line --
--------------
function Get_Line return String is
First : Positive := Cur;
Last : Natural;
begin
-- Skip to end of line
while Cur <= S'Last
and then S (Cur) /= ASCII.LF
and then S (Cur) /= ASCII.CR
loop
Cur := Cur + 1;
end loop;
-- Strip leading blanks
while First <= S'Last and then S (First) = ' ' loop
First := First + 1;
end loop;
-- Strip trailing blanks and comment
Last := Cur - 1;
for J in First .. Last - 1 loop
if S (J .. J + 1) = "--" then
Last := J - 1;
exit;
end if;
end loop;
while Last >= First and then S (Last) = ' ' loop
Last := Last - 1;
end loop;
-- Convert "(spec)" or "(body)" to "%s"/"%b", strip trailing blanks
-- again.
declare
Body_String : constant String := "(body)";
BL : constant Positive := Body_String'Length;
Spec_String : constant String := "(spec)";
SL : constant Positive := Spec_String'Length;
Line : String renames S (First .. Last);
Is_Body : Boolean := False;
Is_Spec : Boolean := False;
begin
if Line'Length >= SL
and then Line (Last - SL + 1 .. Last) = Spec_String
then
Is_Spec := True;
Last := Last - SL;
elsif Line'Length >= BL
and then Line (Last - BL + 1 .. Last) = Body_String
then
Is_Body := True;
Last := Last - BL;
end if;
while Last >= First and then S (Last) = ' ' loop
Last := Last - 1;
end loop;
-- Skip past LF or CR/LF
if Cur <= S'Last and then S (Cur) = ASCII.CR then
Cur := Cur + 1;
end if;
if Cur <= S'Last and then S (Cur) = ASCII.LF then
Cur := Cur + 1;
end if;
if Is_Spec then
return Line (First .. Last) & "%s";
elsif Is_Body then
return Line (First .. Last) & "%b";
else
return Line;
end if;
end;
end Get_Line;
-- Local variables
Empty_Name : constant Unit_Name_Type := Name_Find ("");
Prev_Unit : Unit_Id := No_Unit_Id;
-- Start of processing for Force_Elab_Order
begin
-- Loop through the file content, and build a dependency link for each
-- pair of lines. Ignore lines that should be ignored.
while Cur <= S'Last loop
declare
Uname : constant Unit_Name_Type := Name_Find (Get_Line);
begin
if Uname = Empty_Name then
null; -- silently skip blank lines
elsif Get_Name_Table_Int (Uname) = 0
or else Unit_Id (Get_Name_Table_Int (Uname)) = No_Unit_Id
then
if Doing_New then
Write_Line
("""" & Get_Name_String (Uname)
& """: not present; ignored");
end if;
else
declare
Cur_Unit : constant Unit_Id := Unit_Id_Of (Uname);
begin
if Is_Internal_File_Name (Units.Table (Cur_Unit).Sfile) then
if Doing_New then
Write_Line
("""" & Get_Name_String (Uname) &
""": predefined unit ignored");
end if;
else
if Prev_Unit /= No_Unit_Id then
if Doing_New then
Write_Unit_Name (Units.Table (Prev_Unit).Uname);
Write_Str (" <-- ");
Write_Unit_Name (Units.Table (Cur_Unit).Uname);
Write_Eol;
end if;
Build_Link
(Before => Prev_Unit,
After => Cur_Unit,
R => Forced);
end if;
Prev_Unit := Cur_Unit;
end if;
end;
end if;
end;
end loop;
Free (S);
end Force_Elab_Order;
-------------------------
-- Gather_Dependencies --
-------------------------
procedure Gather_Dependencies is
Withed_Unit : Unit_Id;
begin
-- Loop through all units
for U in Units.First .. Units.Last loop
Cur_Unit := U;
-- If this is not an interface to a stand-alone library and there is
-- a body and a spec, then spec must be elaborated first. Note that
-- the corresponding spec immediately follows the body.
if not Units.Table (U).SAL_Interface
and then Units.Table (U).Utype = Is_Body
then
Build_Link (Corresponding_Spec (U), U, Spec_First);
end if;
-- If this unit is not an interface to a stand-alone library, process
-- WITH references for this unit ignoring interfaces to stand-alone
-- libraries.
if not Units.Table (U).SAL_Interface then
for W in Units.Table (U).First_With ..
Units.Table (U).Last_With
loop
if Withs.Table (W).Sfile /= No_File
and then (not Withs.Table (W).SAL_Interface)
then
-- Check for special case of withing a unit that does not
-- exist any more. If the unit was completely missing we
-- would already have detected this, but a nasty case arises
-- when we have a subprogram body with no spec, and some
-- obsolete unit with's a previous (now disappeared) spec.
if Get_Name_Table_Int (Withs.Table (W).Uname) = 0 then
if Doing_New then
Error_Msg_File_1 := Units.Table (U).Sfile;
Error_Msg_Unit_1 := Withs.Table (W).Uname;
Error_Msg ("{ depends on $ which no longer exists");
end if;
goto Next_With;
end if;
Withed_Unit := Unit_Id_Of (Withs.Table (W).Uname);
-- Pragma Elaborate_All case, for this we use the recursive
-- Elab_All_Links procedure to establish the links.
-- Elab_New ignores Elaborate_All and Elab_All_Desirable,
-- except for error messages.
if Withs.Table (W).Elaborate_All and then not Doing_New then
-- Reset flags used to stop multiple visits to a given
-- node.
for Uref in UNR.First .. UNR.Last loop
UNR.Table (Uref).Visited := False;
end loop;
-- Now establish all the links we need
Elab_All_Links
(Withed_Unit, U, Elab_All,
Make_Elab_All_Entry
(Withs.Table (W).Uname, No_Elab_All_Link));
-- Elaborate_All_Desirable case, for this we establish the
-- same links as above, but with a different reason.
elsif Withs.Table (W).Elab_All_Desirable
and then not Doing_New
then
-- Reset flags used to stop multiple visits to a given
-- node.
for Uref in UNR.First .. UNR.Last loop
UNR.Table (Uref).Visited := False;
end loop;
-- Now establish all the links we need
Elab_All_Links
(Withed_Unit, U, Elab_All_Desirable,
Make_Elab_All_Entry
(Withs.Table (W).Uname, No_Elab_All_Link));
-- Pragma Elaborate case. We must build a link for the
-- withed unit itself, and also the corresponding body if
-- there is one.
-- However, skip this processing if there is no ALI file for
-- the WITH entry, because this means it is a generic (even
-- when we fix the generics so that an ALI file is present,
-- we probably still will have no ALI file for unchecked and
-- other special cases).
elsif Withs.Table (W).Elaborate
and then Withs.Table (W).Afile /= No_File
then
Build_Link (Withed_Unit, U, Withed);
if Units.Table (Withed_Unit).Utype = Is_Spec then
Build_Link
(Corresponding_Body (Withed_Unit), U, Elab);
end if;
-- Elaborate_Desirable case, for this we establish the same
-- links as above, but with a different reason.
elsif Withs.Table (W).Elab_Desirable then
Build_Link (Withed_Unit, U, Withed);
if Units.Table (Withed_Unit).Utype = Is_Spec then
Build_Link
(Corresponding_Body (Withed_Unit),
U, Elab_Desirable);
end if;
-- A limited_with does not establish an elaboration
-- dependence (that's the whole point).
elsif Withs.Table (W).Limited_With then
null;
-- Case of normal WITH with no elaboration pragmas, just
-- build the single link to the directly referenced unit
else
Build_Link (Withed_Unit, U, Withed);
end if;
end if;
<<Next_With>>
null;
end loop;
end if;
end loop;
-- If -f<elab_order> switch was given, take into account dependences
-- specified in the file <elab_order>.
if Force_Elab_Order_File /= null then
Force_Elab_Order;
end if;
-- Output elaboration dependencies if option is set
if Elab_Dependency_Output or Debug_Flag_E then
if Doing_New then
Write_Dependencies;
end if;
end if;
end Gather_Dependencies;
----------
-- Init --
----------
procedure Init is
begin
Num_Chosen := 0;
Num_Left := Int (Units.Last - Units.First + 1);
Succ.Init;
Elab_All_Entries.Init;
UNR.Init;
-- Initialize unit table for elaboration control
for U in Units.First .. Units.Last loop
UNR.Append
((Successors => No_Successor,
Num_Pred => 0,
Nextnp => No_Unit_Id,
Visited => False,
Elab_Position => 0,
SCC_Root => No_Unit_Id,
Nodes => null,
SCC_Num_Pred => 0,
Validate_Seen => False));
end loop;
end Init;
------------------
-- Is_Body_Unit --
------------------
function Is_Body_Unit (U : Unit_Id) return Boolean is
begin
return
Units.Table (U).Utype = Is_Body
or else Units.Table (U).Utype = Is_Body_Only;
end Is_Body_Unit;
-----------------------------
-- Is_Pure_Or_Preelab_Unit --
-----------------------------
function Is_Pure_Or_Preelab_Unit (U : Unit_Id) return Boolean is
begin
-- If we have a body with separate spec, test flags on the spec
if Units.Table (U).Utype = Is_Body then
return
Units.Table (Corresponding_Spec (U)).Preelab
or else Units.Table (Corresponding_Spec (U)).Pure;
-- Otherwise we have a spec or body acting as spec, test flags on unit
else
return Units.Table (U).Preelab or else Units.Table (U).Pure;
end if;
end Is_Pure_Or_Preelab_Unit;
---------------------
-- Is_Waiting_Body --
---------------------
function Is_Waiting_Body (U : Unit_Id) return Boolean is
begin
return
Units.Table (U).Utype = Is_Body
and then UNR.Table (Corresponding_Spec (U)).Elab_Position /= 0;
end Is_Waiting_Body;
-------------------------
-- Make_Elab_All_Entry --
-------------------------
function Make_Elab_All_Entry
(Unam : Unit_Name_Type;
Link : Elab_All_Id) return Elab_All_Id
is
begin
Elab_All_Entries.Append ((Needed_By => Unam, Next_Elab => Link));
return Elab_All_Entries.Last;
end Make_Elab_All_Entry;
----------------
-- Unit_Id_Of --
----------------
function Unit_Id_Of (Uname : Unit_Name_Type) return Unit_Id is
Info : constant Int := Get_Name_Table_Int (Uname);
begin
pragma Assert (Info /= 0 and then Unit_Id (Info) /= No_Unit_Id);
return Unit_Id (Info);
end Unit_Id_Of;
--------------
-- Validate --
--------------
procedure Validate (Order : Unit_Id_Array; Doing_New : Boolean) is
Cur_SCC : Unit_Id := No_Unit_Id;
OK : Boolean := True;
Msg : String := "Old: ";
begin
if Doing_New then
Msg := "New: ";
end if;
-- For each unit, assert that its successors are elaborated after it
for J in Order'Range loop
declare
U : constant Unit_Id := Order (J);
S : Successor_Id := UNR.Table (U).Successors;
begin
while S /= No_Successor loop
if UNR.Table (Succ.Table (S).After).Elab_Position <=
UNR.Table (U).Elab_Position
then
OK := False;
Write_Line (Msg & " elab order failed");
end if;
S := Succ.Table (S).Next;
end loop;
end;
end loop;
-- An SCC of size 2 units necessarily consists of a spec and the
-- corresponding body. Assert that the body is elaborated immediately
-- after the spec, with nothing in between. (We only have SCCs in the
-- new algorithm.)
if Doing_New then
for J in Order'Range loop
declare
U : constant Unit_Id := Order (J);
begin
if Nodes (U)'Length = 2 then
if Units.Table (U).Utype = Is_Spec then
if Order (J + 1) /= Corresponding_Body (U) then
OK := False;
Write_Line (Msg & "Bad spec with SCC of size 2:");
Write_SCC (SCC (U));
end if;
end if;
if Units.Table (U).Utype = Is_Body then
if Order (J - 1) /= Corresponding_Spec (U) then
OK := False;
Write_Line (Msg & "Bad body with SCC of size 2:");
Write_SCC (SCC (U));
end if;
end if;
end if;
end;
end loop;
-- Assert that all units of an SCC are elaborated together, with no
-- units from other SCCs in between. The above spec/body case is a
-- special case of this general rule.
for J in Order'Range loop
declare
U : constant Unit_Id := Order (J);
begin
if SCC (U) /= Cur_SCC then
Cur_SCC := SCC (U);
if UNR.Table (Cur_SCC).Validate_Seen then
OK := False;
Write_Line (Msg & "SCC not elaborated together:");
Write_SCC (Cur_SCC);
end if;
UNR.Table (Cur_SCC).Validate_Seen := True;
end if;
end;
end loop;
end if;
pragma Assert (OK);
end Validate;
-------------------
-- Write_Closure --
-------------------
procedure Write_Closure (Order : Unit_Id_Array) is
package Closure_Sources is new Table.Table
(Table_Component_Type => File_Name_Type,
Table_Index_Type => Natural,
Table_Low_Bound => 1,
Table_Initial => 10,
Table_Increment => 100,
Table_Name => "Gnatbind.Closure_Sources");
-- Table to record the sources in the closure, to avoid duplications
function Put_In_Sources (S : File_Name_Type) return Boolean;
-- Check if S is already in table Sources and put in Sources if it is
-- not. Return False if the source is already in Sources, and True if
-- it is added.
--------------------
-- Put_In_Sources --
--------------------
function Put_In_Sources (S : File_Name_Type) return Boolean is
begin
for J in 1 .. Closure_Sources.Last loop
if Closure_Sources.Table (J) = S then
return False;
end if;
end loop;
Closure_Sources.Append (S);
return True;
end Put_In_Sources;
-- Local variables
Source : File_Name_Type;
-- Start of processing for Write_Closure
begin
Closure_Sources.Init;
if not Zero_Formatting then
Write_Eol;
Write_Line ("REFERENCED SOURCES");
end if;
for J in reverse Order'Range loop
Source := Units.Table (Order (J)).Sfile;
-- Do not include same source more than once
if Put_In_Sources (Source)
-- Do not include run-time units unless -Ra switch set
and then (List_Closure_All
or else not Is_Internal_File_Name (Source))
then
if not Zero_Formatting then
Write_Str (" ");
end if;
Write_Line (Get_Name_String (Source));
end if;
end loop;
-- Subunits do not appear in the elaboration table because they are
-- subsumed by their parent units, but we need to list them for other
-- tools. For now they are listed after other files, rather than right
-- after their parent, since there is no easy link between the
-- elaboration table and the ALIs table ??? As subunits may appear
-- repeatedly in the list, if the parent unit appears in the context of
-- several units in the closure, duplicates are suppressed.
for J in Sdep.First .. Sdep.Last loop
Source := Sdep.Table (J).Sfile;
if Sdep.Table (J).Subunit_Name /= No_Name
and then Put_In_Sources (Source)
and then not Is_Internal_File_Name (Source)
then
if not Zero_Formatting then
Write_Str (" ");
end if;
Write_Line (Get_Name_String (Source));
end if;
end loop;
if not Zero_Formatting then
Write_Eol;
end if;
end Write_Closure;
------------------------
-- Write_Dependencies --
------------------------
procedure Write_Dependencies is
begin
if not Zero_Formatting then
Write_Eol;
Write_Line (" ELABORATION ORDER DEPENDENCIES");
Write_Eol;
end if;
Info_Prefix_Suppress := True;
for S in Succ_First .. Succ.Last loop
Elab_Error_Msg (S);
end loop;
Info_Prefix_Suppress := False;
if not Zero_Formatting then
Write_Eol;
end if;
end Write_Dependencies;
--------------------------
-- Write_Elab_All_Chain --
--------------------------
procedure Write_Elab_All_Chain (S : Successor_Id) is
ST : constant Successor_Link := Succ.Table (S);
After : constant Unit_Name_Type := Units.Table (ST.After).Uname;
L : Elab_All_Id;
Nam : Unit_Name_Type;
First_Name : Boolean := True;
begin
if ST.Reason in Elab_All .. Elab_All_Desirable then
L := ST.Elab_All_Link;
while L /= No_Elab_All_Link loop
Nam := Elab_All_Entries.Table (L).Needed_By;
Error_Msg_Unit_1 := Nam;
Error_Msg_Output (" $", Info => True);
Get_Name_String (Nam);
if Name_Buffer (Name_Len) = 'b' then
if First_Name then
Error_Msg_Output
(" must be elaborated along with its spec:",
Info => True);
else
Error_Msg_Output
(" which must be elaborated along with its "
& "spec:",
Info => True);
end if;
else
if First_Name then
Error_Msg_Output
(" is withed by:",
Info => True);
else
Error_Msg_Output
(" which is withed by:",
Info => True);
end if;
end if;
First_Name := False;
L := Elab_All_Entries.Table (L).Next_Elab;
end loop;
Error_Msg_Unit_1 := After;
Error_Msg_Output (" $", Info => True);
end if;
end Write_Elab_All_Chain;
----------------------
-- Write_Elab_Order --
----------------------
procedure Write_Elab_Order
(Order : Unit_Id_Array; Title : String)
is
begin
if Title /= "" then
Write_Eol;
Write_Line (Title);
end if;
for J in Order'Range loop
if not Units.Table (Order (J)).SAL_Interface then
if not Zero_Formatting then
Write_Str (" ");
end if;
Write_Unit_Name (Units.Table (Order (J)).Uname);
Write_Eol;
end if;
end loop;
if Title /= "" then
Write_Eol;
end if;
end Write_Elab_Order;
--------------
-- Elab_New --
--------------
package body Elab_New is
generic
type Node is (<>);
First_Node : Node;
Last_Node : Node;
type Node_Array is array (Pos range <>) of Node;
with function Successors (N : Node) return Node_Array;
with procedure Create_SCC (Root : Node; Nodes : Node_Array);
procedure Compute_Strongly_Connected_Components;
-- Compute SCCs for a directed graph. The nodes in the graph are all
-- values of type Node in the range First_Node .. Last_Node.
-- Successors(N) returns the nodes pointed to by the edges emanating
-- from N. Create_SCC is a callback that is called once for each SCC,
-- passing in the Root node for that SCC (which is an arbitrary node in
-- the SCC used as a representative of that SCC), and the set of Nodes
-- in that SCC.
--
-- This is generic, in case we want to use it elsewhere; then we could
-- move this into a separate library unit. Unfortunately, it's not as
-- generic as one might like. Ideally, we would have "type Node is
-- private;", and pass in iterators to iterate over all nodes, and over
-- the successors of a given node. However, that leads to using advanced
-- features of Ada that are not allowed in the compiler and binder for
-- bootstrapping reasons. It also leads to trampolines, which are not
-- allowed in the compiler and binder. Restricting Node to be discrete
-- allows us to iterate over all nodes with a 'for' loop, and allows us
-- to attach temporary information to nodes by having an array indexed
-- by Node.
procedure Compute_Unit_SCCs;
-- Use the above generic procedure to compute the SCCs for the graph of
-- units. Store in each Unit_Node_Record the SCC_Root and Nodes
-- components. Also initialize the SCC_Num_Pred components.
procedure Find_Elab_All_Errors;
-- Generate an error for illegal Elaborate_All pragmas (explicit or
-- implicit). A pragma Elaborate_All (Y) on unit X is legal if and only
-- if X and Y are in different SCCs.
-------------------------------------------
-- Compute_Strongly_Connected_Components --
-------------------------------------------
procedure Compute_Strongly_Connected_Components is
-- This uses Tarjan's algorithm for finding SCCs. Comments here are
-- intended to tell what it does, but if you want to know how it
-- works, you have to look it up. Please do not modify this code
-- without reading up on Tarjan's algorithm.
subtype Node_Index is Nat;
No_Index : constant Node_Index := 0;
Num_Nodes : constant Nat :=
Node'Pos (Last_Node) - Node'Pos (First_Node) + 1;
Stack : Node_Array (1 .. Num_Nodes);
Top : Node_Index := 0;
-- Stack of nodes, pushed when first visited. All nodes of an SCC are
-- popped at once when the SCC is found.
subtype Valid_Node is Node range First_Node .. Last_Node;
Node_Indices : array (Valid_Node) of Node_Index :=
(others => No_Index);
-- Each node has an "index", which is the sequential number in the
-- order in which they are visited in the recursive walk. No_Index
-- means "not yet visited"; we want to avoid walking any node more
-- than once.
Index : Node_Index := 1;
-- Next value to be assigned to a node index
Low_Links : array (Valid_Node) of Node_Index;
-- Low_Links (N) is the smallest index of nodes reachable from N
On_Stack : array (Valid_Node) of Boolean := (others => False);
-- True if the node is currently on the stack
procedure Walk (N : Valid_Node);
-- Recursive depth-first graph walk, with the node index used to
-- avoid visiting a node more than once.
----------
-- Walk --
----------
procedure Walk (N : Valid_Node) is
Stack_Position_Of_N : constant Pos := Top + 1;
S : constant Node_Array := Successors (N);
begin
-- Assign the index and low link, increment Index for next call to
-- Walk.
Node_Indices (N) := Index;
Low_Links (N) := Index;
Index := Index + 1;
-- Push it on the stack:
Top := Stack_Position_Of_N;
Stack (Top) := N;
On_Stack (N) := True;
-- Walk not-yet-visited subnodes, and update low link for visited
-- ones as appropriate.
for J in S'Range loop
if Node_Indices (S (J)) = No_Index then
Walk (S (J));
Low_Links (N) :=
Node_Index'Min (Low_Links (N), Low_Links (S (J)));
elsif On_Stack (S (J)) then
Low_Links (N) :=
Node_Index'Min (Low_Links (N), Node_Indices (S (J)));
end if;
end loop;
-- If the index is (still) equal to the low link, we've found an
-- SCC. Pop the whole SCC off the stack, and call Create_SCC.
if Low_Links (N) = Node_Indices (N) then
declare
SCC : Node_Array renames
Stack (Stack_Position_Of_N .. Top);
pragma Assert (SCC'Length >= 1);
pragma Assert (SCC (SCC'First) = N);
begin
for J in SCC'Range loop
On_Stack (SCC (J)) := False;
end loop;
Create_SCC (Root => N, Nodes => SCC);
pragma Assert (Top - SCC'Length = Stack_Position_Of_N - 1);
Top := Stack_Position_Of_N - 1; -- pop all
end;
end if;
end Walk;
-- Start of processing for Compute_Strongly_Connected_Components
begin
-- Walk all the nodes that have not yet been walked
for N in Valid_Node loop
if Node_Indices (N) = No_Index then
Walk (N);
end if;
end loop;
end Compute_Strongly_Connected_Components;
-----------------------
-- Compute_Unit_SCCs --
-----------------------
procedure Compute_Unit_SCCs is
function Successors (U : Unit_Id) return Unit_Id_Array;
-- Return all the units that must be elaborated after U. In addition,
-- if U is a body, include the corresponding spec; this ensures that
-- a spec/body pair are always in the same SCC.
procedure Create_SCC (Root : Unit_Id; Nodes : Unit_Id_Array);
-- Set Nodes of the Root, and set SCC_Root of all the Nodes
procedure Init_SCC_Num_Pred (U : Unit_Id);
-- Initialize the SCC_Num_Pred fields, so that the root of each SCC
-- has a count of the number of successors of all the units in the
-- SCC, but only for successors outside the SCC.
procedure Compute_SCCs is new Compute_Strongly_Connected_Components
(Node => Unit_Id,
First_Node => Units.First,
Last_Node => Units.Last,
Node_Array => Unit_Id_Array,
Successors => Successors,
Create_SCC => Create_SCC);
----------------
-- Create_SCC --
----------------
procedure Create_SCC (Root : Unit_Id; Nodes : Unit_Id_Array) is
begin
if Debug_Flag_V then
Write_Str ("Root = ");
Write_Int (Int (Root));
Write_Str (" ");
Write_Unit_Name (Units.Table (Root).Uname);
Write_Str (" -- ");
Write_Int (Nodes'Length);
Write_Line (" units:");
for J in Nodes'Range loop
Write_Str (" ");
Write_Int (Int (Nodes (J)));
Write_Str (" ");
Write_Unit_Name (Units.Table (Nodes (J)).Uname);
Write_Eol;
end loop;
end if;
pragma Assert (Nodes (Nodes'First) = Root);
pragma Assert (UNR.Table (Root).Nodes = null);
UNR.Table (Root).Nodes := new Unit_Id_Array'(Nodes);
for J in Nodes'Range loop
pragma Assert (SCC (Nodes (J)) = No_Unit_Id);
UNR.Table (Nodes (J)).SCC_Root := Root;
end loop;
end Create_SCC;
----------------
-- Successors --
----------------
function Successors (U : Unit_Id) return Unit_Id_Array is
S : Successor_Id := UNR.Table (U).Successors;
Tab : Unit_Id_Table;
begin
-- Pretend that a spec is a successor of its body (even though it
-- isn't), just so both get included.
if Units.Table (U).Utype = Is_Body then
Append (Tab, Corresponding_Spec (U));
end if;
-- Now include the real successors
while S /= No_Successor loop
pragma Assert (Succ.Table (S).Before = U);
Append (Tab, Succ.Table (S).After);
S := Succ.Table (S).Next;
end loop;
declare
Result : constant Unit_Id_Array := Tab.Table (1 .. Last (Tab));
begin
Free (Tab);
return Result;
end;
end Successors;
-----------------------
-- Init_SCC_Num_Pred --
-----------------------
procedure Init_SCC_Num_Pred (U : Unit_Id) is
begin
if UNR.Table (U).Visited then
return;
end if;
UNR.Table (U).Visited := True;
declare
S : Successor_Id := UNR.Table (U).Successors;
begin
while S /= No_Successor loop
pragma Assert (Succ.Table (S).Before = U);
Init_SCC_Num_Pred (Succ.Table (S).After);
if SCC (U) /= SCC (Succ.Table (S).After) then
UNR.Table (SCC (Succ.Table (S).After)).SCC_Num_Pred :=
UNR.Table (SCC (Succ.Table (S).After)).SCC_Num_Pred + 1;
end if;
S := Succ.Table (S).Next;
end loop;
end;
end Init_SCC_Num_Pred;
-- Start of processing for Compute_Unit_SCCs
begin
Compute_SCCs;
for Uref in UNR.First .. UNR.Last loop
pragma Assert (not UNR.Table (Uref).Visited);
null;
end loop;
for Uref in UNR.First .. UNR.Last loop
Init_SCC_Num_Pred (Uref);
end loop;
-- Assert that SCC_Root of all units has been set to a valid unit,
-- and that SCC_Num_Pred has not been modified in non-root units.
for Uref in UNR.First .. UNR.Last loop
pragma Assert (UNR.Table (Uref).SCC_Root /= No_Unit_Id);
pragma Assert (UNR.Table (Uref).SCC_Root in UNR.First .. UNR.Last);
if SCC (Uref) /= Uref then
pragma Assert (UNR.Table (Uref).SCC_Num_Pred = 0);
null;
end if;
end loop;
end Compute_Unit_SCCs;
--------------------------
-- Find_Elab_All_Errors --
--------------------------
procedure Find_Elab_All_Errors is
Withed_Unit : Unit_Id;
begin
for U in Units.First .. Units.Last loop
-- If this unit is not an interface to a stand-alone library,
-- process WITH references for this unit ignoring interfaces to
-- stand-alone libraries.
if not Units.Table (U).SAL_Interface then
for W in Units.Table (U).First_With ..
Units.Table (U).Last_With
loop
if Withs.Table (W).Sfile /= No_File
and then (not Withs.Table (W).SAL_Interface)
then
-- Check for special case of withing a unit that does not
-- exist any more.
if Get_Name_Table_Int (Withs.Table (W).Uname) = 0 then
goto Next_With;
end if;
Withed_Unit := Unit_Id_Of (Withs.Table (W).Uname);
-- If it's Elaborate_All or Elab_All_Desirable, check
-- that the withER and withEE are not in the same SCC.
if Withs.Table (W).Elaborate_All
or else Withs.Table (W).Elab_All_Desirable
then
if SCC (U) = SCC (Withed_Unit) then
Elab_Cycle_Found := True; -- ???
-- We could probably give better error messages
-- than Elab_Old here, but for now, to avoid
-- disruption, we don't give any error here.
-- Instead, we set the Elab_Cycle_Found flag above,
-- and then run the Elab_Old algorithm to issue the
-- error message. Ideally, we would like to print
-- multiple errors rather than stopping after the
-- first cycle.
if False then
Error_Msg_Output
("illegal pragma Elaborate_All",
Info => False);
end if;
end if;
end if;
end if;
<<Next_With>>
null;
end loop;
end if;
end loop;
end Find_Elab_All_Errors;
---------------------
-- Find_Elab_Order --
---------------------
procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table) is
Best_So_Far : Unit_Id;
U : Unit_Id;
begin
-- Gather dependencies and output them if option set
Gather_Dependencies;
Compute_Unit_SCCs;
-- Initialize the no-predecessor list
No_Pred := No_Unit_Id;
for U in UNR.First .. UNR.Last loop
if UNR.Table (U).Num_Pred = 0 then
UNR.Table (U).Nextnp := No_Pred;
No_Pred := U;
end if;
end loop;
-- OK, now we determine the elaboration order proper. All we do is to
-- select the best choice from the no-predecessor list until all the
-- nodes have been chosen.
Outer : loop
if Debug_Flag_N then
Write_Line ("Outer loop");
end if;
-- If there are no nodes with predecessors, then either we are
-- done, as indicated by Num_Left being set to zero, or we have
-- a circularity. In the latter case, diagnose the circularity,
-- removing it from the graph and continue.
-- ????But Diagnose_Elaboration_Problem always raises an
-- exception, so the loop never goes around more than once.
Get_No_Pred : while No_Pred = No_Unit_Id loop
exit Outer when Num_Left < 1;
Diagnose_Elaboration_Problem (Elab_Order);
end loop Get_No_Pred;
U := No_Pred;
Best_So_Far := No_Unit_Id;
-- Loop to choose best entry in No_Pred list
No_Pred_Search : loop
if Debug_Flag_N then
Write_Str (" considering choice of ");
Write_Unit_Name (Units.Table (U).Uname);
Write_Eol;
if Units.Table (U).Elaborate_Body then
Write_Str
(" Elaborate_Body = True, Num_Pred for body = ");
Write_Int
(UNR.Table (Corresponding_Body (U)).Num_Pred);
else
Write_Str
(" Elaborate_Body = False");
end if;
Write_Eol;
end if;
-- Don't even consider units whose SCC is not ready. This
-- ensures that all units of an SCC will be elaborated
-- together, with no other units in between.
if SCC_Num_Pred (U) = 0
and then Better_Choice (U, Best_So_Far)
then
if Debug_Flag_N then
Write_Line (" tentatively chosen (best so far)");
end if;
Best_So_Far := U;
else
if Debug_Flag_N then
Write_Line (" SCC not ready");
end if;
end if;
U := UNR.Table (U).Nextnp;
exit No_Pred_Search when U = No_Unit_Id;
end loop No_Pred_Search;
-- If there are no units on the No_Pred list whose SCC is ready,
-- there must be a cycle. Defer to Elab_Old to print an error
-- message.
if Best_So_Far = No_Unit_Id then
Elab_Cycle_Found := True;
return;
end if;
-- Choose the best candidate found
Choose (Elab_Order, Best_So_Far, " [Best_So_Far]");
-- If it's a spec with a body, and the body is not yet chosen,
-- choose the body if possible. The case where the body is
-- already chosen is Elaborate_Body; the above call to Choose
-- the spec will also Choose the body.
if Units.Table (Best_So_Far).Utype = Is_Spec
and then UNR.Table
(Corresponding_Body (Best_So_Far)).Elab_Position = 0
then
declare
Choose_The_Body : constant Boolean :=
UNR.Table (Corresponding_Body
(Best_So_Far)).Num_Pred = 0;
begin
if Debug_Flag_B then
Write_Str ("Can we choose the body?... ");
if Choose_The_Body then
Write_Line ("Yes!");
else
Write_Line ("No.");
end if;
end if;
if Choose_The_Body then
Choose
(Elab_Order => Elab_Order,
Chosen => Corresponding_Body (Best_So_Far),
Msg => " [body]");
end if;
end;
end if;
-- Finally, choose all the rest of the units in the same SCC as
-- Best_So_Far. If it hasn't been chosen (Elab_Position = 0), and
-- it's ready to be chosen (Num_Pred = 0), then we can choose it.
loop
declare
Chose_One_Or_More : Boolean := False;
SCC : Unit_Id_Array renames Nodes (Best_So_Far).all;
begin
for J in SCC'Range loop
if UNR.Table (SCC (J)).Elab_Position = 0
and then UNR.Table (SCC (J)).Num_Pred = 0
then
Chose_One_Or_More := True;
Choose (Elab_Order, SCC (J), " [same SCC]");
end if;
end loop;
exit when not Chose_One_Or_More;
end;
end loop;
end loop Outer;
Find_Elab_All_Errors;
end Find_Elab_Order;
-----------
-- Nodes --
-----------
function Nodes (U : Unit_Id) return Unit_Id_Array_Ptr is
begin
return UNR.Table (SCC (U)).Nodes;
end Nodes;
---------
-- SCC --
---------
function SCC (U : Unit_Id) return Unit_Id is
begin
return UNR.Table (U).SCC_Root;
end SCC;
------------------
-- SCC_Num_Pred --
------------------
function SCC_Num_Pred (U : Unit_Id) return Int is
begin
return UNR.Table (SCC (U)).SCC_Num_Pred;
end SCC_Num_Pred;
---------------
-- Write_SCC --
---------------
procedure Write_SCC (U : Unit_Id) is
pragma Assert (SCC (U) = U);
begin
for J in Nodes (U)'Range loop
Write_Int (UNR.Table (Nodes (U) (J)).Elab_Position);
Write_Str (". ");
Write_Unit_Name (Units.Table (Nodes (U) (J)).Uname);
Write_Eol;
end loop;
Write_Eol;
end Write_SCC;
end Elab_New;
--------------
-- Elab_Old --
--------------
package body Elab_Old is
---------------------
-- Find_Elab_Order --
---------------------
procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table) is
Best_So_Far : Unit_Id;
U : Unit_Id;
begin
-- Gather dependencies and output them if option set
Gather_Dependencies;
-- Initialize the no-predecessor list
No_Pred := No_Unit_Id;
for U in UNR.First .. UNR.Last loop
if UNR.Table (U).Num_Pred = 0 then
UNR.Table (U).Nextnp := No_Pred;
No_Pred := U;
end if;
end loop;
-- OK, now we determine the elaboration order proper. All we do is to
-- select the best choice from the no-predecessor list until all the
-- nodes have been chosen.
Outer : loop
-- If there are no nodes with predecessors, then either we are
-- done, as indicated by Num_Left being set to zero, or we have
-- a circularity. In the latter case, diagnose the circularity,
-- removing it from the graph and continue.
-- ????But Diagnose_Elaboration_Problem always raises an
-- exception, so the loop never goes around more than once.
Get_No_Pred : while No_Pred = No_Unit_Id loop
exit Outer when Num_Left < 1;
Diagnose_Elaboration_Problem (Elab_Order);
end loop Get_No_Pred;
U := No_Pred;
Best_So_Far := No_Unit_Id;
-- Loop to choose best entry in No_Pred list
No_Pred_Search : loop
if Debug_Flag_N then
Write_Str (" considering choice of ");
Write_Unit_Name (Units.Table (U).Uname);
Write_Eol;
if Units.Table (U).Elaborate_Body then
Write_Str
(" Elaborate_Body = True, Num_Pred for body = ");
Write_Int
(UNR.Table (Corresponding_Body (U)).Num_Pred);
else
Write_Str
(" Elaborate_Body = False");
end if;
Write_Eol;
end if;
-- This is a candididate to be considered for choice
if Better_Choice (U, Best_So_Far) then
if Debug_Flag_N then
Write_Line (" tentatively chosen (best so far)");
end if;
Best_So_Far := U;
end if;
U := UNR.Table (U).Nextnp;
exit No_Pred_Search when U = No_Unit_Id;
end loop No_Pred_Search;
-- Choose the best candidate found
Choose (Elab_Order, Best_So_Far, " [Elab_Old Best_So_Far]");
end loop Outer;
end Find_Elab_Order;
end Elab_Old;
end Binde;
|