1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
|
/* A C version of Kahan's Floating Point Test "Paranoia"
Thos Sumner, UCSF, Feb. 1985
David Gay, BTL, Jan. 1986
This is a rewrite from the Pascal version by
B. A. Wichmann, 18 Jan. 1985
(and does NOT exhibit good C programming style).
Adjusted to use Standard C headers 19 Jan. 1992 (dmg);
(C) Apr 19 1983 in BASIC version by:
Professor W. M. Kahan,
567 Evans Hall
Electrical Engineering & Computer Science Dept.
University of California
Berkeley, California 94720
USA
converted to Pascal by:
B. A. Wichmann
National Physical Laboratory
Teddington Middx
TW11 OLW
UK
converted to C by:
David M. Gay and Thos Sumner
AT&T Bell Labs Computer Center, Rm. U-76
600 Mountain Avenue University of California
Murray Hill, NJ 07974 San Francisco, CA 94143
USA USA
with simultaneous corrections to the Pascal source (reflected
in the Pascal source available over netlib).
[A couple of bug fixes from dgh = sun!dhough incorporated 31 July 1986.]
Reports of results on various systems from all the versions
of Paranoia are being collected by Richard Karpinski at the
same address as Thos Sumner. This includes sample outputs,
bug reports, and criticisms.
You may copy this program freely if you acknowledge its source.
Comments on the Pascal version to NPL, please.
The following is from the introductory commentary from Wichmann's work:
The BASIC program of Kahan is written in Microsoft BASIC using many
facilities which have no exact analogy in Pascal. The Pascal
version below cannot therefore be exactly the same. Rather than be
a minimal transcription of the BASIC program, the Pascal coding
follows the conventional style of block-structured languages. Hence
the Pascal version could be useful in producing versions in other
structured languages.
Rather than use identifiers of minimal length (which therefore have
little mnemonic significance), the Pascal version uses meaningful
identifiers as follows [Note: A few changes have been made for C]:
BASIC C BASIC C BASIC C
A J S StickyBit
A1 AInverse J0 NoErrors T
B Radix [Failure] T0 Underflow
B1 BInverse J1 NoErrors T2 ThirtyTwo
B2 RadixD2 [SeriousDefect] T5 OneAndHalf
B9 BMinusU2 J2 NoErrors T7 TwentySeven
C [Defect] T8 TwoForty
C1 CInverse J3 NoErrors U OneUlp
D [Flaw] U0 UnderflowThreshold
D4 FourD K PageNo U1
E0 L Milestone U2
E1 M V
E2 Exp2 N V0
E3 N1 V8
E5 MinSqEr O Zero V9
E6 SqEr O1 One W
E7 MaxSqEr O2 Two X
E8 O3 Three X1
E9 O4 Four X8
F1 MinusOne O5 Five X9 Random1
F2 Half O8 Eight Y
F3 Third O9 Nine Y1
F6 P Precision Y2
F9 Q Y9 Random2
G1 GMult Q8 Z
G2 GDiv Q9 Z0 PseudoZero
G3 GAddSub R Z1
H R1 RMult Z2
H1 HInverse R2 RDiv Z9
I R3 RAddSub
IO NoTrials R4 RSqrt
I3 IEEE R9 Random9
SqRWrng
All the variables in BASIC are true variables and in consequence,
the program is more difficult to follow since the "constants" must
be determined (the glossary is very helpful). The Pascal version
uses Real constants, but checks are added to ensure that the values
are correctly converted by the compiler.
The major textual change to the Pascal version apart from the
identifiersis that named procedures are used, inserting parameters
wherehelpful. New procedures are also introduced. The
correspondence is as follows:
BASIC Pascal
lines
90- 140 Pause
170- 250 Instructions
380- 460 Heading
480- 670 Characteristics
690- 870 History
2940-2950 Random
3710-3740 NewD
4040-4080 DoesYequalX
4090-4110 PrintIfNPositive
4640-4850 TestPartialUnderflow
*/
/* This version of paranoia has been modified to work with GCC's internal
software floating point emulation library, as a sanity check of same.
I'm doing this in C++ so that I can do operator overloading and not
have to modify so damned much of the existing code. */
extern "C" {
#include <stdio.h>
#include <stddef.h>
#include <limits.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <unistd.h>
#include <float.h>
/* This part is made all the more awful because many gcc headers are
not prepared at all to be parsed as C++. The biggest stickler
here is const structure members. So we include exactly the pieces
that we need. */
#define GTY(x)
#include "ansidecl.h"
#include "auto-host.h"
#include "hwint.h"
#undef EXTRA_MODES_FILE
struct rtx_def;
typedef struct rtx_def *rtx;
struct rtvec_def;
typedef struct rtvec_def *rtvec;
union tree_node;
typedef union tree_node *tree;
#define DEFTREECODE(SYM, STRING, TYPE, NARGS) SYM,
enum tree_code {
#include "tree.def"
LAST_AND_UNUSED_TREE_CODE
};
#undef DEFTREECODE
#define ENUM_BITFIELD(X) enum X
#define class klass
#include "real.h"
#undef class
}
/* We never produce signals from the library. Thus setjmp need do nothing. */
#undef setjmp
#define setjmp(x) (0)
static bool verbose = false;
static int verbose_index = 0;
/* ====================================================================== */
/* The implementation of the abstract floating point class based on gcc's
real.c. I.e. the object of this excersize. Templated so that we can
all fp sizes. */
class real_c_float
{
public:
static const enum machine_mode MODE = SFmode;
private:
static const int external_max = 128 / 32;
static const int internal_max
= (sizeof (REAL_VALUE_TYPE) + sizeof (long) + 1) / sizeof (long);
long image[external_max < internal_max ? internal_max : external_max];
void from_long(long);
void from_str(const char *);
void binop(int code, const real_c_float&);
void unop(int code);
bool cmp(int code, const real_c_float&) const;
public:
real_c_float()
{ }
real_c_float(long l)
{ from_long(l); }
real_c_float(const char *s)
{ from_str(s); }
real_c_float(const real_c_float &b)
{ memcpy(image, b.image, sizeof(image)); }
const real_c_float& operator= (long l)
{ from_long(l); return *this; }
const real_c_float& operator= (const char *s)
{ from_str(s); return *this; }
const real_c_float& operator= (const real_c_float &b)
{ memcpy(image, b.image, sizeof(image)); return *this; }
const real_c_float& operator+= (const real_c_float &b)
{ binop(PLUS_EXPR, b); return *this; }
const real_c_float& operator-= (const real_c_float &b)
{ binop(MINUS_EXPR, b); return *this; }
const real_c_float& operator*= (const real_c_float &b)
{ binop(MULT_EXPR, b); return *this; }
const real_c_float& operator/= (const real_c_float &b)
{ binop(RDIV_EXPR, b); return *this; }
real_c_float operator- () const
{ real_c_float r(*this); r.unop(NEGATE_EXPR); return r; }
real_c_float abs () const
{ real_c_float r(*this); r.unop(ABS_EXPR); return r; }
bool operator < (const real_c_float &b) const { return cmp(LT_EXPR, b); }
bool operator <= (const real_c_float &b) const { return cmp(LE_EXPR, b); }
bool operator == (const real_c_float &b) const { return cmp(EQ_EXPR, b); }
bool operator != (const real_c_float &b) const { return cmp(NE_EXPR, b); }
bool operator >= (const real_c_float &b) const { return cmp(GE_EXPR, b); }
bool operator > (const real_c_float &b) const { return cmp(GT_EXPR, b); }
const char * str () const;
const char * hex () const;
long integer () const;
int exp () const;
void ldexp (int);
};
void
real_c_float::from_long (long l)
{
REAL_VALUE_TYPE f;
real_from_integer (&f, MODE, l, l < 0 ? -1 : 0, 0);
real_to_target (image, &f, MODE);
}
void
real_c_float::from_str (const char *s)
{
REAL_VALUE_TYPE f;
const char *p = s;
if (*p == '-' || *p == '+')
p++;
if (strcasecmp(p, "inf") == 0)
{
real_inf (&f);
if (*s == '-')
real_arithmetic (&f, NEGATE_EXPR, &f, NULL);
}
else if (strcasecmp(p, "nan") == 0)
real_nan (&f, "", 1, MODE);
else
real_from_string (&f, s);
real_to_target (image, &f, MODE);
}
void
real_c_float::binop (int code, const real_c_float &b)
{
REAL_VALUE_TYPE ai, bi, ri;
real_from_target (&ai, image, MODE);
real_from_target (&bi, b.image, MODE);
real_arithmetic (&ri, code, &ai, &bi);
real_to_target (image, &ri, MODE);
if (verbose)
{
char ab[64], bb[64], rb[64];
const real_format *fmt = real_format_for_mode[MODE - QFmode];
const int digits = (fmt->p * fmt->log2_b + 3) / 4;
char symbol_for_code;
real_from_target (&ri, image, MODE);
real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
real_to_hexadecimal (bb, &bi, sizeof(bb), digits, 0);
real_to_hexadecimal (rb, &ri, sizeof(rb), digits, 0);
switch (code)
{
case PLUS_EXPR:
symbol_for_code = '+';
break;
case MINUS_EXPR:
symbol_for_code = '-';
break;
case MULT_EXPR:
symbol_for_code = '*';
break;
case RDIV_EXPR:
symbol_for_code = '/';
break;
default:
abort ();
}
fprintf (stderr, "%6d: %s %c %s = %s\n", verbose_index++,
ab, symbol_for_code, bb, rb);
}
}
void
real_c_float::unop (int code)
{
REAL_VALUE_TYPE ai, ri;
real_from_target (&ai, image, MODE);
real_arithmetic (&ri, code, &ai, NULL);
real_to_target (image, &ri, MODE);
if (verbose)
{
char ab[64], rb[64];
const real_format *fmt = real_format_for_mode[MODE - QFmode];
const int digits = (fmt->p * fmt->log2_b + 3) / 4;
const char *symbol_for_code;
real_from_target (&ri, image, MODE);
real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
real_to_hexadecimal (rb, &ri, sizeof(rb), digits, 0);
switch (code)
{
case NEGATE_EXPR:
symbol_for_code = "-";
break;
case ABS_EXPR:
symbol_for_code = "abs ";
break;
default:
abort ();
}
fprintf (stderr, "%6d: %s%s = %s\n", verbose_index++,
symbol_for_code, ab, rb);
}
}
bool
real_c_float::cmp (int code, const real_c_float &b) const
{
REAL_VALUE_TYPE ai, bi;
bool ret;
real_from_target (&ai, image, MODE);
real_from_target (&bi, b.image, MODE);
ret = real_compare (code, &ai, &bi);
if (verbose)
{
char ab[64], bb[64];
const real_format *fmt = real_format_for_mode[MODE - QFmode];
const int digits = (fmt->p * fmt->log2_b + 3) / 4;
const char *symbol_for_code;
real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
real_to_hexadecimal (bb, &bi, sizeof(bb), digits, 0);
switch (code)
{
case LT_EXPR:
symbol_for_code = "<";
break;
case LE_EXPR:
symbol_for_code = "<=";
break;
case EQ_EXPR:
symbol_for_code = "==";
break;
case NE_EXPR:
symbol_for_code = "!=";
break;
case GE_EXPR:
symbol_for_code = ">=";
break;
case GT_EXPR:
symbol_for_code = ">";
break;
default:
abort ();
}
fprintf (stderr, "%6d: %s %s %s = %s\n", verbose_index++,
ab, symbol_for_code, bb, (ret ? "true" : "false"));
}
return ret;
}
const char *
real_c_float::str() const
{
REAL_VALUE_TYPE f;
const real_format *fmt = real_format_for_mode[MODE - QFmode];
const int digits = int(fmt->p * fmt->log2_b * .30102999566398119521 + 1);
real_from_target (&f, image, MODE);
char *buf = new char[digits + 10];
real_to_decimal (buf, &f, digits+10, digits, 0);
return buf;
}
const char *
real_c_float::hex() const
{
REAL_VALUE_TYPE f;
const real_format *fmt = real_format_for_mode[MODE - QFmode];
const int digits = (fmt->p * fmt->log2_b + 3) / 4;
real_from_target (&f, image, MODE);
char *buf = new char[digits + 10];
real_to_hexadecimal (buf, &f, digits+10, digits, 0);
return buf;
}
long
real_c_float::integer() const
{
REAL_VALUE_TYPE f;
real_from_target (&f, image, MODE);
return real_to_integer (&f);
}
int
real_c_float::exp() const
{
REAL_VALUE_TYPE f;
real_from_target (&f, image, MODE);
return real_exponent (&f);
}
void
real_c_float::ldexp (int exp)
{
REAL_VALUE_TYPE ai;
real_from_target (&ai, image, MODE);
real_ldexp (&ai, &ai, exp);
real_to_target (image, &ai, MODE);
}
/* ====================================================================== */
/* An implementation of the abstract floating point class that uses native
arithmetic. Exists for reference and debugging. */
template<typename T>
class native_float
{
private:
// Force intermediate results back to memory.
volatile T image;
static T from_str (const char *);
static T do_abs (T);
static T verbose_binop (T, char, T, T);
static T verbose_unop (const char *, T, T);
static bool verbose_cmp (T, const char *, T, bool);
public:
native_float()
{ }
native_float(long l)
{ image = l; }
native_float(const char *s)
{ image = from_str(s); }
native_float(const native_float &b)
{ image = b.image; }
const native_float& operator= (long l)
{ image = l; return *this; }
const native_float& operator= (const char *s)
{ image = from_str(s); return *this; }
const native_float& operator= (const native_float &b)
{ image = b.image; return *this; }
const native_float& operator+= (const native_float &b)
{
image = verbose_binop(image, '+', b.image, image + b.image);
return *this;
}
const native_float& operator-= (const native_float &b)
{
image = verbose_binop(image, '-', b.image, image - b.image);
return *this;
}
const native_float& operator*= (const native_float &b)
{
image = verbose_binop(image, '*', b.image, image * b.image);
return *this;
}
const native_float& operator/= (const native_float &b)
{
image = verbose_binop(image, '/', b.image, image / b.image);
return *this;
}
native_float operator- () const
{
native_float r;
r.image = verbose_unop("-", image, -image);
return r;
}
native_float abs () const
{
native_float r;
r.image = verbose_unop("abs ", image, do_abs(image));
return r;
}
bool operator < (const native_float &b) const
{ return verbose_cmp(image, "<", b.image, image < b.image); }
bool operator <= (const native_float &b) const
{ return verbose_cmp(image, "<=", b.image, image <= b.image); }
bool operator == (const native_float &b) const
{ return verbose_cmp(image, "==", b.image, image == b.image); }
bool operator != (const native_float &b) const
{ return verbose_cmp(image, "!=", b.image, image != b.image); }
bool operator >= (const native_float &b) const
{ return verbose_cmp(image, ">=", b.image, image >= b.image); }
bool operator > (const native_float &b) const
{ return verbose_cmp(image, ">", b.image, image > b.image); }
const char * str () const;
const char * hex () const;
long integer () const
{ return long(image); }
int exp () const;
void ldexp (int);
};
template<typename T>
inline T
native_float<T>::from_str (const char *s)
{
return strtold (s, NULL);
}
template<>
inline float
native_float<float>::from_str (const char *s)
{
return strtof (s, NULL);
}
template<>
inline double
native_float<double>::from_str (const char *s)
{
return strtod (s, NULL);
}
template<typename T>
inline T
native_float<T>::do_abs (T image)
{
return fabsl (image);
}
template<>
inline float
native_float<float>::do_abs (float image)
{
return fabsf (image);
}
template<>
inline double
native_float<double>::do_abs (double image)
{
return fabs (image);
}
template<typename T>
T
native_float<T>::verbose_binop (T a, char symbol, T b, T r)
{
if (verbose)
{
const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
#ifdef NO_LONG_DOUBLE
fprintf (stderr, "%6d: %.*a %c %.*a = %.*a\n", verbose_index++,
digits, (double)a, symbol,
digits, (double)b, digits, (double)r);
#else
fprintf (stderr, "%6d: %.*La %c %.*La = %.*La\n", verbose_index++,
digits, (long double)a, symbol,
digits, (long double)b, digits, (long double)r);
#endif
}
return r;
}
template<typename T>
T
native_float<T>::verbose_unop (const char *symbol, T a, T r)
{
if (verbose)
{
const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
#ifdef NO_LONG_DOUBLE
fprintf (stderr, "%6d: %s%.*a = %.*a\n", verbose_index++,
symbol, digits, (double)a, digits, (double)r);
#else
fprintf (stderr, "%6d: %s%.*La = %.*La\n", verbose_index++,
symbol, digits, (long double)a, digits, (long double)r);
#endif
}
return r;
}
template<typename T>
bool
native_float<T>::verbose_cmp (T a, const char *symbol, T b, bool r)
{
if (verbose)
{
const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
#ifndef NO_LONG_DOUBLE
fprintf (stderr, "%6d: %.*a %s %.*a = %s\n", verbose_index++,
digits, (double)a, symbol,
digits, (double)b, (r ? "true" : "false"));
#else
fprintf (stderr, "%6d: %.*La %s %.*La = %s\n", verbose_index++,
digits, (long double)a, symbol,
digits, (long double)b, (r ? "true" : "false"));
#endif
}
return r;
}
template<typename T>
const char *
native_float<T>::str() const
{
char *buf = new char[50];
const int digits = int(sizeof(T) * CHAR_BIT * .30102999566398119521 + 1);
#ifndef NO_LONG_DOUBLE
sprintf (buf, "%.*e", digits - 1, (double) image);
#else
sprintf (buf, "%.*Le", digits - 1, (long double) image);
#endif
return buf;
}
template<typename T>
const char *
native_float<T>::hex() const
{
char *buf = new char[50];
const int digits = int(sizeof(T) * CHAR_BIT / 4);
#ifndef NO_LONG_DOUBLE
sprintf (buf, "%.*a", digits - 1, (double) image);
#else
sprintf (buf, "%.*La", digits - 1, (long double) image);
#endif
return buf;
}
template<typename T>
int
native_float<T>::exp() const
{
int e;
frexp (image, &e);
return e;
}
template<typename T>
void
native_float<T>::ldexp (int exp)
{
image = ldexpl (image, exp);
}
template<>
void
native_float<float>::ldexp (int exp)
{
image = ldexpf (image, exp);
}
template<>
void
native_float<double>::ldexp (int exp)
{
image = ::ldexp (image, exp);
}
/* ====================================================================== */
/* Some libm routines that Paranoia expects to be available. */
template<typename FLOAT>
inline FLOAT
FABS (const FLOAT &f)
{
return f.abs();
}
template<typename FLOAT, typename RHS>
inline FLOAT
operator+ (const FLOAT &a, const RHS &b)
{
return FLOAT(a) += FLOAT(b);
}
template<typename FLOAT, typename RHS>
inline FLOAT
operator- (const FLOAT &a, const RHS &b)
{
return FLOAT(a) -= FLOAT(b);
}
template<typename FLOAT, typename RHS>
inline FLOAT
operator* (const FLOAT &a, const RHS &b)
{
return FLOAT(a) *= FLOAT(b);
}
template<typename FLOAT, typename RHS>
inline FLOAT
operator/ (const FLOAT &a, const RHS &b)
{
return FLOAT(a) /= FLOAT(b);
}
template<typename FLOAT>
FLOAT
FLOOR (const FLOAT &f)
{
/* ??? This is only correct when F is representable as an integer. */
long i = f.integer();
FLOAT r;
r = i;
if (i < 0 && f != r)
r = i - 1;
return r;
}
template<typename FLOAT>
FLOAT
SQRT (const FLOAT &f)
{
#if 0
FLOAT zero = long(0);
FLOAT two = 2;
FLOAT one = 1;
FLOAT diff, diff2;
FLOAT z, t;
if (f == zero)
return zero;
if (f < zero)
return zero / zero;
if (f == one)
return f;
z = f;
z.ldexp (-f.exp() / 2);
diff2 = FABS (z * z - f);
if (diff2 > zero)
while (1)
{
t = (f / (two * z)) + (z / two);
diff = FABS (t * t - f);
if (diff >= diff2)
break;
z = t;
diff2 = diff;
}
return z;
#elif defined(NO_LONG_DOUBLE)
double d;
char buf[64];
d = strtod (f.hex(), NULL);
d = sqrt (d);
sprintf(buf, "%.35a", d);
return FLOAT(buf);
#else
long double ld;
char buf[64];
ld = strtold (f.hex(), NULL);
ld = sqrtl (ld);
sprintf(buf, "%.35La", ld);
return FLOAT(buf);
#endif
}
template<typename FLOAT>
FLOAT
LOG (FLOAT x)
{
#if 0
FLOAT zero = long(0);
FLOAT one = 1;
if (x <= zero)
return zero / zero;
if (x == one)
return zero;
int exp = x.exp() - 1;
x.ldexp(-exp);
FLOAT xm1 = x - one;
FLOAT y = xm1;
long n = 2;
FLOAT sum = xm1;
while (1)
{
y *= xm1;
FLOAT term = y / FLOAT (n);
FLOAT next = sum + term;
if (next == sum)
break;
sum = next;
if (++n == 1000)
break;
}
if (exp)
sum += FLOAT (exp) * FLOAT(".69314718055994530941");
return sum;
#elif defined (NO_LONG_DOUBLE)
double d;
char buf[64];
d = strtod (x.hex(), NULL);
d = log (d);
sprintf(buf, "%.35a", d);
return FLOAT(buf);
#else
long double ld;
char buf[64];
ld = strtold (x.hex(), NULL);
ld = logl (ld);
sprintf(buf, "%.35La", ld);
return FLOAT(buf);
#endif
}
template<typename FLOAT>
FLOAT
EXP (const FLOAT &x)
{
/* Cheat. */
#ifdef NO_LONG_DOUBLE
double d;
char buf[64];
d = strtod (x.hex(), NULL);
d = exp (d);
sprintf(buf, "%.35a", d);
return FLOAT(buf);
#else
long double ld;
char buf[64];
ld = strtold (x.hex(), NULL);
ld = expl (ld);
sprintf(buf, "%.35La", ld);
return FLOAT(buf);
#endif
}
template<typename FLOAT>
FLOAT
POW (const FLOAT &base, const FLOAT &exp)
{
/* Cheat. */
#ifdef NO_LONG_DOUBLE
double d1, d2;
char buf[64];
d1 = strtod (base.hex(), NULL);
d2 = strtod (exp.hex(), NULL);
d1 = pow (d1, d2);
sprintf(buf, "%.35a", d1);
return FLOAT(buf);
#else
long double ld1, ld2;
char buf[64];
ld1 = strtold (base.hex(), NULL);
ld2 = strtold (exp.hex(), NULL);
ld1 = powl (ld1, ld2);
sprintf(buf, "%.35La", ld1);
return FLOAT(buf);
#endif
}
/* ====================================================================== */
/* Real Paranoia begins again here. We wrap the thing in a template so
that we can instantiate it for each floating point type we care for. */
int NoTrials = 20; /*Number of tests for commutativity. */
bool do_pause = false;
enum Guard { No, Yes };
enum Rounding { Other, Rounded, Chopped };
enum Class { Failure, Serious, Defect, Flaw };
template<typename FLOAT>
struct Paranoia
{
FLOAT Radix, BInvrse, RadixD2, BMinusU2;
/* Small floating point constants. */
FLOAT Zero;
FLOAT Half;
FLOAT One;
FLOAT Two;
FLOAT Three;
FLOAT Four;
FLOAT Five;
FLOAT Eight;
FLOAT Nine;
FLOAT TwentySeven;
FLOAT ThirtyTwo;
FLOAT TwoForty;
FLOAT MinusOne;
FLOAT OneAndHalf;
/* Declarations of Variables. */
int Indx;
char ch[8];
FLOAT AInvrse, A1;
FLOAT C, CInvrse;
FLOAT D, FourD;
FLOAT E0, E1, Exp2, E3, MinSqEr;
FLOAT SqEr, MaxSqEr, E9;
FLOAT Third;
FLOAT F6, F9;
FLOAT H, HInvrse;
int I;
FLOAT StickyBit, J;
FLOAT MyZero;
FLOAT Precision;
FLOAT Q, Q9;
FLOAT R, Random9;
FLOAT T, Underflow, S;
FLOAT OneUlp, UfThold, U1, U2;
FLOAT V, V0, V9;
FLOAT W;
FLOAT X, X1, X2, X8, Random1;
FLOAT Y, Y1, Y2, Random2;
FLOAT Z, PseudoZero, Z1, Z2, Z9;
int ErrCnt[4];
int Milestone;
int PageNo;
int M, N, N1;
Guard GMult, GDiv, GAddSub;
Rounding RMult, RDiv, RAddSub, RSqrt;
int Break, Done, NotMonot, Monot, Anomaly, IEEE, SqRWrng, UfNGrad;
/* Computed constants. */
/*U1 gap below 1.0, i.e, 1.0-U1 is next number below 1.0 */
/*U2 gap above 1.0, i.e, 1.0+U2 is next number above 1.0 */
int main ();
FLOAT Sign (FLOAT);
FLOAT Random ();
void Pause ();
void BadCond (int, const char *);
void SqXMinX (int);
void TstCond (int, int, const char *);
void notify (const char *);
void IsYeqX ();
void NewD ();
void PrintIfNPositive ();
void SR3750 ();
void TstPtUf ();
// Pretend we're bss.
Paranoia() { memset(this, 0, sizeof (*this)); }
};
template<typename FLOAT>
int
Paranoia<FLOAT>::main()
{
/* First two assignments use integer right-hand sides. */
Zero = long(0);
One = long(1);
Two = long(2);
Three = long(3);
Four = long(4);
Five = long(5);
Eight = long(8);
Nine = long(9);
TwentySeven = long(27);
ThirtyTwo = long(32);
TwoForty = long(240);
MinusOne = long(-1);
Half = "0x1p-1";
OneAndHalf = "0x3p-1";
ErrCnt[Failure] = 0;
ErrCnt[Serious] = 0;
ErrCnt[Defect] = 0;
ErrCnt[Flaw] = 0;
PageNo = 1;
/*=============================================*/
Milestone = 7;
/*=============================================*/
printf ("Program is now RUNNING tests on small integers:\n");
TstCond (Failure, (Zero + Zero == Zero), "0+0 != 0");
TstCond (Failure, (One - One == Zero), "1-1 != 0");
TstCond (Failure, (One > Zero), "1 <= 0");
TstCond (Failure, (One + One == Two), "1+1 != 2");
Z = -Zero;
if (Z != Zero)
{
ErrCnt[Failure] = ErrCnt[Failure] + 1;
printf ("Comparison alleges that -0.0 is Non-zero!\n");
U2 = "0.001";
Radix = 1;
TstPtUf ();
}
TstCond (Failure, (Three == Two + One), "3 != 2+1");
TstCond (Failure, (Four == Three + One), "4 != 3+1");
TstCond (Failure, (Four + Two * (-Two) == Zero), "4 + 2*(-2) != 0");
TstCond (Failure, (Four - Three - One == Zero), "4-3-1 != 0");
TstCond (Failure, (MinusOne == (Zero - One)), "-1 != 0-1");
TstCond (Failure, (MinusOne + One == Zero), "-1+1 != 0");
TstCond (Failure, (One + MinusOne == Zero), "1+(-1) != 0");
TstCond (Failure, (MinusOne + FABS (One) == Zero), "-1+abs(1) != 0");
TstCond (Failure, (MinusOne + MinusOne * MinusOne == Zero),
"-1+(-1)*(-1) != 0");
TstCond (Failure, Half + MinusOne + Half == Zero, "1/2 + (-1) + 1/2 != 0");
/*=============================================*/
Milestone = 10;
/*=============================================*/
TstCond (Failure, (Nine == Three * Three), "9 != 3*3");
TstCond (Failure, (TwentySeven == Nine * Three), "27 != 9*3");
TstCond (Failure, (Eight == Four + Four), "8 != 4+4");
TstCond (Failure, (ThirtyTwo == Eight * Four), "32 != 8*4");
TstCond (Failure, (ThirtyTwo - TwentySeven - Four - One == Zero),
"32-27-4-1 != 0");
TstCond (Failure, Five == Four + One, "5 != 4+1");
TstCond (Failure, TwoForty == Four * Five * Three * Four, "240 != 4*5*3*4");
TstCond (Failure, TwoForty / Three - Four * Four * Five == Zero,
"240/3 - 4*4*5 != 0");
TstCond (Failure, TwoForty / Four - Five * Three * Four == Zero,
"240/4 - 5*3*4 != 0");
TstCond (Failure, TwoForty / Five - Four * Three * Four == Zero,
"240/5 - 4*3*4 != 0");
if (ErrCnt[Failure] == 0)
{
printf ("-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.\n");
printf ("\n");
}
printf ("Searching for Radix and Precision.\n");
W = One;
do
{
W = W + W;
Y = W + One;
Z = Y - W;
Y = Z - One;
}
while (MinusOne + FABS (Y) < Zero);
/*.. now W is just big enough that |((W+1)-W)-1| >= 1 ... */
Precision = Zero;
Y = One;
do
{
Radix = W + Y;
Y = Y + Y;
Radix = Radix - W;
}
while (Radix == Zero);
if (Radix < Two)
Radix = One;
printf ("Radix = %s .\n", Radix.str());
if (Radix != One)
{
W = One;
do
{
Precision = Precision + One;
W = W * Radix;
Y = W + One;
}
while ((Y - W) == One);
}
/*... now W == Radix^Precision is barely too big to satisfy (W+1)-W == 1
... */
U1 = One / W;
U2 = Radix * U1;
printf ("Closest relative separation found is U1 = %s .\n\n", U1.str());
printf ("Recalculating radix and precision\n ");
/*save old values */
E0 = Radix;
E1 = U1;
E9 = U2;
E3 = Precision;
X = Four / Three;
Third = X - One;
F6 = Half - Third;
X = F6 + F6;
X = FABS (X - Third);
if (X < U2)
X = U2;
/*... now X = (unknown no.) ulps of 1+... */
do
{
U2 = X;
Y = Half * U2 + ThirtyTwo * U2 * U2;
Y = One + Y;
X = Y - One;
}
while (!((U2 <= X) || (X <= Zero)));
/*... now U2 == 1 ulp of 1 + ... */
X = Two / Three;
F6 = X - Half;
Third = F6 + F6;
X = Third - Half;
X = FABS (X + F6);
if (X < U1)
X = U1;
/*... now X == (unknown no.) ulps of 1 -... */
do
{
U1 = X;
Y = Half * U1 + ThirtyTwo * U1 * U1;
Y = Half - Y;
X = Half + Y;
Y = Half - X;
X = Half + Y;
}
while (!((U1 <= X) || (X <= Zero)));
/*... now U1 == 1 ulp of 1 - ... */
if (U1 == E1)
printf ("confirms closest relative separation U1 .\n");
else
printf ("gets better closest relative separation U1 = %s .\n", U1.str());
W = One / U1;
F9 = (Half - U1) + Half;
Radix = FLOOR (FLOAT ("0.01") + U2 / U1);
if (Radix == E0)
printf ("Radix confirmed.\n");
else
printf ("MYSTERY: recalculated Radix = %s .\n", Radix.str());
TstCond (Defect, Radix <= Eight + Eight,
"Radix is too big: roundoff problems");
TstCond (Flaw, (Radix == Two) || (Radix == 10)
|| (Radix == One), "Radix is not as good as 2 or 10");
/*=============================================*/
Milestone = 20;
/*=============================================*/
TstCond (Failure, F9 - Half < Half,
"(1-U1)-1/2 < 1/2 is FALSE, prog. fails?");
X = F9;
I = 1;
Y = X - Half;
Z = Y - Half;
TstCond (Failure, (X != One)
|| (Z == Zero), "Comparison is fuzzy,X=1 but X-1/2-1/2 != 0");
X = One + U2;
I = 0;
/*=============================================*/
Milestone = 25;
/*=============================================*/
/*... BMinusU2 = nextafter(Radix, 0) */
BMinusU2 = Radix - One;
BMinusU2 = (BMinusU2 - U2) + One;
/* Purify Integers */
if (Radix != One)
{
X = -TwoForty * LOG (U1) / LOG (Radix);
Y = FLOOR (Half + X);
if (FABS (X - Y) * Four < One)
X = Y;
Precision = X / TwoForty;
Y = FLOOR (Half + Precision);
if (FABS (Precision - Y) * TwoForty < Half)
Precision = Y;
}
if ((Precision != FLOOR (Precision)) || (Radix == One))
{
printf ("Precision cannot be characterized by an Integer number\n");
printf
("of significant digits but, by itself, this is a minor flaw.\n");
}
if (Radix == One)
printf
("logarithmic encoding has precision characterized solely by U1.\n");
else
printf ("The number of significant digits of the Radix is %s .\n",
Precision.str());
TstCond (Serious, U2 * Nine * Nine * TwoForty < One,
"Precision worse than 5 decimal figures ");
/*=============================================*/
Milestone = 30;
/*=============================================*/
/* Test for extra-precise subexpressions */
X = FABS (((Four / Three - One) - One / Four) * Three - One / Four);
do
{
Z2 = X;
X = (One + (Half * Z2 + ThirtyTwo * Z2 * Z2)) - One;
}
while (!((Z2 <= X) || (X <= Zero)));
X = Y = Z = FABS ((Three / Four - Two / Three) * Three - One / Four);
do
{
Z1 = Z;
Z = (One / Two - ((One / Two - (Half * Z1 + ThirtyTwo * Z1 * Z1))
+ One / Two)) + One / Two;
}
while (!((Z1 <= Z) || (Z <= Zero)));
do
{
do
{
Y1 = Y;
Y =
(Half - ((Half - (Half * Y1 + ThirtyTwo * Y1 * Y1)) + Half)) +
Half;
}
while (!((Y1 <= Y) || (Y <= Zero)));
X1 = X;
X = ((Half * X1 + ThirtyTwo * X1 * X1) - F9) + F9;
}
while (!((X1 <= X) || (X <= Zero)));
if ((X1 != Y1) || (X1 != Z1))
{
BadCond (Serious, "Disagreements among the values X1, Y1, Z1,\n");
printf ("respectively %s, %s, %s,\n", X1.str(), Y1.str(), Z1.str());
printf ("are symptoms of inconsistencies introduced\n");
printf ("by extra-precise evaluation of arithmetic subexpressions.\n");
notify ("Possibly some part of this");
if ((X1 == U1) || (Y1 == U1) || (Z1 == U1))
printf ("That feature is not tested further by this program.\n");
}
else
{
if ((Z1 != U1) || (Z2 != U2))
{
if ((Z1 >= U1) || (Z2 >= U2))
{
BadCond (Failure, "");
notify ("Precision");
printf ("\tU1 = %s, Z1 - U1 = %s\n", U1.str(), (Z1 - U1).str());
printf ("\tU2 = %s, Z2 - U2 = %s\n", U2.str(), (Z2 - U2).str());
}
else
{
if ((Z1 <= Zero) || (Z2 <= Zero))
{
printf ("Because of unusual Radix = %s", Radix.str());
printf (", or exact rational arithmetic a result\n");
printf ("Z1 = %s, or Z2 = %s ", Z1.str(), Z2.str());
notify ("of an\nextra-precision");
}
if (Z1 != Z2 || Z1 > Zero)
{
X = Z1 / U1;
Y = Z2 / U2;
if (Y > X)
X = Y;
Q = -LOG (X);
printf ("Some subexpressions appear to be calculated "
"extra precisely\n");
printf ("with about %s extra B-digits, i.e.\n",
(Q / LOG (Radix)).str());
printf ("roughly %s extra significant decimals.\n",
(Q / LOG (FLOAT (10))).str());
}
printf
("That feature is not tested further by this program.\n");
}
}
}
Pause ();
/*=============================================*/
Milestone = 35;
/*=============================================*/
if (Radix >= Two)
{
X = W / (Radix * Radix);
Y = X + One;
Z = Y - X;
T = Z + U2;
X = T - Z;
TstCond (Failure, X == U2,
"Subtraction is not normalized X=Y,X+Z != Y+Z!");
if (X == U2)
printf ("Subtraction appears to be normalized, as it should be.");
}
printf ("\nChecking for guard digit in *, /, and -.\n");
Y = F9 * One;
Z = One * F9;
X = F9 - Half;
Y = (Y - Half) - X;
Z = (Z - Half) - X;
X = One + U2;
T = X * Radix;
R = Radix * X;
X = T - Radix;
X = X - Radix * U2;
T = R - Radix;
T = T - Radix * U2;
X = X * (Radix - One);
T = T * (Radix - One);
if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero))
GMult = Yes;
else
{
GMult = No;
TstCond (Serious, false, "* lacks a Guard Digit, so 1*X != X");
}
Z = Radix * U2;
X = One + Z;
Y = FABS ((X + Z) - X * X) - U2;
X = One - U2;
Z = FABS ((X - U2) - X * X) - U1;
TstCond (Failure, (Y <= Zero)
&& (Z <= Zero), "* gets too many final digits wrong.\n");
Y = One - U2;
X = One + U2;
Z = One / Y;
Y = Z - X;
X = One / Three;
Z = Three / Nine;
X = X - Z;
T = Nine / TwentySeven;
Z = Z - T;
TstCond (Defect, X == Zero && Y == Zero && Z == Zero,
"Division lacks a Guard Digit, so error can exceed 1 ulp\n"
"or 1/3 and 3/9 and 9/27 may disagree");
Y = F9 / One;
X = F9 - Half;
Y = (Y - Half) - X;
X = One + U2;
T = X / One;
X = T - X;
if ((X == Zero) && (Y == Zero) && (Z == Zero))
GDiv = Yes;
else
{
GDiv = No;
TstCond (Serious, false, "Division lacks a Guard Digit, so X/1 != X");
}
X = One / (One + U2);
Y = X - Half - Half;
TstCond (Serious, Y < Zero, "Computed value of 1/1.000..1 >= 1");
X = One - U2;
Y = One + Radix * U2;
Z = X * Radix;
T = Y * Radix;
R = Z / Radix;
StickyBit = T / Radix;
X = R - X;
Y = StickyBit - Y;
TstCond (Failure, X == Zero && Y == Zero,
"* and/or / gets too many last digits wrong");
Y = One - U1;
X = One - F9;
Y = One - Y;
T = Radix - U2;
Z = Radix - BMinusU2;
T = Radix - T;
if ((X == U1) && (Y == U1) && (Z == U2) && (T == U2))
GAddSub = Yes;
else
{
GAddSub = No;
TstCond (Serious, false,
"- lacks Guard Digit, so cancellation is obscured");
}
if (F9 != One && F9 - One >= Zero)
{
BadCond (Serious, "comparison alleges (1-U1) < 1 although\n");
printf (" subtraction yields (1-U1) - 1 = 0 , thereby vitiating\n");
printf (" such precautions against division by zero as\n");
printf (" ... if (X == 1.0) {.....} else {.../(X-1.0)...}\n");
}
if (GMult == Yes && GDiv == Yes && GAddSub == Yes)
printf
(" *, /, and - appear to have guard digits, as they should.\n");
/*=============================================*/
Milestone = 40;
/*=============================================*/
Pause ();
printf ("Checking rounding on multiply, divide and add/subtract.\n");
RMult = Other;
RDiv = Other;
RAddSub = Other;
RadixD2 = Radix / Two;
A1 = Two;
Done = false;
do
{
AInvrse = Radix;
do
{
X = AInvrse;
AInvrse = AInvrse / A1;
}
while (!(FLOOR (AInvrse) != AInvrse));
Done = (X == One) || (A1 > Three);
if (!Done)
A1 = Nine + One;
}
while (!(Done));
if (X == One)
A1 = Radix;
AInvrse = One / A1;
X = A1;
Y = AInvrse;
Done = false;
do
{
Z = X * Y - Half;
TstCond (Failure, Z == Half, "X * (1/X) differs from 1");
Done = X == Radix;
X = Radix;
Y = One / X;
}
while (!(Done));
Y2 = One + U2;
Y1 = One - U2;
X = OneAndHalf - U2;
Y = OneAndHalf + U2;
Z = (X - U2) * Y2;
T = Y * Y1;
Z = Z - X;
T = T - X;
X = X * Y2;
Y = (Y + U2) * Y1;
X = X - OneAndHalf;
Y = Y - OneAndHalf;
if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T <= Zero))
{
X = (OneAndHalf + U2) * Y2;
Y = OneAndHalf - U2 - U2;
Z = OneAndHalf + U2 + U2;
T = (OneAndHalf - U2) * Y1;
X = X - (Z + U2);
StickyBit = Y * Y1;
S = Z * Y2;
T = T - Y;
Y = (U2 - Y) + StickyBit;
Z = S - (Z + U2 + U2);
StickyBit = (Y2 + U2) * Y1;
Y1 = Y2 * Y1;
StickyBit = StickyBit - Y2;
Y1 = Y1 - Half;
if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero)
&& (StickyBit == Zero) && (Y1 == Half))
{
RMult = Rounded;
printf ("Multiplication appears to round correctly.\n");
}
else if ((X + U2 == Zero) && (Y < Zero) && (Z + U2 == Zero)
&& (T < Zero) && (StickyBit + U2 == Zero) && (Y1 < Half))
{
RMult = Chopped;
printf ("Multiplication appears to chop.\n");
}
else
printf ("* is neither chopped nor correctly rounded.\n");
if ((RMult == Rounded) && (GMult == No))
notify ("Multiplication");
}
else
printf ("* is neither chopped nor correctly rounded.\n");
/*=============================================*/
Milestone = 45;
/*=============================================*/
Y2 = One + U2;
Y1 = One - U2;
Z = OneAndHalf + U2 + U2;
X = Z / Y2;
T = OneAndHalf - U2 - U2;
Y = (T - U2) / Y1;
Z = (Z + U2) / Y2;
X = X - OneAndHalf;
Y = Y - T;
T = T / Y1;
Z = Z - (OneAndHalf + U2);
T = (U2 - OneAndHalf) + T;
if (!((X > Zero) || (Y > Zero) || (Z > Zero) || (T > Zero)))
{
X = OneAndHalf / Y2;
Y = OneAndHalf - U2;
Z = OneAndHalf + U2;
X = X - Y;
T = OneAndHalf / Y1;
Y = Y / Y1;
T = T - (Z + U2);
Y = Y - Z;
Z = Z / Y2;
Y1 = (Y2 + U2) / Y2;
Z = Z - OneAndHalf;
Y2 = Y1 - Y2;
Y1 = (F9 - U1) / F9;
if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero)
&& (Y2 == Zero) && (Y2 == Zero) && (Y1 - Half == F9 - Half))
{
RDiv = Rounded;
printf ("Division appears to round correctly.\n");
if (GDiv == No)
notify ("Division");
}
else if ((X < Zero) && (Y < Zero) && (Z < Zero) && (T < Zero)
&& (Y2 < Zero) && (Y1 - Half < F9 - Half))
{
RDiv = Chopped;
printf ("Division appears to chop.\n");
}
}
if (RDiv == Other)
printf ("/ is neither chopped nor correctly rounded.\n");
BInvrse = One / Radix;
TstCond (Failure, (BInvrse * Radix - Half == Half),
"Radix * ( 1 / Radix ) differs from 1");
/*=============================================*/
Milestone = 50;
/*=============================================*/
TstCond (Failure, ((F9 + U1) - Half == Half)
&& ((BMinusU2 + U2) - One == Radix - One),
"Incomplete carry-propagation in Addition");
X = One - U1 * U1;
Y = One + U2 * (One - U2);
Z = F9 - Half;
X = (X - Half) - Z;
Y = Y - One;
if ((X == Zero) && (Y == Zero))
{
RAddSub = Chopped;
printf ("Add/Subtract appears to be chopped.\n");
}
if (GAddSub == Yes)
{
X = (Half + U2) * U2;
Y = (Half - U2) * U2;
X = One + X;
Y = One + Y;
X = (One + U2) - X;
Y = One - Y;
if ((X == Zero) && (Y == Zero))
{
X = (Half + U2) * U1;
Y = (Half - U2) * U1;
X = One - X;
Y = One - Y;
X = F9 - X;
Y = One - Y;
if ((X == Zero) && (Y == Zero))
{
RAddSub = Rounded;
printf ("Addition/Subtraction appears to round correctly.\n");
if (GAddSub == No)
notify ("Add/Subtract");
}
else
printf ("Addition/Subtraction neither rounds nor chops.\n");
}
else
printf ("Addition/Subtraction neither rounds nor chops.\n");
}
else
printf ("Addition/Subtraction neither rounds nor chops.\n");
S = One;
X = One + Half * (One + Half);
Y = (One + U2) * Half;
Z = X - Y;
T = Y - X;
StickyBit = Z + T;
if (StickyBit != Zero)
{
S = Zero;
BadCond (Flaw, "(X - Y) + (Y - X) is non zero!\n");
}
StickyBit = Zero;
if ((GMult == Yes) && (GDiv == Yes) && (GAddSub == Yes)
&& (RMult == Rounded) && (RDiv == Rounded)
&& (RAddSub == Rounded) && (FLOOR (RadixD2) == RadixD2))
{
printf ("Checking for sticky bit.\n");
X = (Half + U1) * U2;
Y = Half * U2;
Z = One + Y;
T = One + X;
if ((Z - One <= Zero) && (T - One >= U2))
{
Z = T + Y;
Y = Z - X;
if ((Z - T >= U2) && (Y - T == Zero))
{
X = (Half + U1) * U1;
Y = Half * U1;
Z = One - Y;
T = One - X;
if ((Z - One == Zero) && (T - F9 == Zero))
{
Z = (Half - U1) * U1;
T = F9 - Z;
Q = F9 - Y;
if ((T - F9 == Zero) && (F9 - U1 - Q == Zero))
{
Z = (One + U2) * OneAndHalf;
T = (OneAndHalf + U2) - Z + U2;
X = One + Half / Radix;
Y = One + Radix * U2;
Z = X * Y;
if (T == Zero && X + Radix * U2 - Z == Zero)
{
if (Radix != Two)
{
X = Two + U2;
Y = X / Two;
if ((Y - One == Zero))
StickyBit = S;
}
else
StickyBit = S;
}
}
}
}
}
}
if (StickyBit == One)
printf ("Sticky bit apparently used correctly.\n");
else
printf ("Sticky bit used incorrectly or not at all.\n");
TstCond (Flaw, !(GMult == No || GDiv == No || GAddSub == No ||
RMult == Other || RDiv == Other || RAddSub == Other),
"lack(s) of guard digits or failure(s) to correctly round or chop\n\
(noted above) count as one flaw in the final tally below");
/*=============================================*/
Milestone = 60;
/*=============================================*/
printf ("\n");
printf ("Does Multiplication commute? ");
printf ("Testing on %d random pairs.\n", NoTrials);
Random9 = SQRT (FLOAT (3));
Random1 = Third;
I = 1;
do
{
X = Random ();
Y = Random ();
Z9 = Y * X;
Z = X * Y;
Z9 = Z - Z9;
I = I + 1;
}
while (!((I > NoTrials) || (Z9 != Zero)));
if (I == NoTrials)
{
Random1 = One + Half / Three;
Random2 = (U2 + U1) + One;
Z = Random1 * Random2;
Y = Random2 * Random1;
Z9 = (One + Half / Three) * ((U2 + U1) + One) - (One + Half /
Three) * ((U2 + U1) +
One);
}
if (!((I == NoTrials) || (Z9 == Zero)))
BadCond (Defect, "X * Y == Y * X trial fails.\n");
else
printf (" No failures found in %d integer pairs.\n", NoTrials);
/*=============================================*/
Milestone = 70;
/*=============================================*/
printf ("\nRunning test of square root(x).\n");
TstCond (Failure, (Zero == SQRT (Zero))
&& (-Zero == SQRT (-Zero))
&& (One == SQRT (One)), "Square root of 0.0, -0.0 or 1.0 wrong");
MinSqEr = Zero;
MaxSqEr = Zero;
J = Zero;
X = Radix;
OneUlp = U2;
SqXMinX (Serious);
X = BInvrse;
OneUlp = BInvrse * U1;
SqXMinX (Serious);
X = U1;
OneUlp = U1 * U1;
SqXMinX (Serious);
if (J != Zero)
Pause ();
printf ("Testing if sqrt(X * X) == X for %d Integers X.\n", NoTrials);
J = Zero;
X = Two;
Y = Radix;
if ((Radix != One))
do
{
X = Y;
Y = Radix * Y;
}
while (!((Y - X >= NoTrials)));
OneUlp = X * U2;
I = 1;
while (I <= NoTrials)
{
X = X + One;
SqXMinX (Defect);
if (J > Zero)
break;
I = I + 1;
}
printf ("Test for sqrt monotonicity.\n");
I = -1;
X = BMinusU2;
Y = Radix;
Z = Radix + Radix * U2;
NotMonot = false;
Monot = false;
while (!(NotMonot || Monot))
{
I = I + 1;
X = SQRT (X);
Q = SQRT (Y);
Z = SQRT (Z);
if ((X > Q) || (Q > Z))
NotMonot = true;
else
{
Q = FLOOR (Q + Half);
if (!(I > 0 || Radix == Q * Q))
Monot = true;
else if (I > 0)
{
if (I > 1)
Monot = true;
else
{
Y = Y * BInvrse;
X = Y - U1;
Z = Y + U1;
}
}
else
{
Y = Q;
X = Y - U2;
Z = Y + U2;
}
}
}
if (Monot)
printf ("sqrt has passed a test for Monotonicity.\n");
else
{
BadCond (Defect, "");
printf ("sqrt(X) is non-monotonic for X near %s .\n", Y.str());
}
/*=============================================*/
Milestone = 110;
/*=============================================*/
printf ("Seeking Underflow thresholds UfThold and E0.\n");
D = U1;
if (Precision != FLOOR (Precision))
{
D = BInvrse;
X = Precision;
do
{
D = D * BInvrse;
X = X - One;
}
while (X > Zero);
}
Y = One;
Z = D;
/* ... D is power of 1/Radix < 1. */
do
{
C = Y;
Y = Z;
Z = Y * Y;
}
while ((Y > Z) && (Z + Z > Z));
Y = C;
Z = Y * D;
do
{
C = Y;
Y = Z;
Z = Y * D;
}
while ((Y > Z) && (Z + Z > Z));
if (Radix < Two)
HInvrse = Two;
else
HInvrse = Radix;
H = One / HInvrse;
/* ... 1/HInvrse == H == Min(1/Radix, 1/2) */
CInvrse = One / C;
E0 = C;
Z = E0 * H;
/* ...1/Radix^(BIG Integer) << 1 << CInvrse == 1/C */
do
{
Y = E0;
E0 = Z;
Z = E0 * H;
}
while ((E0 > Z) && (Z + Z > Z));
UfThold = E0;
E1 = Zero;
Q = Zero;
E9 = U2;
S = One + E9;
D = C * S;
if (D <= C)
{
E9 = Radix * U2;
S = One + E9;
D = C * S;
if (D <= C)
{
BadCond (Failure,
"multiplication gets too many last digits wrong.\n");
Underflow = E0;
Y1 = Zero;
PseudoZero = Z;
Pause ();
}
}
else
{
Underflow = D;
PseudoZero = Underflow * H;
UfThold = Zero;
do
{
Y1 = Underflow;
Underflow = PseudoZero;
if (E1 + E1 <= E1)
{
Y2 = Underflow * HInvrse;
E1 = FABS (Y1 - Y2);
Q = Y1;
if ((UfThold == Zero) && (Y1 != Y2))
UfThold = Y1;
}
PseudoZero = PseudoZero * H;
}
while ((Underflow > PseudoZero)
&& (PseudoZero + PseudoZero > PseudoZero));
}
/* Comment line 4530 .. 4560 */
if (PseudoZero != Zero)
{
printf ("\n");
Z = PseudoZero;
/* ... Test PseudoZero for "phoney- zero" violates */
/* ... PseudoZero < Underflow or PseudoZero < PseudoZero + PseudoZero
... */
if (PseudoZero <= Zero)
{
BadCond (Failure, "Positive expressions can underflow to an\n");
printf ("allegedly negative value\n");
printf ("PseudoZero that prints out as: %s .\n", PseudoZero.str());
X = -PseudoZero;
if (X <= Zero)
{
printf ("But -PseudoZero, which should be\n");
printf ("positive, isn't; it prints out as %s .\n", X.str());
}
}
else
{
BadCond (Flaw, "Underflow can stick at an allegedly positive\n");
printf ("value PseudoZero that prints out as %s .\n",
PseudoZero.str());
}
TstPtUf ();
}
/*=============================================*/
Milestone = 120;
/*=============================================*/
if (CInvrse * Y > CInvrse * Y1)
{
S = H * S;
E0 = Underflow;
}
if (!((E1 == Zero) || (E1 == E0)))
{
BadCond (Defect, "");
if (E1 < E0)
{
printf ("Products underflow at a higher");
printf (" threshold than differences.\n");
if (PseudoZero == Zero)
E0 = E1;
}
else
{
printf ("Difference underflows at a higher");
printf (" threshold than products.\n");
}
}
printf ("Smallest strictly positive number found is E0 = %s .\n", E0.str());
Z = E0;
TstPtUf ();
Underflow = E0;
if (N == 1)
Underflow = Y;
I = 4;
if (E1 == Zero)
I = 3;
if (UfThold == Zero)
I = I - 2;
UfNGrad = true;
switch (I)
{
case 1:
UfThold = Underflow;
if ((CInvrse * Q) != ((CInvrse * Y) * S))
{
UfThold = Y;
BadCond (Failure, "Either accuracy deteriorates as numbers\n");
printf ("approach a threshold = %s\n", UfThold.str());
printf (" coming down from %s\n", C.str());
printf
(" or else multiplication gets too many last digits wrong.\n");
}
Pause ();
break;
case 2:
BadCond (Failure,
"Underflow confuses Comparison, which alleges that\n");
printf ("Q == Y while denying that |Q - Y| == 0; these values\n");
printf ("print out as Q = %s, Y = %s .\n", Q.str(), Y2.str());
printf ("|Q - Y| = %s .\n", FABS (Q - Y2).str());
UfThold = Q;
break;
case 3:
X = X;
break;
case 4:
if ((Q == UfThold) && (E1 == E0) && (FABS (UfThold - E1 / E9) <= E1))
{
UfNGrad = false;
printf ("Underflow is gradual; it incurs Absolute Error =\n");
printf ("(roundoff in UfThold) < E0.\n");
Y = E0 * CInvrse;
Y = Y * (OneAndHalf + U2);
X = CInvrse * (One + U2);
Y = Y / X;
IEEE = (Y == E0);
}
}
if (UfNGrad)
{
printf ("\n");
if (setjmp (ovfl_buf))
{
printf ("Underflow / UfThold failed!\n");
R = H + H;
}
else
R = SQRT (Underflow / UfThold);
if (R <= H)
{
Z = R * UfThold;
X = Z * (One + R * H * (One + H));
}
else
{
Z = UfThold;
X = Z * (One + H * H * (One + H));
}
if (!((X == Z) || (X - Z != Zero)))
{
BadCond (Flaw, "");
printf ("X = %s\n\tis not equal to Z = %s .\n", X.str(), Z.str());
Z9 = X - Z;
printf ("yet X - Z yields %s .\n", Z9.str());
printf (" Should this NOT signal Underflow, ");
printf ("this is a SERIOUS DEFECT\nthat causes ");
printf ("confusion when innocent statements like\n");;
printf (" if (X == Z) ... else");
printf (" ... (f(X) - f(Z)) / (X - Z) ...\n");
printf ("encounter Division by Zero although actually\n");
if (setjmp (ovfl_buf))
printf ("X / Z fails!\n");
else
printf ("X / Z = 1 + %s .\n", ((X / Z - Half) - Half).str());
}
}
printf ("The Underflow threshold is %s, below which\n", UfThold.str());
printf ("calculation may suffer larger Relative error than ");
printf ("merely roundoff.\n");
Y2 = U1 * U1;
Y = Y2 * Y2;
Y2 = Y * U1;
if (Y2 <= UfThold)
{
if (Y > E0)
{
BadCond (Defect, "");
I = 5;
}
else
{
BadCond (Serious, "");
I = 4;
}
printf ("Range is too narrow; U1^%d Underflows.\n", I);
}
/*=============================================*/
Milestone = 130;
/*=============================================*/
Y = -FLOOR (Half - TwoForty * LOG (UfThold) / LOG (HInvrse)) / TwoForty;
Y2 = Y + Y;
printf ("Since underflow occurs below the threshold\n");
printf ("UfThold = (%s) ^ (%s)\nonly underflow ", HInvrse.str(), Y.str());
printf ("should afflict the expression\n\t(%s) ^ (%s);\n",
HInvrse.str(), Y2.str());
printf ("actually calculating yields:");
if (setjmp (ovfl_buf))
{
BadCond (Serious, "trap on underflow.\n");
}
else
{
V9 = POW (HInvrse, Y2);
printf (" %s .\n", V9.str());
if (!((V9 >= Zero) && (V9 <= (Radix + Radix + E9) * UfThold)))
{
BadCond (Serious, "this is not between 0 and underflow\n");
printf (" threshold = %s .\n", UfThold.str());
}
else if (!(V9 > UfThold * (One + E9)))
printf ("This computed value is O.K.\n");
else
{
BadCond (Defect, "this is not between 0 and underflow\n");
printf (" threshold = %s .\n", UfThold.str());
}
}
/*=============================================*/
Milestone = 160;
/*=============================================*/
Pause ();
printf ("Searching for Overflow threshold:\n");
printf ("This may generate an error.\n");
Y = -CInvrse;
V9 = HInvrse * Y;
if (setjmp (ovfl_buf))
{
I = 0;
V9 = Y;
goto overflow;
}
do
{
V = Y;
Y = V9;
V9 = HInvrse * Y;
}
while (V9 < Y);
I = 1;
overflow:
Z = V9;
printf ("Can `Z = -Y' overflow?\n");
printf ("Trying it on Y = %s .\n", Y.str());
V9 = -Y;
V0 = V9;
if (V - Y == V + V0)
printf ("Seems O.K.\n");
else
{
printf ("finds a ");
BadCond (Flaw, "-(-Y) differs from Y.\n");
}
if (Z != Y)
{
BadCond (Serious, "");
printf ("overflow past %s\n\tshrinks to %s .\n", Y.str(), Z.str());
}
if (I)
{
Y = V * (HInvrse * U2 - HInvrse);
Z = Y + ((One - HInvrse) * U2) * V;
if (Z < V0)
Y = Z;
if (Y < V0)
V = Y;
if (V0 - V < V0)
V = V0;
}
else
{
V = Y * (HInvrse * U2 - HInvrse);
V = V + ((One - HInvrse) * U2) * Y;
}
printf ("Overflow threshold is V = %s .\n", V.str());
if (I)
printf ("Overflow saturates at V0 = %s .\n", V0.str());
else
printf ("There is no saturation value because "
"the system traps on overflow.\n");
V9 = V * One;
printf ("No Overflow should be signaled for V * 1 = %s\n", V9.str());
V9 = V / One;
printf (" nor for V / 1 = %s.\n", V9.str());
printf ("Any overflow signal separating this * from the one\n");
printf ("above is a DEFECT.\n");
/*=============================================*/
Milestone = 170;
/*=============================================*/
if (!(-V < V && -V0 < V0 && -UfThold < V && UfThold < V))
{
BadCond (Failure, "Comparisons involving ");
printf ("+-%s, +-%s\nand +-%s are confused by Overflow.",
V.str(), V0.str(), UfThold.str());
}
/*=============================================*/
Milestone = 175;
/*=============================================*/
printf ("\n");
for (Indx = 1; Indx <= 3; ++Indx)
{
switch (Indx)
{
case 1:
Z = UfThold;
break;
case 2:
Z = E0;
break;
case 3:
Z = PseudoZero;
break;
}
if (Z != Zero)
{
V9 = SQRT (Z);
Y = V9 * V9;
if (Y / (One - Radix * E9) < Z || Y > (One + Radix * E9) * Z)
{ /* dgh: + E9 --> * E9 */
if (V9 > U1)
BadCond (Serious, "");
else
BadCond (Defect, "");
printf ("Comparison alleges that what prints as Z = %s\n",
Z.str());
printf (" is too far from sqrt(Z) ^ 2 = %s .\n", Y.str());
}
}
}
/*=============================================*/
Milestone = 180;
/*=============================================*/
for (Indx = 1; Indx <= 2; ++Indx)
{
if (Indx == 1)
Z = V;
else
Z = V0;
V9 = SQRT (Z);
X = (One - Radix * E9) * V9;
V9 = V9 * X;
if (((V9 < (One - Two * Radix * E9) * Z) || (V9 > Z)))
{
Y = V9;
if (X < W)
BadCond (Serious, "");
else
BadCond (Defect, "");
printf ("Comparison alleges that Z = %s\n", Z.str());
printf (" is too far from sqrt(Z) ^ 2 (%s) .\n", Y.str());
}
}
/*=============================================*/
Milestone = 190;
/*=============================================*/
Pause ();
X = UfThold * V;
Y = Radix * Radix;
if (X * Y < One || X > Y)
{
if (X * Y < U1 || X > Y / U1)
BadCond (Defect, "Badly");
else
BadCond (Flaw, "");
printf (" unbalanced range; UfThold * V = %s\n\t%s\n",
X.str(), "is too far from 1.\n");
}
/*=============================================*/
Milestone = 200;
/*=============================================*/
for (Indx = 1; Indx <= 5; ++Indx)
{
X = F9;
switch (Indx)
{
case 2:
X = One + U2;
break;
case 3:
X = V;
break;
case 4:
X = UfThold;
break;
case 5:
X = Radix;
}
Y = X;
if (setjmp (ovfl_buf))
printf (" X / X traps when X = %s\n", X.str());
else
{
V9 = (Y / X - Half) - Half;
if (V9 == Zero)
continue;
if (V9 == -U1 && Indx < 5)
BadCond (Flaw, "");
else
BadCond (Serious, "");
printf (" X / X differs from 1 when X = %s\n", X.str());
printf (" instead, X / X - 1/2 - 1/2 = %s .\n", V9.str());
}
}
/*=============================================*/
Milestone = 210;
/*=============================================*/
MyZero = Zero;
printf ("\n");
printf ("What message and/or values does Division by Zero produce?\n");
printf (" Trying to compute 1 / 0 produces ...");
if (!setjmp (ovfl_buf))
printf (" %s .\n", (One / MyZero).str());
printf ("\n Trying to compute 0 / 0 produces ...");
if (!setjmp (ovfl_buf))
printf (" %s .\n", (Zero / MyZero).str());
/*=============================================*/
Milestone = 220;
/*=============================================*/
Pause ();
printf ("\n");
{
static const char *msg[] = {
"FAILUREs encountered =",
"SERIOUS DEFECTs discovered =",
"DEFECTs discovered =",
"FLAWs discovered ="
};
int i;
for (i = 0; i < 4; i++)
if (ErrCnt[i])
printf ("The number of %-29s %d.\n", msg[i], ErrCnt[i]);
}
printf ("\n");
if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] + ErrCnt[Flaw]) > 0)
{
if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] == 0)
&& (ErrCnt[Flaw] > 0))
{
printf ("The arithmetic diagnosed seems ");
printf ("Satisfactory though flawed.\n");
}
if ((ErrCnt[Failure] + ErrCnt[Serious] == 0) && (ErrCnt[Defect] > 0))
{
printf ("The arithmetic diagnosed may be Acceptable\n");
printf ("despite inconvenient Defects.\n");
}
if ((ErrCnt[Failure] + ErrCnt[Serious]) > 0)
{
printf ("The arithmetic diagnosed has ");
printf ("unacceptable Serious Defects.\n");
}
if (ErrCnt[Failure] > 0)
{
printf ("Potentially fatal FAILURE may have spoiled this");
printf (" program's subsequent diagnoses.\n");
}
}
else
{
printf ("No failures, defects nor flaws have been discovered.\n");
if (!((RMult == Rounded) && (RDiv == Rounded)
&& (RAddSub == Rounded) && (RSqrt == Rounded)))
printf ("The arithmetic diagnosed seems Satisfactory.\n");
else
{
if (StickyBit >= One &&
(Radix - Two) * (Radix - Nine - One) == Zero)
{
printf ("Rounding appears to conform to ");
printf ("the proposed IEEE standard P");
if ((Radix == Two) &&
((Precision - Four * Three * Two) *
(Precision - TwentySeven - TwentySeven + One) == Zero))
printf ("754");
else
printf ("854");
if (IEEE)
printf (".\n");
else
{
printf (",\nexcept for possibly Double Rounding");
printf (" during Gradual Underflow.\n");
}
}
printf ("The arithmetic diagnosed appears to be Excellent!\n");
}
}
printf ("END OF TEST.\n");
return 0;
}
template<typename FLOAT>
FLOAT
Paranoia<FLOAT>::Sign (FLOAT X)
{
return X >= FLOAT (long (0)) ? 1 : -1;
}
template<typename FLOAT>
void
Paranoia<FLOAT>::Pause ()
{
if (do_pause)
{
fputs ("Press return...", stdout);
fflush (stdout);
getchar();
}
printf ("\nDiagnosis resumes after milestone Number %d", Milestone);
printf (" Page: %d\n\n", PageNo);
++Milestone;
++PageNo;
}
template<typename FLOAT>
void
Paranoia<FLOAT>::TstCond (int K, int Valid, const char *T)
{
if (!Valid)
{
BadCond (K, T);
printf (".\n");
}
}
template<typename FLOAT>
void
Paranoia<FLOAT>::BadCond (int K, const char *T)
{
static const char *msg[] = { "FAILURE", "SERIOUS DEFECT", "DEFECT", "FLAW" };
ErrCnt[K] = ErrCnt[K] + 1;
printf ("%s: %s", msg[K], T);
}
/* Random computes
X = (Random1 + Random9)^5
Random1 = X - FLOOR(X) + 0.000005 * X;
and returns the new value of Random1. */
template<typename FLOAT>
FLOAT
Paranoia<FLOAT>::Random ()
{
FLOAT X, Y;
X = Random1 + Random9;
Y = X * X;
Y = Y * Y;
X = X * Y;
Y = X - FLOOR (X);
Random1 = Y + X * FLOAT ("0.000005");
return (Random1);
}
template<typename FLOAT>
void
Paranoia<FLOAT>::SqXMinX (int ErrKind)
{
FLOAT XA, XB;
XB = X * BInvrse;
XA = X - XB;
SqEr = ((SQRT (X * X) - XB) - XA) / OneUlp;
if (SqEr != Zero)
{
if (SqEr < MinSqEr)
MinSqEr = SqEr;
if (SqEr > MaxSqEr)
MaxSqEr = SqEr;
J = J + 1;
BadCond (ErrKind, "\n");
printf ("sqrt(%s) - %s = %s\n", (X * X).str(), X.str(),
(OneUlp * SqEr).str());
printf ("\tinstead of correct value 0 .\n");
}
}
template<typename FLOAT>
void
Paranoia<FLOAT>::NewD ()
{
X = Z1 * Q;
X = FLOOR (Half - X / Radix) * Radix + X;
Q = (Q - X * Z) / Radix + X * X * (D / Radix);
Z = Z - Two * X * D;
if (Z <= Zero)
{
Z = -Z;
Z1 = -Z1;
}
D = Radix * D;
}
template<typename FLOAT>
void
Paranoia<FLOAT>::SR3750 ()
{
if (!((X - Radix < Z2 - Radix) || (X - Z2 > W - Z2)))
{
I = I + 1;
X2 = SQRT (X * D);
Y2 = (X2 - Z2) - (Y - Z2);
X2 = X8 / (Y - Half);
X2 = X2 - Half * X2 * X2;
SqEr = (Y2 + Half) + (Half - X2);
if (SqEr < MinSqEr)
MinSqEr = SqEr;
SqEr = Y2 - X2;
if (SqEr > MaxSqEr)
MaxSqEr = SqEr;
}
}
template<typename FLOAT>
void
Paranoia<FLOAT>::IsYeqX ()
{
if (Y != X)
{
if (N <= 0)
{
if (Z == Zero && Q <= Zero)
printf ("WARNING: computing\n");
else
BadCond (Defect, "computing\n");
printf ("\t(%s) ^ (%s)\n", Z.str(), Q.str());
printf ("\tyielded %s;\n", Y.str());
printf ("\twhich compared unequal to correct %s ;\n", X.str());
printf ("\t\tthey differ by %s .\n", (Y - X).str());
}
N = N + 1; /* ... count discrepancies. */
}
}
template<typename FLOAT>
void
Paranoia<FLOAT>::PrintIfNPositive ()
{
if (N > 0)
printf ("Similar discrepancies have occurred %d times.\n", N);
}
template<typename FLOAT>
void
Paranoia<FLOAT>::TstPtUf ()
{
N = 0;
if (Z != Zero)
{
printf ("Since comparison denies Z = 0, evaluating ");
printf ("(Z + Z) / Z should be safe.\n");
if (setjmp (ovfl_buf))
goto very_serious;
Q9 = (Z + Z) / Z;
printf ("What the machine gets for (Z + Z) / Z is %s .\n", Q9.str());
if (FABS (Q9 - Two) < Radix * U2)
{
printf ("This is O.K., provided Over/Underflow");
printf (" has NOT just been signaled.\n");
}
else
{
if ((Q9 < One) || (Q9 > Two))
{
very_serious:
N = 1;
ErrCnt[Serious] = ErrCnt[Serious] + 1;
printf ("This is a VERY SERIOUS DEFECT!\n");
}
else
{
N = 1;
ErrCnt[Defect] = ErrCnt[Defect] + 1;
printf ("This is a DEFECT!\n");
}
}
V9 = Z * One;
Random1 = V9;
V9 = One * Z;
Random2 = V9;
V9 = Z / One;
if ((Z == Random1) && (Z == Random2) && (Z == V9))
{
if (N > 0)
Pause ();
}
else
{
N = 1;
BadCond (Defect, "What prints as Z = ");
printf ("%s\n\tcompares different from ", Z.str());
if (Z != Random1)
printf ("Z * 1 = %s ", Random1.str());
if (!((Z == Random2) || (Random2 == Random1)))
printf ("1 * Z == %s\n", Random2.str());
if (!(Z == V9))
printf ("Z / 1 = %s\n", V9.str());
if (Random2 != Random1)
{
ErrCnt[Defect] = ErrCnt[Defect] + 1;
BadCond (Defect, "Multiplication does not commute!\n");
printf ("\tComparison alleges that 1 * Z = %s\n", Random2.str());
printf ("\tdiffers from Z * 1 = %s\n", Random1.str());
}
Pause ();
}
}
}
template<typename FLOAT>
void
Paranoia<FLOAT>::notify (const char *s)
{
printf ("%s test appears to be inconsistent...\n", s);
printf (" PLEASE NOTIFY KARPINKSI!\n");
}
/* ====================================================================== */
int main(int ac, char **av)
{
setbuf(stdout, NULL);
setbuf(stderr, NULL);
while (1)
switch (getopt (ac, av, "pvg:fdl"))
{
case -1:
return 0;
case 'p':
do_pause = true;
break;
case 'v':
verbose = true;
break;
case 'g':
{
static const struct {
const char *name;
const struct real_format *fmt;
} fmts[] = {
#define F(x) { #x, &x##_format }
F(ieee_single),
F(ieee_double),
F(ieee_extended_motorola),
F(ieee_extended_intel_96),
F(ieee_extended_intel_128),
F(ibm_extended),
F(ieee_quad),
F(vax_f),
F(vax_d),
F(vax_g),
F(i370_single),
F(i370_double),
F(c4x_single),
F(c4x_extended),
F(real_internal),
#undef F
};
int i, n = sizeof (fmts)/sizeof(*fmts);
for (i = 0; i < n; ++i)
if (strcmp (fmts[i].name, optarg) == 0)
break;
if (i == n)
{
printf ("Unknown implementation \"%s\"; "
"available implementations:\n", optarg);
for (i = 0; i < n; ++i)
printf ("\t%s\n", fmts[i].name);
return 1;
}
// We cheat and use the same mode all the time, but vary
// the format used for that mode.
real_format_for_mode[int(real_c_float::MODE) - int(QFmode)]
= fmts[i].fmt;
Paranoia<real_c_float>().main();
break;
}
case 'f':
Paranoia < native_float<float> >().main();
break;
case 'd':
Paranoia < native_float<double> >().main();
break;
case 'l':
#ifndef NO_LONG_DOUBLE
Paranoia < native_float<long double> >().main();
#endif
break;
case '?':
puts ("-p\tpause between pages");
puts ("-g<FMT>\treal.c implementation FMT");
puts ("-f\tnative float");
puts ("-d\tnative double");
puts ("-l\tnative long double");
return 0;
}
}
/* GCC stuff referenced by real.o. */
extern "C" void
fancy_abort ()
{
abort ();
}
int target_flags = 0;
extern "C" int
floor_log2_wide (unsigned HOST_WIDE_INT x)
{
int log = -1;
while (x != 0)
log++,
x >>= 1;
return log;
}
|