diff options
Diffstat (limited to 'libstdc++-v3/include/std/complex')
-rw-r--r-- | libstdc++-v3/include/std/complex | 1033 |
1 files changed, 1027 insertions, 6 deletions
diff --git a/libstdc++-v3/include/std/complex b/libstdc++-v3/include/std/complex index 6b7abcf..18dd867 100644 --- a/libstdc++-v3/include/std/complex +++ b/libstdc++-v3/include/std/complex @@ -1,6 +1,6 @@ -// -*- C++ -*- std header. +// The template and inlines for the -*- C++ -*- complex number classes. -// Copyright (C) 2001 Free Software Foundation, Inc. +// Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the @@ -27,11 +27,1032 @@ // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. -/** @file complex - * This is a Standard C++ Library file. You should @c #include this file - * in your programs, rather than any of the "st[dl]_*.h" implementation files. +// +// ISO C++ 14882: 26.2 Complex Numbers +// Note: this is not a conforming implementation. +// Initially implemented by Ulrich Drepper <drepper@cygnus.com> +// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr> +// + +/** @file std_complex.h + * This is an internal header file, included by other library headers. + * You should not attempt to use it directly. */ #ifndef _CPP_COMPLEX -#include <bits/std_complex.h> +#define _CPP_COMPLEX 1 + +#pragma GCC system_header + +#include <bits/c++config.h> +#include <bits/cpp_type_traits.h> +#include <cmath> +#include <sstream> + +namespace std +{ + // Forward declarations + template<typename _Tp> class complex; + template<> class complex<float>; + template<> class complex<double>; + template<> class complex<long double>; + + template<typename _Tp> _Tp abs(const complex<_Tp>&); + template<typename _Tp> _Tp arg(const complex<_Tp>&); + template<typename _Tp> _Tp norm(const complex<_Tp>&); + + template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&); + template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0); + + // Transcendentals: + template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&); + template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&); + template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&); + template<typename _Tp> complex<_Tp> log(const complex<_Tp>&); + template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&); + template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int); + template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&); + template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, + const complex<_Tp>&); + template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&); + template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&); + template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&); + template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&); + template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&); + template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&); + + + // 26.2.2 Primary template class complex + template<typename _Tp> + class complex + { + public: + typedef _Tp value_type; + + complex(const _Tp& = _Tp(), const _Tp & = _Tp()); + + // Let's the compiler synthetize the copy constructor + // complex (const complex<_Tp>&); + template<typename _Up> + complex(const complex<_Up>&); + + _Tp real() const; + _Tp imag() const; + + complex<_Tp>& operator=(const _Tp&); + complex<_Tp>& operator+=(const _Tp&); + complex<_Tp>& operator-=(const _Tp&); + complex<_Tp>& operator*=(const _Tp&); + complex<_Tp>& operator/=(const _Tp&); + + // Let's the compiler synthetize the + // copy and assignment operator + // complex<_Tp>& operator= (const complex<_Tp>&); + template<typename _Up> + complex<_Tp>& operator=(const complex<_Up>&); + template<typename _Up> + complex<_Tp>& operator+=(const complex<_Up>&); + template<typename _Up> + complex<_Tp>& operator-=(const complex<_Up>&); + template<typename _Up> + complex<_Tp>& operator*=(const complex<_Up>&); + template<typename _Up> + complex<_Tp>& operator/=(const complex<_Up>&); + + private: + _Tp _M_real, _M_imag; + }; + + template<typename _Tp> + inline _Tp + complex<_Tp>::real() const { return _M_real; } + + template<typename _Tp> + inline _Tp + complex<_Tp>::imag() const { return _M_imag; } + + template<typename _Tp> + inline + complex<_Tp>::complex(const _Tp& __r, const _Tp& __i) + : _M_real(__r), _M_imag(__i) { } + + template<typename _Tp> + template<typename _Up> + inline + complex<_Tp>::complex(const complex<_Up>& __z) + : _M_real(__z.real()), _M_imag(__z.imag()) { } + + template<typename _Tp> + complex<_Tp>& + complex<_Tp>::operator=(const _Tp& __t) + { + _M_real = __t; + _M_imag = _Tp(); + return *this; + } + + // 26.2.5/1 + template<typename _Tp> + inline complex<_Tp>& + complex<_Tp>::operator+=(const _Tp& __t) + { + _M_real += __t; + return *this; + } + + // 26.2.5/3 + template<typename _Tp> + inline complex<_Tp>& + complex<_Tp>::operator-=(const _Tp& __t) + { + _M_real -= __t; + return *this; + } + + // 26.2.5/5 + template<typename _Tp> + complex<_Tp>& + complex<_Tp>::operator*=(const _Tp& __t) + { + _M_real *= __t; + _M_imag *= __t; + return *this; + } + + // 26.2.5/7 + template<typename _Tp> + complex<_Tp>& + complex<_Tp>::operator/=(const _Tp& __t) + { + _M_real /= __t; + _M_imag /= __t; + return *this; + } + + template<typename _Tp> + template<typename _Up> + complex<_Tp>& + complex<_Tp>::operator=(const complex<_Up>& __z) + { + _M_real = __z.real(); + _M_imag = __z.imag(); + return *this; + } + + // 26.2.5/9 + template<typename _Tp> + template<typename _Up> + complex<_Tp>& + complex<_Tp>::operator+=(const complex<_Up>& __z) + { + _M_real += __z.real(); + _M_imag += __z.imag(); + return *this; + } + + // 26.2.5/11 + template<typename _Tp> + template<typename _Up> + complex<_Tp>& + complex<_Tp>::operator-=(const complex<_Up>& __z) + { + _M_real -= __z.real(); + _M_imag -= __z.imag(); + return *this; + } + + // 26.2.5/13 + // XXX: This is a grammar school implementation. + template<typename _Tp> + template<typename _Up> + complex<_Tp>& + complex<_Tp>::operator*=(const complex<_Up>& __z) + { + const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag(); + _M_imag = _M_real * __z.imag() + _M_imag * __z.real(); + _M_real = __r; + return *this; + } + + // 26.2.5/15 + // XXX: This is a grammar school implementation. + template<typename _Tp> + template<typename _Up> + complex<_Tp>& + complex<_Tp>::operator/=(const complex<_Up>& __z) + { + const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag(); + const _Tp __n = norm(__z); + _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n; + _M_real = __r / __n; + return *this; + } + + // Operators: + template<typename _Tp> + inline complex<_Tp> + operator+(const complex<_Tp>& __x, const complex<_Tp>& __y) + { return complex<_Tp> (__x) += __y; } + + template<typename _Tp> + inline complex<_Tp> + operator+(const complex<_Tp>& __x, const _Tp& __y) + { return complex<_Tp> (__x) += __y; } + + template<typename _Tp> + inline complex<_Tp> + operator+(const _Tp& __x, const complex<_Tp>& __y) + { return complex<_Tp> (__y) += __x; } + + template<typename _Tp> + inline complex<_Tp> + operator-(const complex<_Tp>& __x, const complex<_Tp>& __y) + { return complex<_Tp> (__x) -= __y; } + + template<typename _Tp> + inline complex<_Tp> + operator-(const complex<_Tp>& __x, const _Tp& __y) + { return complex<_Tp> (__x) -= __y; } + + template<typename _Tp> + inline complex<_Tp> + operator-(const _Tp& __x, const complex<_Tp>& __y) + { return complex<_Tp> (__x) -= __y; } + + template<typename _Tp> + inline complex<_Tp> + operator*(const complex<_Tp>& __x, const complex<_Tp>& __y) + { return complex<_Tp> (__x) *= __y; } + + template<typename _Tp> + inline complex<_Tp> + operator*(const complex<_Tp>& __x, const _Tp& __y) + { return complex<_Tp> (__x) *= __y; } + + template<typename _Tp> + inline complex<_Tp> + operator*(const _Tp& __x, const complex<_Tp>& __y) + { return complex<_Tp> (__y) *= __x; } + + template<typename _Tp> + inline complex<_Tp> + operator/(const complex<_Tp>& __x, const complex<_Tp>& __y) + { return complex<_Tp> (__x) /= __y; } + + template<typename _Tp> + inline complex<_Tp> + operator/(const complex<_Tp>& __x, const _Tp& __y) + { return complex<_Tp> (__x) /= __y; } + + template<typename _Tp> + inline complex<_Tp> + operator/(const _Tp& __x, const complex<_Tp>& __y) + { return complex<_Tp> (__x) /= __y; } + + template<typename _Tp> + inline complex<_Tp> + operator+(const complex<_Tp>& __x) + { return __x; } + + template<typename _Tp> + inline complex<_Tp> + operator-(const complex<_Tp>& __x) + { return complex<_Tp>(-__x.real(), -__x.imag()); } + + template<typename _Tp> + inline bool + operator==(const complex<_Tp>& __x, const complex<_Tp>& __y) + { return __x.real() == __y.real() && __x.imag() == __y.imag(); } + + template<typename _Tp> + inline bool + operator==(const complex<_Tp>& __x, const _Tp& __y) + { return __x.real() == __y && __x.imag() == _Tp(); } + + template<typename _Tp> + inline bool + operator==(const _Tp& __x, const complex<_Tp>& __y) + { return __x == __y.real() && _Tp() == __y.imag(); } + + template<typename _Tp> + inline bool + operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y) + { return __x.real() != __y.real() || __x.imag() != __y.imag(); } + + template<typename _Tp> + inline bool + operator!=(const complex<_Tp>& __x, const _Tp& __y) + { return __x.real() != __y || __x.imag() != _Tp(); } + + template<typename _Tp> + inline bool + operator!=(const _Tp& __x, const complex<_Tp>& __y) + { return __x != __y.real() || _Tp() != __y.imag(); } + + template<typename _Tp, typename _CharT, class _Traits> + basic_istream<_CharT, _Traits>& + operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x) + { + _Tp __re_x, __im_x; + _CharT __ch; + __is >> __ch; + if (__ch == '(') + { + __is >> __re_x >> __ch; + if (__ch == ',') + { + __is >> __im_x >> __ch; + if (__ch == ')') + __x = complex<_Tp>(__re_x, __im_x); + else + __is.setstate(ios_base::failbit); + } + else if (__ch == ')') + __x = complex<_Tp>(__re_x, _Tp(0)); + else + __is.setstate(ios_base::failbit); + } + else + { + __is.putback(__ch); + __is >> __re_x; + __x = complex<_Tp>(__re_x, _Tp(0)); + } + return __is; + } + + template<typename _Tp, typename _CharT, class _Traits> + basic_ostream<_CharT, _Traits>& + operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x) + { + basic_ostringstream<_CharT, _Traits> __s; + __s.flags(__os.flags()); + __s.imbue(__os.getloc()); + __s.precision(__os.precision()); + __s << '(' << __x.real() << "," << __x.imag() << ')'; + return __os << __s.str(); + } + + // Values + template<typename _Tp> + inline _Tp + real(const complex<_Tp>& __z) + { return __z.real(); } + + template<typename _Tp> + inline _Tp + imag(const complex<_Tp>& __z) + { return __z.imag(); } + + template<typename _Tp> + inline _Tp + abs(const complex<_Tp>& __z) + { + _Tp __x = __z.real(); + _Tp __y = __z.imag(); + const _Tp __s = max(abs(__x), abs(__y)); + if (__s == _Tp()) // well ... + return __s; + __x /= __s; + __y /= __s; + return __s * sqrt(__x * __x + __y * __y); + } + + template<typename _Tp> + inline _Tp + arg(const complex<_Tp>& __z) + { return atan2(__z.imag(), __z.real()); } + + // 26.2.7/5: norm(__z) returns the squared magintude of __z. + // As defined, norm() is -not- a norm is the common mathematical + // sens used in numerics. The helper class _Norm_helper<> tries to + // distinguish between builtin floating point and the rest, so as + // to deliver an answer as close as possible to the real value. + template<bool> + struct _Norm_helper + { + template<typename _Tp> + static inline _Tp _S_do_it(const complex<_Tp>& __z) + { + const _Tp __x = __z.real(); + const _Tp __y = __z.imag(); + return __x * __x + __y * __y; + } + }; + + template<> + struct _Norm_helper<true> + { + template<typename _Tp> + static inline _Tp _S_do_it(const complex<_Tp>& __z) + { + _Tp __res = abs(__z); + return __res * __res; + } + }; + + template<typename _Tp> + inline _Tp + norm(const complex<_Tp>& __z) + { + return _Norm_helper<__is_floating<_Tp>::_M_type>::_S_do_it(__z); + } + + template<typename _Tp> + inline complex<_Tp> + polar(const _Tp& __rho, const _Tp& __theta) + { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); } + + template<typename _Tp> + inline complex<_Tp> + conj(const complex<_Tp>& __z) + { return complex<_Tp>(__z.real(), -__z.imag()); } + + // Transcendentals + template<typename _Tp> + inline complex<_Tp> + cos(const complex<_Tp>& __z) + { + const _Tp __x = __z.real(); + const _Tp __y = __z.imag(); + return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y)); + } + + template<typename _Tp> + inline complex<_Tp> + cosh(const complex<_Tp>& __z) + { + const _Tp __x = __z.real(); + const _Tp __y = __z.imag(); + return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y)); + } + + template<typename _Tp> + inline complex<_Tp> + exp(const complex<_Tp>& __z) + { return polar(exp(__z.real()), __z.imag()); } + + template<typename _Tp> + inline complex<_Tp> + log(const complex<_Tp>& __z) + { return complex<_Tp>(log(abs(__z)), arg(__z)); } + + template<typename _Tp> + inline complex<_Tp> + log10(const complex<_Tp>& __z) + { return log(__z) / log(_Tp(10.0)); } + + template<typename _Tp> + inline complex<_Tp> + sin(const complex<_Tp>& __z) + { + const _Tp __x = __z.real(); + const _Tp __y = __z.imag(); + return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); + } + + template<typename _Tp> + inline complex<_Tp> + sinh(const complex<_Tp>& __z) + { + const _Tp __x = __z.real(); + const _Tp __y = __z.imag(); + return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y)); + } + + template<typename _Tp> + complex<_Tp> + sqrt(const complex<_Tp>& __z) + { + _Tp __x = __z.real(); + _Tp __y = __z.imag(); + + if (__x == _Tp()) + { + _Tp __t = sqrt(abs(__y) / 2); + return complex<_Tp>(__t, __y < _Tp() ? -__t : __t); + } + else + { + _Tp __t = sqrt(2 * (abs(__z) + abs(__x))); + _Tp __u = __t / 2; + return __x > _Tp() + ? complex<_Tp>(__u, __y / __t) + : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u); + } + } + + template<typename _Tp> + inline complex<_Tp> + tan(const complex<_Tp>& __z) + { + return sin(__z) / cos(__z); + } + + template<typename _Tp> + inline complex<_Tp> + tanh(const complex<_Tp>& __z) + { + return sinh(__z) / cosh(__z); + } + + template<typename _Tp> + inline complex<_Tp> + pow(const complex<_Tp>& __z, int __n) + { + return __pow_helper(__z, __n); + } + + template<typename _Tp> + inline complex<_Tp> + pow(const complex<_Tp>& __x, const _Tp& __y) + { + return exp(__y * log(__x)); + } + + template<typename _Tp> + inline complex<_Tp> + pow(const complex<_Tp>& __x, const complex<_Tp>& __y) + { + return exp(__y * log(__x)); + } + + template<typename _Tp> + inline complex<_Tp> + pow(const _Tp& __x, const complex<_Tp>& __y) + { + return exp(__y * log(__x)); + } + + // 26.2.3 complex specializations + // complex<float> specialization + template<> class complex<float> + { + public: + typedef float value_type; + + complex(float = 0.0f, float = 0.0f); +#ifdef _GLIBCPP_BUGGY_COMPLEX + complex(const complex& __z) : _M_value(__z._M_value) { } +#endif + explicit complex(const complex<double>&); + explicit complex(const complex<long double>&); + + float real() const; + float imag() const; + + complex<float>& operator=(float); + complex<float>& operator+=(float); + complex<float>& operator-=(float); + complex<float>& operator*=(float); + complex<float>& operator/=(float); + + // Let's the compiler synthetize the copy and assignment + // operator. It always does a pretty good job. + // complex& operator= (const complex&); + template<typename _Tp> + complex<float>&operator=(const complex<_Tp>&); + template<typename _Tp> + complex<float>& operator+=(const complex<_Tp>&); + template<class _Tp> + complex<float>& operator-=(const complex<_Tp>&); + template<class _Tp> + complex<float>& operator*=(const complex<_Tp>&); + template<class _Tp> + complex<float>&operator/=(const complex<_Tp>&); + + private: + typedef __complex__ float _ComplexT; + _ComplexT _M_value; + + complex(_ComplexT __z) : _M_value(__z) { } + + friend class complex<double>; + friend class complex<long double>; + }; + + inline float + complex<float>::real() const + { return __real__ _M_value; } + + inline float + complex<float>::imag() const + { return __imag__ _M_value; } + + inline + complex<float>::complex(float r, float i) + { + __real__ _M_value = r; + __imag__ _M_value = i; + } + + inline complex<float>& + complex<float>::operator=(float __f) + { + __real__ _M_value = __f; + __imag__ _M_value = 0.0f; + return *this; + } + + inline complex<float>& + complex<float>::operator+=(float __f) + { + __real__ _M_value += __f; + return *this; + } + + inline complex<float>& + complex<float>::operator-=(float __f) + { + __real__ _M_value -= __f; + return *this; + } + + inline complex<float>& + complex<float>::operator*=(float __f) + { + _M_value *= __f; + return *this; + } + + inline complex<float>& + complex<float>::operator/=(float __f) + { + _M_value /= __f; + return *this; + } + + template<typename _Tp> + inline complex<float>& + complex<float>::operator=(const complex<_Tp>& __z) + { + __real__ _M_value = __z.real(); + __imag__ _M_value = __z.imag(); + return *this; + } + + template<typename _Tp> + inline complex<float>& + complex<float>::operator+=(const complex<_Tp>& __z) + { + __real__ _M_value += __z.real(); + __imag__ _M_value += __z.imag(); + return *this; + } + + template<typename _Tp> + inline complex<float>& + complex<float>::operator-=(const complex<_Tp>& __z) + { + __real__ _M_value -= __z.real(); + __imag__ _M_value -= __z.imag(); + return *this; + } + + template<typename _Tp> + inline complex<float>& + complex<float>::operator*=(const complex<_Tp>& __z) + { + _ComplexT __t; + __real__ __t = __z.real(); + __imag__ __t = __z.imag(); + _M_value *= __t; + return *this; + } + + template<typename _Tp> + inline complex<float>& + complex<float>::operator/=(const complex<_Tp>& __z) + { + _ComplexT __t; + __real__ __t = __z.real(); + __imag__ __t = __z.imag(); + _M_value /= __t; + return *this; + } + + // 26.2.3 complex specializations + // complex<double> specialization + template<> class complex<double> + { + public: + typedef double value_type; + + complex(double =0.0, double =0.0); +#ifdef _GLIBCPP_BUGGY_COMPLEX + complex(const complex& __z) : _M_value(__z._M_value) { } +#endif + complex(const complex<float>&); + explicit complex(const complex<long double>&); + + double real() const; + double imag() const; + + complex<double>& operator=(double); + complex<double>& operator+=(double); + complex<double>& operator-=(double); + complex<double>& operator*=(double); + complex<double>& operator/=(double); + + // The compiler will synthetize this, efficiently. + // complex& operator= (const complex&); + template<typename _Tp> + complex<double>& operator=(const complex<_Tp>&); + template<typename _Tp> + complex<double>& operator+=(const complex<_Tp>&); + template<typename _Tp> + complex<double>& operator-=(const complex<_Tp>&); + template<typename _Tp> + complex<double>& operator*=(const complex<_Tp>&); + template<typename _Tp> + complex<double>& operator/=(const complex<_Tp>&); + + private: + typedef __complex__ double _ComplexT; + _ComplexT _M_value; + + complex(_ComplexT __z) : _M_value(__z) { } + + friend class complex<float>; + friend class complex<long double>; + }; + + inline double + complex<double>::real() const + { return __real__ _M_value; } + + inline double + complex<double>::imag() const + { return __imag__ _M_value; } + + inline + complex<double>::complex(double __r, double __i) + { + __real__ _M_value = __r; + __imag__ _M_value = __i; + } + + inline complex<double>& + complex<double>::operator=(double __d) + { + __real__ _M_value = __d; + __imag__ _M_value = 0.0; + return *this; + } + + inline complex<double>& + complex<double>::operator+=(double __d) + { + __real__ _M_value += __d; + return *this; + } + + inline complex<double>& + complex<double>::operator-=(double __d) + { + __real__ _M_value -= __d; + return *this; + } + + inline complex<double>& + complex<double>::operator*=(double __d) + { + _M_value *= __d; + return *this; + } + + inline complex<double>& + complex<double>::operator/=(double __d) + { + _M_value /= __d; + return *this; + } + + template<typename _Tp> + inline complex<double>& + complex<double>::operator=(const complex<_Tp>& __z) + { + __real__ _M_value = __z.real(); + __imag__ _M_value = __z.imag(); + return *this; + } + + template<typename _Tp> + inline complex<double>& + complex<double>::operator+=(const complex<_Tp>& __z) + { + __real__ _M_value += __z.real(); + __imag__ _M_value += __z.imag(); + return *this; + } + + template<typename _Tp> + inline complex<double>& + complex<double>::operator-=(const complex<_Tp>& __z) + { + __real__ _M_value -= __z.real(); + __imag__ _M_value -= __z.imag(); + return *this; + } + + template<typename _Tp> + inline complex<double>& + complex<double>::operator*=(const complex<_Tp>& __z) + { + _ComplexT __t; + __real__ __t = __z.real(); + __imag__ __t = __z.imag(); + _M_value *= __t; + return *this; + } + + template<typename _Tp> + inline complex<double>& + complex<double>::operator/=(const complex<_Tp>& __z) + { + _ComplexT __t; + __real__ __t = __z.real(); + __imag__ __t = __z.imag(); + _M_value /= __t; + return *this; + } + + // 26.2.3 complex specializations + // complex<long double> specialization + template<> class complex<long double> + { + public: + typedef long double value_type; + + complex(long double = 0.0L, long double = 0.0L); +#ifdef _GLIBCPP_BUGGY_COMPLEX + complex(const complex& __z) : _M_value(__z._M_value) { } #endif + complex(const complex<float>&); + complex(const complex<double>&); + + long double real() const; + long double imag() const; + + complex<long double>& operator= (long double); + complex<long double>& operator+= (long double); + complex<long double>& operator-= (long double); + complex<long double>& operator*= (long double); + complex<long double>& operator/= (long double); + + // The compiler knows how to do this efficiently + // complex& operator= (const complex&); + template<typename _Tp> + complex<long double>& operator=(const complex<_Tp>&); + template<typename _Tp> + complex<long double>& operator+=(const complex<_Tp>&); + template<typename _Tp> + complex<long double>& operator-=(const complex<_Tp>&); + template<typename _Tp> + complex<long double>& operator*=(const complex<_Tp>&); + template<typename _Tp> + complex<long double>& operator/=(const complex<_Tp>&); + + private: + typedef __complex__ long double _ComplexT; + _ComplexT _M_value; + + complex(_ComplexT __z) : _M_value(__z) { } + + friend class complex<float>; + friend class complex<double>; + }; + + inline + complex<long double>::complex(long double __r, long double __i) + { + __real__ _M_value = __r; + __imag__ _M_value = __i; + } + + inline long double + complex<long double>::real() const + { return __real__ _M_value; } + + inline long double + complex<long double>::imag() const + { return __imag__ _M_value; } + + inline complex<long double>& + complex<long double>::operator=(long double __r) + { + __real__ _M_value = __r; + __imag__ _M_value = 0.0L; + return *this; + } + + inline complex<long double>& + complex<long double>::operator+=(long double __r) + { + __real__ _M_value += __r; + return *this; + } + + inline complex<long double>& + complex<long double>::operator-=(long double __r) + { + __real__ _M_value -= __r; + return *this; + } + + inline complex<long double>& + complex<long double>::operator*=(long double __r) + { + _M_value *= __r; + return *this; + } + + inline complex<long double>& + complex<long double>::operator/=(long double __r) + { + _M_value /= __r; + return *this; + } + + template<typename _Tp> + inline complex<long double>& + complex<long double>::operator=(const complex<_Tp>& __z) + { + __real__ _M_value = __z.real(); + __imag__ _M_value = __z.imag(); + return *this; + } + + template<typename _Tp> + inline complex<long double>& + complex<long double>::operator+=(const complex<_Tp>& __z) + { + __real__ _M_value += __z.real(); + __imag__ _M_value += __z.imag(); + return *this; + } + + template<typename _Tp> + inline complex<long double>& + complex<long double>::operator-=(const complex<_Tp>& __z) + { + __real__ _M_value -= __z.real(); + __imag__ _M_value -= __z.imag(); + return *this; + } + + template<typename _Tp> + inline complex<long double>& + complex<long double>::operator*=(const complex<_Tp>& __z) + { + _ComplexT __t; + __real__ __t = __z.real(); + __imag__ __t = __z.imag(); + _M_value *= __t; + return *this; + } + + template<typename _Tp> + inline complex<long double>& + complex<long double>::operator/=(const complex<_Tp>& __z) + { + _ComplexT __t; + __real__ __t = __z.real(); + __imag__ __t = __z.imag(); + _M_value /= __t; + return *this; + } + + // These bits have to be at the end of this file, so that the + // specializations have all been defined. + // ??? No, they have to be there because of compiler limitation at + // inlining. It suffices that class specializations be defined. + inline + complex<float>::complex(const complex<double>& __z) + : _M_value(_ComplexT(__z._M_value)) { } + + inline + complex<float>::complex(const complex<long double>& __z) + : _M_value(_ComplexT(__z._M_value)) { } + + inline + complex<double>::complex(const complex<float>& __z) + : _M_value(_ComplexT(__z._M_value)) { } + + inline + complex<double>::complex(const complex<long double>& __z) + { + __real__ _M_value = __z.real(); + __imag__ _M_value = __z.imag(); + } + + inline + complex<long double>::complex(const complex<float>& __z) + : _M_value(_ComplexT(__z._M_value)) { } + + inline + complex<long double>::complex(const complex<double>& __z) + : _M_value(_ComplexT(__z._M_value)) { } +} // namespace std + +#endif /* _CPP_COMPLEX */ |