aboutsummaryrefslogtreecommitdiff
path: root/libphobos/src/std/internal/math/gammafunction.d
diff options
context:
space:
mode:
Diffstat (limited to 'libphobos/src/std/internal/math/gammafunction.d')
-rw-r--r--libphobos/src/std/internal/math/gammafunction.d1834
1 files changed, 1834 insertions, 0 deletions
diff --git a/libphobos/src/std/internal/math/gammafunction.d b/libphobos/src/std/internal/math/gammafunction.d
new file mode 100644
index 0000000..dd20691
--- /dev/null
+++ b/libphobos/src/std/internal/math/gammafunction.d
@@ -0,0 +1,1834 @@
+/**
+ * Implementation of the gamma and beta functions, and their integrals.
+ *
+ * License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).
+ * Copyright: Based on the CEPHES math library, which is
+ * Copyright (C) 1994 Stephen L. Moshier (moshier@world.std.com).
+ * Authors: Stephen L. Moshier (original C code). Conversion to D by Don Clugston
+ *
+ *
+Macros:
+ * TABLE_SV = <table border="1" cellpadding="4" cellspacing="0">
+ * <caption>Special Values</caption>
+ * $0</table>
+ * SVH = $(TR $(TH $1) $(TH $2))
+ * SV = $(TR $(TD $1) $(TD $2))
+ * GAMMA = &#915;
+ * INTEGRATE = $(BIG &#8747;<sub>$(SMALL $1)</sub><sup>$2</sup>)
+ * POWER = $1<sup>$2</sup>
+ * NAN = $(RED NAN)
+ */
+module std.internal.math.gammafunction;
+import std.internal.math.errorfunction;
+import std.math;
+
+pure:
+nothrow:
+@safe:
+@nogc:
+
+private {
+
+enum real SQRT2PI = 2.50662827463100050242E0L; // sqrt(2pi)
+immutable real EULERGAMMA = 0.57721_56649_01532_86060_65120_90082_40243_10421_59335_93992L; /** Euler-Mascheroni constant 0.57721566.. */
+
+// Polynomial approximations for gamma and loggamma.
+
+immutable real[8] GammaNumeratorCoeffs = [ 1.0,
+ 0x1.acf42d903366539ep-1, 0x1.73a991c8475f1aeap-2, 0x1.c7e918751d6b2a92p-4,
+ 0x1.86d162cca32cfe86p-6, 0x1.0c378e2e6eaf7cd8p-8, 0x1.dc5c66b7d05feb54p-12,
+ 0x1.616457b47e448694p-15
+];
+
+immutable real[9] GammaDenominatorCoeffs = [ 1.0,
+ 0x1.a8f9faae5d8fc8bp-2, -0x1.cb7895a6756eebdep-3, -0x1.7b9bab006d30652ap-5,
+ 0x1.c671af78f312082ep-6, -0x1.a11ebbfaf96252dcp-11, -0x1.447b4d2230a77ddap-10,
+ 0x1.ec1d45bb85e06696p-13,-0x1.d4ce24d05bd0a8e6p-17
+];
+
+immutable real[9] GammaSmallCoeffs = [ 1.0,
+ 0x1.2788cfc6fb618f52p-1, -0x1.4fcf4026afa2f7ecp-1, -0x1.5815e8fa24d7e306p-5,
+ 0x1.5512320aea2ad71ap-3, -0x1.59af0fb9d82e216p-5, -0x1.3b4b61d3bfdf244ap-7,
+ 0x1.d9358e9d9d69fd34p-8, -0x1.38fc4bcbada775d6p-10
+];
+
+immutable real[9] GammaSmallNegCoeffs = [ -1.0,
+ 0x1.2788cfc6fb618f54p-1, 0x1.4fcf4026afa2bc4cp-1, -0x1.5815e8fa2468fec8p-5,
+ -0x1.5512320baedaf4b6p-3, -0x1.59af0fa283baf07ep-5, 0x1.3b4a70de31e05942p-7,
+ 0x1.d9398be3bad13136p-8, 0x1.291b73ee05bcbba2p-10
+];
+
+immutable real[7] logGammaStirlingCoeffs = [
+ 0x1.5555555555553f98p-4, -0x1.6c16c16c07509b1p-9, 0x1.a01a012461cbf1e4p-11,
+ -0x1.3813089d3f9d164p-11, 0x1.b911a92555a277b8p-11, -0x1.ed0a7b4206087b22p-10,
+ 0x1.402523859811b308p-8
+];
+
+immutable real[7] logGammaNumerator = [
+ -0x1.0edd25913aaa40a2p+23, -0x1.31c6ce2e58842d1ep+24, -0x1.f015814039477c3p+23,
+ -0x1.74ffe40c4b184b34p+22, -0x1.0d9c6d08f9eab55p+20, -0x1.54c6b71935f1fc88p+16,
+ -0x1.0e761b42932b2aaep+11
+];
+
+immutable real[8] logGammaDenominator = [
+ -0x1.4055572d75d08c56p+24, -0x1.deeb6013998e4d76p+24, -0x1.106f7cded5dcc79ep+24,
+ -0x1.25e17184848c66d2p+22, -0x1.301303b99a614a0ap+19, -0x1.09e76ab41ae965p+15,
+ -0x1.00f95ced9e5f54eep+9, 1.0
+];
+
+/*
+ * Helper function: Gamma function computed by Stirling's formula.
+ *
+ * Stirling's formula for the gamma function is:
+ *
+ * $(GAMMA)(x) = sqrt(2 &pi;) x<sup>x-0.5</sup> exp(-x) (1 + 1/x P(1/x))
+ *
+ */
+real gammaStirling(real x)
+{
+ // CEPHES code Copyright 1994 by Stephen L. Moshier
+
+ static immutable real[9] SmallStirlingCoeffs = [
+ 0x1.55555555555543aap-4, 0x1.c71c71c720dd8792p-9, -0x1.5f7268f0b5907438p-9,
+ -0x1.e13cd410e0477de6p-13, 0x1.9b0f31643442616ep-11, 0x1.2527623a3472ae08p-14,
+ -0x1.37f6bc8ef8b374dep-11,-0x1.8c968886052b872ap-16, 0x1.76baa9c6d3eeddbcp-11
+ ];
+
+ static immutable real[7] LargeStirlingCoeffs = [ 1.0L,
+ 8.33333333333333333333E-2L, 3.47222222222222222222E-3L,
+ -2.68132716049382716049E-3L, -2.29472093621399176955E-4L,
+ 7.84039221720066627474E-4L, 6.97281375836585777429E-5L
+ ];
+
+ real w = 1.0L/x;
+ real y = exp(x);
+ if ( x > 1024.0L )
+ {
+ // For large x, use rational coefficients from the analytical expansion.
+ w = poly(w, LargeStirlingCoeffs);
+ // Avoid overflow in pow()
+ real v = pow( x, 0.5L * x - 0.25L );
+ y = v * (v / y);
+ }
+ else
+ {
+ w = 1.0L + w * poly( w, SmallStirlingCoeffs);
+ static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
+ {
+ // Avoid overflow in pow() for 64-bit reals
+ if (x > 143.0)
+ {
+ real v = pow( x, 0.5 * x - 0.25 );
+ y = v * (v / y);
+ }
+ else
+ {
+ y = pow( x, x - 0.5 ) / y;
+ }
+ }
+ else
+ {
+ y = pow( x, x - 0.5L ) / y;
+ }
+ }
+ y = SQRT2PI * y * w;
+ return y;
+}
+
+/*
+ * Helper function: Incomplete gamma function computed by Temme's expansion.
+ *
+ * This is a port of igamma_temme_large from Boost.
+ *
+ */
+real igammaTemmeLarge(real a, real x)
+{
+ static immutable real[][13] coef = [
+ [ -0.333333333333333333333, 0.0833333333333333333333,
+ -0.0148148148148148148148, 0.00115740740740740740741,
+ 0.000352733686067019400353, -0.0001787551440329218107,
+ 0.39192631785224377817e-4, -0.218544851067999216147e-5,
+ -0.18540622107151599607e-5, 0.829671134095308600502e-6,
+ -0.176659527368260793044e-6, 0.670785354340149858037e-8,
+ 0.102618097842403080426e-7, -0.438203601845335318655e-8,
+ 0.914769958223679023418e-9, -0.255141939949462497669e-10,
+ -0.583077213255042506746e-10, 0.243619480206674162437e-10,
+ -0.502766928011417558909e-11 ],
+ [ -0.00185185185185185185185, -0.00347222222222222222222,
+ 0.00264550264550264550265, -0.000990226337448559670782,
+ 0.000205761316872427983539, -0.40187757201646090535e-6,
+ -0.18098550334489977837e-4, 0.764916091608111008464e-5,
+ -0.161209008945634460038e-5, 0.464712780280743434226e-8,
+ 0.137863344691572095931e-6, -0.575254560351770496402e-7,
+ 0.119516285997781473243e-7, -0.175432417197476476238e-10,
+ -0.100915437106004126275e-8, 0.416279299184258263623e-9,
+ -0.856390702649298063807e-10 ],
+ [ 0.00413359788359788359788, -0.00268132716049382716049,
+ 0.000771604938271604938272, 0.200938786008230452675e-5,
+ -0.000107366532263651605215, 0.529234488291201254164e-4,
+ -0.127606351886187277134e-4, 0.342357873409613807419e-7,
+ 0.137219573090629332056e-5, -0.629899213838005502291e-6,
+ 0.142806142060642417916e-6, -0.204770984219908660149e-9,
+ -0.140925299108675210533e-7, 0.622897408492202203356e-8,
+ -0.136704883966171134993e-8 ],
+ [ 0.000649434156378600823045, 0.000229472093621399176955,
+ -0.000469189494395255712128, 0.000267720632062838852962,
+ -0.756180167188397641073e-4, -0.239650511386729665193e-6,
+ 0.110826541153473023615e-4, -0.56749528269915965675e-5,
+ 0.142309007324358839146e-5, -0.278610802915281422406e-10,
+ -0.169584040919302772899e-6, 0.809946490538808236335e-7,
+ -0.191111684859736540607e-7 ],
+ [ -0.000861888290916711698605, 0.000784039221720066627474,
+ -0.000299072480303190179733, -0.146384525788434181781e-5,
+ 0.664149821546512218666e-4, -0.396836504717943466443e-4,
+ 0.113757269706784190981e-4, 0.250749722623753280165e-9,
+ -0.169541495365583060147e-5, 0.890750753220530968883e-6,
+ -0.229293483400080487057e-6],
+ [ -0.000336798553366358150309, -0.697281375836585777429e-4,
+ 0.000277275324495939207873, -0.000199325705161888477003,
+ 0.679778047793720783882e-4, 0.141906292064396701483e-6,
+ -0.135940481897686932785e-4, 0.801847025633420153972e-5,
+ -0.229148117650809517038e-5 ],
+ [ 0.000531307936463992223166, -0.000592166437353693882865,
+ 0.000270878209671804482771, 0.790235323266032787212e-6,
+ -0.815396936756196875093e-4, 0.561168275310624965004e-4,
+ -0.183291165828433755673e-4, -0.307961345060330478256e-8,
+ 0.346515536880360908674e-5, -0.20291327396058603727e-5,
+ 0.57887928631490037089e-6 ],
+ [ 0.000344367606892377671254, 0.517179090826059219337e-4,
+ -0.000334931610811422363117, 0.000281269515476323702274,
+ -0.000109765822446847310235, -0.127410090954844853795e-6,
+ 0.277444515115636441571e-4, -0.182634888057113326614e-4,
+ 0.578769494973505239894e-5 ],
+ [ -0.000652623918595309418922, 0.000839498720672087279993,
+ -0.000438297098541721005061, -0.696909145842055197137e-6,
+ 0.000166448466420675478374, -0.000127835176797692185853,
+ 0.462995326369130429061e-4 ],
+ [ -0.000596761290192746250124, -0.720489541602001055909e-4,
+ 0.000678230883766732836162, -0.0006401475260262758451,
+ 0.000277501076343287044992 ],
+ [ 0.00133244544948006563713, -0.0019144384985654775265,
+ 0.00110893691345966373396 ],
+ [ 0.00157972766073083495909, 0.000162516262783915816899,
+ -0.00206334210355432762645, 0.00213896861856890981541,
+ -0.00101085593912630031708 ],
+ [ -0.00407251211951401664727, 0.00640336283380806979482,
+ -0.00404101610816766177474 ]
+ ];
+
+ // avoid nans when one of the arguments is inf:
+ if (x == real.infinity && a != real.infinity)
+ return 0;
+
+ if (x != real.infinity && a == real.infinity)
+ return 1;
+
+ real sigma = (x - a) / a;
+ real phi = sigma - log(sigma + 1);
+
+ real y = a * phi;
+ real z = sqrt(2 * phi);
+ if (x < a)
+ z = -z;
+
+ real[13] workspace;
+ foreach (i; 0 .. coef.length)
+ workspace[i] = poly(z, coef[i]);
+
+ real result = poly(1 / a, workspace);
+ result *= exp(-y) / sqrt(2 * PI * a);
+ if (x < a)
+ result = -result;
+
+ result += erfc(sqrt(y)) / 2;
+
+ return result;
+}
+
+} // private
+
+public:
+/// The maximum value of x for which gamma(x) < real.infinity.
+static if (floatTraits!(real).realFormat == RealFormat.ieeeQuadruple)
+ enum real MAXGAMMA = 1755.5483429L;
+else static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
+ enum real MAXGAMMA = 1755.5483429L;
+else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
+ enum real MAXGAMMA = 171.6243769L;
+else
+ static assert(0, "missing MAXGAMMA for other real types");
+
+
+/*****************************************************
+ * The Gamma function, $(GAMMA)(x)
+ *
+ * $(GAMMA)(x) is a generalisation of the factorial function
+ * to real and complex numbers.
+ * Like x!, $(GAMMA)(x+1) = x*$(GAMMA)(x).
+ *
+ * Mathematically, if z.re > 0 then
+ * $(GAMMA)(z) = $(INTEGRATE 0, &infin;) $(POWER t, z-1)$(POWER e, -t) dt
+ *
+ * $(TABLE_SV
+ * $(SVH x, $(GAMMA)(x) )
+ * $(SV $(NAN), $(NAN) )
+ * $(SV &plusmn;0.0, &plusmn;&infin;)
+ * $(SV integer > 0, (x-1)! )
+ * $(SV integer < 0, $(NAN) )
+ * $(SV +&infin;, +&infin; )
+ * $(SV -&infin;, $(NAN) )
+ * )
+ */
+real gamma(real x)
+{
+/* Based on code from the CEPHES library.
+ * CEPHES code Copyright 1994 by Stephen L. Moshier
+ *
+ * Arguments |x| <= 13 are reduced by recurrence and the function
+ * approximated by a rational function of degree 7/8 in the
+ * interval (2,3). Large arguments are handled by Stirling's
+ * formula. Large negative arguments are made positive using
+ * a reflection formula.
+ */
+
+ real q, z;
+ if (isNaN(x)) return x;
+ if (x == -x.infinity) return real.nan;
+ if ( fabs(x) > MAXGAMMA ) return real.infinity;
+ if (x == 0) return 1.0 / x; // +- infinity depending on sign of x, create an exception.
+
+ q = fabs(x);
+
+ if ( q > 13.0L )
+ {
+ // Large arguments are handled by Stirling's
+ // formula. Large negative arguments are made positive using
+ // the reflection formula.
+
+ if ( x < 0.0L )
+ {
+ if (x < -1/real.epsilon)
+ {
+ // Large negatives lose all precision
+ return real.nan;
+ }
+ int sgngam = 1; // sign of gamma.
+ long intpart = cast(long)(q);
+ if (q == intpart)
+ return real.nan; // poles for all integers <0.
+ real p = intpart;
+ if ( (intpart & 1) == 0 )
+ sgngam = -1;
+ z = q - p;
+ if ( z > 0.5L )
+ {
+ p += 1.0L;
+ z = q - p;
+ }
+ z = q * sin( PI * z );
+ z = fabs(z) * gammaStirling(q);
+ if ( z <= PI/real.max ) return sgngam * real.infinity;
+ return sgngam * PI/z;
+ }
+ else
+ {
+ return gammaStirling(x);
+ }
+ }
+
+ // Arguments |x| <= 13 are reduced by recurrence and the function
+ // approximated by a rational function of degree 7/8 in the
+ // interval (2,3).
+
+ z = 1.0L;
+ while ( x >= 3.0L )
+ {
+ x -= 1.0L;
+ z *= x;
+ }
+
+ while ( x < -0.03125L )
+ {
+ z /= x;
+ x += 1.0L;
+ }
+
+ if ( x <= 0.03125L )
+ {
+ if ( x == 0.0L )
+ return real.nan;
+ else
+ {
+ if ( x < 0.0L )
+ {
+ x = -x;
+ return z / (x * poly( x, GammaSmallNegCoeffs ));
+ }
+ else
+ {
+ return z / (x * poly( x, GammaSmallCoeffs ));
+ }
+ }
+ }
+
+ while ( x < 2.0L )
+ {
+ z /= x;
+ x += 1.0L;
+ }
+ if ( x == 2.0L ) return z;
+
+ x -= 2.0L;
+ return z * poly( x, GammaNumeratorCoeffs ) / poly( x, GammaDenominatorCoeffs );
+}
+
+@safe unittest
+{
+ // gamma(n) = factorial(n-1) if n is an integer.
+ real fact = 1.0L;
+ for (int i=1; fact<real.max; ++i)
+ {
+ // Require exact equality for small factorials
+ if (i<14) assert(gamma(i*1.0L) == fact);
+ assert(feqrel(gamma(i*1.0L), fact) >= real.mant_dig-15);
+ fact *= (i*1.0L);
+ }
+ assert(gamma(0.0) == real.infinity);
+ assert(gamma(-0.0) == -real.infinity);
+ assert(isNaN(gamma(-1.0)));
+ assert(isNaN(gamma(-15.0)));
+ assert(isIdentical(gamma(NaN(0xABC)), NaN(0xABC)));
+ assert(gamma(real.infinity) == real.infinity);
+ assert(gamma(real.max) == real.infinity);
+ assert(isNaN(gamma(-real.infinity)));
+ assert(gamma(real.min_normal*real.epsilon) == real.infinity);
+ assert(gamma(MAXGAMMA)< real.infinity);
+ assert(gamma(MAXGAMMA*2) == real.infinity);
+
+ // Test some high-precision values (50 decimal digits)
+ real SQRT_PI = 1.77245385090551602729816748334114518279754945612238L;
+
+
+ assert(feqrel(gamma(0.5L), SQRT_PI) >= real.mant_dig-1);
+ assert(feqrel(gamma(17.25L), 4.224986665692703551570937158682064589938e13L) >= real.mant_dig-4);
+
+ assert(feqrel(gamma(1.0 / 3.0L), 2.67893853470774763365569294097467764412868937795730L) >= real.mant_dig-2);
+ assert(feqrel(gamma(0.25L),
+ 3.62560990822190831193068515586767200299516768288006L) >= real.mant_dig-1);
+ assert(feqrel(gamma(1.0 / 5.0L),
+ 4.59084371199880305320475827592915200343410999829340L) >= real.mant_dig-1);
+}
+
+/*****************************************************
+ * Natural logarithm of gamma function.
+ *
+ * Returns the base e (2.718...) logarithm of the absolute
+ * value of the gamma function of the argument.
+ *
+ * For reals, logGamma is equivalent to log(fabs(gamma(x))).
+ *
+ * $(TABLE_SV
+ * $(SVH x, logGamma(x) )
+ * $(SV $(NAN), $(NAN) )
+ * $(SV integer <= 0, +&infin; )
+ * $(SV &plusmn;&infin;, +&infin; )
+ * )
+ */
+real logGamma(real x)
+{
+ /* Based on code from the CEPHES library.
+ * CEPHES code Copyright 1994 by Stephen L. Moshier
+ *
+ * For arguments greater than 33, the logarithm of the gamma
+ * function is approximated by the logarithmic version of
+ * Stirling's formula using a polynomial approximation of
+ * degree 4. Arguments between -33 and +33 are reduced by
+ * recurrence to the interval [2,3] of a rational approximation.
+ * The cosecant reflection formula is employed for arguments
+ * less than -33.
+ */
+ real q, w, z, f, nx;
+
+ if (isNaN(x)) return x;
+ if (fabs(x) == x.infinity) return x.infinity;
+
+ if ( x < -34.0L )
+ {
+ q = -x;
+ w = logGamma(q);
+ real p = floor(q);
+ if ( p == q )
+ return real.infinity;
+ int intpart = cast(int)(p);
+ real sgngam = 1;
+ if ( (intpart & 1) == 0 )
+ sgngam = -1;
+ z = q - p;
+ if ( z > 0.5L )
+ {
+ p += 1.0L;
+ z = p - q;
+ }
+ z = q * sin( PI * z );
+ if ( z == 0.0L )
+ return sgngam * real.infinity;
+ /* z = LOGPI - logl( z ) - w; */
+ z = log( PI/z ) - w;
+ return z;
+ }
+
+ if ( x < 13.0L )
+ {
+ z = 1.0L;
+ nx = floor( x + 0.5L );
+ f = x - nx;
+ while ( x >= 3.0L )
+ {
+ nx -= 1.0L;
+ x = nx + f;
+ z *= x;
+ }
+ while ( x < 2.0L )
+ {
+ if ( fabs(x) <= 0.03125 )
+ {
+ if ( x == 0.0L )
+ return real.infinity;
+ if ( x < 0.0L )
+ {
+ x = -x;
+ q = z / (x * poly( x, GammaSmallNegCoeffs));
+ } else
+ q = z / (x * poly( x, GammaSmallCoeffs));
+ return log( fabs(q) );
+ }
+ z /= nx + f;
+ nx += 1.0L;
+ x = nx + f;
+ }
+ z = fabs(z);
+ if ( x == 2.0L )
+ return log(z);
+ x = (nx - 2.0L) + f;
+ real p = x * rationalPoly( x, logGammaNumerator, logGammaDenominator);
+ return log(z) + p;
+ }
+
+ // const real MAXLGM = 1.04848146839019521116e+4928L;
+ // if ( x > MAXLGM ) return sgngaml * real.infinity;
+
+ const real LOGSQRT2PI = 0.91893853320467274178L; // log( sqrt( 2*pi ) )
+
+ q = ( x - 0.5L ) * log(x) - x + LOGSQRT2PI;
+ if (x > 1.0e10L) return q;
+ real p = 1.0L / (x*x);
+ q += poly( p, logGammaStirlingCoeffs ) / x;
+ return q ;
+}
+
+@safe unittest
+{
+ assert(isIdentical(logGamma(NaN(0xDEF)), NaN(0xDEF)));
+ assert(logGamma(real.infinity) == real.infinity);
+ assert(logGamma(-1.0) == real.infinity);
+ assert(logGamma(0.0) == real.infinity);
+ assert(logGamma(-50.0) == real.infinity);
+ assert(isIdentical(0.0L, logGamma(1.0L)));
+ assert(isIdentical(0.0L, logGamma(2.0L)));
+ assert(logGamma(real.min_normal*real.epsilon) == real.infinity);
+ assert(logGamma(-real.min_normal*real.epsilon) == real.infinity);
+
+ // x, correct loggamma(x), correct d/dx loggamma(x).
+ immutable static real[] testpoints = [
+ 8.0L, 8.525146484375L + 1.48766904143001655310E-5, 2.01564147795560999654E0L,
+ 8.99993896484375e-1L, 6.6375732421875e-2L + 5.11505711292524166220E-6L, -7.54938684259372234258E-1,
+ 7.31597900390625e-1L, 2.2369384765625e-1 + 5.21506341809849792422E-6L, -1.13355566660398608343E0L,
+ 2.31639862060546875e-1L, 1.3686676025390625L + 1.12609441752996145670E-5L, -4.56670961813812679012E0,
+ 1.73162841796875L, -8.88214111328125e-2L + 3.36207740803753034508E-6L, 2.33339034686200586920E-1L,
+ 1.23162841796875L, -9.3902587890625e-2L + 1.28765089229009648104E-5L, -2.49677345775751390414E-1L,
+ 7.3786976294838206464e19L, 3.301798506038663053312e21L - 1.656137564136932662487046269677E5L,
+ 4.57477139169563904215E1L,
+ 1.08420217248550443401E-19L, 4.36682586669921875e1L + 1.37082843669932230418E-5L,
+ -9.22337203685477580858E18L,
+ 1.0L, 0.0L, -5.77215664901532860607E-1L,
+ 2.0L, 0.0L, 4.22784335098467139393E-1L,
+ -0.5L, 1.2655029296875L + 9.19379714539648894580E-6L, 3.64899739785765205590E-2L,
+ -1.5L, 8.6004638671875e-1L + 6.28657731014510932682E-7L, 7.03156640645243187226E-1L,
+ -2.5L, -5.6243896484375E-2L + 1.79986700949327405470E-7, 1.10315664064524318723E0L,
+ -3.5L, -1.30902099609375L + 1.43111007079536392848E-5L, 1.38887092635952890151E0L
+ ];
+ // TODO: test derivatives as well.
+ for (int i=0; i<testpoints.length; i+=3)
+ {
+ assert( feqrel(logGamma(testpoints[i]), testpoints[i+1]) > real.mant_dig-5);
+ if (testpoints[i]<MAXGAMMA)
+ {
+ assert( feqrel(log(fabs(gamma(testpoints[i]))), testpoints[i+1]) > real.mant_dig-5);
+ }
+ }
+ assert(logGamma(-50.2) == log(fabs(gamma(-50.2))));
+ assert(logGamma(-0.008) == log(fabs(gamma(-0.008))));
+ assert(feqrel(logGamma(-38.8),log(fabs(gamma(-38.8)))) > real.mant_dig-4);
+ static if (real.mant_dig >= 64) // incl. 80-bit reals
+ assert(feqrel(logGamma(1500.0L),log(gamma(1500.0L))) > real.mant_dig-2);
+ else static if (real.mant_dig >= 53) // incl. 64-bit reals
+ assert(feqrel(logGamma(150.0L),log(gamma(150.0L))) > real.mant_dig-2);
+}
+
+
+private {
+/*
+ * These value can be calculated like this:
+ * 1) Get exact real.max/min_normal/epsilon from compiler:
+ * writefln!"%a"(real.max/min_normal_epsilon)
+ * 2) Convert for Wolfram Alpha
+ * 0xf.fffffffffffffffp+16380 ==> (f.fffffffffffffff base 16) * 2^16380
+ * 3) Calculate result on wofram alpha:
+ * http://www.wolframalpha.com/input/?i=ln((1.ffffffffffffffffffffffffffff+base+16)+*+2%5E16383)+in+base+2
+ * 4) Convert to proper format:
+ * string mantissa = "1.011...";
+ * write(mantissa[0 .. 2]); mantissa = mantissa[2 .. $];
+ * for (size_t i = 0; i < mantissa.length/4; i++)
+ * {
+ * writef!"%x"(to!ubyte(mantissa[0 .. 4], 2)); mantissa = mantissa[4 .. $];
+ * }
+ */
+static if (floatTraits!(real).realFormat == RealFormat.ieeeQuadruple)
+{
+ enum real MAXLOG = 0x1.62e42fefa39ef35793c7673007e6p+13; // log(real.max)
+ enum real MINLOG = -0x1.6546282207802c89d24d65e96274p+13; // log(real.min_normal*real.epsilon) = log(smallest denormal)
+}
+else static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
+{
+ enum real MAXLOG = 0x1.62e42fefa39ef358p+13L; // log(real.max)
+ enum real MINLOG = -0x1.6436716d5406e6d8p+13L; // log(real.min_normal*real.epsilon) = log(smallest denormal)
+}
+else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
+{
+ enum real MAXLOG = 0x1.62e42fefa39efp+9L; // log(real.max)
+ enum real MINLOG = -0x1.74385446d71c3p+9L; // log(real.min_normal*real.epsilon) = log(smallest denormal)
+}
+else
+ static assert(0, "missing MAXLOG and MINLOG for other real types");
+
+enum real BETA_BIG = 9.223372036854775808e18L;
+enum real BETA_BIGINV = 1.084202172485504434007e-19L;
+}
+
+/** Incomplete beta integral
+ *
+ * Returns incomplete beta integral of the arguments, evaluated
+ * from zero to x. The regularized incomplete beta function is defined as
+ *
+ * betaIncomplete(a, b, x) = &Gamma;(a+b)/(&Gamma;(a) &Gamma;(b)) *
+ * $(INTEGRATE 0, x) $(POWER t, a-1)$(POWER (1-t),b-1) dt
+ *
+ * and is the same as the the cumulative distribution function.
+ *
+ * The domain of definition is 0 <= x <= 1. In this
+ * implementation a and b are restricted to positive values.
+ * The integral from x to 1 may be obtained by the symmetry
+ * relation
+ *
+ * betaIncompleteCompl(a, b, x ) = betaIncomplete( b, a, 1-x )
+ *
+ * The integral is evaluated by a continued fraction expansion
+ * or, when b*x is small, by a power series.
+ */
+real betaIncomplete(real aa, real bb, real xx )
+{
+ if ( !(aa>0 && bb>0) )
+ {
+ if ( isNaN(aa) ) return aa;
+ if ( isNaN(bb) ) return bb;
+ return real.nan; // domain error
+ }
+ if (!(xx>0 && xx<1.0))
+ {
+ if (isNaN(xx)) return xx;
+ if ( xx == 0.0L ) return 0.0;
+ if ( xx == 1.0L ) return 1.0;
+ return real.nan; // domain error
+ }
+ if ( (bb * xx) <= 1.0L && xx <= 0.95L)
+ {
+ return betaDistPowerSeries(aa, bb, xx);
+ }
+ real x;
+ real xc; // = 1 - x
+
+ real a, b;
+ int flag = 0;
+
+ /* Reverse a and b if x is greater than the mean. */
+ if ( xx > (aa/(aa+bb)) )
+ {
+ // here x > aa/(aa+bb) and (bb*x>1 or x>0.95)
+ flag = 1;
+ a = bb;
+ b = aa;
+ xc = xx;
+ x = 1.0L - xx;
+ }
+ else
+ {
+ a = aa;
+ b = bb;
+ xc = 1.0L - xx;
+ x = xx;
+ }
+
+ if ( flag == 1 && (b * x) <= 1.0L && x <= 0.95L)
+ {
+ // here xx > aa/(aa+bb) and ((bb*xx>1) or xx>0.95) and (aa*(1-xx)<=1) and xx > 0.05
+ return 1.0 - betaDistPowerSeries(a, b, x); // note loss of precision
+ }
+
+ real w;
+ // Choose expansion for optimal convergence
+ // One is for x * (a+b+2) < (a+1),
+ // the other is for x * (a+b+2) > (a+1).
+ real y = x * (a+b-2.0L) - (a-1.0L);
+ if ( y < 0.0L )
+ {
+ w = betaDistExpansion1( a, b, x );
+ }
+ else
+ {
+ w = betaDistExpansion2( a, b, x ) / xc;
+ }
+
+ /* Multiply w by the factor
+ a b
+ x (1-x) Gamma(a+b) / ( a Gamma(a) Gamma(b) ) . */
+
+ y = a * log(x);
+ real t = b * log(xc);
+ if ( (a+b) < MAXGAMMA && fabs(y) < MAXLOG && fabs(t) < MAXLOG )
+ {
+ t = pow(xc,b);
+ t *= pow(x,a);
+ t /= a;
+ t *= w;
+ t *= gamma(a+b) / (gamma(a) * gamma(b));
+ }
+ else
+ {
+ /* Resort to logarithms. */
+ y += t + logGamma(a+b) - logGamma(a) - logGamma(b);
+ y += log(w/a);
+
+ t = exp(y);
+/+
+ // There seems to be a bug in Cephes at this point.
+ // Problems occur for y > MAXLOG, not y < MINLOG.
+ if ( y < MINLOG )
+ {
+ t = 0.0L;
+ }
+ else
+ {
+ t = exp(y);
+ }
++/
+ }
+ if ( flag == 1 )
+ {
+/+ // CEPHES includes this code, but I think it is erroneous.
+ if ( t <= real.epsilon )
+ {
+ t = 1.0L - real.epsilon;
+ } else
++/
+ t = 1.0L - t;
+ }
+ return t;
+}
+
+/** Inverse of incomplete beta integral
+ *
+ * Given y, the function finds x such that
+ *
+ * betaIncomplete(a, b, x) == y
+ *
+ * Newton iterations or interval halving is used.
+ */
+real betaIncompleteInv(real aa, real bb, real yy0 )
+{
+ real a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt;
+ int i, rflg, dir, nflg;
+
+ if (isNaN(yy0)) return yy0;
+ if (isNaN(aa)) return aa;
+ if (isNaN(bb)) return bb;
+ if ( yy0 <= 0.0L )
+ return 0.0L;
+ if ( yy0 >= 1.0L )
+ return 1.0L;
+ x0 = 0.0L;
+ yl = 0.0L;
+ x1 = 1.0L;
+ yh = 1.0L;
+ if ( aa <= 1.0L || bb <= 1.0L )
+ {
+ dithresh = 1.0e-7L;
+ rflg = 0;
+ a = aa;
+ b = bb;
+ y0 = yy0;
+ x = a/(a+b);
+ y = betaIncomplete( a, b, x );
+ nflg = 0;
+ goto ihalve;
+ }
+ else
+ {
+ nflg = 0;
+ dithresh = 1.0e-4L;
+ }
+
+ // approximation to inverse function
+
+ yp = -normalDistributionInvImpl( yy0 );
+
+ if ( yy0 > 0.5L )
+ {
+ rflg = 1;
+ a = bb;
+ b = aa;
+ y0 = 1.0L - yy0;
+ yp = -yp;
+ }
+ else
+ {
+ rflg = 0;
+ a = aa;
+ b = bb;
+ y0 = yy0;
+ }
+
+ lgm = (yp * yp - 3.0L)/6.0L;
+ x = 2.0L/( 1.0L/(2.0L * a-1.0L) + 1.0L/(2.0L * b - 1.0L) );
+ d = yp * sqrt( x + lgm ) / x
+ - ( 1.0L/(2.0L * b - 1.0L) - 1.0L/(2.0L * a - 1.0L) )
+ * (lgm + (5.0L/6.0L) - 2.0L/(3.0L * x));
+ d = 2.0L * d;
+ if ( d < MINLOG )
+ {
+ x = 1.0L;
+ goto under;
+ }
+ x = a/( a + b * exp(d) );
+ y = betaIncomplete( a, b, x );
+ yp = (y - y0)/y0;
+ if ( fabs(yp) < 0.2 )
+ goto newt;
+
+ /* Resort to interval halving if not close enough. */
+ihalve:
+
+ dir = 0;
+ di = 0.5L;
+ for ( i=0; i<400; i++ )
+ {
+ if ( i != 0 )
+ {
+ x = x0 + di * (x1 - x0);
+ if ( x == 1.0L )
+ {
+ x = 1.0L - real.epsilon;
+ }
+ if ( x == 0.0L )
+ {
+ di = 0.5;
+ x = x0 + di * (x1 - x0);
+ if ( x == 0.0 )
+ goto under;
+ }
+ y = betaIncomplete( a, b, x );
+ yp = (x1 - x0)/(x1 + x0);
+ if ( fabs(yp) < dithresh )
+ goto newt;
+ yp = (y-y0)/y0;
+ if ( fabs(yp) < dithresh )
+ goto newt;
+ }
+ if ( y < y0 )
+ {
+ x0 = x;
+ yl = y;
+ if ( dir < 0 )
+ {
+ dir = 0;
+ di = 0.5L;
+ } else if ( dir > 3 )
+ di = 1.0L - (1.0L - di) * (1.0L - di);
+ else if ( dir > 1 )
+ di = 0.5L * di + 0.5L;
+ else
+ di = (y0 - y)/(yh - yl);
+ dir += 1;
+ if ( x0 > 0.95L )
+ {
+ if ( rflg == 1 )
+ {
+ rflg = 0;
+ a = aa;
+ b = bb;
+ y0 = yy0;
+ }
+ else
+ {
+ rflg = 1;
+ a = bb;
+ b = aa;
+ y0 = 1.0 - yy0;
+ }
+ x = 1.0L - x;
+ y = betaIncomplete( a, b, x );
+ x0 = 0.0;
+ yl = 0.0;
+ x1 = 1.0;
+ yh = 1.0;
+ goto ihalve;
+ }
+ }
+ else
+ {
+ x1 = x;
+ if ( rflg == 1 && x1 < real.epsilon )
+ {
+ x = 0.0L;
+ goto done;
+ }
+ yh = y;
+ if ( dir > 0 )
+ {
+ dir = 0;
+ di = 0.5L;
+ }
+ else if ( dir < -3 )
+ di = di * di;
+ else if ( dir < -1 )
+ di = 0.5L * di;
+ else
+ di = (y - y0)/(yh - yl);
+ dir -= 1;
+ }
+ }
+ if ( x0 >= 1.0L )
+ {
+ // partial loss of precision
+ x = 1.0L - real.epsilon;
+ goto done;
+ }
+ if ( x <= 0.0L )
+ {
+under:
+ // underflow has occurred
+ x = real.min_normal * real.min_normal;
+ goto done;
+ }
+
+newt:
+
+ if ( nflg )
+ {
+ goto done;
+ }
+ nflg = 1;
+ lgm = logGamma(a+b) - logGamma(a) - logGamma(b);
+
+ for ( i=0; i<15; i++ )
+ {
+ /* Compute the function at this point. */
+ if ( i != 0 )
+ y = betaIncomplete(a,b,x);
+ if ( y < yl )
+ {
+ x = x0;
+ y = yl;
+ }
+ else if ( y > yh )
+ {
+ x = x1;
+ y = yh;
+ }
+ else if ( y < y0 )
+ {
+ x0 = x;
+ yl = y;
+ }
+ else
+ {
+ x1 = x;
+ yh = y;
+ }
+ if ( x == 1.0L || x == 0.0L )
+ break;
+ /* Compute the derivative of the function at this point. */
+ d = (a - 1.0L) * log(x) + (b - 1.0L) * log(1.0L - x) + lgm;
+ if ( d < MINLOG )
+ {
+ goto done;
+ }
+ if ( d > MAXLOG )
+ {
+ break;
+ }
+ d = exp(d);
+ /* Compute the step to the next approximation of x. */
+ d = (y - y0)/d;
+ xt = x - d;
+ if ( xt <= x0 )
+ {
+ y = (x - x0) / (x1 - x0);
+ xt = x0 + 0.5L * y * (x - x0);
+ if ( xt <= 0.0L )
+ break;
+ }
+ if ( xt >= x1 )
+ {
+ y = (x1 - x) / (x1 - x0);
+ xt = x1 - 0.5L * y * (x1 - x);
+ if ( xt >= 1.0L )
+ break;
+ }
+ x = xt;
+ if ( fabs(d/x) < (128.0L * real.epsilon) )
+ goto done;
+ }
+ /* Did not converge. */
+ dithresh = 256.0L * real.epsilon;
+ goto ihalve;
+
+done:
+ if ( rflg )
+ {
+ if ( x <= real.epsilon )
+ x = 1.0L - real.epsilon;
+ else
+ x = 1.0L - x;
+ }
+ return x;
+}
+
+@safe unittest { // also tested by the normal distribution
+ // check NaN propagation
+ assert(isIdentical(betaIncomplete(NaN(0xABC),2,3), NaN(0xABC)));
+ assert(isIdentical(betaIncomplete(7,NaN(0xABC),3), NaN(0xABC)));
+ assert(isIdentical(betaIncomplete(7,15,NaN(0xABC)), NaN(0xABC)));
+ assert(isIdentical(betaIncompleteInv(NaN(0xABC),1,17), NaN(0xABC)));
+ assert(isIdentical(betaIncompleteInv(2,NaN(0xABC),8), NaN(0xABC)));
+ assert(isIdentical(betaIncompleteInv(2,3, NaN(0xABC)), NaN(0xABC)));
+
+ assert(isNaN(betaIncomplete(-1, 2, 3)));
+
+ assert(betaIncomplete(1, 2, 0)==0);
+ assert(betaIncomplete(1, 2, 1)==1);
+ assert(isNaN(betaIncomplete(1, 2, 3)));
+ assert(betaIncompleteInv(1, 1, 0)==0);
+ assert(betaIncompleteInv(1, 1, 1)==1);
+
+ // Test against Mathematica betaRegularized[z,a,b]
+ // These arbitrary points are chosen to give good code coverage.
+ assert(feqrel(betaIncomplete(8, 10, 0.2), 0.010_934_315_234_099_2L) >= real.mant_dig - 5);
+ assert(feqrel(betaIncomplete(2, 2.5, 0.9), 0.989_722_597_604_452_767_171_003_59L) >= real.mant_dig - 1);
+ static if (real.mant_dig >= 64) // incl. 80-bit reals
+ assert(feqrel(betaIncomplete(1000, 800, 0.5), 1.179140859734704555102808541457164E-06L) >= real.mant_dig - 13);
+ else
+ assert(feqrel(betaIncomplete(1000, 800, 0.5), 1.179140859734704555102808541457164E-06L) >= real.mant_dig - 14);
+ assert(feqrel(betaIncomplete(0.0001, 10000, 0.0001), 0.999978059362107134278786L) >= real.mant_dig - 18);
+ assert(betaIncomplete(0.01, 327726.7, 0.545113) == 1.0);
+ assert(feqrel(betaIncompleteInv(8, 10, 0.010_934_315_234_099_2L), 0.2L) >= real.mant_dig - 2);
+ assert(feqrel(betaIncomplete(0.01, 498.437, 0.0121433), 0.99999664562033077636065L) >= real.mant_dig - 1);
+ assert(feqrel(betaIncompleteInv(5, 10, 0.2000002972865658842), 0.229121208190918L) >= real.mant_dig - 3);
+ assert(feqrel(betaIncompleteInv(4, 7, 0.8000002209179505L), 0.483657360076904L) >= real.mant_dig - 3);
+
+ // Coverage tests. I don't have correct values for these tests, but
+ // these values cover most of the code, so they are useful for
+ // regression testing.
+ // Extensive testing failed to increase the coverage. It seems likely that about
+ // half the code in this function is unnecessary; there is potential for
+ // significant improvement over the original CEPHES code.
+ static if (real.mant_dig == 64) // 80-bit reals
+ {
+ assert(betaIncompleteInv(0.01, 8e-48, 5.45464e-20) == 1-real.epsilon);
+ assert(betaIncompleteInv(0.01, 8e-48, 9e-26) == 1-real.epsilon);
+
+ // Beware: a one-bit change in pow() changes almost all digits in the result!
+ assert(feqrel(
+ betaIncompleteInv(0x1.b3d151fbba0eb18p+1, 1.2265e-19, 2.44859e-18),
+ 0x1.c0110c8531d0952cp-1L
+ ) > 10);
+ // This next case uncovered a one-bit difference in the FYL2X instruction
+ // between Intel and AMD processors. This difference gets magnified by 2^^38.
+ // WolframAlpha crashes attempting to calculate this.
+ assert(feqrel(betaIncompleteInv(0x1.ff1275ae5b939bcap-41, 4.6713e18, 0.0813601),
+ 0x1.f97749d90c7adba8p-63L) >= real.mant_dig - 39);
+ real a1 = 3.40483;
+ assert(betaIncompleteInv(a1, 4.0640301659679627772e19L, 0.545113) == 0x1.ba8c08108aaf5d14p-109);
+ real b1 = 2.82847e-25;
+ assert(feqrel(betaIncompleteInv(0.01, b1, 9e-26), 0x1.549696104490aa9p-830L) >= real.mant_dig-10);
+
+ // --- Problematic cases ---
+ // This is a situation where the series expansion fails to converge
+ assert( isNaN(betaIncompleteInv(0.12167, 4.0640301659679627772e19L, 0.0813601)));
+ // This next result is almost certainly erroneous.
+ // Mathematica states: "(cannot be determined by current methods)"
+ assert(betaIncomplete(1.16251e20, 2.18e39, 5.45e-20) == -real.infinity);
+ // WolframAlpha gives no result for this, though indicates that it approximately 1.0 - 1.3e-9
+ assert(1 - betaIncomplete(0.01, 328222, 4.0375e-5) == 0x1.5f62926b4p-30);
+ }
+}
+
+
+private {
+// Implementation functions
+
+// Continued fraction expansion #1 for incomplete beta integral
+// Use when x < (a+1)/(a+b+2)
+real betaDistExpansion1(real a, real b, real x )
+{
+ real xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
+ real k1, k2, k3, k4, k5, k6, k7, k8;
+ real r, t, ans;
+ int n;
+
+ k1 = a;
+ k2 = a + b;
+ k3 = a;
+ k4 = a + 1.0L;
+ k5 = 1.0L;
+ k6 = b - 1.0L;
+ k7 = k4;
+ k8 = a + 2.0L;
+
+ pkm2 = 0.0L;
+ qkm2 = 1.0L;
+ pkm1 = 1.0L;
+ qkm1 = 1.0L;
+ ans = 1.0L;
+ r = 1.0L;
+ n = 0;
+ const real thresh = 3.0L * real.epsilon;
+ do
+ {
+ xk = -( x * k1 * k2 )/( k3 * k4 );
+ pk = pkm1 + pkm2 * xk;
+ qk = qkm1 + qkm2 * xk;
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ xk = ( x * k5 * k6 )/( k7 * k8 );
+ pk = pkm1 + pkm2 * xk;
+ qk = qkm1 + qkm2 * xk;
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ if ( qk != 0.0L )
+ r = pk/qk;
+ if ( r != 0.0L )
+ {
+ t = fabs( (ans - r)/r );
+ ans = r;
+ }
+ else
+ {
+ t = 1.0L;
+ }
+
+ if ( t < thresh )
+ return ans;
+
+ k1 += 1.0L;
+ k2 += 1.0L;
+ k3 += 2.0L;
+ k4 += 2.0L;
+ k5 += 1.0L;
+ k6 -= 1.0L;
+ k7 += 2.0L;
+ k8 += 2.0L;
+
+ if ( (fabs(qk) + fabs(pk)) > BETA_BIG )
+ {
+ pkm2 *= BETA_BIGINV;
+ pkm1 *= BETA_BIGINV;
+ qkm2 *= BETA_BIGINV;
+ qkm1 *= BETA_BIGINV;
+ }
+ if ( (fabs(qk) < BETA_BIGINV) || (fabs(pk) < BETA_BIGINV) )
+ {
+ pkm2 *= BETA_BIG;
+ pkm1 *= BETA_BIG;
+ qkm2 *= BETA_BIG;
+ qkm1 *= BETA_BIG;
+ }
+ }
+ while ( ++n < 400 );
+// loss of precision has occurred
+// mtherr( "incbetl", PLOSS );
+ return ans;
+}
+
+// Continued fraction expansion #2 for incomplete beta integral
+// Use when x > (a+1)/(a+b+2)
+real betaDistExpansion2(real a, real b, real x )
+{
+ real xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
+ real k1, k2, k3, k4, k5, k6, k7, k8;
+ real r, t, ans, z;
+
+ k1 = a;
+ k2 = b - 1.0L;
+ k3 = a;
+ k4 = a + 1.0L;
+ k5 = 1.0L;
+ k6 = a + b;
+ k7 = a + 1.0L;
+ k8 = a + 2.0L;
+
+ pkm2 = 0.0L;
+ qkm2 = 1.0L;
+ pkm1 = 1.0L;
+ qkm1 = 1.0L;
+ z = x / (1.0L-x);
+ ans = 1.0L;
+ r = 1.0L;
+ int n = 0;
+ const real thresh = 3.0L * real.epsilon;
+ do
+ {
+ xk = -( z * k1 * k2 )/( k3 * k4 );
+ pk = pkm1 + pkm2 * xk;
+ qk = qkm1 + qkm2 * xk;
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ xk = ( z * k5 * k6 )/( k7 * k8 );
+ pk = pkm1 + pkm2 * xk;
+ qk = qkm1 + qkm2 * xk;
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ if ( qk != 0.0L )
+ r = pk/qk;
+ if ( r != 0.0L )
+ {
+ t = fabs( (ans - r)/r );
+ ans = r;
+ } else
+ t = 1.0L;
+
+ if ( t < thresh )
+ return ans;
+ k1 += 1.0L;
+ k2 -= 1.0L;
+ k3 += 2.0L;
+ k4 += 2.0L;
+ k5 += 1.0L;
+ k6 += 1.0L;
+ k7 += 2.0L;
+ k8 += 2.0L;
+
+ if ( (fabs(qk) + fabs(pk)) > BETA_BIG )
+ {
+ pkm2 *= BETA_BIGINV;
+ pkm1 *= BETA_BIGINV;
+ qkm2 *= BETA_BIGINV;
+ qkm1 *= BETA_BIGINV;
+ }
+ if ( (fabs(qk) < BETA_BIGINV) || (fabs(pk) < BETA_BIGINV) )
+ {
+ pkm2 *= BETA_BIG;
+ pkm1 *= BETA_BIG;
+ qkm2 *= BETA_BIG;
+ qkm1 *= BETA_BIG;
+ }
+ } while ( ++n < 400 );
+// loss of precision has occurred
+//mtherr( "incbetl", PLOSS );
+ return ans;
+}
+
+/* Power series for incomplete gamma integral.
+ Use when b*x is small. */
+real betaDistPowerSeries(real a, real b, real x )
+{
+ real ai = 1.0L / a;
+ real u = (1.0L - b) * x;
+ real v = u / (a + 1.0L);
+ real t1 = v;
+ real t = u;
+ real n = 2.0L;
+ real s = 0.0L;
+ real z = real.epsilon * ai;
+ while ( fabs(v) > z )
+ {
+ u = (n - b) * x / n;
+ t *= u;
+ v = t / (a + n);
+ s += v;
+ n += 1.0L;
+ }
+ s += t1;
+ s += ai;
+
+ u = a * log(x);
+ if ( (a+b) < MAXGAMMA && fabs(u) < MAXLOG )
+ {
+ t = gamma(a+b)/(gamma(a)*gamma(b));
+ s = s * t * pow(x,a);
+ }
+ else
+ {
+ t = logGamma(a+b) - logGamma(a) - logGamma(b) + u + log(s);
+
+ if ( t < MINLOG )
+ {
+ s = 0.0L;
+ } else
+ s = exp(t);
+ }
+ return s;
+}
+
+}
+
+/***************************************
+ * Incomplete gamma integral and its complement
+ *
+ * These functions are defined by
+ *
+ * gammaIncomplete = ( $(INTEGRATE 0, x) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a)
+ *
+ * gammaIncompleteCompl(a,x) = 1 - gammaIncomplete(a,x)
+ * = ($(INTEGRATE x, &infin;) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a)
+ *
+ * In this implementation both arguments must be positive.
+ * The integral is evaluated by either a power series or
+ * continued fraction expansion, depending on the relative
+ * values of a and x.
+ */
+real gammaIncomplete(real a, real x )
+in {
+ assert(x >= 0);
+ assert(a > 0);
+}
+body {
+ /* left tail of incomplete gamma function:
+ *
+ * inf. k
+ * a -x - x
+ * x e > ----------
+ * - -
+ * k=0 | (a+k+1)
+ *
+ */
+ if (x == 0)
+ return 0.0L;
+
+ if ( (x > 1.0L) && (x > a ) )
+ return 1.0L - gammaIncompleteCompl(a,x);
+
+ real ax = a * log(x) - x - logGamma(a);
+/+
+ if ( ax < MINLOGL ) return 0; // underflow
+ // { mtherr( "igaml", UNDERFLOW ); return( 0.0L ); }
++/
+ ax = exp(ax);
+
+ /* power series */
+ real r = a;
+ real c = 1.0L;
+ real ans = 1.0L;
+
+ do
+ {
+ r += 1.0L;
+ c *= x/r;
+ ans += c;
+ } while ( c/ans > real.epsilon );
+
+ return ans * ax/a;
+}
+
+/** ditto */
+real gammaIncompleteCompl(real a, real x )
+in {
+ assert(x >= 0);
+ assert(a > 0);
+}
+body {
+ if (x == 0)
+ return 1.0L;
+ if ( (x < 1.0L) || (x < a) )
+ return 1.0L - gammaIncomplete(a,x);
+
+ // DAC (Cephes bug fix): This is necessary to avoid
+ // spurious nans, eg
+ // log(x)-x = NaN when x = real.infinity
+ const real MAXLOGL = 1.1356523406294143949492E4L;
+ if (x > MAXLOGL)
+ return igammaTemmeLarge(a, x);
+
+ real ax = a * log(x) - x - logGamma(a);
+//const real MINLOGL = -1.1355137111933024058873E4L;
+// if ( ax < MINLOGL ) return 0; // underflow;
+ ax = exp(ax);
+
+
+ /* continued fraction */
+ real y = 1.0L - a;
+ real z = x + y + 1.0L;
+ real c = 0.0L;
+
+ real pk, qk, t;
+
+ real pkm2 = 1.0L;
+ real qkm2 = x;
+ real pkm1 = x + 1.0L;
+ real qkm1 = z * x;
+ real ans = pkm1/qkm1;
+
+ do
+ {
+ c += 1.0L;
+ y += 1.0L;
+ z += 2.0L;
+ real yc = y * c;
+ pk = pkm1 * z - pkm2 * yc;
+ qk = qkm1 * z - qkm2 * yc;
+ if ( qk != 0.0L )
+ {
+ real r = pk/qk;
+ t = fabs( (ans - r)/r );
+ ans = r;
+ }
+ else
+ {
+ t = 1.0L;
+ }
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ const real BIG = 9.223372036854775808e18L;
+
+ if ( fabs(pk) > BIG )
+ {
+ pkm2 /= BIG;
+ pkm1 /= BIG;
+ qkm2 /= BIG;
+ qkm1 /= BIG;
+ }
+ } while ( t > real.epsilon );
+
+ return ans * ax;
+}
+
+/** Inverse of complemented incomplete gamma integral
+ *
+ * Given a and p, the function finds x such that
+ *
+ * gammaIncompleteCompl( a, x ) = p.
+ *
+ * Starting with the approximate value x = a $(POWER t, 3), where
+ * t = 1 - d - normalDistributionInv(p) sqrt(d),
+ * and d = 1/9a,
+ * the routine performs up to 10 Newton iterations to find the
+ * root of incompleteGammaCompl(a,x) - p = 0.
+ */
+real gammaIncompleteComplInv(real a, real p)
+in {
+ assert(p >= 0 && p <= 1);
+ assert(a>0);
+}
+body {
+ if (p == 0) return real.infinity;
+
+ real y0 = p;
+ const real MAXLOGL = 1.1356523406294143949492E4L;
+ real x0, x1, x, yl, yh, y, d, lgm, dithresh;
+ int i, dir;
+
+ /* bound the solution */
+ x0 = real.max;
+ yl = 0.0L;
+ x1 = 0.0L;
+ yh = 1.0L;
+ dithresh = 4.0 * real.epsilon;
+
+ /* approximation to inverse function */
+ d = 1.0L/(9.0L*a);
+ y = 1.0L - d - normalDistributionInvImpl(y0) * sqrt(d);
+ x = a * y * y * y;
+
+ lgm = logGamma(a);
+
+ for ( i=0; i<10; i++ )
+ {
+ if ( x > x0 || x < x1 )
+ goto ihalve;
+ y = gammaIncompleteCompl(a,x);
+ if ( y < yl || y > yh )
+ goto ihalve;
+ if ( y < y0 )
+ {
+ x0 = x;
+ yl = y;
+ }
+ else
+ {
+ x1 = x;
+ yh = y;
+ }
+ /* compute the derivative of the function at this point */
+ d = (a - 1.0L) * log(x0) - x0 - lgm;
+ if ( d < -MAXLOGL )
+ goto ihalve;
+ d = -exp(d);
+ /* compute the step to the next approximation of x */
+ d = (y - y0)/d;
+ x = x - d;
+ if ( i < 3 ) continue;
+ if ( fabs(d/x) < dithresh ) return x;
+ }
+
+ /* Resort to interval halving if Newton iteration did not converge. */
+ihalve:
+ d = 0.0625L;
+ if ( x0 == real.max )
+ {
+ if ( x <= 0.0L )
+ x = 1.0L;
+ while ( x0 == real.max )
+ {
+ x = (1.0L + d) * x;
+ y = gammaIncompleteCompl( a, x );
+ if ( y < y0 )
+ {
+ x0 = x;
+ yl = y;
+ break;
+ }
+ d = d + d;
+ }
+ }
+ d = 0.5L;
+ dir = 0;
+
+ for ( i=0; i<400; i++ )
+ {
+ x = x1 + d * (x0 - x1);
+ y = gammaIncompleteCompl( a, x );
+ lgm = (x0 - x1)/(x1 + x0);
+ if ( fabs(lgm) < dithresh )
+ break;
+ lgm = (y - y0)/y0;
+ if ( fabs(lgm) < dithresh )
+ break;
+ if ( x <= 0.0L )
+ break;
+ if ( y > y0 )
+ {
+ x1 = x;
+ yh = y;
+ if ( dir < 0 )
+ {
+ dir = 0;
+ d = 0.5L;
+ } else if ( dir > 1 )
+ d = 0.5L * d + 0.5L;
+ else
+ d = (y0 - yl)/(yh - yl);
+ dir += 1;
+ }
+ else
+ {
+ x0 = x;
+ yl = y;
+ if ( dir > 0 )
+ {
+ dir = 0;
+ d = 0.5L;
+ } else if ( dir < -1 )
+ d = 0.5L * d;
+ else
+ d = (y0 - yl)/(yh - yl);
+ dir -= 1;
+ }
+ }
+ /+
+ if ( x == 0.0L )
+ mtherr( "igamil", UNDERFLOW );
+ +/
+ return x;
+}
+
+@safe unittest
+{
+//Values from Excel's GammaInv(1-p, x, 1)
+assert(fabs(gammaIncompleteComplInv(1, 0.5) - 0.693147188044814) < 0.00000005);
+assert(fabs(gammaIncompleteComplInv(12, 0.99) - 5.42818075054289) < 0.00000005);
+assert(fabs(gammaIncompleteComplInv(100, 0.8) - 91.5013985848288L) < 0.000005);
+assert(gammaIncomplete(1, 0)==0);
+assert(gammaIncompleteCompl(1, 0)==1);
+assert(gammaIncomplete(4545, real.infinity)==1);
+
+// Values from Excel's (1-GammaDist(x, alpha, 1, TRUE))
+
+assert(fabs(1.0L-gammaIncompleteCompl(0.5, 2) - 0.954499729507309L) < 0.00000005);
+assert(fabs(gammaIncomplete(0.5, 2) - 0.954499729507309L) < 0.00000005);
+// Fixed Cephes bug:
+assert(gammaIncompleteCompl(384, real.infinity)==0);
+assert(gammaIncompleteComplInv(3, 0)==real.infinity);
+// Fixed a bug that caused gammaIncompleteCompl to return a wrong value when
+// x was larger than a, but not by much, and both were large:
+// The value is from WolframAlpha (Gamma[100000, 100001, inf] / Gamma[100000])
+static if (real.mant_dig >= 64) // incl. 80-bit reals
+ assert(fabs(gammaIncompleteCompl(100000, 100001) - 0.49831792109) < 0.000000000005);
+else
+ assert(fabs(gammaIncompleteCompl(100000, 100001) - 0.49831792109) < 0.00000005);
+}
+
+
+// DAC: These values are Bn / n for n=2,4,6,8,10,12,14.
+immutable real [7] Bn_n = [
+ 1.0L/(6*2), -1.0L/(30*4), 1.0L/(42*6), -1.0L/(30*8),
+ 5.0L/(66*10), -691.0L/(2730*12), 7.0L/(6*14) ];
+
+/** Digamma function
+*
+* The digamma function is the logarithmic derivative of the gamma function.
+*
+* digamma(x) = d/dx logGamma(x)
+*
+* References:
+* 1. Abramowitz, M., and Stegun, I. A. (1970).
+* Handbook of mathematical functions. Dover, New York,
+* pages 258-259, equations 6.3.6 and 6.3.18.
+*/
+real digamma(real x)
+{
+ // Based on CEPHES, Stephen L. Moshier.
+
+ real p, q, nz, s, w, y, z;
+ long i, n;
+ int negative;
+
+ negative = 0;
+ nz = 0.0;
+
+ if ( x <= 0.0 )
+ {
+ negative = 1;
+ q = x;
+ p = floor(q);
+ if ( p == q )
+ {
+ return real.nan; // singularity.
+ }
+ /* Remove the zeros of tan(PI x)
+ * by subtracting the nearest integer from x
+ */
+ nz = q - p;
+ if ( nz != 0.5 )
+ {
+ if ( nz > 0.5 )
+ {
+ p += 1.0;
+ nz = q - p;
+ }
+ nz = PI/tan(PI*nz);
+ }
+ else
+ {
+ nz = 0.0;
+ }
+ x = 1.0 - x;
+ }
+
+ // check for small positive integer
+ if ((x <= 13.0) && (x == floor(x)) )
+ {
+ y = 0.0;
+ n = lrint(x);
+ // DAC: CEPHES bugfix. Cephes did this in reverse order, which
+ // created a larger roundoff error.
+ for (i=n-1; i>0; --i)
+ {
+ y+=1.0L/i;
+ }
+ y -= EULERGAMMA;
+ goto done;
+ }
+
+ s = x;
+ w = 0.0;
+ while ( s < 10.0 )
+ {
+ w += 1.0/s;
+ s += 1.0;
+ }
+
+ if ( s < 1.0e17 )
+ {
+ z = 1.0/(s * s);
+ y = z * poly(z, Bn_n);
+ } else
+ y = 0.0;
+
+ y = log(s) - 0.5L/s - y - w;
+
+done:
+ if ( negative )
+ {
+ y -= nz;
+ }
+ return y;
+}
+
+@safe unittest
+{
+ // Exact values
+ assert(digamma(1.0)== -EULERGAMMA);
+ assert(feqrel(digamma(0.25), -PI/2 - 3* LN2 - EULERGAMMA) >= real.mant_dig-7);
+ assert(feqrel(digamma(1.0L/6), -PI/2 *sqrt(3.0L) - 2* LN2 -1.5*log(3.0L) - EULERGAMMA) >= real.mant_dig-7);
+ assert(digamma(-5.0).isNaN());
+ assert(feqrel(digamma(2.5), -EULERGAMMA - 2*LN2 + 2.0 + 2.0L/3) >= real.mant_dig-9);
+ assert(isIdentical(digamma(NaN(0xABC)), NaN(0xABC)));
+
+ for (int k=1; k<40; ++k)
+ {
+ real y=0;
+ for (int u=k; u >= 1; --u)
+ {
+ y += 1.0L/u;
+ }
+ assert(feqrel(digamma(k+1.0), -EULERGAMMA + y) >= real.mant_dig-2);
+ }
+}
+
+/** Log Minus Digamma function
+*
+* logmdigamma(x) = log(x) - digamma(x)
+*
+* References:
+* 1. Abramowitz, M., and Stegun, I. A. (1970).
+* Handbook of mathematical functions. Dover, New York,
+* pages 258-259, equations 6.3.6 and 6.3.18.
+*/
+real logmdigamma(real x)
+{
+ if (x <= 0.0)
+ {
+ if (x == 0.0)
+ {
+ return real.infinity;
+ }
+ return real.nan;
+ }
+
+ real s = x;
+ real w = 0.0;
+ while ( s < 10.0 )
+ {
+ w += 1.0/s;
+ s += 1.0;
+ }
+
+ real y;
+ if ( s < 1.0e17 )
+ {
+ immutable real z = 1.0/(s * s);
+ y = z * poly(z, Bn_n);
+ } else
+ y = 0.0;
+
+ return x == s ? y + 0.5L/s : (log(x/s) + 0.5L/s + y + w);
+}
+
+@safe unittest
+{
+ assert(logmdigamma(-5.0).isNaN());
+ assert(isIdentical(logmdigamma(NaN(0xABC)), NaN(0xABC)));
+ assert(logmdigamma(0.0) == real.infinity);
+ for (auto x = 0.01; x < 1.0; x += 0.1)
+ assert(approxEqual(digamma(x), log(x) - logmdigamma(x)));
+ for (auto x = 1.0; x < 15.0; x += 1.0)
+ assert(approxEqual(digamma(x), log(x) - logmdigamma(x)));
+}
+
+/** Inverse of the Log Minus Digamma function
+ *
+ * Returns x such $(D log(x) - digamma(x) == y).
+ *
+ * References:
+ * 1. Abramowitz, M., and Stegun, I. A. (1970).
+ * Handbook of mathematical functions. Dover, New York,
+ * pages 258-259, equation 6.3.18.
+ *
+ * Authors: Ilya Yaroshenko
+ */
+real logmdigammaInverse(real y)
+{
+ import std.numeric : findRoot;
+ // FIXME: should be returned back to enum.
+ // Fix requires CTFEable `log` on non-x86 targets (check both LDC and GDC).
+ immutable maxY = logmdigamma(real.min_normal);
+ assert(maxY > 0 && maxY <= real.max);
+
+ if (y >= maxY)
+ {
+ //lim x->0 (log(x)-digamma(x))*x == 1
+ return 1 / y;
+ }
+ if (y < 0)
+ {
+ return real.nan;
+ }
+ if (y < real.min_normal)
+ {
+ //6.3.18
+ return 0.5 / y;
+ }
+ if (y > 0)
+ {
+ // x/2 <= logmdigamma(1 / x) <= x, x > 0
+ // calls logmdigamma ~6 times
+ return 1 / findRoot((real x) => logmdigamma(1 / x) - y, y, 2*y);
+ }
+ return y; //NaN
+}
+
+@safe unittest
+{
+ import std.typecons;
+ //WolframAlpha, 22.02.2015
+ immutable Tuple!(real, real)[5] testData = [
+ tuple(1.0L, 0.615556766479594378978099158335549201923L),
+ tuple(1.0L/8, 4.15937801516894947161054974029150730555L),
+ tuple(1.0L/1024, 512.166612384991507850643277924243523243L),
+ tuple(0.000500083333325000003968249801594877323784632117L, 1000.0L),
+ tuple(1017.644138623741168814449776695062817947092468536L, 1.0L/1024),
+ ];
+ foreach (test; testData)
+ assert(approxEqual(logmdigammaInverse(test[0]), test[1], 2e-15, 0));
+
+ assert(approxEqual(logmdigamma(logmdigammaInverse(1)), 1, 1e-15, 0));
+ assert(approxEqual(logmdigamma(logmdigammaInverse(real.min_normal)), real.min_normal, 1e-15, 0));
+ assert(approxEqual(logmdigamma(logmdigammaInverse(real.max/2)), real.max/2, 1e-15, 0));
+ assert(approxEqual(logmdigammaInverse(logmdigamma(1)), 1, 1e-15, 0));
+ assert(approxEqual(logmdigammaInverse(logmdigamma(real.min_normal)), real.min_normal, 1e-15, 0));
+ assert(approxEqual(logmdigammaInverse(logmdigamma(real.max/2)), real.max/2, 1e-15, 0));
+}