diff options
Diffstat (limited to 'libjava/java/lang/Math.java')
-rw-r--r-- | libjava/java/lang/Math.java | 973 |
1 files changed, 0 insertions, 973 deletions
diff --git a/libjava/java/lang/Math.java b/libjava/java/lang/Math.java deleted file mode 100644 index 836b8bd..0000000 --- a/libjava/java/lang/Math.java +++ /dev/null @@ -1,973 +0,0 @@ -/* java.lang.Math -- common mathematical functions, native allowed - Copyright (C) 1998, 2001, 2002, 2003, 2006 Free Software Foundation, Inc. - -This file is part of GNU Classpath. - -GNU Classpath is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GNU Classpath is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU Classpath; see the file COPYING. If not, write to the -Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA -02110-1301 USA. - -Linking this library statically or dynamically with other modules is -making a combined work based on this library. Thus, the terms and -conditions of the GNU General Public License cover the whole -combination. - -As a special exception, the copyright holders of this library give you -permission to link this library with independent modules to produce an -executable, regardless of the license terms of these independent -modules, and to copy and distribute the resulting executable under -terms of your choice, provided that you also meet, for each linked -independent module, the terms and conditions of the license of that -module. An independent module is a module which is not derived from -or based on this library. If you modify this library, you may extend -this exception to your version of the library, but you are not -obligated to do so. If you do not wish to do so, delete this -exception statement from your version. */ - - -package java.lang; - -import gnu.classpath.Configuration; - -import java.util.Random; - -/** - * Helper class containing useful mathematical functions and constants. - * <P> - * - * Note that angles are specified in radians. Conversion functions are - * provided for your convenience. - * - * @author Paul Fisher - * @author John Keiser - * @author Eric Blake (ebb9@email.byu.edu) - * @since 1.0 - */ -public final class Math -{ - /** - * Math is non-instantiable - */ - private Math() - { - } - - static - { - if (Configuration.INIT_LOAD_LIBRARY) - { - System.loadLibrary("javalang"); - } - } - - /** - * A random number generator, initialized on first use. - */ - private static Random rand; - - /** - * The most accurate approximation to the mathematical constant <em>e</em>: - * <code>2.718281828459045</code>. Used in natural log and exp. - * - * @see #log(double) - * @see #exp(double) - */ - public static final double E = 2.718281828459045; - - /** - * The most accurate approximation to the mathematical constant <em>pi</em>: - * <code>3.141592653589793</code>. This is the ratio of a circle's diameter - * to its circumference. - */ - public static final double PI = 3.141592653589793; - - /** - * Take the absolute value of the argument. - * (Absolute value means make it positive.) - * <P> - * - * Note that the the largest negative value (Integer.MIN_VALUE) cannot - * be made positive. In this case, because of the rules of negation in - * a computer, MIN_VALUE is what will be returned. - * This is a <em>negative</em> value. You have been warned. - * - * @param i the number to take the absolute value of - * @return the absolute value - * @see Integer#MIN_VALUE - */ - public static int abs(int i) - { - return (i < 0) ? -i : i; - } - - /** - * Take the absolute value of the argument. - * (Absolute value means make it positive.) - * <P> - * - * Note that the the largest negative value (Long.MIN_VALUE) cannot - * be made positive. In this case, because of the rules of negation in - * a computer, MIN_VALUE is what will be returned. - * This is a <em>negative</em> value. You have been warned. - * - * @param l the number to take the absolute value of - * @return the absolute value - * @see Long#MIN_VALUE - */ - public static long abs(long l) - { - return (l < 0) ? -l : l; - } - - /** - * Take the absolute value of the argument. - * (Absolute value means make it positive.) - * <P> - * - * This is equivalent, but faster than, calling - * <code>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</code>. - * - * @param f the number to take the absolute value of - * @return the absolute value - */ - public static float abs(float f) - { - return (f <= 0) ? 0 - f : f; - } - - /** - * Take the absolute value of the argument. - * (Absolute value means make it positive.) - * - * This is equivalent, but faster than, calling - * <code>Double.longBitsToDouble(Double.doubleToLongBits(a) - * << 1) >>> 1);</code>. - * - * @param d the number to take the absolute value of - * @return the absolute value - */ - public static double abs(double d) - { - return (d <= 0) ? 0 - d : d; - } - - /** - * Return whichever argument is smaller. - * - * @param a the first number - * @param b a second number - * @return the smaller of the two numbers - */ - public static int min(int a, int b) - { - return (a < b) ? a : b; - } - - /** - * Return whichever argument is smaller. - * - * @param a the first number - * @param b a second number - * @return the smaller of the two numbers - */ - public static long min(long a, long b) - { - return (a < b) ? a : b; - } - - /** - * Return whichever argument is smaller. If either argument is NaN, the - * result is NaN, and when comparing 0 and -0, -0 is always smaller. - * - * @param a the first number - * @param b a second number - * @return the smaller of the two numbers - */ - public static float min(float a, float b) - { - // this check for NaN, from JLS 15.21.1, saves a method call - if (a != a) - return a; - // no need to check if b is NaN; < will work correctly - // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special - if (a == 0 && b == 0) - return -(-a - b); - return (a < b) ? a : b; - } - - /** - * Return whichever argument is smaller. If either argument is NaN, the - * result is NaN, and when comparing 0 and -0, -0 is always smaller. - * - * @param a the first number - * @param b a second number - * @return the smaller of the two numbers - */ - public static double min(double a, double b) - { - // this check for NaN, from JLS 15.21.1, saves a method call - if (a != a) - return a; - // no need to check if b is NaN; < will work correctly - // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special - if (a == 0 && b == 0) - return -(-a - b); - return (a < b) ? a : b; - } - - /** - * Return whichever argument is larger. - * - * @param a the first number - * @param b a second number - * @return the larger of the two numbers - */ - public static int max(int a, int b) - { - return (a > b) ? a : b; - } - - /** - * Return whichever argument is larger. - * - * @param a the first number - * @param b a second number - * @return the larger of the two numbers - */ - public static long max(long a, long b) - { - return (a > b) ? a : b; - } - - /** - * Return whichever argument is larger. If either argument is NaN, the - * result is NaN, and when comparing 0 and -0, 0 is always larger. - * - * @param a the first number - * @param b a second number - * @return the larger of the two numbers - */ - public static float max(float a, float b) - { - // this check for NaN, from JLS 15.21.1, saves a method call - if (a != a) - return a; - // no need to check if b is NaN; > will work correctly - // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special - if (a == 0 && b == 0) - return a - -b; - return (a > b) ? a : b; - } - - /** - * Return whichever argument is larger. If either argument is NaN, the - * result is NaN, and when comparing 0 and -0, 0 is always larger. - * - * @param a the first number - * @param b a second number - * @return the larger of the two numbers - */ - public static double max(double a, double b) - { - // this check for NaN, from JLS 15.21.1, saves a method call - if (a != a) - return a; - // no need to check if b is NaN; > will work correctly - // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special - if (a == 0 && b == 0) - return a - -b; - return (a > b) ? a : b; - } - - /** - * The trigonometric function <em>sin</em>. The sine of NaN or infinity is - * NaN, and the sine of 0 retains its sign. This is accurate within 1 ulp, - * and is semi-monotonic. - * - * @param a the angle (in radians) - * @return sin(a) - */ - public static native double sin(double a); - - /** - * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is - * NaN. This is accurate within 1 ulp, and is semi-monotonic. - * - * @param a the angle (in radians) - * @return cos(a) - */ - public static native double cos(double a); - - /** - * The trigonometric function <em>tan</em>. The tangent of NaN or infinity - * is NaN, and the tangent of 0 retains its sign. This is accurate within 1 - * ulp, and is semi-monotonic. - * - * @param a the angle (in radians) - * @return tan(a) - */ - public static native double tan(double a); - - /** - * The trigonometric function <em>arcsin</em>. The range of angles returned - * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or - * its absolute value is beyond 1, the result is NaN; and the arcsine of - * 0 retains its sign. This is accurate within 1 ulp, and is semi-monotonic. - * - * @param a the sin to turn back into an angle - * @return arcsin(a) - */ - public static native double asin(double a); - - /** - * The trigonometric function <em>arccos</em>. The range of angles returned - * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or - * its absolute value is beyond 1, the result is NaN. This is accurate - * within 1 ulp, and is semi-monotonic. - * - * @param a the cos to turn back into an angle - * @return arccos(a) - */ - public static native double acos(double a); - - /** - * The trigonometric function <em>arcsin</em>. The range of angles returned - * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the - * result is NaN; and the arctangent of 0 retains its sign. This is accurate - * within 1 ulp, and is semi-monotonic. - * - * @param a the tan to turn back into an angle - * @return arcsin(a) - * @see #atan2(double, double) - */ - public static native double atan(double a); - - /** - * A special version of the trigonometric function <em>arctan</em>, for - * converting rectangular coordinates <em>(x, y)</em> to polar - * <em>(r, theta)</em>. This computes the arctangent of x/y in the range - * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul> - * <li>If either argument is NaN, the result is NaN.</li> - * <li>If the first argument is positive zero and the second argument is - * positive, or the first argument is positive and finite and the second - * argument is positive infinity, then the result is positive zero.</li> - * <li>If the first argument is negative zero and the second argument is - * positive, or the first argument is negative and finite and the second - * argument is positive infinity, then the result is negative zero.</li> - * <li>If the first argument is positive zero and the second argument is - * negative, or the first argument is positive and finite and the second - * argument is negative infinity, then the result is the double value - * closest to pi.</li> - * <li>If the first argument is negative zero and the second argument is - * negative, or the first argument is negative and finite and the second - * argument is negative infinity, then the result is the double value - * closest to -pi.</li> - * <li>If the first argument is positive and the second argument is - * positive zero or negative zero, or the first argument is positive - * infinity and the second argument is finite, then the result is the - * double value closest to pi/2.</li> - * <li>If the first argument is negative and the second argument is - * positive zero or negative zero, or the first argument is negative - * infinity and the second argument is finite, then the result is the - * double value closest to -pi/2.</li> - * <li>If both arguments are positive infinity, then the result is the - * double value closest to pi/4.</li> - * <li>If the first argument is positive infinity and the second argument - * is negative infinity, then the result is the double value closest to - * 3*pi/4.</li> - * <li>If the first argument is negative infinity and the second argument - * is positive infinity, then the result is the double value closest to - * -pi/4.</li> - * <li>If both arguments are negative infinity, then the result is the - * double value closest to -3*pi/4.</li> - * - * </ul><p>This is accurate within 2 ulps, and is semi-monotonic. To get r, - * use sqrt(x*x+y*y). - * - * @param y the y position - * @param x the x position - * @return <em>theta</em> in the conversion of (x, y) to (r, theta) - * @see #atan(double) - */ - public static native double atan2(double y, double x); - - /** - * Take <em>e</em><sup>a</sup>. The opposite of <code>log()</code>. If the - * argument is NaN, the result is NaN; if the argument is positive infinity, - * the result is positive infinity; and if the argument is negative - * infinity, the result is positive zero. This is accurate within 1 ulp, - * and is semi-monotonic. - * - * @param a the number to raise to the power - * @return the number raised to the power of <em>e</em> - * @see #log(double) - * @see #pow(double, double) - */ - public static native double exp(double a); - - /** - * Take ln(a) (the natural log). The opposite of <code>exp()</code>. If the - * argument is NaN or negative, the result is NaN; if the argument is - * positive infinity, the result is positive infinity; and if the argument - * is either zero, the result is negative infinity. This is accurate within - * 1 ulp, and is semi-monotonic. - * - * <p>Note that the way to get log<sub>b</sub>(a) is to do this: - * <code>ln(a) / ln(b)</code>. - * - * @param a the number to take the natural log of - * @return the natural log of <code>a</code> - * @see #exp(double) - */ - public static native double log(double a); - - /** - * Take a square root. If the argument is NaN or negative, the result is - * NaN; if the argument is positive infinity, the result is positive - * infinity; and if the result is either zero, the result is the same. - * This is accurate within the limits of doubles. - * - * <p>For other roots, use pow(a, 1 / rootNumber). - * - * @param a the numeric argument - * @return the square root of the argument - * @see #pow(double, double) - */ - public static native double sqrt(double a); - - /** - * Raise a number to a power. Special cases:<ul> - * <li>If the second argument is positive or negative zero, then the result - * is 1.0.</li> - * <li>If the second argument is 1.0, then the result is the same as the - * first argument.</li> - * <li>If the second argument is NaN, then the result is NaN.</li> - * <li>If the first argument is NaN and the second argument is nonzero, - * then the result is NaN.</li> - * <li>If the absolute value of the first argument is greater than 1 and - * the second argument is positive infinity, or the absolute value of the - * first argument is less than 1 and the second argument is negative - * infinity, then the result is positive infinity.</li> - * <li>If the absolute value of the first argument is greater than 1 and - * the second argument is negative infinity, or the absolute value of the - * first argument is less than 1 and the second argument is positive - * infinity, then the result is positive zero.</li> - * <li>If the absolute value of the first argument equals 1 and the second - * argument is infinite, then the result is NaN.</li> - * <li>If the first argument is positive zero and the second argument is - * greater than zero, or the first argument is positive infinity and the - * second argument is less than zero, then the result is positive zero.</li> - * <li>If the first argument is positive zero and the second argument is - * less than zero, or the first argument is positive infinity and the - * second argument is greater than zero, then the result is positive - * infinity.</li> - * <li>If the first argument is negative zero and the second argument is - * greater than zero but not a finite odd integer, or the first argument is - * negative infinity and the second argument is less than zero but not a - * finite odd integer, then the result is positive zero.</li> - * <li>If the first argument is negative zero and the second argument is a - * positive finite odd integer, or the first argument is negative infinity - * and the second argument is a negative finite odd integer, then the result - * is negative zero.</li> - * <li>If the first argument is negative zero and the second argument is - * less than zero but not a finite odd integer, or the first argument is - * negative infinity and the second argument is greater than zero but not a - * finite odd integer, then the result is positive infinity.</li> - * <li>If the first argument is negative zero and the second argument is a - * negative finite odd integer, or the first argument is negative infinity - * and the second argument is a positive finite odd integer, then the result - * is negative infinity.</li> - * <li>If the first argument is less than zero and the second argument is a - * finite even integer, then the result is equal to the result of raising - * the absolute value of the first argument to the power of the second - * argument.</li> - * <li>If the first argument is less than zero and the second argument is a - * finite odd integer, then the result is equal to the negative of the - * result of raising the absolute value of the first argument to the power - * of the second argument.</li> - * <li>If the first argument is finite and less than zero and the second - * argument is finite and not an integer, then the result is NaN.</li> - * <li>If both arguments are integers, then the result is exactly equal to - * the mathematical result of raising the first argument to the power of - * the second argument if that result can in fact be represented exactly as - * a double value.</li> - * - * </ul><p>(In the foregoing descriptions, a floating-point value is - * considered to be an integer if and only if it is a fixed point of the - * method {@link #ceil(double)} or, equivalently, a fixed point of the - * method {@link #floor(double)}. A value is a fixed point of a one-argument - * method if and only if the result of applying the method to the value is - * equal to the value.) This is accurate within 1 ulp, and is semi-monotonic. - * - * @param a the number to raise - * @param b the power to raise it to - * @return a<sup>b</sup> - */ - public static native double pow(double a, double b); - - /** - * Get the IEEE 754 floating point remainder on two numbers. This is the - * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest - * double to <code>x / y</code> (ties go to the even n); for a zero - * remainder, the sign is that of <code>x</code>. If either argument is NaN, - * the first argument is infinite, or the second argument is zero, the result - * is NaN; if x is finite but y is infinite, the result is x. This is - * accurate within the limits of doubles. - * - * @param x the dividend (the top half) - * @param y the divisor (the bottom half) - * @return the IEEE 754-defined floating point remainder of x/y - * @see #rint(double) - */ - public static native double IEEEremainder(double x, double y); - - /** - * Take the nearest integer that is that is greater than or equal to the - * argument. If the argument is NaN, infinite, or zero, the result is the - * same; if the argument is between -1 and 0, the result is negative zero. - * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>. - * - * @param a the value to act upon - * @return the nearest integer >= <code>a</code> - */ - public static native double ceil(double a); - - /** - * Take the nearest integer that is that is less than or equal to the - * argument. If the argument is NaN, infinite, or zero, the result is the - * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>. - * - * @param a the value to act upon - * @return the nearest integer <= <code>a</code> - */ - public static native double floor(double a); - - /** - * Take the nearest integer to the argument. If it is exactly between - * two integers, the even integer is taken. If the argument is NaN, - * infinite, or zero, the result is the same. - * - * @param a the value to act upon - * @return the nearest integer to <code>a</code> - */ - public static native double rint(double a); - - /** - * Take the nearest integer to the argument. This is equivalent to - * <code>(int) Math.floor(a + 0.5f)</code>. If the argument is NaN, the result - * is 0; otherwise if the argument is outside the range of int, the result - * will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate. - * - * @param a the argument to round - * @return the nearest integer to the argument - * @see Integer#MIN_VALUE - * @see Integer#MAX_VALUE - */ - public static int round(float a) - { - // this check for NaN, from JLS 15.21.1, saves a method call - if (a != a) - return 0; - return (int) floor(a + 0.5f); - } - - /** - * Take the nearest long to the argument. This is equivalent to - * <code>(long) Math.floor(a + 0.5)</code>. If the argument is NaN, the - * result is 0; otherwise if the argument is outside the range of long, the - * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate. - * - * @param a the argument to round - * @return the nearest long to the argument - * @see Long#MIN_VALUE - * @see Long#MAX_VALUE - */ - public static long round(double a) - { - // this check for NaN, from JLS 15.21.1, saves a method call - if (a != a) - return 0; - return (long) floor(a + 0.5d); - } - - /** - * Get a random number. This behaves like Random.nextDouble(), seeded by - * System.currentTimeMillis() when first called. In other words, the number - * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0). - * This random sequence is only used by this method, and is threadsafe, - * although you may want your own random number generator if it is shared - * among threads. - * - * @return a random number - * @see Random#nextDouble() - * @see System#currentTimeMillis() - */ - public static synchronized double random() - { - if (rand == null) - rand = new Random(); - return rand.nextDouble(); - } - - /** - * Convert from degrees to radians. The formula for this is - * radians = degrees * (pi/180); however it is not always exact given the - * limitations of floating point numbers. - * - * @param degrees an angle in degrees - * @return the angle in radians - * @since 1.2 - */ - public static double toRadians(double degrees) - { - return (degrees * PI) / 180; - } - - /** - * Convert from radians to degrees. The formula for this is - * degrees = radians * (180/pi); however it is not always exact given the - * limitations of floating point numbers. - * - * @param rads an angle in radians - * @return the angle in degrees - * @since 1.2 - */ - public static double toDegrees(double rads) - { - return (rads * 180) / PI; - } - - /** - * <p> - * Take a cube root. If the argument is <code>NaN</code>, an infinity or - * zero, then the original value is returned. The returned result is - * within 1 ulp of the exact result. For a finite value, <code>x</code>, - * the cube root of <code>-x</code> is equal to the negation of the cube root - * of <code>x</code>. - * </p> - * <p> - * For a square root, use <code>sqrt</code>. For other roots, use - * <code>pow(a, 1 / rootNumber)</code>. - * </p> - * - * @param a the numeric argument - * @return the cube root of the argument - * @see #sqrt(double) - * @see #pow(double, double) - * @since 1.5 - */ - public static native double cbrt(double a); - - /** - * <p> - * Returns the hyperbolic cosine of the given value. For a value, - * <code>x</code>, the hyperbolic cosine is <code>(e<sup>x</sup> + - * e<sup>-x</sup>)/2</code> - * with <code>e</code> being <a href="#E">Euler's number</a>. The returned - * result is within 2.5 ulps of the exact result. - * </p> - * <p> - * If the supplied value is <code>NaN</code>, then the original value is - * returned. For either infinity, positive infinity is returned. - * The hyperbolic cosine of zero is 1.0. - * </p> - * - * @param a the numeric argument - * @return the hyperbolic cosine of <code>a</code>. - * @since 1.5 - */ - public static native double cosh(double a); - - /** - * <p> - * Returns <code>e<sup>a</sup> - 1. For values close to 0, the - * result of <code>expm1(a) + 1</code> tend to be much closer to the - * exact result than simply <code>exp(x)</code>. The result is within - * 1 ulp of the exact result, and results are semi-monotonic. For finite - * inputs, the returned value is greater than or equal to -1.0. Once - * a result enters within half a ulp of this limit, the limit is returned. - * </p> - * <p> - * For <code>NaN</code>, positive infinity and zero, the original value - * is returned. Negative infinity returns a result of -1.0 (the limit). - * </p> - * - * @param a the numeric argument - * @return <code>e<sup>a</sup> - 1</code> - * @since 1.5 - */ - public static native double expm1(double a); - - /** - * <p> - * Returns the hypotenuse, <code>a<sup>2</sup> + b<sup>2</sup></code>, - * without intermediate overflow or underflow. The returned result is - * within 1 ulp of the exact result. If one parameter is held constant, - * then the result in the other parameter is semi-monotonic. - * </p> - * <p> - * If either of the arguments is an infinity, then the returned result - * is positive infinity. Otherwise, if either argument is <code>NaN</code>, - * then <code>NaN</code> is returned. - * </p> - * - * @param a the first parameter. - * @param b the second parameter. - * @return the hypotenuse matching the supplied parameters. - * @since 1.5 - */ - public static native double hypot(double a, double b); - - /** - * <p> - * Returns the base 10 logarithm of the supplied value. The returned - * result is within 1 ulp of the exact result, and the results are - * semi-monotonic. - * </p> - * <p> - * Arguments of either <code>NaN</code> or less than zero return - * <code>NaN</code>. An argument of positive infinity returns positive - * infinity. Negative infinity is returned if either positive or negative - * zero is supplied. Where the argument is the result of - * <code>10<sup>n</sup</code>, then <code>n</code> is returned. - * </p> - * - * @param a the numeric argument. - * @return the base 10 logarithm of <code>a</code>. - * @since 1.5 - */ - public static native double log10(double a); - - /** - * <p> - * Returns the natural logarithm resulting from the sum of the argument, - * <code>a</code> and 1. For values close to 0, the - * result of <code>log1p(a)</code> tend to be much closer to the - * exact result than simply <code>log(1.0+a)</code>. The returned - * result is within 1 ulp of the exact result, and the results are - * semi-monotonic. - * </p> - * <p> - * Arguments of either <code>NaN</code> or less than -1 return - * <code>NaN</code>. An argument of positive infinity or zero - * returns the original argument. Negative infinity is returned from an - * argument of -1. - * </p> - * - * @param a the numeric argument. - * @return the natural logarithm of <code>a</code> + 1. - * @since 1.5 - */ - public static native double log1p(double a); - - /** - * <p> - * Returns the sign of the argument as follows: - * </p> - * <ul> - * <li>If <code>a</code> is greater than zero, the result is 1.0.</li> - * <li>If <code>a</code> is less than zero, the result is -1.0.</li> - * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>. - * <li>If <code>a</code> is positive or negative zero, the result is the - * same.</li> - * </ul> - * - * @param a the numeric argument. - * @return the sign of the argument. - * @since 1.5. - */ - public static double signum(double a) - { - if (Double.isNaN(a)) - return Double.NaN; - if (a > 0) - return 1.0; - if (a < 0) - return -1.0; - return a; - } - - /** - * <p> - * Returns the sign of the argument as follows: - * </p> - * <ul> - * <li>If <code>a</code> is greater than zero, the result is 1.0f.</li> - * <li>If <code>a</code> is less than zero, the result is -1.0f.</li> - * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>. - * <li>If <code>a</code> is positive or negative zero, the result is the - * same.</li> - * </ul> - * - * @param a the numeric argument. - * @return the sign of the argument. - * @since 1.5. - */ - public static float signum(float a) - { - if (Float.isNaN(a)) - return Float.NaN; - if (a > 0) - return 1.0f; - if (a < 0) - return -1.0f; - return a; - } - - /** - * <p> - * Returns the hyperbolic sine of the given value. For a value, - * <code>x</code>, the hyperbolic sine is <code>(e<sup>x</sup> - - * e<sup>-x</sup>)/2</code> - * with <code>e</code> being <a href="#E">Euler's number</a>. The returned - * result is within 2.5 ulps of the exact result. - * </p> - * <p> - * If the supplied value is <code>NaN</code>, an infinity or a zero, then the - * original value is returned. - * </p> - * - * @param a the numeric argument - * @return the hyperbolic sine of <code>a</code>. - * @since 1.5 - */ - public static native double sinh(double a); - - /** - * <p> - * Returns the hyperbolic tangent of the given value. For a value, - * <code>x</code>, the hyperbolic tangent is <code>(e<sup>x</sup> - - * e<sup>-x</sup>)/(e<sup>x</sup> + e<sup>-x</sup>)</code> - * (i.e. <code>sinh(a)/cosh(a)</code>) - * with <code>e</code> being <a href="#E">Euler's number</a>. The returned - * result is within 2.5 ulps of the exact result. The absolute value - * of the exact result is always less than 1. Computed results are thus - * less than or equal to 1 for finite arguments, with results within - * half a ulp of either positive or negative 1 returning the appropriate - * limit value (i.e. as if the argument was an infinity). - * </p> - * <p> - * If the supplied value is <code>NaN</code> or zero, then the original - * value is returned. Positive infinity returns +1.0 and negative infinity - * returns -1.0. - * </p> - * - * @param a the numeric argument - * @return the hyperbolic tangent of <code>a</code>. - * @since 1.5 - */ - public static native double tanh(double a); - - /** - * Return the ulp for the given double argument. The ulp is the - * difference between the argument and the next larger double. Note - * that the sign of the double argument is ignored, that is, - * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned. - * If the argument is an infinity, then +Inf is returned. If the - * argument is zero (either positive or negative), then - * {@link Double#MIN_VALUE} is returned. - * @param d the double whose ulp should be returned - * @return the difference between the argument and the next larger double - * @since 1.5 - */ - public static double ulp(double d) - { - if (Double.isNaN(d)) - return d; - if (Double.isInfinite(d)) - return Double.POSITIVE_INFINITY; - // This handles both +0.0 and -0.0. - if (d == 0.0) - return Double.MIN_VALUE; - long bits = Double.doubleToLongBits(d); - final int mantissaBits = 52; - final int exponentBits = 11; - final long mantMask = (1L << mantissaBits) - 1; - long mantissa = bits & mantMask; - final long expMask = (1L << exponentBits) - 1; - long exponent = (bits >>> mantissaBits) & expMask; - - // Denormal number, so the answer is easy. - if (exponent == 0) - { - long result = (exponent << mantissaBits) | 1L; - return Double.longBitsToDouble(result); - } - - // Conceptually we want to have '1' as the mantissa. Then we would - // shift the mantissa over to make a normal number. If this underflows - // the exponent, we will make a denormal result. - long newExponent = exponent - mantissaBits; - long newMantissa; - if (newExponent > 0) - newMantissa = 0; - else - { - newMantissa = 1L << -(newExponent - 1); - newExponent = 0; - } - return Double.longBitsToDouble((newExponent << mantissaBits) | newMantissa); - } - - /** - * Return the ulp for the given float argument. The ulp is the - * difference between the argument and the next larger float. Note - * that the sign of the float argument is ignored, that is, - * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned. - * If the argument is an infinity, then +Inf is returned. If the - * argument is zero (either positive or negative), then - * {@link Float#MIN_VALUE} is returned. - * @param f the float whose ulp should be returned - * @return the difference between the argument and the next larger float - * @since 1.5 - */ - public static float ulp(float f) - { - if (Float.isNaN(f)) - return f; - if (Float.isInfinite(f)) - return Float.POSITIVE_INFINITY; - // This handles both +0.0 and -0.0. - if (f == 0.0) - return Float.MIN_VALUE; - int bits = Float.floatToIntBits(f); - final int mantissaBits = 23; - final int exponentBits = 8; - final int mantMask = (1 << mantissaBits) - 1; - int mantissa = bits & mantMask; - final int expMask = (1 << exponentBits) - 1; - int exponent = (bits >>> mantissaBits) & expMask; - - // Denormal number, so the answer is easy. - if (exponent == 0) - { - int result = (exponent << mantissaBits) | 1; - return Float.intBitsToFloat(result); - } - - // Conceptually we want to have '1' as the mantissa. Then we would - // shift the mantissa over to make a normal number. If this underflows - // the exponent, we will make a denormal result. - int newExponent = exponent - mantissaBits; - int newMantissa; - if (newExponent > 0) - newMantissa = 0; - else - { - newMantissa = 1 << -(newExponent - 1); - newExponent = 0; - } - return Float.intBitsToFloat((newExponent << mantissaBits) | newMantissa); - } -} |