diff options
Diffstat (limited to 'libjava/java/awt/geom/FlatteningPathIterator.java')
-rw-r--r-- | libjava/java/awt/geom/FlatteningPathIterator.java | 526 |
1 files changed, 500 insertions, 26 deletions
diff --git a/libjava/java/awt/geom/FlatteningPathIterator.java b/libjava/java/awt/geom/FlatteningPathIterator.java index a7a57ef..94ff145 100644 --- a/libjava/java/awt/geom/FlatteningPathIterator.java +++ b/libjava/java/awt/geom/FlatteningPathIterator.java @@ -1,5 +1,5 @@ -/* FlatteningPathIterator.java -- performs interpolation of curved paths - Copyright (C) 2002 Free Software Foundation +/* FlatteningPathIterator.java -- Approximates curves by straight lines + Copyright (C) 2003 Free Software Foundation This file is part of GNU Classpath. @@ -38,68 +38,542 @@ exception statement from your version. */ package java.awt.geom; +import java.util.NoSuchElementException; + + /** - * This class can be used to perform the flattening required by the Shape - * interface. It interpolates a curved path segment into a sequence of flat - * ones within a certain flatness, up to a recursion limit. + * A PathIterator for approximating curved path segments by sequences + * of straight lines. Instances of this class will only return + * segments of type {@link PathIterator#SEG_MOVETO}, {@link + * PathIterator#SEG_LINETO}, and {@link PathIterator#SEG_CLOSE}. + * + * <p>The accuracy of the approximation is determined by two + * parameters: + * + * <ul><li>The <i>flatness</i> is a threshold value for deciding when + * a curved segment is consided flat enough for being approximated by + * a single straight line. Flatness is defined as the maximal distance + * of a curve control point to the straight line that connects the + * curve start and end. A lower flatness threshold means a closer + * approximation. See {@link QuadCurve2D#getFlatness()} and {@link + * CubicCurve2D#getFlatness()} for drawings which illustrate the + * meaning of flatness.</li> + * + * <li>The <i>recursion limit</i> imposes an upper bound for how often + * a curved segment gets subdivided. A limit of <i>n</i> means that + * for each individual quadratic and cubic Bézier spline + * segment, at most 2<sup><small><i>n</i></small></sup> {@link + * PathIterator#SEG_LINETO} segments will be created.</li></ul> + * + * <p><b>Memory Efficiency:</b> The memory consumption grows linearly + * with the recursion limit. Neither the <i>flatness</i> parameter nor + * the number of segments in the flattened path will affect the memory + * consumption. + * + * <p><b>Thread Safety:</b> Multiple threads can safely work on + * separate instances of this class. However, multiple threads should + * not concurrently access the same instance, as no synchronization is + * performed. + * + * @see <a href="doc-files/FlatteningPathIterator-1.html" + * >Implementation Note</a> + * + * @author Sascha Brawer (brawer@dandelis.ch) * - * @author Eric Blake <ebb9@email.byu.edu> - * @see Shape - * @see RectangularShape#getPathIterator(AffineTransform, double) * @since 1.2 - * @status STUBS ONLY */ -public class FlatteningPathIterator implements PathIterator +public class FlatteningPathIterator + implements PathIterator { - // The iterator we are applied to. - private PathIterator subIterator; - private double flatness; - private int limit; + /** + * The PathIterator whose curved segments are being approximated. + */ + private final PathIterator srcIter; + + + /** + * The square of the flatness threshold value, which determines when + * a curve segment is considered flat enough that no further + * subdivision is needed. + * + * <p>Calculating flatness actually produces the squared flatness + * value. To avoid the relatively expensive calculation of a square + * root for each curve segment, we perform all flatness comparisons + * on squared values. + * + * @see QuadCurve2D#getFlatnessSq() + * @see CubicCurve2D#getFlatnessSq() + */ + private final double flatnessSq; + + + /** + * The maximal number of subdivions that are performed to + * approximate a quadratic or cubic curve segment. + */ + private final int recursionLimit; + + + /** + * A stack for holding the coordinates of subdivided segments. + * + * @see <a href="doc-files/FlatteningPathIterator-1.html" + * >Implementation Note</a> + */ + private double[] stack; + + + /** + * The current stack size. + * + * @see <a href="doc-files/FlatteningPathIterator-1.html" + * >Implementation Note</a> + */ + private int stackSize; + + + /** + * The number of recursions that were performed to arrive at + * a segment on the stack. + * + * @see <a href="doc-files/FlatteningPathIterator-1.html" + * >Implementation Note</a> + */ + private int[] recLevel; + + + + private final double[] scratch = new double[6]; + + + /** + * The segment type of the last segment that was returned by + * the source iterator. + */ + private int srcSegType; + + /** + * The current <i>x</i> position of the source iterator. + */ + private double srcPosX; + + + /** + * The current <i>y</i> position of the source iterator. + */ + private double srcPosY; + + + /** + * A flag that indicates when this path iterator has finished its + * iteration over path segments. + */ + private boolean done; + + + /** + * Constructs a new PathIterator for approximating an input + * PathIterator with straight lines. The approximation works by + * recursive subdivisons, until the specified flatness threshold is + * not exceeded. + * + * <p>There will not be more than 10 nested recursion steps, which + * means that a single <code>SEG_QUADTO</code> or + * <code>SEG_CUBICTO</code> segment is approximated by at most + * 2<sup><small>10</small></sup> = 1024 straight lines. + */ public FlatteningPathIterator(PathIterator src, double flatness) { this(src, flatness, 10); } - public FlatteningPathIterator(PathIterator src, double flatness, int limit) + + + /** + * Constructs a new PathIterator for approximating an input + * PathIterator with straight lines. The approximation works by + * recursive subdivisons, until the specified flatness threshold is + * not exceeded. Additionally, the number of recursions is also + * bound by the specified recursion limit. + */ + public FlatteningPathIterator(PathIterator src, double flatness, + int limit) { - subIterator = src; - this.flatness = flatness; - this.limit = limit; if (flatness < 0 || limit < 0) throw new IllegalArgumentException(); + + srcIter = src; + flatnessSq = flatness * flatness; + recursionLimit = limit; + fetchSegment(); } + + /** + * Returns the maximally acceptable flatness. + * + * @see QuadCurve2D#getFlatness() + * @see CubicCurve2D#getFlatness() + */ public double getFlatness() { - return flatness; + return Math.sqrt(flatnessSq); } + + /** + * Returns the maximum number of recursive curve subdivisions. + */ public int getRecursionLimit() { - return limit; + return recursionLimit; } + + // Documentation will be copied from PathIterator. public int getWindingRule() { - return subIterator.getWindingRule(); + return srcIter.getWindingRule(); } + + // Documentation will be copied from PathIterator. public boolean isDone() { - return subIterator.isDone(); + return done; } + + // Documentation will be copied from PathIterator. public void next() { - throw new Error("not implemented"); + if (stackSize > 0) + { + --stackSize; + if (stackSize > 0) + { + switch (srcSegType) + { + case PathIterator.SEG_QUADTO: + subdivideQuadratic(); + return; + + case PathIterator.SEG_CUBICTO: + subdivideCubic(); + return; + + default: + throw new IllegalStateException(); + } + } + } + + srcIter.next(); + fetchSegment(); } + + // Documentation will be copied from PathIterator. public int currentSegment(double[] coords) { - throw new Error("not implemented"); + if (done) + throw new NoSuchElementException(); + + switch (srcSegType) + { + case PathIterator.SEG_CLOSE: + return srcSegType; + + case PathIterator.SEG_MOVETO: + case PathIterator.SEG_LINETO: + coords[0] = srcPosX; + coords[1] = srcPosY; + return srcSegType; + + case PathIterator.SEG_QUADTO: + if (stackSize == 0) + { + coords[0] = srcPosX; + coords[1] = srcPosY; + } + else + { + int sp = stack.length - 4 * stackSize; + coords[0] = stack[sp + 2]; + coords[1] = stack[sp + 3]; + } + return PathIterator.SEG_LINETO; + + case PathIterator.SEG_CUBICTO: + if (stackSize == 0) + { + coords[0] = srcPosX; + coords[1] = srcPosY; + } + else + { + int sp = stack.length - 6 * stackSize; + coords[0] = stack[sp + 4]; + coords[1] = stack[sp + 5]; + } + return PathIterator.SEG_LINETO; + } + + throw new IllegalStateException(); } + + + // Documentation will be copied from PathIterator. public int currentSegment(float[] coords) { - throw new Error("not implemented"); + if (done) + throw new NoSuchElementException(); + + switch (srcSegType) + { + case PathIterator.SEG_CLOSE: + return srcSegType; + + case PathIterator.SEG_MOVETO: + case PathIterator.SEG_LINETO: + coords[0] = (float) srcPosX; + coords[1] = (float) srcPosY; + return srcSegType; + + case PathIterator.SEG_QUADTO: + if (stackSize == 0) + { + coords[0] = (float) srcPosX; + coords[1] = (float) srcPosY; + } + else + { + int sp = stack.length - 4 * stackSize; + coords[0] = (float) stack[sp + 2]; + coords[1] = (float) stack[sp + 3]; + } + return PathIterator.SEG_LINETO; + + case PathIterator.SEG_CUBICTO: + if (stackSize == 0) + { + coords[0] = (float) srcPosX; + coords[1] = (float) srcPosY; + } + else + { + int sp = stack.length - 6 * stackSize; + coords[0] = (float) stack[sp + 4]; + coords[1] = (float) stack[sp + 5]; + } + return PathIterator.SEG_LINETO; + } + + throw new IllegalStateException(); + } + + + /** + * Fetches the next segment from the source iterator. + */ + private void fetchSegment() + { + int sp; + + if (srcIter.isDone()) + { + done = true; + return; + } + + srcSegType = srcIter.currentSegment(scratch); + + switch (srcSegType) + { + case PathIterator.SEG_CLOSE: + return; + + case PathIterator.SEG_MOVETO: + case PathIterator.SEG_LINETO: + srcPosX = scratch[0]; + srcPosY = scratch[1]; + return; + + case PathIterator.SEG_QUADTO: + if (recursionLimit == 0) + { + srcPosX = scratch[2]; + srcPosY = scratch[3]; + stackSize = 0; + return; + } + sp = 4 * recursionLimit; + stackSize = 1; + if (stack == null) + { + stack = new double[sp + /* 4 + 2 */ 6]; + recLevel = new int[recursionLimit + 1]; + } + recLevel[0] = 0; + stack[sp] = srcPosX; // P1.x + stack[sp + 1] = srcPosY; // P1.y + stack[sp + 2] = scratch[0]; // C.x + stack[sp + 3] = scratch[1]; // C.y + srcPosX = stack[sp + 4] = scratch[2]; // P2.x + srcPosY = stack[sp + 5] = scratch[3]; // P2.y + subdivideQuadratic(); + break; + + case PathIterator.SEG_CUBICTO: + if (recursionLimit == 0) + { + srcPosX = scratch[4]; + srcPosY = scratch[5]; + stackSize = 0; + return; + } + sp = 6 * recursionLimit; + stackSize = 1; + if ((stack == null) || (stack.length < sp + 8)) + { + stack = new double[sp + /* 6 + 2 */ 8]; + recLevel = new int[recursionLimit + 1]; + } + recLevel[0] = 0; + stack[sp] = srcPosX; // P1.x + stack[sp + 1] = srcPosY; // P1.y + stack[sp + 2] = scratch[0]; // C1.x + stack[sp + 3] = scratch[1]; // C1.y + stack[sp + 4] = scratch[2]; // C2.x + stack[sp + 5] = scratch[3]; // C2.y + srcPosX = stack[sp + 6] = scratch[4]; // P2.x + srcPosY = stack[sp + 7] = scratch[5]; // P2.y + subdivideCubic(); + return; + } + } + + + /** + * Repeatedly subdivides the quadratic curve segment that is on top + * of the stack. The iteration terminates when the recursion limit + * has been reached, or when the resulting segment is flat enough. + */ + private void subdivideQuadratic() + { + int sp; + int level; + + sp = stack.length - 4 * stackSize - 2; + level = recLevel[stackSize - 1]; + while ((level < recursionLimit) + && (QuadCurve2D.getFlatnessSq(stack, sp) >= flatnessSq)) + { + recLevel[stackSize] = recLevel[stackSize - 1] = ++level; + QuadCurve2D.subdivide(stack, sp, stack, sp - 4, stack, sp); + ++stackSize; + sp -= 4; + } + } + + + /** + * Repeatedly subdivides the cubic curve segment that is on top + * of the stack. The iteration terminates when the recursion limit + * has been reached, or when the resulting segment is flat enough. + */ + private void subdivideCubic() + { + int sp; + int level; + + sp = stack.length - 6 * stackSize - 2; + level = recLevel[stackSize - 1]; + while ((level < recursionLimit) + && (CubicCurve2D.getFlatnessSq(stack, sp) >= flatnessSq)) + { + recLevel[stackSize] = recLevel[stackSize - 1] = ++level; + + CubicCurve2D.subdivide(stack, sp, stack, sp - 6, stack, sp); + ++stackSize; + sp -= 6; + } } -} // class FlatteningPathIterator + + + /* These routines were useful for debugging. Since they would + * just bloat the implementation, they are commented out. + * + * + + private static String segToString(int segType, double[] d, int offset) + { + String s; + + switch (segType) + { + case PathIterator.SEG_CLOSE: + return "SEG_CLOSE"; + + case PathIterator.SEG_MOVETO: + return "SEG_MOVETO (" + d[offset] + ", " + d[offset + 1] + ")"; + + case PathIterator.SEG_LINETO: + return "SEG_LINETO (" + d[offset] + ", " + d[offset + 1] + ")"; + + case PathIterator.SEG_QUADTO: + return "SEG_QUADTO (" + d[offset] + ", " + d[offset + 1] + + ") (" + d[offset + 2] + ", " + d[offset + 3] + ")"; + + case PathIterator.SEG_CUBICTO: + return "SEG_CUBICTO (" + d[offset] + ", " + d[offset + 1] + + ") (" + d[offset + 2] + ", " + d[offset + 3] + + ") (" + d[offset + 4] + ", " + d[offset + 5] + ")"; + } + + throw new IllegalStateException(); + } + + + private void dumpQuadraticStack(String msg) + { + int sp = stack.length - 4 * stackSize - 2; + int i = 0; + System.err.print(" " + msg + ":"); + while (sp < stack.length) + { + System.err.print(" (" + stack[sp] + ", " + stack[sp+1] + ")"); + if (i < recLevel.length) + System.out.print("/" + recLevel[i++]); + if (sp + 3 < stack.length) + System.err.print(" [" + stack[sp+2] + ", " + stack[sp+3] + "]"); + sp += 4; + } + System.err.println(); + } + + + private void dumpCubicStack(String msg) + { + int sp = stack.length - 6 * stackSize - 2; + int i = 0; + System.err.print(" " + msg + ":"); + while (sp < stack.length) + { + System.err.print(" (" + stack[sp] + ", " + stack[sp+1] + ")"); + if (i < recLevel.length) + System.out.print("/" + recLevel[i++]); + if (sp + 3 < stack.length) + { + System.err.print(" [" + stack[sp+2] + ", " + stack[sp+3] + "]"); + System.err.print(" [" + stack[sp+4] + ", " + stack[sp+5] + "]"); + } + sp += 6; + } + System.err.println(); + } + + * + * + */ +} |