diff options
Diffstat (limited to 'libjava/classpath/native/fdlibm')
46 files changed, 8525 insertions, 0 deletions
diff --git a/libjava/classpath/native/fdlibm/.cvsignore b/libjava/classpath/native/fdlibm/.cvsignore new file mode 100644 index 0000000..e9f2658 --- /dev/null +++ b/libjava/classpath/native/fdlibm/.cvsignore @@ -0,0 +1,8 @@ +*.o +*.a +*.lo +*.la +.libs +.deps +Makefile +Makefile.in diff --git a/libjava/classpath/native/fdlibm/Makefile.am b/libjava/classpath/native/fdlibm/Makefile.am new file mode 100644 index 0000000..e3e3eec --- /dev/null +++ b/libjava/classpath/native/fdlibm/Makefile.am @@ -0,0 +1,53 @@ +noinst_LTLIBRARIES = libfdlibm.la + +libfdlibm_la_SOURCES = \ + dtoa.c \ + e_acos.c \ + e_asin.c \ + e_atan2.c \ + e_exp.c \ + e_fmod.c \ + e_log.c \ + e_pow.c \ + e_remainder.c \ + e_rem_pio2.c \ + e_scalb.c \ + e_sqrt.c \ + fdlibm.h \ + ieeefp.h \ + java-assert.h \ + k_cos.c \ + k_rem_pio2.c \ + k_sin.c \ + k_tan.c \ + mprec.c \ + mprec.h \ + s_atan.c \ + s_ceil.c \ + s_copysign.c \ + s_cos.c \ + s_fabs.c \ + sf_fabs.c \ + s_finite.c \ + s_floor.c \ + sf_rint.c \ + s_rint.c \ + s_scalbn.c \ + s_sin.c \ + s_tan.c \ + strtod.c \ + w_acos.c \ + w_asin.c \ + w_atan2.c \ + w_exp.c \ + w_fmod.c \ + w_log.c \ + w_pow.c \ + w_remainder.c \ + w_sqrt.c + +AM_LDFLAGS = @CLASSPATH_MODULE@ + +# We just want the standard flags for fdlibm since it is an upstream lib +# and our normal -pedantic -Wall -Werror breaks this lib. So no AM_CFLAGS. +# We also don't need extra includes, so no AM_CPPFLAGS either. diff --git a/libjava/classpath/native/fdlibm/dtoa.c b/libjava/classpath/native/fdlibm/dtoa.c new file mode 100644 index 0000000..6d5ad3b --- /dev/null +++ b/libjava/classpath/native/fdlibm/dtoa.c @@ -0,0 +1,906 @@ +/**************************************************************** + * + * The author of this software is David M. Gay. + * + * Copyright (c) 1991 by AT&T. + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + ***************************************************************/ + +/* Please send bug reports to + David M. Gay + AT&T Bell Laboratories, Room 2C-463 + 600 Mountain Avenue + Murray Hill, NJ 07974-2070 + U.S.A. + dmg@research.att.com or research!dmg + */ + +#include "mprec.h" +#include <string.h> + +static int +_DEFUN (quorem, + (b, S), + _Jv_Bigint * b _AND _Jv_Bigint * S) +{ + int n; + long borrow, y; + unsigned long carry, q, ys; + unsigned long *bx, *bxe, *sx, *sxe; +#ifdef Pack_32 + long z; + unsigned long si, zs; +#endif + + n = S->_wds; +#ifdef DEBUG + /*debug*/ if (b->_wds > n) + /*debug*/ Bug ("oversize b in quorem"); +#endif + if (b->_wds < n) + return 0; + sx = S->_x; + sxe = sx + --n; + bx = b->_x; + bxe = bx + n; + q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ +#ifdef DEBUG + /*debug*/ if (q > 9) + /*debug*/ Bug ("oversized quotient in quorem"); +#endif + if (q) + { + borrow = 0; + carry = 0; + do + { +#ifdef Pack_32 + si = *sx++; + ys = (si & 0xffff) * q + carry; + zs = (si >> 16) * q + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) + borrow; + borrow = y >> 16; + Sign_Extend (borrow, y); + z = (*bx >> 16) - (zs & 0xffff) + borrow; + borrow = z >> 16; + Sign_Extend (borrow, z); + Storeinc (bx, z, y); +#else + ys = *sx++ * q + carry; + carry = ys >> 16; + y = *bx - (ys & 0xffff) + borrow; + borrow = y >> 16; + Sign_Extend (borrow, y); + *bx++ = y & 0xffff; +#endif + } + while (sx <= sxe); + if (!*bxe) + { + bx = b->_x; + while (--bxe > bx && !*bxe) + --n; + b->_wds = n; + } + } + if (cmp (b, S) >= 0) + { + q++; + borrow = 0; + carry = 0; + bx = b->_x; + sx = S->_x; + do + { +#ifdef Pack_32 + si = *sx++; + ys = (si & 0xffff) + carry; + zs = (si >> 16) + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) + borrow; + borrow = y >> 16; + Sign_Extend (borrow, y); + z = (*bx >> 16) - (zs & 0xffff) + borrow; + borrow = z >> 16; + Sign_Extend (borrow, z); + Storeinc (bx, z, y); +#else + ys = *sx++ + carry; + carry = ys >> 16; + y = *bx - (ys & 0xffff) + borrow; + borrow = y >> 16; + Sign_Extend (borrow, y); + *bx++ = y & 0xffff; +#endif + } + while (sx <= sxe); + bx = b->_x; + bxe = bx + n; + if (!*bxe) + { + while (--bxe > bx && !*bxe) + --n; + b->_wds = n; + } + } + return q; +} + +#ifdef DEBUG +#include <stdio.h> + +void +print (_Jv_Bigint * b) +{ + int i, wds; + unsigned long *x, y; + wds = b->_wds; + x = b->_x+wds; + i = 0; + do + { + x--; + fprintf (stderr, "%08x", *x); + } + while (++i < wds); + fprintf (stderr, "\n"); +} +#endif + +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. + * + * Inspired by "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * 1. Rather than iterating, we use a simple numeric overestimate + * to determine k = floor(log10(d)). We scale relevant + * quantities using O(log2(k)) rather than O(k) multiplications. + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't + * try to generate digits strictly left to right. Instead, we + * compute with fewer bits and propagate the carry if necessary + * when rounding the final digit up. This is often faster. + * 3. Under the assumption that input will be rounded nearest, + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. + * That is, we allow equality in stopping tests when the + * round-nearest rule will give the same floating-point value + * as would satisfaction of the stopping test with strict + * inequality. + * 4. We remove common factors of powers of 2 from relevant + * quantities. + * 5. When converting floating-point integers less than 1e16, + * we use floating-point arithmetic rather than resorting + * to multiple-precision integers. + * 6. When asked to produce fewer than 15 digits, we first try + * to get by with floating-point arithmetic; we resort to + * multiple-precision integer arithmetic only if we cannot + * guarantee that the floating-point calculation has given + * the correctly rounded result. For k requested digits and + * "uniformly" distributed input, the probability is + * something like 10^(k-15) that we must resort to the long + * calculation. + */ + + +char * +_DEFUN (_dtoa_r, + (ptr, _d, mode, ndigits, decpt, sign, rve, float_type), + struct _Jv_reent *ptr _AND + double _d _AND + int mode _AND + int ndigits _AND + int *decpt _AND + int *sign _AND + char **rve _AND + int float_type) +{ + /* + float_type == 0 for double precision, 1 for float. + + Arguments ndigits, decpt, sign are similar to those + of ecvt and fcvt; trailing zeros are suppressed from + the returned string. If not null, *rve is set to point + to the end of the return value. If d is +-Infinity or NaN, + then *decpt is set to 9999. + + mode: + 0 ==> shortest string that yields d when read in + and rounded to nearest. + 1 ==> like 0, but with Steele & White stopping rule; + e.g. with IEEE P754 arithmetic , mode 0 gives + 1e23 whereas mode 1 gives 9.999999999999999e22. + 2 ==> max(1,ndigits) significant digits. This gives a + return value similar to that of ecvt, except + that trailing zeros are suppressed. + 3 ==> through ndigits past the decimal point. This + gives a return value similar to that from fcvt, + except that trailing zeros are suppressed, and + ndigits can be negative. + 4-9 should give the same return values as 2-3, i.e., + 4 <= mode <= 9 ==> same return as mode + 2 + (mode & 1). These modes are mainly for + debugging; often they run slower but sometimes + faster than modes 2-3. + 4,5,8,9 ==> left-to-right digit generation. + 6-9 ==> don't try fast floating-point estimate + (if applicable). + + > 16 ==> Floating-point arg is treated as single precision. + + Values of mode other than 0-9 are treated as mode 0. + + Sufficient space is allocated to the return value + to hold the suppressed trailing zeros. + */ + + int bbits, b2, b5, be, dig, i, ieps, ilim0, j, j1, k, k0, + k_check, leftright, m2, m5, s2, s5, try_quick; + int ilim = 0, ilim1 = 0, spec_case = 0; + union double_union d, d2, eps; + long L; +#ifndef Sudden_Underflow + int denorm; + unsigned long x; +#endif + _Jv_Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S; + double ds; + char *s, *s0; + + d.d = _d; + + if (ptr->_result) + { + ptr->_result->_k = ptr->_result_k; + ptr->_result->_maxwds = 1 << ptr->_result_k; + Bfree (ptr, ptr->_result); + ptr->_result = 0; + } + + if (word0 (d) & Sign_bit) + { + /* set sign for everything, including 0's and NaNs */ + *sign = 1; + word0 (d) &= ~Sign_bit; /* clear sign bit */ + } + else + *sign = 0; + +#if defined(IEEE_Arith) + defined(VAX) +#ifdef IEEE_Arith + if ((word0 (d) & Exp_mask) == Exp_mask) +#else + if (word0 (d) == 0x8000) +#endif + { + /* Infinity or NaN */ + *decpt = 9999; + s = +#ifdef IEEE_Arith + !word1 (d) && !(word0 (d) & 0xfffff) ? "Infinity" : +#endif + "NaN"; + if (rve) + *rve = +#ifdef IEEE_Arith + s[3] ? s + 8 : +#endif + s + 3; + return s; + } +#endif +#ifdef IBM + d.d += 0; /* normalize */ +#endif + if (!d.d) + { + *decpt = 1; + s = "0"; + if (rve) + *rve = s + 1; + return s; + } + + b = d2b (ptr, d.d, &be, &bbits); +#ifdef Sudden_Underflow + i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1)); +#else + if ((i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) + { +#endif + d2.d = d.d; + word0 (d2) &= Frac_mask1; + word0 (d2) |= Exp_11; +#ifdef IBM + if (j = 11 - hi0bits (word0 (d2) & Frac_mask)) + d2.d /= 1 << j; +#endif + + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 + * log10(x) = log(x) / log(10) + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) + * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) + * + * This suggests computing an approximation k to log10(d) by + * + * k = (i - Bias)*0.301029995663981 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); + * + * We want k to be too large rather than too small. + * The error in the first-order Taylor series approximation + * is in our favor, so we just round up the constant enough + * to compensate for any error in the multiplication of + * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, + * adding 1e-13 to the constant term more than suffices. + * Hence we adjust the constant term to 0.1760912590558. + * (We could get a more accurate k by invoking log10, + * but this is probably not worthwhile.) + */ + + i -= Bias; +#ifdef IBM + i <<= 2; + i += j; +#endif +#ifndef Sudden_Underflow + denorm = 0; + } + else + { + /* d is denormalized */ + + i = bbits + be + (Bias + (P - 1) - 1); + x = i > 32 ? word0 (d) << (64 - i) | word1 (d) >> (i - 32) + : word1 (d) << (32 - i); + d2.d = x; + word0 (d2) -= 31 * Exp_msk1; /* adjust exponent */ + i -= (Bias + (P - 1) - 1) + 1; + denorm = 1; + } +#endif + ds = (d2.d - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981; + k = (int) ds; + if (ds < 0. && ds != k) + k--; /* want k = floor(ds) */ + k_check = 1; + if (k >= 0 && k <= Ten_pmax) + { + if (d.d < tens[k]) + k--; + k_check = 0; + } + j = bbits - i - 1; + if (j >= 0) + { + b2 = 0; + s2 = j; + } + else + { + b2 = -j; + s2 = 0; + } + if (k >= 0) + { + b5 = 0; + s5 = k; + s2 += k; + } + else + { + b2 -= k; + b5 = -k; + s5 = 0; + } + if (mode < 0 || mode > 9) + mode = 0; + try_quick = 1; + if (mode > 5) + { + mode -= 4; + try_quick = 0; + } + leftright = 1; + switch (mode) + { + case 0: + case 1: + ilim = ilim1 = -1; + i = 18; + ndigits = 0; + break; + case 2: + leftright = 0; + /* no break */ + case 4: + if (ndigits <= 0) + ndigits = 1; + ilim = ilim1 = i = ndigits; + break; + case 3: + leftright = 0; + /* no break */ + case 5: + i = ndigits + k + 1; + ilim = i; + ilim1 = i - 1; + if (i <= 0) + i = 1; + } + j = sizeof (unsigned long); + for (ptr->_result_k = 0; (int) (sizeof (_Jv_Bigint) - sizeof (unsigned long)) + j <= i; + j <<= 1) + ptr->_result_k++; + ptr->_result = Balloc (ptr, ptr->_result_k); + s = s0 = (char *) ptr->_result; + + if (ilim >= 0 && ilim <= Quick_max && try_quick) + { + /* Try to get by with floating-point arithmetic. */ + + i = 0; + d2.d = d.d; + k0 = k; + ilim0 = ilim; + ieps = 2; /* conservative */ + if (k > 0) + { + ds = tens[k & 0xf]; + j = k >> 4; + if (j & Bletch) + { + /* prevent overflows */ + j &= Bletch - 1; + d.d /= bigtens[n_bigtens - 1]; + ieps++; + } + for (; j; j >>= 1, i++) + if (j & 1) + { + ieps++; + ds *= bigtens[i]; + } + d.d /= ds; + } + else if ((j1 = -k)) + { + d.d *= tens[j1 & 0xf]; + for (j = j1 >> 4; j; j >>= 1, i++) + if (j & 1) + { + ieps++; + d.d *= bigtens[i]; + } + } + if (k_check && d.d < 1. && ilim > 0) + { + if (ilim1 <= 0) + goto fast_failed; + ilim = ilim1; + k--; + d.d *= 10.; + ieps++; + } + eps.d = ieps * d.d + 7.; + word0 (eps) -= (P - 1) * Exp_msk1; + if (ilim == 0) + { + S = mhi = 0; + d.d -= 5.; + if (d.d > eps.d) + goto one_digit; + if (d.d < -eps.d) + goto no_digits; + goto fast_failed; + } +#ifndef No_leftright + if (leftright) + { + /* Use Steele & White method of only + * generating digits needed. + */ + eps.d = 0.5 / tens[ilim - 1] - eps.d; + for (i = 0;;) + { + L = d.d; + d.d -= L; + *s++ = '0' + (int) L; + if (d.d < eps.d) + goto ret1; + if (1. - d.d < eps.d) + goto bump_up; + if (++i >= ilim) + break; + eps.d *= 10.; + d.d *= 10.; + } + } + else + { +#endif + /* Generate ilim digits, then fix them up. */ + eps.d *= tens[ilim - 1]; + for (i = 1;; i++, d.d *= 10.) + { + L = d.d; + d.d -= L; + *s++ = '0' + (int) L; + if (i == ilim) + { + if (d.d > 0.5 + eps.d) + goto bump_up; + else if (d.d < 0.5 - eps.d) + { + while (*--s == '0'); + s++; + goto ret1; + } + break; + } + } +#ifndef No_leftright + } +#endif + fast_failed: + s = s0; + d.d = d2.d; + k = k0; + ilim = ilim0; + } + + /* Do we have a "small" integer? */ + + if (be >= 0 && k <= Int_max) + { + /* Yes. */ + ds = tens[k]; + if (ndigits < 0 && ilim <= 0) + { + S = mhi = 0; + if (ilim < 0 || d.d <= 5 * ds) + goto no_digits; + goto one_digit; + } + for (i = 1;; i++) + { + L = d.d / ds; + d.d -= L * ds; +#ifdef Check_FLT_ROUNDS + /* If FLT_ROUNDS == 2, L will usually be high by 1 */ + if (d.d < 0) + { + L--; + d.d += ds; + } +#endif + *s++ = '0' + (int) L; + if (i == ilim) + { + d.d += d.d; + if (d.d > ds || (d.d == ds && L & 1)) + { + bump_up: + while (*--s == '9') + if (s == s0) + { + k++; + *s = '0'; + break; + } + ++*s++; + } + break; + } + if (!(d.d *= 10.)) + break; + } + goto ret1; + } + + m2 = b2; + m5 = b5; + mhi = mlo = 0; + if (leftright) + { + if (mode < 2) + { + i = +#ifndef Sudden_Underflow + denorm ? be + (Bias + (P - 1) - 1 + 1) : +#endif +#ifdef IBM + 1 + 4 * P - 3 - bbits + ((bbits + be - 1) & 3); +#else + 1 + P - bbits; +#endif + } + else + { + j = ilim - 1; + if (m5 >= j) + m5 -= j; + else + { + s5 += j -= m5; + b5 += j; + m5 = 0; + } + if ((i = ilim) < 0) + { + m2 -= i; + i = 0; + } + } + b2 += i; + s2 += i; + mhi = i2b (ptr, 1); + } + if (m2 > 0 && s2 > 0) + { + i = m2 < s2 ? m2 : s2; + b2 -= i; + m2 -= i; + s2 -= i; + } + if (b5 > 0) + { + if (leftright) + { + if (m5 > 0) + { + mhi = pow5mult (ptr, mhi, m5); + b1 = mult (ptr, mhi, b); + Bfree (ptr, b); + b = b1; + } + if ((j = b5 - m5)) + b = pow5mult (ptr, b, j); + } + else + b = pow5mult (ptr, b, b5); + } + S = i2b (ptr, 1); + if (s5 > 0) + S = pow5mult (ptr, S, s5); + + /* Check for special case that d is a normalized power of 2. */ + + if (mode < 2) + { + if (!word1 (d) && !(word0 (d) & Bndry_mask) +#ifndef Sudden_Underflow + && word0(d) & Exp_mask +#endif + ) + { + /* The special case */ + b2 += Log2P; + s2 += Log2P; + spec_case = 1; + } + else + spec_case = 0; + } + + /* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + * + * Perhaps we should just compute leading 28 bits of S once + * and for all and pass them and a shift to quorem, so it + * can do shifts and ors to compute the numerator for q. + */ + +#ifdef Pack_32 + if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0x1f)) + i = 32 - i; +#else + if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0xf)) + i = 16 - i; +#endif + if (i > 4) + { + i -= 4; + b2 += i; + m2 += i; + s2 += i; + } + else if (i < 4) + { + i += 28; + b2 += i; + m2 += i; + s2 += i; + } + if (b2 > 0) + b = lshift (ptr, b, b2); + if (s2 > 0) + S = lshift (ptr, S, s2); + if (k_check) + { + if (cmp (b, S) < 0) + { + k--; + b = multadd (ptr, b, 10, 0); /* we botched the k estimate */ + if (leftright) + mhi = multadd (ptr, mhi, 10, 0); + ilim = ilim1; + } + } + if (ilim <= 0 && mode > 2) + { + if (ilim < 0 || cmp (b, S = multadd (ptr, S, 5, 0)) <= 0) + { + /* no digits, fcvt style */ + no_digits: + k = -1 - ndigits; + goto ret; + } + one_digit: + *s++ = '1'; + k++; + goto ret; + } + if (leftright) + { + if (m2 > 0) + mhi = lshift (ptr, mhi, m2); + + /* Single precision case, */ + if (float_type) + mhi = lshift (ptr, mhi, 29); + + /* Compute mlo -- check for special case + * that d is a normalized power of 2. + */ + + mlo = mhi; + if (spec_case) + { + mhi = Balloc (ptr, mhi->_k); + Bcopy (mhi, mlo); + mhi = lshift (ptr, mhi, Log2P); + } + + for (i = 1;; i++) + { + dig = quorem (b, S) + '0'; + /* Do we yet have the shortest decimal string + * that will round to d? + */ + j = cmp (b, mlo); + delta = diff (ptr, S, mhi); + j1 = delta->_sign ? 1 : cmp (b, delta); + Bfree (ptr, delta); +#ifndef ROUND_BIASED + if (j1 == 0 && !mode && !(word1 (d) & 1)) + { + if (dig == '9') + goto round_9_up; + if (j > 0) + dig++; + *s++ = dig; + goto ret; + } +#endif + if (j < 0 || (j == 0 && !mode +#ifndef ROUND_BIASED + && !(word1 (d) & 1) +#endif + )) + { + if (j1 > 0) + { + b = lshift (ptr, b, 1); + j1 = cmp (b, S); + if ((j1 > 0 || (j1 == 0 && dig & 1)) + && dig++ == '9') + goto round_9_up; + } + *s++ = dig; + goto ret; + } + if (j1 > 0) + { + if (dig == '9') + { /* possible if i == 1 */ + round_9_up: + *s++ = '9'; + goto roundoff; + } + *s++ = dig + 1; + goto ret; + } + *s++ = dig; + if (i == ilim) + break; + b = multadd (ptr, b, 10, 0); + if (mlo == mhi) + mlo = mhi = multadd (ptr, mhi, 10, 0); + else + { + mlo = multadd (ptr, mlo, 10, 0); + mhi = multadd (ptr, mhi, 10, 0); + } + } + } + else + for (i = 1;; i++) + { + *s++ = dig = quorem (b, S) + '0'; + if (i >= ilim) + break; + b = multadd (ptr, b, 10, 0); + } + + /* Round off last digit */ + + b = lshift (ptr, b, 1); + j = cmp (b, S); + if (j > 0 || (j == 0 && dig & 1)) + { + roundoff: + while (*--s == '9') + if (s == s0) + { + k++; + *s++ = '1'; + goto ret; + } + ++*s++; + } + else + { + while (*--s == '0'); + s++; + } +ret: + Bfree (ptr, S); + if (mhi) + { + if (mlo && mlo != mhi) + Bfree (ptr, mlo); + Bfree (ptr, mhi); + } +ret1: + Bfree (ptr, b); + *s = 0; + *decpt = k + 1; + if (rve) + *rve = s; + return s0; +} + + +_VOID +_DEFUN (_dtoa, + (_d, mode, ndigits, decpt, sign, rve, buf, float_type), + double _d _AND + int mode _AND + int ndigits _AND + int *decpt _AND + int *sign _AND + char **rve _AND + char *buf _AND + int float_type) +{ + struct _Jv_reent reent; + char *p; + memset (&reent, 0, sizeof reent); + + p = _dtoa_r (&reent, _d, mode, ndigits, decpt, sign, rve, float_type); + strcpy (buf, p); + + return; +} diff --git a/libjava/classpath/native/fdlibm/e_acos.c b/libjava/classpath/native/fdlibm/e_acos.c new file mode 100644 index 0000000..ee6b168 --- /dev/null +++ b/libjava/classpath/native/fdlibm/e_acos.c @@ -0,0 +1,111 @@ + +/* @(#)e_acos.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_acos(x) + * Method : + * acos(x) = pi/2 - asin(x) + * acos(-x) = pi/2 + asin(x) + * For |x|<=0.5 + * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) + * For x>0.5 + * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) + * = 2asin(sqrt((1-x)/2)) + * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) + * = 2f + (2c + 2s*z*R(z)) + * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term + * for f so that f+c ~ sqrt(z). + * For x<-0.5 + * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) + * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) + * + * Special cases: + * if x is NaN, return x itself; + * if |x|>1, return NaN with invalid signal. + * + * Function needed: sqrt + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double +#else +static double +#endif +one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ +pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ +pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ +pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ +pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ +pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ +pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ +pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ +pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ +qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ +qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ +qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ +qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ + +#ifdef __STDC__ + double __ieee754_acos(double x) +#else + double __ieee754_acos(x) + double x; +#endif +{ + double z,p,q,r,w,s,c,df; + int32_t hx,ix; + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x3ff00000) { /* |x| >= 1 */ + uint32_t lx; + GET_LOW_WORD(lx,x); + if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */ + if(hx>0) return 0.0; /* acos(1) = 0 */ + else return pi+2.0*pio2_lo; /* acos(-1)= pi */ + } + return (x-x)/(x-x); /* acos(|x|>1) is NaN */ + } + if(ix<0x3fe00000) { /* |x| < 0.5 */ + if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ + z = x*x; + p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); + q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); + r = p/q; + return pio2_hi - (x - (pio2_lo-x*r)); + } else if (hx<0) { /* x < -0.5 */ + z = (one+x)*0.5; + p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); + q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); + s = __ieee754_sqrt(z); + r = p/q; + w = r*s-pio2_lo; + return pi - 2.0*(s+w); + } else { /* x > 0.5 */ + z = (one-x)*0.5; + s = __ieee754_sqrt(z); + df = s; + SET_LOW_WORD(df,0); + c = (z-df*df)/(s+df); + p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); + q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); + r = p/q; + w = r*s+c; + return 2.0*(df+w); + } +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/e_asin.c b/libjava/classpath/native/fdlibm/e_asin.c new file mode 100644 index 0000000..90fc77ff --- /dev/null +++ b/libjava/classpath/native/fdlibm/e_asin.c @@ -0,0 +1,120 @@ + +/* @(#)e_asin.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_asin(x) + * Method : + * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... + * we approximate asin(x) on [0,0.5] by + * asin(x) = x + x*x^2*R(x^2) + * where + * R(x^2) is a rational approximation of (asin(x)-x)/x^3 + * and its remez error is bounded by + * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) + * + * For x in [0.5,1] + * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) + * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; + * then for x>0.98 + * asin(x) = pi/2 - 2*(s+s*z*R(z)) + * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) + * For x<=0.98, let pio4_hi = pio2_hi/2, then + * f = hi part of s; + * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) + * and + * asin(x) = pi/2 - 2*(s+s*z*R(z)) + * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) + * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) + * + * Special cases: + * if x is NaN, return x itself; + * if |x|>1, return NaN with invalid signal. + * + */ + + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double +#else +static double +#endif +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +huge = 1.000e+300, +pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ +pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ +pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ + /* coefficient for R(x^2) */ +pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ +pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ +pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ +pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ +pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ +pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ +qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ +qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ +qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ +qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ + +#ifdef __STDC__ + double __ieee754_asin(double x) +#else + double __ieee754_asin(x) + double x; +#endif +{ + double t = 0., w, p, q, c, r, s; + int32_t hx,ix; + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>= 0x3ff00000) { /* |x|>= 1 */ + uint32_t lx; + GET_LOW_WORD(lx,x); + if(((ix-0x3ff00000)|lx)==0) + /* asin(1)=+-pi/2 with inexact */ + return x*pio2_hi+x*pio2_lo; + return (x-x)/(x-x); /* asin(|x|>1) is NaN */ + } else if (ix<0x3fe00000) { /* |x|<0.5 */ + if(ix<0x3e400000) { /* if |x| < 2**-27 */ + if(huge+x>one) return x;/* return x with inexact if x!=0*/ + } else + t = x*x; + p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); + q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); + w = p/q; + return x+x*w; + } + /* 1> |x|>= 0.5 */ + w = one-fabs(x); + t = w*0.5; + p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); + q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); + s = __ieee754_sqrt(t); + if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ + w = p/q; + t = pio2_hi-(2.0*(s+s*w)-pio2_lo); + } else { + w = s; + SET_LOW_WORD(w,0); + c = (t-w*w)/(s+w); + r = p/q; + p = 2.0*s*r-(pio2_lo-2.0*c); + q = pio4_hi-2.0*w; + t = pio4_hi-(p-q); + } + if(hx>0) return t; else return -t; +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/e_atan2.c b/libjava/classpath/native/fdlibm/e_atan2.c new file mode 100644 index 0000000..c75448d --- /dev/null +++ b/libjava/classpath/native/fdlibm/e_atan2.c @@ -0,0 +1,131 @@ + +/* @(#)e_atan2.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + */ + +/* __ieee754_atan2(y,x) + * Method : + * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). + * 2. Reduce x to positive by (if x and y are unexceptional): + * ARG (x+iy) = arctan(y/x) ... if x > 0, + * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, + * + * Special cases: + * + * ATAN2((anything), NaN ) is NaN; + * ATAN2(NAN , (anything) ) is NaN; + * ATAN2(+-0, +(anything but NaN)) is +-0 ; + * ATAN2(+-0, -(anything but NaN)) is +-pi ; + * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; + * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; + * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; + * ATAN2(+-INF,+INF ) is +-pi/4 ; + * ATAN2(+-INF,-INF ) is +-3pi/4; + * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double +#else +static double +#endif +tiny = 1.0e-300, +zero = 0.0, +pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ +pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ +pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */ +pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ + +#ifdef __STDC__ + double __ieee754_atan2(double y, double x) +#else + double __ieee754_atan2(y,x) + double y,x; +#endif +{ + double z; + int32_t k,m,hx,hy,ix,iy; + uint32_t lx,ly; + + EXTRACT_WORDS(hx,lx,x); + ix = hx&0x7fffffff; + EXTRACT_WORDS(hy,ly,y); + iy = hy&0x7fffffff; + if(((ix|((lx|-lx)>>31))>0x7ff00000)|| + ((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */ + return x+y; + if(((hx-0x3ff00000)|lx)==0) return atan(y); /* x=1.0 */ + m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ + + /* when y = 0 */ + if((iy|ly)==0) { + switch(m) { + case 0: + case 1: return y; /* atan(+-0,+anything)=+-0 */ + case 2: return pi+tiny;/* atan(+0,-anything) = pi */ + case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ + } + } + /* when x = 0 */ + if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; + + /* when x is INF */ + if(ix==0x7ff00000) { + if(iy==0x7ff00000) { + switch(m) { + case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ + case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ + case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ + case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ + } + } else { + switch(m) { + case 0: return zero ; /* atan(+...,+INF) */ + case 1: return -zero ; /* atan(-...,+INF) */ + case 2: return pi+tiny ; /* atan(+...,-INF) */ + case 3: return -pi-tiny ; /* atan(-...,-INF) */ + } + } + } + /* when y is INF */ + if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; + + /* compute y/x */ + k = (iy-ix)>>20; + if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */ + else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ + else z=atan(fabs(y/x)); /* safe to do y/x */ + switch (m) { + case 0: return z ; /* atan(+,+) */ + case 1: { + uint32_t zh; + GET_HIGH_WORD(zh,z); + SET_HIGH_WORD(z,zh ^ 0x80000000); + } + return z ; /* atan(-,+) */ + case 2: return pi-(z-pi_lo);/* atan(+,-) */ + default: /* case 3 */ + return (z-pi_lo)-pi;/* atan(-,-) */ + } +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/e_exp.c b/libjava/classpath/native/fdlibm/e_exp.c new file mode 100644 index 0000000..ad37f86 --- /dev/null +++ b/libjava/classpath/native/fdlibm/e_exp.c @@ -0,0 +1,167 @@ + +/* @(#)e_exp.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_exp(x) + * Returns the exponential of x. + * + * Method + * 1. Argument reduction: + * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. + * Given x, find r and integer k such that + * + * x = k*ln2 + r, |r| <= 0.5*ln2. + * + * Here r will be represented as r = hi-lo for better + * accuracy. + * + * 2. Approximation of exp(r) by a special rational function on + * the interval [0,0.34658]: + * Write + * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... + * We use a special Reme algorithm on [0,0.34658] to generate + * a polynomial of degree 5 to approximate R. The maximum error + * of this polynomial approximation is bounded by 2**-59. In + * other words, + * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 + * (where z=r*r, and the values of P1 to P5 are listed below) + * and + * | 5 | -59 + * | 2.0+P1*z+...+P5*z - R(z) | <= 2 + * | | + * The computation of exp(r) thus becomes + * 2*r + * exp(r) = 1 + ------- + * R - r + * r*R1(r) + * = 1 + r + ----------- (for better accuracy) + * 2 - R1(r) + * where + * 2 4 10 + * R1(r) = r - (P1*r + P2*r + ... + P5*r ). + * + * 3. Scale back to obtain exp(x): + * From step 1, we have + * exp(x) = 2^k * exp(r) + * + * Special cases: + * exp(INF) is INF, exp(NaN) is NaN; + * exp(-INF) is 0, and + * for finite argument, only exp(0)=1 is exact. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Misc. info. + * For IEEE double + * if x > 7.09782712893383973096e+02 then exp(x) overflow + * if x < -7.45133219101941108420e+02 then exp(x) underflow + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double +#else +static double +#endif +one = 1.0, +halF[2] = {0.5,-0.5,}, +huge = 1.0e+300, +twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ +o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ +u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ +ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ + -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ +ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ + -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ +invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ +P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ +P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ +P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ +P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ +P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ + + +#ifdef __STDC__ + double __ieee754_exp(double x) /* default IEEE double exp */ +#else + double __ieee754_exp(x) /* default IEEE double exp */ + double x; +#endif +{ + double y,hi = 0., lo = 0.,c,t; + int32_t k = 0, xsb; + uint32_t hx; + + GET_HIGH_WORD(hx,x); + xsb = (hx>>31)&1; /* sign bit of x */ + hx &= 0x7fffffff; /* high word of |x| */ + + /* filter out non-finite argument */ + if(hx >= 0x40862E42) { /* if |x|>=709.78... */ + if(hx>=0x7ff00000) { + uint32_t lx; + GET_LOW_WORD(lx,x); + if(((hx&0xfffff)|lx)!=0) + return x+x; /* NaN */ + else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ + } + if(x > o_threshold) return huge*huge; /* overflow */ + if(x < u_threshold) return twom1000*twom1000; /* underflow */ + } + + /* argument reduction */ + if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ + if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ + hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; + } else { + k = invln2*x+halF[xsb]; + t = k; + hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ + lo = t*ln2LO[0]; + } + x = hi - lo; + } + else if(hx < 0x3e300000) { /* when |x|<2**-28 */ + if(huge+x>one) return one+x;/* trigger inexact */ + } + else k = 0; + + /* x is now in primary range */ + t = x*x; + c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); + if(k==0) return one-((x*c)/(c-2.0)-x); + else y = one-((lo-(x*c)/(2.0-c))-hi); + if(k >= -1021) { + uint32_t hy; + GET_HIGH_WORD(hy,y); + SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ + return y; + } else { + uint32_t hy; + GET_HIGH_WORD(hy,y); + SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ + return y*twom1000; + } +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/e_fmod.c b/libjava/classpath/native/fdlibm/e_fmod.c new file mode 100644 index 0000000..1cf0990 --- /dev/null +++ b/libjava/classpath/native/fdlibm/e_fmod.c @@ -0,0 +1,140 @@ + +/* @(#)e_fmod.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * __ieee754_fmod(x,y) + * Return x mod y in exact arithmetic + * Method: shift and subtract + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double one = 1.0, Zero[] = {0.0, -0.0,}; +#else +static double one = 1.0, Zero[] = {0.0, -0.0,}; +#endif + +#ifdef __STDC__ + double __ieee754_fmod(double x, double y) +#else + double __ieee754_fmod(x,y) + double x,y ; +#endif +{ + int32_t n,hx,hy,hz,ix,iy,sx,i; + uint32_t lx,ly,lz; + + EXTRACT_WORDS(hx,lx,x); + EXTRACT_WORDS(hy,ly,y); + sx = hx&0x80000000; /* sign of x */ + hx ^=sx; /* |x| */ + hy &= 0x7fffffff; /* |y| */ + + /* purge off exception values */ + if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ + ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */ + return (x*y)/(x*y); + if(hx<=hy) { + if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */ + if(lx==ly) + return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/ + } + + /* determine ix = ilogb(x) */ + if(hx<0x00100000) { /* subnormal x */ + if(hx==0) { + for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; + } else { + for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; + } + } else ix = (hx>>20)-1023; + + /* determine iy = ilogb(y) */ + if(hy<0x00100000) { /* subnormal y */ + if(hy==0) { + for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; + } else { + for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; + } + } else iy = (hy>>20)-1023; + + /* set up {hx,lx}, {hy,ly} and align y to x */ + if(ix >= -1022) + hx = 0x00100000|(0x000fffff&hx); + else { /* subnormal x, shift x to normal */ + n = -1022-ix; + if(n<=31) { + hx = (hx<<n)|(lx>>(32-n)); + lx <<= n; + } else { + hx = lx<<(n-32); + lx = 0; + } + } + if(iy >= -1022) + hy = 0x00100000|(0x000fffff&hy); + else { /* subnormal y, shift y to normal */ + n = -1022-iy; + if(n<=31) { + hy = (hy<<n)|(ly>>(32-n)); + ly <<= n; + } else { + hy = ly<<(n-32); + ly = 0; + } + } + + /* fix point fmod */ + n = ix - iy; + while(n--) { + hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; + if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;} + else { + if((hz|lz)==0) /* return sign(x)*0 */ + return Zero[(uint32_t)sx>>31]; + hx = hz+hz+(lz>>31); lx = lz+lz; + } + } + hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; + if(hz>=0) {hx=hz;lx=lz;} + + /* convert back to floating value and restore the sign */ + if((hx|lx)==0) /* return sign(x)*0 */ + return Zero[(uint32_t)sx>>31]; + while(hx<0x00100000) { /* normalize x */ + hx = hx+hx+(lx>>31); lx = lx+lx; + iy -= 1; + } + if(iy>= -1022) { /* normalize output */ + hx = ((hx-0x00100000)|((iy+1023)<<20)); + INSERT_WORDS(x,hx|sx,lx); + } else { /* subnormal output */ + n = -1022 - iy; + if(n<=20) { + lx = (lx>>n)|((uint32_t)hx<<(32-n)); + hx >>= n; + } else if (n<=31) { + lx = (hx<<(32-n))|(lx>>n); hx = sx; + } else { + lx = hx>>(n-32); hx = sx; + } + INSERT_WORDS(x,hx|sx,lx); + x *= one; /* create necessary signal */ + } + return x; /* exact output */ +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/e_log.c b/libjava/classpath/native/fdlibm/e_log.c new file mode 100644 index 0000000..093473e --- /dev/null +++ b/libjava/classpath/native/fdlibm/e_log.c @@ -0,0 +1,152 @@ + +/* @(#)e_log.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_log(x) + * Return the logrithm of x + * + * Method : + * 1. Argument Reduction: find k and f such that + * x = 2^k * (1+f), + * where sqrt(2)/2 < 1+f < sqrt(2) . + * + * 2. Approximation of log(1+f). + * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) + * = 2s + 2/3 s**3 + 2/5 s**5 + ....., + * = 2s + s*R + * We use a special Reme algorithm on [0,0.1716] to generate + * a polynomial of degree 14 to approximate R The maximum error + * of this polynomial approximation is bounded by 2**-58.45. In + * other words, + * 2 4 6 8 10 12 14 + * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s + * (the values of Lg1 to Lg7 are listed in the program) + * and + * | 2 14 | -58.45 + * | Lg1*s +...+Lg7*s - R(z) | <= 2 + * | | + * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. + * In order to guarantee error in log below 1ulp, we compute log + * by + * log(1+f) = f - s*(f - R) (if f is not too large) + * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) + * + * 3. Finally, log(x) = k*ln2 + log(1+f). + * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) + * Here ln2 is split into two floating point number: + * ln2_hi + ln2_lo, + * where n*ln2_hi is always exact for |n| < 2000. + * + * Special cases: + * log(x) is NaN with signal if x < 0 (including -INF) ; + * log(+INF) is +INF; log(0) is -INF with signal; + * log(NaN) is that NaN with no signal. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double +#else +static double +#endif +ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ +ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ +two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ +Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ +Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ +Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ +Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ +Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ +Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ +Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ + +#ifdef __STDC__ +static const double zero = 0.0; +#else +static double zero = 0.0; +#endif + +#ifdef __STDC__ + double __ieee754_log(double x) +#else + double __ieee754_log(x) + double x; +#endif +{ + double hfsq,f,s,z,R,w,t1,t2,dk; + int32_t k,hx,i,j; + uint32_t lx; + + EXTRACT_WORDS(hx,lx,x); + + k=0; + if (hx < 0x00100000) { /* x < 2**-1022 */ + if (((hx&0x7fffffff)|lx)==0) + return -two54/zero; /* log(+-0)=-inf */ + if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ + k -= 54; x *= two54; /* subnormal number, scale up x */ + GET_HIGH_WORD(hx,x); + } + if (hx >= 0x7ff00000) return x+x; + k += (hx>>20)-1023; + hx &= 0x000fffff; + i = (hx+0x95f64)&0x100000; + SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ + k += (i>>20); + f = x-1.0; + if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ + if(f==zero) { + if(k==0) + return zero; + else { + dk=(double)k; + return dk*ln2_hi+dk*ln2_lo; + } + } + R = f*f*(0.5-0.33333333333333333*f); + if(k==0) return f-R; else {dk=(double)k; + return dk*ln2_hi-((R-dk*ln2_lo)-f);} + } + s = f/(2.0+f); + dk = (double)k; + z = s*s; + i = hx-0x6147a; + w = z*z; + j = 0x6b851-hx; + t1= w*(Lg2+w*(Lg4+w*Lg6)); + t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); + i |= j; + R = t2+t1; + if(i>0) { + hfsq=0.5*f*f; + if(k==0) return f-(hfsq-s*(hfsq+R)); else + return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); + } else { + if(k==0) return f-s*(f-R); else + return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); + } +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/e_pow.c b/libjava/classpath/native/fdlibm/e_pow.c new file mode 100644 index 0000000..b21c0e9 --- /dev/null +++ b/libjava/classpath/native/fdlibm/e_pow.c @@ -0,0 +1,312 @@ + +/* @(#)e_pow.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_pow(x,y) return x**y + * + * n + * Method: Let x = 2 * (1+f) + * 1. Compute and return log2(x) in two pieces: + * log2(x) = w1 + w2, + * where w1 has 53-24 = 29 bit trailing zeros. + * 2. Perform y*log2(x) = n+y' by simulating muti-precision + * arithmetic, where |y'|<=0.5. + * 3. Return x**y = 2**n*exp(y'*log2) + * + * Special cases: + * 1. (anything) ** 0 is 1 + * 2. (anything) ** 1 is itself + * 3. (anything) ** NAN is NAN + * 4. NAN ** (anything except 0) is NAN + * 5. +-(|x| > 1) ** +INF is +INF + * 6. +-(|x| > 1) ** -INF is +0 + * 7. +-(|x| < 1) ** +INF is +0 + * 8. +-(|x| < 1) ** -INF is +INF + * 9. +-1 ** +-INF is NAN + * 10. +0 ** (+anything except 0, NAN) is +0 + * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 + * 12. +0 ** (-anything except 0, NAN) is +INF + * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF + * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) + * 15. +INF ** (+anything except 0,NAN) is +INF + * 16. +INF ** (-anything except 0,NAN) is +0 + * 17. -INF ** (anything) = -0 ** (-anything) + * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) + * 19. (-anything except 0 and inf) ** (non-integer) is NAN + * + * Accuracy: + * pow(x,y) returns x**y nearly rounded. In particular + * pow(integer,integer) + * always returns the correct integer provided it is + * representable. + * + * Constants : + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double +#else +static double +#endif +bp[] = {1.0, 1.5,}, +dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ +dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ +zero = 0.0, +one = 1.0, +two = 2.0, +two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ +huge = 1.0e300, +tiny = 1.0e-300, + /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ +L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ +L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ +L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ +L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ +L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ +L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ +P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ +P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ +P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ +P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ +P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ +lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ +lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ +lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ +ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ +cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ +cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ +cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ +ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ +ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ +ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ + +#ifdef __STDC__ + double __ieee754_pow(double x, double y) +#else + double __ieee754_pow(x,y) + double x, y; +#endif +{ + double z,ax,z_h,z_l,p_h,p_l; + double y1,t1,t2,r,s,t,u,v,w; + int32_t i,j,k,yisint,n; + int32_t hx,hy,ix,iy; + uint32_t lx,ly; + + EXTRACT_WORDS(hx,lx,x); + EXTRACT_WORDS(hy,ly,y); + ix = hx&0x7fffffff; iy = hy&0x7fffffff; + + /* y==zero: x**0 = 1 */ + if((iy|ly)==0) return one; + + /* +-NaN return x+y */ + if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || + iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) + return x+y; + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + yisint = 0; + if(hx<0) { + if(iy>=0x43400000) yisint = 2; /* even integer y */ + else if(iy>=0x3ff00000) { + k = (iy>>20)-0x3ff; /* exponent */ + if(k>20) { + j = ly>>(52-k); + if((uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1); + } else if(ly==0) { + j = iy>>(20-k); + if((j<<(20-k))==iy) yisint = 2-(j&1); + } + } + } + + /* special value of y */ + if(ly==0) { + if (iy==0x7ff00000) { /* y is +-inf */ + if(((ix-0x3ff00000)|lx)==0) + return y - y; /* inf**+-1 is NaN */ + else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ + return (hy>=0)? y: zero; + else /* (|x|<1)**-,+inf = inf,0 */ + return (hy<0)?-y: zero; + } + if(iy==0x3ff00000) { /* y is +-1 */ + if(hy<0) return one/x; else return x; + } + if(hy==0x40000000) return x*x; /* y is 2 */ + if(hy==0x3fe00000) { /* y is 0.5 */ + if(hx>=0) /* x >= +0 */ + return __ieee754_sqrt(x); + } + } + + ax = fabs(x); + /* special value of x */ + if(lx==0) { + if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ + z = ax; /*x is +-0,+-inf,+-1*/ + if(hy<0) z = one/z; /* z = (1/|x|) */ + if(hx<0) { + if(((ix-0x3ff00000)|yisint)==0) { + z = (z-z)/(z-z); /* (-1)**non-int is NaN */ + } else if(yisint==1) + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + return z; + } + } + + /* (x<0)**(non-int) is NaN */ + /* GCJ LOCAL: This used to be + if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x); + but ANSI C says a right shift of a signed negative quantity is + implementation defined. */ + if(((((uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); + + /* |y| is huge */ + if(iy>0x41e00000) { /* if |y| > 2**31 */ + if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ + if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; + if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; + } + /* over/underflow if x is not close to one */ + if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; + if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; + /* now |1-x| is tiny <= 2**-20, suffice to compute + log(x) by x-x^2/2+x^3/3-x^4/4 */ + t = x-1; /* t has 20 trailing zeros */ + w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); + u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ + v = t*ivln2_l-w*ivln2; + t1 = u+v; + SET_LOW_WORD(t1,0); + t2 = v-(t1-u); + } else { + double s2,s_h,s_l,t_h,t_l; + n = 0; + /* take care subnormal number */ + if(ix<0x00100000) + {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } + n += ((ix)>>20)-0x3ff; + j = ix&0x000fffff; + /* determine interval */ + ix = j|0x3ff00000; /* normalize ix */ + if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ + else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ + else {k=0;n+=1;ix -= 0x00100000;} + SET_HIGH_WORD(ax,ix); + + /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ + u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ + v = one/(ax+bp[k]); + s = u*v; + s_h = s; + SET_LOW_WORD(s_h,0); + /* t_h=ax+bp[k] High */ + t_h = zero; + SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); + t_l = ax - (t_h-bp[k]); + s_l = v*((u-s_h*t_h)-s_h*t_l); + /* compute log(ax) */ + s2 = s*s; + r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); + r += s_l*(s_h+s); + s2 = s_h*s_h; + t_h = 3.0+s2+r; + SET_LOW_WORD(t_h,0); + t_l = r-((t_h-3.0)-s2); + /* u+v = s*(1+...) */ + u = s_h*t_h; + v = s_l*t_h+t_l*s; + /* 2/(3log2)*(s+...) */ + p_h = u+v; + SET_LOW_WORD(p_h,0); + p_l = v-(p_h-u); + z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ + z_l = cp_l*p_h+p_l*cp+dp_l[k]; + /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ + t = (double)n; + t1 = (((z_h+z_l)+dp_h[k])+t); + SET_LOW_WORD(t1,0); + t2 = z_l-(((t1-t)-dp_h[k])-z_h); + } + + s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ + if(((((uint32_t)hx>>31)-1)|(yisint-1))==0) + s = -one;/* (-ve)**(odd int) */ + + /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ + y1 = y; + SET_LOW_WORD(y1,0); + p_l = (y-y1)*t1+y*t2; + p_h = y1*t1; + z = p_l+p_h; + EXTRACT_WORDS(j,i,z); + if (j>=0x40900000) { /* z >= 1024 */ + if(((j-0x40900000)|i)!=0) /* if z > 1024 */ + return s*huge*huge; /* overflow */ + else { + if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ + } + } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ + if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ + return s*tiny*tiny; /* underflow */ + else { + if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ + } + } + /* + * compute 2**(p_h+p_l) + */ + i = j&0x7fffffff; + k = (i>>20)-0x3ff; + n = 0; + if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ + n = j+(0x00100000>>(k+1)); + k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ + t = zero; + SET_HIGH_WORD(t,n&~(0x000fffff>>k)); + n = ((n&0x000fffff)|0x00100000)>>(20-k); + if(j<0) n = -n; + p_h -= t; + } + t = p_l+p_h; + SET_LOW_WORD(t,0); + u = t*lg2_h; + v = (p_l-(t-p_h))*lg2+t*lg2_l; + z = u+v; + w = v-(z-u); + t = z*z; + t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); + r = (z*t1)/(t1-two)-(w+z*w); + z = one-(r-z); + GET_HIGH_WORD(j,z); + j += (n<<20); + if((j>>20)<=0) z = scalbn(z,(int)n); /* subnormal output */ + else SET_HIGH_WORD(z,j); + return s*z; +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/e_rem_pio2.c b/libjava/classpath/native/fdlibm/e_rem_pio2.c new file mode 100644 index 0000000..543234c --- /dev/null +++ b/libjava/classpath/native/fdlibm/e_rem_pio2.c @@ -0,0 +1,185 @@ + +/* @(#)e_rem_pio2.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + */ + +/* __ieee754_rem_pio2(x,y) + * + * return the remainder of x rem pi/2 in y[0]+y[1] + * use __kernel_rem_pio2() + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +/* + * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi + */ +#ifdef __STDC__ +static const int32_t two_over_pi[] = { +#else +static int32_t two_over_pi[] = { +#endif +0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, +0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, +0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, +0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, +0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, +0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, +0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, +0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, +0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, +0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, +0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, +}; + +#ifdef __STDC__ +static const int32_t npio2_hw[] = { +#else +static int32_t npio2_hw[] = { +#endif +0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, +0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, +0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, +0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, +0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, +0x404858EB, 0x404921FB, +}; + +/* + * invpio2: 53 bits of 2/pi + * pio2_1: first 33 bit of pi/2 + * pio2_1t: pi/2 - pio2_1 + * pio2_2: second 33 bit of pi/2 + * pio2_2t: pi/2 - (pio2_1+pio2_2) + * pio2_3: third 33 bit of pi/2 + * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) + */ + +#ifdef __STDC__ +static const double +#else +static double +#endif +zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ +half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ +two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ +invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ +pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ +pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ +pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ +pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ +pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ +pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ + +#ifdef __STDC__ + int32_t __ieee754_rem_pio2(double x, double *y) +#else + int32_t __ieee754_rem_pio2(x,y) + double x,y[]; +#endif +{ + double z = 0., w, t, r, fn; + double tx[3]; + int32_t i,j,n,ix,hx; + int e0,nx; + uint32_t low; + + GET_HIGH_WORD(hx,x); /* high word of x */ + ix = hx&0x7fffffff; + if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ + {y[0] = x; y[1] = 0; return 0;} + if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ + if(hx>0) { + z = x - pio2_1; + if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ + y[0] = z - pio2_1t; + y[1] = (z-y[0])-pio2_1t; + } else { /* near pi/2, use 33+33+53 bit pi */ + z -= pio2_2; + y[0] = z - pio2_2t; + y[1] = (z-y[0])-pio2_2t; + } + return 1; + } else { /* negative x */ + z = x + pio2_1; + if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ + y[0] = z + pio2_1t; + y[1] = (z-y[0])+pio2_1t; + } else { /* near pi/2, use 33+33+53 bit pi */ + z += pio2_2; + y[0] = z + pio2_2t; + y[1] = (z-y[0])+pio2_2t; + } + return -1; + } + } + if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ + t = fabs(x); + n = (int32_t) (t*invpio2+half); + fn = (double)n; + r = t-fn*pio2_1; + w = fn*pio2_1t; /* 1st round good to 85 bit */ + if(n<32&&ix!=npio2_hw[n-1]) { + y[0] = r-w; /* quick check no cancellation */ + } else { + uint32_t high; + j = ix>>20; + y[0] = r-w; + GET_HIGH_WORD(high,y[0]); + i = j-((high>>20)&0x7ff); + if(i>16) { /* 2nd iteration needed, good to 118 */ + t = r; + w = fn*pio2_2; + r = t-w; + w = fn*pio2_2t-((t-r)-w); + y[0] = r-w; + GET_HIGH_WORD(high,y[0]); + i = j-((high>>20)&0x7ff); + if(i>49) { /* 3rd iteration need, 151 bits acc */ + t = r; /* will cover all possible cases */ + w = fn*pio2_3; + r = t-w; + w = fn*pio2_3t-((t-r)-w); + y[0] = r-w; + } + } + } + y[1] = (r-y[0])-w; + if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} + else return n; + } + /* + * all other (large) arguments + */ + if(ix>=0x7ff00000) { /* x is inf or NaN */ + y[0]=y[1]=x-x; return 0; + } + /* set z = scalbn(|x|,ilogb(x)-23) */ + GET_LOW_WORD(low,x); + SET_LOW_WORD(z,low); + e0 = (int)((ix>>20)-1046); /* e0 = ilogb(z)-23; */ + SET_HIGH_WORD(z, ix - ((int32_t)e0<<20)); + for(i=0;i<2;i++) { + tx[i] = (double)((int32_t)(z)); + z = (z-tx[i])*two24; + } + tx[2] = z; + nx = 3; + while(tx[nx-1]==zero) nx--; /* skip zero term */ + n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi); + if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} + return n; +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/e_remainder.c b/libjava/classpath/native/fdlibm/e_remainder.c new file mode 100644 index 0000000..4716d8d --- /dev/null +++ b/libjava/classpath/native/fdlibm/e_remainder.c @@ -0,0 +1,80 @@ + +/* @(#)e_remainder.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_remainder(x,p) + * Return : + * returns x REM p = x - [x/p]*p as if in infinite + * precise arithmetic, where [x/p] is the (infinite bit) + * integer nearest x/p (in half way case choose the even one). + * Method : + * Based on fmod() return x-[x/p]chopped*p exactlp. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double zero = 0.0; +#else +static double zero = 0.0; +#endif + + +#ifdef __STDC__ + double __ieee754_remainder(double x, double p) +#else + double __ieee754_remainder(x,p) + double x,p; +#endif +{ + int32_t hx,hp; + uint32_t sx,lx,lp; + double p_half; + + EXTRACT_WORDS(hx,lx,x); + EXTRACT_WORDS(hp,lp,p); + sx = hx&0x80000000; + hp &= 0x7fffffff; + hx &= 0x7fffffff; + + /* purge off exception values */ + if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */ + if((hx>=0x7ff00000)|| /* x not finite */ + ((hp>=0x7ff00000)&& /* p is NaN */ + (((hp-0x7ff00000)|lp)!=0))) + return (x*p)/(x*p); + + + if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */ + if (((hx-hp)|(lx-lp))==0) return zero*x; + x = fabs(x); + p = fabs(p); + if (hp<0x00200000) { + if(x+x>p) { + x-=p; + if(x+x>=p) x -= p; + } + } else { + p_half = 0.5*p; + if(x>p_half) { + x-=p; + if(x>=p_half) x -= p; + } + } + GET_HIGH_WORD(hx,x); + SET_HIGH_WORD(x,hx^sx); + return x; +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/e_scalb.c b/libjava/classpath/native/fdlibm/e_scalb.c new file mode 100644 index 0000000..0bb924b --- /dev/null +++ b/libjava/classpath/native/fdlibm/e_scalb.c @@ -0,0 +1,55 @@ + +/* @(#)e_scalb.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * __ieee754_scalb(x, fn) is provide for + * passing various standard test suite. One + * should use scalbn() instead. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef _SCALB_INT +#ifdef __STDC__ + double __ieee754_scalb(double x, int fn) +#else + double __ieee754_scalb(x,fn) + double x; int fn; +#endif +#else +#ifdef __STDC__ + double __ieee754_scalb(double x, double fn) +#else + double __ieee754_scalb(x,fn) + double x, fn; +#endif +#endif +{ +#ifdef _SCALB_INT + return scalbn(x,fn); +#else + if (isnan(x)||isnan(fn)) return x*fn; + if (!finite(fn)) { + if(fn>0.0) return x*fn; + else return x/(-fn); + } + if (rint(fn)!=fn) return (fn-fn)/(fn-fn); + if ( fn > 65000.0) return scalbn(x, 65000); + if (-fn > 65000.0) return scalbn(x,-65000); + return scalbn(x,(int)fn); +#endif +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/e_sqrt.c b/libjava/classpath/native/fdlibm/e_sqrt.c new file mode 100644 index 0000000..1d566a0 --- /dev/null +++ b/libjava/classpath/native/fdlibm/e_sqrt.c @@ -0,0 +1,452 @@ + +/* @(#)e_sqrt.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_sqrt(x) + * Return correctly rounded sqrt. + * ------------------------------------------ + * | Use the hardware sqrt if you have one | + * ------------------------------------------ + * Method: + * Bit by bit method using integer arithmetic. (Slow, but portable) + * 1. Normalization + * Scale x to y in [1,4) with even powers of 2: + * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then + * sqrt(x) = 2^k * sqrt(y) + * 2. Bit by bit computation + * Let q = sqrt(y) truncated to i bit after binary point (q = 1), + * i 0 + * i+1 2 + * s = 2*q , and y = 2 * ( y - q ). (1) + * i i i i + * + * To compute q from q , one checks whether + * i+1 i + * + * -(i+1) 2 + * (q + 2 ) <= y. (2) + * i + * -(i+1) + * If (2) is false, then q = q ; otherwise q = q + 2 . + * i+1 i i+1 i + * + * With some algebric manipulation, it is not difficult to see + * that (2) is equivalent to + * -(i+1) + * s + 2 <= y (3) + * i i + * + * The advantage of (3) is that s and y can be computed by + * i i + * the following recurrence formula: + * if (3) is false + * + * s = s , y = y ; (4) + * i+1 i i+1 i + * + * otherwise, + * -i -(i+1) + * s = s + 2 , y = y - s - 2 (5) + * i+1 i i+1 i i + * + * One may easily use induction to prove (4) and (5). + * Note. Since the left hand side of (3) contain only i+2 bits, + * it does not necessary to do a full (53-bit) comparison + * in (3). + * 3. Final rounding + * After generating the 53 bits result, we compute one more bit. + * Together with the remainder, we can decide whether the + * result is exact, bigger than 1/2ulp, or less than 1/2ulp + * (it will never equal to 1/2ulp). + * The rounding mode can be detected by checking whether + * huge + tiny is equal to huge, and whether huge - tiny is + * equal to huge for some floating point number "huge" and "tiny". + * + * Special cases: + * sqrt(+-0) = +-0 ... exact + * sqrt(inf) = inf + * sqrt(-ve) = NaN ... with invalid signal + * sqrt(NaN) = NaN ... with invalid signal for signaling NaN + * + * Other methods : see the appended file at the end of the program below. + *--------------- + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double one = 1.0, tiny=1.0e-300; +#else +static double one = 1.0, tiny=1.0e-300; +#endif + +#ifdef __STDC__ + double __ieee754_sqrt(double x) +#else + double __ieee754_sqrt(x) + double x; +#endif +{ + double z; + int32_t sign = (int)0x80000000; + uint32_t r,t1,s1,ix1,q1; + int32_t ix0,s0,q,m,t,i; + + EXTRACT_WORDS(ix0,ix1,x); + + /* take care of Inf and NaN */ + if((ix0&0x7ff00000)==0x7ff00000) { + return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf + sqrt(-inf)=sNaN */ + } + /* take care of zero */ + if(ix0<=0) { + if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ + else if(ix0<0) + return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ + } + /* normalize x */ + m = (ix0>>20); + if(m==0) { /* subnormal x */ + while(ix0==0) { + m -= 21; + ix0 |= (ix1>>11); ix1 <<= 21; + } + for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; + m -= i-1; + ix0 |= (ix1>>(32-i)); + ix1 <<= i; + } + m -= 1023; /* unbias exponent */ + ix0 = (ix0&0x000fffff)|0x00100000; + if(m&1){ /* odd m, double x to make it even */ + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + } + m >>= 1; /* m = [m/2] */ + + /* generate sqrt(x) bit by bit */ + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ + r = 0x00200000; /* r = moving bit from right to left */ + + while(r!=0) { + t = s0+r; + if(t<=ix0) { + s0 = t+r; + ix0 -= t; + q += r; + } + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + r>>=1; + } + + r = sign; + while(r!=0) { + t1 = s1+r; + t = s0; + if((t<ix0)||((t==ix0)&&(t1<=ix1))) { + s1 = t1+r; + if(((t1&sign)==(uint32_t)sign)&&(s1&sign)==0) s0 += 1; + ix0 -= t; + if (ix1 < t1) ix0 -= 1; + ix1 -= t1; + q1 += r; + } + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + r>>=1; + } + + /* use floating add to find out rounding direction */ + if((ix0|ix1)!=0) { + z = one-tiny; /* trigger inexact flag */ + if (z>=one) { + z = one+tiny; + if (q1==(uint32_t)0xffffffff) { q1=0; q += 1;} + else if (z>one) { + if (q1==(uint32_t)0xfffffffe) q+=1; + q1+=2; + } else + q1 += (q1&1); + } + } + ix0 = (q>>1)+0x3fe00000; + ix1 = q1>>1; + if ((q&1)==1) ix1 |= sign; + ix0 += (m <<20); + INSERT_WORDS(z,ix0,ix1); + return z; +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ + +/* +Other methods (use floating-point arithmetic) +------------- +(This is a copy of a drafted paper by Prof W. Kahan +and K.C. Ng, written in May, 1986) + + Two algorithms are given here to implement sqrt(x) + (IEEE double precision arithmetic) in software. + Both supply sqrt(x) correctly rounded. The first algorithm (in + Section A) uses newton iterations and involves four divisions. + The second one uses reciproot iterations to avoid division, but + requires more multiplications. Both algorithms need the ability + to chop results of arithmetic operations instead of round them, + and the INEXACT flag to indicate when an arithmetic operation + is executed exactly with no roundoff error, all part of the + standard (IEEE 754-1985). The ability to perform shift, add, + subtract and logical AND operations upon 32-bit words is needed + too, though not part of the standard. + +A. sqrt(x) by Newton Iteration + + (1) Initial approximation + + Let x0 and x1 be the leading and the trailing 32-bit words of + a floating point number x (in IEEE double format) respectively + + 1 11 52 ...widths + ------------------------------------------------------ + x: |s| e | f | + ------------------------------------------------------ + msb lsb msb lsb ...order + + + ------------------------ ------------------------ + x0: |s| e | f1 | x1: | f2 | + ------------------------ ------------------------ + + By performing shifts and subtracts on x0 and x1 (both regarded + as integers), we obtain an 8-bit approximation of sqrt(x) as + follows. + + k := (x0>>1) + 0x1ff80000; + y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits + Here k is a 32-bit integer and T1[] is an integer array containing + correction terms. Now magically the floating value of y (y's + leading 32-bit word is y0, the value of its trailing word is 0) + approximates sqrt(x) to almost 8-bit. + + Value of T1: + static int T1[32]= { + 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592, + 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, + 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, + 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,}; + + (2) Iterative refinement + + Apply Heron's rule three times to y, we have y approximates + sqrt(x) to within 1 ulp (Unit in the Last Place): + + y := (y+x/y)/2 ... almost 17 sig. bits + y := (y+x/y)/2 ... almost 35 sig. bits + y := y-(y-x/y)/2 ... within 1 ulp + + + Remark 1. + Another way to improve y to within 1 ulp is: + + y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x) + y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x) + + 2 + (x-y )*y + y := y + 2* ---------- ...within 1 ulp + 2 + 3y + x + + + This formula has one division fewer than the one above; however, + it requires more multiplications and additions. Also x must be + scaled in advance to avoid spurious overflow in evaluating the + expression 3y*y+x. Hence it is not recommended uless division + is slow. If division is very slow, then one should use the + reciproot algorithm given in section B. + + (3) Final adjustment + + By twiddling y's last bit it is possible to force y to be + correctly rounded according to the prevailing rounding mode + as follows. Let r and i be copies of the rounding mode and + inexact flag before entering the square root program. Also we + use the expression y+-ulp for the next representable floating + numbers (up and down) of y. Note that y+-ulp = either fixed + point y+-1, or multiply y by nextafter(1,+-inf) in chopped + mode. + + I := FALSE; ... reset INEXACT flag I + R := RZ; ... set rounding mode to round-toward-zero + z := x/y; ... chopped quotient, possibly inexact + If(not I) then { ... if the quotient is exact + if(z=y) { + I := i; ... restore inexact flag + R := r; ... restore rounded mode + return sqrt(x):=y. + } else { + z := z - ulp; ... special rounding + } + } + i := TRUE; ... sqrt(x) is inexact + If (r=RN) then z=z+ulp ... rounded-to-nearest + If (r=RP) then { ... round-toward-+inf + y = y+ulp; z=z+ulp; + } + y := y+z; ... chopped sum + y0:=y0-0x00100000; ... y := y/2 is correctly rounded. + I := i; ... restore inexact flag + R := r; ... restore rounded mode + return sqrt(x):=y. + + (4) Special cases + + Square root of +inf, +-0, or NaN is itself; + Square root of a negative number is NaN with invalid signal. + + +B. sqrt(x) by Reciproot Iteration + + (1) Initial approximation + + Let x0 and x1 be the leading and the trailing 32-bit words of + a floating point number x (in IEEE double format) respectively + (see section A). By performing shifs and subtracts on x0 and y0, + we obtain a 7.8-bit approximation of 1/sqrt(x) as follows. + + k := 0x5fe80000 - (x0>>1); + y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits + + Here k is a 32-bit integer and T2[] is an integer array + containing correction terms. Now magically the floating + value of y (y's leading 32-bit word is y0, the value of + its trailing word y1 is set to zero) approximates 1/sqrt(x) + to almost 7.8-bit. + + Value of T2: + static int T2[64]= { + 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, + 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, + 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, + 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, + 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, + 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, + 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, + 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; + + (2) Iterative refinement + + Apply Reciproot iteration three times to y and multiply the + result by x to get an approximation z that matches sqrt(x) + to about 1 ulp. To be exact, we will have + -1ulp < sqrt(x)-z<1.0625ulp. + + ... set rounding mode to Round-to-nearest + y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x) + y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x) + ... special arrangement for better accuracy + z := x*y ... 29 bits to sqrt(x), with z*y<1 + z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x) + + Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that + (a) the term z*y in the final iteration is always less than 1; + (b) the error in the final result is biased upward so that + -1 ulp < sqrt(x) - z < 1.0625 ulp + instead of |sqrt(x)-z|<1.03125ulp. + + (3) Final adjustment + + By twiddling y's last bit it is possible to force y to be + correctly rounded according to the prevailing rounding mode + as follows. Let r and i be copies of the rounding mode and + inexact flag before entering the square root program. Also we + use the expression y+-ulp for the next representable floating + numbers (up and down) of y. Note that y+-ulp = either fixed + point y+-1, or multiply y by nextafter(1,+-inf) in chopped + mode. + + R := RZ; ... set rounding mode to round-toward-zero + switch(r) { + case RN: ... round-to-nearest + if(x<= z*(z-ulp)...chopped) z = z - ulp; else + if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp; + break; + case RZ:case RM: ... round-to-zero or round-to--inf + R:=RP; ... reset rounding mod to round-to-+inf + if(x<z*z ... rounded up) z = z - ulp; else + if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp; + break; + case RP: ... round-to-+inf + if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else + if(x>z*z ...chopped) z = z+ulp; + break; + } + + Remark 3. The above comparisons can be done in fixed point. For + example, to compare x and w=z*z chopped, it suffices to compare + x1 and w1 (the trailing parts of x and w), regarding them as + two's complement integers. + + ...Is z an exact square root? + To determine whether z is an exact square root of x, let z1 be the + trailing part of z, and also let x0 and x1 be the leading and + trailing parts of x. + + If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 + I := 1; ... Raise Inexact flag: z is not exact + else { + j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2 + k := z1 >> 26; ... get z's 25-th and 26-th + fraction bits + I := i or (k&j) or ((k&(j+j+1))!=(x1&3)); + } + R:= r ... restore rounded mode + return sqrt(x):=z. + + If multiplication is cheaper then the foregoing red tape, the + Inexact flag can be evaluated by + + I := i; + I := (z*z!=x) or I. + + Note that z*z can overwrite I; this value must be sensed if it is + True. + + Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be + zero. + + -------------------- + z1: | f2 | + -------------------- + bit 31 bit 0 + + Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd + or even of logb(x) have the following relations: + + ------------------------------------------------- + bit 27,26 of z1 bit 1,0 of x1 logb(x) + ------------------------------------------------- + 00 00 odd and even + 01 01 even + 10 10 odd + 10 00 even + 11 01 even + ------------------------------------------------- + + (4) Special cases (see (4) of Section A). + + */ diff --git a/libjava/classpath/native/fdlibm/fdlibm.h b/libjava/classpath/native/fdlibm/fdlibm.h new file mode 100644 index 0000000..156a03c --- /dev/null +++ b/libjava/classpath/native/fdlibm/fdlibm.h @@ -0,0 +1,354 @@ + +/* @(#)fdlibm.h 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993, 2000 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#ifndef __CLASSPATH_FDLIBM_H__ +#define __CLASSPATH_FDLIBM_H__ + +/* AIX needs _XOPEN_SOURCE */ +#ifdef _AIX +#define _XOPEN_SOURCE +#endif + +#include <config.h> +#include <stdlib.h> + +/* GCJ LOCAL: Include files. */ +#include "ieeefp.h" + +#include "mprec.h" + +/* CYGNUS LOCAL: Default to XOPEN_MODE. */ +#define _XOPEN_MODE + +#ifdef __P +#undef __P +#endif + +#ifdef __STDC__ +#define __P(p) p +#else +#define __P(p) () +#endif + +#ifndef HUGE +#define HUGE ((float)3.40282346638528860e+38) +#endif + +/* + * set X_TLOSS = pi*2**52, which is possibly defined in <values.h> + * (one may replace the following line by "#include <values.h>") + */ + +#define X_TLOSS 1.41484755040568800000e+16 + +/* These typedefs are true for the targets running Java. */ + +#define _IEEE_LIBM + +#ifdef __cplusplus +extern "C" { +#endif + +/* + * ANSI/POSIX + */ +extern double acos __P((double)); +extern double asin __P((double)); +extern double atan __P((double)); +extern double atan2 __P((double, double)); +extern double cos __P((double)); +extern double sin __P((double)); +extern double tan __P((double)); + +extern double cosh __P((double)); +extern double sinh __P((double)); +extern double tanh __P((double)); + +extern double exp __P((double)); +extern double frexp __P((double, int *)); +extern double ldexp __P((double, int)); +extern double log __P((double)); +extern double log10 __P((double)); +extern double modf __P((double, double *)); + +extern double pow __P((double, double)); +extern double sqrt __P((double)); + +extern double ceil __P((double)); +extern double fabs __P((double)); +extern double floor __P((double)); +extern double fmod __P((double, double)); + +extern double erf __P((double)); +extern double erfc __P((double)); +extern double gamma __P((double)); +extern double hypot __P((double, double)); +extern int isnan __P((double)); +extern int finite __P((double)); +extern double j0 __P((double)); +extern double j1 __P((double)); +extern double jn __P((int, double)); +extern double lgamma __P((double)); +extern double y0 __P((double)); +extern double y1 __P((double)); +extern double yn __P((int, double)); + +extern double acosh __P((double)); +extern double asinh __P((double)); +extern double atanh __P((double)); +extern double cbrt __P((double)); +extern double logb __P((double)); +extern double nextafter __P((double, double)); +extern double remainder __P((double, double)); + +/* Functions that are not documented, and are not in <math.h>. */ + +extern double logb __P((double)); +#ifdef _SCALB_INT +extern double scalb __P((double, int)); +#else +extern double scalb __P((double, double)); +#endif +extern double significand __P((double)); + +/* ieee style elementary functions */ +extern double __ieee754_sqrt __P((double)); +extern double __ieee754_acos __P((double)); +extern double __ieee754_acosh __P((double)); +extern double __ieee754_log __P((double)); +extern double __ieee754_atanh __P((double)); +extern double __ieee754_asin __P((double)); +extern double __ieee754_atan2 __P((double,double)); +extern double __ieee754_exp __P((double)); +extern double __ieee754_cosh __P((double)); +extern double __ieee754_fmod __P((double,double)); +extern double __ieee754_pow __P((double,double)); +extern double __ieee754_lgamma_r __P((double,int *)); +extern double __ieee754_gamma_r __P((double,int *)); +extern double __ieee754_log10 __P((double)); +extern double __ieee754_sinh __P((double)); +extern double __ieee754_hypot __P((double,double)); +extern double __ieee754_j0 __P((double)); +extern double __ieee754_j1 __P((double)); +extern double __ieee754_y0 __P((double)); +extern double __ieee754_y1 __P((double)); +extern double __ieee754_jn __P((int,double)); +extern double __ieee754_yn __P((int,double)); +extern double __ieee754_remainder __P((double,double)); +extern int32_t __ieee754_rem_pio2 __P((double,double*)); +#ifdef _SCALB_INT +extern double __ieee754_scalb __P((double,int)); +#else +extern double __ieee754_scalb __P((double,double)); +#endif + +/* fdlibm kernel function */ +extern double __kernel_standard __P((double,double,int)); +extern double __kernel_sin __P((double,double,int)); +extern double __kernel_cos __P((double,double)); +extern double __kernel_tan __P((double,double,int)); +extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const int32_t*)); + +/* Undocumented float functions. */ +extern float logbf __P((float)); +#ifdef _SCALB_INT +extern float scalbf __P((float, int)); +#else +extern float scalbf __P((float, float)); +#endif +extern float significandf __P((float)); + +/* + * Functions callable from C, intended to support IEEE arithmetic. + */ +extern double copysign __P((double, double)); +extern int ilogb __P((double)); +extern double rint __P((double)); +extern float rintf __P((float)); +extern double scalbn __P((double, int)); + +/* ieee style elementary float functions */ +extern float __ieee754_sqrtf __P((float)); +extern float __ieee754_acosf __P((float)); +extern float __ieee754_acoshf __P((float)); +extern float __ieee754_logf __P((float)); +extern float __ieee754_atanhf __P((float)); +extern float __ieee754_asinf __P((float)); +extern float __ieee754_atan2f __P((float,float)); +extern float __ieee754_expf __P((float)); +extern float __ieee754_coshf __P((float)); +extern float __ieee754_fmodf __P((float,float)); +extern float __ieee754_powf __P((float,float)); +extern float __ieee754_lgammaf_r __P((float,int *)); +extern float __ieee754_gammaf_r __P((float,int *)); +extern float __ieee754_log10f __P((float)); +extern float __ieee754_sinhf __P((float)); +extern float __ieee754_hypotf __P((float,float)); +extern float __ieee754_j0f __P((float)); +extern float __ieee754_j1f __P((float)); +extern float __ieee754_y0f __P((float)); +extern float __ieee754_y1f __P((float)); +extern float __ieee754_jnf __P((int,float)); +extern float __ieee754_ynf __P((int,float)); +extern float __ieee754_remainderf __P((float,float)); +extern int32_t __ieee754_rem_pio2f __P((float,float*)); +#ifdef _SCALB_INT +extern float __ieee754_scalbf __P((float,int)); +#else +extern float __ieee754_scalbf __P((float,float)); +#endif + +/* float versions of fdlibm kernel functions */ +extern float __kernel_sinf __P((float,float,int)); +extern float __kernel_cosf __P((float,float)); +extern float __kernel_tanf __P((float,float,int)); +extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const int32_t*)); + +/* The original code used statements like + n0 = ((*(int*)&one)>>29)^1; * index of high word * + ix0 = *(n0+(int*)&x); * high word of x * + ix1 = *((1-n0)+(int*)&x); * low word of x * + to dig two 32 bit words out of the 64 bit IEEE floating point + value. That is non-ANSI, and, moreover, the gcc instruction + scheduler gets it wrong. We instead use the following macros. + Unlike the original code, we determine the endianness at compile + time, not at run time; I don't see much benefit to selecting + endianness at run time. */ + +#ifndef __IEEE_BIG_ENDIAN +#ifndef __IEEE_LITTLE_ENDIAN + #error Must define endianness +#endif +#endif + +/* A union which permits us to convert between a double and two 32 bit + ints. */ + +#ifdef __IEEE_BIG_ENDIAN + +typedef union +{ + double value; + struct + { + uint32_t msw; + uint32_t lsw; + } parts; +} ieee_double_shape_type; + +#endif + +#ifdef __IEEE_LITTLE_ENDIAN + +typedef union +{ + double value; + struct + { + uint32_t lsw; + uint32_t msw; + } parts; +} ieee_double_shape_type; + +#endif + +/* Get two 32 bit ints from a double. */ + +#define EXTRACT_WORDS(ix0,ix1,d) \ +do { \ + ieee_double_shape_type ew_u; \ + ew_u.value = (d); \ + (ix0) = ew_u.parts.msw; \ + (ix1) = ew_u.parts.lsw; \ +} while (0) + +/* Get the more significant 32 bit int from a double. */ + +#define GET_HIGH_WORD(i,d) \ +do { \ + ieee_double_shape_type gh_u; \ + gh_u.value = (d); \ + (i) = gh_u.parts.msw; \ +} while (0) + +/* Get the less significant 32 bit int from a double. */ + +#define GET_LOW_WORD(i,d) \ +do { \ + ieee_double_shape_type gl_u; \ + gl_u.value = (d); \ + (i) = gl_u.parts.lsw; \ +} while (0) + +/* Set a double from two 32 bit ints. */ + +#define INSERT_WORDS(d,ix0,ix1) \ +do { \ + ieee_double_shape_type iw_u; \ + iw_u.parts.msw = (ix0); \ + iw_u.parts.lsw = (ix1); \ + (d) = iw_u.value; \ +} while (0) + +/* Set the more significant 32 bits of a double from an int. */ + +#define SET_HIGH_WORD(d,v) \ +do { \ + ieee_double_shape_type sh_u; \ + sh_u.value = (d); \ + sh_u.parts.msw = (v); \ + (d) = sh_u.value; \ +} while (0) + +/* Set the less significant 32 bits of a double from an int. */ + +#define SET_LOW_WORD(d,v) \ +do { \ + ieee_double_shape_type sl_u; \ + sl_u.value = (d); \ + sl_u.parts.lsw = (v); \ + (d) = sl_u.value; \ +} while (0) + +/* A union which permits us to convert between a float and a 32 bit + int. */ + +typedef union +{ + float value; + uint32_t word; +} ieee_float_shape_type; + +/* Get a 32 bit int from a float. */ + +#define GET_FLOAT_WORD(i,d) \ +do { \ + ieee_float_shape_type gf_u; \ + gf_u.value = (d); \ + (i) = gf_u.word; \ +} while (0) + +/* Set a float from a 32 bit int. */ + +#define SET_FLOAT_WORD(d,i) \ +do { \ + ieee_float_shape_type sf_u; \ + sf_u.word = (i); \ + (d) = sf_u.value; \ +} while (0) + +#ifdef __cplusplus +} +#endif + +#endif /* __CLASSPATH_FDLIBM_H__ */ diff --git a/libjava/classpath/native/fdlibm/ieeefp.h b/libjava/classpath/native/fdlibm/ieeefp.h new file mode 100644 index 0000000..405baab --- /dev/null +++ b/libjava/classpath/native/fdlibm/ieeefp.h @@ -0,0 +1,167 @@ +#ifndef __CLASSPATH_IEEEFP_H__ +#define __CLASSPATH_IEEEFP_H__ + +#ifndef __IEEE_BIG_ENDIAN +#ifndef __IEEE_LITTLE_ENDIAN + +#ifdef __alpha__ +#define __IEEE_LITTLE_ENDIAN +#endif + +#if defined(__arm__) || defined(__thumb__) +/* ARM traditionally used big-endian words; and within those words the + byte ordering was big or little endian depending upon the target. + Modern floating-point formats are naturally ordered; in this case + __VFP_FP__ will be defined, even if soft-float. */ +#ifdef __VFP_FP__ +#ifdef __ARMEL__ +#define __IEEE_LITTLE_ENDIAN +#else +#define __IEEE_BIG_ENDIAN +#endif +#else +#define __IEEE_BIG_ENDIAN +#ifdef __ARMEL__ +#define __IEEE_BYTES_LITTLE_ENDIAN +#endif +#endif +#endif + +#ifdef __hppa__ +#define __IEEE_BIG_ENDIAN +#endif + +#if defined (__sparc) || defined (__sparc__) +#define __IEEE_BIG_ENDIAN +#endif + +#ifdef __m32r__ +#ifdef __LITTLE_ENDIAN__ +#define __IEEE_LITTLE_ENDIAN +#else +#define __IEEE_BIG_ENDIAN +#endif +#endif + +#if defined(__m68k__) || defined(__mc68000__) +#define __IEEE_BIG_ENDIAN +#endif + +#if defined (__H8300__) || defined (__H8300H__) +#define __IEEE_BIG_ENDIAN +#define __SMALL_BITFIELDS +#define _DOUBLE_IS_32BITS +#endif + +#ifdef __H8500__ +#define __IEEE_BIG_ENDIAN +#define __SMALL_BITFIELDS +#define _DOUBLE_IS_32BITS +#endif + +#ifdef __sh__ +#ifdef __LITTLE_ENDIAN__ +#define __IEEE_LITTLE_ENDIAN +#else +#define __IEEE_BIG_ENDIAN +#endif + +#ifdef __SH3E__ +#define _DOUBLE_IS_32BITS +#endif +#endif + +#ifdef _AM29K +#define __IEEE_BIG_ENDIAN +#endif + +#ifdef __i386__ +#define __IEEE_LITTLE_ENDIAN +#endif + +#ifdef __x86_64__ +#define __IEEE_LITTLE_ENDIAN +#endif + +#ifdef __i960__ +#define __IEEE_LITTLE_ENDIAN +#endif + +#ifdef __MIPSEL__ +#define __IEEE_LITTLE_ENDIAN +#endif + +#ifdef __MIPSEB__ +#define __IEEE_BIG_ENDIAN +#endif + +#ifdef __pj__ +#ifdef __pjl__ +#define __IEEE_LITTLE_ENDIAN +#else +#define __IEEE_BIG_ENDIAN +#endif +#endif + +/* necv70 was __IEEE_LITTLE_ENDIAN. */ + +#ifdef __W65__ +#define __IEEE_LITTLE_ENDIAN +#define __SMALL_BITFIELDS +#define _DOUBLE_IS_32BITS +#endif + +#if defined(__Z8001__) || defined(__Z8002__) +#define __IEEE_BIG_ENDIAN +#endif + +#ifdef __m88k__ +#define __IEEE_BIG_ENDIAN +#endif + +#ifdef __v800 +#define __IEEE_LITTLE_ENDIAN +#endif + +#if defined (__PPC__) || defined (__ppc__) || defined (__ppc64__) +#if (defined(_BIG_ENDIAN) && _BIG_ENDIAN) || (defined(_AIX) && _AIX) \ + || defined (__APPLE__) +#define __IEEE_BIG_ENDIAN +#else +#if (defined(_LITTLE_ENDIAN) && _LITTLE_ENDIAN) || (defined(__sun__) && __sun__) || (defined(__WIN32__) && __WIN32__) +#define __IEEE_LITTLE_ENDIAN +#endif +#endif +#endif + +#ifdef __fr30__ +#define __IEEE_BIG_ENDIAN +#endif + +#ifdef __mcore__ +#define __IEEE_BIG_ENDIAN +#endif + + +#ifdef __ia64__ +#ifdef __BIG_ENDIAN__ +#define __IEEE_BIG_ENDIAN +#else +#define __IEEE_LITTLE_ENDIAN +#endif +#endif + +#ifdef __s390__ +#define __IEEE_BIG_ENDIAN +#endif + +#ifndef __IEEE_BIG_ENDIAN +#ifndef __IEEE_LITTLE_ENDIAN +#error Endianess not declared!! +#endif /* not __IEEE_LITTLE_ENDIAN */ +#endif /* not __IEEE_BIG_ENDIAN */ + +#endif /* not __IEEE_LITTLE_ENDIAN */ +#endif /* not __IEEE_BIG_ENDIAN */ + +#endif /* __CLASSPATH_IEEEFP_H__ */ diff --git a/libjava/classpath/native/fdlibm/java-assert.h b/libjava/classpath/native/fdlibm/java-assert.h new file mode 100644 index 0000000..6f178bd --- /dev/null +++ b/libjava/classpath/native/fdlibm/java-assert.h @@ -0,0 +1,38 @@ +// java-assert.h - Header file holding assertion definitions. -*- c++ -*- + +/* Copyright (C) 1998, 1999 Free Software Foundation + + This file is part of libgcj. + +This software is copyrighted work licensed under the terms of the +Libgcj License. Please consult the file "LIBGCJ_LICENSE" for +details. */ + +#ifndef __JAVA_ASSERT_H__ +#define __JAVA_ASSERT_H__ + +// This is a libgcj implementation header. + +void _Jv_Abort (const char *, const char *, int, const char *) + __attribute__ ((__noreturn__)); + +#ifdef DEBUG +#define _Jv_AssertDoCall(Message) _Jv_Abort (__FUNCTION__, __FILE__, __LINE__, Message) + +#define JvAssertMessage(Expr, Message) \ + do { if (! (Expr)) _Jv_AssertDoCall (Message); } while (0) +#define JvAssert(Expr) \ + do { if (! (Expr)) _Jv_AssertDoCall (# Expr); } while (0) + +#define JvFail(Message) _Jv_AssertDoCall (Message) + +#else /* DEBUG */ + +#define _Jv_AssertDoCall(Message) +#define JvAssertMessage(Expr, Message) +#define JvAssert(Expr) +#define JvFail(Message) _Jv_Abort (0, 0, 0, Message) + +#endif /* not DEBUG */ + +#endif /* __JAVA_ASSERT_H__ */ diff --git a/libjava/classpath/native/fdlibm/k_cos.c b/libjava/classpath/native/fdlibm/k_cos.c new file mode 100644 index 0000000..acf50a8 --- /dev/null +++ b/libjava/classpath/native/fdlibm/k_cos.c @@ -0,0 +1,96 @@ + +/* @(#)k_cos.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * __kernel_cos( x, y ) + * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * + * Algorithm + * 1. Since cos(-x) = cos(x), we need only to consider positive x. + * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. + * 3. cos(x) is approximated by a polynomial of degree 14 on + * [0,pi/4] + * 4 14 + * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x + * where the remez error is + * + * | 2 4 6 8 10 12 14 | -58 + * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 + * | | + * + * 4 6 8 10 12 14 + * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then + * cos(x) = 1 - x*x/2 + r + * since cos(x+y) ~ cos(x) - sin(x)*y + * ~ cos(x) - x*y, + * a correction term is necessary in cos(x) and hence + * cos(x+y) = 1 - (x*x/2 - (r - x*y)) + * For better accuracy when x > 0.3, let qx = |x|/4 with + * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. + * Then + * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). + * Note that 1-qx and (x*x/2-qx) is EXACT here, and the + * magnitude of the latter is at least a quarter of x*x/2, + * thus, reducing the rounding error in the subtraction. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double +#else +static double +#endif +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ +C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ +C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ +C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ +C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ +C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ + +#ifdef __STDC__ + double __kernel_cos(double x, double y) +#else + double __kernel_cos(x, y) + double x,y; +#endif +{ + double a,hz,z,r,qx; + int32_t ix; + GET_HIGH_WORD(ix,x); + ix &= 0x7fffffff; /* ix = |x|'s high word*/ + if(ix<0x3e400000) { /* if x < 2**27 */ + if(((int)x)==0) return one; /* generate inexact */ + } + z = x*x; + r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); + if(ix < 0x3FD33333) /* if |x| < 0.3 */ + return one - (0.5*z - (z*r - x*y)); + else { + if(ix > 0x3fe90000) { /* x > 0.78125 */ + qx = 0.28125; + } else { + INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ + } + hz = 0.5*z-qx; + a = one-qx; + return a - (hz - (z*r-x*y)); + } +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/k_rem_pio2.c b/libjava/classpath/native/fdlibm/k_rem_pio2.c new file mode 100644 index 0000000..2f4ca17 --- /dev/null +++ b/libjava/classpath/native/fdlibm/k_rem_pio2.c @@ -0,0 +1,320 @@ + +/* @(#)k_rem_pio2.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) + * double x[],y[]; int e0,nx,prec; int ipio2[]; + * + * __kernel_rem_pio2 return the last three digits of N with + * y = x - N*pi/2 + * so that |y| < pi/2. + * + * The method is to compute the integer (mod 8) and fraction parts of + * (2/pi)*x without doing the full multiplication. In general we + * skip the part of the product that are known to be a huge integer ( + * more accurately, = 0 mod 8 ). Thus the number of operations are + * independent of the exponent of the input. + * + * (2/pi) is represented by an array of 24-bit integers in ipio2[]. + * + * Input parameters: + * x[] The input value (must be positive) is broken into nx + * pieces of 24-bit integers in double precision format. + * x[i] will be the i-th 24 bit of x. The scaled exponent + * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 + * match x's up to 24 bits. + * + * Example of breaking a double positive z into x[0]+x[1]+x[2]: + * e0 = ilogb(z)-23 + * z = scalbn(z,-e0) + * for i = 0,1,2 + * x[i] = floor(z) + * z = (z-x[i])*2**24 + * + * + * y[] ouput result in an array of double precision numbers. + * The dimension of y[] is: + * 24-bit precision 1 + * 53-bit precision 2 + * 64-bit precision 2 + * 113-bit precision 3 + * The actual value is the sum of them. Thus for 113-bit + * precison, one may have to do something like: + * + * long double t,w,r_head, r_tail; + * t = (long double)y[2] + (long double)y[1]; + * w = (long double)y[0]; + * r_head = t+w; + * r_tail = w - (r_head - t); + * + * e0 The exponent of x[0] + * + * nx dimension of x[] + * + * prec an integer indicating the precision: + * 0 24 bits (single) + * 1 53 bits (double) + * 2 64 bits (extended) + * 3 113 bits (quad) + * + * ipio2[] + * integer array, contains the (24*i)-th to (24*i+23)-th + * bit of 2/pi after binary point. The corresponding + * floating value is + * + * ipio2[i] * 2^(-24(i+1)). + * + * External function: + * double scalbn(), floor(); + * + * + * Here is the description of some local variables: + * + * jk jk+1 is the initial number of terms of ipio2[] needed + * in the computation. The recommended value is 2,3,4, + * 6 for single, double, extended,and quad. + * + * jz local integer variable indicating the number of + * terms of ipio2[] used. + * + * jx nx - 1 + * + * jv index for pointing to the suitable ipio2[] for the + * computation. In general, we want + * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 + * is an integer. Thus + * e0-3-24*jv >= 0 or (e0-3)/24 >= jv + * Hence jv = max(0,(e0-3)/24). + * + * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. + * + * q[] double array with integral value, representing the + * 24-bits chunk of the product of x and 2/pi. + * + * q0 the corresponding exponent of q[0]. Note that the + * exponent for q[i] would be q0-24*i. + * + * PIo2[] double precision array, obtained by cutting pi/2 + * into 24 bits chunks. + * + * f[] ipio2[] in floating point + * + * iq[] integer array by breaking up q[] in 24-bits chunk. + * + * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] + * + * ih integer. If >0 it indicates q[] is >= 0.5, hence + * it also indicates the *sign* of the result. + * + */ + + +/* + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ +#else +static int init_jk[] = {2,3,4,6}; +#endif + +#ifdef __STDC__ +static const double PIo2[] = { +#else +static double PIo2[] = { +#endif + 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ + 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ + 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ + 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ + 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ + 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ + 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ + 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ +}; + +#ifdef __STDC__ +static const double +#else +static double +#endif +zero = 0.0, +one = 1.0, +two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ +twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ + +#ifdef __STDC__ + int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) +#else + int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) + double x[], y[]; int e0,nx,prec; int32_t ipio2[]; +#endif +{ + int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; + double z,fw,f[20],fq[20],q[20]; + + /* initialize jk*/ + jk = init_jk[prec]; + jp = jk; + + /* determine jx,jv,q0, note that 3>q0 */ + jx = nx-1; + jv = (e0-3)/24; if(jv<0) jv=0; + q0 = e0-24*(jv+1); + + /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ + j = jv-jx; m = jx+jk; + for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; + + /* compute q[0],q[1],...q[jk] */ + for (i=0;i<=jk;i++) { + for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; + } + + jz = jk; +recompute: + /* distill q[] into iq[] reversingly */ + for(i=0,j=jz,z=q[jz];j>0;i++,j--) { + fw = (double)((int32_t)(twon24* z)); + iq[i] = (int32_t)(z-two24*fw); + z = q[j-1]+fw; + } + + /* compute n */ + z = scalbn(z,(int)q0); /* actual value of z */ + z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ + n = (int32_t) z; + z -= (double)n; + ih = 0; + if(q0>0) { /* need iq[jz-1] to determine n */ + i = (iq[jz-1]>>(24-q0)); n += i; + iq[jz-1] -= i<<(24-q0); + ih = iq[jz-1]>>(23-q0); + } + else if(q0==0) ih = iq[jz-1]>>23; + else if(z>=0.5) ih=2; + + if(ih>0) { /* q > 0.5 */ + n += 1; carry = 0; + for(i=0;i<jz ;i++) { /* compute 1-q */ + j = iq[i]; + if(carry==0) { + if(j!=0) { + carry = 1; iq[i] = 0x1000000- j; + } + } else iq[i] = 0xffffff - j; + } + if(q0>0) { /* rare case: chance is 1 in 12 */ + switch(q0) { + case 1: + iq[jz-1] &= 0x7fffff; break; + case 2: + iq[jz-1] &= 0x3fffff; break; + } + } + if(ih==2) { + z = one - z; + if(carry!=0) z -= scalbn(one,(int)q0); + } + } + + /* check if recomputation is needed */ + if(z==zero) { + j = 0; + for (i=jz-1;i>=jk;i--) j |= iq[i]; + if(j==0) { /* need recomputation */ + for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ + + for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ + f[jx+i] = (double) ipio2[jv+i]; + for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; + q[i] = fw; + } + jz += k; + goto recompute; + } + } + + /* chop off zero terms */ + if(z==0.0) { + jz -= 1; q0 -= 24; + while(iq[jz]==0) { jz--; q0-=24;} + } else { /* break z into 24-bit if necessary */ + z = scalbn(z,-(int)q0); + if(z>=two24) { + fw = (double)((int32_t)(twon24*z)); + iq[jz] = (int32_t)(z-two24*fw); + jz += 1; q0 += 24; + iq[jz] = (int32_t) fw; + } else iq[jz] = (int32_t) z ; + } + + /* convert integer "bit" chunk to floating-point value */ + fw = scalbn(one,(int)q0); + for(i=jz;i>=0;i--) { + q[i] = fw*(double)iq[i]; fw*=twon24; + } + + /* compute PIo2[0,...,jp]*q[jz,...,0] */ + for(i=jz;i>=0;i--) { + for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; + fq[jz-i] = fw; + } + + /* compress fq[] into y[] */ + switch(prec) { + case 0: + fw = 0.0; + for (i=jz;i>=0;i--) fw += fq[i]; + y[0] = (ih==0)? fw: -fw; + break; + case 1: + case 2: + fw = 0.0; + for (i=jz;i>=0;i--) fw += fq[i]; + y[0] = (ih==0)? fw: -fw; + fw = fq[0]-fw; + for (i=1;i<=jz;i++) fw += fq[i]; + y[1] = (ih==0)? fw: -fw; + break; + case 3: /* painful */ + for (i=jz;i>0;i--) { + fw = fq[i-1]+fq[i]; + fq[i] += fq[i-1]-fw; + fq[i-1] = fw; + } + for (i=jz;i>1;i--) { + fw = fq[i-1]+fq[i]; + fq[i] += fq[i-1]-fw; + fq[i-1] = fw; + } + for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; + if(ih==0) { + y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; + } else { + y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; + } + } + return n&7; +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/k_sin.c b/libjava/classpath/native/fdlibm/k_sin.c new file mode 100644 index 0000000..b4ad387 --- /dev/null +++ b/libjava/classpath/native/fdlibm/k_sin.c @@ -0,0 +1,79 @@ + +/* @(#)k_sin.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __kernel_sin( x, y, iy) + * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). + * + * Algorithm + * 1. Since sin(-x) = -sin(x), we need only to consider positive x. + * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. + * 3. sin(x) is approximated by a polynomial of degree 13 on + * [0,pi/4] + * 3 13 + * sin(x) ~ x + S1*x + ... + S6*x + * where + * + * |sin(x) 2 4 6 8 10 12 | -58 + * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 + * | x | + * + * 4. sin(x+y) = sin(x) + sin'(x')*y + * ~ sin(x) + (1-x*x/2)*y + * For better accuracy, let + * 3 2 2 2 2 + * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) + * then 3 2 + * sin(x) = x + (S1*x + (x *(r-y/2)+y)) + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double +#else +static double +#endif +half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ +S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ +S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ +S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ +S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ +S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ +S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ + +#ifdef __STDC__ + double __kernel_sin(double x, double y, int iy) +#else + double __kernel_sin(x, y, iy) + double x,y; int iy; /* iy=0 if y is zero */ +#endif +{ + double z,r,v; + int32_t ix; + GET_HIGH_WORD(ix,x); + ix &= 0x7fffffff; /* high word of x */ + if(ix<0x3e400000) /* |x| < 2**-27 */ + {if((int)x==0) return x;} /* generate inexact */ + z = x*x; + v = z*x; + r = S2+z*(S3+z*(S4+z*(S5+z*S6))); + if(iy==0) return x+v*(S1+z*r); + else return x-((z*(half*y-v*r)-y)-v*S1); +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/k_tan.c b/libjava/classpath/native/fdlibm/k_tan.c new file mode 100644 index 0000000..a1067a7 --- /dev/null +++ b/libjava/classpath/native/fdlibm/k_tan.c @@ -0,0 +1,132 @@ + +/* @(#)k_tan.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __kernel_tan( x, y, k ) + * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * Input k indicates whether tan (if k=1) or + * -1/tan (if k= -1) is returned. + * + * Algorithm + * 1. Since tan(-x) = -tan(x), we need only to consider positive x. + * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. + * 3. tan(x) is approximated by a odd polynomial of degree 27 on + * [0,0.67434] + * 3 27 + * tan(x) ~ x + T1*x + ... + T13*x + * where + * + * |tan(x) 2 4 26 | -59.2 + * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 + * | x | + * + * Note: tan(x+y) = tan(x) + tan'(x)*y + * ~ tan(x) + (1+x*x)*y + * Therefore, for better accuracy in computing tan(x+y), let + * 3 2 2 2 2 + * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) + * then + * 3 2 + * tan(x+y) = x + (T1*x + (x *(r+y)+y)) + * + * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then + * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) + * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double +#else +static double +#endif +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ +pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ +T[] = { + 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ + 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ + 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ + 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ + 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ + 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ + 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ + 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ + 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ + 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ + 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ + -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ + 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ +}; + +#ifdef __STDC__ + double __kernel_tan(double x, double y, int iy) +#else + double __kernel_tan(x, y, iy) + double x,y; int iy; +#endif +{ + double z,r,v,w,s; + int32_t ix,hx; + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; /* high word of |x| */ + if(ix<0x3e300000) /* x < 2**-28 */ + {if((int)x==0) { /* generate inexact */ + uint32_t low; + GET_LOW_WORD(low,x); + if(((ix|low)|(iy+1))==0) return one/fabs(x); + else return (iy==1)? x: -one/x; + } + } + if(ix>=0x3FE59428) { /* |x|>=0.6744 */ + if(hx<0) {x = -x; y = -y;} + z = pio4-x; + w = pio4lo-y; + x = z+w; y = 0.0; + } + z = x*x; + w = z*z; + /* Break x^5*(T[1]+x^2*T[2]+...) into + * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) + */ + r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); + v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); + s = z*x; + r = y + z*(s*(r+v)+y); + r += T[0]*s; + w = x+r; + if(ix>=0x3FE59428) { + v = (double)iy; + return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); + } + if(iy==1) return w; + else { /* if allow error up to 2 ulp, + simply return -1.0/(x+r) here */ + /* compute -1.0/(x+r) accurately */ + double a,t; + z = w; + SET_LOW_WORD(z,0); + v = r-(z - x); /* z+v = r+x */ + t = a = -1.0/w; /* a = -1.0/w */ + SET_LOW_WORD(t,0); + s = 1.0+t*z; + return t+a*(s+t*v); + } +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/mprec.c b/libjava/classpath/native/fdlibm/mprec.c new file mode 100644 index 0000000..00679ed --- /dev/null +++ b/libjava/classpath/native/fdlibm/mprec.c @@ -0,0 +1,958 @@ +/**************************************************************** + * + * The author of this software is David M. Gay. + * + * Copyright (c) 1991 by AT&T. + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + ***************************************************************/ + +/* Please send bug reports to + David M. Gay + AT&T Bell Laboratories, Room 2C-463 + 600 Mountain Avenue + Murray Hill, NJ 07974-2070 + U.S.A. + dmg@research.att.com or research!dmg + */ + +/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. + * + * This strtod returns a nearest machine number to the input decimal + * string (or sets errno to ERANGE). With IEEE arithmetic, ties are + * broken by the IEEE round-even rule. Otherwise ties are broken by + * biased rounding (add half and chop). + * + * Inspired loosely by William D. Clinger's paper "How to Read Floating + * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * + * 1. We only require IEEE, IBM, or VAX double-precision + * arithmetic (not IEEE double-extended). + * 2. We get by with floating-point arithmetic in a case that + * Clinger missed -- when we're computing d * 10^n + * for a small integer d and the integer n is not too + * much larger than 22 (the maximum integer k for which + * we can represent 10^k exactly), we may be able to + * compute (d*10^k) * 10^(e-k) with just one roundoff. + * 3. Rather than a bit-at-a-time adjustment of the binary + * result in the hard case, we use floating-point + * arithmetic to determine the adjustment to within + * one bit; only in really hard cases do we need to + * compute a second residual. + * 4. Because of 3., we don't need a large table of powers of 10 + * for ten-to-e (just some small tables, e.g. of 10^k + * for 0 <= k <= 22). + */ + +/* + * #define IEEE_8087 for IEEE-arithmetic machines where the least + * significant byte has the lowest address. + * #define IEEE_MC68k for IEEE-arithmetic machines where the most + * significant byte has the lowest address. + * #define Sudden_Underflow for IEEE-format machines without gradual + * underflow (i.e., that flush to zero on underflow). + * #define IBM for IBM mainframe-style floating-point arithmetic. + * #define VAX for VAX-style floating-point arithmetic. + * #define Unsigned_Shifts if >> does treats its left operand as unsigned. + * #define No_leftright to omit left-right logic in fast floating-point + * computation of dtoa. + * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. + * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines + * that use extended-precision instructions to compute rounded + * products and quotients) with IBM. + * #define ROUND_BIASED for IEEE-format with biased rounding. + * #define Inaccurate_Divide for IEEE-format with correctly rounded + * products but inaccurate quotients, e.g., for Intel i860. + * #define Just_16 to store 16 bits per 32-bit long when doing high-precision + * integer arithmetic. Whether this speeds things up or slows things + * down depends on the machine and the number being converted. + */ + +#include <stdlib.h> +#include <string.h> +#include <java-assert.h> +#include "mprec.h" + +/* reent.c knows this value */ +#define _Kmax 15 +#include <stdio.h> + +_Jv_Bigint * +_DEFUN (Balloc, (ptr, k), struct _Jv_reent *ptr _AND int k) +{ + _Jv_Bigint *rv = NULL; + + int i = 0; + int j = 1; + + JvAssert ((1 << k) < MAX_BIGNUM_WDS); + + while ((ptr->_allocation_map & j) && i < MAX_BIGNUMS) + i++, j <<= 1; + + JvAssert (i < MAX_BIGNUMS); + + if (i >= MAX_BIGNUMS) + return NULL; + + ptr->_allocation_map |= j; + rv = &ptr->_freelist[i]; + + rv->_k = k; + rv->_maxwds = 32; + + return rv; +} + + +void +_DEFUN (Bfree, (ptr, v), struct _Jv_reent *ptr _AND _Jv_Bigint * v) +{ + long i; + + i = v - ptr->_freelist; + + JvAssert (i >= 0 && i < MAX_BIGNUMS); + + if (i >= 0 && i < MAX_BIGNUMS) + ptr->_allocation_map &= ~ (1 << i); +} + + +_Jv_Bigint * +_DEFUN (multadd, (ptr, b, m, a), + struct _Jv_reent *ptr _AND + _Jv_Bigint * b _AND + int m _AND + int a) +{ + int i, wds; + unsigned long *x, y; +#ifdef Pack_32 + unsigned long xi, z; +#endif + _Jv_Bigint *b1; + + wds = b->_wds; + x = b->_x; + i = 0; + do + { +#ifdef Pack_32 + xi = *x; + y = (xi & 0xffff) * m + a; + z = (xi >> 16) * m + (y >> 16); + a = (int) (z >> 16); + *x++ = (z << 16) + (y & 0xffff); +#else + y = *x * m + a; + a = (int) (y >> 16); + *x++ = y & 0xffff; +#endif + } + while (++i < wds); + if (a) + { + if (wds >= b->_maxwds) + { + b1 = Balloc (ptr, b->_k + 1); + Bcopy (b1, b); + Bfree (ptr, b); + b = b1; + } + b->_x[wds++] = a; + b->_wds = wds; + } + return b; +} + +_Jv_Bigint * +_DEFUN (s2b, (ptr, s, nd0, nd, y9), + struct _Jv_reent * ptr _AND + _CONST char *s _AND + int nd0 _AND + int nd _AND + unsigned long y9) +{ + _Jv_Bigint *b; + int i, k; + long x, y; + + x = (nd + 8) / 9; + for (k = 0, y = 1; x > y; y <<= 1, k++); +#ifdef Pack_32 + b = Balloc (ptr, k); + b->_x[0] = y9; + b->_wds = 1; +#else + b = Balloc (ptr, k + 1); + b->_x[0] = y9 & 0xffff; + b->_wds = (b->_x[1] = y9 >> 16) ? 2 : 1; +#endif + + i = 9; + if (9 < nd0) + { + s += 9; + do + b = multadd (ptr, b, 10, *s++ - '0'); + while (++i < nd0); + s++; + } + else + s += 10; + for (; i < nd; i++) + b = multadd (ptr, b, 10, *s++ - '0'); + return b; +} + +int +_DEFUN (hi0bits, + (x), register unsigned long x) +{ + register int k = 0; + + if (!(x & 0xffff0000)) + { + k = 16; + x <<= 16; + } + if (!(x & 0xff000000)) + { + k += 8; + x <<= 8; + } + if (!(x & 0xf0000000)) + { + k += 4; + x <<= 4; + } + if (!(x & 0xc0000000)) + { + k += 2; + x <<= 2; + } + if (!(x & 0x80000000)) + { + k++; + if (!(x & 0x40000000)) + return 32; + } + return k; +} + +int +_DEFUN (lo0bits, (y), unsigned long *y) +{ + register int k; + register unsigned long x = *y; + + if (x & 7) + { + if (x & 1) + return 0; + if (x & 2) + { + *y = x >> 1; + return 1; + } + *y = x >> 2; + return 2; + } + k = 0; + if (!(x & 0xffff)) + { + k = 16; + x >>= 16; + } + if (!(x & 0xff)) + { + k += 8; + x >>= 8; + } + if (!(x & 0xf)) + { + k += 4; + x >>= 4; + } + if (!(x & 0x3)) + { + k += 2; + x >>= 2; + } + if (!(x & 1)) + { + k++; + x >>= 1; + if (!(x & 1)) + return 32; + } + *y = x; + return k; +} + +_Jv_Bigint * +_DEFUN (i2b, (ptr, i), struct _Jv_reent * ptr _AND int i) +{ + _Jv_Bigint *b; + + b = Balloc (ptr, 1); + b->_x[0] = i; + b->_wds = 1; + return b; +} + +_Jv_Bigint * +_DEFUN (mult, (ptr, a, b), struct _Jv_reent * ptr _AND _Jv_Bigint * a _AND _Jv_Bigint * b) +{ + _Jv_Bigint *c; + int k, wa, wb, wc; + unsigned long carry, y, z; + unsigned long *x, *xa, *xae, *xb, *xbe, *xc, *xc0; +#ifdef Pack_32 + unsigned long z2; +#endif + + if (a->_wds < b->_wds) + { + c = a; + a = b; + b = c; + } + k = a->_k; + wa = a->_wds; + wb = b->_wds; + wc = wa + wb; + if (wc > a->_maxwds) + k++; + c = Balloc (ptr, k); + for (x = c->_x, xa = x + wc; x < xa; x++) + *x = 0; + xa = a->_x; + xae = xa + wa; + xb = b->_x; + xbe = xb + wb; + xc0 = c->_x; +#ifdef Pack_32 + for (; xb < xbe; xb++, xc0++) + { + if ((y = *xb & 0xffff)) + { + x = xa; + xc = xc0; + carry = 0; + do + { + z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; + carry = z >> 16; + z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; + carry = z2 >> 16; + Storeinc (xc, z2, z); + } + while (x < xae); + *xc = carry; + } + if ((y = *xb >> 16)) + { + x = xa; + xc = xc0; + carry = 0; + z2 = *xc; + do + { + z = (*x & 0xffff) * y + (*xc >> 16) + carry; + carry = z >> 16; + Storeinc (xc, z, z2); + z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; + carry = z2 >> 16; + } + while (x < xae); + *xc = z2; + } + } +#else + for (; xb < xbe; xc0++) + { + if ((y = *xb++)) + { + x = xa; + xc = xc0; + carry = 0; + do + { + z = *x++ * y + *xc + carry; + carry = z >> 16; + *xc++ = z & 0xffff; + } + while (x < xae); + *xc = carry; + } + } +#endif + for (xc0 = c->_x, xc = xc0 + wc; wc > 0 && !*--xc; --wc); + c->_wds = wc; + return c; +} + +_Jv_Bigint * +_DEFUN (pow5mult, + (ptr, b, k), struct _Jv_reent * ptr _AND _Jv_Bigint * b _AND int k) +{ + _Jv_Bigint *b1, *p5, *p51; + int i; + static _CONST int p05[3] = {5, 25, 125}; + + if ((i = k & 3)) + b = multadd (ptr, b, p05[i - 1], 0); + + if (!(k >>= 2)) + return b; + if (!(p5 = ptr->_p5s)) + { + /* first time */ + p5 = ptr->_p5s = i2b (ptr, 625); + p5->_next = 0; + } + for (;;) + { + if (k & 1) + { + b1 = mult (ptr, b, p5); + Bfree (ptr, b); + b = b1; + } + if (!(k >>= 1)) + break; + if (!(p51 = p5->_next)) + { + p51 = p5->_next = mult (ptr, p5, p5); + p51->_next = 0; + } + p5 = p51; + } + return b; +} + +_Jv_Bigint * +_DEFUN (lshift, (ptr, b, k), struct _Jv_reent * ptr _AND _Jv_Bigint * b _AND int k) +{ + int i, k1, n, n1; + _Jv_Bigint *b1; + unsigned long *x, *x1, *xe, z; + +#ifdef Pack_32 + n = k >> 5; +#else + n = k >> 4; +#endif + k1 = b->_k; + n1 = n + b->_wds + 1; + for (i = b->_maxwds; n1 > i; i <<= 1) + k1++; + b1 = Balloc (ptr, k1); + x1 = b1->_x; + for (i = 0; i < n; i++) + *x1++ = 0; + x = b->_x; + xe = x + b->_wds; +#ifdef Pack_32 + if (k &= 0x1f) + { + k1 = 32 - k; + z = 0; + do + { + *x1++ = *x << k | z; + z = *x++ >> k1; + } + while (x < xe); + if ((*x1 = z)) + ++n1; + } +#else + if (k &= 0xf) + { + k1 = 16 - k; + z = 0; + do + { + *x1++ = (*x << k & 0xffff) | z; + z = *x++ >> k1; + } + while (x < xe); + if ((*x1 = z)) + ++n1; + } +#endif + else + do + *x1++ = *x++; + while (x < xe); + b1->_wds = n1 - 1; + Bfree (ptr, b); + return b1; +} + +int +_DEFUN (cmp, (a, b), _Jv_Bigint * a _AND _Jv_Bigint * b) +{ + unsigned long *xa, *xa0, *xb, *xb0; + int i, j; + + i = a->_wds; + j = b->_wds; +#ifdef DEBUG + if (i > 1 && !a->_x[i - 1]) + Bug ("cmp called with a->_x[a->_wds-1] == 0"); + if (j > 1 && !b->_x[j - 1]) + Bug ("cmp called with b->_x[b->_wds-1] == 0"); +#endif + if (i -= j) + return i; + xa0 = a->_x; + xa = xa0 + j; + xb0 = b->_x; + xb = xb0 + j; + for (;;) + { + if (*--xa != *--xb) + return *xa < *xb ? -1 : 1; + if (xa <= xa0) + break; + } + return 0; +} + +_Jv_Bigint * +_DEFUN (diff, (ptr, a, b), struct _Jv_reent * ptr _AND + _Jv_Bigint * a _AND _Jv_Bigint * b) +{ + _Jv_Bigint *c; + int i, wa, wb; + long borrow, y; /* We need signed shifts here. */ + unsigned long *xa, *xae, *xb, *xbe, *xc; +#ifdef Pack_32 + long z; +#endif + + i = cmp (a, b); + if (!i) + { + c = Balloc (ptr, 0); + c->_wds = 1; + c->_x[0] = 0; + return c; + } + if (i < 0) + { + c = a; + a = b; + b = c; + i = 1; + } + else + i = 0; + c = Balloc (ptr, a->_k); + c->_sign = i; + wa = a->_wds; + xa = a->_x; + xae = xa + wa; + wb = b->_wds; + xb = b->_x; + xbe = xb + wb; + xc = c->_x; + borrow = 0; +#ifdef Pack_32 + do + { + y = (*xa & 0xffff) - (*xb & 0xffff) + borrow; + borrow = y >> 16; + Sign_Extend (borrow, y); + z = (*xa++ >> 16) - (*xb++ >> 16) + borrow; + borrow = z >> 16; + Sign_Extend (borrow, z); + Storeinc (xc, z, y); + } + while (xb < xbe); + while (xa < xae) + { + y = (*xa & 0xffff) + borrow; + borrow = y >> 16; + Sign_Extend (borrow, y); + z = (*xa++ >> 16) + borrow; + borrow = z >> 16; + Sign_Extend (borrow, z); + Storeinc (xc, z, y); + } +#else + do + { + y = *xa++ - *xb++ + borrow; + borrow = y >> 16; + Sign_Extend (borrow, y); + *xc++ = y & 0xffff; + } + while (xb < xbe); + while (xa < xae) + { + y = *xa++ + borrow; + borrow = y >> 16; + Sign_Extend (borrow, y); + *xc++ = y & 0xffff; + } +#endif + while (!*--xc) + wa--; + c->_wds = wa; + return c; +} + +double +_DEFUN (ulp, (_x), double _x) +{ + union double_union x, a; + register long L; + + x.d = _x; + + L = (word0 (x) & Exp_mask) - (P - 1) * Exp_msk1; +#ifndef Sudden_Underflow + if (L > 0) + { +#endif +#ifdef IBM + L |= Exp_msk1 >> 4; +#endif + word0 (a) = L; +#ifndef _DOUBLE_IS_32BITS + word1 (a) = 0; +#endif + +#ifndef Sudden_Underflow + } + else + { + L = -L >> Exp_shift; + if (L < Exp_shift) + { + word0 (a) = 0x80000 >> L; +#ifndef _DOUBLE_IS_32BITS + word1 (a) = 0; +#endif + } + else + { + word0 (a) = 0; + L -= Exp_shift; +#ifndef _DOUBLE_IS_32BITS + word1 (a) = L >= 31 ? 1 : 1 << (31 - L); +#endif + } + } +#endif + return a.d; +} + +double +_DEFUN (b2d, (a, e), + _Jv_Bigint * a _AND int *e) +{ + unsigned long *xa, *xa0, w, y, z; + int k; + union double_union d; +#ifdef VAX + unsigned long d0, d1; +#else +#define d0 word0(d) +#define d1 word1(d) +#endif + + xa0 = a->_x; + xa = xa0 + a->_wds; + y = *--xa; +#ifdef DEBUG + if (!y) + Bug ("zero y in b2d"); +#endif + k = hi0bits (y); + *e = 32 - k; +#ifdef Pack_32 + if (k < Ebits) + { + d0 = Exp_1 | y >> (Ebits - k); + w = xa > xa0 ? *--xa : 0; +#ifndef _DOUBLE_IS_32BITS + d1 = y << (32 - Ebits + k) | w >> (Ebits - k); +#endif + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + if (k -= Ebits) + { + d0 = Exp_1 | y << k | z >> (32 - k); + y = xa > xa0 ? *--xa : 0; +#ifndef _DOUBLE_IS_32BITS + d1 = z << k | y >> (32 - k); +#endif + } + else + { + d0 = Exp_1 | y; +#ifndef _DOUBLE_IS_32BITS + d1 = z; +#endif + } +#else + if (k < Ebits + 16) + { + z = xa > xa0 ? *--xa : 0; + d0 = Exp_1 | y << (k - Ebits) | z >> (Ebits + 16 - k); + w = xa > xa0 ? *--xa : 0; + y = xa > xa0 ? *--xa : 0; + d1 = z << (k + 16 - Ebits) | w << (k - Ebits) | y >> (16 + Ebits - k); + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + w = xa > xa0 ? *--xa : 0; + k -= Ebits + 16; + d0 = Exp_1 | y << (k + 16) | z << k | w >> (16 - k); + y = xa > xa0 ? *--xa : 0; + d1 = w << (k + 16) | y << k; +#endif +ret_d: +#ifdef VAX + word0 (d) = d0 >> 16 | d0 << 16; + word1 (d) = d1 >> 16 | d1 << 16; +#else +#undef d0 +#undef d1 +#endif + return d.d; +} + +_Jv_Bigint * +_DEFUN (d2b, + (ptr, _d, e, bits), + struct _Jv_reent * ptr _AND + double _d _AND + int *e _AND + int *bits) + +{ + union double_union d; + _Jv_Bigint *b; + int de, i, k; + unsigned long *x, y, z; +#ifdef VAX + unsigned long d0, d1; + d.d = _d; + d0 = word0 (d) >> 16 | word0 (d) << 16; + d1 = word1 (d) >> 16 | word1 (d) << 16; +#else +#define d0 word0(d) +#define d1 word1(d) + d.d = _d; +#endif + +#ifdef Pack_32 + b = Balloc (ptr, 1); +#else + b = Balloc (ptr, 2); +#endif + x = b->_x; + + z = d0 & Frac_mask; + d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ +#ifdef Sudden_Underflow + de = (int) (d0 >> Exp_shift); +#ifndef IBM + z |= Exp_msk11; +#endif +#else + if ((de = (int) (d0 >> Exp_shift))) + z |= Exp_msk1; +#endif +#ifdef Pack_32 +#ifndef _DOUBLE_IS_32BITS + if ((y = d1)) + { + if ((k = lo0bits (&y))) + { + x[0] = y | z << (32 - k); + z >>= k; + } + else + x[0] = y; + i = b->_wds = (x[1] = z) ? 2 : 1; + } + else +#endif + { +#ifdef DEBUG + if (!z) + Bug ("Zero passed to d2b"); +#endif + k = lo0bits (&z); + x[0] = z; + i = b->_wds = 1; +#ifndef _DOUBLE_IS_32BITS + k += 32; +#endif + } +#else + if ((y = d1)) + { + if ((k = lo0bits (&y))) + if (k >= 16) + { + x[0] = y | (z << (32 - k) & 0xffff); + x[1] = z >> (k - 16) & 0xffff; + x[2] = z >> k; + i = 2; + } + else + { + x[0] = y & 0xffff; + x[1] = (y >> 16 | z << (16 - k)) & 0xffff; + x[2] = z >> k & 0xffff; + x[3] = z >> (k + 16); + i = 3; + } + else + { + x[0] = y & 0xffff; + x[1] = y >> 16; + x[2] = z & 0xffff; + x[3] = z >> 16; + i = 3; + } + } + else + { +#ifdef DEBUG + if (!z) + Bug ("Zero passed to d2b"); +#endif + k = lo0bits (&z); + if (k >= 16) + { + x[0] = z; + i = 0; + } + else + { + x[0] = z & 0xffff; + x[1] = z >> 16; + i = 1; + } + k += 32; + } + while (!x[i]) + --i; + b->_wds = i + 1; +#endif +#ifndef Sudden_Underflow + if (de) + { +#endif +#ifdef IBM + *e = (de - Bias - (P - 1) << 2) + k; + *bits = 4 * P + 8 - k - hi0bits (word0 (d) & Frac_mask); +#else + *e = de - Bias - (P - 1) + k; + *bits = P - k; +#endif +#ifndef Sudden_Underflow + } + else + { + *e = de - Bias - (P - 1) + 1 + k; +#ifdef Pack_32 + *bits = 32 * i - hi0bits (x[i - 1]); +#else + *bits = (i + 2) * 16 - hi0bits (x[i]); +#endif + } +#endif + return b; +} +#undef d0 +#undef d1 + +double +_DEFUN (ratio, (a, b), _Jv_Bigint * a _AND _Jv_Bigint * b) + +{ + union double_union da, db; + int k, ka, kb; + + da.d = b2d (a, &ka); + db.d = b2d (b, &kb); +#ifdef Pack_32 + k = ka - kb + 32 * (a->_wds - b->_wds); +#else + k = ka - kb + 16 * (a->_wds - b->_wds); +#endif +#ifdef IBM + if (k > 0) + { + word0 (da) += (k >> 2) * Exp_msk1; + if (k &= 3) + da.d *= 1 << k; + } + else + { + k = -k; + word0 (db) += (k >> 2) * Exp_msk1; + if (k &= 3) + db.d *= 1 << k; + } +#else + if (k > 0) + word0 (da) += k * Exp_msk1; + else + { + k = -k; + word0 (db) += k * Exp_msk1; + } +#endif + return da.d / db.d; +} + + +_CONST double + tens[] = +{ + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22, 1e23, 1e24 + +}; + +#if !defined(_DOUBLE_IS_32BITS) && !defined(__v800) +_CONST double bigtens[] = +{1e16, 1e32, 1e64, 1e128, 1e256}; + +_CONST double tinytens[] = +{1e-16, 1e-32, 1e-64, 1e-128, 1e-256}; +#else +_CONST double bigtens[] = +{1e16, 1e32}; + +_CONST double tinytens[] = +{1e-16, 1e-32}; +#endif + + diff --git a/libjava/classpath/native/fdlibm/mprec.h b/libjava/classpath/native/fdlibm/mprec.h new file mode 100644 index 0000000..d796b81 --- /dev/null +++ b/libjava/classpath/native/fdlibm/mprec.h @@ -0,0 +1,402 @@ +/**************************************************************** + * + * The author of this software is David M. Gay. + * + * Copyright (c) 1991, 2000 by AT&T. + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + ***************************************************************/ + +/* Please send bug reports to + David M. Gay + AT&T Bell Laboratories, Room 2C-463 + 600 Mountain Avenue + Murray Hill, NJ 07974-2070 + U.S.A. + dmg@research.att.com or research!dmg + */ + +#ifndef __CLASSPATH_MPREC_H__ +#define __CLASSPATH_MPREC_H__ + +#include <config.h> +#include "ieeefp.h" + +#if defined HAVE_STDINT_H +#include <stdint.h> +#elif defined HAVE_INTTYPES_H +#include <inttypes.h> +#endif + +#if defined HAVE_SYS_TYPES_H +#include <sys/types.h> +#endif + +#if defined HAVE_SYS_CONFIG_H +#include <sys/config.h> +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +/* ISO C99 int type declarations */ + +#if !defined HAVE_INT32_DEFINED && defined HAVE_BSD_INT32_DEFINED +typedef u_int32_t uint32_t; +#endif + +#if !defined HAVE_BSD_INT32_DEFINED && !defined HAVE_INT32_DEFINED +/* FIXME this could have problems with systems that don't define SI to be 4 */ +typedef int int32_t __attribute__((mode(SI))); + +/* This is a blatant hack: on Solaris 2.5, pthread.h defines uint32_t + in pthread.h, which we sometimes include. We protect our + definition the same way Solaris 2.5 does, to avoid redefining it. */ +# ifndef _UINT32_T +typedef unsigned int uint32_t __attribute__((mode(SI))); +# endif +#endif + + /* These typedefs are true for the targets running Java. */ + +#ifdef __IEEE_LITTLE_ENDIAN +#define IEEE_8087 +#endif + +#ifdef __IEEE_BIG_ENDIAN +#define IEEE_MC68k +#endif + +#ifdef __Z8000__ +#define Just_16 +#endif + +#ifdef DEBUG +#include "stdio.h" +#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} +#endif + + +#ifdef Unsigned_Shifts +#define Sign_Extend(a,b) if (b < 0) a |= (uint32_t)0xffff0000; +#else +#define Sign_Extend(a,b) /*no-op*/ +#endif + +#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 +Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. +#endif + +/* If we are going to examine or modify specific bits in a double using + the word0 and/or word1 macros, then we must wrap the double inside + a union. This is necessary to avoid undefined behavior according to + the ANSI C spec. */ +union double_union +{ + double d; + uint32_t i[2]; +}; + +#ifdef IEEE_8087 +#define word0(x) (x.i[1]) +#define word1(x) (x.i[0]) +#else +#define word0(x) (x.i[0]) +#define word1(x) (x.i[1]) +#endif + +/* The following definition of Storeinc is appropriate for MIPS processors. + * An alternative that might be better on some machines is + * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) + */ +#if defined(IEEE_8087) + defined(VAX) +#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ +((unsigned short *)a)[0] = (unsigned short)c, a++) +#else +#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ +((unsigned short *)a)[1] = (unsigned short)c, a++) +#endif + +/* #define P DBL_MANT_DIG */ +/* Ten_pmax = floor(P*log(2)/log(5)) */ +/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ +/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ +/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ + +#if defined(IEEE_8087) + defined(IEEE_MC68k) +#if defined (_DOUBLE_IS_32BITS) +#define Exp_shift 23 +#define Exp_shift1 23 +#define Exp_msk1 ((uint32_t)0x00800000L) +#define Exp_msk11 ((uint32_t)0x00800000L) +#define Exp_mask ((uint32_t)0x7f800000L) +#define P 24 +#define Bias 127 +#if 0 +#define IEEE_Arith /* it is, but the code doesn't handle IEEE singles yet */ +#endif +#define Emin (-126) +#define Exp_1 ((uint32_t)0x3f800000L) +#define Exp_11 ((uint32_t)0x3f800000L) +#define Ebits 8 +#define Frac_mask ((uint32_t)0x007fffffL) +#define Frac_mask1 ((uint32_t)0x007fffffL) +#define Ten_pmax 10 +#define Sign_bit ((uint32_t)0x80000000L) +#define Ten_pmax 10 +#define Bletch 2 +#define Bndry_mask ((uint32_t)0x007fffffL) +#define Bndry_mask1 ((uint32_t)0x007fffffL) +#define LSB 1 +#define Sign_bit ((uint32_t)0x80000000L) +#define Log2P 1 +#define Tiny0 0 +#define Tiny1 1 +#define Quick_max 5 +#define Int_max 6 +#define Infinite(x) (word0(x) == ((uint32_t)0x7f800000L)) +#undef word0 +#undef word1 + +#define word0(x) (x.i[0]) +#define word1(x) 0 +#else + +#define Exp_shift 20 +#define Exp_shift1 20 +#define Exp_msk1 ((uint32_t)0x100000L) +#define Exp_msk11 ((uint32_t)0x100000L) +#define Exp_mask ((uint32_t)0x7ff00000L) +#define P 53 +#define Bias 1023 +#define IEEE_Arith +#define Emin (-1022) +#define Exp_1 ((uint32_t)0x3ff00000L) +#define Exp_11 ((uint32_t)0x3ff00000L) +#define Ebits 11 +#define Frac_mask ((uint32_t)0xfffffL) +#define Frac_mask1 ((uint32_t)0xfffffL) +#define Ten_pmax 22 +#define Bletch 0x10 +#define Bndry_mask ((uint32_t)0xfffffL) +#define Bndry_mask1 ((uint32_t)0xfffffL) +#define LSB 1 +#define Sign_bit ((uint32_t)0x80000000L) +#define Log2P 1 +#define Tiny0 0 +#define Tiny1 1 +#define Quick_max 14 +#define Int_max 14 +#define Infinite(x) (word0(x) == ((uint32_t)0x7ff00000L)) /* sufficient test for here */ +#endif + +#else +#undef Sudden_Underflow +#define Sudden_Underflow +#ifdef IBM +#define Exp_shift 24 +#define Exp_shift1 24 +#define Exp_msk1 ((uint32_t)0x1000000L) +#define Exp_msk11 ((uint32_t)0x1000000L) +#define Exp_mask ((uint32_t)0x7f000000L) +#define P 14 +#define Bias 65 +#define Exp_1 ((uint32_t)0x41000000L) +#define Exp_11 ((uint32_t)0x41000000L) +#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ +#define Frac_mask ((uint32_t)0xffffffL) +#define Frac_mask1 ((uint32_t)0xffffffL) +#define Bletch 4 +#define Ten_pmax 22 +#define Bndry_mask ((uint32_t)0xefffffL) +#define Bndry_mask1 ((uint32_t)0xffffffL) +#define LSB 1 +#define Sign_bit ((uint32_t)0x80000000L) +#define Log2P 4 +#define Tiny0 ((uint32_t)0x100000L) +#define Tiny1 0 +#define Quick_max 14 +#define Int_max 15 +#else /* VAX */ +#define Exp_shift 23 +#define Exp_shift1 7 +#define Exp_msk1 0x80 +#define Exp_msk11 ((uint32_t)0x800000L) +#define Exp_mask ((uint32_t)0x7f80L) +#define P 56 +#define Bias 129 +#define Exp_1 ((uint32_t)0x40800000L) +#define Exp_11 ((uint32_t)0x4080L) +#define Ebits 8 +#define Frac_mask ((uint32_t)0x7fffffL) +#define Frac_mask1 ((uint32_t)0xffff007fL) +#define Ten_pmax 24 +#define Bletch 2 +#define Bndry_mask ((uint32_t)0xffff007fL) +#define Bndry_mask1 ((uint32_t)0xffff007fL) +#define LSB ((uint32_t)0x10000L) +#define Sign_bit ((uint32_t)0x8000L) +#define Log2P 1 +#define Tiny0 0x80 +#define Tiny1 0 +#define Quick_max 15 +#define Int_max 15 +#endif +#endif + +#ifndef IEEE_Arith +#define ROUND_BIASED +#endif + +#ifdef RND_PRODQUOT +#define rounded_product(a,b) a = rnd_prod(a, b) +#define rounded_quotient(a,b) a = rnd_quot(a, b) +#ifdef KR_headers +extern double rnd_prod(), rnd_quot(); +#else +extern double rnd_prod(double, double), rnd_quot(double, double); +#endif +#else +#define rounded_product(a,b) a *= b +#define rounded_quotient(a,b) a /= b +#endif + +#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) +#define Big1 ((uint32_t)0xffffffffL) + +#ifndef Just_16 +/* When Pack_32 is not defined, we store 16 bits per 32-bit long. + * This makes some inner loops simpler and sometimes saves work + * during multiplications, but it often seems to make things slightly + * slower. Hence the default is now to store 32 bits per long. + */ + +#ifndef Pack_32 +#if SIZEOF_VOID_P != 8 +#define Pack_32 +#endif +#endif +#endif + + +#define MAX_BIGNUMS 16 +#define MAX_BIGNUM_WDS 32 + +struct _Jv_Bigint +{ + struct _Jv_Bigint *_next; + int _k, _maxwds, _sign, _wds; + unsigned long _x[MAX_BIGNUM_WDS]; +}; + + +#define _PTR void * +#define _AND , +#define _NOARGS void +#define _CONST const +#define _VOLATILE volatile +#define _SIGNED signed +#define _DOTS , ... +#define _VOID void +#define _EXFUN(name, proto) name proto +#define _DEFUN(name, arglist, args) name(args) +#define _DEFUN_VOID(name) name(_NOARGS) +#define _CAST_VOID (void) + + +struct _Jv_reent +{ + /* local copy of errno */ + int _errno; + + /* used by mprec routines */ + struct _Jv_Bigint *_result; + int _result_k; + struct _Jv_Bigint *_p5s; + + struct _Jv_Bigint _freelist[MAX_BIGNUMS]; + int _allocation_map; + + int num; +}; + + +typedef struct _Jv_Bigint _Jv_Bigint; + +#define Balloc _Jv_Balloc +#define Bfree _Jv_Bfree +#define multadd _Jv_multadd +#define s2b _Jv_s2b +#define lo0bits _Jv_lo0bits +#define hi0bits _Jv_hi0bits +#define i2b _Jv_i2b +#define mult _Jv_mult +#define pow5mult _Jv_pow5mult +#define lshift _Jv_lshift +#define cmp _Jv__mcmp +#define diff _Jv__mdiff +#define ulp _Jv_ulp +#define b2d _Jv_b2d +#define d2b _Jv_d2b +#define ratio _Jv_ratio + +#define tens _Jv__mprec_tens +#define bigtens _Jv__mprec_bigtens +#define tinytens _Jv__mprec_tinytens + +#define _dtoa _Jv_dtoa +#define _dtoa_r _Jv_dtoa_r +#define _strtod_r _Jv_strtod_r + +extern double _EXFUN(_strtod_r, (struct _Jv_reent *ptr, const char *s00, char **se)); +extern char* _EXFUN(_dtoa_r, (struct _Jv_reent *ptr, double d, + int mode, int ndigits, int *decpt, int *sign, + char **rve, int float_type)); +void _EXFUN(_dtoa, (double d, int mode, int ndigits, int *decpt, int *sign, + char **rve, char *buf, int float_type)); + +double _EXFUN(ulp,(double x)); +double _EXFUN(b2d,(_Jv_Bigint *a , int *e)); +_Jv_Bigint * _EXFUN(Balloc,(struct _Jv_reent *p, int k)); +void _EXFUN(Bfree,(struct _Jv_reent *p, _Jv_Bigint *v)); +_Jv_Bigint * _EXFUN(multadd,(struct _Jv_reent *p, _Jv_Bigint *, int, int)); +_Jv_Bigint * _EXFUN(s2b,(struct _Jv_reent *, const char*, int, int, unsigned long)); +_Jv_Bigint * _EXFUN(i2b,(struct _Jv_reent *,int)); +_Jv_Bigint * _EXFUN(mult, (struct _Jv_reent *, _Jv_Bigint *, _Jv_Bigint *)); +_Jv_Bigint * _EXFUN(pow5mult, (struct _Jv_reent *, _Jv_Bigint *, int k)); +int _EXFUN(hi0bits,(unsigned long)); +int _EXFUN(lo0bits,(unsigned long *)); +_Jv_Bigint * _EXFUN(d2b,(struct _Jv_reent *p, double d, int *e, int *bits)); +_Jv_Bigint * _EXFUN(lshift,(struct _Jv_reent *p, _Jv_Bigint *b, int k)); +_Jv_Bigint * _EXFUN(diff,(struct _Jv_reent *p, _Jv_Bigint *a, _Jv_Bigint *b)); +int _EXFUN(cmp,(_Jv_Bigint *a, _Jv_Bigint *b)); + +double _EXFUN(ratio,(_Jv_Bigint *a, _Jv_Bigint *b)); +#define Bcopy(x,y) memcpy((char *)&x->_sign, (char *)&y->_sign, y->_wds*sizeof(long) + 2*sizeof(int)) + +#if defined(_DOUBLE_IS_32BITS) && defined(__v800) +#define n_bigtens 2 +#else +#define n_bigtens 5 +#endif + +extern _CONST double tinytens[]; +extern _CONST double bigtens[]; +extern _CONST double tens[]; + +#ifdef __cplusplus +} +#endif + +#endif /* __CLASSPATH_MPREC_H__ */ diff --git a/libjava/classpath/native/fdlibm/s_atan.c b/libjava/classpath/native/fdlibm/s_atan.c new file mode 100644 index 0000000..2ee7458 --- /dev/null +++ b/libjava/classpath/native/fdlibm/s_atan.c @@ -0,0 +1,181 @@ + +/* @(#)s_atan.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + */ + +/* +FUNCTION + <<atan>>, <<atanf>>---arc tangent + +INDEX + atan +INDEX + atanf + +ANSI_SYNOPSIS + #include <math.h> + double atan(double <[x]>); + float atanf(float <[x]>); + +TRAD_SYNOPSIS + #include <math.h> + double atan(<[x]>); + double <[x]>; + + float atanf(<[x]>); + float <[x]>; + +DESCRIPTION + +<<atan>> computes the inverse tangent (arc tangent) of the input value. + +<<atanf>> is identical to <<atan>>, save that it operates on <<floats>>. + +RETURNS +@ifinfo +<<atan>> returns a value in radians, in the range of -pi/2 to pi/2. +@end ifinfo +@tex +<<atan>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$. +@end tex + +PORTABILITY +<<atan>> is ANSI C. <<atanf>> is an extension. + +*/ + +/* atan(x) + * Method + * 1. Reduce x to positive by atan(x) = -atan(-x). + * 2. According to the integer k=4t+0.25 chopped, t=x, the argument + * is further reduced to one of the following intervals and the + * arctangent of t is evaluated by the corresponding formula: + * + * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) + * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) + * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) + * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) + * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double atanhi[] = { +#else +static double atanhi[] = { +#endif + 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ + 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ + 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ + 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ +}; + +#ifdef __STDC__ +static const double atanlo[] = { +#else +static double atanlo[] = { +#endif + 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ + 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ + 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ + 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ +}; + +#ifdef __STDC__ +static const double aT[] = { +#else +static double aT[] = { +#endif + 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ + -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ + 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ + -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ + 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ + -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ + 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ + -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ + 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ + -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ + 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ +}; + +#ifdef __STDC__ + static const double +#else + static double +#endif +one = 1.0, +huge = 1.0e300; + +#ifdef __STDC__ + double atan(double x) +#else + double atan(x) + double x; +#endif +{ + double w,s1,s2,z; + int32_t ix,hx,id; + + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x44100000) { /* if |x| >= 2^66 */ + uint32_t low; + GET_LOW_WORD(low,x); + if(ix>0x7ff00000|| + (ix==0x7ff00000&&(low!=0))) + return x+x; /* NaN */ + if(hx>0) return atanhi[3]+atanlo[3]; + else return -atanhi[3]-atanlo[3]; + } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ + if (ix < 0x3e200000) { /* |x| < 2^-29 */ + if(huge+x>one) return x; /* raise inexact */ + } + id = -1; + } else { + x = fabs(x); + if (ix < 0x3ff30000) { /* |x| < 1.1875 */ + if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ + id = 0; x = (2.0*x-one)/(2.0+x); + } else { /* 11/16<=|x|< 19/16 */ + id = 1; x = (x-one)/(x+one); + } + } else { + if (ix < 0x40038000) { /* |x| < 2.4375 */ + id = 2; x = (x-1.5)/(one+1.5*x); + } else { /* 2.4375 <= |x| < 2^66 */ + id = 3; x = -1.0/x; + } + }} + /* end of argument reduction */ + z = x*x; + w = z*z; + /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ + s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); + s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); + if (id<0) return x - x*(s1+s2); + else { + z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); + return (hx<0)? -z:z; + } +} + +#endif /* _DOUBLE_IS_32BITS */ diff --git a/libjava/classpath/native/fdlibm/s_ceil.c b/libjava/classpath/native/fdlibm/s_ceil.c new file mode 100644 index 0000000..250373b --- /dev/null +++ b/libjava/classpath/native/fdlibm/s_ceil.c @@ -0,0 +1,80 @@ + +/* @(#)s_ceil.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * ceil(x) + * Return x rounded toward -inf to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to ceil(x). + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double huge = 1.0e300; +#else +static double huge = 1.0e300; +#endif + +#ifdef __STDC__ + double ceil(double x) +#else + double ceil(x) + double x; +#endif +{ + int32_t i0,i1,j0; + uint32_t i,j; + EXTRACT_WORDS(i0,i1,x); + j0 = ((i0>>20)&0x7ff)-0x3ff; + if(j0<20) { + if(j0<0) { /* raise inexact if x != 0 */ + if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ + if(i0<0) {i0=0x80000000;i1=0;} + else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;} + } + } else { + i = (0x000fffff)>>j0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0>0) i0 += (0x00100000)>>j0; + i0 &= (~i); i1=0; + } + } + } else if (j0>51) { + if(j0==0x400) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = ((uint32_t)(0xffffffff))>>(j0-20); + if((i1&i)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0>0) { + if(j0==20) i0+=1; + else { + j = i1 + (1<<(52-j0)); + if(j<(uint32_t)i1) i0+=1; /* got a carry */ + i1 = j; + } + } + i1 &= (~i); + } + } + INSERT_WORDS(x,i0,i1); + return x; +} + +#endif /* _DOUBLE_IS_32BITS */ diff --git a/libjava/classpath/native/fdlibm/s_copysign.c b/libjava/classpath/native/fdlibm/s_copysign.c new file mode 100644 index 0000000..4804df1 --- /dev/null +++ b/libjava/classpath/native/fdlibm/s_copysign.c @@ -0,0 +1,82 @@ + +/* @(#)s_copysign.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION +<<copysign>>, <<copysignf>>---sign of <[y]>, magnitude of <[x]> + +INDEX + copysign +INDEX + copysignf + +ANSI_SYNOPSIS + #include <math.h> + double copysign (double <[x]>, double <[y]>); + float copysignf (float <[x]>, float <[y]>); + +TRAD_SYNOPSIS + #include <math.h> + double copysign (<[x]>, <[y]>) + double <[x]>; + double <[y]>; + + float copysignf (<[x]>, <[y]>) + float <[x]>; + float <[y]>; + +DESCRIPTION +<<copysign>> constructs a number with the magnitude (absolute value) +of its first argument, <[x]>, and the sign of its second argument, +<[y]>. + +<<copysignf>> does the same thing; the two functions differ only in +the type of their arguments and result. + +RETURNS +<<copysign>> returns a <<double>> with the magnitude of +<[x]> and the sign of <[y]>. +<<copysignf>> returns a <<float>> with the magnitude of +<[x]> and the sign of <[y]>. + +PORTABILITY +<<copysign>> is not required by either ANSI C or the System V Interface +Definition (Issue 2). + +*/ + +/* + * copysign(double x, double y) + * copysign(x,y) returns a value with the magnitude of x and + * with the sign bit of y. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double copysign(double x, double y) +#else + double copysign(x,y) + double x,y; +#endif +{ + uint32_t hx,hy; + GET_HIGH_WORD(hx,x); + GET_HIGH_WORD(hy,y); + SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000)); + return x; +} + +#endif /* _DOUBLE_IS_32BITS */ diff --git a/libjava/classpath/native/fdlibm/s_cos.c b/libjava/classpath/native/fdlibm/s_cos.c new file mode 100644 index 0000000..be1538d --- /dev/null +++ b/libjava/classpath/native/fdlibm/s_cos.c @@ -0,0 +1,82 @@ + +/* @(#)s_cos.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* cos(x) + * Return cosine function of x. + * + * kernel function: + * __kernel_sin ... sine function on [-pi/4,pi/4] + * __kernel_cos ... cosine function on [-pi/4,pi/4] + * __ieee754_rem_pio2 ... argument reduction routine + * + * Method. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * in [-pi/4 , +pi/4], and let n = k mod 4. + * We have + * + * n sin(x) cos(x) tan(x) + * ---------------------------------------------------------- + * 0 S C T + * 1 C -S -1/T + * 2 -S -C T + * 3 -C S -1/T + * ---------------------------------------------------------- + * + * Special cases: + * Let trig be any of sin, cos, or tan. + * trig(+-INF) is NaN, with signals; + * trig(NaN) is that NaN; + * + * Accuracy: + * TRIG(x) returns trig(x) nearly rounded + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double cos(double x) +#else + double cos(x) + double x; +#endif +{ + double y[2],z=0.0; + int32_t n,ix; + + /* High word of x. */ + GET_HIGH_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3fe921fb) return __kernel_cos(x,z); + + /* cos(Inf or NaN) is NaN */ + else if (ix>=0x7ff00000) return x-x; + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2(x,y); + switch(n&3) { + case 0: return __kernel_cos(y[0],y[1]); + case 1: return -__kernel_sin(y[0],y[1],1); + case 2: return -__kernel_cos(y[0],y[1]); + default: + return __kernel_sin(y[0],y[1],1); + } + } +} + +#endif /* _DOUBLE_IS_32BITS */ diff --git a/libjava/classpath/native/fdlibm/s_fabs.c b/libjava/classpath/native/fdlibm/s_fabs.c new file mode 100644 index 0000000..dfee33f --- /dev/null +++ b/libjava/classpath/native/fdlibm/s_fabs.c @@ -0,0 +1,73 @@ + +/* @(#)s_fabs.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION + <<fabs>>, <<fabsf>>---absolute value (magnitude) +INDEX + fabs +INDEX + fabsf + +ANSI_SYNOPSIS + #include <math.h> + double fabs(double <[x]>); + float fabsf(float <[x]>); + +TRAD_SYNOPSIS + #include <math.h> + double fabs(<[x]>) + double <[x]>; + + float fabsf(<[x]>) + float <[x]>; + +DESCRIPTION +<<fabs>> and <<fabsf>> calculate +@tex +$|x|$, +@end tex +the absolute value (magnitude) of the argument <[x]>, by direct +manipulation of the bit representation of <[x]>. + +RETURNS +The calculated value is returned. No errors are detected. + +PORTABILITY +<<fabs>> is ANSI. +<<fabsf>> is an extension. + +*/ + +/* + * fabs(x) returns the absolute value of x. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double fabs(double x) +#else + double fabs(x) + double x; +#endif +{ + uint32_t high; + GET_HIGH_WORD(high,x); + SET_HIGH_WORD(x,high&0x7fffffff); + return x; +} + +#endif /* _DOUBLE_IS_32BITS */ diff --git a/libjava/classpath/native/fdlibm/s_finite.c b/libjava/classpath/native/fdlibm/s_finite.c new file mode 100644 index 0000000..3e6c812 --- /dev/null +++ b/libjava/classpath/native/fdlibm/s_finite.c @@ -0,0 +1,31 @@ + +/* @(#)s_finite.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * finite(x) returns 1 is x is finite, else 0; + * no branching! + */ + +#include "fdlibm.h" + +#ifdef __STDC__ + int finite(double x) +#else + int finite(x) + double x; +#endif +{ + uint32_t high; + GET_HIGH_WORD(high,x); + return (unsigned)((high&0x7fffffff)-0x7ff00000)>>31; +} diff --git a/libjava/classpath/native/fdlibm/s_floor.c b/libjava/classpath/native/fdlibm/s_floor.c new file mode 100644 index 0000000..77e39cb --- /dev/null +++ b/libjava/classpath/native/fdlibm/s_floor.c @@ -0,0 +1,134 @@ + +/* @(#)s_floor.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION +<<floor>>, <<floorf>>, <<ceil>>, <<ceilf>>---floor and ceiling +INDEX + floor +INDEX + floorf +INDEX + ceil +INDEX + ceilf + +ANSI_SYNOPSIS + #include <math.h> + double floor(double <[x]>); + float floorf(float <[x]>); + double ceil(double <[x]>); + float ceilf(float <[x]>); + +TRAD_SYNOPSIS + #include <math.h> + double floor(<[x]>) + double <[x]>; + float floorf(<[x]>) + float <[x]>; + double ceil(<[x]>) + double <[x]>; + float ceilf(<[x]>) + float <[x]>; + +DESCRIPTION +<<floor>> and <<floorf>> find +@tex +$\lfloor x \rfloor$, +@end tex +the nearest integer less than or equal to <[x]>. +<<ceil>> and <<ceilf>> find +@tex +$\lceil x\rceil$, +@end tex +the nearest integer greater than or equal to <[x]>. + +RETURNS +<<floor>> and <<ceil>> return the integer result as a double. +<<floorf>> and <<ceilf>> return the integer result as a float. + +PORTABILITY +<<floor>> and <<ceil>> are ANSI. +<<floorf>> and <<ceilf>> are extensions. + + +*/ + +/* + * floor(x) + * Return x rounded toward -inf to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to floor(x). + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double huge = 1.0e300; +#else +static double huge = 1.0e300; +#endif + +#ifdef __STDC__ + double floor(double x) +#else + double floor(x) + double x; +#endif +{ + int32_t i0,i1,j0; + uint32_t i,j; + EXTRACT_WORDS(i0,i1,x); + j0 = ((i0>>20)&0x7ff)-0x3ff; + if(j0<20) { + if(j0<0) { /* raise inexact if x != 0 */ + if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ + if(i0>=0) {i0=i1=0;} + else if(((i0&0x7fffffff)|i1)!=0) + { i0=0xbff00000;i1=0;} + } + } else { + i = (0x000fffff)>>j0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0<0) i0 += (0x00100000)>>j0; + i0 &= (~i); i1=0; + } + } + } else if (j0>51) { + if(j0==0x400) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = ((uint32_t)(0xffffffff))>>(j0-20); + if((i1&i)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0<0) { + if(j0==20) i0+=1; + else { + j = i1+(1<<(52-j0)); + if(j<(uint32_t)i1) i0 +=1 ; /* got a carry */ + i1=j; + } + } + i1 &= (~i); + } + } + INSERT_WORDS(x,i0,i1); + return x; +} + +#endif /* _DOUBLE_IS_32BITS */ diff --git a/libjava/classpath/native/fdlibm/s_rint.c b/libjava/classpath/native/fdlibm/s_rint.c new file mode 100644 index 0000000..5d3f811 --- /dev/null +++ b/libjava/classpath/native/fdlibm/s_rint.c @@ -0,0 +1,87 @@ + +/* @(#)s_rint.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * rint(x) + * Return x rounded to integral value according to the prevailing + * rounding mode. + * Method: + * Using floating addition. + * Exception: + * Inexact flag raised if x not equal to rint(x). + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double +#else +static double +#endif +TWO52[2]={ + 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ + -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */ +}; + +#ifdef __STDC__ + double rint(double x) +#else + double rint(x) + double x; +#endif +{ + int32_t i0,j0,sx; + uint32_t i,i1; + double t; + volatile double w; + EXTRACT_WORDS(i0,i1,x); + sx = (i0>>31)&1; + j0 = ((i0>>20)&0x7ff)-0x3ff; + if(j0<20) { + if(j0<0) { + if(((i0&0x7fffffff)|i1)==0) return x; + i1 |= (i0&0x0fffff); + i0 &= 0xfffe0000; + i0 |= ((i1|-i1)>>12)&0x80000; + SET_HIGH_WORD(x,i0); + w = TWO52[sx]+x; + t = w-TWO52[sx]; + GET_HIGH_WORD(i0,t); + SET_HIGH_WORD(t,(i0&0x7fffffff)|(sx<<31)); + return t; + } else { + i = (0x000fffff)>>j0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + i>>=1; + if(((i0&i)|i1)!=0) { + if(j0==19) i1 = 0x40000000; else + i0 = (i0&(~i))|((0x20000)>>j0); + } + } + } else if (j0>51) { + if(j0==0x400) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = ((uint32_t)(0xffffffff))>>(j0-20); + if((i1&i)==0) return x; /* x is integral */ + i>>=1; + if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20)); + } + INSERT_WORDS(x,i0,i1); + w = TWO52[sx]+x; + return w-TWO52[sx]; +} + +#endif /* _DOUBLE_IS_32BITS */ diff --git a/libjava/classpath/native/fdlibm/s_scalbn.c b/libjava/classpath/native/fdlibm/s_scalbn.c new file mode 100644 index 0000000..36ee889 --- /dev/null +++ b/libjava/classpath/native/fdlibm/s_scalbn.c @@ -0,0 +1,104 @@ + +/* @(#)s_scalbn.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION +<<scalbn>>, <<scalbnf>>---scale by integer +INDEX + scalbn +INDEX + scalbnf + +ANSI_SYNOPSIS + #include <math.h> + double scalbn(double <[x]>, int <[y]>); + float scalbnf(float <[x]>, int <[y]>); + +TRAD_SYNOPSIS + #include <math.h> + double scalbn(<[x]>,<[y]>) + double <[x]>; + int <[y]>; + float scalbnf(<[x]>,<[y]>) + float <[x]>; + int <[y]>; + +DESCRIPTION +<<scalbn>> and <<scalbnf>> scale <[x]> by <[n]>, returning <[x]> times +2 to the power <[n]>. The result is computed by manipulating the +exponent, rather than by actually performing an exponentiation or +multiplication. + +RETURNS +<[x]> times 2 to the power <[n]>. + +PORTABILITY +Neither <<scalbn>> nor <<scalbnf>> is required by ANSI C or by the System V +Interface Definition (Issue 2). + +*/ + +/* + * scalbn (double x, int n) + * scalbn(x,n) returns x* 2**n computed by exponent + * manipulation rather than by actually performing an + * exponentiation or a multiplication. + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ +static const double +#else +static double +#endif +two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ +twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ +huge = 1.0e+300, +tiny = 1.0e-300; + +#ifdef __STDC__ + double scalbn (double x, int n) +#else + double scalbn (x,n) + double x; int n; +#endif +{ + int32_t k,hx,lx; + EXTRACT_WORDS(hx,lx,x); + k = (hx&0x7ff00000)>>20; /* extract exponent */ + if (k==0) { /* 0 or subnormal x */ + if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ + x *= two54; + GET_HIGH_WORD(hx,x); + k = ((hx&0x7ff00000)>>20) - 54; + if (n< -50000) return tiny*x; /*underflow*/ + } + if (k==0x7ff) return x+x; /* NaN or Inf */ + k = k+n; + if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */ + if (k > 0) /* normal result */ + {SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;} + if (k <= -54) { + if (n > 50000) /* in case integer overflow in n+k */ + return huge*copysign(huge,x); /*overflow*/ + else return tiny*copysign(tiny,x); /*underflow*/ + } + k += 54; /* subnormal result */ + SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); + return x*twom54; +} + +#endif /* _DOUBLE_IS_32BITS */ diff --git a/libjava/classpath/native/fdlibm/s_sin.c b/libjava/classpath/native/fdlibm/s_sin.c new file mode 100644 index 0000000..d315455 --- /dev/null +++ b/libjava/classpath/native/fdlibm/s_sin.c @@ -0,0 +1,132 @@ + +/* @(#)s_sin.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION + <<sin>>, <<sinf>>, <<cos>>, <<cosf>>---sine or cosine +INDEX +sin +INDEX +sinf +INDEX +cos +INDEX +cosf +ANSI_SYNOPSIS + #include <math.h> + double sin(double <[x]>); + float sinf(float <[x]>); + double cos(double <[x]>); + float cosf(float <[x]>); + +TRAD_SYNOPSIS + #include <math.h> + double sin(<[x]>) + double <[x]>; + float sinf(<[x]>) + float <[x]>; + + double cos(<[x]>) + double <[x]>; + float cosf(<[x]>) + float <[x]>; + +DESCRIPTION + <<sin>> and <<cos>> compute (respectively) the sine and cosine + of the argument <[x]>. Angles are specified in radians. + + <<sinf>> and <<cosf>> are identical, save that they take and + return <<float>> values. + + +RETURNS + The sine or cosine of <[x]> is returned. + +PORTABILITY + <<sin>> and <<cos>> are ANSI C. + <<sinf>> and <<cosf>> are extensions. + +QUICKREF + sin ansi pure + sinf - pure +*/ + +/* sin(x) + * Return sine function of x. + * + * kernel function: + * __kernel_sin ... sine function on [-pi/4,pi/4] + * __kernel_cos ... cose function on [-pi/4,pi/4] + * __ieee754_rem_pio2 ... argument reduction routine + * + * Method. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * in [-pi/4 , +pi/4], and let n = k mod 4. + * We have + * + * n sin(x) cos(x) tan(x) + * ---------------------------------------------------------- + * 0 S C T + * 1 C -S -1/T + * 2 -S -C T + * 3 -C S -1/T + * ---------------------------------------------------------- + * + * Special cases: + * Let trig be any of sin, cos, or tan. + * trig(+-INF) is NaN, with signals; + * trig(NaN) is that NaN; + * + * Accuracy: + * TRIG(x) returns trig(x) nearly rounded + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double sin(double x) +#else + double sin(x) + double x; +#endif +{ + double y[2],z=0.0; + int32_t n,ix; + + /* High word of x. */ + GET_HIGH_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0); + + /* sin(Inf or NaN) is NaN */ + else if (ix>=0x7ff00000) return x-x; + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2(x,y); + switch(n&3) { + case 0: return __kernel_sin(y[0],y[1],1); + case 1: return __kernel_cos(y[0],y[1]); + case 2: return -__kernel_sin(y[0],y[1],1); + default: + return -__kernel_cos(y[0],y[1]); + } + } +} + +#endif /* _DOUBLE_IS_32BITS */ diff --git a/libjava/classpath/native/fdlibm/s_tan.c b/libjava/classpath/native/fdlibm/s_tan.c new file mode 100644 index 0000000..20995fc --- /dev/null +++ b/libjava/classpath/native/fdlibm/s_tan.c @@ -0,0 +1,114 @@ + +/* @(#)s_tan.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + + +/* + +FUNCTION + <<tan>>, <<tanf>>---tangent + +INDEX +tan +INDEX +tanf + +ANSI_SYNOPSIS + #include <math.h> + double tan(double <[x]>); + float tanf(float <[x]>); + +TRAD_SYNOPSIS + #include <math.h> + double tan(<[x]>) + double <[x]>; + + float tanf(<[x]>) + float <[x]>; + + +DESCRIPTION +<<tan>> computes the tangent of the argument <[x]>. +Angles are specified in radians. + +<<tanf>> is identical, save that it takes and returns <<float>> values. + +RETURNS +The tangent of <[x]> is returned. + +PORTABILITY +<<tan>> is ANSI. <<tanf>> is an extension. +*/ + +/* tan(x) + * Return tangent function of x. + * + * kernel function: + * __kernel_tan ... tangent function on [-pi/4,pi/4] + * __ieee754_rem_pio2 ... argument reduction routine + * + * Method. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * in [-pi/4 , +pi/4], and let n = k mod 4. + * We have + * + * n sin(x) cos(x) tan(x) + * ---------------------------------------------------------- + * 0 S C T + * 1 C -S -1/T + * 2 -S -C T + * 3 -C S -1/T + * ---------------------------------------------------------- + * + * Special cases: + * Let trig be any of sin, cos, or tan. + * trig(+-INF) is NaN, with signals; + * trig(NaN) is that NaN; + * + * Accuracy: + * TRIG(x) returns trig(x) nearly rounded + */ + +#include "fdlibm.h" + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double tan(double x) +#else + double tan(x) + double x; +#endif +{ + double y[2],z=0.0; + int32_t n,ix; + + /* High word of x. */ + GET_HIGH_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); + + /* tan(Inf or NaN) is NaN */ + else if (ix>=0x7ff00000) return x-x; /* NaN */ + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2(x,y); + return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even + -1 -- n odd */ + } +} + +#endif /* _DOUBLE_IS_32BITS */ diff --git a/libjava/classpath/native/fdlibm/sf_fabs.c b/libjava/classpath/native/fdlibm/sf_fabs.c new file mode 100644 index 0000000..34f88af --- /dev/null +++ b/libjava/classpath/native/fdlibm/sf_fabs.c @@ -0,0 +1,47 @@ +/* sf_fabs.c -- float version of s_fabs.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * fabsf(x) returns the absolute value of x. + */ + +#include "fdlibm.h" + +#ifdef __STDC__ + float fabsf(float x) +#else + float fabsf(x) + float x; +#endif +{ + uint32_t ix; + GET_FLOAT_WORD(ix,x); + SET_FLOAT_WORD(x,ix&0x7fffffff); + return x; +} + +#ifdef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double fabs(double x) +#else + double fabs(x) + double x; +#endif +{ + return (double) fabsf((float) x); +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/sf_rint.c b/libjava/classpath/native/fdlibm/sf_rint.c new file mode 100644 index 0000000..f442072 --- /dev/null +++ b/libjava/classpath/native/fdlibm/sf_rint.c @@ -0,0 +1,80 @@ +/* sf_rint.c -- float version of s_rint.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include "fdlibm.h" + +#ifdef __STDC__ +static const float +#else +static float +#endif +TWO23[2]={ + 8.3886080000e+06, /* 0x4b000000 */ + -8.3886080000e+06, /* 0xcb000000 */ +}; + +#ifdef __STDC__ + float rintf(float x) +#else + float rintf(x) + float x; +#endif +{ + int32_t i0,j0,sx; + uint32_t i,i1; + float w,t; + GET_FLOAT_WORD(i0,x); + sx = (i0>>31)&1; + j0 = ((i0>>23)&0xff)-0x7f; + if(j0<23) { + if(j0<0) { + if((i0&0x7fffffff)==0) return x; + i1 = (i0&0x07fffff); + i0 &= 0xfff00000; + i0 |= ((i1|-i1)>>9)&0x400000; + SET_FLOAT_WORD(x,i0); + w = TWO23[sx]+x; + t = w-TWO23[sx]; + GET_FLOAT_WORD(i0,t); + SET_FLOAT_WORD(t,(i0&0x7fffffff)|(sx<<31)); + return t; + } else { + i = (0x007fffff)>>j0; + if((i0&i)==0) return x; /* x is integral */ + i>>=1; + if((i0&i)!=0) i0 = (i0&(~i))|((0x100000)>>j0); + } + } else { + if(j0==0x80) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } + SET_FLOAT_WORD(x,i0); + w = TWO23[sx]+x; + return w-TWO23[sx]; +} + +#ifdef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double rint(double x) +#else + double rint(x) + double x; +#endif +{ + return (double) rintf((float) x); +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/strtod.c b/libjava/classpath/native/fdlibm/strtod.c new file mode 100644 index 0000000..b3e0912 --- /dev/null +++ b/libjava/classpath/native/fdlibm/strtod.c @@ -0,0 +1,719 @@ +/* +FUNCTION + <<strtod>>, <<strtodf>>---string to double or float + +INDEX + strtod +INDEX + _strtod_r +INDEX + strtodf + +ANSI_SYNOPSIS + #include <stdlib.h> + double strtod(const char *<[str]>, char **<[tail]>); + float strtodf(const char *<[str]>, char **<[tail]>); + + double _strtod_r(void *<[reent]>, + const char *<[str]>, char **<[tail]>); + +TRAD_SYNOPSIS + #include <stdlib.h> + double strtod(<[str]>,<[tail]>) + char *<[str]>; + char **<[tail]>; + + float strtodf(<[str]>,<[tail]>) + char *<[str]>; + char **<[tail]>; + + double _strtod_r(<[reent]>,<[str]>,<[tail]>) + char *<[reent]>; + char *<[str]>; + char **<[tail]>; + +DESCRIPTION + The function <<strtod>> parses the character string <[str]>, + producing a substring which can be converted to a double + value. The substring converted is the longest initial + subsequence of <[str]>, beginning with the first + non-whitespace character, that has the format: + .[+|-]<[digits]>[.][<[digits]>][(e|E)[+|-]<[digits]>] + The substring contains no characters if <[str]> is empty, consists + entirely of whitespace, or if the first non-whitespace + character is something other than <<+>>, <<->>, <<.>>, or a + digit. If the substring is empty, no conversion is done, and + the value of <[str]> is stored in <<*<[tail]>>>. Otherwise, + the substring is converted, and a pointer to the final string + (which will contain at least the terminating null character of + <[str]>) is stored in <<*<[tail]>>>. If you want no + assignment to <<*<[tail]>>>, pass a null pointer as <[tail]>. + <<strtodf>> is identical to <<strtod>> except for its return type. + + This implementation returns the nearest machine number to the + input decimal string. Ties are broken by using the IEEE + round-even rule. + + The alternate function <<_strtod_r>> is a reentrant version. + The extra argument <[reent]> is a pointer to a reentrancy structure. + +RETURNS + <<strtod>> returns the converted substring value, if any. If + no conversion could be performed, 0 is returned. If the + correct value is out of the range of representable values, + plus or minus <<HUGE_VAL>> is returned, and <<ERANGE>> is + stored in errno. If the correct value would cause underflow, 0 + is returned and <<ERANGE>> is stored in errno. + +Supporting OS subroutines required: <<close>>, <<fstat>>, <<isatty>>, +<<lseek>>, <<read>>, <<sbrk>>, <<write>>. +*/ + +/**************************************************************** + * + * The author of this software is David M. Gay. + * + * Copyright (c) 1991 by AT&T. + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + ***************************************************************/ + +/* Please send bug reports to + David M. Gay + AT&T Bell Laboratories, Room 2C-463 + 600 Mountain Avenue + Murray Hill, NJ 07974-2070 + U.S.A. + dmg@research.att.com or research!dmg + */ + +#include <string.h> +#include <float.h> +#include <errno.h> +#include "mprec.h" + +double +_DEFUN (_strtod_r, (ptr, s00, se), + struct _Jv_reent *ptr _AND + _CONST char *s00 _AND + char **se) +{ + int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, e1, esign, i, j, + k, nd, nd0, nf, nz, nz0, sign; + int digits = 0; /* Number of digits found in fraction part. */ + long e; + _CONST char *s, *s0, *s1; + double aadj, aadj1, adj; + long L; + unsigned long y, z; + union double_union rv, rv0; + + _Jv_Bigint *bb = NULL, *bb1, *bd = NULL, *bd0, *bs = NULL, *delta = NULL; + sign = nz0 = nz = 0; + rv.d = 0.; + for (s = s00;; s++) + switch (*s) + { + case '-': + sign = 1; + /* no break */ + case '+': + if (*++s) + goto break2; + /* no break */ + case 0: + s = s00; + goto ret; + case '\t': + case '\n': + case '\v': + case '\f': + case '\r': + case ' ': + continue; + default: + goto break2; + } +break2: + if (*s == '0') + { + digits++; + nz0 = 1; + while (*++s == '0') + digits++; + if (!*s) + goto ret; + } + s0 = s; + y = z = 0; + for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) + { + digits++; + if (nd < 9) + y = 10 * y + c - '0'; + else if (nd < 16) + z = 10 * z + c - '0'; + } + nd0 = nd; + if (c == '.') + { + c = *++s; + if (!nd) + { + for (; c == '0'; c = *++s) + { + digits++; + nz++; + } + if (c > '0' && c <= '9') + { + digits++; + s0 = s; + nf += nz; + nz = 0; + goto have_dig; + } + goto dig_done; + } + for (; c >= '0' && c <= '9'; c = *++s) + { + digits++; + have_dig: + nz++; + if (c -= '0') + { + nf += nz; + for (i = 1; i < nz; i++) + if (nd++ < 9) + y *= 10; + else if (nd <= DBL_DIG + 1) + z *= 10; + if (nd++ < 9) + y = 10 * y + c; + else if (nd <= DBL_DIG + 1) + z = 10 * z + c; + nz = 0; + } + } + } +dig_done: + e = 0; + if (c == 'e' || c == 'E') + { + if (!nd && !nz && !nz0) + { + s = s00; + goto ret; + } + s00 = s; + esign = 0; + switch (c = *++s) + { + case '-': + esign = 1; + case '+': + c = *++s; + } + if (c >= '0' && c <= '9') + { + while (c == '0') + c = *++s; + if (c > '0' && c <= '9') + { + e = c - '0'; + s1 = s; + while ((c = *++s) >= '0' && c <= '9') + e = 10 * e + c - '0'; + if (s - s1 > 8) + /* Avoid confusion from exponents + * so large that e might overflow. + */ + e = 9999999L; + if (esign) + e = -e; + } + } + else + { + /* No exponent after an 'E' : that's an error. */ + ptr->_errno = EINVAL; + e = 0; + s = s00; + goto ret; + } + } + if (!nd) + { + if (!nz && !nz0) + s = s00; + goto ret; + } + e1 = e -= nf; + + /* Now we have nd0 digits, starting at s0, followed by a + * decimal point, followed by nd-nd0 digits. The number we're + * after is the integer represented by those digits times + * 10**e */ + + if (!nd0) + nd0 = nd; + k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; + rv.d = y; + if (k > 9) + rv.d = tens[k - 9] * rv.d + z; + bd0 = 0; + if (nd <= DBL_DIG +#ifndef RND_PRODQUOT + && FLT_ROUNDS == 1 +#endif + ) + { + if (!e) + goto ret; + if (e > 0) + { + if (e <= Ten_pmax) + { +#ifdef VAX + goto vax_ovfl_check; +#else + /* rv.d = */ rounded_product (rv.d, tens[e]); + goto ret; +#endif + } + i = DBL_DIG - nd; + if (e <= Ten_pmax + i) + { + /* A fancier test would sometimes let us do + * this for larger i values. + */ + e -= i; + rv.d *= tens[i]; +#ifdef VAX + /* VAX exponent range is so narrow we must + * worry about overflow here... + */ + vax_ovfl_check: + word0 (rv) -= P * Exp_msk1; + /* rv.d = */ rounded_product (rv.d, tens[e]); + if ((word0 (rv) & Exp_mask) + > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) + goto ovfl; + word0 (rv) += P * Exp_msk1; +#else + /* rv.d = */ rounded_product (rv.d, tens[e]); +#endif + goto ret; + } + } +#ifndef Inaccurate_Divide + else if (e >= -Ten_pmax) + { + /* rv.d = */ rounded_quotient (rv.d, tens[-e]); + goto ret; + } +#endif + } + e1 += nd - k; + + /* Get starting approximation = rv.d * 10**e1 */ + + if (e1 > 0) + { + if ((i = e1 & 15)) + rv.d *= tens[i]; + + if (e1 &= ~15) + { + if (e1 > DBL_MAX_10_EXP) + { + ovfl: + ptr->_errno = ERANGE; + + /* Force result to IEEE infinity. */ + word0 (rv) = Exp_mask; + word1 (rv) = 0; + + if (bd0) + goto retfree; + goto ret; + } + if (e1 >>= 4) + { + for (j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + rv.d *= bigtens[j]; + /* The last multiplication could overflow. */ + word0 (rv) -= P * Exp_msk1; + rv.d *= bigtens[j]; + if ((z = word0 (rv) & Exp_mask) + > Exp_msk1 * (DBL_MAX_EXP + Bias - P)) + goto ovfl; + if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) + { + /* set to largest number */ + /* (Can't trust DBL_MAX) */ + word0 (rv) = Big0; +#ifndef _DOUBLE_IS_32BITS + word1 (rv) = Big1; +#endif + } + else + word0 (rv) += P * Exp_msk1; + } + + } + } + else if (e1 < 0) + { + e1 = -e1; + if ((i = e1 & 15)) + rv.d /= tens[i]; + if (e1 &= ~15) + { + e1 >>= 4; + if (e1 >= 1 << n_bigtens) + goto undfl; + for (j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + rv.d *= tinytens[j]; + /* The last multiplication could underflow. */ + rv0.d = rv.d; + rv.d *= tinytens[j]; + if (!rv.d) + { + rv.d = 2. * rv0.d; + rv.d *= tinytens[j]; + if (!rv.d) + { + undfl: + rv.d = 0.; + ptr->_errno = ERANGE; + if (bd0) + goto retfree; + goto ret; + } +#ifndef _DOUBLE_IS_32BITS + word0 (rv) = Tiny0; + word1 (rv) = Tiny1; +#else + word0 (rv) = Tiny1; +#endif + /* The refinement below will clean + * this approximation up. + */ + } + } + } + + /* Now the hard part -- adjusting rv to the correct value.*/ + + /* Put digits into bd: true value = bd * 10^e */ + + bd0 = s2b (ptr, s0, nd0, nd, y); + + for (;;) + { + bd = Balloc (ptr, bd0->_k); + Bcopy (bd, bd0); + bb = d2b (ptr, rv.d, &bbe, &bbbits); /* rv.d = bb * 2^bbe */ + bs = i2b (ptr, 1); + + if (e >= 0) + { + bb2 = bb5 = 0; + bd2 = bd5 = e; + } + else + { + bb2 = bb5 = -e; + bd2 = bd5 = 0; + } + if (bbe >= 0) + bb2 += bbe; + else + bd2 -= bbe; + bs2 = bb2; +#ifdef Sudden_Underflow +#ifdef IBM + j = 1 + 4 * P - 3 - bbbits + ((bbe + bbbits - 1) & 3); +#else + j = P + 1 - bbbits; +#endif +#else + i = bbe + bbbits - 1; /* logb(rv.d) */ + if (i < Emin) /* denormal */ + j = bbe + (P - Emin); + else + j = P + 1 - bbbits; +#endif + bb2 += j; + bd2 += j; + i = bb2 < bd2 ? bb2 : bd2; + if (i > bs2) + i = bs2; + if (i > 0) + { + bb2 -= i; + bd2 -= i; + bs2 -= i; + } + if (bb5 > 0) + { + bs = pow5mult (ptr, bs, bb5); + bb1 = mult (ptr, bs, bb); + Bfree (ptr, bb); + bb = bb1; + } + if (bb2 > 0) + bb = lshift (ptr, bb, bb2); + if (bd5 > 0) + bd = pow5mult (ptr, bd, bd5); + if (bd2 > 0) + bd = lshift (ptr, bd, bd2); + if (bs2 > 0) + bs = lshift (ptr, bs, bs2); + delta = diff (ptr, bb, bd); + dsign = delta->_sign; + delta->_sign = 0; + i = cmp (delta, bs); + if (i < 0) + { + /* Error is less than half an ulp -- check for + * special case of mantissa a power of two. + */ + if (dsign || word1 (rv) || word0 (rv) & Bndry_mask) + break; + delta = lshift (ptr, delta, Log2P); + if (cmp (delta, bs) > 0) + goto drop_down; + break; + } + if (i == 0) + { + /* exactly half-way between */ + if (dsign) + { + if ((word0 (rv) & Bndry_mask1) == Bndry_mask1 + && word1 (rv) == 0xffffffff) + { + /*boundary case -- increment exponent*/ + word0 (rv) = (word0 (rv) & Exp_mask) + + Exp_msk1 +#ifdef IBM + | Exp_msk1 >> 4 +#endif + ; +#ifndef _DOUBLE_IS_32BITS + word1 (rv) = 0; +#endif + break; + } + } + else if (!(word0 (rv) & Bndry_mask) && !word1 (rv)) + { + drop_down: + /* boundary case -- decrement exponent */ +#ifdef Sudden_Underflow + L = word0 (rv) & Exp_mask; +#ifdef IBM + if (L < Exp_msk1) +#else + if (L <= Exp_msk1) +#endif + goto undfl; + L -= Exp_msk1; +#else + L = (word0 (rv) & Exp_mask) - Exp_msk1; +#endif + word0 (rv) = L | Bndry_mask1; +#ifndef _DOUBLE_IS_32BITS + word1 (rv) = 0xffffffff; +#endif +#ifdef IBM + goto cont; +#else + break; +#endif + } +#ifndef ROUND_BIASED + if (!(word1 (rv) & LSB)) + break; +#endif + if (dsign) + rv.d += ulp (rv.d); +#ifndef ROUND_BIASED + else + { + rv.d -= ulp (rv.d); +#ifndef Sudden_Underflow + if (!rv.d) + goto undfl; +#endif + } +#endif + break; + } + if ((aadj = ratio (delta, bs)) <= 2.) + { + if (dsign) + aadj = aadj1 = 1.; + else if (word1 (rv) || word0 (rv) & Bndry_mask) + { +#ifndef Sudden_Underflow + if (word1 (rv) == Tiny1 && !word0 (rv)) + goto undfl; +#endif + aadj = 1.; + aadj1 = -1.; + } + else + { + /* special case -- power of FLT_RADIX to be */ + /* rounded down... */ + + if (aadj < 2. / FLT_RADIX) + aadj = 1. / FLT_RADIX; + else + aadj *= 0.5; + aadj1 = -aadj; + } + } + else + { + aadj *= 0.5; + aadj1 = dsign ? aadj : -aadj; +#ifdef Check_FLT_ROUNDS + switch (FLT_ROUNDS) + { + case 2: /* towards +infinity */ + aadj1 -= 0.5; + break; + case 0: /* towards 0 */ + case 3: /* towards -infinity */ + aadj1 += 0.5; + } +#else + if (FLT_ROUNDS == 0) + aadj1 += 0.5; +#endif + } + y = word0 (rv) & Exp_mask; + + /* Check for overflow */ + + if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) + { + rv0.d = rv.d; + word0 (rv) -= P * Exp_msk1; + adj = aadj1 * ulp (rv.d); + rv.d += adj; + if ((word0 (rv) & Exp_mask) >= + Exp_msk1 * (DBL_MAX_EXP + Bias - P)) + { + if (word0 (rv0) == Big0 && word1 (rv0) == Big1) + goto ovfl; +#ifdef _DOUBLE_IS_32BITS + word0 (rv) = Big1; +#else + word0 (rv) = Big0; + word1 (rv) = Big1; +#endif + goto cont; + } + else + word0 (rv) += P * Exp_msk1; + } + else + { +#ifdef Sudden_Underflow + if ((word0 (rv) & Exp_mask) <= P * Exp_msk1) + { + rv0.d = rv.d; + word0 (rv) += P * Exp_msk1; + adj = aadj1 * ulp (rv.d); + rv.d += adj; +#ifdef IBM + if ((word0 (rv) & Exp_mask) < P * Exp_msk1) +#else + if ((word0 (rv) & Exp_mask) <= P * Exp_msk1) +#endif + { + if (word0 (rv0) == Tiny0 + && word1 (rv0) == Tiny1) + goto undfl; + word0 (rv) = Tiny0; + word1 (rv) = Tiny1; + goto cont; + } + else + word0 (rv) -= P * Exp_msk1; + } + else + { + adj = aadj1 * ulp (rv.d); + rv.d += adj; + } +#else + /* Compute adj so that the IEEE rounding rules will + * correctly round rv.d + adj in some half-way cases. + * If rv.d * ulp(rv.d) is denormalized (i.e., + * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid + * trouble from bits lost to denormalization; + * example: 1.2e-307 . + */ + if (y <= (P - 1) * Exp_msk1 && aadj >= 1.) + { + aadj1 = (double) (int) (aadj + 0.5); + if (!dsign) + aadj1 = -aadj1; + } + adj = aadj1 * ulp (rv.d); + rv.d += adj; +#endif + } + z = word0 (rv) & Exp_mask; + if (y == z) + { + /* Can we stop now? */ + L = aadj; + aadj -= L; + /* The tolerances below are conservative. */ + if (dsign || word1 (rv) || word0 (rv) & Bndry_mask) + { + if (aadj < .4999999 || aadj > .5000001) + break; + } + else if (aadj < .4999999 / FLT_RADIX) + break; + } + cont: + Bfree (ptr, bb); + Bfree (ptr, bd); + Bfree (ptr, bs); + Bfree (ptr, delta); + } +retfree: + Bfree (ptr, bb); + Bfree (ptr, bd); + Bfree (ptr, bs); + Bfree (ptr, bd0); + Bfree (ptr, delta); +ret: + if (se) + *se = (char *) s; + if (digits == 0) + ptr->_errno = EINVAL; + return sign ? -rv.d : rv.d; +} + diff --git a/libjava/classpath/native/fdlibm/w_acos.c b/libjava/classpath/native/fdlibm/w_acos.c new file mode 100644 index 0000000..c9ca99c --- /dev/null +++ b/libjava/classpath/native/fdlibm/w_acos.c @@ -0,0 +1,118 @@ + +/* @(#)w_acos.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION + <<acos>>, <<acosf>>---arc cosine + +INDEX + acos +INDEX + acosf + +ANSI_SYNOPSIS + #include <math.h> + double acos(double <[x]>); + float acosf(float <[x]>); + +TRAD_SYNOPSIS + #include <math.h> + double acos(<[x]>) + double <[x]>; + + float acosf(<[x]>) + float <[x]>; + + + +DESCRIPTION + + <<acos>> computes the inverse cosine (arc cosine) of the input value. + Arguments to <<acos>> must be in the range @minus{}1 to 1. + + <<acosf>> is identical to <<acos>>, except that it performs + its calculations on <<floats>>. + +RETURNS + @ifinfo + <<acos>> and <<acosf>> return values in radians, in the range of 0 to pi. + @end ifinfo + @tex + <<acos>> and <<acosf>> return values in radians, in the range of <<0>> to $\pi$. + @end tex + + If <[x]> is not between @minus{}1 and 1, the returned value is NaN + (not a number) the global variable <<errno>> is set to <<EDOM>>, and a + <<DOMAIN error>> message is sent as standard error output. + + You can modify error handling for these functions using <<matherr>>. + + +QUICKREF ANSI SVID POSIX RENTRANT + acos y,y,y,m + acosf n,n,n,m + +MATHREF + acos, [-1,1], acos(arg),,, + acos, NAN, arg,DOMAIN,EDOM + +MATHREF + acosf, [-1,1], acosf(arg),,, + acosf, NAN, argf,DOMAIN,EDOM + +*/ + +/* + * wrap_acos(x) + */ + +#include "fdlibm.h" +#include <errno.h> + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double acos(double x) /* wrapper acos */ +#else + double acos(x) /* wrapper acos */ + double x; +#endif +{ +#ifdef _IEEE_LIBM + return __ieee754_acos(x); +#else + double z; + struct exception exc; + z = __ieee754_acos(x); + if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; + if(fabs(x)>1.0) { + /* acos(|x|>1) */ + exc.type = DOMAIN; + exc.name = "acos"; + exc.err = 0; + exc.arg1 = exc.arg2 = x; + exc.retval = 0.0; + if (_LIB_VERSION == _POSIX_) + errno = EDOM; + else if (!matherr(&exc)) { + errno = EDOM; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } else + return z; +#endif +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/w_asin.c b/libjava/classpath/native/fdlibm/w_asin.c new file mode 100644 index 0000000..f6cb271 --- /dev/null +++ b/libjava/classpath/native/fdlibm/w_asin.c @@ -0,0 +1,121 @@ + +/* @(#)w_asin.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + */ + +/* +FUNCTION + <<asin>>, <<asinf>>---arc sine + +INDEX + asin +INDEX + asinf + +ANSI_SYNOPSIS + #include <math.h> + double asin(double <[x]>); + float asinf(float <[x]>); + +TRAD_SYNOPSIS + #include <math.h> + double asin(<[x]>) + double <[x]>; + + float asinf(<[x]>) + float <[x]>; + + +DESCRIPTION + +<<asin>> computes the inverse sine (arc sine) of the argument <[x]>. +Arguments to <<asin>> must be in the range @minus{}1 to 1. + +<<asinf>> is identical to <<asin>>, other than taking and +returning floats. + +You can modify error handling for these routines using <<matherr>>. + +RETURNS +@ifinfo +<<asin>> returns values in radians, in the range of -pi/2 to pi/2. +@end ifinfo +@tex +<<asin>> returns values in radians, in the range of $-\pi/2$ to $\pi/2$. +@end tex + +If <[x]> is not in the range @minus{}1 to 1, <<asin>> and <<asinf>> +return NaN (not a number), set the global variable <<errno>> to +<<EDOM>>, and issue a <<DOMAIN error>> message. + +You can change this error treatment using <<matherr>>. + +QUICKREF ANSI SVID POSIX RENTRANT + asin y,y,y,m + asinf n,n,n,m + +MATHREF + asin, -1<=arg<=1, asin(arg),,, + asin, NAN, arg,EDOM, DOMAIN + +MATHREF + asinf, -1<=arg<=1, asin(arg),,, + asinf, NAN, arg,EDOM, DOMAIN + + +*/ + +/* + * wrapper asin(x) + */ + + +#include "fdlibm.h" +#include <errno.h> + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double asin(double x) /* wrapper asin */ +#else + double asin(x) /* wrapper asin */ + double x; +#endif +{ +#ifdef _IEEE_LIBM + return __ieee754_asin(x); +#else + double z; + struct exception exc; + z = __ieee754_asin(x); + if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; + if(fabs(x)>1.0) { + /* asin(|x|>1) */ + exc.type = DOMAIN; + exc.name = "asin"; + exc.err = 0; + exc.arg1 = exc.arg2 = x; + exc.retval = 0.0; + if(_LIB_VERSION == _POSIX_) + errno = EDOM; + else if (!matherr(&exc)) { + errno = EDOM; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } else + return z; +#endif +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/w_atan2.c b/libjava/classpath/native/fdlibm/w_atan2.c new file mode 100644 index 0000000..91742c7 --- /dev/null +++ b/libjava/classpath/native/fdlibm/w_atan2.c @@ -0,0 +1,117 @@ + +/* @(#)w_atan2.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + */ + +/* +FUNCTION + <<atan2>>, <<atan2f>>---arc tangent of y/x + +INDEX + atan2 +INDEX + atan2f + +ANSI_SYNOPSIS + #include <math.h> + double atan2(double <[y]>,double <[x]>); + float atan2f(float <[y]>,float <[x]>); + +TRAD_SYNOPSIS + #include <math.h> + double atan2(<[y]>,<[x]>); + double <[y]>; + double <[x]>; + + float atan2f(<[y]>,<[x]>); + float <[y]>; + float <[x]>; + +DESCRIPTION + +<<atan2>> computes the inverse tangent (arc tangent) of <[y]>/<[x]>. +<<atan2>> produces the correct result even for angles near +@ifinfo +pi/2 or -pi/2 +@end ifinfo +@tex +$\pi/2$ or $-\pi/2$ +@end tex +(that is, when <[x]> is near 0). + +<<atan2f>> is identical to <<atan2>>, save that it takes and returns +<<float>>. + +RETURNS +<<atan2>> and <<atan2f>> return a value in radians, in the range of +@ifinfo +-pi to pi. +@end ifinfo +@tex +$-\pi$ to $\pi$. +@end tex + +If both <[x]> and <[y]> are 0.0, <<atan2>> causes a <<DOMAIN>> error. + +You can modify error handling for these functions using <<matherr>>. + +PORTABILITY +<<atan2>> is ANSI C. <<atan2f>> is an extension. + + +*/ + +/* + * wrapper atan2(y,x) + */ + +#include "fdlibm.h" +#include <errno.h> + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double atan2(double y, double x) /* wrapper atan2 */ +#else + double atan2(y,x) /* wrapper atan2 */ + double y,x; +#endif +{ +#ifdef _IEEE_LIBM + return __ieee754_atan2(y,x); +#else + double z; + struct exception exc; + z = __ieee754_atan2(y,x); + if(_LIB_VERSION == _IEEE_||isnan(x)||isnan(y)) return z; + if(x==0.0&&y==0.0) { + /* atan2(+-0,+-0) */ + exc.arg1 = y; + exc.arg2 = x; + exc.type = DOMAIN; + exc.name = "atan2"; + exc.err = 0; + exc.retval = 0.0; + if(_LIB_VERSION == _POSIX_) + errno = EDOM; + else if (!matherr(&exc)) { + errno = EDOM; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } else + return z; +#endif +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/w_exp.c b/libjava/classpath/native/fdlibm/w_exp.c new file mode 100644 index 0000000..45e087b --- /dev/null +++ b/libjava/classpath/native/fdlibm/w_exp.c @@ -0,0 +1,140 @@ + +/* @(#)w_exp.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION + <<exp>>, <<expf>>---exponential +INDEX + exp +INDEX + expf + +ANSI_SYNOPSIS + #include <math.h> + double exp(double <[x]>); + float expf(float <[x]>); + +TRAD_SYNOPSIS + #include <math.h> + double exp(<[x]>); + double <[x]>; + + float expf(<[x]>); + float <[x]>; + +DESCRIPTION + <<exp>> and <<expf>> calculate the exponential of <[x]>, that is, + @ifinfo + e raised to the power <[x]> (where e + @end ifinfo + @tex + $e^x$ (where $e$ + @end tex + is the base of the natural system of logarithms, approximately 2.71828). + + You can use the (non-ANSI) function <<matherr>> to specify + error handling for these functions. + +RETURNS + On success, <<exp>> and <<expf>> return the calculated value. + If the result underflows, the returned value is <<0>>. If the + result overflows, the returned value is <<HUGE_VAL>>. In + either case, <<errno>> is set to <<ERANGE>>. + +PORTABILITY + <<exp>> is ANSI C. <<expf>> is an extension. + +*/ + +/* + * wrapper exp(x) + */ + +#include "fdlibm.h" +#include <errno.h> + +#ifndef _DOUBLE_IS_32BITS + +#ifndef _IEEE_LIBM + +#ifdef __STDC__ +static const double +#else +static double +#endif +o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ +u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */ + +#endif + +#ifdef __STDC__ + double exp(double x) /* wrapper exp */ +#else + double exp(x) /* wrapper exp */ + double x; +#endif +{ +#ifdef _IEEE_LIBM + return __ieee754_exp(x); +#else + double z; + struct exception exc; + z = __ieee754_exp(x); + if(_LIB_VERSION == _IEEE_) return z; + if(finite(x)) { + if(x>o_threshold) { + /* exp(finite) overflow */ +#ifndef HUGE_VAL +#define HUGE_VAL inf + double inf = 0.0; + + SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ +#endif + exc.type = OVERFLOW; + exc.name = "exp"; + exc.err = 0; + exc.arg1 = exc.arg2 = x; + if (_LIB_VERSION == _SVID_) + exc.retval = HUGE; + else + exc.retval = HUGE_VAL; + if (_LIB_VERSION == _POSIX_) + errno = ERANGE; + else if (!matherr(&exc)) { + errno = ERANGE; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } else if(x<u_threshold) { + /* exp(finite) underflow */ + exc.type = UNDERFLOW; + exc.name = "exp"; + exc.err = 0; + exc.arg1 = exc.arg2 = x; + exc.retval = 0.0; + if (_LIB_VERSION == _POSIX_) + errno = ERANGE; + else if (!matherr(&exc)) { + errno = ERANGE; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } + } + return z; +#endif +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/w_fmod.c b/libjava/classpath/native/fdlibm/w_fmod.c new file mode 100644 index 0000000..b6b36cb --- /dev/null +++ b/libjava/classpath/native/fdlibm/w_fmod.c @@ -0,0 +1,107 @@ + +/* @(#)w_fmod.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION +<<fmod>>, <<fmodf>>---floating-point remainder (modulo) + +INDEX +fmod +INDEX +fmodf + +ANSI_SYNOPSIS +#include <math.h> +double fmod(double <[x]>, double <[y]>) +float fmodf(float <[x]>, float <[y]>) + +TRAD_SYNOPSIS +#include <math.h> +double fmod(<[x]>, <[y]>) +double (<[x]>, <[y]>); + +float fmodf(<[x]>, <[y]>) +float (<[x]>, <[y]>); + +DESCRIPTION +The <<fmod>> and <<fmodf>> functions compute the floating-point +remainder of <[x]>/<[y]> (<[x]> modulo <[y]>). + +RETURNS +The <<fmod>> function returns the value +@ifinfo +<[x]>-<[i]>*<[y]>, +@end ifinfo +@tex +$x-i\times y$, +@end tex +for the largest integer <[i]> such that, if <[y]> is nonzero, the +result has the same sign as <[x]> and magnitude less than the +magnitude of <[y]>. + +<<fmod(<[x]>,0)>> returns NaN, and sets <<errno>> to <<EDOM>>. + +You can modify error treatment for these functions using <<matherr>>. + +PORTABILITY +<<fmod>> is ANSI C. <<fmodf>> is an extension. +*/ + +/* + * wrapper fmod(x,y) + */ + +#include "fdlibm.h" +#include <errno.h> + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double fmod(double x, double y) /* wrapper fmod */ +#else + double fmod(x,y) /* wrapper fmod */ + double x,y; +#endif +{ +#ifdef _IEEE_LIBM + return __ieee754_fmod(x,y); +#else + double z; + struct exception exc; + z = __ieee754_fmod(x,y); + if(_LIB_VERSION == _IEEE_ ||isnan(y)||isnan(x)) return z; + if(y==0.0) { + /* fmod(x,0) */ + exc.type = DOMAIN; + exc.name = "fmod"; + exc.arg1 = x; + exc.arg2 = y; + exc.err = 0; + if (_LIB_VERSION == _SVID_) + exc.retval = x; + else + exc.retval = 0.0/0.0; + if (_LIB_VERSION == _POSIX_) + errno = EDOM; + else if (!matherr(&exc)) { + errno = EDOM; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } else + return z; +#endif +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/w_log.c b/libjava/classpath/native/fdlibm/w_log.c new file mode 100644 index 0000000..dcc8b97 --- /dev/null +++ b/libjava/classpath/native/fdlibm/w_log.c @@ -0,0 +1,115 @@ + +/* @(#)w_log.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION + <<log>>, <<logf>>---natural logarithms + +INDEX + log +INDEX + logf + +ANSI_SYNOPSIS + #include <math.h> + double log(double <[x]>); + float logf(float <[x]>); + +TRAD_SYNOPSIS + #include <math.h> + double log(<[x]>); + double <[x]>; + + float logf(<[x]>); + float <[x]>; + +DESCRIPTION +Return the natural logarithm of <[x]>, that is, its logarithm base e +(where e is the base of the natural system of logarithms, 2.71828@dots{}). +<<log>> and <<logf>> are identical save for the return and argument types. + +You can use the (non-ANSI) function <<matherr>> to specify error +handling for these functions. + +RETURNS +Normally, returns the calculated value. When <[x]> is zero, the +returned value is <<-HUGE_VAL>> and <<errno>> is set to <<ERANGE>>. +When <[x]> is negative, the returned value is <<-HUGE_VAL>> and +<<errno>> is set to <<EDOM>>. You can control the error behavior via +<<matherr>>. + +PORTABILITY +<<log>> is ANSI, <<logf>> is an extension. +*/ + +/* + * wrapper log(x) + */ + +#include "fdlibm.h" +#include <errno.h> + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double log(double x) /* wrapper log */ +#else + double log(x) /* wrapper log */ + double x; +#endif +{ +#ifdef _IEEE_LIBM + return __ieee754_log(x); +#else + double z; + struct exception exc; + z = __ieee754_log(x); + if(_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0) return z; +#ifndef HUGE_VAL +#define HUGE_VAL inf + double inf = 0.0; + + SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ +#endif + exc.name = "log"; + exc.err = 0; + exc.arg1 = x; + exc.arg2 = x; + if (_LIB_VERSION == _SVID_) + exc.retval = -HUGE; + else + exc.retval = -HUGE_VAL; + if(x==0.0) { + /* log(0) */ + exc.type = SING; + if (_LIB_VERSION == _POSIX_) + errno = ERANGE; + else if (!matherr(&exc)) { + errno = EDOM; + } + } else { + /* log(x<0) */ + exc.type = DOMAIN; + if (_LIB_VERSION == _POSIX_) + errno = EDOM; + else if (!matherr(&exc)) { + errno = EDOM; + } + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; +#endif +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/classpath/native/fdlibm/w_pow.c b/libjava/classpath/native/fdlibm/w_pow.c new file mode 100644 index 0000000..3df099a --- /dev/null +++ b/libjava/classpath/native/fdlibm/w_pow.c @@ -0,0 +1,231 @@ + + +/* @(#)w_pow.c 5.2 93/10/01 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION + <<pow>>, <<powf>>---x to the power y +INDEX + pow +INDEX + powf + + +ANSI_SYNOPSIS + #include <math.h> + double pow(double <[x]>, double <[y]>); + float pow(float <[x]>, float <[y]>); + +TRAD_SYNOPSIS + #include <math.h> + double pow(<[x]>, <[y]>); + double <[x]>, <[y]>; + + float pow(<[x]>, <[y]>); + float <[x]>, <[y]>; + +DESCRIPTION + <<pow>> and <<powf>> calculate <[x]> raised to the exp1.0nt <[y]>. + @tex + (That is, $x^y$.) + @end tex + +RETURNS + On success, <<pow>> and <<powf>> return the value calculated. + + When the argument values would produce overflow, <<pow>> + returns <<HUGE_VAL>> and set <<errno>> to <<ERANGE>>. If the + argument <[x]> passed to <<pow>> or <<powf>> is a negative + noninteger, and <[y]> is also not an integer, then <<errno>> + is set to <<EDOM>>. If <[x]> and <[y]> are both 0, then + <<pow>> and <<powf>> return <<1>>. + + You can modify error handling for these functions using <<matherr>>. + +PORTABILITY + <<pow>> is ANSI C. <<powf>> is an extension. */ + +/* + * wrapper pow(x,y) return x**y + */ + +#include "fdlibm.h" +#include <errno.h> + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double pow(double x, double y) /* wrapper pow */ +#else + double pow(x,y) /* wrapper pow */ + double x,y; +#endif +{ +#ifdef _IEEE_LIBM + return __ieee754_pow(x,y); +#else + double z; +#ifndef HUGE_VAL +#define HUGE_VAL inf + double inf = 0.0; + + SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ +#endif + struct exception exc; + z=__ieee754_pow(x,y); + if(_LIB_VERSION == _IEEE_|| isnan(y)) return z; + if(isnan(x)) { + if(y==0.0) { + /* pow(NaN,0.0) */ + /* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */ + exc.type = DOMAIN; + exc.name = "pow"; + exc.err = 0; + exc.arg1 = x; + exc.arg2 = y; + exc.retval = x; + if (_LIB_VERSION == _IEEE_ || + _LIB_VERSION == _POSIX_) exc.retval = 1.0; + else if (!matherr(&exc)) { + errno = EDOM; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } else + return z; + } + if(x==0.0){ + if(y==0.0) { + /* pow(0.0,0.0) */ + /* error only if _LIB_VERSION == _SVID_ */ + exc.type = DOMAIN; + exc.name = "pow"; + exc.err = 0; + exc.arg1 = x; + exc.arg2 = y; + exc.retval = 0.0; + if (_LIB_VERSION != _SVID_) exc.retval = 1.0; + else if (!matherr(&exc)) { + errno = EDOM; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } + if(finite(y)&&y<0.0) { + /* 0**neg */ + exc.type = DOMAIN; + exc.name = "pow"; + exc.err = 0; + exc.arg1 = x; + exc.arg2 = y; + if (_LIB_VERSION == _SVID_) + exc.retval = 0.0; + else + exc.retval = -HUGE_VAL; + if (_LIB_VERSION == _POSIX_) + errno = EDOM; + else if (!matherr(&exc)) { + errno = EDOM; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } + return z; + } + if(!finite(z)) { + if(finite(x)&&finite(y)) { + if(isnan(z)) { + /* neg**non-integral */ + exc.type = DOMAIN; + exc.name = "pow"; + exc.err = 0; + exc.arg1 = x; + exc.arg2 = y; + if (_LIB_VERSION == _SVID_) + exc.retval = 0.0; + else + exc.retval = 0.0/0.0; /* X/Open allow NaN */ + if (_LIB_VERSION == _POSIX_) + errno = EDOM; + else if (!matherr(&exc)) { + errno = EDOM; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } else { + /* pow(x,y) overflow */ + exc.type = OVERFLOW; + exc.name = "pow"; + exc.err = 0; + exc.arg1 = x; + exc.arg2 = y; + if (_LIB_VERSION == _SVID_) { + exc.retval = HUGE; + y *= 0.5; + if(x<0.0&&rint(y)!=y) exc.retval = -HUGE; + } else { + exc.retval = HUGE_VAL; + y *= 0.5; + if(x<0.0&&rint(y)!=y) exc.retval = -HUGE_VAL; + } + if (_LIB_VERSION == _POSIX_) + errno = ERANGE; + else if (!matherr(&exc)) { + errno = ERANGE; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } + } + } + if(z==0.0&&finite(x)&&finite(y)) { + /* pow(x,y) underflow */ + exc.type = UNDERFLOW; + exc.name = "pow"; + exc.err = 0; + exc.arg1 = x; + exc.arg2 = y; + exc.retval = 0.0; + if (_LIB_VERSION == _POSIX_) + errno = ERANGE; + else if (!matherr(&exc)) { + errno = ERANGE; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } + return z; +#endif +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ + + + + + + + + + + + + + + diff --git a/libjava/classpath/native/fdlibm/w_remainder.c b/libjava/classpath/native/fdlibm/w_remainder.c new file mode 100644 index 0000000..a06be0e --- /dev/null +++ b/libjava/classpath/native/fdlibm/w_remainder.c @@ -0,0 +1,119 @@ + +/* @(#)w_remainder.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION +<<rint>>, <<rintf>>, <<remainder>>, <<remainderf>>---round and remainder +INDEX + rint +INDEX + rintf +INDEX + remainder +INDEX + remainderf + +ANSI_SYNOPSIS + #include <math.h> + double rint(double <[x]>); + float rintf(float <[x]>); + double remainder(double <[x]>, double <[y]>); + float remainderf(float <[x]>, float <[y]>); + +TRAD_SYNOPSIS + #include <math.h> + double rint(<[x]>) + double <[x]>; + float rintf(<[x]>) + float <[x]>; + double remainder(<[x]>,<[y]>) + double <[x]>, <[y]>; + float remainderf(<[x]>,<[y]>) + float <[x]>, <[y]>; + +DESCRIPTION +<<rint>> and <<rintf>> returns their argument rounded to the nearest +integer. <<remainder>> and <<remainderf>> find the remainder of +<[x]>/<[y]>; this value is in the range -<[y]>/2 .. +<[y]>/2. + +RETURNS +<<rint>> and <<remainder>> return the integer result as a double. + +PORTABILITY +<<rint>> and <<remainder>> are System V release 4. <<rintf>> and +<<remainderf>> are extensions. + +*/ + +/* + * wrapper remainder(x,p) + */ + +#include "fdlibm.h" +#include <errno.h> + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double remainder(double x, double y) /* wrapper remainder */ +#else + double remainder(x,y) /* wrapper remainder */ + double x,y; +#endif +{ +#ifdef _IEEE_LIBM + return __ieee754_remainder(x,y); +#else + double z; + struct exception exc; + z = __ieee754_remainder(x,y); + if(_LIB_VERSION == _IEEE_ || isnan(y)) return z; + if(y==0.0) { + /* remainder(x,0) */ + exc.type = DOMAIN; + exc.name = "remainder"; + exc.err = 0; + exc.arg1 = x; + exc.arg2 = y; + exc.retval = 0.0/0.0; + if (_LIB_VERSION == _POSIX_) + errno = EDOM; + else if (!matherr(&exc)) { + errno = EDOM; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } else + return z; +#endif +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ + + + + + + + + + + + + + + + + + diff --git a/libjava/classpath/native/fdlibm/w_sqrt.c b/libjava/classpath/native/fdlibm/w_sqrt.c new file mode 100644 index 0000000..23a793c --- /dev/null +++ b/libjava/classpath/native/fdlibm/w_sqrt.c @@ -0,0 +1,93 @@ + +/* @(#)w_sqrt.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION + <<sqrt>>, <<sqrtf>>---positive square root + +INDEX + sqrt +INDEX + sqrtf + +ANSI_SYNOPSIS + #include <math.h> + double sqrt(double <[x]>); + float sqrtf(float <[x]>); + +TRAD_SYNOPSIS + #include <math.h> + double sqrt(<[x]>); + float sqrtf(<[x]>); + +DESCRIPTION + <<sqrt>> computes the positive square root of the argument. + You can modify error handling for this function with + <<matherr>>. + +RETURNS + On success, the square root is returned. If <[x]> is real and + positive, then the result is positive. If <[x]> is real and + negative, the global value <<errno>> is set to <<EDOM>> (domain error). + + +PORTABILITY + <<sqrt>> is ANSI C. <<sqrtf>> is an extension. +*/ + +/* + * wrapper sqrt(x) + */ + +#include "fdlibm.h" +#include <errno.h> + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double sqrt(double x) /* wrapper sqrt */ +#else + double sqrt(x) /* wrapper sqrt */ + double x; +#endif +{ +#ifdef _IEEE_LIBM + return __ieee754_sqrt(x); +#else + struct exception exc; + double z; + z = __ieee754_sqrt(x); + if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; + if(x<0.0) { + exc.type = DOMAIN; + exc.name = "sqrt"; + exc.err = 0; + exc.arg1 = exc.arg2 = x; + if (_LIB_VERSION == _SVID_) + exc.retval = 0.0; + else + exc.retval = 0.0/0.0; + if (_LIB_VERSION == _POSIX_) + errno = EDOM; + else if (!matherr(&exc)) { + errno = EDOM; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } else + return z; +#endif +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ |