aboutsummaryrefslogtreecommitdiff
path: root/libjava/classpath/lib/java/util/Locale.class
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/classpath/lib/java/util/Locale.class')
0 files changed, 0 insertions, 0 deletions
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
/* SSA Dominator optimizations for trees
   Copyright (C) 2001-2021 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "cfganal.h"
#include "cfgloop.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "tree-inline.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-into-ssa.h"
#include "domwalk.h"
#include "tree-ssa-propagate.h"
#include "tree-ssa-threadupdate.h"
#include "tree-ssa-scopedtables.h"
#include "tree-ssa-threadedge.h"
#include "tree-ssa-dom.h"
#include "gimplify.h"
#include "tree-cfgcleanup.h"
#include "dbgcnt.h"
#include "alloc-pool.h"
#include "tree-vrp.h"
#include "vr-values.h"
#include "gimple-ssa-evrp-analyze.h"
#include "alias.h"

/* This file implements optimizations on the dominator tree.  */

/* Structure for recording edge equivalences.

   Computing and storing the edge equivalences instead of creating
   them on-demand can save significant amounts of time, particularly
   for pathological cases involving switch statements.

   These structures live for a single iteration of the dominator
   optimizer in the edge's AUX field.  At the end of an iteration we
   free each of these structures.  */
class edge_info
{
 public:
  typedef std::pair <tree, tree> equiv_pair;
  edge_info (edge);
  ~edge_info ();

  /* Record a simple LHS = RHS equivalence.  This may trigger
     calls to derive_equivalences.  */
  void record_simple_equiv (tree, tree);

  /* If traversing this edge creates simple equivalences, we store
     them as LHS/RHS pairs within this vector.  */
  vec<equiv_pair> simple_equivalences;

  /* Traversing an edge may also indicate one or more particular conditions
     are true or false.  */
  vec<cond_equivalence> cond_equivalences;

 private:
  /* Derive equivalences by walking the use-def chains.  */
  void derive_equivalences (tree, tree, int);
};

/* Track whether or not we have changed the control flow graph.  */
static bool cfg_altered;

/* Bitmap of blocks that have had EH statements cleaned.  We should
   remove their dead edges eventually.  */
static bitmap need_eh_cleanup;
static vec<gimple *> need_noreturn_fixup;

/* Statistics for dominator optimizations.  */
struct opt_stats_d
{
  long num_stmts;
  long num_exprs_considered;
  long num_re;
  long num_const_prop;
  long num_copy_prop;
};

static struct opt_stats_d opt_stats;

/* Local functions.  */
static void record_equality (tree, tree, class const_and_copies *);
static void record_equivalences_from_phis (basic_block);
static void record_equivalences_from_incoming_edge (basic_block,
						    class const_and_copies *,
						    class avail_exprs_stack *);
static void eliminate_redundant_computations (gimple_stmt_iterator *,
					      class const_and_copies *,
					      class avail_exprs_stack *);
static void record_equivalences_from_stmt (gimple *, int,
					   class avail_exprs_stack *);
static void dump_dominator_optimization_stats (FILE *file,
					       hash_table<expr_elt_hasher> *);

/* Constructor for EDGE_INFO.  An EDGE_INFO instance is always
   associated with an edge E.  */

edge_info::edge_info (edge e)
{
  /* Free the old one associated with E, if it exists and
     associate our new object with E.  */
  free_dom_edge_info (e);
  e->aux = this;

  /* And initialize the embedded vectors.  */
  simple_equivalences = vNULL;
  cond_equivalences = vNULL;
}

/* Destructor just needs to release the vectors.  */

edge_info::~edge_info (void)
{
  this->cond_equivalences.release ();
  this->simple_equivalences.release ();
}

/* NAME is known to have the value VALUE, which must be a constant.

   Walk through its use-def chain to see if there are other equivalences
   we might be able to derive.

   RECURSION_LIMIT controls how far back we recurse through the use-def
   chains.  */

void
edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
{
  if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
    return;

  /* This records the equivalence for the toplevel object.  Do
     this before checking the recursion limit.  */
  simple_equivalences.safe_push (equiv_pair (name, value));

  /* Limit how far up the use-def chains we are willing to walk.  */
  if (recursion_limit == 0)
    return;

  /* We can walk up the use-def chains to potentially find more
     equivalences.  */
  gimple *def_stmt = SSA_NAME_DEF_STMT (name);
  if (is_gimple_assign (def_stmt))
    {
      enum tree_code code = gimple_assign_rhs_code (def_stmt);
      switch (code)
	{
	/* If the result of an OR is zero, then its operands are, too.  */
	case BIT_IOR_EXPR:
	  if (integer_zerop (value))
	    {
	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
	      tree rhs2 = gimple_assign_rhs2 (def_stmt);

	      value = build_zero_cst (TREE_TYPE (rhs1));
	      derive_equivalences (rhs1, value, recursion_limit - 1);
	      value = build_zero_cst (TREE_TYPE (rhs2));
	      derive_equivalences (rhs2, value, recursion_limit - 1);
	    }
	  break;

	/* If the result of an AND is nonzero, then its operands are, too.  */
	case BIT_AND_EXPR:
	  if (!integer_zerop (value))
	    {
	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
	      tree rhs2 = gimple_assign_rhs2 (def_stmt);

	      /* If either operand has a boolean range, then we
		 know its value must be one, otherwise we just know it
		 is nonzero.  The former is clearly useful, I haven't
		 seen cases where the latter is helpful yet.  */
	      if (TREE_CODE (rhs1) == SSA_NAME)
		{
		  if (ssa_name_has_boolean_range (rhs1))
		    {
		      value = build_one_cst (TREE_TYPE (rhs1));
		      derive_equivalences (rhs1, value, recursion_limit - 1);
		    }
		}
	      if (TREE_CODE (rhs2) == SSA_NAME)
		{
		  if (ssa_name_has_boolean_range (rhs2))
		    {
		      value = build_one_cst (TREE_TYPE (rhs2));
		      derive_equivalences (rhs2, value, recursion_limit - 1);
		    }
		}
	    }
	  break;

	/* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
	   set via a widening type conversion, then we may be able to record
	   additional equivalences.  */
	case NOP_EXPR:
	case CONVERT_EXPR:
	  {
	    tree rhs = gimple_assign_rhs1 (def_stmt);
	    tree rhs_type = TREE_TYPE (rhs);
	    if (INTEGRAL_TYPE_P (rhs_type)
		&& (TYPE_PRECISION (TREE_TYPE (name))
		    >= TYPE_PRECISION (rhs_type))
		&& int_fits_type_p (value, rhs_type))
	      derive_equivalences (rhs,
				   fold_convert (rhs_type, value),
				   recursion_limit - 1);
	    break;
	  }

	/* We can invert the operation of these codes trivially if
	   one of the RHS operands is a constant to produce a known
	   value for the other RHS operand.  */
	case POINTER_PLUS_EXPR:
	case PLUS_EXPR:
	  {
	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
	    tree rhs2 = gimple_assign_rhs2 (def_stmt);

	    /* If either argument is a constant, then we can compute
	       a constant value for the nonconstant argument.  */
	    if (TREE_CODE (rhs1) == INTEGER_CST
		&& TREE_CODE (rhs2) == SSA_NAME)
	      derive_equivalences (rhs2,
				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
						value, rhs1),
				   recursion_limit - 1);
	    else if (TREE_CODE (rhs2) == INTEGER_CST
		     && TREE_CODE (rhs1) == SSA_NAME)
	      derive_equivalences (rhs1,
				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
						value, rhs2),
				   recursion_limit - 1);
	    break;
	  }

	/* If one of the operands is a constant, then we can compute
	   the value of the other operand.  If both operands are
	   SSA_NAMEs, then they must be equal if the result is zero.  */
	case MINUS_EXPR:
	  {
	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
	    tree rhs2 = gimple_assign_rhs2 (def_stmt);

	    /* If either argument is a constant, then we can compute
	       a constant value for the nonconstant argument.  */
	    if (TREE_CODE (rhs1) == INTEGER_CST
		&& TREE_CODE (rhs2) == SSA_NAME)
	      derive_equivalences (rhs2,
				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
						rhs1, value),
				   recursion_limit - 1);
	    else if (TREE_CODE (rhs2) == INTEGER_CST
		     && TREE_CODE (rhs1) == SSA_NAME)
	      derive_equivalences (rhs1,
				   fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
						value, rhs2),
				   recursion_limit - 1);
	    else if (integer_zerop (value))
	      {
		tree cond = build2 (EQ_EXPR, boolean_type_node,
				    gimple_assign_rhs1 (def_stmt),
				    gimple_assign_rhs2 (def_stmt));
		tree inverted = invert_truthvalue (cond);
		record_conditions (&this->cond_equivalences, cond, inverted);
	      }
	    break;
	  }

	case EQ_EXPR:
	case NE_EXPR:
	  {
	    if ((code == EQ_EXPR && integer_onep (value))
		|| (code == NE_EXPR && integer_zerop (value)))
	      {
		tree rhs1 = gimple_assign_rhs1 (def_stmt);
		tree rhs2 = gimple_assign_rhs2 (def_stmt);

		/* If either argument is a constant, then record the
		   other argument as being the same as that constant.

		   If neither operand is a constant, then we have a
		   conditional name == name equivalence.  */
		if (TREE_CODE (rhs1) == INTEGER_CST)
		  derive_equivalences (rhs2, rhs1, recursion_limit - 1);
		else if (TREE_CODE (rhs2) == INTEGER_CST)
		  derive_equivalences (rhs1, rhs2, recursion_limit - 1);
	      }
	    else
	      {
		tree cond = build2 (code, boolean_type_node,
				    gimple_assign_rhs1 (def_stmt),
				    gimple_assign_rhs2 (def_stmt));
		tree inverted = invert_truthvalue (cond);
		if (integer_zerop (value))
		  std::swap (cond, inverted);
		record_conditions (&this->cond_equivalences, cond, inverted);
	      }
	    break;
	  }

	/* For BIT_NOT and NEGATE, we can just apply the operation to the
	   VALUE to get the new equivalence.  It will always be a constant
	   so we can recurse.  */
	case BIT_NOT_EXPR:
	case NEGATE_EXPR:
	  {
	    tree rhs = gimple_assign_rhs1 (def_stmt);
	    tree res;
	    /* If this is a NOT and the operand has a boolean range, then we
	       know its value must be zero or one.  We are not supposed to
	       have a BIT_NOT_EXPR for boolean types with precision > 1 in
	       the general case, see e.g. the handling of TRUTH_NOT_EXPR in
	       the gimplifier, but it can be generated by match.pd out of
	       a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR.  Now the handling
	       of BIT_AND_EXPR above already forces a specific semantics for
	       boolean types with precision > 1 so we must do the same here,
	       otherwise we could change the semantics of TRUTH_NOT_EXPR for
	       boolean types with precision > 1.  */
	    if (code == BIT_NOT_EXPR
		&& TREE_CODE (rhs) == SSA_NAME
		&& ssa_name_has_boolean_range (rhs))
	      {
		if ((TREE_INT_CST_LOW (value) & 1) == 0)
		  res = build_one_cst (TREE_TYPE (rhs));
		else
		  res = build_zero_cst (TREE_TYPE (rhs));
	      }
	    else
	      res = fold_build1 (code, TREE_TYPE (rhs), value);
	    derive_equivalences (rhs, res, recursion_limit - 1);
	    break;
	  }

	default:
	  {
	    if (TREE_CODE_CLASS (code) == tcc_comparison)
	      {
		tree cond = build2 (code, boolean_type_node,
				    gimple_assign_rhs1 (def_stmt),
				    gimple_assign_rhs2 (def_stmt));
		tree inverted = invert_truthvalue (cond);
		if (integer_zerop (value))
		  std::swap (cond, inverted);
		record_conditions (&this->cond_equivalences, cond, inverted);
		break;
	      }
	    break;
	  }
	}
    }
}

void
edge_info::record_simple_equiv (tree lhs, tree rhs)
{
  /* If the RHS is a constant, then we may be able to derive
     further equivalences.  Else just record the name = name
     equivalence.  */
  if (TREE_CODE (rhs) == INTEGER_CST)
    derive_equivalences (lhs, rhs, 4);
  else
    simple_equivalences.safe_push (equiv_pair (lhs, rhs));
}

/* Free the edge_info data attached to E, if it exists.  */

void
free_dom_edge_info (edge e)
{
  class edge_info *edge_info = (class edge_info *)e->aux;

  if (edge_info)
    delete edge_info;
}

/* Free all EDGE_INFO structures associated with edges in the CFG.
   If a particular edge can be threaded, copy the redirection
   target from the EDGE_INFO structure into the edge's AUX field
   as required by code to update the CFG and SSA graph for
   jump threading.  */

static void
free_all_edge_infos (void)
{
  basic_block bb;
  edge_iterator ei;
  edge e;

  FOR_EACH_BB_FN (bb, cfun)
    {
      FOR_EACH_EDGE (e, ei, bb->preds)
        {
	  free_dom_edge_info (e);
	  e->aux = NULL;
	}
    }
}

/* We have finished optimizing BB, record any information implied by
   taking a specific outgoing edge from BB.  */

static void
record_edge_info (basic_block bb)
{
  gimple_stmt_iterator gsi = gsi_last_bb (bb);
  class edge_info *edge_info;

  if (! gsi_end_p (gsi))
    {
      gimple *stmt = gsi_stmt (gsi);
      location_t loc = gimple_location (stmt);

      if (gimple_code (stmt) == GIMPLE_SWITCH)
	{
	  gswitch *switch_stmt = as_a <gswitch *> (stmt);
	  tree index = gimple_switch_index (switch_stmt);

	  if (TREE_CODE (index) == SSA_NAME)
	    {
	      int i;
              int n_labels = gimple_switch_num_labels (switch_stmt);
	      tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
	      edge e;
	      edge_iterator ei;

	      for (i = 0; i < n_labels; i++)
		{
		  tree label = gimple_switch_label (switch_stmt, i);
		  basic_block target_bb
		    = label_to_block (cfun, CASE_LABEL (label));
		  if (CASE_HIGH (label)
		      || !CASE_LOW (label)
		      || info[target_bb->index])
		    info[target_bb->index] = error_mark_node;
		  else
		    info[target_bb->index] = label;
		}

	      FOR_EACH_EDGE (e, ei, bb->succs)
		{
		  basic_block target_bb = e->dest;
		  tree label = info[target_bb->index];

		  if (label != NULL && label != error_mark_node)
		    {
		      tree x = fold_convert_loc (loc, TREE_TYPE (index),
						 CASE_LOW (label));
		      edge_info = new class edge_info (e);
		      edge_info->record_simple_equiv (index, x);
		    }
		}
	      free (info);
	    }
	}

      /* A COND_EXPR may create equivalences too.  */
      if (gimple_code (stmt) == GIMPLE_COND)
	{
	  edge true_edge;
	  edge false_edge;

          tree op0 = gimple_cond_lhs (stmt);
          tree op1 = gimple_cond_rhs (stmt);
          enum tree_code code = gimple_cond_code (stmt);

	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);

          /* Special case comparing booleans against a constant as we
             know the value of OP0 on both arms of the branch.  i.e., we
             can record an equivalence for OP0 rather than COND. 

	     However, don't do this if the constant isn't zero or one.
	     Such conditionals will get optimized more thoroughly during
	     the domwalk.  */
	  if ((code == EQ_EXPR || code == NE_EXPR)
	      && TREE_CODE (op0) == SSA_NAME
	      && ssa_name_has_boolean_range (op0)
	      && is_gimple_min_invariant (op1)
	      && (integer_zerop (op1) || integer_onep (op1)))
            {
	      tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
	      tree false_val = constant_boolean_node (false, TREE_TYPE (op0));

              if (code == EQ_EXPR)
                {
		  edge_info = new class edge_info (true_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? false_val : true_val));
		  edge_info = new class edge_info (false_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? true_val : false_val));
                }
              else
                {
		  edge_info = new class edge_info (true_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? true_val : false_val));
		  edge_info = new class edge_info (false_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? false_val : true_val));
                }
            }
	  /* This can show up in the IL as a result of copy propagation
	     it will eventually be canonicalized, but we have to cope
	     with this case within the pass.  */
          else if (is_gimple_min_invariant (op0)
                   && TREE_CODE (op1) == SSA_NAME)
            {
              tree cond = build2 (code, boolean_type_node, op0, op1);
              tree inverted = invert_truthvalue_loc (loc, cond);
              bool can_infer_simple_equiv
                = !(HONOR_SIGNED_ZEROS (op0)
                    && real_zerop (op0));
	      class edge_info *edge_info;

	      edge_info = new class edge_info (true_edge);
              record_conditions (&edge_info->cond_equivalences, cond, inverted);

              if (can_infer_simple_equiv && code == EQ_EXPR)
		edge_info->record_simple_equiv (op1, op0);

	      edge_info = new class edge_info (false_edge);
              record_conditions (&edge_info->cond_equivalences, inverted, cond);

              if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
		edge_info->record_simple_equiv (op1, op0);
            }

          else if (TREE_CODE (op0) == SSA_NAME
                   && (TREE_CODE (op1) == SSA_NAME
                       || is_gimple_min_invariant (op1)))
            {
              tree cond = build2 (code, boolean_type_node, op0, op1);
              tree inverted = invert_truthvalue_loc (loc, cond);
              bool can_infer_simple_equiv
                = !(HONOR_SIGNED_ZEROS (op1)
                    && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
	      class edge_info *edge_info;

	      edge_info = new class edge_info (true_edge);
              record_conditions (&edge_info->cond_equivalences, cond, inverted);

              if (can_infer_simple_equiv && code == EQ_EXPR)
		edge_info->record_simple_equiv (op0, op1);

	      edge_info = new class edge_info (false_edge);
              record_conditions (&edge_info->cond_equivalences, inverted, cond);

              if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
		edge_info->record_simple_equiv (op0, op1);
            }
        }
    }
}


class dom_opt_dom_walker : public dom_walker
{
public:
  dom_opt_dom_walker (cdi_direction direction,
		      class const_and_copies *const_and_copies,
		      class avail_exprs_stack *avail_exprs_stack,
		      gcond *dummy_cond)
    : dom_walker (direction, REACHABLE_BLOCKS),
      m_const_and_copies (const_and_copies),
      m_avail_exprs_stack (avail_exprs_stack),
      evrp_range_analyzer (true),
      m_dummy_cond (dummy_cond) { }

  virtual edge before_dom_children (basic_block);
  virtual void after_dom_children (basic_block);

private:

  /* Unwindable equivalences, both const/copy and expression varieties.  */
  class const_and_copies *m_const_and_copies;
  class avail_exprs_stack *m_avail_exprs_stack;

  /* VRP data.  */
  class evrp_range_analyzer evrp_range_analyzer;

  /* Dummy condition to avoid creating lots of throw away statements.  */
  gcond *m_dummy_cond;

  /* Optimize a single statement within a basic block using the
     various tables mantained by DOM.  Returns the taken edge if
     the statement is a conditional with a statically determined
     value.  */
  edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *);
};

/* Jump threading, redundancy elimination and const/copy propagation.

   This pass may expose new symbols that need to be renamed into SSA.  For
   every new symbol exposed, its corresponding bit will be set in
   VARS_TO_RENAME.  */

namespace {

const pass_data pass_data_dominator =
{
  GIMPLE_PASS, /* type */
  "dom", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
};

class pass_dominator : public gimple_opt_pass
{
public:
  pass_dominator (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_dominator, ctxt),
      may_peel_loop_headers_p (false)
  {}

  /* opt_pass methods: */
  opt_pass * clone () { return new pass_dominator (m_ctxt); }
  void set_pass_param (unsigned int n, bool param)
    {
      gcc_assert (n == 0);
      may_peel_loop_headers_p = param;
    }
  virtual bool gate (function *) { return flag_tree_dom != 0; }
  virtual unsigned int execute (function *);

 private:
  /* This flag is used to prevent loops from being peeled repeatedly in jump
     threading; it will be removed once we preserve loop structures throughout
     the compilation -- we will be able to mark the affected loops directly in
     jump threading, and avoid peeling them next time.  */
  bool may_peel_loop_headers_p;
}; // class pass_dominator

unsigned int
pass_dominator::execute (function *fun)
{
  memset (&opt_stats, 0, sizeof (opt_stats));

  /* Create our hash tables.  */
  hash_table<expr_elt_hasher> *avail_exprs
    = new hash_table<expr_elt_hasher> (1024);
  class avail_exprs_stack *avail_exprs_stack
    = new class avail_exprs_stack (avail_exprs);
  class const_and_copies *const_and_copies = new class const_and_copies ();
  need_eh_cleanup = BITMAP_ALLOC (NULL);
  need_noreturn_fixup.create (0);

  calculate_dominance_info (CDI_DOMINATORS);
  cfg_altered = false;

  /* We need to know loop structures in order to avoid destroying them
     in jump threading.  Note that we still can e.g. thread through loop
     headers to an exit edge, or through loop header to the loop body, assuming
     that we update the loop info.

     TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
     to several overly conservative bail-outs in jump threading, case
     gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
     missing.  We should improve jump threading in future then
     LOOPS_HAVE_PREHEADERS won't be needed here.  */
  loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES);

  /* Initialize the value-handle array.  */
  threadedge_initialize_values ();

  /* We need accurate information regarding back edges in the CFG
     for jump threading; this may include back edges that are not part of
     a single loop.  */
  mark_dfs_back_edges ();

  /* We want to create the edge info structures before the dominator walk
     so that they'll be in place for the jump threader, particularly when
     threading through a join block.

     The conditions will be lazily updated with global equivalences as
     we reach them during the dominator walk.  */
  basic_block bb;
  FOR_EACH_BB_FN (bb, fun)
    record_edge_info (bb);

  gcond *dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
					 integer_zero_node, NULL, NULL);

  /* Recursively walk the dominator tree optimizing statements.  */
  dom_opt_dom_walker walker (CDI_DOMINATORS, const_and_copies,
			     avail_exprs_stack, dummy_cond);
  walker.walk (fun->cfg->x_entry_block_ptr);

  /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
     edge.  When found, remove jump threads which contain any outgoing
     edge from the affected block.  */
  if (cfg_altered)
    {
      FOR_EACH_BB_FN (bb, fun)
	{
	  edge_iterator ei;
	  edge e;

	  /* First see if there are any edges without EDGE_EXECUTABLE
	     set.  */
	  bool found = false;
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      if ((e->flags & EDGE_EXECUTABLE) == 0)
		{
		  found = true;
		  break;
		}
	    }

	  /* If there were any such edges found, then remove jump threads
	     containing any edge leaving BB.  */
	  if (found)
	    FOR_EACH_EDGE (e, ei, bb->succs)
	      remove_jump_threads_including (e);
	}
    }

  {
    gimple_stmt_iterator gsi;
    basic_block bb;
    FOR_EACH_BB_FN (bb, fun)
      {
	for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	  update_stmt_if_modified (gsi_stmt (gsi));
      }
  }

  /* If we exposed any new variables, go ahead and put them into
     SSA form now, before we handle jump threading.  This simplifies
     interactions between rewriting of _DECL nodes into SSA form
     and rewriting SSA_NAME nodes into SSA form after block
     duplication and CFG manipulation.  */
  update_ssa (TODO_update_ssa);

  free_all_edge_infos ();

  /* Thread jumps, creating duplicate blocks as needed.  */
  cfg_altered |= thread_through_all_blocks (may_peel_loop_headers_p);

  if (cfg_altered)
    free_dominance_info (CDI_DOMINATORS);

  /* Removal of statements may make some EH edges dead.  Purge
     such edges from the CFG as needed.  */
  if (!bitmap_empty_p (need_eh_cleanup))
    {
      unsigned i;
      bitmap_iterator bi;

      /* Jump threading may have created forwarder blocks from blocks
	 needing EH cleanup; the new successor of these blocks, which
	 has inherited from the original block, needs the cleanup.
	 Don't clear bits in the bitmap, as that can break the bitmap
	 iterator.  */
      EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
	{
	  basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
	  if (bb == NULL)
	    continue;
	  while (single_succ_p (bb)
		 && (single_succ_edge (bb)->flags
		     & (EDGE_EH|EDGE_DFS_BACK)) == 0)
	    bb = single_succ (bb);
	  if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
	    continue;
	  if ((unsigned) bb->index != i)
	    bitmap_set_bit (need_eh_cleanup, bb->index);
	}

      gimple_purge_all_dead_eh_edges (need_eh_cleanup);
      bitmap_clear (need_eh_cleanup);
    }

  /* Fixup stmts that became noreturn calls.  This may require splitting
     blocks and thus isn't possible during the dominator walk or before
     jump threading finished.  Do this in reverse order so we don't
     inadvertedly remove a stmt we want to fixup by visiting a dominating
     now noreturn call first.  */
  while (!need_noreturn_fixup.is_empty ())
    {
      gimple *stmt = need_noreturn_fixup.pop ();
      if (dump_file && dump_flags & TDF_DETAILS)
	{
	  fprintf (dump_file, "Fixing up noreturn call ");
	  print_gimple_stmt (dump_file, stmt, 0);
	  fprintf (dump_file, "\n");
	}
      fixup_noreturn_call (stmt);
    }

  statistics_counter_event (fun, "Redundant expressions eliminated",
			    opt_stats.num_re);
  statistics_counter_event (fun, "Constants propagated",
			    opt_stats.num_const_prop);
  statistics_counter_event (fun, "Copies propagated",
			    opt_stats.num_copy_prop);

  /* Debugging dumps.  */
  if (dump_file && (dump_flags & TDF_STATS))
    dump_dominator_optimization_stats (dump_file, avail_exprs);

  loop_optimizer_finalize ();

  /* Delete our main hashtable.  */
  delete avail_exprs;
  avail_exprs = NULL;

  /* Free asserted bitmaps and stacks.  */
  BITMAP_FREE (need_eh_cleanup);
  need_noreturn_fixup.release ();
  delete avail_exprs_stack;
  delete const_and_copies;

  /* Free the value-handle array.  */
  threadedge_finalize_values ();

  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_dominator (gcc::context *ctxt)
{
  return new pass_dominator (ctxt);
}

/* A hack until we remove threading from tree-vrp.c and bring the
   simplification routine into the dom_opt_dom_walker class.  */
static class vr_values *x_vr_values;

/* A trivial wrapper so that we can present the generic jump
   threading code with a simple API for simplifying statements.

   ?? This should be cleaned up.  There's a virtually identical copy
   of this function in tree-vrp.c.  */

static tree
simplify_stmt_for_jump_threading (gimple *stmt,
				  gimple *within_stmt ATTRIBUTE_UNUSED,
				  class avail_exprs_stack *avail_exprs_stack,
				  basic_block bb ATTRIBUTE_UNUSED)
{
  /* First query our hash table to see if the expression is available
     there.  A non-NULL return value will be either a constant or another
     SSA_NAME.  */
  tree cached_lhs =  avail_exprs_stack->lookup_avail_expr (stmt, false, true);
  if (cached_lhs)
    return cached_lhs;

  /* If the hash table query failed, query VRP information.  This is
     essentially the same as tree-vrp's simplification routine.  The
     copy in tree-vrp is scheduled for removal in gcc-9.  */
  if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
    {
      simplify_using_ranges simplifier (x_vr_values);
      return simplifier.vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
						  gimple_cond_lhs (cond_stmt),
						  gimple_cond_rhs (cond_stmt),
						  within_stmt);
    }

  if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
    {
      tree op = gimple_switch_index (switch_stmt);
      if (TREE_CODE (op) != SSA_NAME)
	return NULL_TREE;

      const value_range_equiv *vr = x_vr_values->get_value_range (op);
      return find_case_label_range (switch_stmt, vr);
    }

  if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
    {
      tree lhs = gimple_assign_lhs (assign_stmt);
      if (TREE_CODE (lhs) == SSA_NAME
	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
	  && stmt_interesting_for_vrp (stmt))
	{
	  edge dummy_e;
	  tree dummy_tree;
	  value_range_equiv new_vr;
	  x_vr_values->extract_range_from_stmt (stmt, &dummy_e,
						&dummy_tree, &new_vr);
	  tree singleton;
	  if (new_vr.singleton_p (&singleton))
	    return singleton;
	}
    }
  return NULL;
}

/* Valueize hook for gimple_fold_stmt_to_constant_1.  */

static tree
dom_valueize (tree t)
{
  if (TREE_CODE (t) == SSA_NAME)
    {
      tree tem = SSA_NAME_VALUE (t);
      if (tem)
	return tem;
    }
  return t;
}

/* We have just found an equivalence for LHS on an edge E.
   Look backwards to other uses of LHS and see if we can derive
   additional equivalences that are valid on edge E.  */
static void
back_propagate_equivalences (tree lhs, edge e,
			     class const_and_copies *const_and_copies)
{
  use_operand_p use_p;
  imm_use_iterator iter;
  bitmap domby = NULL;
  basic_block dest = e->dest;

  /* Iterate over the uses of LHS to see if any dominate E->dest.
     If so, they may create useful equivalences too.

     ???  If the code gets re-organized to a worklist to catch more
     indirect opportunities and it is made to handle PHIs then this
     should only consider use_stmts in basic-blocks we have already visited.  */
  FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
    {
      gimple *use_stmt = USE_STMT (use_p);

      /* Often the use is in DEST, which we trivially know we can't use.
	 This is cheaper than the dominator set tests below.  */
      if (dest == gimple_bb (use_stmt))
	continue;

      /* Filter out statements that can never produce a useful
	 equivalence.  */
      tree lhs2 = gimple_get_lhs (use_stmt);
      if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
	continue;

      /* Profiling has shown the domination tests here can be fairly
	 expensive.  We get significant improvements by building the
	 set of blocks that dominate BB.  We can then just test
	 for set membership below.

	 We also initialize the set lazily since often the only uses
	 are going to be in the same block as DEST.  */
      if (!domby)
	{
	  domby = BITMAP_ALLOC (NULL);
	  basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest);
	  while (bb)
	    {
	      bitmap_set_bit (domby, bb->index);
	      bb = get_immediate_dominator (CDI_DOMINATORS, bb);
	    }
	}

      /* This tests if USE_STMT does not dominate DEST.  */
      if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
	continue;

      /* At this point USE_STMT dominates DEST and may result in a
	 useful equivalence.  Try to simplify its RHS to a constant
	 or SSA_NAME.  */
      tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
						 no_follow_ssa_edges);
      if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
	record_equality (lhs2, res, const_and_copies);
    }

  if (domby)
    BITMAP_FREE (domby);
}

/* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
   by traversing edge E (which are cached in E->aux).

   Callers are responsible for managing the unwinding markers.  */
void
record_temporary_equivalences (edge e,
			       class const_and_copies *const_and_copies,
			       class avail_exprs_stack *avail_exprs_stack)
{
  int i;
  class edge_info *edge_info = (class edge_info *) e->aux;

  /* If we have info associated with this edge, record it into
     our equivalence tables.  */
  if (edge_info)
    {
      cond_equivalence *eq;
      /* If we have 0 = COND or 1 = COND equivalences, record them
	 into our expression hash tables.  */
      for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
	avail_exprs_stack->record_cond (eq);

      edge_info::equiv_pair *seq;
      for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
	{
	  tree lhs = seq->first;
	  if (!lhs || TREE_CODE (lhs) != SSA_NAME)
	    continue;

	  /* Record the simple NAME = VALUE equivalence.  */
	  tree rhs = seq->second;

	  /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
	     cheaper to compute than the other, then set up the equivalence
	     such that we replace the expensive one with the cheap one.

	     If they are the same cost to compute, then do not record
	     anything.  */
	  if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
	    {
	      gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
	      int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);

	      gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
	      int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);

	      if (rhs_cost > lhs_cost)
	        record_equality (rhs, lhs, const_and_copies);
	      else if (rhs_cost < lhs_cost)
	        record_equality (lhs, rhs, const_and_copies);
	    }
	  else
	    record_equality (lhs, rhs, const_and_copies);


	  /* Any equivalence found for LHS may result in additional
	     equivalences for other uses of LHS that we have already
	     processed.  */
	  back_propagate_equivalences (lhs, e, const_and_copies);
	}
    }
}

/* PHI nodes can create equivalences too.

   Ignoring any alternatives which are the same as the result, if
   all the alternatives are equal, then the PHI node creates an
   equivalence.  */

static void
record_equivalences_from_phis (basic_block bb)
{
  gphi_iterator gsi;

  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
    {
      gphi *phi = gsi.phi ();

      /* We might eliminate the PHI, so advance GSI now.  */
      gsi_next (&gsi);

      tree lhs = gimple_phi_result (phi);
      tree rhs = NULL;
      size_t i;

      for (i = 0; i < gimple_phi_num_args (phi); i++)
	{
	  tree t = gimple_phi_arg_def (phi, i);

	  /* Ignore alternatives which are the same as our LHS.  Since
	     LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
	     can simply compare pointers.  */
	  if (lhs == t)
	    continue;

	  /* If the associated edge is not marked as executable, then it
	     can be ignored.  */
	  if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
	    continue;

	  t = dom_valueize (t);

	  /* If T is an SSA_NAME and its associated edge is a backedge,
	     then quit as we cannot utilize this equivalence.  */
	  if (TREE_CODE (t) == SSA_NAME
	      && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
	    break;

	  /* If we have not processed an alternative yet, then set
	     RHS to this alternative.  */
	  if (rhs == NULL)
	    rhs = t;
	  /* If we have processed an alternative (stored in RHS), then
	     see if it is equal to this one.  If it isn't, then stop
	     the search.  */
	  else if (! operand_equal_for_phi_arg_p (rhs, t))
	    break;
	}

      /* If we had no interesting alternatives, then all the RHS alternatives
	 must have been the same as LHS.  */
      if (!rhs)
	rhs = lhs;

      /* If we managed to iterate through each PHI alternative without
	 breaking out of the loop, then we have a PHI which may create
	 a useful equivalence.  We do not need to record unwind data for
	 this, since this is a true assignment and not an equivalence
	 inferred from a comparison.  All uses of this ssa name are dominated
	 by this assignment, so unwinding just costs time and space.  */
      if (i == gimple_phi_num_args (phi))
	{
	  if (may_propagate_copy (lhs, rhs))
	    set_ssa_name_value (lhs, rhs);
	  else if (virtual_operand_p (lhs))
	    {
	      gimple *use_stmt;
	      imm_use_iterator iter;
	      use_operand_p use_p;
	      /* For virtual operands we have to propagate into all uses as
	         otherwise we will create overlapping life-ranges.  */
	      FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
	        FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
	          SET_USE (use_p, rhs);
	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
	        SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
	      gimple_stmt_iterator tmp_gsi = gsi_for_stmt (phi);
	      remove_phi_node (&tmp_gsi, true);
	    }
	}
    }
}

/* Record any equivalences created by the incoming edge to BB into
   CONST_AND_COPIES and AVAIL_EXPRS_STACK.  If BB has more than one
   incoming edge, then no equivalence is created.  */

static void
record_equivalences_from_incoming_edge (basic_block bb,
    class const_and_copies *const_and_copies,
    class avail_exprs_stack *avail_exprs_stack)
{
  edge e;
  basic_block parent;

  /* If our parent block ended with a control statement, then we may be
     able to record some equivalences based on which outgoing edge from
     the parent was followed.  */
  parent = get_immediate_dominator (CDI_DOMINATORS, bb);

  e = single_pred_edge_ignoring_loop_edges (bb, true);

  /* If we had a single incoming edge from our parent block, then enter
     any data associated with the edge into our tables.  */
  if (e && e->src == parent)
    record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
}

/* Dump statistics for the hash table HTAB.  */

static void
htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
{
  fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
	   (long) htab.size (),
	   (long) htab.elements (),
	   htab.collisions ());
}

/* Dump SSA statistics on FILE.  */

static void
dump_dominator_optimization_stats (FILE *file,
				   hash_table<expr_elt_hasher> *avail_exprs)
{
  fprintf (file, "Total number of statements:                   %6ld\n\n",
	   opt_stats.num_stmts);
  fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
           opt_stats.num_exprs_considered);

  fprintf (file, "\nHash table statistics:\n");

  fprintf (file, "    avail_exprs: ");
  htab_statistics (file, *avail_exprs);
}


/* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
   This constrains the cases in which we may treat this as assignment.  */

static void
record_equality (tree x, tree y, class const_and_copies *const_and_copies)
{
  tree prev_x = NULL, prev_y = NULL;

  if (tree_swap_operands_p (x, y))
    std::swap (x, y);

  /* Most of the time tree_swap_operands_p does what we want.  But there
     are cases where we know one operand is better for copy propagation than
     the other.  Given no other code cares about ordering of equality
     comparison operators for that purpose, we just handle the special cases
     here.  */
  if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
    {
      /* If one operand is a single use operand, then make it
	 X.  This will preserve its single use properly and if this
	 conditional is eliminated, the computation of X can be
	 eliminated as well.  */
      if (has_single_use (y) && ! has_single_use (x))
	std::swap (x, y);
    }
  if (TREE_CODE (x) == SSA_NAME)
    prev_x = SSA_NAME_VALUE (x);
  if (TREE_CODE (y) == SSA_NAME)
    prev_y = SSA_NAME_VALUE (y);

  /* If one of the previous values is invariant, or invariant in more loops
     (by depth), then use that.
     Otherwise it doesn't matter which value we choose, just so
     long as we canonicalize on one value.  */
  if (is_gimple_min_invariant (y))
    ;
  else if (is_gimple_min_invariant (x))
    prev_x = x, x = y, y = prev_x, prev_x = prev_y;
  else if (prev_x && is_gimple_min_invariant (prev_x))
    x = y, y = prev_x, prev_x = prev_y;
  else if (prev_y)
    y = prev_y;

  /* After the swapping, we must have one SSA_NAME.  */
  if (TREE_CODE (x) != SSA_NAME)
    return;

  /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
     variable compared against zero.  If we're honoring signed zeros,
     then we cannot record this value unless we know that the value is
     nonzero.  */
  if (HONOR_SIGNED_ZEROS (x)
      && (TREE_CODE (y) != REAL_CST
	  || real_equal (&dconst0, &TREE_REAL_CST (y))))
    return;

  const_and_copies->record_const_or_copy (x, y, prev_x);
}

/* Returns true when STMT is a simple iv increment.  It detects the
   following situation:

   i_1 = phi (..., i_k)
   [...]
   i_j = i_{j-1}  for each j : 2 <= j <= k-1
   [...]
   i_k = i_{k-1} +/- ...  */

bool
simple_iv_increment_p (gimple *stmt)
{
  enum tree_code code;
  tree lhs, preinc;
  gimple *phi;
  size_t i;

  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return false;

  lhs = gimple_assign_lhs (stmt);
  if (TREE_CODE (lhs) != SSA_NAME)
    return false;

  code = gimple_assign_rhs_code (stmt);
  if (code != PLUS_EXPR
      && code != MINUS_EXPR
      && code != POINTER_PLUS_EXPR)
    return false;

  preinc = gimple_assign_rhs1 (stmt);
  if (TREE_CODE (preinc) != SSA_NAME)
    return false;

  phi = SSA_NAME_DEF_STMT (preinc);
  while (gimple_code (phi) != GIMPLE_PHI)
    {
      /* Follow trivial copies, but not the DEF used in a back edge,
	 so that we don't prevent coalescing.  */
      if (!gimple_assign_ssa_name_copy_p (phi))
	return false;
      preinc = gimple_assign_rhs1 (phi);
      phi = SSA_NAME_DEF_STMT (preinc);
    }

  for (i = 0; i < gimple_phi_num_args (phi); i++)
    if (gimple_phi_arg_def (phi, i) == lhs)
      return true;

  return false;
}

/* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
   successors of BB.  */

static void
cprop_into_successor_phis (basic_block bb,
			   class const_and_copies *const_and_copies)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      int indx;
      gphi_iterator gsi;

      /* If this is an abnormal edge, then we do not want to copy propagate
	 into the PHI alternative associated with this edge.  */
      if (e->flags & EDGE_ABNORMAL)
	continue;

      gsi = gsi_start_phis (e->dest);
      if (gsi_end_p (gsi))
	continue;

      /* We may have an equivalence associated with this edge.  While
	 we cannot propagate it into non-dominated blocks, we can
	 propagate them into PHIs in non-dominated blocks.  */

      /* Push the unwind marker so we can reset the const and copies
	 table back to its original state after processing this edge.  */
      const_and_copies->push_marker ();

      /* Extract and record any simple NAME = VALUE equivalences.

	 Don't bother with [01] = COND equivalences, they're not useful
	 here.  */
      class edge_info *edge_info = (class edge_info *) e->aux;

      if (edge_info)
	{
	  edge_info::equiv_pair *seq;
	  for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
	    {
	      tree lhs = seq->first;
	      tree rhs = seq->second;

	      if (lhs && TREE_CODE (lhs) == SSA_NAME)
		const_and_copies->record_const_or_copy (lhs, rhs);
	    }

	}

      indx = e->dest_idx;
      for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  tree new_val;
	  use_operand_p orig_p;
	  tree orig_val;
          gphi *phi = gsi.phi ();

	  /* The alternative may be associated with a constant, so verify
	     it is an SSA_NAME before doing anything with it.  */
	  orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
	  orig_val = get_use_from_ptr (orig_p);
	  if (TREE_CODE (orig_val) != SSA_NAME)
	    continue;

	  /* If we have *ORIG_P in our constant/copy table, then replace
	     ORIG_P with its value in our constant/copy table.  */
	  new_val = SSA_NAME_VALUE (orig_val);
	  if (new_val
	      && new_val != orig_val
	      && may_propagate_copy (orig_val, new_val))
	    propagate_value (orig_p, new_val);
	}

      const_and_copies->pop_to_marker ();
    }
}

edge
dom_opt_dom_walker::before_dom_children (basic_block bb)
{
  gimple_stmt_iterator gsi;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);

  evrp_range_analyzer.enter (bb);

  /* Push a marker on the stacks of local information so that we know how
     far to unwind when we finalize this block.  */
  m_avail_exprs_stack->push_marker ();
  m_const_and_copies->push_marker ();

  record_equivalences_from_incoming_edge (bb, m_const_and_copies,
					  m_avail_exprs_stack);

  /* PHI nodes can create equivalences too.  */
  record_equivalences_from_phis (bb);

  /* Create equivalences from redundant PHIs.  PHIs are only truly
     redundant when they exist in the same block, so push another
     marker and unwind right afterwards.  */
  m_avail_exprs_stack->push_marker ();
  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    eliminate_redundant_computations (&gsi, m_const_and_copies,
				      m_avail_exprs_stack);
  m_avail_exprs_stack->pop_to_marker ();

  edge taken_edge = NULL;
  /* Initialize visited flag ahead of us, it has undefined state on
     pass entry.  */
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    gimple_set_visited (gsi_stmt (gsi), false);
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
    {
      /* Do not optimize a stmt twice, substitution might end up with
         _3 = _3 which is not valid.  */
      if (gimple_visited_p (gsi_stmt (gsi)))
	{
	  gsi_next (&gsi);
	  continue;
	}

      /* Compute range information and optimize the stmt.  */
      evrp_range_analyzer.record_ranges_from_stmt (gsi_stmt (gsi), false);
      bool removed_p = false;
      taken_edge = this->optimize_stmt (bb, &gsi, &removed_p);
      if (!removed_p)
	gimple_set_visited (gsi_stmt (gsi), true);

      /* Go back and visit stmts inserted by folding after substituting
	 into the stmt at gsi.  */
      if (gsi_end_p (gsi))
	{
	  gcc_checking_assert (removed_p);
	  gsi = gsi_last_bb (bb);
	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)))
	    gsi_prev (&gsi);
	}
      else
	{
	  do
	    {
	      gsi_prev (&gsi);
	    }
	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)));
	}
      if (gsi_end_p (gsi))
	gsi = gsi_start_bb (bb);
      else
	gsi_next (&gsi);
    }

  /* Now prepare to process dominated blocks.  */
  record_edge_info (bb);
  cprop_into_successor_phis (bb, m_const_and_copies);
  if (taken_edge && !dbg_cnt (dom_unreachable_edges))
    return NULL;

  return taken_edge;
}

/* We have finished processing the dominator children of BB, perform
   any finalization actions in preparation for leaving this node in
   the dominator tree.  */

void
dom_opt_dom_walker::after_dom_children (basic_block bb)
{
  x_vr_values = &evrp_range_analyzer;
  thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
			 m_avail_exprs_stack,
			 &evrp_range_analyzer,
			 simplify_stmt_for_jump_threading);
  x_vr_values = NULL;

  /* These remove expressions local to BB from the tables.  */
  m_avail_exprs_stack->pop_to_marker ();
  m_const_and_copies->pop_to_marker ();
  evrp_range_analyzer.leave (bb);
}

/* Search for redundant computations in STMT.  If any are found, then
   replace them with the variable holding the result of the computation.

   If safe, record this expression into AVAIL_EXPRS_STACK and
   CONST_AND_COPIES.  */

static void
eliminate_redundant_computations (gimple_stmt_iterator* gsi,
				  class const_and_copies *const_and_copies,
				  class avail_exprs_stack *avail_exprs_stack)
{
  tree expr_type;
  tree cached_lhs;
  tree def;
  bool insert = true;
  bool assigns_var_p = false;

  gimple *stmt = gsi_stmt (*gsi);

  if (gimple_code (stmt) == GIMPLE_PHI)
    def = gimple_phi_result (stmt);
  else
    def = gimple_get_lhs (stmt);

  /* Certain expressions on the RHS can be optimized away, but cannot
     themselves be entered into the hash tables.  */
  if (! def
      || TREE_CODE (def) != SSA_NAME
      || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
      || gimple_vdef (stmt)
      /* Do not record equivalences for increments of ivs.  This would create
	 overlapping live ranges for a very questionable gain.  */
      || simple_iv_increment_p (stmt))
    insert = false;

  /* Check if the expression has been computed before.  */
  cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);

  opt_stats.num_exprs_considered++;

  /* Get the type of the expression we are trying to optimize.  */
  if (is_gimple_assign (stmt))
    {
      expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
      assigns_var_p = true;
    }
  else if (gimple_code (stmt) == GIMPLE_COND)
    expr_type = boolean_type_node;
  else if (is_gimple_call (stmt))
    {
      gcc_assert (gimple_call_lhs (stmt));
      expr_type = TREE_TYPE (gimple_call_lhs (stmt));
      assigns_var_p = true;
    }
  else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
    expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
  else if (gimple_code (stmt) == GIMPLE_PHI)
    /* We can't propagate into a phi, so the logic below doesn't apply.
       Instead record an equivalence between the cached LHS and the
       PHI result of this statement, provided they are in the same block.
       This should be sufficient to kill the redundant phi.  */
    {
      if (def && cached_lhs)
	const_and_copies->record_const_or_copy (def, cached_lhs);
      return;
    }
  else
    gcc_unreachable ();

  if (!cached_lhs)
    return;

  /* It is safe to ignore types here since we have already done
     type checking in the hashing and equality routines.  In fact
     type checking here merely gets in the way of constant
     propagation.  Also, make sure that it is safe to propagate
     CACHED_LHS into the expression in STMT.  */
  if ((TREE_CODE (cached_lhs) != SSA_NAME
       && (assigns_var_p
           || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
      || may_propagate_copy_into_stmt (stmt, cached_lhs))
  {
      gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
			   || is_gimple_min_invariant (cached_lhs));

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replaced redundant expr '");
	  print_gimple_expr (dump_file, stmt, 0, dump_flags);
	  fprintf (dump_file, "' with '");
	  print_generic_expr (dump_file, cached_lhs, dump_flags);
          fprintf (dump_file, "'\n");
	}

      opt_stats.num_re++;

      if (assigns_var_p
	  && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
	cached_lhs = fold_convert (expr_type, cached_lhs);

      propagate_tree_value_into_stmt (gsi, cached_lhs);

      /* Since it is always necessary to mark the result as modified,
         perhaps we should move this into propagate_tree_value_into_stmt
         itself.  */
      gimple_set_modified (gsi_stmt (*gsi), true);
  }
}

/* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
   the available expressions table or the const_and_copies table.
   Detect and record those equivalences into AVAIL_EXPRS_STACK. 

   We handle only very simple copy equivalences here.  The heavy
   lifing is done by eliminate_redundant_computations.  */

static void
record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
			       class avail_exprs_stack *avail_exprs_stack)
{
  tree lhs;
  enum tree_code lhs_code;

  gcc_assert (is_gimple_assign (stmt));

  lhs = gimple_assign_lhs (stmt);
  lhs_code = TREE_CODE (lhs);

  if (lhs_code == SSA_NAME
      && gimple_assign_single_p (stmt))
    {
      tree rhs = gimple_assign_rhs1 (stmt);

      /* If the RHS of the assignment is a constant or another variable that
	 may be propagated, register it in the CONST_AND_COPIES table.  We
	 do not need to record unwind data for this, since this is a true
	 assignment and not an equivalence inferred from a comparison.  All
	 uses of this ssa name are dominated by this assignment, so unwinding
	 just costs time and space.  */
      if (may_optimize_p
	  && (TREE_CODE (rhs) == SSA_NAME
	      || is_gimple_min_invariant (rhs)))
	{
	  rhs = dom_valueize (rhs);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "==== ASGN ");
	      print_generic_expr (dump_file, lhs);
	      fprintf (dump_file, " = ");
	      print_generic_expr (dump_file, rhs);
	      fprintf (dump_file, "\n");
	    }

	  set_ssa_name_value (lhs, rhs);
	}
    }

  /* Make sure we can propagate &x + CST.  */
  if (lhs_code == SSA_NAME
      && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
      && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
      && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
    {
      tree op0 = gimple_assign_rhs1 (stmt);
      tree op1 = gimple_assign_rhs2 (stmt);
      tree new_rhs
	= build1 (ADDR_EXPR, TREE_TYPE (op0),
		  fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)),
			       unshare_expr (op0), fold_convert (ptr_type_node,
								 op1)));
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "==== ASGN ");
	  print_generic_expr (dump_file, lhs);
	  fprintf (dump_file, " = ");
	  print_generic_expr (dump_file, new_rhs);
	  fprintf (dump_file, "\n");
	}

      set_ssa_name_value (lhs, new_rhs);
    }

  /* A memory store, even an aliased store, creates a useful
     equivalence.  By exchanging the LHS and RHS, creating suitable
     vops and recording the result in the available expression table,
     we may be able to expose more redundant loads.  */
  if (!gimple_has_volatile_ops (stmt)
      && gimple_references_memory_p (stmt)
      && gimple_assign_single_p (stmt)
      && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
	  || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
      && !is_gimple_reg (lhs))
    {
      tree rhs = gimple_assign_rhs1 (stmt);
      gassign *new_stmt;

      /* Build a new statement with the RHS and LHS exchanged.  */
      if (TREE_CODE (rhs) == SSA_NAME)
        {
          /* NOTE tuples.  The call to gimple_build_assign below replaced
             a call to build_gimple_modify_stmt, which did not set the
             SSA_NAME_DEF_STMT on the LHS of the assignment.  Doing so
             may cause an SSA validation failure, as the LHS may be a
             default-initialized name and should have no definition.  I'm
             a bit dubious of this, as the artificial statement that we
             generate here may in fact be ill-formed, but it is simply
             used as an internal device in this pass, and never becomes
             part of the CFG.  */
	  gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
          new_stmt = gimple_build_assign (rhs, lhs);
          SSA_NAME_DEF_STMT (rhs) = defstmt;
        }
      else
        new_stmt = gimple_build_assign (rhs, lhs);

      gimple_set_vuse (new_stmt, gimple_vdef (stmt));

      /* Finally enter the statement into the available expression
	 table.  */
      avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
    }
}

/* Replace *OP_P in STMT with any known equivalent value for *OP_P from
   CONST_AND_COPIES.  */

static void
cprop_operand (gimple *stmt, use_operand_p op_p, vr_values *vr_values)
{
  tree val;
  tree op = USE_FROM_PTR (op_p);

  /* If the operand has a known constant value or it is known to be a
     copy of some other variable, use the value or copy stored in
     CONST_AND_COPIES.  */
  val = SSA_NAME_VALUE (op);
  if (!val)
    val = vr_values->op_with_constant_singleton_value_range (op);

  if (val && val != op)
    {
      /* Do not replace hard register operands in asm statements.  */
      if (gimple_code (stmt) == GIMPLE_ASM
	  && !may_propagate_copy_into_asm (op))
	return;

      /* Certain operands are not allowed to be copy propagated due
	 to their interaction with exception handling and some GCC
	 extensions.  */
      if (!may_propagate_copy (op, val))
	return;

      /* Do not propagate copies into BIVs.
         See PR23821 and PR62217 for how this can disturb IV and
	 number of iteration analysis.  */
      if (TREE_CODE (val) != INTEGER_CST)
	{
	  gimple *def = SSA_NAME_DEF_STMT (op);
	  if (gimple_code (def) == GIMPLE_PHI
	      && gimple_bb (def)->loop_father->header == gimple_bb (def))
	    return;
	}

      /* Dump details.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replaced '");
	  print_generic_expr (dump_file, op, dump_flags);
	  fprintf (dump_file, "' with %s '",
		   (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
	  print_generic_expr (dump_file, val, dump_flags);
	  fprintf (dump_file, "'\n");
	}

      if (TREE_CODE (val) != SSA_NAME)
	opt_stats.num_const_prop++;
      else
	opt_stats.num_copy_prop++;

      propagate_value (op_p, val);

      /* And note that we modified this statement.  This is now
	 safe, even if we changed virtual operands since we will
	 rescan the statement and rewrite its operands again.  */
      gimple_set_modified (stmt, true);
    }
}

/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
   known value for that SSA_NAME (or NULL if no value is known).

   Propagate values from CONST_AND_COPIES into the uses, vuses and
   vdef_ops of STMT.  */

static void
cprop_into_stmt (gimple *stmt, vr_values *vr_values)
{
  use_operand_p op_p;
  ssa_op_iter iter;
  tree last_copy_propagated_op = NULL;

  FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
    {
      tree old_op = USE_FROM_PTR (op_p);

      /* If we have A = B and B = A in the copy propagation tables
	 (due to an equality comparison), avoid substituting B for A
	 then A for B in the trivially discovered cases.   This allows
	 optimization of statements were A and B appear as input
	 operands.  */
      if (old_op != last_copy_propagated_op)
	{
	  cprop_operand (stmt, op_p, vr_values);

	  tree new_op = USE_FROM_PTR (op_p);
	  if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
	    last_copy_propagated_op = new_op;
	}
    }
}

/* If STMT contains a relational test, try to convert it into an
   equality test if there is only a single value which can ever
   make the test true.

   For example, if the expression hash table contains:

    TRUE = (i <= 1)

   And we have a test within statement of i >= 1, then we can safely
   rewrite the test as i == 1 since there only a single value where
   the test is true.

   This is similar to code in VRP.  */

static void
test_for_singularity (gimple *stmt, gcond *dummy_cond,
		      avail_exprs_stack *avail_exprs_stack)
{
  /* We want to support gimple conditionals as well as assignments
     where the RHS contains a conditional.  */
  if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND)
    {
      enum tree_code code = ERROR_MARK;
      tree lhs, rhs;

      /* Extract the condition of interest from both forms we support.  */
      if (is_gimple_assign (stmt))
	{
	  code = gimple_assign_rhs_code (stmt);
	  lhs = gimple_assign_rhs1 (stmt);
	  rhs = gimple_assign_rhs2 (stmt);
	}
      else if (gimple_code (stmt) == GIMPLE_COND)
	{
	  code = gimple_cond_code (as_a <gcond *> (stmt));
	  lhs = gimple_cond_lhs (as_a <gcond *> (stmt));
	  rhs = gimple_cond_rhs (as_a <gcond *> (stmt));
	}

      /* We're looking for a relational test using LE/GE.  Also note we can
	 canonicalize LT/GT tests against constants into LE/GT tests.  */
      if (code == LE_EXPR || code == GE_EXPR
	  || ((code == LT_EXPR || code == GT_EXPR)
	       && TREE_CODE (rhs) == INTEGER_CST))
	{
	  /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR.  */
	  if (code == LT_EXPR)
	    rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
			       rhs, build_int_cst (TREE_TYPE (rhs), 1));

	  if (code == GT_EXPR)
	    rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
			       rhs, build_int_cst (TREE_TYPE (rhs), 1));

	  /* Determine the code we want to check for in the hash table.  */
	  enum tree_code test_code;
	  if (code == GE_EXPR || code == GT_EXPR)
	    test_code = LE_EXPR;
	  else
	    test_code = GE_EXPR;

	  /* Update the dummy statement so we can query the hash tables.  */
	  gimple_cond_set_code (dummy_cond, test_code);
	  gimple_cond_set_lhs (dummy_cond, lhs);
	  gimple_cond_set_rhs (dummy_cond, rhs);
	  tree cached_lhs
	    = avail_exprs_stack->lookup_avail_expr (dummy_cond, false, false);

	  /* If the lookup returned 1 (true), then the expression we
	     queried was in the hash table.  As a result there is only
	     one value that makes the original conditional true.  Update
	     STMT accordingly.  */
	  if (cached_lhs && integer_onep (cached_lhs))
	    {
	      if (is_gimple_assign (stmt))
		{
		  gimple_assign_set_rhs_code (stmt, EQ_EXPR);
		  gimple_assign_set_rhs2 (stmt, rhs);
		  gimple_set_modified (stmt, true);
		}
	      else
		{
		  gimple_set_modified (stmt, true);
		  gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR);
		  gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs);
		  gimple_set_modified (stmt, true);
		}
	    }
	}
    }
}

/* Optimize the statement in block BB pointed to by iterator SI.

   We try to perform some simplistic global redundancy elimination and
   constant propagation:

   1- To detect global redundancy, we keep track of expressions that have
      been computed in this block and its dominators.  If we find that the
      same expression is computed more than once, we eliminate repeated
      computations by using the target of the first one.

   2- Constant values and copy assignments.  This is used to do very
      simplistic constant and copy propagation.  When a constant or copy
      assignment is found, we map the value on the RHS of the assignment to
      the variable in the LHS in the CONST_AND_COPIES table.

   3- Very simple redundant store elimination is performed.

   4- We can simplify a condition to a constant or from a relational
      condition to an equality condition.  */

edge
dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si,
				   bool *removed_p)
{
  gimple *stmt, *old_stmt;
  bool may_optimize_p;
  bool modified_p = false;
  bool was_noreturn;
  edge retval = NULL;

  old_stmt = stmt = gsi_stmt (*si);
  was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Optimizing statement ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
    }

  update_stmt_if_modified (stmt);
  opt_stats.num_stmts++;

  /* Const/copy propagate into USES, VUSES and the RHS of VDEFs.  */
  cprop_into_stmt (stmt, &evrp_range_analyzer);

  /* If the statement has been modified with constant replacements,
     fold its RHS before checking for redundant computations.  */
  if (gimple_modified_p (stmt))
    {
      tree rhs = NULL;

      /* Try to fold the statement making sure that STMT is kept
	 up to date.  */
      if (fold_stmt (si))
	{
	  stmt = gsi_stmt (*si);
	  gimple_set_modified (stmt, true);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "  Folded to: ");
	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	    }
	}

      /* We only need to consider cases that can yield a gimple operand.  */
      if (gimple_assign_single_p (stmt))
        rhs = gimple_assign_rhs1 (stmt);
      else if (gimple_code (stmt) == GIMPLE_GOTO)
        rhs = gimple_goto_dest (stmt);
      else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
        /* This should never be an ADDR_EXPR.  */
        rhs = gimple_switch_index (swtch_stmt);

      if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
        recompute_tree_invariant_for_addr_expr (rhs);

      /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
	 even if fold_stmt updated the stmt already and thus cleared
	 gimple_modified_p flag on it.  */
      modified_p = true;
    }

  /* Check for redundant computations.  Do this optimization only
     for assignments that have no volatile ops and conditionals.  */
  may_optimize_p = (!gimple_has_side_effects (stmt)
                    && (is_gimple_assign (stmt)
                        || (is_gimple_call (stmt)
                            && gimple_call_lhs (stmt) != NULL_TREE)
                        || gimple_code (stmt) == GIMPLE_COND
                        || gimple_code (stmt) == GIMPLE_SWITCH));

  if (may_optimize_p)
    {
      if (gimple_code (stmt) == GIMPLE_CALL)
	{
	  /* Resolve __builtin_constant_p.  If it hasn't been
	     folded to integer_one_node by now, it's fairly
	     certain that the value simply isn't constant.  */
	  tree callee = gimple_call_fndecl (stmt);
	  if (callee
	      && fndecl_built_in_p (callee, BUILT_IN_CONSTANT_P))
	    {
	      propagate_tree_value_into_stmt (si, integer_zero_node);
	      stmt = gsi_stmt (*si);
	    }
	}

      if (gimple_code (stmt) == GIMPLE_COND)
	{
	  tree lhs = gimple_cond_lhs (stmt);
	  tree rhs = gimple_cond_rhs (stmt);

	  /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
	     then this conditional is computable at compile time.  We can just
	     shove either 0 or 1 into the LHS, mark the statement as modified
	     and all the right things will just happen below.

	     Note this would apply to any case where LHS has a range
	     narrower than its type implies and RHS is outside that
	     narrower range.  Future work.  */
	  if (TREE_CODE (lhs) == SSA_NAME
	      && ssa_name_has_boolean_range (lhs)
	      && TREE_CODE (rhs) == INTEGER_CST
	      && ! (integer_zerop (rhs) || integer_onep (rhs)))
	    {
	      gimple_cond_set_lhs (as_a <gcond *> (stmt),
				   fold_convert (TREE_TYPE (lhs),
						 integer_zero_node));
	      gimple_set_modified (stmt, true);
	    }
	  else if (TREE_CODE (lhs) == SSA_NAME)
	    {
	      /* Exploiting EVRP data is not yet fully integrated into DOM
		 but we need to do something for this case to avoid regressing
		 udr4.f90 and new1.C which have unexecutable blocks with
		 undefined behavior that get diagnosed if they're left in the
		 IL because we've attached range information to new
		 SSA_NAMES.  */
	      update_stmt_if_modified (stmt);
	      edge taken_edge = NULL;
	      evrp_range_analyzer.vrp_visit_cond_stmt (as_a <gcond *> (stmt),
						       &taken_edge);
	      if (taken_edge)
		{
		  if (taken_edge->flags & EDGE_TRUE_VALUE)
		    gimple_cond_make_true (as_a <gcond *> (stmt));
		  else if (taken_edge->flags & EDGE_FALSE_VALUE)
		    gimple_cond_make_false (as_a <gcond *> (stmt));
		  else
		    gcc_unreachable ();
		  gimple_set_modified (stmt, true);
		  update_stmt (stmt);
		  cfg_altered = true;
		  return taken_edge;
		}
	    }
	}

      update_stmt_if_modified (stmt);
      eliminate_redundant_computations (si, m_const_and_copies,
					m_avail_exprs_stack);
      stmt = gsi_stmt (*si);

      /* Perform simple redundant store elimination.  */
      if (gimple_assign_single_p (stmt)
	  && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
	{
	  tree lhs = gimple_assign_lhs (stmt);
	  tree rhs = gimple_assign_rhs1 (stmt);
	  tree cached_lhs;
	  gassign *new_stmt;
	  rhs = dom_valueize (rhs);
	  /* Build a new statement with the RHS and LHS exchanged.  */
	  if (TREE_CODE (rhs) == SSA_NAME)
	    {
	      gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
	      new_stmt = gimple_build_assign (rhs, lhs);
	      SSA_NAME_DEF_STMT (rhs) = defstmt;
	    }
	  else
	    new_stmt = gimple_build_assign (rhs, lhs);
	  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
	  expr_hash_elt *elt = NULL;
	  cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
							       false, &elt);