diff options
Diffstat (limited to 'libjava/classpath/java/util/Arrays.java')
-rw-r--r-- | libjava/classpath/java/util/Arrays.java | 2510 |
1 files changed, 2510 insertions, 0 deletions
diff --git a/libjava/classpath/java/util/Arrays.java b/libjava/classpath/java/util/Arrays.java new file mode 100644 index 0000000..15c1a5f --- /dev/null +++ b/libjava/classpath/java/util/Arrays.java @@ -0,0 +1,2510 @@ +/* Arrays.java -- Utility class with methods to operate on arrays + Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 + Free Software Foundation, Inc. + +This file is part of GNU Classpath. + +GNU Classpath is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU Classpath is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU Classpath; see the file COPYING. If not, write to the +Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA +02110-1301 USA. + +Linking this library statically or dynamically with other modules is +making a combined work based on this library. Thus, the terms and +conditions of the GNU General Public License cover the whole +combination. + +As a special exception, the copyright holders of this library give you +permission to link this library with independent modules to produce an +executable, regardless of the license terms of these independent +modules, and to copy and distribute the resulting executable under +terms of your choice, provided that you also meet, for each linked +independent module, the terms and conditions of the license of that +module. An independent module is a module which is not derived from +or based on this library. If you modify this library, you may extend +this exception to your version of the library, but you are not +obligated to do so. If you do not wish to do so, delete this +exception statement from your version. */ + + +package java.util; + +import java.io.Serializable; +import java.lang.reflect.Array; + +/** + * This class contains various static utility methods performing operations on + * arrays, and a method to provide a List "view" of an array to facilitate + * using arrays with Collection-based APIs. All methods throw a + * {@link NullPointerException} if the parameter array is null. + * <p> + * + * Implementations may use their own algorithms, but must obey the general + * properties; for example, the sort must be stable and n*log(n) complexity. + * Sun's implementation of sort, and therefore ours, is a tuned quicksort, + * adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort + * Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 + * (November 1993). This algorithm offers n*log(n) performance on many data + * sets that cause other quicksorts to degrade to quadratic performance. + * + * @author Original author unknown + * @author Bryce McKinlay + * @author Eric Blake (ebb9@email.byu.edu) + * @see Comparable + * @see Comparator + * @since 1.2 + * @status updated to 1.4 + */ +public class Arrays +{ + /** + * This class is non-instantiable. + */ + private Arrays() + { + } + + +// binarySearch + /** + * Perform a binary search of a byte array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @return the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(byte[] a, byte key) + { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) + { + mid = (low + hi) >> 1; + final byte d = a[mid]; + if (d == key) + return mid; + else if (d > key) + hi = mid - 1; + else + // This gets the insertion point right on the last loop. + low = ++mid; + } + return -mid - 1; + } + + /** + * Perform a binary search of a char array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @return the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(char[] a, char key) + { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) + { + mid = (low + hi) >> 1; + final char d = a[mid]; + if (d == key) + return mid; + else if (d > key) + hi = mid - 1; + else + // This gets the insertion point right on the last loop. + low = ++mid; + } + return -mid - 1; + } + + /** + * Perform a binary search of a short array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @return the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(short[] a, short key) + { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) + { + mid = (low + hi) >> 1; + final short d = a[mid]; + if (d == key) + return mid; + else if (d > key) + hi = mid - 1; + else + // This gets the insertion point right on the last loop. + low = ++mid; + } + return -mid - 1; + } + + /** + * Perform a binary search of an int array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @return the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(int[] a, int key) + { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) + { + mid = (low + hi) >> 1; + final int d = a[mid]; + if (d == key) + return mid; + else if (d > key) + hi = mid - 1; + else + // This gets the insertion point right on the last loop. + low = ++mid; + } + return -mid - 1; + } + + /** + * Perform a binary search of a long array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @return the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(long[] a, long key) + { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) + { + mid = (low + hi) >> 1; + final long d = a[mid]; + if (d == key) + return mid; + else if (d > key) + hi = mid - 1; + else + // This gets the insertion point right on the last loop. + low = ++mid; + } + return -mid - 1; + } + + /** + * Perform a binary search of a float array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @return the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(float[] a, float key) + { + // Must use Float.compare to take into account NaN, +-0. + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) + { + mid = (low + hi) >> 1; + final int r = Float.compare(a[mid], key); + if (r == 0) + return mid; + else if (r > 0) + hi = mid - 1; + else + // This gets the insertion point right on the last loop + low = ++mid; + } + return -mid - 1; + } + + /** + * Perform a binary search of a double array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @return the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(double[] a, double key) + { + // Must use Double.compare to take into account NaN, +-0. + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) + { + mid = (low + hi) >> 1; + final int r = Double.compare(a[mid], key); + if (r == 0) + return mid; + else if (r > 0) + hi = mid - 1; + else + // This gets the insertion point right on the last loop + low = ++mid; + } + return -mid - 1; + } + + /** + * Perform a binary search of an Object array for a key, using the natural + * ordering of the elements. The array must be sorted (as by the sort() + * method) - if it is not, the behaviour of this method is undefined, and may + * be an infinite loop. Further, the key must be comparable with every item + * in the array. If the array contains the key more than once, any one of + * them may be found. Note: although the specification allows for an infinite + * loop if the array is unsorted, it will not happen in this (JCL) + * implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @return the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + * @throws ClassCastException if key could not be compared with one of the + * elements of a + * @throws NullPointerException if a null element in a is compared + */ + public static int binarySearch(Object[] a, Object key) + { + return binarySearch(a, key, null); + } + + /** + * Perform a binary search of an Object array for a key, using a supplied + * Comparator. The array must be sorted (as by the sort() method with the + * same Comparator) - if it is not, the behaviour of this method is + * undefined, and may be an infinite loop. Further, the key must be + * comparable with every item in the array. If the array contains the key + * more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this (JCL) implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @param c the comparator by which the array is sorted; or null to + * use the elements' natural order + * @return the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + * @throws ClassCastException if key could not be compared with one of the + * elements of a + * @throws NullPointerException if a null element is compared with natural + * ordering (only possible when c is null) + */ + public static int binarySearch(Object[] a, Object key, Comparator c) + { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) + { + mid = (low + hi) >> 1; + final int d = Collections.compare(key, a[mid], c); + if (d == 0) + return mid; + else if (d < 0) + hi = mid - 1; + else + // This gets the insertion point right on the last loop + low = ++mid; + } + return -mid - 1; + } + + +// equals + /** + * Compare two boolean arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @return true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(boolean[] a1, boolean[] a2) + { + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) + return true; + + if (null == a1 || null == a2) + return false; + + // If they're the same length, test each element + if (a1.length == a2.length) + { + int i = a1.length; + while (--i >= 0) + if (a1[i] != a2[i]) + return false; + return true; + } + return false; + } + + /** + * Compare two byte arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @return true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(byte[] a1, byte[] a2) + { + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) + return true; + + if (null == a1 || null == a2) + return false; + + // If they're the same length, test each element + if (a1.length == a2.length) + { + int i = a1.length; + while (--i >= 0) + if (a1[i] != a2[i]) + return false; + return true; + } + return false; + } + + /** + * Compare two char arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @return true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(char[] a1, char[] a2) + { + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) + return true; + + if (null == a1 || null == a2) + return false; + + // If they're the same length, test each element + if (a1.length == a2.length) + { + int i = a1.length; + while (--i >= 0) + if (a1[i] != a2[i]) + return false; + return true; + } + return false; + } + + /** + * Compare two short arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @return true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(short[] a1, short[] a2) + { + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) + return true; + + if (null == a1 || null == a2) + return false; + + // If they're the same length, test each element + if (a1.length == a2.length) + { + int i = a1.length; + while (--i >= 0) + if (a1[i] != a2[i]) + return false; + return true; + } + return false; + } + + /** + * Compare two int arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @return true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(int[] a1, int[] a2) + { + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) + return true; + + if (null == a1 || null == a2) + return false; + + // If they're the same length, test each element + if (a1.length == a2.length) + { + int i = a1.length; + while (--i >= 0) + if (a1[i] != a2[i]) + return false; + return true; + } + return false; + } + + /** + * Compare two long arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @return true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(long[] a1, long[] a2) + { + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) + return true; + + if (null == a1 || null == a2) + return false; + + // If they're the same length, test each element + if (a1.length == a2.length) + { + int i = a1.length; + while (--i >= 0) + if (a1[i] != a2[i]) + return false; + return true; + } + return false; + } + + /** + * Compare two float arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @return true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(float[] a1, float[] a2) + { + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) + return true; + + if (null == a1 || null == a2) + return false; + + // Must use Float.compare to take into account NaN, +-0. + // If they're the same length, test each element + if (a1.length == a2.length) + { + int i = a1.length; + while (--i >= 0) + if (Float.compare(a1[i], a2[i]) != 0) + return false; + return true; + } + return false; + } + + /** + * Compare two double arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @return true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(double[] a1, double[] a2) + { + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) + return true; + + if (null == a1 || null == a2) + return false; + + // Must use Double.compare to take into account NaN, +-0. + // If they're the same length, test each element + if (a1.length == a2.length) + { + int i = a1.length; + while (--i >= 0) + if (Double.compare(a1[i], a2[i]) != 0) + return false; + return true; + } + return false; + } + + /** + * Compare two Object arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @return true if a1 and a2 are both null, or if a1 is of the same length + * as a2, and for each 0 <= i < a.length, a1[i] == null ? + * a2[i] == null : a1[i].equals(a2[i]). + */ + public static boolean equals(Object[] a1, Object[] a2) + { + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) + return true; + + if (null == a1 || null == a2) + return false; + + // If they're the same length, test each element + if (a1.length == a2.length) + { + int i = a1.length; + while (--i >= 0) + if (! AbstractCollection.equals(a1[i], a2[i])) + return false; + return true; + } + return false; + } + + +// fill + /** + * Fill an array with a boolean value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(boolean[] a, boolean val) + { + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a boolean value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void fill(boolean[] a, int fromIndex, int toIndex, boolean val) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + for (int i = fromIndex; i < toIndex; i++) + a[i] = val; + } + + /** + * Fill an array with a byte value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(byte[] a, byte val) + { + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a byte value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void fill(byte[] a, int fromIndex, int toIndex, byte val) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + for (int i = fromIndex; i < toIndex; i++) + a[i] = val; + } + + /** + * Fill an array with a char value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(char[] a, char val) + { + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a char value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void fill(char[] a, int fromIndex, int toIndex, char val) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + for (int i = fromIndex; i < toIndex; i++) + a[i] = val; + } + + /** + * Fill an array with a short value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(short[] a, short val) + { + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a short value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void fill(short[] a, int fromIndex, int toIndex, short val) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + for (int i = fromIndex; i < toIndex; i++) + a[i] = val; + } + + /** + * Fill an array with an int value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(int[] a, int val) + { + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with an int value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void fill(int[] a, int fromIndex, int toIndex, int val) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + for (int i = fromIndex; i < toIndex; i++) + a[i] = val; + } + + /** + * Fill an array with a long value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(long[] a, long val) + { + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a long value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void fill(long[] a, int fromIndex, int toIndex, long val) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + for (int i = fromIndex; i < toIndex; i++) + a[i] = val; + } + + /** + * Fill an array with a float value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(float[] a, float val) + { + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a float value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void fill(float[] a, int fromIndex, int toIndex, float val) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + for (int i = fromIndex; i < toIndex; i++) + a[i] = val; + } + + /** + * Fill an array with a double value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(double[] a, double val) + { + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a double value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void fill(double[] a, int fromIndex, int toIndex, double val) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + for (int i = fromIndex; i < toIndex; i++) + a[i] = val; + } + + /** + * Fill an array with an Object value. + * + * @param a the array to fill + * @param val the value to fill it with + * @throws ClassCastException if val is not an instance of the element + * type of a. + */ + public static void fill(Object[] a, Object val) + { + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with an Object value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + * @throws ClassCastException if val is not an instance of the element + * type of a. + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void fill(Object[] a, int fromIndex, int toIndex, Object val) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + for (int i = fromIndex; i < toIndex; i++) + a[i] = val; + } + + +// sort + // Thanks to Paul Fisher (rao@gnu.org) for finding this quicksort algorithm + // as specified by Sun and porting it to Java. The algorithm is an optimised + // quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's + // "Engineering a Sort Function", Software-Practice and Experience, Vol. + // 23(11) P. 1249-1265 (November 1993). This algorithm gives n*log(n) + // performance on many arrays that would take quadratic time with a standard + // quicksort. + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the byte array to sort + */ + public static void sort(byte[] a) + { + qsort(a, 0, a.length); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the byte array to sort + * @param fromIndex the first index to sort (inclusive) + * @param toIndex the last index to sort (exclusive) + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void sort(byte[] a, int fromIndex, int toIndex) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + if (fromIndex < 0) + throw new ArrayIndexOutOfBoundsException(); + qsort(a, fromIndex, toIndex - fromIndex); + } + + /** + * Finds the index of the median of three array elements. + * + * @param a the first index + * @param b the second index + * @param c the third index + * @param d the array + * @return the index (a, b, or c) which has the middle value of the three + */ + private static int med3(int a, int b, int c, byte[] d) + { + return (d[a] < d[b] + ? (d[b] < d[c] ? b : d[a] < d[c] ? c : a) + : (d[b] > d[c] ? b : d[a] > d[c] ? c : a)); + } + + /** + * Swaps the elements at two locations of an array + * + * @param i the first index + * @param j the second index + * @param a the array + */ + private static void swap(int i, int j, byte[] a) + { + byte c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + /** + * Swaps two ranges of an array. + * + * @param i the first range start + * @param j the second range start + * @param n the element count + * @param a the array + */ + private static void vecswap(int i, int j, int n, byte[] a) + { + for ( ; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Performs a recursive modified quicksort. + * + * @param array the array to sort + * @param from the start index (inclusive) + * @param count the number of elements to sort + */ + private static void qsort(byte[] array, int from, int count) + { + // Use an insertion sort on small arrays. + if (count <= 7) + { + for (int i = from + 1; i < from + count; i++) + for (int j = i; j > from && array[j - 1] > array[j]; j--) + swap(j, j - 1, array); + return; + } + + // Determine a good median element. + int mid = count / 2; + int lo = from; + int hi = from + count - 1; + + if (count > 40) + { // big arrays, pseudomedian of 9 + int s = count / 8; + lo = med3(lo, lo + s, lo + 2 * s, array); + mid = med3(mid - s, mid, mid + s, array); + hi = med3(hi - 2 * s, hi - s, hi, array); + } + mid = med3(lo, mid, hi, array); + + int a, b, c, d; + int comp; + + // Pull the median element out of the fray, and use it as a pivot. + swap(from, mid, array); + a = b = from; + c = d = from + count - 1; + + // Repeatedly move b and c to each other, swapping elements so + // that all elements before index b are less than the pivot, and all + // elements after index c are greater than the pivot. a and b track + // the elements equal to the pivot. + while (true) + { + while (b <= c && (comp = array[b] - array[from]) <= 0) + { + if (comp == 0) + { + swap(a, b, array); + a++; + } + b++; + } + while (c >= b && (comp = array[c] - array[from]) >= 0) + { + if (comp == 0) + { + swap(c, d, array); + d--; + } + c--; + } + if (b > c) + break; + swap(b, c, array); + b++; + c--; + } + + // Swap pivot(s) back in place, the recurse on left and right sections. + hi = from + count; + int span; + span = Math.min(a - from, b - a); + vecswap(from, b - span, span, array); + + span = Math.min(d - c, hi - d - 1); + vecswap(b, hi - span, span, array); + + span = b - a; + if (span > 1) + qsort(array, from, span); + + span = d - c; + if (span > 1) + qsort(array, hi - span, span); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the char array to sort + */ + public static void sort(char[] a) + { + qsort(a, 0, a.length); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the char array to sort + * @param fromIndex the first index to sort (inclusive) + * @param toIndex the last index to sort (exclusive) + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void sort(char[] a, int fromIndex, int toIndex) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + if (fromIndex < 0) + throw new ArrayIndexOutOfBoundsException(); + qsort(a, fromIndex, toIndex - fromIndex); + } + + /** + * Finds the index of the median of three array elements. + * + * @param a the first index + * @param b the second index + * @param c the third index + * @param d the array + * @return the index (a, b, or c) which has the middle value of the three + */ + private static int med3(int a, int b, int c, char[] d) + { + return (d[a] < d[b] + ? (d[b] < d[c] ? b : d[a] < d[c] ? c : a) + : (d[b] > d[c] ? b : d[a] > d[c] ? c : a)); + } + + /** + * Swaps the elements at two locations of an array + * + * @param i the first index + * @param j the second index + * @param a the array + */ + private static void swap(int i, int j, char[] a) + { + char c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + /** + * Swaps two ranges of an array. + * + * @param i the first range start + * @param j the second range start + * @param n the element count + * @param a the array + */ + private static void vecswap(int i, int j, int n, char[] a) + { + for ( ; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Performs a recursive modified quicksort. + * + * @param array the array to sort + * @param from the start index (inclusive) + * @param count the number of elements to sort + */ + private static void qsort(char[] array, int from, int count) + { + // Use an insertion sort on small arrays. + if (count <= 7) + { + for (int i = from + 1; i < from + count; i++) + for (int j = i; j > from && array[j - 1] > array[j]; j--) + swap(j, j - 1, array); + return; + } + + // Determine a good median element. + int mid = count / 2; + int lo = from; + int hi = from + count - 1; + + if (count > 40) + { // big arrays, pseudomedian of 9 + int s = count / 8; + lo = med3(lo, lo + s, lo + 2 * s, array); + mid = med3(mid - s, mid, mid + s, array); + hi = med3(hi - 2 * s, hi - s, hi, array); + } + mid = med3(lo, mid, hi, array); + + int a, b, c, d; + int comp; + + // Pull the median element out of the fray, and use it as a pivot. + swap(from, mid, array); + a = b = from; + c = d = from + count - 1; + + // Repeatedly move b and c to each other, swapping elements so + // that all elements before index b are less than the pivot, and all + // elements after index c are greater than the pivot. a and b track + // the elements equal to the pivot. + while (true) + { + while (b <= c && (comp = array[b] - array[from]) <= 0) + { + if (comp == 0) + { + swap(a, b, array); + a++; + } + b++; + } + while (c >= b && (comp = array[c] - array[from]) >= 0) + { + if (comp == 0) + { + swap(c, d, array); + d--; + } + c--; + } + if (b > c) + break; + swap(b, c, array); + b++; + c--; + } + + // Swap pivot(s) back in place, the recurse on left and right sections. + hi = from + count; + int span; + span = Math.min(a - from, b - a); + vecswap(from, b - span, span, array); + + span = Math.min(d - c, hi - d - 1); + vecswap(b, hi - span, span, array); + + span = b - a; + if (span > 1) + qsort(array, from, span); + + span = d - c; + if (span > 1) + qsort(array, hi - span, span); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the short array to sort + */ + public static void sort(short[] a) + { + qsort(a, 0, a.length); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the short array to sort + * @param fromIndex the first index to sort (inclusive) + * @param toIndex the last index to sort (exclusive) + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void sort(short[] a, int fromIndex, int toIndex) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + if (fromIndex < 0) + throw new ArrayIndexOutOfBoundsException(); + qsort(a, fromIndex, toIndex - fromIndex); + } + + /** + * Finds the index of the median of three array elements. + * + * @param a the first index + * @param b the second index + * @param c the third index + * @param d the array + * @return the index (a, b, or c) which has the middle value of the three + */ + private static int med3(int a, int b, int c, short[] d) + { + return (d[a] < d[b] + ? (d[b] < d[c] ? b : d[a] < d[c] ? c : a) + : (d[b] > d[c] ? b : d[a] > d[c] ? c : a)); + } + + /** + * Swaps the elements at two locations of an array + * + * @param i the first index + * @param j the second index + * @param a the array + */ + private static void swap(int i, int j, short[] a) + { + short c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + /** + * Swaps two ranges of an array. + * + * @param i the first range start + * @param j the second range start + * @param n the element count + * @param a the array + */ + private static void vecswap(int i, int j, int n, short[] a) + { + for ( ; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Performs a recursive modified quicksort. + * + * @param array the array to sort + * @param from the start index (inclusive) + * @param count the number of elements to sort + */ + private static void qsort(short[] array, int from, int count) + { + // Use an insertion sort on small arrays. + if (count <= 7) + { + for (int i = from + 1; i < from + count; i++) + for (int j = i; j > from && array[j - 1] > array[j]; j--) + swap(j, j - 1, array); + return; + } + + // Determine a good median element. + int mid = count / 2; + int lo = from; + int hi = from + count - 1; + + if (count > 40) + { // big arrays, pseudomedian of 9 + int s = count / 8; + lo = med3(lo, lo + s, lo + 2 * s, array); + mid = med3(mid - s, mid, mid + s, array); + hi = med3(hi - 2 * s, hi - s, hi, array); + } + mid = med3(lo, mid, hi, array); + + int a, b, c, d; + int comp; + + // Pull the median element out of the fray, and use it as a pivot. + swap(from, mid, array); + a = b = from; + c = d = from + count - 1; + + // Repeatedly move b and c to each other, swapping elements so + // that all elements before index b are less than the pivot, and all + // elements after index c are greater than the pivot. a and b track + // the elements equal to the pivot. + while (true) + { + while (b <= c && (comp = array[b] - array[from]) <= 0) + { + if (comp == 0) + { + swap(a, b, array); + a++; + } + b++; + } + while (c >= b && (comp = array[c] - array[from]) >= 0) + { + if (comp == 0) + { + swap(c, d, array); + d--; + } + c--; + } + if (b > c) + break; + swap(b, c, array); + b++; + c--; + } + + // Swap pivot(s) back in place, the recurse on left and right sections. + hi = from + count; + int span; + span = Math.min(a - from, b - a); + vecswap(from, b - span, span, array); + + span = Math.min(d - c, hi - d - 1); + vecswap(b, hi - span, span, array); + + span = b - a; + if (span > 1) + qsort(array, from, span); + + span = d - c; + if (span > 1) + qsort(array, hi - span, span); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the int array to sort + */ + public static void sort(int[] a) + { + qsort(a, 0, a.length); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the int array to sort + * @param fromIndex the first index to sort (inclusive) + * @param toIndex the last index to sort (exclusive) + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void sort(int[] a, int fromIndex, int toIndex) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + if (fromIndex < 0) + throw new ArrayIndexOutOfBoundsException(); + qsort(a, fromIndex, toIndex - fromIndex); + } + + /** + * Finds the index of the median of three array elements. + * + * @param a the first index + * @param b the second index + * @param c the third index + * @param d the array + * @return the index (a, b, or c) which has the middle value of the three + */ + private static int med3(int a, int b, int c, int[] d) + { + return (d[a] < d[b] + ? (d[b] < d[c] ? b : d[a] < d[c] ? c : a) + : (d[b] > d[c] ? b : d[a] > d[c] ? c : a)); + } + + /** + * Swaps the elements at two locations of an array + * + * @param i the first index + * @param j the second index + * @param a the array + */ + private static void swap(int i, int j, int[] a) + { + int c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + /** + * Swaps two ranges of an array. + * + * @param i the first range start + * @param j the second range start + * @param n the element count + * @param a the array + */ + private static void vecswap(int i, int j, int n, int[] a) + { + for ( ; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Compares two integers in natural order, since a - b is inadequate. + * + * @param a the first int + * @param b the second int + * @return < 0, 0, or > 0 accorting to the comparison + */ + private static int compare(int a, int b) + { + return a < b ? -1 : a == b ? 0 : 1; + } + + /** + * Performs a recursive modified quicksort. + * + * @param array the array to sort + * @param from the start index (inclusive) + * @param count the number of elements to sort + */ + private static void qsort(int[] array, int from, int count) + { + // Use an insertion sort on small arrays. + if (count <= 7) + { + for (int i = from + 1; i < from + count; i++) + for (int j = i; j > from && array[j - 1] > array[j]; j--) + swap(j, j - 1, array); + return; + } + + // Determine a good median element. + int mid = count / 2; + int lo = from; + int hi = from + count - 1; + + if (count > 40) + { // big arrays, pseudomedian of 9 + int s = count / 8; + lo = med3(lo, lo + s, lo + 2 * s, array); + mid = med3(mid - s, mid, mid + s, array); + hi = med3(hi - 2 * s, hi - s, hi, array); + } + mid = med3(lo, mid, hi, array); + + int a, b, c, d; + int comp; + + // Pull the median element out of the fray, and use it as a pivot. + swap(from, mid, array); + a = b = from; + c = d = from + count - 1; + + // Repeatedly move b and c to each other, swapping elements so + // that all elements before index b are less than the pivot, and all + // elements after index c are greater than the pivot. a and b track + // the elements equal to the pivot. + while (true) + { + while (b <= c && (comp = compare(array[b], array[from])) <= 0) + { + if (comp == 0) + { + swap(a, b, array); + a++; + } + b++; + } + while (c >= b && (comp = compare(array[c], array[from])) >= 0) + { + if (comp == 0) + { + swap(c, d, array); + d--; + } + c--; + } + if (b > c) + break; + swap(b, c, array); + b++; + c--; + } + + // Swap pivot(s) back in place, the recurse on left and right sections. + hi = from + count; + int span; + span = Math.min(a - from, b - a); + vecswap(from, b - span, span, array); + + span = Math.min(d - c, hi - d - 1); + vecswap(b, hi - span, span, array); + + span = b - a; + if (span > 1) + qsort(array, from, span); + + span = d - c; + if (span > 1) + qsort(array, hi - span, span); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the long array to sort + */ + public static void sort(long[] a) + { + qsort(a, 0, a.length); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the long array to sort + * @param fromIndex the first index to sort (inclusive) + * @param toIndex the last index to sort (exclusive) + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void sort(long[] a, int fromIndex, int toIndex) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + if (fromIndex < 0) + throw new ArrayIndexOutOfBoundsException(); + qsort(a, fromIndex, toIndex - fromIndex); + } + + /** + * Finds the index of the median of three array elements. + * + * @param a the first index + * @param b the second index + * @param c the third index + * @param d the array + * @return the index (a, b, or c) which has the middle value of the three + */ + private static int med3(int a, int b, int c, long[] d) + { + return (d[a] < d[b] + ? (d[b] < d[c] ? b : d[a] < d[c] ? c : a) + : (d[b] > d[c] ? b : d[a] > d[c] ? c : a)); + } + + /** + * Swaps the elements at two locations of an array + * + * @param i the first index + * @param j the second index + * @param a the array + */ + private static void swap(int i, int j, long[] a) + { + long c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + /** + * Swaps two ranges of an array. + * + * @param i the first range start + * @param j the second range start + * @param n the element count + * @param a the array + */ + private static void vecswap(int i, int j, int n, long[] a) + { + for ( ; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Compares two longs in natural order, since a - b is inadequate. + * + * @param a the first long + * @param b the second long + * @return < 0, 0, or > 0 accorting to the comparison + */ + private static int compare(long a, long b) + { + return a < b ? -1 : a == b ? 0 : 1; + } + + /** + * Performs a recursive modified quicksort. + * + * @param array the array to sort + * @param from the start index (inclusive) + * @param count the number of elements to sort + */ + private static void qsort(long[] array, int from, int count) + { + // Use an insertion sort on small arrays. + if (count <= 7) + { + for (int i = from + 1; i < from + count; i++) + for (int j = i; j > from && array[j - 1] > array[j]; j--) + swap(j, j - 1, array); + return; + } + + // Determine a good median element. + int mid = count / 2; + int lo = from; + int hi = from + count - 1; + + if (count > 40) + { // big arrays, pseudomedian of 9 + int s = count / 8; + lo = med3(lo, lo + s, lo + 2 * s, array); + mid = med3(mid - s, mid, mid + s, array); + hi = med3(hi - 2 * s, hi - s, hi, array); + } + mid = med3(lo, mid, hi, array); + + int a, b, c, d; + int comp; + + // Pull the median element out of the fray, and use it as a pivot. + swap(from, mid, array); + a = b = from; + c = d = from + count - 1; + + // Repeatedly move b and c to each other, swapping elements so + // that all elements before index b are less than the pivot, and all + // elements after index c are greater than the pivot. a and b track + // the elements equal to the pivot. + while (true) + { + while (b <= c && (comp = compare(array[b], array[from])) <= 0) + { + if (comp == 0) + { + swap(a, b, array); + a++; + } + b++; + } + while (c >= b && (comp = compare(array[c], array[from])) >= 0) + { + if (comp == 0) + { + swap(c, d, array); + d--; + } + c--; + } + if (b > c) + break; + swap(b, c, array); + b++; + c--; + } + + // Swap pivot(s) back in place, the recurse on left and right sections. + hi = from + count; + int span; + span = Math.min(a - from, b - a); + vecswap(from, b - span, span, array); + + span = Math.min(d - c, hi - d - 1); + vecswap(b, hi - span, span, array); + + span = b - a; + if (span > 1) + qsort(array, from, span); + + span = d - c; + if (span > 1) + qsort(array, hi - span, span); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the float array to sort + */ + public static void sort(float[] a) + { + qsort(a, 0, a.length); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the float array to sort + * @param fromIndex the first index to sort (inclusive) + * @param toIndex the last index to sort (exclusive) + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void sort(float[] a, int fromIndex, int toIndex) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + if (fromIndex < 0) + throw new ArrayIndexOutOfBoundsException(); + qsort(a, fromIndex, toIndex - fromIndex); + } + + /** + * Finds the index of the median of three array elements. + * + * @param a the first index + * @param b the second index + * @param c the third index + * @param d the array + * @return the index (a, b, or c) which has the middle value of the three + */ + private static int med3(int a, int b, int c, float[] d) + { + return (Float.compare(d[a], d[b]) < 0 + ? (Float.compare(d[b], d[c]) < 0 ? b + : Float.compare(d[a], d[c]) < 0 ? c : a) + : (Float.compare(d[b], d[c]) > 0 ? b + : Float.compare(d[a], d[c]) > 0 ? c : a)); + } + + /** + * Swaps the elements at two locations of an array + * + * @param i the first index + * @param j the second index + * @param a the array + */ + private static void swap(int i, int j, float[] a) + { + float c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + /** + * Swaps two ranges of an array. + * + * @param i the first range start + * @param j the second range start + * @param n the element count + * @param a the array + */ + private static void vecswap(int i, int j, int n, float[] a) + { + for ( ; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Performs a recursive modified quicksort. + * + * @param array the array to sort + * @param from the start index (inclusive) + * @param count the number of elements to sort + */ + private static void qsort(float[] array, int from, int count) + { + // Use an insertion sort on small arrays. + if (count <= 7) + { + for (int i = from + 1; i < from + count; i++) + for (int j = i; + j > from && Float.compare(array[j - 1], array[j]) > 0; + j--) + { + swap(j, j - 1, array); + } + return; + } + + // Determine a good median element. + int mid = count / 2; + int lo = from; + int hi = from + count - 1; + + if (count > 40) + { // big arrays, pseudomedian of 9 + int s = count / 8; + lo = med3(lo, lo + s, lo + 2 * s, array); + mid = med3(mid - s, mid, mid + s, array); + hi = med3(hi - 2 * s, hi - s, hi, array); + } + mid = med3(lo, mid, hi, array); + + int a, b, c, d; + int comp; + + // Pull the median element out of the fray, and use it as a pivot. + swap(from, mid, array); + a = b = from; + c = d = from + count - 1; + + // Repeatedly move b and c to each other, swapping elements so + // that all elements before index b are less than the pivot, and all + // elements after index c are greater than the pivot. a and b track + // the elements equal to the pivot. + while (true) + { + while (b <= c && (comp = Float.compare(array[b], array[from])) <= 0) + { + if (comp == 0) + { + swap(a, b, array); + a++; + } + b++; + } + while (c >= b && (comp = Float.compare(array[c], array[from])) >= 0) + { + if (comp == 0) + { + swap(c, d, array); + d--; + } + c--; + } + if (b > c) + break; + swap(b, c, array); + b++; + c--; + } + + // Swap pivot(s) back in place, the recurse on left and right sections. + hi = from + count; + int span; + span = Math.min(a - from, b - a); + vecswap(from, b - span, span, array); + + span = Math.min(d - c, hi - d - 1); + vecswap(b, hi - span, span, array); + + span = b - a; + if (span > 1) + qsort(array, from, span); + + span = d - c; + if (span > 1) + qsort(array, hi - span, span); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the double array to sort + */ + public static void sort(double[] a) + { + qsort(a, 0, a.length); + } + + /** + * Performs a stable sort on the elements, arranging them according to their + * natural order. + * + * @param a the double array to sort + * @param fromIndex the first index to sort (inclusive) + * @param toIndex the last index to sort (exclusive) + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 + * || toIndex > a.length + */ + public static void sort(double[] a, int fromIndex, int toIndex) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException(); + if (fromIndex < 0) + throw new ArrayIndexOutOfBoundsException(); + qsort(a, fromIndex, toIndex - fromIndex); + } + + /** + * Finds the index of the median of three array elements. + * + * @param a the first index + * @param b the second index + * @param c the third index + * @param d the array + * @return the index (a, b, or c) which has the middle value of the three + */ + private static int med3(int a, int b, int c, double[] d) + { + return (Double.compare(d[a], d[b]) < 0 + ? (Double.compare(d[b], d[c]) < 0 ? b + : Double.compare(d[a], d[c]) < 0 ? c : a) + : (Double.compare(d[b], d[c]) > 0 ? b + : Double.compare(d[a], d[c]) > 0 ? c : a)); + } + + /** + * Swaps the elements at two locations of an array + * + * @param i the first index + * @param j the second index + * @param a the array + */ + private static void swap(int i, int j, double[] a) + { + double c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + /** + * Swaps two ranges of an array. + * + * @param i the first range start + * @param j the second range start + * @param n the element count + * @param a the array + */ + private static void vecswap(int i, int j, int n, double[] a) + { + for ( ; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Performs a recursive modified quicksort. + * + * @param array the array to sort + * @param from the start index (inclusive) + * @param count the number of elements to sort + */ + private static void qsort(double[] array, int from, int count) + { + // Use an insertion sort on small arrays. + if (count <= 7) + { + for (int i = from + 1; i < from + count; i++) + for (int j = i; + j > from && Double.compare(array[j - 1], array[j]) > 0; + j--) + { + swap(j, j - 1, array); + } + return; + } + + // Determine a good median element. + int mid = count / 2; + int lo = from; + int hi = from + count - 1; + + if (count > 40) + { // big arrays, pseudomedian of 9 + int s = count / 8; + lo = med3(lo, lo + s, lo + 2 * s, array); + mid = med3(mid - s, mid, mid + s, array); + hi = med3(hi - 2 * s, hi - s, hi, array); + } + mid = med3(lo, mid, hi, array); + + int a, b, c, d; + int comp; + + // Pull the median element out of the fray, and use it as a pivot. + swap(from, mid, array); + a = b = from; + c = d = from + count - 1; + + // Repeatedly move b and c to each other, swapping elements so + // that all elements before index b are less than the pivot, and all + // elements after index c are greater than the pivot. a and b track + // the elements equal to the pivot. + while (true) + { + while (b <= c && (comp = Double.compare(array[b], array[from])) <= 0) + { + if (comp == 0) + { + swap(a, b, array); + a++; + } + b++; + } + while (c >= b && (comp = Double.compare(array[c], array[from])) >= 0) + { + if (comp == 0) + { + swap(c, d, array); + d--; + } + c--; + } + if (b > c) + break; + swap(b, c, array); + b++; + c--; + } + + // Swap pivot(s) back in place, the recurse on left and right sections. + hi = from + count; + int span; + span = Math.min(a - from, b - a); + vecswap(from, b - span, span, array); + + span = Math.min(d - c, hi - d - 1); + vecswap(b, hi - span, span, array); + + span = b - a; + if (span > 1) + qsort(array, from, span); + + span = d - c; + if (span > 1) + qsort(array, hi - span, span); + } + + /** + * Sort an array of Objects according to their natural ordering. The sort is + * guaranteed to be stable, that is, equal elements will not be reordered. + * The sort algorithm is a mergesort with the merge omitted if the last + * element of one half comes before the first element of the other half. This + * algorithm gives guaranteed O(n*log(n)) time, at the expense of making a + * copy of the array. + * + * @param a the array to be sorted + * @throws ClassCastException if any two elements are not mutually + * comparable + * @throws NullPointerException if an element is null (since + * null.compareTo cannot work) + * @see Comparable + */ + public static void sort(Object[] a) + { + sort(a, 0, a.length, null); + } + + /** + * Sort an array of Objects according to a Comparator. The sort is + * guaranteed to be stable, that is, equal elements will not be reordered. + * The sort algorithm is a mergesort with the merge omitted if the last + * element of one half comes before the first element of the other half. This + * algorithm gives guaranteed O(n*log(n)) time, at the expense of making a + * copy of the array. + * + * @param a the array to be sorted + * @param c a Comparator to use in sorting the array; or null to indicate + * the elements' natural order + * @throws ClassCastException if any two elements are not mutually + * comparable by the Comparator provided + * @throws NullPointerException if a null element is compared with natural + * ordering (only possible when c is null) + */ + public static void sort(Object[] a, Comparator c) + { + sort(a, 0, a.length, c); + } + + /** + * Sort an array of Objects according to their natural ordering. The sort is + * guaranteed to be stable, that is, equal elements will not be reordered. + * The sort algorithm is a mergesort with the merge omitted if the last + * element of one half comes before the first element of the other half. This + * algorithm gives guaranteed O(n*log(n)) time, at the expense of making a + * copy of the array. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element to be sorted + * @param toIndex the index of the last element to be sorted plus one + * @throws ClassCastException if any two elements are not mutually + * comparable + * @throws NullPointerException if an element is null (since + * null.compareTo cannot work) + * @throws ArrayIndexOutOfBoundsException if fromIndex and toIndex + * are not in range. + * @throws IllegalArgumentException if fromIndex > toIndex + */ + public static void sort(Object[] a, int fromIndex, int toIndex) + { + sort(a, fromIndex, toIndex, null); + } + + /** + * Sort an array of Objects according to a Comparator. The sort is + * guaranteed to be stable, that is, equal elements will not be reordered. + * The sort algorithm is a mergesort with the merge omitted if the last + * element of one half comes before the first element of the other half. This + * algorithm gives guaranteed O(n*log(n)) time, at the expense of making a + * copy of the array. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element to be sorted + * @param toIndex the index of the last element to be sorted plus one + * @param c a Comparator to use in sorting the array; or null to indicate + * the elements' natural order + * @throws ClassCastException if any two elements are not mutually + * comparable by the Comparator provided + * @throws ArrayIndexOutOfBoundsException if fromIndex and toIndex + * are not in range. + * @throws IllegalArgumentException if fromIndex > toIndex + * @throws NullPointerException if a null element is compared with natural + * ordering (only possible when c is null) + */ + public static void sort(Object[] a, int fromIndex, int toIndex, Comparator c) + { + if (fromIndex > toIndex) + throw new IllegalArgumentException("fromIndex " + fromIndex + + " > toIndex " + toIndex); + if (fromIndex < 0) + throw new ArrayIndexOutOfBoundsException(); + + // In general, the code attempts to be simple rather than fast, the + // idea being that a good optimising JIT will be able to optimise it + // better than I can, and if I try it will make it more confusing for + // the JIT. First presort the array in chunks of length 6 with insertion + // sort. A mergesort would give too much overhead for this length. + for (int chunk = fromIndex; chunk < toIndex; chunk += 6) + { + int end = Math.min(chunk + 6, toIndex); + for (int i = chunk + 1; i < end; i++) + { + if (Collections.compare(a[i - 1], a[i], c) > 0) + { + // not already sorted + int j = i; + Object elem = a[j]; + do + { + a[j] = a[j - 1]; + j--; + } + while (j > chunk + && Collections.compare(a[j - 1], elem, c) > 0); + a[j] = elem; + } + } + } + + int len = toIndex - fromIndex; + // If length is smaller or equal 6 we are done. + if (len <= 6) + return; + + Object[] src = a; + Object[] dest = new Object[len]; + Object[] t = null; // t is used for swapping src and dest + + // The difference of the fromIndex of the src and dest array. + int srcDestDiff = -fromIndex; + + // The merges are done in this loop + for (int size = 6; size < len; size <<= 1) + { + for (int start = fromIndex; start < toIndex; start += size << 1) + { + // mid is the start of the second sublist; + // end the start of the next sublist (or end of array). + int mid = start + size; + int end = Math.min(toIndex, mid + size); + + // The second list is empty or the elements are already in + // order - no need to merge + if (mid >= end + || Collections.compare(src[mid - 1], src[mid], c) <= 0) + { + System.arraycopy(src, start, + dest, start + srcDestDiff, end - start); + + // The two halves just need swapping - no need to merge + } + else if (Collections.compare(src[start], src[end - 1], c) > 0) + { + System.arraycopy(src, start, + dest, end - size + srcDestDiff, size); + System.arraycopy(src, mid, + dest, start + srcDestDiff, end - mid); + + } + else + { + // Declare a lot of variables to save repeating + // calculations. Hopefully a decent JIT will put these + // in registers and make this fast + int p1 = start; + int p2 = mid; + int i = start + srcDestDiff; + + // The main merge loop; terminates as soon as either + // half is ended + while (p1 < mid && p2 < end) + { + dest[i++] = + src[(Collections.compare(src[p1], src[p2], c) <= 0 + ? p1++ : p2++)]; + } + + // Finish up by copying the remainder of whichever half + // wasn't finished. + if (p1 < mid) + System.arraycopy(src, p1, dest, i, mid - p1); + else + System.arraycopy(src, p2, dest, i, end - p2); + } + } + // swap src and dest ready for the next merge + t = src; + src = dest; + dest = t; + fromIndex += srcDestDiff; + toIndex += srcDestDiff; + srcDestDiff = -srcDestDiff; + } + + // make sure the result ends up back in the right place. Note + // that src and dest may have been swapped above, so src + // contains the sorted array. + if (src != a) + { + // Note that fromIndex == 0. + System.arraycopy(src, 0, a, srcDestDiff, toIndex); + } + } + + /** + * Returns a list "view" of the specified array. This method is intended to + * make it easy to use the Collections API with existing array-based APIs and + * programs. Changes in the list or the array show up in both places. The + * list does not support element addition or removal, but does permit + * value modification. The returned list implements both Serializable and + * RandomAccess. + * + * @param a the array to return a view of + * @return a fixed-size list, changes to which "write through" to the array + * @see Serializable + * @see RandomAccess + * @see Arrays.ArrayList + */ + public static List asList(final Object[] a) + { + return new Arrays.ArrayList(a); + } + + /** + * Inner class used by {@link #asList(Object[])} to provide a list interface + * to an array. The name, though it clashes with java.util.ArrayList, is + * Sun's choice for Serialization purposes. Element addition and removal + * is prohibited, but values can be modified. + * + * @author Eric Blake (ebb9@email.byu.edu) + * @status updated to 1.4 + */ + private static final class ArrayList extends AbstractList + implements Serializable, RandomAccess + { + // We override the necessary methods, plus others which will be much + // more efficient with direct iteration rather than relying on iterator(). + + /** + * Compatible with JDK 1.4. + */ + private static final long serialVersionUID = -2764017481108945198L; + + /** + * The array we are viewing. + * @serial the array + */ + private final Object[] a; + + /** + * Construct a list view of the array. + * @param a the array to view + * @throws NullPointerException if a is null + */ + ArrayList(Object[] a) + { + // We have to explicitly check. + if (a == null) + throw new NullPointerException(); + this.a = a; + } + + /** + * Returns the object at the specified index in + * the array. + * + * @param index The index to retrieve an object from. + * @return The object at the array index specified. + */ + public Object get(int index) + { + return a[index]; + } + + /** + * Returns the size of the array. + * + * @return The size. + */ + public int size() + { + return a.length; + } + + /** + * Replaces the object at the specified index + * with the supplied element. + * + * @param index The index at which to place the new object. + * @param element The new object. + * @return The object replaced by this operation. + */ + public Object set(int index, Object element) + { + Object old = a[index]; + a[index] = element; + return old; + } + + /** + * Returns true if the array contains the + * supplied object. + * + * @param o The object to look for. + * @return True if the object was found. + */ + public boolean contains(Object o) + { + return lastIndexOf(o) >= 0; + } + + /** + * Returns the first index at which the + * object, o, occurs in the array. + * + * @param o The object to search for. + * @return The first relevant index. + */ + public int indexOf(Object o) + { + int size = a.length; + for (int i = 0; i < size; i++) + if (ArrayList.equals(o, a[i])) + return i; + return -1; + } + + /** + * Returns the last index at which the + * object, o, occurs in the array. + * + * @param o The object to search for. + * @return The last relevant index. + */ + public int lastIndexOf(Object o) + { + int i = a.length; + while (--i >= 0) + if (ArrayList.equals(o, a[i])) + return i; + return -1; + } + + /** + * Transforms the list into an array of + * objects, by simplying cloning the array + * wrapped by this list. + * + * @return A clone of the internal array. + */ + public Object[] toArray() + { + return (Object[]) a.clone(); + } + + /** + * Copies the objects from this list into + * the supplied array. The supplied array + * is shrunk or enlarged to the size of the + * internal array, and filled with its objects. + * + * @param array The array to fill with the objects in this list. + * @return The array containing the objects in this list, + * which may or may not be == to array. + */ + public Object[] toArray(Object[] array) + { + int size = a.length; + if (array.length < size) + array = (Object[]) + Array.newInstance(array.getClass().getComponentType(), size); + else if (array.length > size) + array[size] = null; + + System.arraycopy(a, 0, array, 0, size); + return array; + } + } +} |