diff options
Diffstat (limited to 'libgomp/testsuite/libgomp.c++/target-flex-12.C')
-rw-r--r-- | libgomp/testsuite/libgomp.c++/target-flex-12.C | 736 |
1 files changed, 736 insertions, 0 deletions
diff --git a/libgomp/testsuite/libgomp.c++/target-flex-12.C b/libgomp/testsuite/libgomp.c++/target-flex-12.C new file mode 100644 index 0000000..024fb73 --- /dev/null +++ b/libgomp/testsuite/libgomp.c++/target-flex-12.C @@ -0,0 +1,736 @@ +/* Populated with mapped data, validate, mutate, validate again. + The cases using sets do not mutate. + Note: Some of the code in here really sucks due to being made to be + compatible with c++98. */ + +#include <vector> +#include <deque> +#include <list> +#include <set> +#include <map> +#if __cplusplus >= 201103L +#include <array> +#include <forward_list> +#include <unordered_set> +#include <unordered_map> +#endif + +#include <limits> +#include <iterator> + +#include "target-flex-common.h" + +template<bool B, class T = void> +struct enable_if {}; + +template<class T> +struct enable_if<true, T> { typedef T type; }; + +struct identity_func +{ +#if __cplusplus < 201103L + template<typename T> + T& operator()(T& arg) const BL_NOEXCEPT { return arg; } + template<typename T> + T const& operator()(T const& arg) const BL_NOEXCEPT { return arg; } +#else + template<typename T> + constexpr T&& operator()(T&& arg) const BL_NOEXCEPT { return std::forward<T>(arg); } +#endif +}; + +/* Applies projection to the second iterator. */ +template<typename It0, typename It1, typename Proj> +bool validate_sequential_elements(const It0 begin0, const It0 end0, + const It1 begin1, const It1 end1, + Proj proj) BL_NOEXCEPT +{ + It0 it0 = begin0; + It1 it1 = begin1; + for (; it0 != end0; ++it0, ++it1) + { + /* Sizes mismatch, don't bother aborting though just fail the test. */ + if (it1 == end1) + return false; + if (*it0 != proj(*it1)) + return false; + } + /* Sizes mismatch, do as above. */ + if (it1 != end1) + return false; + return true; +} + +template<typename It0, typename It1> +bool validate_sequential_elements(const It0 begin0, const It0 end0, + const It1 begin1, const It1 end1) BL_NOEXCEPT +{ + return validate_sequential_elements(begin0, end0, begin1, end1, identity_func()); +} + +/* Inefficient, but simple. */ +template<typename It, typename OutIt> +void simple_copy(const It begin, const It end, OutIt out) BL_NOEXCEPT +{ + for (It it = begin; it != end; ++it, ++out) + *out = *it; +} + +template<typename It, typename MutateFn> +void simple_mutate(const It begin, const It end, MutateFn mut_fn) BL_NOEXCEPT +{ + for (It it = begin; it != end; ++it) + *it = mut_fn(*it); +} + +template<typename MutationFunc, typename T, std::size_t Size> +bool vector_test(const T (&arr)[Size]) +{ + bool ok; + T out_arr[Size]; + T out_mut_arr[Size]; + #pragma omp target map(from: ok, out_arr[:Size], out_mut_arr[:Size]) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::vector<T> vector(arr, arr + Size); + VERIFY (validate_sequential_elements(vector.begin(), vector.end(), + arr, arr + Size)); + simple_copy(vector.begin(), vector.end(), out_arr); + simple_mutate(vector.begin(), vector.end(), MutationFunc()); + VERIFY (validate_sequential_elements(vector.begin(), vector.end(), + arr, arr + Size, MutationFunc())); + simple_copy(vector.begin(), vector.end(), out_mut_arr); + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (validate_sequential_elements(out_arr, out_arr + Size, + arr, arr + Size)); + VERIFY_NON_TARGET (validate_sequential_elements(out_mut_arr, out_mut_arr + Size, + arr, arr + Size, MutationFunc())); + return true; +} + +template<typename MutationFunc, typename T, std::size_t Size> +bool deque_test(const T (&arr)[Size]) +{ + bool ok; + T out_arr[Size]; + T out_mut_arr[Size]; + #pragma omp target map(from: ok, out_arr[:Size], out_mut_arr[:Size]) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::deque<T> deque(arr, arr + Size); + VERIFY (validate_sequential_elements(deque.begin(), deque.end(), + arr, arr + Size)); + simple_copy(deque.begin(), deque.end(), out_arr); + simple_mutate(deque.begin(), deque.end(), MutationFunc()); + VERIFY (validate_sequential_elements(deque.begin(), deque.end(), + arr, arr + Size, MutationFunc())); + simple_copy(deque.begin(), deque.end(), out_mut_arr); + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (validate_sequential_elements(out_arr, out_arr + Size, + arr, arr + Size)); + VERIFY_NON_TARGET (validate_sequential_elements(out_mut_arr, out_mut_arr + Size, + arr, arr + Size, MutationFunc())); + return true; +} + +template<typename MutationFunc, typename T, std::size_t Size> +bool list_test(const T (&arr)[Size]) +{ + bool ok; + T out_arr[Size]; + T out_mut_arr[Size]; + #pragma omp target map(from: ok, out_arr[:Size], out_mut_arr[:Size]) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::list<T> list(arr, arr + Size); + VERIFY (validate_sequential_elements(list.begin(), list.end(), + arr, arr + Size)); + simple_copy(list.begin(), list.end(), out_arr); + simple_mutate(list.begin(), list.end(), MutationFunc()); + VERIFY (validate_sequential_elements(list.begin(), list.end(), + arr, arr + Size, MutationFunc())); + simple_copy(list.begin(), list.end(), out_mut_arr); + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (validate_sequential_elements(out_arr, out_arr + Size, + arr, arr + Size)); + VERIFY_NON_TARGET (validate_sequential_elements(out_mut_arr, out_mut_arr + Size, + arr, arr + Size, MutationFunc())); + return true; +} + +template<typename T> +const T& get_key(const T& arg) BL_NOEXCEPT + { return arg; } +template<typename K, typename V> +const K& get_key(const std::pair<K, V>& pair) BL_NOEXCEPT + { return pair.first; } +template<typename T> +const T& get_value(const T& arg) BL_NOEXCEPT + { return arg; } +template<typename K, typename V> +const K& get_value(const std::pair<K, V>& pair) BL_NOEXCEPT + { return pair.second; } + +template<typename T> +struct key_type { typedef T type; }; +template<typename K, typename V> +struct key_type<std::pair<K, V> > { typedef K type; }; + +template<typename Proj, typename Container, typename It> +bool validate_associative(const Container& container, + const It compare_begin, + const It compare_end, + Proj proj) BL_NOEXCEPT +{ + const typename Container::const_iterator elem_end = container.end(); + for (It compare_it = compare_begin; compare_it != compare_end; ++compare_it) + { + const typename Container::const_iterator elem_it = container.find(get_key(*compare_it)); + VERIFY_NON_TARGET (elem_it != elem_end); + VERIFY_NON_TARGET (proj(get_value(*compare_it)) == get_value(*elem_it)); + } + return true; +} + +template<typename Container, typename It> +bool validate_associative(const Container& container, + const It compare_begin, + const It compare_end) BL_NOEXCEPT +{ + return validate_associative(container, compare_begin, compare_end, identity_func()); +} + +template<typename It, typename MutateFn> +void simple_mutate_map(const It begin, const It end, MutateFn mut_fn) BL_NOEXCEPT +{ + for (It it = begin; it != end; ++it) + it->second = mut_fn(it->second); +} + +template<typename It, typename OutIter> +void simple_copy_unique(const It begin, const It end, OutIter out) BL_NOEXCEPT +{ + /* In case anyone reads this, I want it to be known that I hate c++98. */ + typedef typename key_type<typename std::iterator_traits<It>::value_type>::type key_t; + std::set<key_t> already_seen; + for (It it = begin; it != end; ++it, ++out) + { + key_t key = get_key(*it); + if (already_seen.find(key) != already_seen.end()) + continue; + already_seen.insert(key); + *out = *it; + } +} + +template<typename MutationFunc, typename K, typename V, std::size_t Size> +bool map_test(const std::pair<K, V> (&arr)[Size]) +{ + std::map<K, V> reference_map(arr, arr + Size); + bool ok; + /* Both sizes should be the same. */ + std::pair<K, V> out_pairs[Size]; + std::size_t out_size; + std::pair<K, V> out_pairs_mut[Size]; + std::size_t out_size_mut; + #pragma omp target map(from: ok, out_pairs[:Size], out_size, \ + out_pairs_mut[:Size], out_size_mut) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::vector<std::pair<K, V> > unique_elems; + simple_copy_unique(arr, arr + Size, + std::back_insert_iterator<std::vector<std::pair<K, V> > >(unique_elems)); + + std::map<K, V> map(arr, arr + Size); + VERIFY (validate_associative(map, unique_elems.begin(), unique_elems.end())); + simple_copy(map.begin(), map.end(), out_pairs); + out_size = map.size(); + simple_mutate_map(map.begin(), map.end(), MutationFunc()); + VERIFY (validate_associative(map, unique_elems.begin(), unique_elems.end(), + MutationFunc())); + simple_copy(map.begin(), map.end(), out_pairs_mut); + out_size_mut = map.size(); + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (out_size == out_size_mut); + VERIFY_NON_TARGET (validate_associative(reference_map, + out_pairs, out_pairs + out_size)); + simple_mutate_map(reference_map.begin(), reference_map.end(), MutationFunc()); + VERIFY_NON_TARGET (validate_associative(reference_map, + out_pairs_mut, out_pairs_mut + out_size_mut)); + return true; +} + +template<typename T, std::size_t Size> +bool set_test(const T (&arr)[Size]) +{ + std::set<T> reference_set(arr, arr + Size); + bool ok; + /* Both sizes should be the same. */ + T out_arr[Size]; + std::size_t out_size; + #pragma omp target map(from: ok, out_arr[:Size], out_size) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::vector<T> unique_elems; + simple_copy_unique(arr, arr + Size, + std::back_insert_iterator<std::vector<T> >(unique_elems)); + + std::set<T> set(arr, arr + Size); + VERIFY (validate_associative(set, unique_elems.begin(), unique_elems.end())); + simple_copy(set.begin(), set.end(), out_arr); + out_size = set.size(); + /* Sets can't be mutated, we could create another set with mutated + but it gets a little annoying and probably isn't an interesting test. */ + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (validate_associative(reference_set, + out_arr, out_arr + out_size)); + return true; +} + +template<typename Proj, typename Container, typename It> +bool validate_multi_associative(const Container& container, + const It compare_begin, + const It compare_end, + Proj proj) BL_NOEXCEPT +{ + /* Once again, for the poor soul reviewing these, I hate c++98. */ + typedef typename key_type<typename std::iterator_traits<It>::value_type>::type key_t; + typedef std::map<key_t, std::size_t> counter_map; + counter_map key_count_map; + for (It it = compare_begin; it != compare_end; ++it) + { + const key_t& key = get_key(*it); + typename counter_map::iterator counter_it + = key_count_map.find(key); + if (counter_it != key_count_map.end()) + ++counter_it->second; + else + key_count_map.insert(std::pair<const key_t, std::size_t>(key, std::size_t(1))); + } + const typename Container::const_iterator elem_end = container.end(); + for (It compare_it = compare_begin; compare_it != compare_end; ++compare_it) + { + const key_t& key = get_key(*compare_it); + typename counter_map::iterator count_it = key_count_map.find(key); + std::size_t key_count = count_it != key_count_map.end() ? count_it->second + : std::size_t(0); + VERIFY_NON_TARGET (key_count > std::size_t(0) && "this will never happen"); + /* This gets tested multiple times but that should be fine. */ + VERIFY_NON_TARGET (key_count == container.count(key)); + typename Container::const_iterator elem_it = container.find(key); + /* This will never happen if the previous case passed. */ + VERIFY_NON_TARGET (elem_it != elem_end); + bool found_element = false; + for (; elem_it != elem_end; ++elem_it) + if (proj(get_value(*compare_it)) == get_value(*elem_it)) + { + found_element = true; + break; + } + VERIFY_NON_TARGET (found_element); + } + return true; +} + +template<typename Container, typename It> +bool validate_multi_associative(const Container& container, + const It compare_begin, + const It compare_end) BL_NOEXCEPT +{ + return validate_multi_associative(container, compare_begin, compare_end, identity_func()); +} + +template<typename MutationFunc, typename K, typename V, std::size_t Size> +bool multimap_test(const std::pair<K, V> (&arr)[Size]) +{ + std::multimap<K, V> reference_multimap(arr, arr + Size); + bool ok; + std::pair<K, V> out_pairs[Size]; + std::pair<K, V> out_pairs_mut[Size]; + #pragma omp target map(from: ok, out_pairs[:Size], out_pairs_mut[:Size]) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::multimap<K, V> multimap(arr, arr + Size); + VERIFY (validate_multi_associative(multimap, arr, arr + Size)); + simple_copy(multimap.begin(), multimap.end(), out_pairs); + simple_mutate_map(multimap.begin(), multimap.end(), MutationFunc()); + VERIFY (validate_multi_associative(multimap, arr, arr + Size, MutationFunc())); + simple_copy(multimap.begin(), multimap.end(), out_pairs_mut); + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (validate_multi_associative(reference_multimap, + out_pairs, out_pairs + Size)); + simple_mutate_map(reference_multimap.begin(), reference_multimap.end(), MutationFunc()); + VERIFY_NON_TARGET (validate_multi_associative(reference_multimap, + out_pairs_mut, out_pairs_mut + Size)); + return true; +} + +template<typename T, std::size_t Size> +bool multiset_test(const T (&arr)[Size]) +{ + std::multiset<T> reference_multiset(arr, arr + Size); + bool ok; + T out_arr[Size]; + #pragma omp target map(from: ok, out_arr[:Size]) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::multiset<T> set(arr, arr + Size); + VERIFY (validate_multi_associative(set, arr, arr + Size)); + simple_copy(set.begin(), set.end(), out_arr); + /* Sets can't be mutated, we could create another set with mutated + but it gets a little annoying and probably isn't an interesting test. */ + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (validate_multi_associative(reference_multiset, + out_arr, out_arr + Size)); + return true; +} + +#if __cplusplus >= 201103L + +template<typename MutationFunc, typename T, std::size_t Size> +bool array_test(const T (&arr)[Size]) +{ + bool ok; + T out_arr[Size]; + T out_mut_arr[Size]; + #pragma omp target map(from: ok, out_arr[:Size], out_mut_arr[:Size]) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::array<T, Size> std_array{}; + /* Special case for std::array since it can't be initialized + with iterators. */ + { + T zero_val = T{}; + for (auto it = std_array.begin(); it != std_array.end(); ++it) + VERIFY (*it == zero_val); + } + simple_copy(arr, arr + Size, std_array.begin()); + VERIFY (validate_sequential_elements(std_array.begin(), std_array.end(), + arr, arr + Size)); + simple_copy(std_array.begin(), std_array.end(), out_arr); + simple_mutate(std_array.begin(), std_array.end(), MutationFunc()); + VERIFY (validate_sequential_elements(std_array.begin(), std_array.end(), + arr, arr + Size, MutationFunc())); + simple_copy(std_array.begin(), std_array.end(), out_mut_arr); + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (validate_sequential_elements(out_arr, out_arr + Size, + arr, arr + Size)); + VERIFY_NON_TARGET (validate_sequential_elements(out_mut_arr, out_mut_arr + Size, + arr, arr + Size, MutationFunc())); + return true; +} + +template<typename MutationFunc, typename T, std::size_t Size> +bool forward_list_test(const T (&arr)[Size]) +{ + bool ok; + T out_arr[Size]; + T out_mut_arr[Size]; + #pragma omp target map(from: ok, out_arr[:Size], out_mut_arr[:Size]) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::forward_list<T> fwd_list(arr, arr + Size); + VERIFY (validate_sequential_elements(fwd_list.begin(), fwd_list.end(), + arr, arr + Size)); + simple_copy(fwd_list.begin(), fwd_list.end(), out_arr); + simple_mutate(fwd_list.begin(), fwd_list.end(), MutationFunc()); + VERIFY (validate_sequential_elements(fwd_list.begin(), fwd_list.end(), + arr, arr + Size, MutationFunc())); + simple_copy(fwd_list.begin(), fwd_list.end(), out_mut_arr); + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (validate_sequential_elements(out_arr, out_arr + Size, + arr, arr + Size)); + VERIFY_NON_TARGET (validate_sequential_elements(out_mut_arr, out_mut_arr + Size, + arr, arr + Size, MutationFunc())); + return true; +} + +template<typename MutationFunc, typename K, typename V, std::size_t Size> +bool unordered_map_test(const std::pair<K, V> (&arr)[Size]) +{ + std::unordered_map<K, V> reference_map(arr, arr + Size); + bool ok; + /* Both sizes should be the same. */ + std::pair<K, V> out_pairs[Size]; + std::size_t out_size; + std::pair<K, V> out_pairs_mut[Size]; + std::size_t out_size_mut; + #pragma omp target map(from: ok, out_pairs[:Size], out_size, \ + out_pairs_mut[:Size], out_size_mut) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::vector<std::pair<K, V> > unique_elems; + simple_copy_unique(arr, arr + Size, + std::back_insert_iterator<std::vector<std::pair<K, V> > >(unique_elems)); + + std::unordered_map<K, V> map(arr, arr + Size); + VERIFY (validate_associative(map, unique_elems.begin(), unique_elems.end())); + simple_copy(map.begin(), map.end(), out_pairs); + out_size = map.size(); + simple_mutate_map(map.begin(), map.end(), MutationFunc()); + VERIFY (validate_associative(map, unique_elems.begin(), unique_elems.end(), + MutationFunc())); + simple_copy(map.begin(), map.end(), out_pairs_mut); + out_size_mut = map.size(); + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (out_size == out_size_mut); + VERIFY_NON_TARGET (validate_associative(reference_map, + out_pairs, out_pairs + out_size)); + simple_mutate_map(reference_map.begin(), reference_map.end(), MutationFunc()); + VERIFY_NON_TARGET (validate_associative(reference_map, + out_pairs_mut, out_pairs_mut + out_size_mut)); + return true; +} + +template<typename T, std::size_t Size> +bool unordered_set_test(const T (&arr)[Size]) +{ + std::unordered_set<T> reference_set(arr, arr + Size); + bool ok; + /* Both sizes should be the same. */ + T out_arr[Size]; + std::size_t out_size; + #pragma omp target map(from: ok, out_arr[:Size], out_size) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::vector<T> unique_elems; + simple_copy_unique(arr, arr + Size, + std::back_insert_iterator<std::vector<T> >(unique_elems)); + + std::unordered_set<T> set(arr, arr + Size); + VERIFY (validate_associative(set, unique_elems.begin(), unique_elems.end())); + simple_copy(set.begin(), set.end(), out_arr); + out_size = set.size(); + /* Sets can't be mutated, we could create another set with mutated + but it gets a little annoying and probably isn't an interesting test. */ + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (validate_associative(reference_set, + out_arr, out_arr + out_size)); + return true; +} + +template<typename MutationFunc, typename K, typename V, std::size_t Size> +bool unordered_multimap_test(const std::pair<K, V> (&arr)[Size]) +{ + std::unordered_multimap<K, V> reference_multimap(arr, arr + Size); + bool ok; + std::pair<K, V> out_pairs[Size]; + std::pair<K, V> out_pairs_mut[Size]; + #pragma omp target map(from: ok, out_pairs[:Size], out_pairs_mut[:Size]) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::unordered_multimap<K, V> multimap(arr, arr + Size); + VERIFY (validate_multi_associative(multimap, arr, arr + Size)); + simple_copy(multimap.begin(), multimap.end(), out_pairs); + simple_mutate_map(multimap.begin(), multimap.end(), MutationFunc()); + VERIFY (validate_multi_associative(multimap, arr, arr + Size, MutationFunc())); + simple_copy(multimap.begin(), multimap.end(), out_pairs_mut); + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (validate_multi_associative(reference_multimap, + out_pairs, out_pairs + Size)); + simple_mutate_map(reference_multimap.begin(), reference_multimap.end(), MutationFunc()); + VERIFY_NON_TARGET (validate_multi_associative(reference_multimap, + out_pairs_mut, out_pairs_mut + Size)); + return true; +} + +template<typename T, std::size_t Size> +bool unordered_multiset_test(const T (&arr)[Size]) +{ + std::unordered_multiset<T> reference_multiset(arr, arr + Size); + bool ok; + T out_arr[Size]; + #pragma omp target map(from: ok, out_arr[:Size]) \ + map(to: arr[:Size]) + { + bool inner_ok = true; + { + std::unordered_multiset<T> set(arr, arr + Size); + VERIFY (validate_multi_associative(set, arr, arr + Size)); + simple_copy(set.begin(), set.end(), out_arr); + /* Sets can't be mutated, we could create another set with mutated + but it gets a little annoying and probably isn't an interesting test. */ + } + end: + ok = inner_ok; + } + if (!ok) + return false; + VERIFY_NON_TARGET (validate_multi_associative(reference_multiset, + out_arr, out_arr + Size)); + return true; +} + +#else +template<typename, typename T, std::size_t Size> bool array_test(const T (&arr)[Size]) { return true; } +template<typename, typename T, std::size_t Size> bool forward_list_test(const T (&arr)[Size]) { return true; } +template<typename, typename T, std::size_t Size> bool unordered_map_test(const T (&arr)[Size]) { return true; } +template<typename T, std::size_t Size> bool unordered_set_test(const T (&arr)[Size]) { return true; } +template<typename, typename T, std::size_t Size> bool unordered_multimap_test(const T (&arr)[Size]) { return true; } +template<typename T, std::size_t Size> bool unordered_multiset_test(const T (&arr)[Size]) { return true; } +#endif + +/* This clamps to the maximum value to guard against overflowing, + assuming std::numeric_limits is specialized for T. */ +struct multiply_by_2 +{ + template<typename T> + typename enable_if<std::numeric_limits<T>::is_specialized, T>::type + operator()(T arg) const BL_NOEXCEPT { + if (arg < static_cast<T>(0)) + { + if (std::numeric_limits<T>::min() / static_cast<T>(2) >= arg) + return std::numeric_limits<T>::min(); + } + else + { + if (std::numeric_limits<T>::max() / static_cast<T>(2) <= arg) + return std::numeric_limits<T>::max(); + } + return arg * 2; + } + template<typename T> + typename enable_if<!std::numeric_limits<T>::is_specialized, T>::type + operator()(T arg) const BL_NOEXCEPT { + return arg * 2; + } +}; + +int main() +{ + int data[8] = {0, 1, 2, 3, 4, 5, 6, 7}; + std::pair<int, int> pairs[10] = {std::pair<int, int>( 1, 2), + std::pair<int, int>( 2, 4), + std::pair<int, int>( 3, 6), + std::pair<int, int>( 4, 8), + std::pair<int, int>( 5, 10), + std::pair<int, int>( 6, 12), + std::pair<int, int>( 7, 14), + std::pair<int, int>( 8, 16), + std::pair<int, int>( 9, 18), + std::pair<int, int>(10, 20)}; + const bool vec_res = vector_test<multiply_by_2>(data); + const bool deque_res = deque_test<multiply_by_2>(data); + const bool list_res = list_test<multiply_by_2>(data); + const bool map_res = map_test<multiply_by_2>(pairs); + const bool set_res = set_test(data); + const bool multimap_res = multimap_test<multiply_by_2>(pairs); + const bool multiset_res = multiset_test(data); + const bool array_res = array_test<multiply_by_2>(data); + const bool forward_list_res = forward_list_test<multiply_by_2>(data); + const bool unordered_map_res = unordered_map_test<multiply_by_2>(pairs); + const bool unordered_set_res = unordered_set_test(data); + const bool unordered_multimap_res = unordered_multimap_test<multiply_by_2>(pairs); + const bool unordered_multiset_res = unordered_multiset_test(data); + std::printf("vector : %s\n", vec_res ? "PASS" : "FAIL"); + std::printf("deque : %s\n", deque_res ? "PASS" : "FAIL"); + std::printf("list : %s\n", list_res ? "PASS" : "FAIL"); + std::printf("map : %s\n", map_res ? "PASS" : "FAIL"); + std::printf("set : %s\n", set_res ? "PASS" : "FAIL"); + std::printf("multimap : %s\n", multimap_res ? "PASS" : "FAIL"); + std::printf("multiset : %s\n", multiset_res ? "PASS" : "FAIL"); + std::printf("array : %s\n", array_res ? "PASS" : "FAIL"); + std::printf("forward_list : %s\n", forward_list_res ? "PASS" : "FAIL"); + std::printf("unordered_map : %s\n", unordered_map_res ? "PASS" : "FAIL"); + std::printf("unordered_set : %s\n", unordered_set_res ? "PASS" : "FAIL"); + std::printf("unordered_multimap: %s\n", unordered_multimap_res ? "PASS" : "FAIL"); + std::printf("unordered_multiset: %s\n", unordered_multiset_res ? "PASS" : "FAIL"); + const bool ok = vec_res + && deque_res + && list_res + && map_res + && set_res + && multimap_res + && multiset_res + && array_res + && forward_list_res + && unordered_map_res + && unordered_set_res + && unordered_multimap_res + && unordered_multiset_res; + return ok ? 0 : 1; +} |