diff options
Diffstat (limited to 'libgo/go/runtime/mfinal.go')
-rw-r--r-- | libgo/go/runtime/mfinal.go | 424 |
1 files changed, 424 insertions, 0 deletions
diff --git a/libgo/go/runtime/mfinal.go b/libgo/go/runtime/mfinal.go new file mode 100644 index 0000000..f0123b3 --- /dev/null +++ b/libgo/go/runtime/mfinal.go @@ -0,0 +1,424 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Garbage collector: finalizers and block profiling. + +package runtime + +import ( + "runtime/internal/atomic" + "runtime/internal/sys" + "unsafe" +) + +// finblock is allocated from non-GC'd memory, so any heap pointers +// must be specially handled. +// +//go:notinheap +type finblock struct { + alllink *finblock + next *finblock + cnt uint32 + _ int32 + fin [(_FinBlockSize - 2*sys.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer +} + +var finlock mutex // protects the following variables +var fing *g // goroutine that runs finalizers +var finq *finblock // list of finalizers that are to be executed +var finc *finblock // cache of free blocks +var finptrmask [_FinBlockSize / sys.PtrSize / 8]byte +var fingwait bool +var fingwake bool +var allfin *finblock // list of all blocks + +// NOTE: Layout known to queuefinalizer. +type finalizer struct { + fn *funcval // function to call (may be a heap pointer) + arg unsafe.Pointer // ptr to object (may be a heap pointer) + ft *functype // type of fn (unlikely, but may be a heap pointer) + ot *ptrtype // type of ptr to object (may be a heap pointer) +} + +func queuefinalizer(p unsafe.Pointer, fn *funcval, ft *functype, ot *ptrtype) { + lock(&finlock) + if finq == nil || finq.cnt == uint32(len(finq.fin)) { + if finc == nil { + finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gc_sys)) + finc.alllink = allfin + allfin = finc + if finptrmask[0] == 0 { + // Build pointer mask for Finalizer array in block. + // We allocate values of type finalizer in + // finblock values. Since these values are + // allocated by persistentalloc, they require + // special scanning during GC. finptrmask is a + // pointer mask to use while scanning. + // Since all the values in finalizer are + // pointers, just turn all bits on. + for i := range finptrmask { + finptrmask[i] = 0xff + } + } + } + block := finc + finc = block.next + block.next = finq + finq = block + } + f := &finq.fin[finq.cnt] + atomic.Xadd(&finq.cnt, +1) // Sync with markroots + f.fn = fn + f.ft = ft + f.ot = ot + f.arg = p + fingwake = true + unlock(&finlock) +} + +//go:nowritebarrier +func iterate_finq(callback func(*funcval, unsafe.Pointer, *functype, *ptrtype)) { + for fb := allfin; fb != nil; fb = fb.alllink { + for i := uint32(0); i < fb.cnt; i++ { + f := &fb.fin[i] + callback(f.fn, f.arg, f.ft, f.ot) + } + } +} + +func wakefing() *g { + var res *g + lock(&finlock) + if fingwait && fingwake { + fingwait = false + fingwake = false + res = fing + } + unlock(&finlock) + return res +} + +var ( + fingCreate uint32 + fingRunning bool +) + +func createfing() { + // start the finalizer goroutine exactly once + if fingCreate == 0 && atomic.Cas(&fingCreate, 0, 1) { + go runfinq() + } +} + +// This is the goroutine that runs all of the finalizers +func runfinq() { + var ( + ef eface + ifac iface + ) + + for { + lock(&finlock) + fb := finq + finq = nil + if fb == nil { + gp := getg() + fing = gp + fingwait = true + goparkunlock(&finlock, "finalizer wait", traceEvGoBlock, 1) + continue + } + unlock(&finlock) + for fb != nil { + for i := fb.cnt; i > 0; i-- { + f := &fb.fin[i-1] + + if f.ft == nil { + throw("missing type in runfinq") + } + fint := f.ft.in[0] + var param unsafe.Pointer + switch fint.kind & kindMask { + case kindPtr: + // direct use of pointer + param = unsafe.Pointer(&f.arg) + case kindInterface: + ityp := (*interfacetype)(unsafe.Pointer(fint)) + if len(ityp.methods) == 0 { + // set up with empty interface + ef._type = &f.ot.typ + ef.data = f.arg + param = unsafe.Pointer(&ef) + } else { + // convert to interface with methods + // this conversion is guaranteed to succeed - we checked in SetFinalizer + ifac.tab = getitab(fint, &f.ot.typ, true) + ifac.data = f.arg + param = unsafe.Pointer(&ifac) + } + default: + throw("bad kind in runfinq") + } + fingRunning = true + reflectcall(f.ft, f.fn, false, false, ¶m, nil) + fingRunning = false + + // Drop finalizer queue heap references + // before hiding them from markroot. + // This also ensures these will be + // clear if we reuse the finalizer. + f.fn = nil + f.arg = nil + f.ot = nil + atomic.Store(&fb.cnt, i-1) + } + next := fb.next + lock(&finlock) + fb.next = finc + finc = fb + unlock(&finlock) + fb = next + } + } +} + +// SetFinalizer sets the finalizer associated with obj to the provided +// finalizer function. When the garbage collector finds an unreachable block +// with an associated finalizer, it clears the association and runs +// finalizer(obj) in a separate goroutine. This makes obj reachable again, +// but now without an associated finalizer. Assuming that SetFinalizer +// is not called again, the next time the garbage collector sees +// that obj is unreachable, it will free obj. +// +// SetFinalizer(obj, nil) clears any finalizer associated with obj. +// +// The argument obj must be a pointer to an object allocated by calling +// new, by taking the address of a composite literal, or by taking the +// address of a local variable. +// The argument finalizer must be a function that takes a single argument +// to which obj's type can be assigned, and can have arbitrary ignored return +// values. If either of these is not true, SetFinalizer may abort the +// program. +// +// Finalizers are run in dependency order: if A points at B, both have +// finalizers, and they are otherwise unreachable, only the finalizer +// for A runs; once A is freed, the finalizer for B can run. +// If a cyclic structure includes a block with a finalizer, that +// cycle is not guaranteed to be garbage collected and the finalizer +// is not guaranteed to run, because there is no ordering that +// respects the dependencies. +// +// The finalizer for obj is scheduled to run at some arbitrary time after +// obj becomes unreachable. +// There is no guarantee that finalizers will run before a program exits, +// so typically they are useful only for releasing non-memory resources +// associated with an object during a long-running program. +// For example, an os.File object could use a finalizer to close the +// associated operating system file descriptor when a program discards +// an os.File without calling Close, but it would be a mistake +// to depend on a finalizer to flush an in-memory I/O buffer such as a +// bufio.Writer, because the buffer would not be flushed at program exit. +// +// It is not guaranteed that a finalizer will run if the size of *obj is +// zero bytes. +// +// It is not guaranteed that a finalizer will run for objects allocated +// in initializers for package-level variables. Such objects may be +// linker-allocated, not heap-allocated. +// +// A finalizer may run as soon as an object becomes unreachable. +// In order to use finalizers correctly, the program must ensure that +// the object is reachable until it is no longer required. +// Objects stored in global variables, or that can be found by tracing +// pointers from a global variable, are reachable. For other objects, +// pass the object to a call of the KeepAlive function to mark the +// last point in the function where the object must be reachable. +// +// For example, if p points to a struct that contains a file descriptor d, +// and p has a finalizer that closes that file descriptor, and if the last +// use of p in a function is a call to syscall.Write(p.d, buf, size), then +// p may be unreachable as soon as the program enters syscall.Write. The +// finalizer may run at that moment, closing p.d, causing syscall.Write +// to fail because it is writing to a closed file descriptor (or, worse, +// to an entirely different file descriptor opened by a different goroutine). +// To avoid this problem, call runtime.KeepAlive(p) after the call to +// syscall.Write. +// +// A single goroutine runs all finalizers for a program, sequentially. +// If a finalizer must run for a long time, it should do so by starting +// a new goroutine. +func SetFinalizer(obj interface{}, finalizer interface{}) { + if debug.sbrk != 0 { + // debug.sbrk never frees memory, so no finalizers run + // (and we don't have the data structures to record them). + return + } + e := efaceOf(&obj) + etyp := e._type + if etyp == nil { + throw("runtime.SetFinalizer: first argument is nil") + } + if etyp.kind&kindMask != kindPtr { + throw("runtime.SetFinalizer: first argument is " + *etyp.string + ", not pointer") + } + ot := (*ptrtype)(unsafe.Pointer(etyp)) + if ot.elem == nil { + throw("nil elem type!") + } + + // find the containing object + _, base, _ := findObject(e.data) + + if base == nil { + // 0-length objects are okay. + if e.data == unsafe.Pointer(&zerobase) { + return + } + + // Global initializers might be linker-allocated. + // var Foo = &Object{} + // func main() { + // runtime.SetFinalizer(Foo, nil) + // } + // The relevant segments are: noptrdata, data, bss, noptrbss. + // We cannot assume they are in any order or even contiguous, + // due to external linking. + // + // For gccgo we have no reliable way to detect them, + // so we just return. + return + } + + if e.data != base { + // As an implementation detail we allow to set finalizers for an inner byte + // of an object if it could come from tiny alloc (see mallocgc for details). + if ot.elem == nil || ot.elem.kind&kindNoPointers == 0 || ot.elem.size >= maxTinySize { + throw("runtime.SetFinalizer: pointer not at beginning of allocated block") + } + } + + f := efaceOf(&finalizer) + ftyp := f._type + if ftyp == nil { + // switch to system stack and remove finalizer + systemstack(func() { + removefinalizer(e.data) + }) + return + } + + if ftyp.kind&kindMask != kindFunc { + throw("runtime.SetFinalizer: second argument is " + *ftyp.string + ", not a function") + } + ft := (*functype)(unsafe.Pointer(ftyp)) + if ft.dotdotdot { + throw("runtime.SetFinalizer: cannot pass " + *etyp.string + " to finalizer " + *ftyp.string + " because dotdotdot") + } + if len(ft.in) != 1 { + throw("runtime.SetFinalizer: cannot pass " + *etyp.string + " to finalizer " + *ftyp.string) + } + fint := ft.in[0] + switch { + case fint == etyp: + // ok - same type + goto okarg + case fint.kind&kindMask == kindPtr: + if (fint.uncommontype == nil || etyp.uncommontype == nil) && (*ptrtype)(unsafe.Pointer(fint)).elem == ot.elem { + // ok - not same type, but both pointers, + // one or the other is unnamed, and same element type, so assignable. + goto okarg + } + case fint.kind&kindMask == kindInterface: + ityp := (*interfacetype)(unsafe.Pointer(fint)) + if len(ityp.methods) == 0 { + // ok - satisfies empty interface + goto okarg + } + if getitab(fint, etyp, true) == nil { + goto okarg + } + } + throw("runtime.SetFinalizer: cannot pass " + *etyp.string + " to finalizer " + *ftyp.string) +okarg: + // make sure we have a finalizer goroutine + createfing() + + systemstack(func() { + data := f.data + if !isDirectIface(ftyp) { + data = *(*unsafe.Pointer)(data) + } + if !addfinalizer(e.data, (*funcval)(data), ft, ot) { + throw("runtime.SetFinalizer: finalizer already set") + } + }) +} + +// Look up pointer v in heap. Return the span containing the object, +// the start of the object, and the size of the object. If the object +// does not exist, return nil, nil, 0. +func findObject(v unsafe.Pointer) (s *mspan, x unsafe.Pointer, n uintptr) { + c := gomcache() + c.local_nlookup++ + if sys.PtrSize == 4 && c.local_nlookup >= 1<<30 { + // purge cache stats to prevent overflow + lock(&mheap_.lock) + purgecachedstats(c) + unlock(&mheap_.lock) + } + + // find span + arena_start := mheap_.arena_start + arena_used := mheap_.arena_used + if uintptr(v) < arena_start || uintptr(v) >= arena_used { + return + } + p := uintptr(v) >> pageShift + q := p - arena_start>>pageShift + s = mheap_.spans[q] + if s == nil { + return + } + x = unsafe.Pointer(s.base()) + + if uintptr(v) < uintptr(x) || uintptr(v) >= uintptr(unsafe.Pointer(s.limit)) || s.state != mSpanInUse { + s = nil + x = nil + return + } + + n = s.elemsize + if s.sizeclass != 0 { + x = add(x, (uintptr(v)-uintptr(x))/n*n) + } + return +} + +// Mark KeepAlive as noinline so that the current compiler will ensure +// that the argument is alive at the point of the function call. +// If it were inlined, it would disappear, and there would be nothing +// keeping the argument alive. Perhaps a future compiler will recognize +// runtime.KeepAlive specially and do something more efficient. +//go:noinline + +// KeepAlive marks its argument as currently reachable. +// This ensures that the object is not freed, and its finalizer is not run, +// before the point in the program where KeepAlive is called. +// +// A very simplified example showing where KeepAlive is required: +// type File struct { d int } +// d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0) +// // ... do something if err != nil ... +// p := &File{d} +// runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) }) +// var buf [10]byte +// n, err := syscall.Read(p.d, buf[:]) +// // Ensure p is not finalized until Read returns. +// runtime.KeepAlive(p) +// // No more uses of p after this point. +// +// Without the KeepAlive call, the finalizer could run at the start of +// syscall.Read, closing the file descriptor before syscall.Read makes +// the actual system call. +func KeepAlive(interface{}) {} |