aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/runtime/mfinal.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/runtime/mfinal.go')
-rw-r--r--libgo/go/runtime/mfinal.go424
1 files changed, 424 insertions, 0 deletions
diff --git a/libgo/go/runtime/mfinal.go b/libgo/go/runtime/mfinal.go
new file mode 100644
index 0000000..f0123b3
--- /dev/null
+++ b/libgo/go/runtime/mfinal.go
@@ -0,0 +1,424 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Garbage collector: finalizers and block profiling.
+
+package runtime
+
+import (
+ "runtime/internal/atomic"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+// finblock is allocated from non-GC'd memory, so any heap pointers
+// must be specially handled.
+//
+//go:notinheap
+type finblock struct {
+ alllink *finblock
+ next *finblock
+ cnt uint32
+ _ int32
+ fin [(_FinBlockSize - 2*sys.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer
+}
+
+var finlock mutex // protects the following variables
+var fing *g // goroutine that runs finalizers
+var finq *finblock // list of finalizers that are to be executed
+var finc *finblock // cache of free blocks
+var finptrmask [_FinBlockSize / sys.PtrSize / 8]byte
+var fingwait bool
+var fingwake bool
+var allfin *finblock // list of all blocks
+
+// NOTE: Layout known to queuefinalizer.
+type finalizer struct {
+ fn *funcval // function to call (may be a heap pointer)
+ arg unsafe.Pointer // ptr to object (may be a heap pointer)
+ ft *functype // type of fn (unlikely, but may be a heap pointer)
+ ot *ptrtype // type of ptr to object (may be a heap pointer)
+}
+
+func queuefinalizer(p unsafe.Pointer, fn *funcval, ft *functype, ot *ptrtype) {
+ lock(&finlock)
+ if finq == nil || finq.cnt == uint32(len(finq.fin)) {
+ if finc == nil {
+ finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gc_sys))
+ finc.alllink = allfin
+ allfin = finc
+ if finptrmask[0] == 0 {
+ // Build pointer mask for Finalizer array in block.
+ // We allocate values of type finalizer in
+ // finblock values. Since these values are
+ // allocated by persistentalloc, they require
+ // special scanning during GC. finptrmask is a
+ // pointer mask to use while scanning.
+ // Since all the values in finalizer are
+ // pointers, just turn all bits on.
+ for i := range finptrmask {
+ finptrmask[i] = 0xff
+ }
+ }
+ }
+ block := finc
+ finc = block.next
+ block.next = finq
+ finq = block
+ }
+ f := &finq.fin[finq.cnt]
+ atomic.Xadd(&finq.cnt, +1) // Sync with markroots
+ f.fn = fn
+ f.ft = ft
+ f.ot = ot
+ f.arg = p
+ fingwake = true
+ unlock(&finlock)
+}
+
+//go:nowritebarrier
+func iterate_finq(callback func(*funcval, unsafe.Pointer, *functype, *ptrtype)) {
+ for fb := allfin; fb != nil; fb = fb.alllink {
+ for i := uint32(0); i < fb.cnt; i++ {
+ f := &fb.fin[i]
+ callback(f.fn, f.arg, f.ft, f.ot)
+ }
+ }
+}
+
+func wakefing() *g {
+ var res *g
+ lock(&finlock)
+ if fingwait && fingwake {
+ fingwait = false
+ fingwake = false
+ res = fing
+ }
+ unlock(&finlock)
+ return res
+}
+
+var (
+ fingCreate uint32
+ fingRunning bool
+)
+
+func createfing() {
+ // start the finalizer goroutine exactly once
+ if fingCreate == 0 && atomic.Cas(&fingCreate, 0, 1) {
+ go runfinq()
+ }
+}
+
+// This is the goroutine that runs all of the finalizers
+func runfinq() {
+ var (
+ ef eface
+ ifac iface
+ )
+
+ for {
+ lock(&finlock)
+ fb := finq
+ finq = nil
+ if fb == nil {
+ gp := getg()
+ fing = gp
+ fingwait = true
+ goparkunlock(&finlock, "finalizer wait", traceEvGoBlock, 1)
+ continue
+ }
+ unlock(&finlock)
+ for fb != nil {
+ for i := fb.cnt; i > 0; i-- {
+ f := &fb.fin[i-1]
+
+ if f.ft == nil {
+ throw("missing type in runfinq")
+ }
+ fint := f.ft.in[0]
+ var param unsafe.Pointer
+ switch fint.kind & kindMask {
+ case kindPtr:
+ // direct use of pointer
+ param = unsafe.Pointer(&f.arg)
+ case kindInterface:
+ ityp := (*interfacetype)(unsafe.Pointer(fint))
+ if len(ityp.methods) == 0 {
+ // set up with empty interface
+ ef._type = &f.ot.typ
+ ef.data = f.arg
+ param = unsafe.Pointer(&ef)
+ } else {
+ // convert to interface with methods
+ // this conversion is guaranteed to succeed - we checked in SetFinalizer
+ ifac.tab = getitab(fint, &f.ot.typ, true)
+ ifac.data = f.arg
+ param = unsafe.Pointer(&ifac)
+ }
+ default:
+ throw("bad kind in runfinq")
+ }
+ fingRunning = true
+ reflectcall(f.ft, f.fn, false, false, &param, nil)
+ fingRunning = false
+
+ // Drop finalizer queue heap references
+ // before hiding them from markroot.
+ // This also ensures these will be
+ // clear if we reuse the finalizer.
+ f.fn = nil
+ f.arg = nil
+ f.ot = nil
+ atomic.Store(&fb.cnt, i-1)
+ }
+ next := fb.next
+ lock(&finlock)
+ fb.next = finc
+ finc = fb
+ unlock(&finlock)
+ fb = next
+ }
+ }
+}
+
+// SetFinalizer sets the finalizer associated with obj to the provided
+// finalizer function. When the garbage collector finds an unreachable block
+// with an associated finalizer, it clears the association and runs
+// finalizer(obj) in a separate goroutine. This makes obj reachable again,
+// but now without an associated finalizer. Assuming that SetFinalizer
+// is not called again, the next time the garbage collector sees
+// that obj is unreachable, it will free obj.
+//
+// SetFinalizer(obj, nil) clears any finalizer associated with obj.
+//
+// The argument obj must be a pointer to an object allocated by calling
+// new, by taking the address of a composite literal, or by taking the
+// address of a local variable.
+// The argument finalizer must be a function that takes a single argument
+// to which obj's type can be assigned, and can have arbitrary ignored return
+// values. If either of these is not true, SetFinalizer may abort the
+// program.
+//
+// Finalizers are run in dependency order: if A points at B, both have
+// finalizers, and they are otherwise unreachable, only the finalizer
+// for A runs; once A is freed, the finalizer for B can run.
+// If a cyclic structure includes a block with a finalizer, that
+// cycle is not guaranteed to be garbage collected and the finalizer
+// is not guaranteed to run, because there is no ordering that
+// respects the dependencies.
+//
+// The finalizer for obj is scheduled to run at some arbitrary time after
+// obj becomes unreachable.
+// There is no guarantee that finalizers will run before a program exits,
+// so typically they are useful only for releasing non-memory resources
+// associated with an object during a long-running program.
+// For example, an os.File object could use a finalizer to close the
+// associated operating system file descriptor when a program discards
+// an os.File without calling Close, but it would be a mistake
+// to depend on a finalizer to flush an in-memory I/O buffer such as a
+// bufio.Writer, because the buffer would not be flushed at program exit.
+//
+// It is not guaranteed that a finalizer will run if the size of *obj is
+// zero bytes.
+//
+// It is not guaranteed that a finalizer will run for objects allocated
+// in initializers for package-level variables. Such objects may be
+// linker-allocated, not heap-allocated.
+//
+// A finalizer may run as soon as an object becomes unreachable.
+// In order to use finalizers correctly, the program must ensure that
+// the object is reachable until it is no longer required.
+// Objects stored in global variables, or that can be found by tracing
+// pointers from a global variable, are reachable. For other objects,
+// pass the object to a call of the KeepAlive function to mark the
+// last point in the function where the object must be reachable.
+//
+// For example, if p points to a struct that contains a file descriptor d,
+// and p has a finalizer that closes that file descriptor, and if the last
+// use of p in a function is a call to syscall.Write(p.d, buf, size), then
+// p may be unreachable as soon as the program enters syscall.Write. The
+// finalizer may run at that moment, closing p.d, causing syscall.Write
+// to fail because it is writing to a closed file descriptor (or, worse,
+// to an entirely different file descriptor opened by a different goroutine).
+// To avoid this problem, call runtime.KeepAlive(p) after the call to
+// syscall.Write.
+//
+// A single goroutine runs all finalizers for a program, sequentially.
+// If a finalizer must run for a long time, it should do so by starting
+// a new goroutine.
+func SetFinalizer(obj interface{}, finalizer interface{}) {
+ if debug.sbrk != 0 {
+ // debug.sbrk never frees memory, so no finalizers run
+ // (and we don't have the data structures to record them).
+ return
+ }
+ e := efaceOf(&obj)
+ etyp := e._type
+ if etyp == nil {
+ throw("runtime.SetFinalizer: first argument is nil")
+ }
+ if etyp.kind&kindMask != kindPtr {
+ throw("runtime.SetFinalizer: first argument is " + *etyp.string + ", not pointer")
+ }
+ ot := (*ptrtype)(unsafe.Pointer(etyp))
+ if ot.elem == nil {
+ throw("nil elem type!")
+ }
+
+ // find the containing object
+ _, base, _ := findObject(e.data)
+
+ if base == nil {
+ // 0-length objects are okay.
+ if e.data == unsafe.Pointer(&zerobase) {
+ return
+ }
+
+ // Global initializers might be linker-allocated.
+ // var Foo = &Object{}
+ // func main() {
+ // runtime.SetFinalizer(Foo, nil)
+ // }
+ // The relevant segments are: noptrdata, data, bss, noptrbss.
+ // We cannot assume they are in any order or even contiguous,
+ // due to external linking.
+ //
+ // For gccgo we have no reliable way to detect them,
+ // so we just return.
+ return
+ }
+
+ if e.data != base {
+ // As an implementation detail we allow to set finalizers for an inner byte
+ // of an object if it could come from tiny alloc (see mallocgc for details).
+ if ot.elem == nil || ot.elem.kind&kindNoPointers == 0 || ot.elem.size >= maxTinySize {
+ throw("runtime.SetFinalizer: pointer not at beginning of allocated block")
+ }
+ }
+
+ f := efaceOf(&finalizer)
+ ftyp := f._type
+ if ftyp == nil {
+ // switch to system stack and remove finalizer
+ systemstack(func() {
+ removefinalizer(e.data)
+ })
+ return
+ }
+
+ if ftyp.kind&kindMask != kindFunc {
+ throw("runtime.SetFinalizer: second argument is " + *ftyp.string + ", not a function")
+ }
+ ft := (*functype)(unsafe.Pointer(ftyp))
+ if ft.dotdotdot {
+ throw("runtime.SetFinalizer: cannot pass " + *etyp.string + " to finalizer " + *ftyp.string + " because dotdotdot")
+ }
+ if len(ft.in) != 1 {
+ throw("runtime.SetFinalizer: cannot pass " + *etyp.string + " to finalizer " + *ftyp.string)
+ }
+ fint := ft.in[0]
+ switch {
+ case fint == etyp:
+ // ok - same type
+ goto okarg
+ case fint.kind&kindMask == kindPtr:
+ if (fint.uncommontype == nil || etyp.uncommontype == nil) && (*ptrtype)(unsafe.Pointer(fint)).elem == ot.elem {
+ // ok - not same type, but both pointers,
+ // one or the other is unnamed, and same element type, so assignable.
+ goto okarg
+ }
+ case fint.kind&kindMask == kindInterface:
+ ityp := (*interfacetype)(unsafe.Pointer(fint))
+ if len(ityp.methods) == 0 {
+ // ok - satisfies empty interface
+ goto okarg
+ }
+ if getitab(fint, etyp, true) == nil {
+ goto okarg
+ }
+ }
+ throw("runtime.SetFinalizer: cannot pass " + *etyp.string + " to finalizer " + *ftyp.string)
+okarg:
+ // make sure we have a finalizer goroutine
+ createfing()
+
+ systemstack(func() {
+ data := f.data
+ if !isDirectIface(ftyp) {
+ data = *(*unsafe.Pointer)(data)
+ }
+ if !addfinalizer(e.data, (*funcval)(data), ft, ot) {
+ throw("runtime.SetFinalizer: finalizer already set")
+ }
+ })
+}
+
+// Look up pointer v in heap. Return the span containing the object,
+// the start of the object, and the size of the object. If the object
+// does not exist, return nil, nil, 0.
+func findObject(v unsafe.Pointer) (s *mspan, x unsafe.Pointer, n uintptr) {
+ c := gomcache()
+ c.local_nlookup++
+ if sys.PtrSize == 4 && c.local_nlookup >= 1<<30 {
+ // purge cache stats to prevent overflow
+ lock(&mheap_.lock)
+ purgecachedstats(c)
+ unlock(&mheap_.lock)
+ }
+
+ // find span
+ arena_start := mheap_.arena_start
+ arena_used := mheap_.arena_used
+ if uintptr(v) < arena_start || uintptr(v) >= arena_used {
+ return
+ }
+ p := uintptr(v) >> pageShift
+ q := p - arena_start>>pageShift
+ s = mheap_.spans[q]
+ if s == nil {
+ return
+ }
+ x = unsafe.Pointer(s.base())
+
+ if uintptr(v) < uintptr(x) || uintptr(v) >= uintptr(unsafe.Pointer(s.limit)) || s.state != mSpanInUse {
+ s = nil
+ x = nil
+ return
+ }
+
+ n = s.elemsize
+ if s.sizeclass != 0 {
+ x = add(x, (uintptr(v)-uintptr(x))/n*n)
+ }
+ return
+}
+
+// Mark KeepAlive as noinline so that the current compiler will ensure
+// that the argument is alive at the point of the function call.
+// If it were inlined, it would disappear, and there would be nothing
+// keeping the argument alive. Perhaps a future compiler will recognize
+// runtime.KeepAlive specially and do something more efficient.
+//go:noinline
+
+// KeepAlive marks its argument as currently reachable.
+// This ensures that the object is not freed, and its finalizer is not run,
+// before the point in the program where KeepAlive is called.
+//
+// A very simplified example showing where KeepAlive is required:
+// type File struct { d int }
+// d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0)
+// // ... do something if err != nil ...
+// p := &File{d}
+// runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) })
+// var buf [10]byte
+// n, err := syscall.Read(p.d, buf[:])
+// // Ensure p is not finalized until Read returns.
+// runtime.KeepAlive(p)
+// // No more uses of p after this point.
+//
+// Without the KeepAlive call, the finalizer could run at the start of
+// syscall.Read, closing the file descriptor before syscall.Read makes
+// the actual system call.
+func KeepAlive(interface{}) {}