aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/runtime/malloc.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/runtime/malloc.go')
-rw-r--r--libgo/go/runtime/malloc.go998
1 files changed, 998 insertions, 0 deletions
diff --git a/libgo/go/runtime/malloc.go b/libgo/go/runtime/malloc.go
new file mode 100644
index 0000000..ed25782
--- /dev/null
+++ b/libgo/go/runtime/malloc.go
@@ -0,0 +1,998 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Memory allocator.
+//
+// This was originally based on tcmalloc, but has diverged quite a bit.
+// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
+
+// The main allocator works in runs of pages.
+// Small allocation sizes (up to and including 32 kB) are
+// rounded to one of about 70 size classes, each of which
+// has its own free set of objects of exactly that size.
+// Any free page of memory can be split into a set of objects
+// of one size class, which are then managed using a free bitmap.
+//
+// The allocator's data structures are:
+//
+// fixalloc: a free-list allocator for fixed-size off-heap objects,
+// used to manage storage used by the allocator.
+// mheap: the malloc heap, managed at page (8192-byte) granularity.
+// mspan: a run of pages managed by the mheap.
+// mcentral: collects all spans of a given size class.
+// mcache: a per-P cache of mspans with free space.
+// mstats: allocation statistics.
+//
+// Allocating a small object proceeds up a hierarchy of caches:
+//
+// 1. Round the size up to one of the small size classes
+// and look in the corresponding mspan in this P's mcache.
+// Scan the mspan's free bitmap to find a free slot.
+// If there is a free slot, allocate it.
+// This can all be done without acquiring a lock.
+//
+// 2. If the mspan has no free slots, obtain a new mspan
+// from the mcentral's list of mspans of the required size
+// class that have free space.
+// Obtaining a whole span amortizes the cost of locking
+// the mcentral.
+//
+// 3. If the mcentral's mspan list is empty, obtain a run
+// of pages from the mheap to use for the mspan.
+//
+// 4. If the mheap is empty or has no page runs large enough,
+// allocate a new group of pages (at least 1MB) from the
+// operating system. Allocating a large run of pages
+// amortizes the cost of talking to the operating system.
+//
+// Sweeping an mspan and freeing objects on it proceeds up a similar
+// hierarchy:
+//
+// 1. If the mspan is being swept in response to allocation, it
+// is returned to the mcache to satisfy the allocation.
+//
+// 2. Otherwise, if the mspan still has allocated objects in it,
+// it is placed on the mcentral free list for the mspan's size
+// class.
+//
+// 3. Otherwise, if all objects in the mspan are free, the mspan
+// is now "idle", so it is returned to the mheap and no longer
+// has a size class.
+// This may coalesce it with adjacent idle mspans.
+//
+// 4. If an mspan remains idle for long enough, return its pages
+// to the operating system.
+//
+// Allocating and freeing a large object uses the mheap
+// directly, bypassing the mcache and mcentral.
+//
+// Free object slots in an mspan are zeroed only if mspan.needzero is
+// false. If needzero is true, objects are zeroed as they are
+// allocated. There are various benefits to delaying zeroing this way:
+//
+// 1. Stack frame allocation can avoid zeroing altogether.
+//
+// 2. It exhibits better temporal locality, since the program is
+// probably about to write to the memory.
+//
+// 3. We don't zero pages that never get reused.
+
+package runtime
+
+import (
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+// C function to get the end of the program's memory.
+func getEnd() uintptr
+
+// For gccgo, use go:linkname to rename compiler-called functions to
+// themselves, so that the compiler will export them.
+//
+//go:linkname newobject runtime.newobject
+
+// Functions called by C code.
+//go:linkname mallocgc runtime.mallocgc
+
+const (
+ debugMalloc = false
+
+ maxTinySize = _TinySize
+ tinySizeClass = _TinySizeClass
+ maxSmallSize = _MaxSmallSize
+
+ pageShift = _PageShift
+ pageSize = _PageSize
+ pageMask = _PageMask
+ // By construction, single page spans of the smallest object class
+ // have the most objects per span.
+ maxObjsPerSpan = pageSize / 8
+
+ mSpanInUse = _MSpanInUse
+
+ concurrentSweep = _ConcurrentSweep
+
+ _PageSize = 1 << _PageShift
+ _PageMask = _PageSize - 1
+
+ // _64bit = 1 on 64-bit systems, 0 on 32-bit systems
+ _64bit = 1 << (^uintptr(0) >> 63) / 2
+
+ // Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
+ _TinySize = 16
+ _TinySizeClass = 2
+
+ _FixAllocChunk = 16 << 10 // Chunk size for FixAlloc
+ _MaxMHeapList = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap.
+ _HeapAllocChunk = 1 << 20 // Chunk size for heap growth
+
+ // Per-P, per order stack segment cache size.
+ _StackCacheSize = 32 * 1024
+
+ // Number of orders that get caching. Order 0 is FixedStack
+ // and each successive order is twice as large.
+ // We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
+ // will be allocated directly.
+ // Since FixedStack is different on different systems, we
+ // must vary NumStackOrders to keep the same maximum cached size.
+ // OS | FixedStack | NumStackOrders
+ // -----------------+------------+---------------
+ // linux/darwin/bsd | 2KB | 4
+ // windows/32 | 4KB | 3
+ // windows/64 | 8KB | 2
+ // plan9 | 4KB | 3
+ _NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9
+
+ // Number of bits in page to span calculations (4k pages).
+ // On Windows 64-bit we limit the arena to 32GB or 35 bits.
+ // Windows counts memory used by page table into committed memory
+ // of the process, so we can't reserve too much memory.
+ // See https://golang.org/issue/5402 and https://golang.org/issue/5236.
+ // On other 64-bit platforms, we limit the arena to 512GB, or 39 bits.
+ // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
+ // The only exception is mips32 which only has access to low 2GB of virtual memory.
+ // On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory,
+ // but as most devices have less than 4GB of physical memory anyway, we
+ // try to be conservative here, and only ask for a 2GB heap.
+ _MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*(32-(sys.GoarchMips+sys.GoarchMipsle))
+ _MHeapMap_Bits = _MHeapMap_TotalBits - _PageShift
+
+ _MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1)
+
+ // Max number of threads to run garbage collection.
+ // 2, 3, and 4 are all plausible maximums depending
+ // on the hardware details of the machine. The garbage
+ // collector scales well to 32 cpus.
+ _MaxGcproc = 32
+
+ _MaxArena32 = 1<<32 - 1
+
+ // minLegalPointer is the smallest possible legal pointer.
+ // This is the smallest possible architectural page size,
+ // since we assume that the first page is never mapped.
+ //
+ // This should agree with minZeroPage in the compiler.
+ minLegalPointer uintptr = 4096
+)
+
+// physPageSize is the size in bytes of the OS's physical pages.
+// Mapping and unmapping operations must be done at multiples of
+// physPageSize.
+//
+// This must be set by the OS init code (typically in osinit) before
+// mallocinit.
+var physPageSize uintptr
+
+// OS-defined helpers:
+//
+// sysAlloc obtains a large chunk of zeroed memory from the
+// operating system, typically on the order of a hundred kilobytes
+// or a megabyte.
+// NOTE: sysAlloc returns OS-aligned memory, but the heap allocator
+// may use larger alignment, so the caller must be careful to realign the
+// memory obtained by sysAlloc.
+//
+// SysUnused notifies the operating system that the contents
+// of the memory region are no longer needed and can be reused
+// for other purposes.
+// SysUsed notifies the operating system that the contents
+// of the memory region are needed again.
+//
+// SysFree returns it unconditionally; this is only used if
+// an out-of-memory error has been detected midway through
+// an allocation. It is okay if SysFree is a no-op.
+//
+// SysReserve reserves address space without allocating memory.
+// If the pointer passed to it is non-nil, the caller wants the
+// reservation there, but SysReserve can still choose another
+// location if that one is unavailable. On some systems and in some
+// cases SysReserve will simply check that the address space is
+// available and not actually reserve it. If SysReserve returns
+// non-nil, it sets *reserved to true if the address space is
+// reserved, false if it has merely been checked.
+// NOTE: SysReserve returns OS-aligned memory, but the heap allocator
+// may use larger alignment, so the caller must be careful to realign the
+// memory obtained by sysAlloc.
+//
+// SysMap maps previously reserved address space for use.
+// The reserved argument is true if the address space was really
+// reserved, not merely checked.
+//
+// SysFault marks a (already sysAlloc'd) region to fault
+// if accessed. Used only for debugging the runtime.
+
+func mallocinit() {
+ if class_to_size[_TinySizeClass] != _TinySize {
+ throw("bad TinySizeClass")
+ }
+
+ // Not used for gccgo.
+ // testdefersizes()
+
+ // Copy class sizes out for statistics table.
+ for i := range class_to_size {
+ memstats.by_size[i].size = uint32(class_to_size[i])
+ }
+
+ // Check physPageSize.
+ if physPageSize == 0 {
+ // The OS init code failed to fetch the physical page size.
+ throw("failed to get system page size")
+ }
+ if physPageSize < minPhysPageSize {
+ print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
+ throw("bad system page size")
+ }
+ if physPageSize&(physPageSize-1) != 0 {
+ print("system page size (", physPageSize, ") must be a power of 2\n")
+ throw("bad system page size")
+ }
+
+ var p, bitmapSize, spansSize, pSize, limit uintptr
+ var reserved bool
+
+ // limit = runtime.memlimit();
+ // See https://golang.org/issue/5049
+ // TODO(rsc): Fix after 1.1.
+ limit = 0
+
+ // Set up the allocation arena, a contiguous area of memory where
+ // allocated data will be found. The arena begins with a bitmap large
+ // enough to hold 2 bits per allocated word.
+ if sys.PtrSize == 8 && (limit == 0 || limit > 1<<30) {
+ // On a 64-bit machine, allocate from a single contiguous reservation.
+ // 512 GB (MaxMem) should be big enough for now.
+ //
+ // The code will work with the reservation at any address, but ask
+ // SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
+ // Allocating a 512 GB region takes away 39 bits, and the amd64
+ // doesn't let us choose the top 17 bits, so that leaves the 9 bits
+ // in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
+ // that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
+ // In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
+ // UTF-8 sequences, and they are otherwise as far away from
+ // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
+ // addresses. An earlier attempt to use 0x11f8 caused out of memory errors
+ // on OS X during thread allocations. 0x00c0 causes conflicts with
+ // AddressSanitizer which reserves all memory up to 0x0100.
+ // These choices are both for debuggability and to reduce the
+ // odds of a conservative garbage collector (as is still used in gccgo)
+ // not collecting memory because some non-pointer block of memory
+ // had a bit pattern that matched a memory address.
+ //
+ // Actually we reserve 544 GB (because the bitmap ends up being 32 GB)
+ // but it hardly matters: e0 00 is not valid UTF-8 either.
+ //
+ // If this fails we fall back to the 32 bit memory mechanism
+ //
+ // However, on arm64, we ignore all this advice above and slam the
+ // allocation at 0x40 << 32 because when using 4k pages with 3-level
+ // translation buffers, the user address space is limited to 39 bits
+ // On darwin/arm64, the address space is even smaller.
+ arenaSize := round(_MaxMem, _PageSize)
+ bitmapSize = arenaSize / (sys.PtrSize * 8 / 2)
+ spansSize = arenaSize / _PageSize * sys.PtrSize
+ spansSize = round(spansSize, _PageSize)
+ for i := 0; i <= 0x7f; i++ {
+ switch {
+ case GOARCH == "arm64" && GOOS == "darwin":
+ p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
+ case GOARCH == "arm64":
+ p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
+ default:
+ p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
+ }
+ pSize = bitmapSize + spansSize + arenaSize + _PageSize
+ p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
+ if p != 0 {
+ break
+ }
+ }
+ }
+
+ if p == 0 {
+ // On a 32-bit machine, we can't typically get away
+ // with a giant virtual address space reservation.
+ // Instead we map the memory information bitmap
+ // immediately after the data segment, large enough
+ // to handle the entire 4GB address space (256 MB),
+ // along with a reservation for an initial arena.
+ // When that gets used up, we'll start asking the kernel
+ // for any memory anywhere.
+
+ // If we fail to allocate, try again with a smaller arena.
+ // This is necessary on Android L where we share a process
+ // with ART, which reserves virtual memory aggressively.
+ // In the worst case, fall back to a 0-sized initial arena,
+ // in the hope that subsequent reservations will succeed.
+ arenaSizes := [...]uintptr{
+ 512 << 20,
+ 256 << 20,
+ 128 << 20,
+ 0,
+ }
+
+ for _, arenaSize := range &arenaSizes {
+ bitmapSize = (_MaxArena32 + 1) / (sys.PtrSize * 8 / 2)
+ spansSize = (_MaxArena32 + 1) / _PageSize * sys.PtrSize
+ if limit > 0 && arenaSize+bitmapSize+spansSize > limit {
+ bitmapSize = (limit / 9) &^ ((1 << _PageShift) - 1)
+ arenaSize = bitmapSize * 8
+ spansSize = arenaSize / _PageSize * sys.PtrSize
+ }
+ spansSize = round(spansSize, _PageSize)
+
+ // SysReserve treats the address we ask for, end, as a hint,
+ // not as an absolute requirement. If we ask for the end
+ // of the data segment but the operating system requires
+ // a little more space before we can start allocating, it will
+ // give out a slightly higher pointer. Except QEMU, which
+ // is buggy, as usual: it won't adjust the pointer upward.
+ // So adjust it upward a little bit ourselves: 1/4 MB to get
+ // away from the running binary image and then round up
+ // to a MB boundary.
+ p = round(getEnd()+(1<<18), 1<<20)
+ pSize = bitmapSize + spansSize + arenaSize + _PageSize
+ p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
+ if p != 0 {
+ break
+ }
+ }
+ if p == 0 {
+ throw("runtime: cannot reserve arena virtual address space")
+ }
+ }
+
+ // PageSize can be larger than OS definition of page size,
+ // so SysReserve can give us a PageSize-unaligned pointer.
+ // To overcome this we ask for PageSize more and round up the pointer.
+ p1 := round(p, _PageSize)
+
+ spansStart := p1
+ mheap_.bitmap = p1 + spansSize + bitmapSize
+ if sys.PtrSize == 4 {
+ // Set arena_start such that we can accept memory
+ // reservations located anywhere in the 4GB virtual space.
+ mheap_.arena_start = 0
+ } else {
+ mheap_.arena_start = p1 + (spansSize + bitmapSize)
+ }
+ mheap_.arena_end = p + pSize
+ mheap_.arena_used = p1 + (spansSize + bitmapSize)
+ mheap_.arena_reserved = reserved
+
+ if mheap_.arena_start&(_PageSize-1) != 0 {
+ println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start))
+ throw("misrounded allocation in mallocinit")
+ }
+
+ // Initialize the rest of the allocator.
+ mheap_.init(spansStart, spansSize)
+ _g_ := getg()
+ _g_.m.mcache = allocmcache()
+}
+
+// sysAlloc allocates the next n bytes from the heap arena. The
+// returned pointer is always _PageSize aligned and between
+// h.arena_start and h.arena_end. sysAlloc returns nil on failure.
+// There is no corresponding free function.
+func (h *mheap) sysAlloc(n uintptr) unsafe.Pointer {
+ if n > h.arena_end-h.arena_used {
+ // We are in 32-bit mode, maybe we didn't use all possible address space yet.
+ // Reserve some more space.
+ p_size := round(n+_PageSize, 256<<20)
+ new_end := h.arena_end + p_size // Careful: can overflow
+ if h.arena_end <= new_end && new_end-h.arena_start-1 <= _MaxArena32 {
+ // TODO: It would be bad if part of the arena
+ // is reserved and part is not.
+ var reserved bool
+ p := uintptr(sysReserve(unsafe.Pointer(h.arena_end), p_size, &reserved))
+ if p == 0 {
+ return nil
+ }
+ if p == h.arena_end {
+ h.arena_end = new_end
+ h.arena_reserved = reserved
+ } else if h.arena_start <= p && p+p_size-h.arena_start-1 <= _MaxArena32 {
+ // Keep everything page-aligned.
+ // Our pages are bigger than hardware pages.
+ h.arena_end = p + p_size
+ used := p + (-p & (_PageSize - 1))
+ h.mapBits(used)
+ h.mapSpans(used)
+ h.arena_used = used
+ h.arena_reserved = reserved
+ } else {
+ // We haven't added this allocation to
+ // the stats, so subtract it from a
+ // fake stat (but avoid underflow).
+ stat := uint64(p_size)
+ sysFree(unsafe.Pointer(p), p_size, &stat)
+ }
+ }
+ }
+
+ if n <= h.arena_end-h.arena_used {
+ // Keep taking from our reservation.
+ p := h.arena_used
+ sysMap(unsafe.Pointer(p), n, h.arena_reserved, &memstats.heap_sys)
+ h.mapBits(p + n)
+ h.mapSpans(p + n)
+ h.arena_used = p + n
+ if raceenabled {
+ racemapshadow(unsafe.Pointer(p), n)
+ }
+
+ if p&(_PageSize-1) != 0 {
+ throw("misrounded allocation in MHeap_SysAlloc")
+ }
+ return unsafe.Pointer(p)
+ }
+
+ // If using 64-bit, our reservation is all we have.
+ if h.arena_end-h.arena_start > _MaxArena32 {
+ return nil
+ }
+
+ // On 32-bit, once the reservation is gone we can
+ // try to get memory at a location chosen by the OS.
+ p_size := round(n, _PageSize) + _PageSize
+ p := uintptr(sysAlloc(p_size, &memstats.heap_sys))
+ if p == 0 {
+ return nil
+ }
+
+ if p < h.arena_start || p+p_size-h.arena_start > _MaxArena32 {
+ top := ^uintptr(0)
+ if top-h.arena_start-1 > _MaxArena32 {
+ top = h.arena_start + _MaxArena32 + 1
+ }
+ print("runtime: memory allocated by OS (", hex(p), ") not in usable range [", hex(h.arena_start), ",", hex(top), ")\n")
+ sysFree(unsafe.Pointer(p), p_size, &memstats.heap_sys)
+ return nil
+ }
+
+ p_end := p + p_size
+ p += -p & (_PageSize - 1)
+ if p+n > h.arena_used {
+ h.mapBits(p + n)
+ h.mapSpans(p + n)
+ h.arena_used = p + n
+ if p_end > h.arena_end {
+ h.arena_end = p_end
+ }
+ if raceenabled {
+ racemapshadow(unsafe.Pointer(p), n)
+ }
+ }
+
+ if p&(_PageSize-1) != 0 {
+ throw("misrounded allocation in MHeap_SysAlloc")
+ }
+ return unsafe.Pointer(p)
+}
+
+// base address for all 0-byte allocations
+var zerobase uintptr
+
+// nextFreeFast returns the next free object if one is quickly available.
+// Otherwise it returns 0.
+func nextFreeFast(s *mspan) gclinkptr {
+ theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache?
+ if theBit < 64 {
+ result := s.freeindex + uintptr(theBit)
+ if result < s.nelems {
+ freeidx := result + 1
+ if freeidx%64 == 0 && freeidx != s.nelems {
+ return 0
+ }
+ s.allocCache >>= (theBit + 1)
+ s.freeindex = freeidx
+ v := gclinkptr(result*s.elemsize + s.base())
+ s.allocCount++
+ return v
+ }
+ }
+ return 0
+}
+
+// nextFree returns the next free object from the cached span if one is available.
+// Otherwise it refills the cache with a span with an available object and
+// returns that object along with a flag indicating that this was a heavy
+// weight allocation. If it is a heavy weight allocation the caller must
+// determine whether a new GC cycle needs to be started or if the GC is active
+// whether this goroutine needs to assist the GC.
+func (c *mcache) nextFree(sizeclass uint8) (v gclinkptr, s *mspan, shouldhelpgc bool) {
+ s = c.alloc[sizeclass]
+ shouldhelpgc = false
+ freeIndex := s.nextFreeIndex()
+ if freeIndex == s.nelems {
+ // The span is full.
+ if uintptr(s.allocCount) != s.nelems {
+ println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
+ throw("s.allocCount != s.nelems && freeIndex == s.nelems")
+ }
+ systemstack(func() {
+ c.refill(int32(sizeclass))
+ })
+ shouldhelpgc = true
+ s = c.alloc[sizeclass]
+
+ freeIndex = s.nextFreeIndex()
+ }
+
+ if freeIndex >= s.nelems {
+ throw("freeIndex is not valid")
+ }
+
+ v = gclinkptr(freeIndex*s.elemsize + s.base())
+ s.allocCount++
+ if uintptr(s.allocCount) > s.nelems {
+ println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
+ throw("s.allocCount > s.nelems")
+ }
+ return
+}
+
+// Allocate an object of size bytes.
+// Small objects are allocated from the per-P cache's free lists.
+// Large objects (> 32 kB) are allocated straight from the heap.
+func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
+ if gcphase == _GCmarktermination {
+ throw("mallocgc called with gcphase == _GCmarktermination")
+ }
+
+ if size == 0 {
+ return unsafe.Pointer(&zerobase)
+ }
+
+ if debug.sbrk != 0 {
+ align := uintptr(16)
+ if typ != nil {
+ align = uintptr(typ.align)
+ }
+ return persistentalloc(size, align, &memstats.other_sys)
+ }
+
+ // When using gccgo, when a cgo or SWIG function has an
+ // interface return type and the function returns a
+ // non-pointer, memory allocation occurs after syscall.Cgocall
+ // but before syscall.CgocallDone. Treat this allocation as a
+ // callback.
+ incallback := false
+ if gomcache() == nil && getg().m.ncgo > 0 {
+ exitsyscall(0)
+ incallback = true
+ }
+
+ // assistG is the G to charge for this allocation, or nil if
+ // GC is not currently active.
+ var assistG *g
+ if gcBlackenEnabled != 0 {
+ // Charge the current user G for this allocation.
+ assistG = getg()
+ if assistG.m.curg != nil {
+ assistG = assistG.m.curg
+ }
+ // Charge the allocation against the G. We'll account
+ // for internal fragmentation at the end of mallocgc.
+ assistG.gcAssistBytes -= int64(size)
+
+ if assistG.gcAssistBytes < 0 {
+ // This G is in debt. Assist the GC to correct
+ // this before allocating. This must happen
+ // before disabling preemption.
+ gcAssistAlloc(assistG)
+ }
+ }
+
+ // Set mp.mallocing to keep from being preempted by GC.
+ mp := acquirem()
+ if mp.mallocing != 0 {
+ throw("malloc deadlock")
+ }
+ if mp.gsignal == getg() {
+ throw("malloc during signal")
+ }
+ mp.mallocing = 1
+
+ shouldhelpgc := false
+ dataSize := size
+ c := gomcache()
+ var x unsafe.Pointer
+ noscan := typ == nil || typ.kind&kindNoPointers != 0
+ if size <= maxSmallSize {
+ if noscan && size < maxTinySize {
+ // Tiny allocator.
+ //
+ // Tiny allocator combines several tiny allocation requests
+ // into a single memory block. The resulting memory block
+ // is freed when all subobjects are unreachable. The subobjects
+ // must be noscan (don't have pointers), this ensures that
+ // the amount of potentially wasted memory is bounded.
+ //
+ // Size of the memory block used for combining (maxTinySize) is tunable.
+ // Current setting is 16 bytes, which relates to 2x worst case memory
+ // wastage (when all but one subobjects are unreachable).
+ // 8 bytes would result in no wastage at all, but provides less
+ // opportunities for combining.
+ // 32 bytes provides more opportunities for combining,
+ // but can lead to 4x worst case wastage.
+ // The best case winning is 8x regardless of block size.
+ //
+ // Objects obtained from tiny allocator must not be freed explicitly.
+ // So when an object will be freed explicitly, we ensure that
+ // its size >= maxTinySize.
+ //
+ // SetFinalizer has a special case for objects potentially coming
+ // from tiny allocator, it such case it allows to set finalizers
+ // for an inner byte of a memory block.
+ //
+ // The main targets of tiny allocator are small strings and
+ // standalone escaping variables. On a json benchmark
+ // the allocator reduces number of allocations by ~12% and
+ // reduces heap size by ~20%.
+ off := c.tinyoffset
+ // Align tiny pointer for required (conservative) alignment.
+ if size&7 == 0 {
+ off = round(off, 8)
+ } else if size&3 == 0 {
+ off = round(off, 4)
+ } else if size&1 == 0 {
+ off = round(off, 2)
+ }
+ if off+size <= maxTinySize && c.tiny != 0 {
+ // The object fits into existing tiny block.
+ x = unsafe.Pointer(c.tiny + off)
+ c.tinyoffset = off + size
+ c.local_tinyallocs++
+ mp.mallocing = 0
+ releasem(mp)
+ if incallback {
+ entersyscall(0)
+ }
+ return x
+ }
+ // Allocate a new maxTinySize block.
+ span := c.alloc[tinySizeClass]
+ v := nextFreeFast(span)
+ if v == 0 {
+ v, _, shouldhelpgc = c.nextFree(tinySizeClass)
+ }
+ x = unsafe.Pointer(v)
+ (*[2]uint64)(x)[0] = 0
+ (*[2]uint64)(x)[1] = 0
+ // See if we need to replace the existing tiny block with the new one
+ // based on amount of remaining free space.
+ if size < c.tinyoffset || c.tiny == 0 {
+ c.tiny = uintptr(x)
+ c.tinyoffset = size
+ }
+ size = maxTinySize
+ } else {
+ var sizeclass uint8
+ if size <= smallSizeMax-8 {
+ sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
+ } else {
+ sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
+ }
+ size = uintptr(class_to_size[sizeclass])
+ span := c.alloc[sizeclass]
+ v := nextFreeFast(span)
+ if v == 0 {
+ v, span, shouldhelpgc = c.nextFree(sizeclass)
+ }
+ x = unsafe.Pointer(v)
+ if needzero && span.needzero != 0 {
+ memclrNoHeapPointers(unsafe.Pointer(v), size)
+ }
+ }
+ } else {
+ var s *mspan
+ shouldhelpgc = true
+ systemstack(func() {
+ s = largeAlloc(size, needzero)
+ })
+ s.freeindex = 1
+ s.allocCount = 1
+ x = unsafe.Pointer(s.base())
+ size = s.elemsize
+ }
+
+ var scanSize uintptr
+ if noscan {
+ heapBitsSetTypeNoScan(uintptr(x))
+ } else {
+ heapBitsSetType(uintptr(x), size, dataSize, typ)
+ if dataSize > typ.size {
+ // Array allocation. If there are any
+ // pointers, GC has to scan to the last
+ // element.
+ if typ.ptrdata != 0 {
+ scanSize = dataSize - typ.size + typ.ptrdata
+ }
+ } else {
+ scanSize = typ.ptrdata
+ }
+ c.local_scan += scanSize
+ }
+
+ // Ensure that the stores above that initialize x to
+ // type-safe memory and set the heap bits occur before
+ // the caller can make x observable to the garbage
+ // collector. Otherwise, on weakly ordered machines,
+ // the garbage collector could follow a pointer to x,
+ // but see uninitialized memory or stale heap bits.
+ publicationBarrier()
+
+ // Allocate black during GC.
+ // All slots hold nil so no scanning is needed.
+ // This may be racing with GC so do it atomically if there can be
+ // a race marking the bit.
+ if gcphase != _GCoff {
+ gcmarknewobject(uintptr(x), size, scanSize)
+ }
+
+ if raceenabled {
+ racemalloc(x, size)
+ }
+
+ if msanenabled {
+ msanmalloc(x, size)
+ }
+
+ mp.mallocing = 0
+ releasem(mp)
+
+ if debug.allocfreetrace != 0 {
+ tracealloc(x, size, typ)
+ }
+
+ if rate := MemProfileRate; rate > 0 {
+ if size < uintptr(rate) && int32(size) < c.next_sample {
+ c.next_sample -= int32(size)
+ } else {
+ mp := acquirem()
+ profilealloc(mp, x, size)
+ releasem(mp)
+ }
+ }
+
+ if assistG != nil {
+ // Account for internal fragmentation in the assist
+ // debt now that we know it.
+ assistG.gcAssistBytes -= int64(size - dataSize)
+ }
+
+ if shouldhelpgc && gcShouldStart(false) {
+ gcStart(gcBackgroundMode, false)
+ }
+
+ if getg().preempt {
+ checkPreempt()
+ }
+
+ if incallback {
+ entersyscall(0)
+ }
+
+ return x
+}
+
+func largeAlloc(size uintptr, needzero bool) *mspan {
+ // print("largeAlloc size=", size, "\n")
+
+ if size+_PageSize < size {
+ throw("out of memory")
+ }
+ npages := size >> _PageShift
+ if size&_PageMask != 0 {
+ npages++
+ }
+
+ // Deduct credit for this span allocation and sweep if
+ // necessary. mHeap_Alloc will also sweep npages, so this only
+ // pays the debt down to npage pages.
+ deductSweepCredit(npages*_PageSize, npages)
+
+ s := mheap_.alloc(npages, 0, true, needzero)
+ if s == nil {
+ throw("out of memory")
+ }
+ s.limit = s.base() + size
+ heapBitsForSpan(s.base()).initSpan(s)
+ return s
+}
+
+// implementation of new builtin
+// compiler (both frontend and SSA backend) knows the signature
+// of this function
+func newobject(typ *_type) unsafe.Pointer {
+ return mallocgc(typ.size, typ, true)
+}
+
+//go:linkname reflect_unsafe_New reflect.unsafe_New
+func reflect_unsafe_New(typ *_type) unsafe.Pointer {
+ return newobject(typ)
+}
+
+// newarray allocates an array of n elements of type typ.
+func newarray(typ *_type, n int) unsafe.Pointer {
+ if n < 0 || uintptr(n) > maxSliceCap(typ.size) {
+ panic(plainError("runtime: allocation size out of range"))
+ }
+ return mallocgc(typ.size*uintptr(n), typ, true)
+}
+
+//go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
+func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
+ return newarray(typ, n)
+}
+
+func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
+ mp.mcache.next_sample = nextSample()
+ mProf_Malloc(x, size)
+}
+
+// nextSample returns the next sampling point for heap profiling.
+// It produces a random variable with a geometric distribution and
+// mean MemProfileRate. This is done by generating a uniformly
+// distributed random number and applying the cumulative distribution
+// function for an exponential.
+func nextSample() int32 {
+ if GOOS == "plan9" {
+ // Plan 9 doesn't support floating point in note handler.
+ if g := getg(); g == g.m.gsignal {
+ return nextSampleNoFP()
+ }
+ }
+
+ period := MemProfileRate
+
+ // make nextSample not overflow. Maximum possible step is
+ // -ln(1/(1<<kRandomBitCount)) * period, approximately 20 * period.
+ switch {
+ case period > 0x7000000:
+ period = 0x7000000
+ case period == 0:
+ return 0
+ }
+
+ // Let m be the sample rate,
+ // the probability distribution function is m*exp(-mx), so the CDF is
+ // p = 1 - exp(-mx), so
+ // q = 1 - p == exp(-mx)
+ // log_e(q) = -mx
+ // -log_e(q)/m = x
+ // x = -log_e(q) * period
+ // x = log_2(q) * (-log_e(2)) * period ; Using log_2 for efficiency
+ const randomBitCount = 26
+ q := fastrand()%(1<<randomBitCount) + 1
+ qlog := fastlog2(float64(q)) - randomBitCount
+ if qlog > 0 {
+ qlog = 0
+ }
+ const minusLog2 = -0.6931471805599453 // -ln(2)
+ return int32(qlog*(minusLog2*float64(period))) + 1
+}
+
+// nextSampleNoFP is similar to nextSample, but uses older,
+// simpler code to avoid floating point.
+func nextSampleNoFP() int32 {
+ // Set first allocation sample size.
+ rate := MemProfileRate
+ if rate > 0x3fffffff { // make 2*rate not overflow
+ rate = 0x3fffffff
+ }
+ if rate != 0 {
+ return int32(int(fastrand()) % (2 * rate))
+ }
+ return 0
+}
+
+type persistentAlloc struct {
+ base unsafe.Pointer
+ off uintptr
+}
+
+var globalAlloc struct {
+ mutex
+ persistentAlloc
+}
+
+// Wrapper around sysAlloc that can allocate small chunks.
+// There is no associated free operation.
+// Intended for things like function/type/debug-related persistent data.
+// If align is 0, uses default align (currently 8).
+// The returned memory will be zeroed.
+//
+// Consider marking persistentalloc'd types go:notinheap.
+func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
+ var p unsafe.Pointer
+ systemstack(func() {
+ p = persistentalloc1(size, align, sysStat)
+ })
+ return p
+}
+
+// Must run on system stack because stack growth can (re)invoke it.
+// See issue 9174.
+//go:systemstack
+func persistentalloc1(size, align uintptr, sysStat *uint64) unsafe.Pointer {
+ const (
+ chunk = 256 << 10
+ maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
+ )
+
+ if size == 0 {
+ throw("persistentalloc: size == 0")
+ }
+ if align != 0 {
+ if align&(align-1) != 0 {
+ throw("persistentalloc: align is not a power of 2")
+ }
+ if align > _PageSize {
+ throw("persistentalloc: align is too large")
+ }
+ } else {
+ align = 8
+ }
+
+ if size >= maxBlock {
+ return sysAlloc(size, sysStat)
+ }
+
+ mp := acquirem()
+ var persistent *persistentAlloc
+ if mp != nil && mp.p != 0 {
+ persistent = &mp.p.ptr().palloc
+ } else {
+ lock(&globalAlloc.mutex)
+ persistent = &globalAlloc.persistentAlloc
+ }
+ persistent.off = round(persistent.off, align)
+ if persistent.off+size > chunk || persistent.base == nil {
+ persistent.base = sysAlloc(chunk, &memstats.other_sys)
+ if persistent.base == nil {
+ if persistent == &globalAlloc.persistentAlloc {
+ unlock(&globalAlloc.mutex)
+ }
+ throw("runtime: cannot allocate memory")
+ }
+ persistent.off = 0
+ }
+ p := add(persistent.base, persistent.off)
+ persistent.off += size
+ releasem(mp)
+ if persistent == &globalAlloc.persistentAlloc {
+ unlock(&globalAlloc.mutex)
+ }
+
+ if sysStat != &memstats.other_sys {
+ mSysStatInc(sysStat, size)
+ mSysStatDec(&memstats.other_sys, size)
+ }
+ return p
+}