diff options
Diffstat (limited to 'libgo/go/exp/ssa/ssa.go')
-rw-r--r-- | libgo/go/exp/ssa/ssa.go | 1100 |
1 files changed, 0 insertions, 1100 deletions
diff --git a/libgo/go/exp/ssa/ssa.go b/libgo/go/exp/ssa/ssa.go deleted file mode 100644 index eb0f7fc..0000000 --- a/libgo/go/exp/ssa/ssa.go +++ /dev/null @@ -1,1100 +0,0 @@ -package ssa - -// This package defines a high-level intermediate representation for -// Go programs using static single-assignment (SSA) form. - -import ( - "fmt" - "go/ast" - "go/token" - "go/types" -) - -// A Program is a partial or complete Go program converted to SSA form. -// Each Builder creates and populates a single Program during its -// lifetime. -// -// TODO(adonovan): synthetic methods for promoted methods and for -// standalone interface methods do not belong to any package. Make -// them enumerable here. -// -// TODO(adonovan): MethodSets of types other than named types -// (i.e. anon structs) are not currently accessible, nor are they -// memoized. Add a method: MethodSetForType() which looks in the -// appropriate Package (for methods of named types) or in -// Program.AnonStructMethods (for methods of anon structs). -// -type Program struct { - Files *token.FileSet // position information for the files of this Program - Packages map[string]*Package // all loaded Packages, keyed by import path - Builtins map[types.Object]*Builtin // all built-in functions, keyed by typechecker objects. -} - -// A Package is a single analyzed Go package, containing Members for -// all package-level functions, variables, constants and types it -// declares. These may be accessed directly via Members, or via the -// type-specific accessor methods Func, Type, Var and Const. -// -type Package struct { - Prog *Program // the owning program - Types *types.Package // the type checker's package object for this package. - ImportPath string // e.g. "sync/atomic" - Pos token.Pos // position of an arbitrary file in the package - Members map[string]Member // all exported and unexported members of the package - AnonFuncs []*Function // all anonymous functions in this package - Init *Function // the package's (concatenated) init function - - // The following fields are set transiently during building, - // then cleared. - files []*ast.File // the abstract syntax tree for the files of the package -} - -// A Member is a member of a Go package, implemented by *Literal, -// *Global, *Function, or *Type; they are created by package-level -// const, var, func and type declarations respectively. -// -type Member interface { - Name() string // the declared name of the package member - String() string // human-readable information about the value - Type() types.Type // the type of the package member - ImplementsMember() // dummy method to indicate the "implements" relation. -} - -// An Id identifies the name of a field of a struct type, or the name -// of a method of an interface or a named type. -// -// For exported names, i.e. those beginning with a Unicode upper-case -// letter, a simple string is unambiguous. -// -// However, a method set or struct may contain multiple unexported -// names with identical spelling that are logically distinct because -// they originate in different packages. Unexported names must -// therefore be disambiguated by their package too. -// -// The Pkg field of an Id is therefore nil iff the name is exported. -// -// This type is suitable for use as a map key because the equivalence -// relation == is consistent with identifier equality. -type Id struct { - Pkg *types.Package - Name string -} - -// A MethodSet contains all the methods whose receiver is either T or -// *T, for some named or struct type T. -// -// TODO(adonovan): the client is required to adapt T<=>*T, e.g. when -// invoking an interface method. (This could be simplified for the -// client by having distinct method sets for T and *T, with the SSA -// Builder generating wrappers as needed, but probably the client is -// able to do a better job.) Document the precise rules the client -// must follow. -// -type MethodSet map[Id]*Function - -// A Type is a Member of a Package representing the name, underlying -// type and method set of a named type declared at package scope. -// -// The method set contains only concrete methods; it is empty for -// interface types. -// -type Type struct { - NamedType *types.NamedType - Methods MethodSet -} - -// An SSA value that can be referenced by an instruction. -// -// TODO(adonovan): add methods: -// - Referrers() []*Instruction // all instructions that refer to this value. -// -type Value interface { - // Name returns the name of this value, and determines how - // this Value appears when used as an operand of an - // Instruction. - // - // This is the same as the source name for Parameters, - // Builtins, Functions, Captures, Globals and some Allocs. - // For literals, it is a representation of the literal's value - // and type. For all other Values this is the name of the - // virtual register defined by the instruction. - // - // The name of an SSA Value is not semantically significant, - // and may not even be unique within a function. - Name() string - - // If this value is an Instruction, String returns its - // disassembled form; otherwise it returns unspecified - // human-readable information about the Value, such as its - // kind, name and type. - String() string - - // Type returns the type of this value. Many instructions - // (e.g. IndexAddr) change the behaviour depending on the - // types of their operands. - // - // Documented type invariants below (e.g. "Alloc.Type() - // returns a *types.Pointer") refer to the underlying type in - // the case of NamedTypes. - Type() types.Type - - // Dummy method to indicate the "implements" relation. - ImplementsValue() -} - -// An Instruction is an SSA instruction that computes a new Value or -// has some effect. -// -// An Instruction that defines a value (e.g. BinOp) also implements -// the Value interface; an Instruction that only has an effect (e.g. Store) -// does not. -// -// TODO(adonovan): add method: -// - Operands() []Value // all Values referenced by this instruction. -// -type Instruction interface { - // String returns the disassembled form of this value. e.g. - // - // Examples of Instructions that define a Value: - // e.g. "x + y" (BinOp) - // "len([])" (Call) - // Note that the name of the Value is not printed. - // - // Examples of Instructions that do define (are) Values: - // e.g. "ret x" (Ret) - // "*y = x" (Store) - // - // (This separation is useful for some analyses which - // distinguish the operation from the value it - // defines. e.g. 'y = local int' is both an allocation of - // memory 'local int' and a definition of a pointer y.) - String() string - - // Block returns the basic block to which this instruction - // belongs. - Block() *BasicBlock - - // SetBlock sets the basic block to which this instruction - // belongs. - SetBlock(*BasicBlock) - - // Dummy method to indicate the "implements" relation. - ImplementsInstruction() -} - -// Function represents the parameters, results and code of a function -// or method. -// -// If Blocks is nil, this indicates an external function for which no -// Go source code is available. In this case, Captures and Locals -// will be nil too. Clients performing whole-program analysis must -// handle external functions specially. -// -// Functions are immutable values; they do not have addresses. -// -// Blocks[0] is the function entry point; block order is not otherwise -// semantically significant, though it may affect the readability of -// the disassembly. -// -// A nested function that refers to one or more lexically enclosing -// local variables ("free variables") has Capture parameters. Such -// functions cannot be called directly but require a value created by -// MakeClosure which, via its Bindings, supplies values for these -// parameters. Captures are always addresses. -// -// If the function is a method (Signature.Recv != nil) then the first -// element of Params is the receiver parameter. -// -// Type() returns the function's Signature. -// -type Function struct { - Name_ string - Signature *types.Signature - - Pos token.Pos // location of the definition - Enclosing *Function // enclosing function if anon; nil if global - Pkg *Package // enclosing package; nil for some synthetic methods - Prog *Program // enclosing program - Params []*Parameter - FreeVars []*Capture // free variables whose values must be supplied by closure - Locals []*Alloc - Blocks []*BasicBlock // basic blocks of the function; nil => external - - // The following fields are set transiently during building, - // then cleared. - currentBlock *BasicBlock // where to emit code - objects map[types.Object]Value // addresses of local variables - results []*Alloc // tuple of named results - syntax *funcSyntax // abstract syntax trees for Go source functions - targets *targets // linked stack of branch targets - lblocks map[*ast.Object]*lblock // labelled blocks -} - -// An SSA basic block. -// -// The final element of Instrs is always an explicit transfer of -// control (If, Jump or Ret). -// -// A block may contain no Instructions only if it is unreachable, -// i.e. Preds is nil. Empty blocks are typically pruned. -// -// BasicBlocks and their Preds/Succs relation form a (possibly cyclic) -// graph independent of the SSA Value graph. It is illegal for -// multiple edges to exist between the same pair of blocks. -// -// The order of Preds and Succs are significant (to Phi and If -// instructions, respectively). -// -type BasicBlock struct { - Name string // label; no semantic significance - Func *Function // containing function - Instrs []Instruction // instructions in order - Preds, Succs []*BasicBlock // predecessors and successors - succs2 [2]*BasicBlock // initial space for Succs. -} - -// Pure values ---------------------------------------- - -// A Capture is a pointer to a lexically enclosing local variable. -// -// The referent of a capture is an Alloc or another Capture and is -// always considered potentially escaping, so Captures are always -// addresses in the heap, and have pointer types. -// -type Capture struct { - Outer Value // the Value captured from the enclosing context. -} - -// A Parameter represents an input parameter of a function. -// -type Parameter struct { - Name_ string - Type_ types.Type -} - -// A Literal represents a literal nil, boolean, string or numeric -// (integer, fraction or complex) value. -// -// A literal's underlying Type() can be a basic type, possibly one of -// the "untyped" types. A nil literal can have any reference type: -// interface, map, channel, pointer, slice, or function---but not -// "untyped nil". -// -// All source-level constant expressions are represented by a Literal -// of equal type and value. -// -// Value holds the exact value of the literal, independent of its -// Type(), using the same representation as package go/types uses for -// constants. -// -// Example printed form: -// 42:int -// "hello":untyped string -// 3+4i:MyComplex -// -type Literal struct { - Type_ types.Type - Value interface{} -} - -// A Global is a named Value holding the address of a package-level -// variable. -// -type Global struct { - Name_ string - Type_ types.Type - Pkg *Package - - // The following fields are set transiently during building, - // then cleared. - spec *ast.ValueSpec // explained at buildGlobal -} - -// A built-in function, e.g. len. -// -// Builtins are immutable values; they do not have addresses. -// -// Type() returns an inscrutable *types.builtin. Built-in functions -// may have polymorphic or variadic types that are not expressible in -// Go's type system. -// -type Builtin struct { - Object *types.Func // canonical types.Universe object for this built-in -} - -// Value-defining instructions ---------------------------------------- - -// The Alloc instruction reserves space for a value of the given type, -// zero-initializes it, and yields its address. -// -// Alloc values are always addresses, and have pointer types, so the -// type of the allocated space is actually indirect(Type()). -// -// If Heap is false, Alloc allocates space in the function's -// activation record (frame); we refer to an Alloc(Heap=false) as a -// "local" alloc. Each local Alloc returns the same address each time -// it is executed within the same activation; the space is -// re-initialized to zero. -// -// If Heap is true, Alloc allocates space in the heap, and returns; we -// refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc -// returns a different address each time it is executed. -// -// When Alloc is applied to a channel, map or slice type, it returns -// the address of an uninitialized (nil) reference of that kind; store -// the result of MakeSlice, MakeMap or MakeChan in that location to -// instantiate these types. -// -// Example printed form: -// t0 = local int -// t1 = new int -// -type Alloc struct { - anInstruction - Name_ string - Type_ types.Type - Heap bool -} - -// Phi represents an SSA φ-node, which combines values that differ -// across incoming control-flow edges and yields a new value. Within -// a block, all φ-nodes must appear before all non-φ nodes. -// -// Example printed form: -// t2 = phi [0.start: t0, 1.if.then: t1, ...] -// -type Phi struct { - Register - Edges []Value // Edges[i] is value for Block().Preds[i] -} - -// Call represents a function or method call. -// -// The Call instruction yields the function result, if there is -// exactly one, or a tuple (empty or len>1) whose components are -// accessed via Extract. -// -// See CallCommon for generic function call documentation. -// -// Example printed form: -// t2 = println(t0, t1) -// t4 = t3() -// t7 = invoke t5.Println(...t6) -// -type Call struct { - Register - CallCommon -} - -// BinOp yields the result of binary operation X Op Y. -// -// Example printed form: -// t1 = t0 + 1:int -// -type BinOp struct { - Register - // One of: - // ADD SUB MUL QUO REM + - * / % - // AND OR XOR SHL SHR AND_NOT & | ^ << >> &~ - // EQL LSS GTR NEQ LEQ GEQ == != < <= < >= - Op token.Token - X, Y Value -} - -// UnOp yields the result of Op X. -// ARROW is channel receive. -// MUL is pointer indirection (load). -// -// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above -// and a boolean indicating the success of the receive. The -// components of the tuple are accessed using Extract. -// -// Example printed form: -// t0 = *x -// t2 = <-t1,ok -// -type UnOp struct { - Register - Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^ - X Value - CommaOk bool -} - -// Conv yields the conversion of X to type Type(). -// -// A conversion is one of the following kinds. The behaviour of the -// conversion operator may depend on both Type() and X.Type(), as well -// as the dynamic value. -// -// A '+' indicates that a dynamic representation change may occur. -// A '-' indicates that the conversion is a value-preserving change -// to types only. -// -// 1. implicit conversions (arising from assignability rules): -// - adding/removing a name, same underlying types. -// - channel type restriction, possibly adding/removing a name. -// 2. explicit conversions (in addition to the above): -// - changing a name, same underlying types. -// - between pointers to identical base types. -// + conversions between real numeric types. -// + conversions between complex numeric types. -// + integer/[]byte/[]rune -> string. -// + string -> []byte/[]rune. -// -// TODO(adonovan): split into two cases: -// - rename value (ChangeType) -// + value to type with different representation (Conv) -// -// Conversions of untyped string/number/bool constants to a specific -// representation are eliminated during SSA construction. -// -// Example printed form: -// t1 = convert interface{} <- int (t0) -// -type Conv struct { - Register - X Value -} - -// ChangeInterface constructs a value of one interface type from a -// value of another interface type known to be assignable to it. -// -// Example printed form: -// t1 = change interface interface{} <- I (t0) -// -type ChangeInterface struct { - Register - X Value -} - -// MakeInterface constructs an instance of an interface type from a -// value and its method-set. -// -// To construct the zero value of an interface type T, use: -// &Literal{types.nilType{}, T} -// -// Example printed form: -// t1 = make interface interface{} <- int (42:int) -// -type MakeInterface struct { - Register - X Value - Methods MethodSet // method set of (non-interface) X iff converting to interface -} - -// A MakeClosure instruction yields an anonymous function value whose -// code is Fn and whose lexical capture slots are populated by Bindings. -// -// By construction, all captured variables are addresses of variables -// allocated with 'new', i.e. Alloc(Heap=true). -// -// Type() returns a *types.Signature. -// -// Example printed form: -// t0 = make closure anon@1.2 [x y z] -// -type MakeClosure struct { - Register - Fn *Function - Bindings []Value // values for each free variable in Fn.FreeVars -} - -// The MakeMap instruction creates a new hash-table-based map object -// and yields a value of kind map. -// -// Type() returns a *types.Map. -// -// Example printed form: -// t1 = make map[string]int t0 -// -type MakeMap struct { - Register - Reserve Value // initial space reservation; nil => default -} - -// The MakeChan instruction creates a new channel object and yields a -// value of kind chan. -// -// Type() returns a *types.Chan. -// -// Example printed form: -// t0 = make chan int 0 -// -type MakeChan struct { - Register - Size Value // int; size of buffer; zero => synchronous. -} - -// MakeSlice yields a slice of length Len backed by a newly allocated -// array of length Cap. -// -// Both Len and Cap must be non-nil Values of integer type. -// -// (Alloc(types.Array) followed by Slice will not suffice because -// Alloc can only create arrays of statically known length.) -// -// Type() returns a *types.Slice. -// -// Example printed form: -// t1 = make slice []string 1:int t0 -// -type MakeSlice struct { - Register - Len Value - Cap Value -} - -// Slice yields a slice of an existing string, slice or *array X -// between optional integer bounds Low and High. -// -// Type() returns string if the type of X was string, otherwise a -// *types.Slice with the same element type as X. -// -// Example printed form: -// t1 = slice t0[1:] -// -type Slice struct { - Register - X Value // slice, string, or *array - Low, High Value // either may be nil -} - -// FieldAddr yields the address of Field of *struct X. -// -// The field is identified by its index within the field list of the -// struct type of X. -// -// Type() returns a *types.Pointer. -// -// Example printed form: -// t1 = &t0.name [#1] -// -type FieldAddr struct { - Register - X Value // *struct - Field int // index into X.Type().(*types.Struct).Fields -} - -// Field yields the Field of struct X. -// -// The field is identified by its index within the field list of the -// struct type of X; by using numeric indices we avoid ambiguity of -// package-local identifiers and permit compact representations. -// -// Example printed form: -// t1 = t0.name [#1] -// -type Field struct { - Register - X Value // struct - Field int // index into X.Type().(*types.Struct).Fields -} - -// IndexAddr yields the address of the element at index Index of -// collection X. Index is an integer expression. -// -// The elements of maps and strings are not addressable; use Lookup or -// MapUpdate instead. -// -// Type() returns a *types.Pointer. -// -// Example printed form: -// t2 = &t0[t1] -// -type IndexAddr struct { - Register - X Value // slice or *array, - Index Value // numeric index -} - -// Index yields element Index of array X. -// -// TODO(adonovan): permit X to have type slice. -// Currently this requires IndexAddr followed by Load. -// -// Example printed form: -// t2 = t0[t1] -// -type Index struct { - Register - X Value // array - Index Value // integer index -} - -// Lookup yields element Index of collection X, a map or string. -// Index is an integer expression if X is a string or the appropriate -// key type if X is a map. -// -// If CommaOk, the result is a 2-tuple of the value above and a -// boolean indicating the result of a map membership test for the key. -// The components of the tuple are accessed using Extract. -// -// Example printed form: -// t2 = t0[t1] -// t5 = t3[t4],ok -// -type Lookup struct { - Register - X Value // string or map - Index Value // numeric or key-typed index - CommaOk bool // return a value,ok pair -} - -// SelectState is a helper for Select. -// It represents one goal state and its corresponding communication. -// -type SelectState struct { - Dir ast.ChanDir // direction of case - Chan Value // channel to use (for send or receive) - Send Value // value to send (for send) -} - -// Select tests whether (or blocks until) one or more of the specified -// sent or received states is entered. -// -// It returns a triple (index int, recv ?, recvOk bool) whose -// components, described below, must be accessed via the Extract -// instruction. -// -// If Blocking, select waits until exactly one state holds, i.e. a -// channel becomes ready for the designated operation of sending or -// receiving; select chooses one among the ready states -// pseudorandomly, performs the send or receive operation, and sets -// 'index' to the index of the chosen channel. -// -// If !Blocking, select doesn't block if no states hold; instead it -// returns immediately with index equal to -1. -// -// If the chosen channel was used for a receive, 'recv' is set to the -// received value; Otherwise it is unspecified. recv has no useful -// type since it is conceptually the union of all possible received -// values. -// -// The third component of the triple, recvOk, is a boolean whose value -// is true iff the selected operation was a receive and the receive -// successfully yielded a value. -// -// Example printed form: -// t3 = select nonblocking [<-t0, t1<-t2, ...] -// t4 = select blocking [] -// -type Select struct { - Register - States []SelectState - Blocking bool -} - -// Range yields an iterator over the domain and range of X. -// Elements are accessed via Next. -// -// Type() returns a *types.Result (tuple type). -// -// Example printed form: -// t0 = range "hello":string -// -type Range struct { - Register - X Value // array, *array, slice, string, map or chan -} - -// Next reads and advances the iterator Iter and returns a 3-tuple -// value (ok, k, v). If the iterator is not exhausted, ok is true and -// k and v are the next elements of the domain and range, -// respectively. Otherwise ok is false and k and v are undefined. -// -// For channel iterators, k is the received value and v is always -// undefined. -// -// Components of the tuple are accessed using Extract. -// -// Type() returns a *types.Result (tuple type). -// -// Example printed form: -// t1 = next t0 -// -type Next struct { - Register - Iter Value -} - -// TypeAssert tests whether interface value X has type -// AssertedType. -// -// If CommaOk: on success it returns a pair (v, true) where v is a -// copy of value X; on failure it returns (z, false) where z is the -// zero value of that type. The components of the pair must be -// accessed using the Extract instruction. -// -// If !CommaOk, on success it returns just the single value v; on -// failure it panics. -// -// Type() reflects the actual type of the result, possibly a pair -// (types.Result); AssertedType is the asserted type. -// -// Example printed form: -// t1 = typeassert t0.(int) -// t3 = typeassert,ok t2.(T) -// -type TypeAssert struct { - Register - X Value - AssertedType types.Type - CommaOk bool -} - -// Extract yields component Index of Tuple. -// -// This is used to access the results of instructions with multiple -// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and -// IndexExpr(Map). -// -// Example printed form: -// t1 = extract t0 #1 -// -type Extract struct { - Register - Tuple Value - Index int -} - -// Instructions executed for effect. They do not yield a value. -------------------- - -// Jump transfers control to the sole successor of its owning block. -// -// A Jump instruction must be the last instruction of its containing -// BasicBlock. -// -// Example printed form: -// jump done -// -type Jump struct { - anInstruction -} - -// The If instruction transfers control to one of the two successors -// of its owning block, depending on the boolean Cond: the first if -// true, the second if false. -// -// An If instruction must be the last instruction of its containing -// BasicBlock. -// -// Example printed form: -// if t0 goto done else body -// -type If struct { - anInstruction - Cond Value -} - -// Ret returns values and control back to the calling function. -// -// len(Results) is always equal to the number of results in the -// function's signature. A source-level 'return' statement with no -// operands in a multiple-return value function is desugared to make -// the results explicit. -// -// If len(Results) > 1, Ret returns a tuple value with the specified -// components which the caller must access using Extract instructions. -// -// There is no instruction to return a ready-made tuple like those -// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or -// a tail-call to a function with multiple result parameters. -// TODO(adonovan): consider defining one; but: dis- and re-assembling -// the tuple is unavoidable if assignability conversions are required -// on the components. -// -// Ret must be the last instruction of its containing BasicBlock. -// Such a block has no successors. -// -// Example printed form: -// ret -// ret nil:I, 2:int -// -type Ret struct { - anInstruction - Results []Value -} - -// Go creates a new goroutine and calls the specified function -// within it. -// -// See CallCommon for generic function call documentation. -// -// Example printed form: -// go println(t0, t1) -// go t3() -// go invoke t5.Println(...t6) -// -type Go struct { - anInstruction - CallCommon -} - -// Defer pushes the specified call onto a stack of functions -// to be called immediately prior to returning from the -// current function. -// -// See CallCommon for generic function call documentation. -// -// Example printed form: -// defer println(t0, t1) -// defer t3() -// defer invoke t5.Println(...t6) -// -type Defer struct { - anInstruction - CallCommon -} - -// Send sends X on channel Chan. -// -// Example printed form: -// send t0 <- t1 -// -type Send struct { - anInstruction - Chan, X Value -} - -// Store stores Val at address Addr. -// Stores can be of arbitrary types. -// -// Example printed form: -// *x = y -// -type Store struct { - anInstruction - Addr Value - Val Value -} - -// MapUpdate updates the association of Map[Key] to Value. -// -// Example printed form: -// t0[t1] = t2 -// -type MapUpdate struct { - anInstruction - Map Value - Key Value - Value Value -} - -// Embeddable mix-ins used for common parts of other structs. -------------------- - -// Register is a mix-in embedded by all SSA values that are also -// instructions, i.e. virtual registers, and provides implementations -// of the Value interface's Name() and Type() methods: the name is -// simply a numbered register (e.g. "t0") and the type is the Type_ -// field. -// -// Temporary names are automatically assigned to each Register on -// completion of building a function in SSA form. -// -// Clients must not assume that the 'id' value (and the Name() derived -// from it) is unique within a function. As always in this API, -// semantics are determined only by identity; names exist only to -// facilitate debugging. -// -type Register struct { - anInstruction - num int // "name" of virtual register, e.g. "t0". Not guaranteed unique. - Type_ types.Type // type of virtual register -} - -// AnInstruction is a mix-in embedded by all Instructions. -// It provides the implementations of the Block and SetBlock methods. -type anInstruction struct { - Block_ *BasicBlock // the basic block of this instruction -} - -// CallCommon is a mix-in embedded by Go, Defer and Call to hold the -// common parts of a function or method call. -// -// Each CallCommon exists in one of two modes, function call and -// interface method invocation, or "call" and "invoke" for short. -// -// 1. "call" mode: when Recv is nil, a CallCommon represents an -// ordinary function call of the value in Func. -// -// In the common case in which Func is a *Function, this indicates a -// statically dispatched call to a package-level function, an -// anonymous function, or a method of a named type. Also statically -// dispatched, but less common, Func may be a *MakeClosure, indicating -// an immediately applied function literal with free variables. Any -// other Value of Func indicates a dynamically dispatched function -// call. -// -// Args contains the arguments to the call. If Func is a method, -// Args[0] contains the receiver parameter. Recv and Method are not -// used in this mode. -// -// Example printed form: -// t2 = println(t0, t1) -// go t3() -// defer t5(...t6) -// -// 2. "invoke" mode: when Recv is non-nil, a CallCommon represents a -// dynamically dispatched call to an interface method. In this -// mode, Recv is the interface value and Method is the index of the -// method within the interface type of the receiver. -// -// Recv is implicitly supplied to the concrete method implementation -// as the receiver parameter; in other words, Args[0] holds not the -// receiver but the first true argument. Func is not used in this -// mode. -// -// Example printed form: -// t1 = invoke t0.String() -// go invoke t3.Run(t2) -// defer invoke t4.Handle(...t5) -// -// In both modes, HasEllipsis is true iff the last element of Args is -// a slice value containing zero or more arguments to a variadic -// function. (This is not semantically significant since the type of -// the called function is sufficient to determine this, but it aids -// readability of the printed form.) -// -type CallCommon struct { - Recv Value // receiver, iff interface method invocation - Method int // index of interface method within Recv.Type().(*types.Interface).Methods - Func Value // target of call, iff function call - Args []Value // actual parameters, including receiver in invoke mode - HasEllipsis bool // true iff last Args is a slice (needed?) - Pos token.Pos // position of call expression -} - -func (v *Builtin) Type() types.Type { return v.Object.GetType() } -func (v *Builtin) Name() string { return v.Object.GetName() } - -func (v *Capture) Type() types.Type { return v.Outer.Type() } -func (v *Capture) Name() string { return v.Outer.Name() } - -func (v *Global) Type() types.Type { return v.Type_ } -func (v *Global) Name() string { return v.Name_ } - -func (v *Function) Name() string { return v.Name_ } -func (v *Function) Type() types.Type { return v.Signature } - -func (v *Parameter) Type() types.Type { return v.Type_ } -func (v *Parameter) Name() string { return v.Name_ } - -func (v *Alloc) Type() types.Type { return v.Type_ } -func (v *Alloc) Name() string { return v.Name_ } - -func (v *Register) Type() types.Type { return v.Type_ } -func (v *Register) setType(typ types.Type) { v.Type_ = typ } -func (v *Register) Name() string { return fmt.Sprintf("t%d", v.num) } -func (v *Register) setNum(num int) { v.num = num } - -func (v *anInstruction) Block() *BasicBlock { return v.Block_ } -func (v *anInstruction) SetBlock(block *BasicBlock) { v.Block_ = block } - -func (ms *Type) Type() types.Type { return ms.NamedType } -func (ms *Type) String() string { return ms.Name() } -func (ms *Type) Name() string { return ms.NamedType.Obj.Name } - -func (p *Package) Name() string { return p.Types.Name } - -// Func returns the package-level function of the specified name, -// or nil if not found. -// -func (p *Package) Func(name string) (f *Function) { - f, _ = p.Members[name].(*Function) - return -} - -// Var returns the package-level variable of the specified name, -// or nil if not found. -// -func (p *Package) Var(name string) (g *Global) { - g, _ = p.Members[name].(*Global) - return -} - -// Const returns the package-level constant of the specified name, -// or nil if not found. -// -func (p *Package) Const(name string) (l *Literal) { - l, _ = p.Members[name].(*Literal) - return -} - -// Type returns the package-level type of the specified name, -// or nil if not found. -// -func (p *Package) Type(name string) (t *Type) { - t, _ = p.Members[name].(*Type) - return -} - -// "Implements" relation boilerplate. -// Don't try to factor this using promotion and mix-ins: the long-hand -// form serves as better documentation, including in godoc. - -func (*Alloc) ImplementsValue() {} -func (*BinOp) ImplementsValue() {} -func (*Builtin) ImplementsValue() {} -func (*Call) ImplementsValue() {} -func (*Capture) ImplementsValue() {} -func (*ChangeInterface) ImplementsValue() {} -func (*Conv) ImplementsValue() {} -func (*Extract) ImplementsValue() {} -func (*Field) ImplementsValue() {} -func (*FieldAddr) ImplementsValue() {} -func (*Function) ImplementsValue() {} -func (*Global) ImplementsValue() {} -func (*Index) ImplementsValue() {} -func (*IndexAddr) ImplementsValue() {} -func (*Literal) ImplementsValue() {} -func (*Lookup) ImplementsValue() {} -func (*MakeChan) ImplementsValue() {} -func (*MakeClosure) ImplementsValue() {} -func (*MakeInterface) ImplementsValue() {} -func (*MakeMap) ImplementsValue() {} -func (*MakeSlice) ImplementsValue() {} -func (*Next) ImplementsValue() {} -func (*Parameter) ImplementsValue() {} -func (*Phi) ImplementsValue() {} -func (*Range) ImplementsValue() {} -func (*Select) ImplementsValue() {} -func (*Slice) ImplementsValue() {} -func (*TypeAssert) ImplementsValue() {} -func (*UnOp) ImplementsValue() {} - -func (*Function) ImplementsMember() {} -func (*Global) ImplementsMember() {} -func (*Literal) ImplementsMember() {} -func (*Type) ImplementsMember() {} - -func (*Alloc) ImplementsInstruction() {} -func (*BinOp) ImplementsInstruction() {} -func (*Call) ImplementsInstruction() {} -func (*ChangeInterface) ImplementsInstruction() {} -func (*Conv) ImplementsInstruction() {} -func (*Defer) ImplementsInstruction() {} -func (*Extract) ImplementsInstruction() {} -func (*Field) ImplementsInstruction() {} -func (*FieldAddr) ImplementsInstruction() {} -func (*Go) ImplementsInstruction() {} -func (*If) ImplementsInstruction() {} -func (*Index) ImplementsInstruction() {} -func (*IndexAddr) ImplementsInstruction() {} -func (*Jump) ImplementsInstruction() {} -func (*Lookup) ImplementsInstruction() {} -func (*MakeChan) ImplementsInstruction() {} -func (*MakeClosure) ImplementsInstruction() {} -func (*MakeInterface) ImplementsInstruction() {} -func (*MakeMap) ImplementsInstruction() {} -func (*MakeSlice) ImplementsInstruction() {} -func (*MapUpdate) ImplementsInstruction() {} -func (*Next) ImplementsInstruction() {} -func (*Phi) ImplementsInstruction() {} -func (*Range) ImplementsInstruction() {} -func (*Ret) ImplementsInstruction() {} -func (*Select) ImplementsInstruction() {} -func (*Send) ImplementsInstruction() {} -func (*Slice) ImplementsInstruction() {} -func (*Store) ImplementsInstruction() {} -func (*TypeAssert) ImplementsInstruction() {} -func (*UnOp) ImplementsInstruction() {} |