diff options
Diffstat (limited to 'libgo/go/exp/draw/x11/conn.go')
-rw-r--r-- | libgo/go/exp/draw/x11/conn.go | 622 |
1 files changed, 622 insertions, 0 deletions
diff --git a/libgo/go/exp/draw/x11/conn.go b/libgo/go/exp/draw/x11/conn.go new file mode 100644 index 0000000..da21815 --- /dev/null +++ b/libgo/go/exp/draw/x11/conn.go @@ -0,0 +1,622 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This package implements an X11 backend for the exp/draw package. +// +// The X protocol specification is at ftp://ftp.x.org/pub/X11R7.0/doc/PDF/proto.pdf. +// A summary of the wire format can be found in XCB's xproto.xml. +package x11 + +import ( + "bufio" + "exp/draw" + "image" + "io" + "log" + "net" + "os" + "strconv" + "strings" + "time" +) + +type resID uint32 // X resource IDs. + +// TODO(nigeltao): Handle window resizes. +const ( + windowHeight = 600 + windowWidth = 800 +) + +const ( + keymapLo = 8 + keymapHi = 255 +) + +type conn struct { + c io.Closer + r *bufio.Reader + w *bufio.Writer + + gc, window, root, visual resID + + img *image.RGBA + eventc chan interface{} + mouseState draw.MouseEvent + + buf [256]byte // General purpose scratch buffer. + + flush chan bool + flushBuf0 [24]byte + flushBuf1 [4 * 1024]byte +} + +// writeSocket runs in its own goroutine, serving both FlushImage calls +// directly from the exp/draw client and indirectly from X expose events. +// It paints c.img to the X server via PutImage requests. +func (c *conn) writeSocket() { + defer c.c.Close() + for _ = range c.flush { + b := c.img.Bounds() + if b.Empty() { + continue + } + // Each X request has a 16-bit length (in terms of 4-byte units). To avoid going over + // this limit, we send PutImage for each row of the image, rather than trying to paint + // the entire image in one X request. This approach could easily be optimized (or the + // X protocol may have an escape sequence to delimit very large requests). + // TODO(nigeltao): See what XCB's xcb_put_image does in this situation. + units := 6 + b.Dx() + if units > 0xffff || b.Dy() > 0xffff { + log.Print("x11: window is too large for PutImage") + return + } + + c.flushBuf0[0] = 0x48 // PutImage opcode. + c.flushBuf0[1] = 0x02 // XCB_IMAGE_FORMAT_Z_PIXMAP. + c.flushBuf0[2] = uint8(units) + c.flushBuf0[3] = uint8(units >> 8) + setU32LE(c.flushBuf0[4:8], uint32(c.window)) + setU32LE(c.flushBuf0[8:12], uint32(c.gc)) + setU32LE(c.flushBuf0[12:16], 1<<16|uint32(b.Dx())) + c.flushBuf0[21] = 0x18 // depth = 24 bits. + + for y := b.Min.Y; y < b.Max.Y; y++ { + setU32LE(c.flushBuf0[16:20], uint32(y<<16)) + if _, err := c.w.Write(c.flushBuf0[0:24]); err != nil { + if err != os.EOF { + log.Println("x11:", err.String()) + } + return + } + p := c.img.Pix[y*c.img.Stride : (y+1)*c.img.Stride] + for x := b.Min.X; x < b.Max.X; { + nx := b.Max.X - x + if nx > len(c.flushBuf1)/4 { + nx = len(c.flushBuf1) / 4 + } + for i, rgba := range p[x : x+nx] { + c.flushBuf1[4*i+0] = rgba.B + c.flushBuf1[4*i+1] = rgba.G + c.flushBuf1[4*i+2] = rgba.R + } + x += nx + if _, err := c.w.Write(c.flushBuf1[0 : 4*nx]); err != nil { + if err != os.EOF { + log.Println("x11:", err.String()) + } + return + } + } + } + if err := c.w.Flush(); err != nil { + if err != os.EOF { + log.Println("x11:", err.String()) + } + return + } + } +} + +func (c *conn) Screen() draw.Image { return c.img } + +func (c *conn) FlushImage() { + // We do the send (the <- operator) in an expression context, rather than in + // a statement context, so that it does not block, and fails if the buffered + // channel is full (in which case there already is a flush request pending). + _ = c.flush <- false +} + +func (c *conn) Close() os.Error { + // Shut down the writeSocket goroutine. This will close the socket to the + // X11 server, which will cause c.eventc to close. + close(c.flush) + for _ = range c.eventc { + // Drain the channel to allow the readSocket goroutine to shut down. + } + return nil +} + +func (c *conn) EventChan() <-chan interface{} { return c.eventc } + +// readSocket runs in its own goroutine, reading X events and sending draw +// events on c's EventChan. +func (c *conn) readSocket() { + var ( + keymap [256][]int + keysymsPerKeycode int + ) + defer close(c.eventc) + for { + // X events are always 32 bytes long. + if _, err := io.ReadFull(c.r, c.buf[0:32]); err != nil { + if err != os.EOF { + c.eventc <- draw.ErrEvent{err} + } + return + } + switch c.buf[0] { + case 0x01: // Reply from a request (e.g. GetKeyboardMapping). + cookie := int(c.buf[3])<<8 | int(c.buf[2]) + if cookie != 1 { + // We issued only one request (GetKeyboardMapping) with a cookie of 1, + // so we shouldn't get any other reply from the X server. + c.eventc <- draw.ErrEvent{os.NewError("x11: unexpected cookie")} + return + } + keysymsPerKeycode = int(c.buf[1]) + b := make([]int, 256*keysymsPerKeycode) + for i := range keymap { + keymap[i] = b[i*keysymsPerKeycode : (i+1)*keysymsPerKeycode] + } + for i := keymapLo; i <= keymapHi; i++ { + m := keymap[i] + for j := range m { + u, err := readU32LE(c.r, c.buf[0:4]) + if err != nil { + if err != os.EOF { + c.eventc <- draw.ErrEvent{err} + } + return + } + m[j] = int(u) + } + } + case 0x02, 0x03: // Key press, key release. + // X Keyboard Encoding is documented at http://tronche.com/gui/x/xlib/input/keyboard-encoding.html + // TODO(nigeltao): Do we need to implement the "MODE SWITCH / group modifier" feature + // or is that some no-longer-used X construct? + if keysymsPerKeycode < 2 { + // Either we haven't yet received the GetKeyboardMapping reply or + // the X server has sent one that's too short. + continue + } + keycode := int(c.buf[1]) + shift := int(c.buf[28]) & 0x01 + keysym := keymap[keycode][shift] + if keysym == 0 { + keysym = keymap[keycode][0] + } + // TODO(nigeltao): Should we send KeyEvents for Shift/Ctrl/Alt? Should Shift-A send + // the same int down the channel as the sent on just the A key? + // TODO(nigeltao): How should IME events (e.g. key presses that should generate CJK text) work? Or + // is that outside the scope of the draw.Window interface? + if c.buf[0] == 0x03 { + keysym = -keysym + } + c.eventc <- draw.KeyEvent{keysym} + case 0x04, 0x05: // Button press, button release. + mask := 1 << (c.buf[1] - 1) + if c.buf[0] == 0x04 { + c.mouseState.Buttons |= mask + } else { + c.mouseState.Buttons &^= mask + } + c.mouseState.Nsec = time.Nanoseconds() + c.eventc <- c.mouseState + case 0x06: // Motion notify. + c.mouseState.Loc.X = int(int16(c.buf[25])<<8 | int16(c.buf[24])) + c.mouseState.Loc.Y = int(int16(c.buf[27])<<8 | int16(c.buf[26])) + c.mouseState.Nsec = time.Nanoseconds() + c.eventc <- c.mouseState + case 0x0c: // Expose. + // A single user action could trigger multiple expose events (e.g. if moving another + // window with XShape'd rounded corners over our window). In that case, the X server will + // send a uint16 count (in bytes 16-17) of the number of additional expose events coming. + // We could parse each event for the (x, y, width, height) and maintain a minimal dirty + // rectangle, but for now, the simplest approach is to paint the entire window, when + // receiving the final event in the series. + if c.buf[17] == 0 && c.buf[16] == 0 { + // TODO(nigeltao): Should we ignore the very first expose event? A freshly mapped window + // will trigger expose, but until the first c.FlushImage call, there's probably nothing to + // paint but black. For an 800x600 window, at 4 bytes per pixel, each repaint writes about + // 2MB over the socket. + c.FlushImage() + } + // TODO(nigeltao): Should we listen to DestroyNotify (0x11) and ResizeRequest (0x19) events? + // What about EnterNotify (0x07) and LeaveNotify (0x08)? + } + } +} + +// connect connects to the X server given by the full X11 display name (e.g. +// ":12.0") and returns the connection as well as the portion of the full name +// that is the display number (e.g. "12"). +// Examples: +// connect(":1") // calls net.Dial("unix", "", "/tmp/.X11-unix/X1"), displayStr="1" +// connect("/tmp/launch-123/:0") // calls net.Dial("unix", "", "/tmp/launch-123/:0"), displayStr="0" +// connect("hostname:2.1") // calls net.Dial("tcp", "", "hostname:6002"), displayStr="2" +// connect("tcp/hostname:1.0") // calls net.Dial("tcp", "", "hostname:6001"), displayStr="1" +func connect(display string) (conn net.Conn, displayStr string, err os.Error) { + colonIdx := strings.LastIndex(display, ":") + if colonIdx < 0 { + return nil, "", os.NewError("bad display: " + display) + } + // Parse the section before the colon. + var protocol, host, socket string + if display[0] == '/' { + socket = display[0:colonIdx] + } else { + if i := strings.LastIndex(display, "/"); i < 0 { + // The default protocol is TCP. + protocol = "tcp" + host = display[0:colonIdx] + } else { + protocol = display[0:i] + host = display[i+1 : colonIdx] + } + } + // Parse the section after the colon. + after := display[colonIdx+1:] + if after == "" { + return nil, "", os.NewError("bad display: " + display) + } + if i := strings.LastIndex(after, "."); i < 0 { + displayStr = after + } else { + displayStr = after[0:i] + } + displayInt, err := strconv.Atoi(displayStr) + if err != nil || displayInt < 0 { + return nil, "", os.NewError("bad display: " + display) + } + // Make the connection. + if socket != "" { + conn, err = net.Dial("unix", "", socket+":"+displayStr) + } else if host != "" { + conn, err = net.Dial(protocol, "", host+":"+strconv.Itoa(6000+displayInt)) + } else { + conn, err = net.Dial("unix", "", "/tmp/.X11-unix/X"+displayStr) + } + if err != nil { + return nil, "", os.NewError("cannot connect to " + display + ": " + err.String()) + } + return +} + +// authenticate authenticates ourselves with the X server. +// displayStr is the "12" out of ":12.0". +func authenticate(w *bufio.Writer, displayStr string) os.Error { + key, value, err := readAuth(displayStr) + if err != nil { + return err + } + // Assume that the authentication protocol is "MIT-MAGIC-COOKIE-1". + if len(key) != 18 || len(value) != 16 { + return os.NewError("unsupported Xauth") + } + // 0x006c means little-endian. 0x000b, 0x0000 means X major version 11, minor version 0. + // 0x0012 and 0x0010 means the auth key and value have lenths 18 and 16. + // The final 0x0000 is padding, so that the string length is a multiple of 4. + _, err = io.WriteString(w, "\x6c\x00\x0b\x00\x00\x00\x12\x00\x10\x00\x00\x00") + if err != nil { + return err + } + _, err = io.WriteString(w, key) + if err != nil { + return err + } + // Again, the 0x0000 is padding. + _, err = io.WriteString(w, "\x00\x00") + if err != nil { + return err + } + _, err = io.WriteString(w, value) + if err != nil { + return err + } + err = w.Flush() + if err != nil { + return err + } + return nil +} + +// readU8 reads a uint8 from r, using b as a scratch buffer. +func readU8(r io.Reader, b []byte) (uint8, os.Error) { + _, err := io.ReadFull(r, b[0:1]) + if err != nil { + return 0, err + } + return uint8(b[0]), nil +} + +// readU16LE reads a little-endian uint16 from r, using b as a scratch buffer. +func readU16LE(r io.Reader, b []byte) (uint16, os.Error) { + _, err := io.ReadFull(r, b[0:2]) + if err != nil { + return 0, err + } + return uint16(b[0]) | uint16(b[1])<<8, nil +} + +// readU32LE reads a little-endian uint32 from r, using b as a scratch buffer. +func readU32LE(r io.Reader, b []byte) (uint32, os.Error) { + _, err := io.ReadFull(r, b[0:4]) + if err != nil { + return 0, err + } + return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24, nil +} + +// setU32LE sets b[0:4] to be the little-endian representation of u. +func setU32LE(b []byte, u uint32) { + b[0] = byte((u >> 0) & 0xff) + b[1] = byte((u >> 8) & 0xff) + b[2] = byte((u >> 16) & 0xff) + b[3] = byte((u >> 24) & 0xff) +} + +// checkPixmapFormats checks that we have an agreeable X pixmap Format. +func checkPixmapFormats(r io.Reader, b []byte, n int) (agree bool, err os.Error) { + for i := 0; i < n; i++ { + _, err = io.ReadFull(r, b[0:8]) + if err != nil { + return + } + // Byte 0 is depth, byte 1 is bits-per-pixel, byte 2 is scanline-pad, the rest (5) is padding. + if b[0] == 24 && b[1] == 32 { + agree = true + } + } + return +} + +// checkDepths checks that we have an agreeable X Depth (i.e. one that has an agreeable X VisualType). +func checkDepths(r io.Reader, b []byte, n int, visual uint32) (agree bool, err os.Error) { + for i := 0; i < n; i++ { + depth, err := readU16LE(r, b) + if err != nil { + return + } + depth &= 0xff + visualsLen, err := readU16LE(r, b) + if err != nil { + return + } + // Ignore 4 bytes of padding. + _, err = io.ReadFull(r, b[0:4]) + if err != nil { + return + } + for j := 0; j < int(visualsLen); j++ { + // Read 24 bytes: visual(4), class(1), bits per rgb value(1), colormap entries(2), + // red mask(4), green mask(4), blue mask(4), padding(4). + v, err := readU32LE(r, b) + _, err = readU32LE(r, b) + rm, err := readU32LE(r, b) + gm, err := readU32LE(r, b) + bm, err := readU32LE(r, b) + _, err = readU32LE(r, b) + if err != nil { + return + } + if v == visual && rm == 0xff0000 && gm == 0xff00 && bm == 0xff && depth == 24 { + agree = true + } + } + } + return +} + +// checkScreens checks that we have an agreeable X Screen. +func checkScreens(r io.Reader, b []byte, n int) (root, visual uint32, err os.Error) { + for i := 0; i < n; i++ { + root0, err := readU32LE(r, b) + if err != nil { + return + } + // Ignore the next 7x4 bytes, which is: colormap, whitepixel, blackpixel, current input masks, + // width and height (pixels), width and height (mm), min and max installed maps. + _, err = io.ReadFull(r, b[0:28]) + if err != nil { + return + } + visual0, err := readU32LE(r, b) + if err != nil { + return + } + // Next 4 bytes: backing stores, save unders, root depth, allowed depths length. + x, err := readU32LE(r, b) + if err != nil { + return + } + nDepths := int(x >> 24) + agree, err := checkDepths(r, b, nDepths, visual0) + if err != nil { + return + } + if agree && root == 0 { + root = root0 + visual = visual0 + } + } + return +} + +// handshake performs the protocol handshake with the X server, and ensures +// that the server provides a compatible Screen, Depth, etc. +func (c *conn) handshake() os.Error { + _, err := io.ReadFull(c.r, c.buf[0:8]) + if err != nil { + return err + } + // Byte 0:1 should be 1 (success), bytes 2:6 should be 0xb0000000 (major/minor version 11.0). + if c.buf[0] != 1 || c.buf[2] != 11 || c.buf[3] != 0 || c.buf[4] != 0 || c.buf[5] != 0 { + return os.NewError("unsupported X version") + } + // Ignore the release number. + _, err = io.ReadFull(c.r, c.buf[0:4]) + if err != nil { + return err + } + // Read the resource ID base. + resourceIdBase, err := readU32LE(c.r, c.buf[0:4]) + if err != nil { + return err + } + // Read the resource ID mask. + resourceIdMask, err := readU32LE(c.r, c.buf[0:4]) + if err != nil { + return err + } + if resourceIdMask < 256 { + return os.NewError("X resource ID mask is too small") + } + // Ignore the motion buffer size. + _, err = io.ReadFull(c.r, c.buf[0:4]) + if err != nil { + return err + } + // Read the vendor length and round it up to a multiple of 4, + // for X11 protocol alignment reasons. + vendorLen, err := readU16LE(c.r, c.buf[0:2]) + if err != nil { + return err + } + vendorLen = (vendorLen + 3) &^ 3 + // Read the maximum request length. + maxReqLen, err := readU16LE(c.r, c.buf[0:2]) + if err != nil { + return err + } + if maxReqLen != 0xffff { + return os.NewError("unsupported X maximum request length") + } + // Read the roots length. + rootsLen, err := readU8(c.r, c.buf[0:1]) + if err != nil { + return err + } + // Read the pixmap formats length. + pixmapFormatsLen, err := readU8(c.r, c.buf[0:1]) + if err != nil { + return err + } + // Ignore some things that we don't care about (totalling 10 + vendorLen bytes): + // imageByteOrder(1), bitmapFormatBitOrder(1), bitmapFormatScanlineUnit(1) bitmapFormatScanlinePad(1), + // minKeycode(1), maxKeycode(1), padding(4), vendor (vendorLen). + if 10+int(vendorLen) > cap(c.buf) { + return os.NewError("unsupported X vendor") + } + _, err = io.ReadFull(c.r, c.buf[0:10+int(vendorLen)]) + if err != nil { + return err + } + // Check that we have an agreeable pixmap format. + agree, err := checkPixmapFormats(c.r, c.buf[0:8], int(pixmapFormatsLen)) + if err != nil { + return err + } + if !agree { + return os.NewError("unsupported X pixmap formats") + } + // Check that we have an agreeable screen. + root, visual, err := checkScreens(c.r, c.buf[0:24], int(rootsLen)) + if err != nil { + return err + } + if root == 0 || visual == 0 { + return os.NewError("unsupported X screen") + } + c.gc = resID(resourceIdBase) + c.window = resID(resourceIdBase + 1) + c.root = resID(root) + c.visual = resID(visual) + return nil +} + +// NewWindow calls NewWindowDisplay with $DISPLAY. +func NewWindow() (draw.Window, os.Error) { + display := os.Getenv("DISPLAY") + if len(display) == 0 { + return nil, os.NewError("$DISPLAY not set") + } + return NewWindowDisplay(display) +} + +// NewWindowDisplay returns a new draw.Window, backed by a newly created and +// mapped X11 window. The X server to connect to is specified by the display +// string, such as ":1". +func NewWindowDisplay(display string) (draw.Window, os.Error) { + socket, displayStr, err := connect(display) + if err != nil { + return nil, err + } + c := new(conn) + c.c = socket + c.r = bufio.NewReader(socket) + c.w = bufio.NewWriter(socket) + err = authenticate(c.w, displayStr) + if err != nil { + return nil, err + } + err = c.handshake() + if err != nil { + return nil, err + } + + // Now that we're connected, show a window, via three X protocol messages. + // First, issue a GetKeyboardMapping request. This is the first request, and + // will be associated with a cookie of 1. + setU32LE(c.buf[0:4], 0x00020065) // 0x65 is the GetKeyboardMapping opcode, and the message is 2 x 4 bytes long. + setU32LE(c.buf[4:8], uint32((keymapHi-keymapLo+1)<<8|keymapLo)) + // Second, create a graphics context (GC). + setU32LE(c.buf[8:12], 0x00060037) // 0x37 is the CreateGC opcode, and the message is 6 x 4 bytes long. + setU32LE(c.buf[12:16], uint32(c.gc)) + setU32LE(c.buf[16:20], uint32(c.root)) + setU32LE(c.buf[20:24], 0x00010004) // Bit 2 is XCB_GC_FOREGROUND, bit 16 is XCB_GC_GRAPHICS_EXPOSURES. + setU32LE(c.buf[24:28], 0x00000000) // The Foreground is black. + setU32LE(c.buf[28:32], 0x00000000) // GraphicsExposures' value is unused. + // Third, create the window. + setU32LE(c.buf[32:36], 0x000a0001) // 0x01 is the CreateWindow opcode, and the message is 10 x 4 bytes long. + setU32LE(c.buf[36:40], uint32(c.window)) + setU32LE(c.buf[40:44], uint32(c.root)) + setU32LE(c.buf[44:48], 0x00000000) // Initial (x, y) is (0, 0). + setU32LE(c.buf[48:52], windowHeight<<16|windowWidth) + setU32LE(c.buf[52:56], 0x00010000) // Border width is 0, XCB_WINDOW_CLASS_INPUT_OUTPUT is 1. + setU32LE(c.buf[56:60], uint32(c.visual)) + setU32LE(c.buf[60:64], 0x00000802) // Bit 1 is XCB_CW_BACK_PIXEL, bit 11 is XCB_CW_EVENT_MASK. + setU32LE(c.buf[64:68], 0x00000000) // The Back-Pixel is black. + setU32LE(c.buf[68:72], 0x0000804f) // Key/button press and release, pointer motion, and expose event masks. + // Fourth, map the window. + setU32LE(c.buf[72:76], 0x00020008) // 0x08 is the MapWindow opcode, and the message is 2 x 4 bytes long. + setU32LE(c.buf[76:80], uint32(c.window)) + // Write the bytes. + _, err = c.w.Write(c.buf[0:80]) + if err != nil { + return nil, err + } + err = c.w.Flush() + if err != nil { + return nil, err + } + + c.img = image.NewRGBA(windowWidth, windowHeight) + c.eventc = make(chan interface{}, 16) + c.flush = make(chan bool, 1) + go c.readSocket() + go c.writeSocket() + return c, nil +} |