diff options
Diffstat (limited to 'gcc/wide-int.cc')
-rw-r--r-- | gcc/wide-int.cc | 2083 |
1 files changed, 2083 insertions, 0 deletions
diff --git a/gcc/wide-int.cc b/gcc/wide-int.cc new file mode 100644 index 0000000..69a15bc --- /dev/null +++ b/gcc/wide-int.cc @@ -0,0 +1,2083 @@ +/* Operations with very long integers. + Copyright (C) 2012-2013 Free Software Foundation, Inc. + Contributed by Kenneth Zadeck <zadeck@naturalbridge.com> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 3, or (at your option) any +later version. + +GCC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "hwint.h" +#include "wide-int.h" +#include "tree.h" +#include "dumpfile.h" + +#if GCC_VERSION >= 3000 +#define W_TYPE_SIZE HOST_BITS_PER_WIDE_INT +typedef unsigned HOST_HALF_WIDE_INT UHWtype; +typedef unsigned HOST_WIDE_INT UWtype; +typedef unsigned int UQItype __attribute__ ((mode (QI))); +typedef unsigned int USItype __attribute__ ((mode (SI))); +typedef unsigned int UDItype __attribute__ ((mode (DI))); +#include "longlong.h" +#endif + +static const HOST_WIDE_INT zeros[WIDE_INT_MAX_ELTS] = {}; + +/* + * Internal utilities. + */ + +/* Quantities to deal with values that hold half of a wide int. Used + in multiply and divide. */ +#define HALF_INT_MASK (((HOST_WIDE_INT) 1 << HOST_BITS_PER_HALF_WIDE_INT) - 1) + +#define BLOCK_OF(TARGET) ((TARGET) / HOST_BITS_PER_WIDE_INT) +#define BLOCKS_NEEDED(PREC) \ + (PREC ? (((PREC) + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT) : 1) +#define SIGN_MASK(X) ((HOST_WIDE_INT) (X) < 0 ? -1 : 0) + +/* Return the value a VAL[I] if I < LEN, otherwise, return 0 or -1 + based on the top existing bit of VAL. */ + +static unsigned HOST_WIDE_INT +safe_uhwi (const HOST_WIDE_INT *val, unsigned int len, unsigned int i) +{ + return i < len ? val[i] : val[len - 1] < 0 ? (HOST_WIDE_INT) -1 : 0; +} + +/* Convert the integer in VAL to canonical form, returning its new length. + LEN is the number of blocks currently in VAL and PRECISION is the number + of bits in the integer it represents. + + This function only changes the representation, not the value. */ +static unsigned int +canonize (HOST_WIDE_INT *val, unsigned int len, unsigned int precision) +{ + unsigned int blocks_needed = BLOCKS_NEEDED (precision); + HOST_WIDE_INT top; + int i; + + if (len > blocks_needed) + len = blocks_needed; + + if (len == 1) + return len; + + top = val[len - 1]; + if (len * HOST_BITS_PER_WIDE_INT > precision) + val[len - 1] = top = sext_hwi (top, precision % HOST_BITS_PER_WIDE_INT); + if (top != 0 && top != (HOST_WIDE_INT)-1) + return len; + + /* At this point we know that the top is either 0 or -1. Find the + first block that is not a copy of this. */ + for (i = len - 2; i >= 0; i--) + { + HOST_WIDE_INT x = val[i]; + if (x != top) + { + if (SIGN_MASK (x) == top) + return i + 1; + + /* We need an extra block because the top bit block i does + not match the extension. */ + return i + 2; + } + } + + /* The number is 0 or -1. */ + return 1; +} + +/* + * Conversion routines in and out of wide_int. + */ + +/* Copy XLEN elements from XVAL to VAL. If NEED_CANON, canonize the + result for an integer with precision PRECISION. Return the length + of VAL (after any canonization. */ +unsigned int +wi::from_array (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval, + unsigned int xlen, unsigned int precision, bool need_canon) +{ + for (unsigned i = 0; i < xlen; i++) + val[i] = xval[i]; + return need_canon ? canonize (val, xlen, precision) : xlen; +} + +/* Construct a wide int from a buffer of length LEN. BUFFER will be + read according to byte endianess and word endianess of the target. + Only the lower BUFFER_LEN bytes of the result are set; the remaining + high bytes are cleared. */ +wide_int +wi::from_buffer (const unsigned char *buffer, unsigned int buffer_len) +{ + unsigned int precision = buffer_len * BITS_PER_UNIT; + wide_int result = wide_int::create (precision); + unsigned int words = buffer_len / UNITS_PER_WORD; + + /* We have to clear all the bits ourself, as we merely or in values + below. */ + unsigned int len = BLOCKS_NEEDED (precision); + HOST_WIDE_INT *val = result.write_val (); + for (unsigned int i = 0; i < len; ++i) + val[i] = 0; + + for (unsigned int byte = 0; byte < buffer_len; byte++) + { + unsigned int offset; + unsigned int index; + unsigned int bitpos = byte * BITS_PER_UNIT; + unsigned HOST_WIDE_INT value; + + if (buffer_len > UNITS_PER_WORD) + { + unsigned int word = byte / UNITS_PER_WORD; + + if (WORDS_BIG_ENDIAN) + word = (words - 1) - word; + + offset = word * UNITS_PER_WORD; + + if (BYTES_BIG_ENDIAN) + offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); + else + offset += byte % UNITS_PER_WORD; + } + else + offset = BYTES_BIG_ENDIAN ? (buffer_len - 1) - byte : byte; + + value = (unsigned HOST_WIDE_INT) buffer[offset]; + + index = bitpos / HOST_BITS_PER_WIDE_INT; + val[index] |= value << (bitpos % HOST_BITS_PER_WIDE_INT); + } + + result.set_len (canonize (val, len, precision)); + + return result; +} + +/* Sets RESULT from X, the sign is taken according to SGN. */ +void +wi::to_mpz (const wide_int_ref &x, mpz_t result, signop sgn) +{ + int len = x.get_len (); + const HOST_WIDE_INT *v = x.get_val (); + int excess = len * HOST_BITS_PER_WIDE_INT - x.get_precision (); + + if (wi::neg_p (x, sgn)) + { + /* We use ones complement to avoid -x80..0 edge case that - + won't work on. */ + HOST_WIDE_INT *t = XALLOCAVEC (HOST_WIDE_INT, len); + for (int i = 0; i < len; i++) + t[i] = ~v[i]; + if (excess > 0) + t[len - 1] = (unsigned HOST_WIDE_INT) t[len - 1] << excess >> excess; + mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, t); + mpz_com (result, result); + } + else if (excess > 0) + { + HOST_WIDE_INT *t = XALLOCAVEC (HOST_WIDE_INT, len); + for (int i = 0; i < len - 1; i++) + t[i] = v[i]; + t[len - 1] = (unsigned HOST_WIDE_INT) v[len - 1] << excess >> excess; + mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, t); + } + else + mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, v); +} + +/* Returns X converted to TYPE. If WRAP is true, then out-of-range + values of VAL will be wrapped; otherwise, they will be set to the + appropriate minimum or maximum TYPE bound. */ +wide_int +wi::from_mpz (const_tree type, mpz_t x, bool wrap) +{ + size_t count, numb; + int prec = TYPE_PRECISION (type); + wide_int res = wide_int::create (prec); + + if (!wrap) + { + mpz_t min, max; + + mpz_init (min); + mpz_init (max); + get_type_static_bounds (type, min, max); + + if (mpz_cmp (x, min) < 0) + mpz_set (x, min); + else if (mpz_cmp (x, max) > 0) + mpz_set (x, max); + + mpz_clear (min); + mpz_clear (max); + } + + /* Determine the number of unsigned HOST_WIDE_INTs that are required + for representing the value. The code to calculate count is + extracted from the GMP manual, section "Integer Import and Export": + http://gmplib.org/manual/Integer-Import-and-Export.html */ + numb = 8 * sizeof(HOST_WIDE_INT); + count = (mpz_sizeinbase (x, 2) + numb - 1) / numb; + HOST_WIDE_INT *val = res.write_val (); + mpz_export (val, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, x); + if (count < 1) + { + val[0] = 0; + count = 1; + } + res.set_len (count); + + if (mpz_sgn (x) < 0) + res = -res; + + return res; +} + +/* + * Largest and smallest values in a mode. + */ + +/* Return the largest SGNed number that is representable in PRECISION bits. + + TODO: There is still code from the double_int era that trys to + make up for the fact that double int's could not represent the + min and max values of all types. This code should be removed + because the min and max values can always be represented in + wide_ints and int-csts. */ +wide_int +wi::max_value (unsigned int precision, signop sgn) +{ + gcc_checking_assert (precision != 0); + if (sgn == UNSIGNED) + /* The unsigned max is just all ones. */ + return shwi (-1, precision); + else + /* The signed max is all ones except the top bit. This must be + explicitly represented. */ + return mask (precision - 1, false, precision); +} + +/* Return the largest SGNed number that is representable in PRECISION bits. */ +wide_int +wi::min_value (unsigned int precision, signop sgn) +{ + gcc_checking_assert (precision != 0); + if (sgn == UNSIGNED) + return uhwi (0, precision); + else + /* The signed min is all zeros except the top bit. This must be + explicitly represented. */ + return wi::set_bit_in_zero (precision - 1, precision); +} + +/* + * Public utilities. + */ + +/* Convert the number represented by XVAL, XLEN and XPRECISION, which has + signedness SGN, to an integer that has PRECISION bits. Store the blocks + in VAL and return the number of blocks used. + + This function can handle both extension (PRECISION > XPRECISION) + and truncation (PRECISION < XPRECISION). */ +unsigned int +wi::force_to_size (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval, + unsigned int xlen, unsigned int xprecision, + unsigned int precision, signop sgn) +{ + unsigned int blocks_needed = BLOCKS_NEEDED (precision); + unsigned int len = blocks_needed < xlen ? blocks_needed : xlen; + for (unsigned i = 0; i < len; i++) + val[i] = xval[i]; + + if (precision > xprecision) + { + unsigned int small_xprecision = xprecision % HOST_BITS_PER_WIDE_INT; + + /* Expanding. */ + if (sgn == UNSIGNED) + { + if (small_xprecision && len == BLOCKS_NEEDED (xprecision)) + val[len - 1] = zext_hwi (val[len - 1], small_xprecision); + else if (val[len - 1] < 0) + { + while (len < BLOCKS_NEEDED (xprecision)) + val[len++] = -1; + if (small_xprecision) + val[len - 1] = zext_hwi (val[len - 1], small_xprecision); + else + val[len++] = 0; + } + } + else + { + if (small_xprecision && len == BLOCKS_NEEDED (xprecision)) + val[len - 1] = sext_hwi (val[len - 1], small_xprecision); + } + } + len = canonize (val, len, precision); + + return len; +} + +/* This function hides the fact that we cannot rely on the bits beyond + the precision. This issue comes up in the relational comparisions + where we do allow comparisons of values of different precisions. */ +static inline HOST_WIDE_INT +selt (const HOST_WIDE_INT *a, unsigned int len, + unsigned int blocks_needed, unsigned int small_prec, + unsigned int index, signop sgn) +{ + HOST_WIDE_INT val; + if (index < len) + val = a[index]; + else if (index < blocks_needed || sgn == SIGNED) + /* Signed or within the precision. */ + val = SIGN_MASK (a[len - 1]); + else + /* Unsigned extension beyond the precision. */ + val = 0; + + if (small_prec && index == blocks_needed - 1) + return (sgn == SIGNED + ? sext_hwi (val, small_prec) + : zext_hwi (val, small_prec)); + else + return val; +} + +/* Find the highest bit represented in a wide int. This will in + general have the same value as the sign bit. */ +static inline HOST_WIDE_INT +top_bit_of (const HOST_WIDE_INT *a, unsigned int len, unsigned int prec) +{ + int excess = len * HOST_BITS_PER_WIDE_INT - prec; + unsigned HOST_WIDE_INT val = a[len - 1]; + if (excess > 0) + val <<= excess; + return val >> (HOST_BITS_PER_WIDE_INT - 1); +} + +/* + * Comparisons, note that only equality is an operator. The other + * comparisons cannot be operators since they are inherently signed or + * unsigned and C++ has no such operators. + */ + +/* Return true if OP0 == OP1. */ +bool +wi::eq_p_large (const HOST_WIDE_INT *op0, unsigned int op0len, + const HOST_WIDE_INT *op1, unsigned int op1len, + unsigned int prec) +{ + int l0 = op0len - 1; + unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1); + + if (op0len != op1len) + return false; + + if (op0len == BLOCKS_NEEDED (prec) && small_prec) + { + /* It does not matter if we zext or sext here, we just have to + do both the same way. */ + if (zext_hwi (op0 [l0], small_prec) != zext_hwi (op1 [l0], small_prec)) + return false; + l0--; + } + + while (l0 >= 0) + if (op0[l0] != op1[l0]) + return false; + else + l0--; + + return true; +} + +/* Return true if OP0 < OP1 using signed comparisons. */ +bool +wi::lts_p_large (const HOST_WIDE_INT *op0, unsigned int op0len, + unsigned int precision, + const HOST_WIDE_INT *op1, unsigned int op1len) +{ + HOST_WIDE_INT s0, s1; + unsigned HOST_WIDE_INT u0, u1; + unsigned int blocks_needed = BLOCKS_NEEDED (precision); + unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1); + int l = MAX (op0len - 1, op1len - 1); + + /* Only the top block is compared as signed. The rest are unsigned + comparisons. */ + s0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED); + s1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED); + if (s0 < s1) + return true; + if (s0 > s1) + return false; + + l--; + while (l >= 0) + { + u0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED); + u1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED); + + if (u0 < u1) + return true; + if (u0 > u1) + return false; + l--; + } + + return false; +} + +/* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using + signed compares. */ +int +wi::cmps_large (const HOST_WIDE_INT *op0, unsigned int op0len, + unsigned int precision, + const HOST_WIDE_INT *op1, unsigned int op1len) +{ + HOST_WIDE_INT s0, s1; + unsigned HOST_WIDE_INT u0, u1; + unsigned int blocks_needed = BLOCKS_NEEDED (precision); + unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1); + int l = MAX (op0len - 1, op1len - 1); + + /* Only the top block is compared as signed. The rest are unsigned + comparisons. */ + s0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED); + s1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED); + if (s0 < s1) + return -1; + if (s0 > s1) + return 1; + + l--; + while (l >= 0) + { + u0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED); + u1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED); + + if (u0 < u1) + return -1; + if (u0 > u1) + return 1; + l--; + } + + return 0; +} + +/* Return true if OP0 < OP1 using unsigned comparisons. */ +bool +wi::ltu_p_large (const HOST_WIDE_INT *op0, unsigned int op0len, + unsigned int precision, + const HOST_WIDE_INT *op1, unsigned int op1len) +{ + unsigned HOST_WIDE_INT x0; + unsigned HOST_WIDE_INT x1; + unsigned int blocks_needed = BLOCKS_NEEDED (precision); + unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1); + int l = MAX (op0len - 1, op1len - 1); + + while (l >= 0) + { + x0 = selt (op0, op0len, blocks_needed, small_prec, l, UNSIGNED); + x1 = selt (op1, op1len, blocks_needed, small_prec, l, UNSIGNED); + if (x0 < x1) + return true; + if (x0 > x1) + return false; + l--; + } + + return false; +} + +/* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using + unsigned compares. */ +int +wi::cmpu_large (const HOST_WIDE_INT *op0, unsigned int op0len, + unsigned int precision, + const HOST_WIDE_INT *op1, unsigned int op1len) +{ + unsigned HOST_WIDE_INT x0; + unsigned HOST_WIDE_INT x1; + unsigned int blocks_needed = BLOCKS_NEEDED (precision); + unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1); + int l = MAX (op0len - 1, op1len - 1); + + while (l >= 0) + { + x0 = selt (op0, op0len, blocks_needed, small_prec, l, UNSIGNED); + x1 = selt (op1, op1len, blocks_needed, small_prec, l, UNSIGNED); + if (x0 < x1) + return -1; + if (x0 > x1) + return 1; + l--; + } + + return 0; +} + +/* + * Extension. + */ + +/* Sign-extend the number represented by XVAL and XLEN into VAL, + starting at OFFSET. Return the number of blocks in VAL. Both XVAL + and VAL have PRECISION bits. */ +unsigned int +wi::sext_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval, + unsigned int xlen, unsigned int precision, unsigned int offset) +{ + unsigned int len = offset / HOST_BITS_PER_WIDE_INT; + /* Extending beyond the precision is a no-op. If we have only stored + OFFSET bits or fewer, the rest are already signs. */ + if (offset >= precision || len >= xlen) + { + for (unsigned i = 0; i < xlen; ++i) + val[i] = xval[i]; + return xlen; + } + unsigned int suboffset = offset % HOST_BITS_PER_WIDE_INT; + for (unsigned int i = 0; i < len; i++) + val[i] = xval[i]; + if (suboffset > 0) + { + val[len] = sext_hwi (xval[len], suboffset); + len += 1; + } + return canonize (val, len, precision); +} + +/* Zero-extend the number represented by XVAL and XLEN into VAL, + starting at OFFSET. Return the number of blocks in VAL. Both XVAL + and VAL have PRECISION bits. */ +unsigned int +wi::zext_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval, + unsigned int xlen, unsigned int precision, unsigned int offset) +{ + unsigned int len = offset / HOST_BITS_PER_WIDE_INT; + /* Extending beyond the precision is a no-op. If we have only stored + OFFSET bits or fewer, and the upper stored bit is zero, then there + is nothing to do. */ + if (offset >= precision || (len >= xlen && xval[xlen - 1] >= 0)) + { + for (unsigned i = 0; i < xlen; ++i) + val[i] = xval[i]; + return xlen; + } + unsigned int suboffset = offset % HOST_BITS_PER_WIDE_INT; + for (unsigned int i = 0; i < len; i++) + val[i] = i < xlen ? xval[i] : -1; + if (suboffset > 0) + val[len] = zext_hwi (len < xlen ? xval[len] : -1, suboffset); + else + val[len] = 0; + return canonize (val, len + 1, precision); +} + +/* + * Masking, inserting, shifting, rotating. + */ + +/* Insert WIDTH bits from Y into X starting at START. */ +wide_int +wi::insert (const wide_int &x, const wide_int &y, unsigned int start, + unsigned int width) +{ + wide_int result; + wide_int mask; + wide_int tmp; + + unsigned int precision = x.get_precision (); + if (start >= precision) + return x; + + gcc_checking_assert (precision >= width); + + if (start + width >= precision) + width = precision - start; + + mask = wi::shifted_mask (start, width, false, precision); + tmp = wi::lshift (wide_int::from (y, precision, UNSIGNED), start); + result = tmp & mask; + + tmp = wi::bit_and_not (x, mask); + result = result | tmp; + + return result; +} + +/* Copy the number represented by XVAL and XLEN into VAL, setting bit BIT. + Return the number of blocks in VAL. Both XVAL and VAL have PRECISION + bits. */ +unsigned int +wi::set_bit_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval, + unsigned int xlen, unsigned int precision, unsigned int bit) +{ + unsigned int block = bit / HOST_BITS_PER_WIDE_INT; + unsigned int subbit = bit % HOST_BITS_PER_WIDE_INT; + + if (block + 1 >= xlen) + { + /* The operation either affects the last current block or needs + a new block. */ + unsigned int len = block + 1; + for (unsigned int i = 0; i < len; i++) + val[i] = safe_uhwi (xval, xlen, i); + val[block] |= (unsigned HOST_WIDE_INT) 1 << subbit; + + /* If the bit we just set is at the msb of the block, make sure + that any higher bits are zeros. */ + if (bit + 1 < precision && subbit == HOST_BITS_PER_WIDE_INT - 1) + val[len++] = 0; + return len; + } + else + { + for (unsigned int i = 0; i < xlen; i++) + val[i] = xval[i]; + val[block] |= (unsigned HOST_WIDE_INT) 1 << subbit; + return canonize (val, xlen, precision); + } +} + +/* bswap THIS. */ +wide_int +wide_int_storage::bswap () const +{ + wide_int result = wide_int::create (precision); + unsigned int i, s; + unsigned int len = BLOCKS_NEEDED (precision); + unsigned int xlen = get_len (); + const HOST_WIDE_INT *xval = get_val (); + HOST_WIDE_INT *val = result.write_val (); + + /* This is not a well defined operation if the precision is not a + multiple of 8. */ + gcc_assert ((precision & 0x7) == 0); + + for (i = 0; i < len; i++) + val[i] = 0; + + /* Only swap the bytes that are not the padding. */ + for (s = 0; s < precision; s += 8) + { + unsigned int d = precision - s - 8; + unsigned HOST_WIDE_INT byte; + + unsigned int block = s / HOST_BITS_PER_WIDE_INT; + unsigned int offset = s & (HOST_BITS_PER_WIDE_INT - 1); + + byte = (safe_uhwi (xval, xlen, block) >> offset) & 0xff; + + block = d / HOST_BITS_PER_WIDE_INT; + offset = d & (HOST_BITS_PER_WIDE_INT - 1); + + val[block] |= byte << offset; + } + + result.set_len (canonize (val, len, precision)); + return result; +} + +/* Fill VAL with a mask where the lower WIDTH bits are ones and the bits + above that up to PREC are zeros. The result is inverted if NEGATE + is true. Return the number of blocks in VAL. */ +unsigned int +wi::mask (HOST_WIDE_INT *val, unsigned int width, bool negate, + unsigned int prec) +{ + if (width >= prec) + { + val[0] = negate ? 0 : -1; + return 1; + } + else if (width == 0) + { + val[0] = negate ? -1 : 0; + return 1; + } + + unsigned int i = 0; + while (i < width / HOST_BITS_PER_WIDE_INT) + val[i++] = negate ? 0 : -1; + + unsigned int shift = width & (HOST_BITS_PER_WIDE_INT - 1); + if (shift != 0) + { + HOST_WIDE_INT last = ((unsigned HOST_WIDE_INT) 1 << shift) - 1; + val[i++] = negate ? ~last : last; + } + else + val[i++] = negate ? -1 : 0; + + return i; +} + +/* Fill VAL with a mask where the lower START bits are zeros, the next WIDTH + bits are ones, and the bits above that up to PREC are zeros. The result + is inverted if NEGATE is true. Return the number of blocks in VAL. */ +unsigned int +wi::shifted_mask (HOST_WIDE_INT *val, unsigned int start, unsigned int width, + bool negate, unsigned int prec) +{ + if (start >= prec || width == 0) + { + val[0] = negate ? -1 : 0; + return 1; + } + + if (width > prec - start) + width = prec - start; + unsigned int end = start + width; + + unsigned int i = 0; + while (i < start / HOST_BITS_PER_WIDE_INT) + val[i++] = negate ? -1 : 0; + + unsigned int shift = start & (HOST_BITS_PER_WIDE_INT - 1); + if (shift) + { + HOST_WIDE_INT block = ((unsigned HOST_WIDE_INT) 1 << shift) - 1; + shift += width; + if (shift < HOST_BITS_PER_WIDE_INT) + { + /* case 000111000 */ + block = ((unsigned HOST_WIDE_INT) 1 << shift) - block - 1; + val[i++] = negate ? ~block : block; + return i; + } + else + /* ...111000 */ + val[i++] = negate ? block : ~block; + } + + while (i < end / HOST_BITS_PER_WIDE_INT) + /* 1111111 */ + val[i++] = negate ? 0 : -1; + + shift = end & (HOST_BITS_PER_WIDE_INT - 1); + if (shift != 0) + { + /* 000011111 */ + HOST_WIDE_INT block = ((unsigned HOST_WIDE_INT) 1 << shift) - 1; + val[i++] = negate ? ~block : block; + } + else if (end < prec) + val[i++] = negate ? -1 : 0; + + return i; +} + +/* + * logical operations. + */ + +/* Set VAL to OP0 & OP1. Return the number of blocks used. */ +unsigned int +wi::and_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0, + unsigned int op0len, const HOST_WIDE_INT *op1, + unsigned int op1len, unsigned int prec) +{ + int l0 = op0len - 1; + int l1 = op1len - 1; + bool need_canon = true; + + unsigned int len = MAX (op0len, op1len); + if (l0 > l1) + { + HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec); + if (op1mask == 0) + { + l0 = l1; + len = l1 + 1; + } + else + { + need_canon = false; + while (l0 > l1) + { + val[l0] = op0[l0]; + l0--; + } + } + } + else if (l1 > l0) + { + HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec); + if (op0mask == 0) + len = l0 + 1; + else + { + need_canon = false; + while (l1 > l0) + { + val[l1] = op1[l1]; + l1--; + } + } + } + + while (l0 >= 0) + { + val[l0] = op0[l0] & op1[l0]; + l0--; + } + + if (need_canon) + len = canonize (val, len, prec); + + return len; +} + +/* Set VAL to OP0 & ~OP1. Return the number of blocks used. */ +unsigned int +wi::and_not_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0, + unsigned int op0len, const HOST_WIDE_INT *op1, + unsigned int op1len, unsigned int prec) +{ + wide_int result; + int l0 = op0len - 1; + int l1 = op1len - 1; + bool need_canon = true; + + unsigned int len = MAX (op0len, op1len); + if (l0 > l1) + { + HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec); + if (op1mask != 0) + { + l0 = l1; + len = l1 + 1; + } + else + { + need_canon = false; + while (l0 > l1) + { + val[l0] = op0[l0]; + l0--; + } + } + } + else if (l1 > l0) + { + HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec); + if (op0mask == 0) + len = l0 + 1; + else + { + need_canon = false; + while (l1 > l0) + { + val[l1] = ~op1[l1]; + l1--; + } + } + } + + while (l0 >= 0) + { + val[l0] = op0[l0] & ~op1[l0]; + l0--; + } + + if (need_canon) + len = canonize (val, len, prec); + + return len; +} + +/* Set VAL to OP0 | OP1. Return the number of blocks used. */ +unsigned int +wi::or_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0, + unsigned int op0len, const HOST_WIDE_INT *op1, + unsigned int op1len, unsigned int prec) +{ + wide_int result; + int l0 = op0len - 1; + int l1 = op1len - 1; + bool need_canon = true; + + unsigned int len = MAX (op0len, op1len); + if (l0 > l1) + { + HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec); + if (op1mask != 0) + { + l0 = l1; + len = l1 + 1; + } + else + { + need_canon = false; + while (l0 > l1) + { + val[l0] = op0[l0]; + l0--; + } + } + } + else if (l1 > l0) + { + HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec); + if (op0mask != 0) + len = l0 + 1; + else + { + need_canon = false; + while (l1 > l0) + { + val[l1] = op1[l1]; + l1--; + } + } + } + + while (l0 >= 0) + { + val[l0] = op0[l0] | op1[l0]; + l0--; + } + + if (need_canon) + len = canonize (val, len, prec); + + return len; +} + +/* Set VAL to OP0 | ~OP1. Return the number of blocks used. */ +unsigned int +wi::or_not_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0, + unsigned int op0len, const HOST_WIDE_INT *op1, + unsigned int op1len, unsigned int prec) +{ + wide_int result; + int l0 = op0len - 1; + int l1 = op1len - 1; + bool need_canon = true; + + unsigned int len = MAX (op0len, op1len); + if (l0 > l1) + { + HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec); + if (op1mask == 0) + { + l0 = l1; + len = l1 + 1; + } + else + { + need_canon = false; + while (l0 > l1) + { + val[l0] = op0[l0]; + l0--; + } + } + } + else if (l1 > l0) + { + HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec); + if (op0mask != 0) + len = l0 + 1; + else + { + need_canon = false; + while (l1 > l0) + { + val[l1] = ~op1[l1]; + l1--; + } + } + } + + while (l0 >= 0) + { + val[l0] = op0[l0] | ~op1[l0]; + l0--; + } + + if (need_canon) + len = canonize (val, len, prec); + + return len; +} + +/* Set VAL to OP0 ^ OP1. Return the number of blocks used. */ +unsigned int +wi::xor_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0, + unsigned int op0len, const HOST_WIDE_INT *op1, + unsigned int op1len, unsigned int prec) +{ + wide_int result; + int l0 = op0len - 1; + int l1 = op1len - 1; + + unsigned int len = MAX (op0len, op1len); + if (l0 > l1) + { + HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec); + while (l0 > l1) + { + val[l0] = op0[l0] ^ op1mask; + l0--; + } + } + + if (l1 > l0) + { + HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec); + while (l1 > l0) + { + val[l1] = op0mask ^ op1[l1]; + l1--; + } + } + + while (l0 >= 0) + { + val[l0] = op0[l0] ^ op1[l0]; + l0--; + } + + return canonize (val, len, prec); +} + +/* + * math + */ + +/* Set VAL to OP0 + OP1. If OVERFLOW is nonnull, record in *OVERFLOW + whether the result overflows when OP0 and OP1 are treated as having + signedness SGN. Return the number of blocks in VAL. */ +unsigned int +wi::add_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0, + unsigned int op0len, const HOST_WIDE_INT *op1, + unsigned int op1len, unsigned int prec, + signop sgn, bool *overflow) +{ + unsigned HOST_WIDE_INT o0 = 0; + unsigned HOST_WIDE_INT o1 = 0; + unsigned HOST_WIDE_INT x = 0; + unsigned HOST_WIDE_INT carry = 0; + unsigned HOST_WIDE_INT old_carry = 0; + unsigned HOST_WIDE_INT mask0, mask1; + unsigned int i; + + unsigned int len = MAX (op0len, op1len); + mask0 = -top_bit_of (op0, op0len, prec); + mask1 = -top_bit_of (op1, op1len, prec); + /* Add all of the explicitly defined elements. */ + + for (i = 0; i < len; i++) + { + o0 = i < op0len ? (unsigned HOST_WIDE_INT) op0[i] : mask0; + o1 = i < op1len ? (unsigned HOST_WIDE_INT) op1[i] : mask1; + x = o0 + o1 + carry; + val[i] = x; + old_carry = carry; + carry = carry == 0 ? x < o0 : x <= o0; + } + + if (len * HOST_BITS_PER_WIDE_INT < prec) + { + val[len] = mask0 + mask1 + carry; + len++; + if (overflow) + *overflow = false; + } + else if (overflow) + { + unsigned int shift = -prec % HOST_BITS_PER_WIDE_INT; + if (sgn == SIGNED) + { + unsigned HOST_WIDE_INT x = (val[len - 1] ^ o0) & (val[len - 1] ^ o1); + *overflow = (HOST_WIDE_INT) (x << shift) < 0; + } + else + { + /* Put the MSB of X and O0 and in the top of the HWI. */ + x <<= shift; + o0 <<= shift; + if (old_carry) + *overflow = (x <= o0); + else + *overflow = (x < o0); + } + } + + return canonize (val, len, prec); +} + +/* Subroutines of the multiplication and division operations. Unpack + the first IN_LEN HOST_WIDE_INTs in INPUT into 2 * IN_LEN + HOST_HALF_WIDE_INTs of RESULT. The rest of RESULT is filled by + uncompressing the top bit of INPUT[IN_LEN - 1]. */ +static void +wi_unpack (unsigned HOST_HALF_WIDE_INT *result, const HOST_WIDE_INT *input, + unsigned int in_len, unsigned int out_len, + unsigned int prec, signop sgn) +{ + unsigned int i; + unsigned int j = 0; + unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1); + unsigned int blocks_needed = BLOCKS_NEEDED (prec); + HOST_WIDE_INT mask; + + if (sgn == SIGNED) + { + mask = -top_bit_of ((const HOST_WIDE_INT *) input, in_len, prec); + mask &= HALF_INT_MASK; + } + else + mask = 0; + + for (i = 0; i < blocks_needed - 1; i++) + { + HOST_WIDE_INT x = safe_uhwi (input, in_len, i); + result[j++] = x; + result[j++] = x >> HOST_BITS_PER_HALF_WIDE_INT; + } + + HOST_WIDE_INT x = safe_uhwi (input, in_len, i); + if (small_prec) + { + if (sgn == SIGNED) + x = sext_hwi (x, small_prec); + else + x = zext_hwi (x, small_prec); + } + result[j++] = x; + result[j++] = x >> HOST_BITS_PER_HALF_WIDE_INT; + + /* Smear the sign bit. */ + while (j < out_len) + result[j++] = mask; +} + +/* The inverse of wi_unpack. IN_LEN is the the number of input + blocks. The number of output blocks will be half this amount. */ +static void +wi_pack (unsigned HOST_WIDE_INT *result, + const unsigned HOST_HALF_WIDE_INT *input, + unsigned int in_len) +{ + unsigned int i = 0; + unsigned int j = 0; + + while (i + 2 < in_len) + { + result[j++] = (unsigned HOST_WIDE_INT)input[i] + | ((unsigned HOST_WIDE_INT)input[i + 1] + << HOST_BITS_PER_HALF_WIDE_INT); + i += 2; + } + + /* Handle the case where in_len is odd. For this we zero extend. */ + if (in_len & 1) + result[j++] = (unsigned HOST_WIDE_INT)input[i]; + else + result[j++] = (unsigned HOST_WIDE_INT)input[i] + | ((unsigned HOST_WIDE_INT)input[i + 1] << HOST_BITS_PER_HALF_WIDE_INT); +} + +/* Multiply Op1 by Op2. If HIGH is set, only the upper half of the + result is returned. + + If HIGH is not set, throw away the upper half after the check is + made to see if it overflows. Unfortunately there is no better way + to check for overflow than to do this. If OVERFLOW is nonnull, + record in *OVERFLOW whether the result overflowed. SGN controls + the signedness and is used to check overflow or if HIGH is set. */ +unsigned int +wi::mul_internal (HOST_WIDE_INT *val, const HOST_WIDE_INT *op1val, + unsigned int op1len, const HOST_WIDE_INT *op2val, + unsigned int op2len, unsigned int prec, signop sgn, + bool *overflow, bool high) +{ + unsigned HOST_WIDE_INT o0, o1, k, t; + unsigned int i; + unsigned int j; + unsigned int blocks_needed = BLOCKS_NEEDED (prec); + unsigned int half_blocks_needed = blocks_needed * 2; + /* The sizes here are scaled to support a 2x largest mode by 2x + largest mode yielding a 4x largest mode result. This is what is + needed by vpn. */ + + unsigned HOST_HALF_WIDE_INT + u[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT]; + unsigned HOST_HALF_WIDE_INT + v[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT]; + /* The '2' in 'R' is because we are internally doing a full + multiply. */ + unsigned HOST_HALF_WIDE_INT + r[2 * 4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT]; + HOST_WIDE_INT mask = ((HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT) - 1; + + /* If the top level routine did not really pass in an overflow, then + just make sure that we never attempt to set it. */ + bool needs_overflow = (overflow != 0); + if (needs_overflow) + *overflow = false; + + wide_int_ref op1 = wi::storage_ref (op1val, op1len, prec); + wide_int_ref op2 = wi::storage_ref (op2val, op2len, prec); + + /* This is a surprisingly common case, so do it first. */ + if (op1 == 0 || op2 == 0) + { + val[0] = 0; + return 1; + } + +#ifdef umul_ppmm + if (sgn == UNSIGNED) + { + /* If the inputs are single HWIs and the output has room for at + least two HWIs, we can use umul_ppmm directly. */ + if (prec >= HOST_BITS_PER_WIDE_INT * 2 + && wi::fits_uhwi_p (op1) + && wi::fits_uhwi_p (op2)) + { + umul_ppmm (val[1], val[0], op1.ulow (), op2.ulow ()); + return 1 + (val[1] != 0 || val[0] < 0); + } + /* Likewise if the output is a full single HWI, except that the + upper HWI of the result is only used for determining overflow. + (We handle this case inline when overflow isn't needed.) */ + else if (prec == HOST_BITS_PER_WIDE_INT) + { + unsigned HOST_WIDE_INT upper; + umul_ppmm (upper, val[0], op1.ulow (), op2.ulow ()); + if (needs_overflow) + *overflow = (upper != 0); + return 1; + } + } +#endif + + /* Handle multiplications by 1. */ + if (op1 == 1) + { + for (i = 0; i < op2len; i++) + val[i] = op2val[i]; + return op2len; + } + if (op2 == 1) + { + for (i = 0; i < op1len; i++) + val[i] = op1val[i]; + return op1len; + } + + /* If we need to check for overflow, we can only do half wide + multiplies quickly because we need to look at the top bits to + check for the overflow. */ + if ((high || needs_overflow) + && (prec <= HOST_BITS_PER_HALF_WIDE_INT)) + { + unsigned HOST_WIDE_INT r; + + if (sgn == SIGNED) + { + o0 = op1.to_shwi (); + o1 = op2.to_shwi (); + } + else + { + o0 = op1.to_uhwi (); + o1 = op2.to_uhwi (); + } + + r = o0 * o1; + if (needs_overflow) + { + if (sgn == SIGNED) + { + if ((HOST_WIDE_INT) r != sext_hwi (r, prec)) + *overflow = true; + } + else + { + if ((r >> prec) != 0) + *overflow = true; + } + } + val[0] = high ? r >> prec : r; + return 1; + } + + /* We do unsigned mul and then correct it. */ + wi_unpack (u, op1val, op1len, half_blocks_needed, prec, SIGNED); + wi_unpack (v, op2val, op2len, half_blocks_needed, prec, SIGNED); + + /* The 2 is for a full mult. */ + memset (r, 0, half_blocks_needed * 2 + * HOST_BITS_PER_HALF_WIDE_INT / CHAR_BIT); + + for (j = 0; j < half_blocks_needed; j++) + { + k = 0; + for (i = 0; i < half_blocks_needed; i++) + { + t = ((unsigned HOST_WIDE_INT)u[i] * (unsigned HOST_WIDE_INT)v[j] + + r[i + j] + k); + r[i + j] = t & HALF_INT_MASK; + k = t >> HOST_BITS_PER_HALF_WIDE_INT; + } + r[j + half_blocks_needed] = k; + } + + /* We did unsigned math above. For signed we must adjust the + product (assuming we need to see that). */ + if (sgn == SIGNED && (high || needs_overflow)) + { + unsigned HOST_WIDE_INT b; + if (wi::neg_p (op1)) + { + b = 0; + for (i = 0; i < half_blocks_needed; i++) + { + t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed] + - (unsigned HOST_WIDE_INT)v[i] - b; + r[i + half_blocks_needed] = t & HALF_INT_MASK; + b = t >> (HOST_BITS_PER_WIDE_INT - 1); + } + } + if (wi::neg_p (op2)) + { + b = 0; + for (i = 0; i < half_blocks_needed; i++) + { + t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed] + - (unsigned HOST_WIDE_INT)u[i] - b; + r[i + half_blocks_needed] = t & HALF_INT_MASK; + b = t >> (HOST_BITS_PER_WIDE_INT - 1); + } + } + } + + if (needs_overflow) + { + HOST_WIDE_INT top; + + /* For unsigned, overflow is true if any of the top bits are set. + For signed, overflow is true if any of the top bits are not equal + to the sign bit. */ + if (sgn == UNSIGNED) + top = 0; + else + { + top = r[(half_blocks_needed) - 1]; + top = SIGN_MASK (top << (HOST_BITS_PER_WIDE_INT / 2)); + top &= mask; + } + + for (i = half_blocks_needed; i < half_blocks_needed * 2; i++) + if (((HOST_WIDE_INT)(r[i] & mask)) != top) + *overflow = true; + } + + if (high) + { + /* compute [prec] <- ([prec] * [prec]) >> [prec] */ + wi_pack ((unsigned HOST_WIDE_INT *) val, + &r[half_blocks_needed], half_blocks_needed); + return canonize (val, blocks_needed, prec); + } + else + { + /* compute [prec] <- ([prec] * [prec]) && ((1 << [prec]) - 1) */ + wi_pack ((unsigned HOST_WIDE_INT *) val, r, half_blocks_needed); + return canonize (val, blocks_needed, prec); + } +} + +/* Compute the population count of X. */ +int +wi::popcount (const wide_int_ref &x) +{ + unsigned int i; + int count; + + /* The high order block is special if it is the last block and the + precision is not an even multiple of HOST_BITS_PER_WIDE_INT. We + have to clear out any ones above the precision before doing + popcount on this block. */ + count = x.precision - x.len * HOST_BITS_PER_WIDE_INT; + unsigned int stop = x.len; + if (count < 0) + { + count = popcount_hwi (x.uhigh () << -count); + stop -= 1; + } + else + { + if (x.sign_mask () >= 0) + count = 0; + } + + for (i = 0; i < stop; ++i) + count += popcount_hwi (x.val[i]); + + return count; +} + +/* Set VAL to OP0 - OP1. If OVERFLOW is nonnull, record in *OVERFLOW + whether the result overflows when OP0 and OP1 are treated as having + signedness SGN. Return the number of blocks in VAL. */ +unsigned int +wi::sub_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0, + unsigned int op0len, const HOST_WIDE_INT *op1, + unsigned int op1len, unsigned int prec, + signop sgn, bool *overflow) +{ + unsigned HOST_WIDE_INT o0 = 0; + unsigned HOST_WIDE_INT o1 = 0; + unsigned HOST_WIDE_INT x = 0; + /* We implement subtraction as an in place negate and add. Negation + is just inversion and add 1, so we can do the add of 1 by just + starting the borrow in of the first element at 1. */ + unsigned HOST_WIDE_INT borrow = 0; + unsigned HOST_WIDE_INT old_borrow = 0; + + unsigned HOST_WIDE_INT mask0, mask1; + unsigned int i; + + unsigned int len = MAX (op0len, op1len); + mask0 = -top_bit_of (op0, op0len, prec); + mask1 = -top_bit_of (op1, op1len, prec); + + /* Subtract all of the explicitly defined elements. */ + for (i = 0; i < len; i++) + { + o0 = i < op0len ? (unsigned HOST_WIDE_INT)op0[i] : mask0; + o1 = i < op1len ? (unsigned HOST_WIDE_INT)op1[i] : mask1; + x = o0 - o1 - borrow; + val[i] = x; + old_borrow = borrow; + borrow = borrow == 0 ? o0 < o1 : o0 <= o1; + } + + if (len * HOST_BITS_PER_WIDE_INT < prec) + { + val[len] = mask0 - mask1 - borrow; + len++; + if (overflow) + *overflow = false; + } + else if (overflow) + { + unsigned int shift = -prec % HOST_BITS_PER_WIDE_INT; + if (sgn == SIGNED) + { + unsigned HOST_WIDE_INT x = (o0 ^ o1) & (val[len - 1] ^ o0); + *overflow = (HOST_WIDE_INT) (x << shift) < 0; + } + else + { + /* Put the MSB of X and O0 and in the top of the HWI. */ + x <<= shift; + o0 <<= shift; + if (old_borrow) + *overflow = (x >= o0); + else + *overflow = (x > o0); + } + } + + return canonize (val, len, prec); +} + + +/* + * Division and Mod + */ + +/* Compute B_QUOTIENT and B_REMAINDER from B_DIVIDEND/B_DIVISOR. The + algorithm is a small modification of the algorithm in Hacker's + Delight by Warren, which itself is a small modification of Knuth's + algorithm. M is the number of significant elements of U however + there needs to be at least one extra element of B_DIVIDEND + allocated, N is the number of elements of B_DIVISOR. */ +static void +divmod_internal_2 (unsigned HOST_HALF_WIDE_INT *b_quotient, + unsigned HOST_HALF_WIDE_INT *b_remainder, + unsigned HOST_HALF_WIDE_INT *b_dividend, + unsigned HOST_HALF_WIDE_INT *b_divisor, + int m, int n) +{ + /* The "digits" are a HOST_HALF_WIDE_INT which the size of half of a + HOST_WIDE_INT and stored in the lower bits of each word. This + algorithm should work properly on both 32 and 64 bit + machines. */ + unsigned HOST_WIDE_INT b + = (unsigned HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT; + unsigned HOST_WIDE_INT qhat; /* Estimate of quotient digit. */ + unsigned HOST_WIDE_INT rhat; /* A remainder. */ + unsigned HOST_WIDE_INT p; /* Product of two digits. */ + HOST_WIDE_INT t, k; + int i, j, s; + + /* Single digit divisor. */ + if (n == 1) + { + k = 0; + for (j = m - 1; j >= 0; j--) + { + b_quotient[j] = (k * b + b_dividend[j])/b_divisor[0]; + k = ((k * b + b_dividend[j]) + - ((unsigned HOST_WIDE_INT)b_quotient[j] + * (unsigned HOST_WIDE_INT)b_divisor[0])); + } + b_remainder[0] = k; + return; + } + + s = clz_hwi (b_divisor[n-1]) - HOST_BITS_PER_HALF_WIDE_INT; /* CHECK clz */ + + if (s) + { + /* Normalize B_DIVIDEND and B_DIVISOR. Unlike the published + algorithm, we can overwrite b_dividend and b_divisor, so we do + that. */ + for (i = n - 1; i > 0; i--) + b_divisor[i] = (b_divisor[i] << s) + | (b_divisor[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s)); + b_divisor[0] = b_divisor[0] << s; + + b_dividend[m] = b_dividend[m-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s); + for (i = m - 1; i > 0; i--) + b_dividend[i] = (b_dividend[i] << s) + | (b_dividend[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s)); + b_dividend[0] = b_dividend[0] << s; + } + + /* Main loop. */ + for (j = m - n; j >= 0; j--) + { + qhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) / b_divisor[n-1]; + rhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) - qhat * b_divisor[n-1]; + again: + if (qhat >= b || qhat * b_divisor[n-2] > b * rhat + b_dividend[j+n-2]) + { + qhat -= 1; + rhat += b_divisor[n-1]; + if (rhat < b) + goto again; + } + + /* Multiply and subtract. */ + k = 0; + for (i = 0; i < n; i++) + { + p = qhat * b_divisor[i]; + t = b_dividend[i+j] - k - (p & HALF_INT_MASK); + b_dividend[i + j] = t; + k = ((p >> HOST_BITS_PER_HALF_WIDE_INT) + - (t >> HOST_BITS_PER_HALF_WIDE_INT)); + } + t = b_dividend[j+n] - k; + b_dividend[j+n] = t; + + b_quotient[j] = qhat; + if (t < 0) + { + b_quotient[j] -= 1; + k = 0; + for (i = 0; i < n; i++) + { + t = (HOST_WIDE_INT)b_dividend[i+j] + b_divisor[i] + k; + b_dividend[i+j] = t; + k = t >> HOST_BITS_PER_HALF_WIDE_INT; + } + b_dividend[j+n] += k; + } + } + if (s) + for (i = 0; i < n; i++) + b_remainder[i] = (b_dividend[i] >> s) + | (b_dividend[i+1] << (HOST_BITS_PER_HALF_WIDE_INT - s)); + else + for (i = 0; i < n; i++) + b_remainder[i] = b_dividend[i]; +} + + +/* Divide DIVIDEND by DIVISOR, which have signedness SGN, and truncate + the result. If QUOTIENT is nonnull, store the value of the quotient + there and return the number of blocks in it. The return value is + not defined otherwise. If REMAINDER is nonnull, store the value + of the remainder there and store the number of blocks in + *REMAINDER_LEN. If OFLOW is not null, store in *OFLOW whether + the division overflowed. */ +unsigned int +wi::divmod_internal (HOST_WIDE_INT *quotient, unsigned int *remainder_len, + HOST_WIDE_INT *remainder, + const HOST_WIDE_INT *dividend_val, + unsigned int dividend_len, unsigned int dividend_prec, + const HOST_WIDE_INT *divisor_val, unsigned int divisor_len, + unsigned int divisor_prec, signop sgn, + bool *oflow) +{ + unsigned int dividend_blocks_needed = 2 * BLOCKS_NEEDED (dividend_prec); + unsigned int divisor_blocks_needed = 2 * BLOCKS_NEEDED (divisor_prec); + unsigned HOST_HALF_WIDE_INT + b_quotient[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT]; + unsigned HOST_HALF_WIDE_INT + b_remainder[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT]; + unsigned HOST_HALF_WIDE_INT + b_dividend[(4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT) + 1]; + unsigned HOST_HALF_WIDE_INT + b_divisor[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT]; + unsigned int m, n; + bool dividend_neg = false; + bool divisor_neg = false; + bool overflow = false; + wide_int neg_dividend, neg_divisor; + + wide_int_ref dividend = wi::storage_ref (dividend_val, dividend_len, + dividend_prec); + wide_int_ref divisor = wi::storage_ref (divisor_val, divisor_len, + divisor_prec); + if (divisor == 0) + overflow = true; + + /* The smallest signed number / -1 causes overflow. The dividend_len + check is for speed rather than correctness. */ + if (sgn == SIGNED + && dividend_len == BLOCKS_NEEDED (dividend_prec) + && divisor == -1 + && wi::only_sign_bit_p (dividend)) + overflow = true; + + /* Handle the overflow cases. Viewed as unsigned value, the quotient of + (signed min / -1) has the same representation as the orignal dividend. + We have traditionally made division by zero act as division by one, + so there too we use the original dividend. */ + if (overflow) + { + if (remainder) + { + *remainder_len = 1; + remainder[0] = 0; + } + if (oflow != 0) + *oflow = true; + if (quotient) + for (unsigned int i = 0; i < dividend_len; ++i) + quotient[i] = dividend_val[i]; + return dividend_len; + } + + if (oflow) + *oflow = false; + + /* Do it on the host if you can. */ + if (sgn == SIGNED + && wi::fits_shwi_p (dividend) + && wi::fits_shwi_p (divisor)) + { + HOST_WIDE_INT o0 = dividend.to_shwi (); + HOST_WIDE_INT o1 = divisor.to_shwi (); + + if (o0 == HOST_WIDE_INT_MIN && o1 == -1) + { + gcc_checking_assert (dividend_prec > HOST_BITS_PER_WIDE_INT); + if (quotient) + { + quotient[0] = HOST_WIDE_INT_MIN; + quotient[1] = 0; + } + if (remainder) + { + remainder[0] = 0; + *remainder_len = 1; + } + return 2; + } + else + { + if (quotient) + quotient[0] = o0 / o1; + if (remainder) + { + remainder[0] = o0 % o1; + *remainder_len = 1; + } + return 1; + } + } + + if (sgn == UNSIGNED + && wi::fits_uhwi_p (dividend) + && wi::fits_uhwi_p (divisor)) + { + unsigned HOST_WIDE_INT o0 = dividend.to_uhwi (); + unsigned HOST_WIDE_INT o1 = divisor.to_uhwi (); + + if (quotient) + quotient[0] = o0 / o1; + if (remainder) + { + remainder[0] = o0 % o1; + *remainder_len = 1; + } + return 1; + } + + /* Make the divisor and dividend positive and remember what we + did. */ + if (sgn == SIGNED) + { + if (wi::neg_p (dividend)) + { + neg_dividend = -dividend; + dividend = neg_dividend; + dividend_neg = true; + } + if (wi::neg_p (divisor)) + { + neg_divisor = -divisor; + divisor = neg_divisor; + divisor_neg = true; + } + } + + wi_unpack (b_dividend, dividend.get_val (), dividend.get_len (), + dividend_blocks_needed, dividend_prec, sgn); + wi_unpack (b_divisor, divisor.get_val (), divisor.get_len (), + divisor_blocks_needed, divisor_prec, sgn); + + m = dividend_blocks_needed; + while (m > 1 && b_dividend[m - 1] == 0) + m--; + + n = divisor_blocks_needed; + while (n > 1 && b_divisor[n - 1] == 0) + n--; + + memset (b_quotient, 0, sizeof (b_quotient)); + + divmod_internal_2 (b_quotient, b_remainder, b_dividend, b_divisor, m, n); + + unsigned int quotient_len = 0; + if (quotient) + { + wi_pack ((unsigned HOST_WIDE_INT *) quotient, b_quotient, m); + quotient_len = canonize (quotient, (m + 1) / 2, dividend_prec); + /* The quotient is neg if exactly one of the divisor or dividend is + neg. */ + if (dividend_neg != divisor_neg) + quotient_len = wi::sub_large (quotient, zeros, 1, quotient, + quotient_len, dividend_prec, + UNSIGNED, 0); + } + + if (remainder) + { + wi_pack ((unsigned HOST_WIDE_INT *) remainder, b_remainder, n); + *remainder_len = canonize (remainder, (n + 1) / 2, dividend_prec); + /* The remainder is always the same sign as the dividend. */ + if (dividend_neg) + *remainder_len = wi::sub_large (remainder, zeros, 1, remainder, + *remainder_len, dividend_prec, + UNSIGNED, 0); + } + + return quotient_len; +} + +/* + * Shifting, rotating and extraction. + */ + +/* Left shift XVAL by SHIFT and store the result in VAL. Return the + number of blocks in VAL. Both XVAL and VAL have PRECISION bits. */ +unsigned int +wi::lshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval, + unsigned int xlen, unsigned int precision, + unsigned int shift) +{ + /* Split the shift into a whole-block shift and a subblock shift. */ + unsigned int skip = shift / HOST_BITS_PER_WIDE_INT; + unsigned int small_shift = shift % HOST_BITS_PER_WIDE_INT; + + /* The whole-block shift fills with zeros. */ + unsigned int len = BLOCKS_NEEDED (precision); + for (unsigned int i = 0; i < skip; ++i) + val[i] = 0; + + /* It's easier to handle the simple block case specially. */ + if (small_shift == 0) + for (unsigned int i = skip; i < len; ++i) + val[i] = safe_uhwi (xval, xlen, i - skip); + else + { + /* The first unfilled output block is a left shift of the first + block in XVAL. The other output blocks contain bits from two + consecutive input blocks. */ + unsigned HOST_WIDE_INT carry = 0; + for (unsigned int i = skip; i < len; ++i) + { + unsigned HOST_WIDE_INT x = safe_uhwi (xval, xlen, i - skip); + val[i] = (x << small_shift) | carry; + carry = x >> (-small_shift % HOST_BITS_PER_WIDE_INT); + } + } + return canonize (val, len, precision); +} + +/* Right shift XVAL by SHIFT and store the result in VAL. Return the + number of blocks in VAL. The input has XPRECISION bits and the + output has XPRECISION - SHIFT bits. */ +static unsigned int +rshift_large_common (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval, + unsigned int xlen, unsigned int xprecision, + unsigned int shift) +{ + /* Split the shift into a whole-block shift and a subblock shift. */ + unsigned int skip = shift / HOST_BITS_PER_WIDE_INT; + unsigned int small_shift = shift % HOST_BITS_PER_WIDE_INT; + + /* Work out how many blocks are needed to store the significant bits + (excluding the upper zeros or signs). */ + unsigned int len = BLOCKS_NEEDED (xprecision - shift); + + /* It's easier to handle the simple block case specially. */ + if (small_shift == 0) + for (unsigned int i = 0; i < len; ++i) + val[i] = safe_uhwi (xval, xlen, i + skip); + else + { + /* Each output block but the last is a combination of two input blocks. + The last block is a right shift of the last block in XVAL. */ + unsigned HOST_WIDE_INT curr = safe_uhwi (xval, xlen, skip); + for (unsigned int i = 0; i < len; ++i) + { + val[i] = curr >> small_shift; + curr = safe_uhwi (xval, xlen, i + skip + 1); + val[i] |= curr << (-small_shift % HOST_BITS_PER_WIDE_INT); + } + } + return len; +} + +/* Logically right shift XVAL by SHIFT and store the result in VAL. + Return the number of blocks in VAL. XVAL has XPRECISION bits and + VAL has PRECISION bits. */ +unsigned int +wi::lrshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval, + unsigned int xlen, unsigned int xprecision, + unsigned int precision, unsigned int shift) +{ + unsigned int len = rshift_large_common (val, xval, xlen, xprecision, shift); + + /* The value we just created has precision XPRECISION - SHIFT. + Zero-extend it to wider precisions. */ + if (precision > xprecision - shift) + { + unsigned int small_prec = (xprecision - shift) % HOST_BITS_PER_WIDE_INT; + if (small_prec) + val[len - 1] = zext_hwi (val[len - 1], small_prec); + else if (val[len - 1] < 0) + { + /* Add a new block with a zero. */ + val[len++] = 0; + return len; + } + } + return canonize (val, len, precision); +} + +/* Arithmetically right shift XVAL by SHIFT and store the result in VAL. + Return the number of blocks in VAL. XVAL has XPRECISION bits and + VAL has PRECISION bits. */ +unsigned int +wi::arshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval, + unsigned int xlen, unsigned int xprecision, + unsigned int precision, unsigned int shift) +{ + unsigned int len = rshift_large_common (val, xval, xlen, xprecision, shift); + + /* The value we just created has precision XPRECISION - SHIFT. + Sign-extend it to wider types. */ + if (precision > xprecision - shift) + { + unsigned int small_prec = (xprecision - shift) % HOST_BITS_PER_WIDE_INT; + if (small_prec) + val[len - 1] = sext_hwi (val[len - 1], small_prec); + } + return canonize (val, len, precision); +} + +/* Return the number of leading (upper) zeros in X. */ +int +wi::clz (const wide_int_ref &x) +{ + /* Calculate how many bits there above the highest represented block. */ + int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT; + + unsigned HOST_WIDE_INT high = x.uhigh (); + if (count < 0) + /* The upper -COUNT bits of HIGH are not part of the value. + Clear them out. */ + high = (high << -count) >> -count; + else if (x.sign_mask () < 0) + /* The upper bit is set, so there are no leading zeros. */ + return 0; + + /* We don't need to look below HIGH. Either HIGH is nonzero, + or the top bit of the block below is nonzero; clz_hwi is + HOST_BITS_PER_WIDE_INT in the latter case. */ + return count + clz_hwi (high); +} + +/* Return the number of redundant sign bits in X. (That is, the number + of bits immediately below the sign bit that have the same value as + the sign bit.) */ +int +wi::clrsb (const wide_int_ref &x) +{ + /* Calculate how many bits there above the highest represented block. */ + int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT; + + unsigned HOST_WIDE_INT high = x.uhigh (); + unsigned HOST_WIDE_INT mask = -1; + if (count < 0) + { + /* The upper -COUNT bits of HIGH are not part of the value. + Clear them from both MASK and HIGH. */ + mask >>= -count; + high &= mask; + } + + /* If the top bit is 1, count the number of leading 1s. If the top + bit is zero, count the number of leading zeros. */ + if (high > mask / 2) + high ^= mask; + + /* There are no sign bits below the top block, so we don't need to look + beyond HIGH. Note that clz_hwi is HOST_BITS_PER_WIDE_INT when + HIGH is 0. */ + return count + clz_hwi (high) - 1; +} + +/* Return the number of trailing (lower) zeros in X. */ +int +wi::ctz (const wide_int_ref &x) +{ + if (x.len == 1 && x.ulow () == 0) + return x.precision; + + /* Having dealt with the zero case, there must be a block with a + nonzero bit. We don't care about the bits above the first 1. */ + unsigned int i = 0; + while (x.val[i] == 0) + ++i; + return i * HOST_BITS_PER_WIDE_INT + ctz_hwi (x.val[i]); +} + +/* If X is an exact power of 2, return the base-2 logarithm, otherwise + return -1. */ +int +wi::exact_log2 (const wide_int_ref &x) +{ + /* Reject cases where there are implicit -1 blocks above HIGH. */ + if (x.len * HOST_BITS_PER_WIDE_INT < x.precision && x.sign_mask () < 0) + return -1; + + /* Set CRUX to the index of the entry that should be nonzero. + If the top block is zero then the next lowest block (if any) + must have the high bit set. */ + unsigned int crux = x.len - 1; + if (crux > 0 && x.val[crux] == 0) + crux -= 1; + + /* Check that all lower blocks are zero. */ + for (unsigned int i = 0; i < crux; ++i) + if (x.val[i] != 0) + return -1; + + /* Get a zero-extended form of block CRUX. */ + unsigned HOST_WIDE_INT hwi = x.val[crux]; + if ((crux + 1) * HOST_BITS_PER_WIDE_INT > x.precision) + hwi = zext_hwi (hwi, x.precision % HOST_BITS_PER_WIDE_INT); + + /* Now it's down to whether HWI is a power of 2. */ + int res = ::exact_log2 (hwi); + if (res >= 0) + res += crux * HOST_BITS_PER_WIDE_INT; + return res; +} + +/* Return the base-2 logarithm of X, rounding down. Return -1 if X is 0. */ +int +wi::floor_log2 (const wide_int_ref &x) +{ + return x.precision - 1 - clz (x); +} + +/* Return the index of the first (lowest) set bit in X, counting from 1. + Return 0 if X is 0. */ +int +wi::ffs (const wide_int_ref &x) +{ + return eq_p (x, 0) ? 0 : ctz (x) + 1; +} + +/* Return true if sign-extending X to have precision PRECISION would give + the minimum signed value at that precision. */ +bool +wi::only_sign_bit_p (const wide_int_ref &x, unsigned int precision) +{ + return ctz (x) + 1 == int (precision); +} + +/* Return true if X represents the minimum signed value. */ +bool +wi::only_sign_bit_p (const wide_int_ref &x) +{ + return only_sign_bit_p (x, x.precision); +} + +/* + * Private utilities. + */ + +void gt_ggc_mx (widest_int *) { } +void gt_pch_nx (widest_int *, void (*) (void *, void *), void *) { } +void gt_pch_nx (widest_int *) { } + +template void wide_int::dump () const; +template void generic_wide_int <wide_int_ref_storage <false> >::dump () const; +template void generic_wide_int <wide_int_ref_storage <true> >::dump () const; +template void offset_int::dump () const; +template void widest_int::dump () const; |