aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/libgnat')
-rw-r--r--gcc/ada/libgnat/s-dorepr__freebsd.adb172
1 files changed, 172 insertions, 0 deletions
diff --git a/gcc/ada/libgnat/s-dorepr__freebsd.adb b/gcc/ada/libgnat/s-dorepr__freebsd.adb
new file mode 100644
index 0000000..bf8388b
--- /dev/null
+++ b/gcc/ada/libgnat/s-dorepr__freebsd.adb
@@ -0,0 +1,172 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S Y S T E M . D O U B L E _ R E A L . P R O D U C T --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 2021-2025, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+-- This is the x86/FreeBSD version of the separate package body
+
+with Interfaces; use Interfaces;
+
+separate (System.Double_Real)
+
+package body Product is
+
+ procedure Split (N : Num; Hi : out Num; Lo : out Num);
+ -- Compute high part and low part of N
+
+ -----------
+ -- Split --
+ -----------
+
+ -- We use a bit manipulation algorithm instead of Veltkamp's splitting
+ -- because it is faster and has the property that the magnitude of the
+ -- high part is never larger than that of the input number, which will
+ -- avoid spurious overflows in the Two_Prod algorithm.
+
+ -- See the recent paper by Claude-Pierre Jeannerod, Jean-Michel Muller
+ -- and Paul Zimmermann: On various ways to split a floating-point number
+ -- ARITH 2018 - 25th IEEE Symposium on Computer Arithmetic, Jun 2018,
+ -- Amherst (MA), United States, pages 53-60.
+
+ procedure Split (N : Num; Hi : out Num; Lo : out Num) is
+ X : Num;
+
+ begin
+ -- Spill the input into the appropriate (maybe larger) bit container,
+ -- mask out the low bits and reload the modified value.
+
+ case Num'Machine_Mantissa is
+ when 24 =>
+ declare
+ Rep32 : aliased Interfaces.Unsigned_32;
+ Temp : Num := N with Address => Rep32'Address;
+ pragma Annotate (CodePeer, Modified, Rep32);
+
+ begin
+ -- Mask out the low 12 bits
+
+ Rep32 := Rep32 and 16#FFFFF000#;
+
+ X := Temp;
+ end;
+
+ when 53 =>
+ declare
+ Rep64 : aliased array (1 .. 2) of Interfaces.Unsigned_64;
+ Temp : Num := N with Address => Rep64'Address;
+ pragma Annotate (CodePeer, Modified, Rep64);
+
+ begin
+ -- Mask out the low 27 bits
+
+ Rep64 (1) := Rep64 (1) and 16#FFFFFFFFF8000000#;
+
+ X := Temp;
+ end;
+
+ when 64 =>
+ declare
+ Rep80 : aliased array (1 .. 2) of Interfaces.Unsigned_64;
+ Temp : Num := N with Address => Rep80'Address;
+ pragma Annotate (CodePeer, Modified, Rep80);
+
+ begin
+ -- Mask out the low 32 bits
+
+ if System.Default_Bit_Order = High_Order_First then
+ Rep80 (1) := Rep80 (1) and 16#FFFFFFFFFFFF0000#;
+ Rep80 (2) := Rep80 (2) and 16#0000FFFFFFFFFFFF#;
+ else
+ Rep80 (1) := Rep80 (1) and 16#FFFFFFFF00000000#;
+ end if;
+
+ X := Temp;
+ end;
+
+ when others =>
+ raise Program_Error;
+ end case;
+
+ -- Deal with denormalized numbers
+
+ if X = 0.0 then
+ Hi := N;
+ Lo := 0.0;
+ else
+ Hi := X;
+ Lo := N - X;
+ end if;
+ end Split;
+
+ --------------
+ -- Two_Prod --
+ --------------
+
+ function Two_Prod (A, B : Num) return Double_T is
+ P : constant Num := A * B;
+
+ Ahi, Alo, Bhi, Blo, E : Num;
+
+ begin
+ if Is_Infinity (P) or else Is_Zero (P) then
+ return (P, 0.0);
+
+ else
+ Split (A, Ahi, Alo);
+ Split (B, Bhi, Blo);
+
+ E := ((Ahi * Bhi - P) + Ahi * Blo + Alo * Bhi) + Alo * Blo;
+
+ return (P, E);
+ end if;
+ end Two_Prod;
+
+ -------------
+ -- Two_Sqr --
+ -------------
+
+ function Two_Sqr (A : Num) return Double_T is
+ Q : constant Num := A * A;
+
+ Hi, Lo, E : Num;
+
+ begin
+ if Is_Infinity (Q) or else Is_Zero (Q) then
+ return (Q, 0.0);
+
+ else
+ Split (A, Hi, Lo);
+
+ E := ((Hi * Hi - Q) + 2.0 * Hi * Lo) + Lo * Lo;
+
+ return (Q, E);
+ end if;
+ end Two_Sqr;
+
+end Product;