aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/s-widthu.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/libgnat/s-widthu.adb')
-rw-r--r--gcc/ada/libgnat/s-widthu.adb120
1 files changed, 0 insertions, 120 deletions
diff --git a/gcc/ada/libgnat/s-widthu.adb b/gcc/ada/libgnat/s-widthu.adb
index df27e50..fe51d61 100644
--- a/gcc/ada/libgnat/s-widthu.adb
+++ b/gcc/ada/libgnat/s-widthu.adb
@@ -31,110 +31,12 @@
package body System.Width_U is
- -- Ghost code, loop invariants and assertions in this unit are meant for
- -- analysis only, not for run-time checking, as it would be too costly
- -- otherwise. This is enforced by setting the assertion policy to Ignore.
-
- pragma Assertion_Policy (Ghost => Ignore,
- Loop_Invariant => Ignore,
- Assert => Ignore,
- Assert_And_Cut => Ignore,
- Subprogram_Variant => Ignore);
-
function Width (Lo, Hi : Uns) return Natural is
-
- -- Ghost code, loop invariants and assertions in this unit are meant for
- -- analysis only, not for run-time checking, as it would be too costly
- -- otherwise. This is enforced by setting the assertion policy to
- -- Ignore.
-
- pragma Assertion_Policy (Ghost => Ignore,
- Loop_Invariant => Ignore,
- Assert => Ignore);
-
- ------------------
- -- Local Lemmas --
- ------------------
-
- procedure Lemma_Lower_Mult (A, B, C : Big_Natural)
- with
- Ghost,
- Pre => A <= B,
- Post => A * C <= B * C;
-
- procedure Lemma_Div_Commutation (X, Y : Uns)
- with
- Ghost,
- Pre => Y /= 0,
- Post => Big (X) / Big (Y) = Big (X / Y);
-
- procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive)
- with
- Ghost,
- Post => X / Y / Z = X / (Y * Z);
-
- procedure Lemma_Euclidian (V, Q, F, R : Big_Integer)
- with
- Ghost,
- Pre => F > 0 and then Q = V / F and then R = V rem F,
- Post => V = Q * F + R;
- -- Ghost lemma to prove the relation between the quotient/remainder of
- -- division by F and the value V.
-
- ----------------------
- -- Lemma_Lower_Mult --
- ----------------------
-
- procedure Lemma_Lower_Mult (A, B, C : Big_Natural) is null;
-
- ---------------------------
- -- Lemma_Div_Commutation --
- ---------------------------
-
- procedure Lemma_Div_Commutation (X, Y : Uns) is null;
-
- ---------------------
- -- Lemma_Div_Twice --
- ---------------------
-
- procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive) is
- XY : constant Big_Natural := X / Y;
- YZ : constant Big_Natural := Y * Z;
- XYZ : constant Big_Natural := X / Y / Z;
- R : constant Big_Natural := (XY rem Z) * Y + (X rem Y);
- begin
- pragma Assert (X = XY * Y + (X rem Y));
- pragma Assert (XY = XY / Z * Z + (XY rem Z));
- pragma Assert (X = XYZ * YZ + R);
- pragma Assert ((XY rem Z) * Y <= (Z - 1) * Y);
- pragma Assert (R <= YZ - 1);
- pragma Assert (X / YZ = (XYZ * YZ + R) / YZ);
- pragma Assert (X / YZ = XYZ + R / YZ);
- end Lemma_Div_Twice;
-
- ---------------------
- -- Lemma_Euclidian --
- ---------------------
-
- procedure Lemma_Euclidian (V, Q, F, R : Big_Integer) is null;
-
- -- Local variables
-
W : Natural;
T : Uns;
-
- -- Local ghost variables
-
- Max_W : constant Natural := Max_Log10 with Ghost;
- Pow : Big_Integer := 1 with Ghost;
- T_Init : constant Uns := Uns'Max (Lo, Hi) with Ghost;
-
- -- Start of processing for System.Width_U
-
begin
if Lo > Hi then
return 0;
-
else
-- Minimum value is 2, one for space, one for digit
@@ -147,32 +49,10 @@ package body System.Width_U is
-- Increase value if more digits required
while T >= 10 loop
- Lemma_Div_Commutation (T, 10);
- Lemma_Div_Twice (Big (T_Init), Big_10 ** (W - 2), Big_10);
-
T := T / 10;
W := W + 1;
- Pow := Pow * 10;
-
- pragma Loop_Invariant (W in 3 .. Max_W + 2);
- pragma Loop_Invariant (Pow = Big_10 ** (W - 2));
- pragma Loop_Invariant (Big (T) = Big (T_Init) / Pow);
- pragma Loop_Variant (Decreases => T);
end loop;
- declare
- F : constant Big_Integer := Big_10 ** (W - 2) with Ghost;
- Q : constant Big_Integer := Big (T_Init) / F with Ghost;
- R : constant Big_Integer := Big (T_Init) rem F with Ghost;
- begin
- pragma Assert (Q < Big_10);
- Lemma_Euclidian (Big (T_Init), Q, F, R);
- Lemma_Lower_Mult (Q, Big (9), F);
- pragma Assert (Big (T_Init) <= Big (9) * F + F - 1);
- pragma Assert (Big (T_Init) < Big_10 * F);
- pragma Assert (Big_10 * F = Big_10 ** (W - 1));
- end;
-
return W;
end if;
end Width;