aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/s-imagei.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/libgnat/s-imagei.adb')
-rw-r--r--gcc/ada/libgnat/s-imagei.adb345
1 files changed, 3 insertions, 342 deletions
diff --git a/gcc/ada/libgnat/s-imagei.adb b/gcc/ada/libgnat/s-imagei.adb
index e6aaf83..0f2211b 100644
--- a/gcc/ada/libgnat/s-imagei.adb
+++ b/gcc/ada/libgnat/s-imagei.adb
@@ -29,106 +29,18 @@
-- --
------------------------------------------------------------------------------
-with Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
-use Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
-
-with System.Val_Spec;
-
package body System.Image_I is
- -- Ghost code, loop invariants and assertions in this unit are meant for
- -- analysis only, not for run-time checking, as it would be too costly
- -- otherwise. This is enforced by setting the assertion policy to Ignore.
-
- pragma Assertion_Policy (Ghost => Ignore,
- Loop_Invariant => Ignore,
- Assert => Ignore,
- Assert_And_Cut => Ignore,
- Pre => Ignore,
- Post => Ignore,
- Subprogram_Variant => Ignore);
-
subtype Non_Positive is Int range Int'First .. 0;
- function Uns_Of_Non_Positive (T : Non_Positive) return Uns is
- (if T = Int'First then Uns (Int'Last) + 1 else Uns (-T));
-
procedure Set_Digits
(T : Non_Positive;
S : in out String;
- P : in out Natural)
- with
- Pre => P < Integer'Last
- and then S'Last < Integer'Last
- and then S'First <= P + 1
- and then S'First <= S'Last
- and then P <= S'Last - Unsigned_Width_Ghost + 1,
- Post => S (S'First .. P'Old) = S'Old (S'First .. P'Old)
- and then P in P'Old + 1 .. S'Last
- and then UP.Only_Decimal_Ghost (S, From => P'Old + 1, To => P)
- and then UP.Scan_Based_Number_Ghost (S, From => P'Old + 1, To => P)
- = UP.Wrap_Option (Uns_Of_Non_Positive (T));
+ P : in out Natural);
-- Set digits of absolute value of T, which is zero or negative. We work
-- with the negative of the value so that the largest negative number is
-- not a special case.
- package Unsigned_Conversion is new Unsigned_Conversions (Int => Uns);
-
- function Big (Arg : Uns) return Big_Integer renames
- Unsigned_Conversion.To_Big_Integer;
-
- function From_Big (Arg : Big_Integer) return Uns renames
- Unsigned_Conversion.From_Big_Integer;
-
- Big_10 : constant Big_Integer := Big (10) with Ghost;
-
- ------------------
- -- Local Lemmas --
- ------------------
-
- procedure Lemma_Non_Zero (X : Uns)
- with
- Ghost,
- Pre => X /= 0,
- Post => Big (X) /= 0;
-
- procedure Lemma_Div_Commutation (X, Y : Uns)
- with
- Ghost,
- Pre => Y /= 0,
- Post => Big (X) / Big (Y) = Big (X / Y);
-
- procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive)
- with
- Ghost,
- Post => X / Y / Z = X / (Y * Z);
-
- ---------------------------
- -- Lemma_Div_Commutation --
- ---------------------------
-
- procedure Lemma_Non_Zero (X : Uns) is null;
- procedure Lemma_Div_Commutation (X, Y : Uns) is null;
-
- ---------------------
- -- Lemma_Div_Twice --
- ---------------------
-
- procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive) is
- XY : constant Big_Natural := X / Y;
- YZ : constant Big_Natural := Y * Z;
- XYZ : constant Big_Natural := X / Y / Z;
- R : constant Big_Natural := (XY rem Z) * Y + (X rem Y);
- begin
- pragma Assert (X = XY * Y + (X rem Y));
- pragma Assert (XY = XY / Z * Z + (XY rem Z));
- pragma Assert (X = XYZ * YZ + R);
- pragma Assert ((XY rem Z) * Y <= (Z - 1) * Y);
- pragma Assert (R <= YZ - 1);
- pragma Assert (X / YZ = (XYZ * YZ + R) / YZ);
- pragma Assert (X / YZ = XYZ + R / YZ);
- end Lemma_Div_Twice;
-
-------------------
-- Image_Integer --
-------------------
@@ -139,44 +51,6 @@ package body System.Image_I is
P : out Natural)
is
pragma Assert (S'First = 1);
-
- procedure Prove_Value_Integer
- with
- Ghost,
- Pre => S'First = 1
- and then S'Last < Integer'Last
- and then P in 2 .. S'Last
- and then S (1) in ' ' | '-'
- and then (S (1) = '-') = (V < 0)
- and then UP.Only_Decimal_Ghost (S, From => 2, To => P)
- and then UP.Scan_Based_Number_Ghost (S, From => 2, To => P)
- = UP.Wrap_Option (IP.Abs_Uns_Of_Int (V)),
- Post => not System.Val_Spec.Only_Space_Ghost (S, 1, P)
- and then IP.Is_Integer_Ghost (S (1 .. P))
- and then IP.Is_Value_Integer_Ghost (S (1 .. P), V);
- -- Ghost lemma to prove the value of Value_Integer from the value of
- -- Scan_Based_Number_Ghost and the sign on a decimal string.
-
- -------------------------
- -- Prove_Value_Integer --
- -------------------------
-
- procedure Prove_Value_Integer is
- Str : constant String := S (1 .. P);
- begin
- pragma Assert (Str'First = 1);
- pragma Assert (Str (2) /= ' ');
- pragma Assert
- (UP.Only_Decimal_Ghost (Str, From => 2, To => P));
- UP.Prove_Scan_Based_Number_Ghost_Eq (S, Str, From => 2, To => P);
- pragma Assert
- (UP.Scan_Based_Number_Ghost (Str, From => 2, To => P)
- = UP.Wrap_Option (IP.Abs_Uns_Of_Int (V)));
- IP.Prove_Scan_Only_Decimal_Ghost (Str, V);
- end Prove_Value_Integer;
-
- -- Start of processing for Image_Integer
-
begin
if V >= 0 then
pragma Annotate (CodePeer, False_Positive, "test always false",
@@ -190,18 +64,7 @@ package body System.Image_I is
pragma Assert (P < S'Last - 1);
end if;
- declare
- P_Prev : constant Integer := P with Ghost;
- Offset : constant Positive := (if V >= 0 then 1 else 2) with Ghost;
- begin
- Set_Image_Integer (V, S, P);
-
- pragma Assert (P_Prev + Offset = 2);
- end;
- pragma Assert (if V >= 0 then S (1) = ' ');
- pragma Assert (S (1) in ' ' | '-');
-
- Prove_Value_Integer;
+ Set_Image_Integer (V, S, P);
end Image_Integer;
----------------
@@ -215,136 +78,6 @@ package body System.Image_I is
is
Nb_Digits : Natural := 0;
Value : Non_Positive := T;
-
- -- Local ghost variables
-
- Pow : Big_Positive := 1 with Ghost;
- S_Init : constant String := S with Ghost;
- Uns_T : constant Uns := Uns_Of_Non_Positive (T) with Ghost;
- Uns_Value : Uns := Uns_Of_Non_Positive (Value) with Ghost;
- Prev_Value : Uns with Ghost;
- Prev_S : String := S with Ghost;
-
- -- Local ghost lemmas
-
- procedure Prove_Character_Val (RU : Uns; RI : Non_Positive)
- with
- Ghost,
- Post => RU rem 10 in 0 .. 9
- and then -(RI rem 10) in 0 .. 9
- and then Character'Val (48 + RU rem 10) in '0' .. '9'
- and then Character'Val (48 - RI rem 10) in '0' .. '9';
- -- Ghost lemma to prove the value of a character corresponding to the
- -- next figure.
-
- procedure Prove_Euclidian (Val, Quot, Rest : Uns)
- with
- Ghost,
- Pre => Quot = Val / 10
- and then Rest = Val rem 10,
- Post => Uns'Last - Rest >= 10 * Quot and then Val = 10 * Quot + Rest;
- -- Ghost lemma to prove the relation between the quotient/remainder of
- -- division by 10 and the initial value.
-
- procedure Prove_Hexa_To_Unsigned_Ghost (RU : Uns; RI : Int)
- with
- Ghost,
- Pre => RU in 0 .. 9
- and then RI in 0 .. 9,
- Post => UP.Hexa_To_Unsigned_Ghost
- (Character'Val (48 + RU)) = RU
- and then UP.Hexa_To_Unsigned_Ghost
- (Character'Val (48 + RI)) = Uns (RI);
- -- Ghost lemma to prove that Hexa_To_Unsigned_Ghost returns the source
- -- figure when applied to the corresponding character.
-
- procedure Prove_Scan_Iter
- (S, Prev_S : String;
- V, Prev_V, Res : Uns;
- P, Max : Natural)
- with
- Ghost,
- Pre =>
- S'First = Prev_S'First and then S'Last = Prev_S'Last
- and then S'Last < Natural'Last and then
- Max in S'Range and then P in S'First .. Max and then
- (for all I in P + 1 .. Max => Prev_S (I) in '0' .. '9')
- and then (for all I in P + 1 .. Max => Prev_S (I) = S (I))
- and then S (P) in '0' .. '9'
- and then V <= Uns'Last / 10
- and then Uns'Last - UP.Hexa_To_Unsigned_Ghost (S (P))
- >= 10 * V
- and then Prev_V =
- V * 10 + UP.Hexa_To_Unsigned_Ghost (S (P))
- and then
- (if P = Max then Prev_V = Res
- else UP.Scan_Based_Number_Ghost
- (Str => Prev_S,
- From => P + 1,
- To => Max,
- Base => 10,
- Acc => Prev_V) = UP.Wrap_Option (Res)),
- Post =>
- (for all I in P .. Max => S (I) in '0' .. '9')
- and then UP.Scan_Based_Number_Ghost
- (Str => S,
- From => P,
- To => Max,
- Base => 10,
- Acc => V) = UP.Wrap_Option (Res);
- -- Ghost lemma to prove that Scan_Based_Number_Ghost is preserved
- -- through an iteration of the loop.
-
- procedure Prove_Uns_Of_Non_Positive_Value
- with
- Ghost,
- Pre => Uns_Value = Uns_Of_Non_Positive (Value),
- Post => Uns_Value / 10 = Uns_Of_Non_Positive (Value / 10)
- and then Uns_Value rem 10 = Uns_Of_Non_Positive (Value rem 10);
- -- Ghost lemma to prove that the relation between Value and its unsigned
- -- version is preserved.
-
- -----------------------------
- -- Local lemma null bodies --
- -----------------------------
-
- procedure Prove_Character_Val (RU : Uns; RI : Non_Positive) is null;
- procedure Prove_Euclidian (Val, Quot, Rest : Uns) is null;
- procedure Prove_Hexa_To_Unsigned_Ghost (RU : Uns; RI : Int) is null;
- procedure Prove_Uns_Of_Non_Positive_Value is null;
-
- ---------------------
- -- Prove_Scan_Iter --
- ---------------------
-
- procedure Prove_Scan_Iter
- (S, Prev_S : String;
- V, Prev_V, Res : Uns;
- P, Max : Natural)
- is
- pragma Unreferenced (Res);
- begin
- UP.Lemma_Scan_Based_Number_Ghost_Step
- (Str => S,
- From => P,
- To => Max,
- Base => 10,
- Acc => V);
- if P < Max then
- UP.Prove_Scan_Based_Number_Ghost_Eq
- (Prev_S, S, P + 1, Max, 10, Prev_V);
- else
- UP.Lemma_Scan_Based_Number_Ghost_Base
- (Str => S,
- From => P + 1,
- To => Max,
- Base => 10,
- Acc => Prev_V);
- end if;
- end Prove_Scan_Iter;
-
- -- Start of processing for Set_Digits
-
begin
pragma Assert (P >= S'First - 1 and P < S'Last);
-- No check is done since, as documented in the Set_Image_Integer
@@ -354,90 +87,20 @@ package body System.Image_I is
-- First we compute the number of characters needed for representing
-- the number.
loop
- Lemma_Div_Commutation (Uns_Of_Non_Positive (Value), 10);
- Lemma_Div_Twice (Big (Uns_Of_Non_Positive (T)),
- Big_10 ** Nb_Digits, Big_10);
- Prove_Uns_Of_Non_Positive_Value;
-
Value := Value / 10;
Nb_Digits := Nb_Digits + 1;
- Uns_Value := Uns_Value / 10;
- Pow := Pow * 10;
-
- pragma Loop_Invariant (Uns_Value = Uns_Of_Non_Positive (Value));
- pragma Loop_Invariant (Nb_Digits in 1 .. Unsigned_Width_Ghost - 1);
- pragma Loop_Invariant (Pow = Big_10 ** Nb_Digits);
- pragma Loop_Invariant (Big (Uns_Value) = Big (Uns_T) / Pow);
- pragma Loop_Variant (Increases => Value);
-
exit when Value = 0;
-
- Lemma_Non_Zero (Uns_Value);
- pragma Assert (Pow <= Big (Uns'Last));
end loop;
Value := T;
- Uns_Value := Uns_Of_Non_Positive (T);
- Pow := 1;
-
- pragma Assert (Uns_Value = From_Big (Big (Uns_T) / Big_10 ** 0));
-- We now populate digits from the end of the string to the beginning
for J in reverse 1 .. Nb_Digits loop
- Lemma_Div_Commutation (Uns_Value, 10);
- Lemma_Div_Twice (Big (Uns_T), Big_10 ** (Nb_Digits - J), Big_10);
- Prove_Character_Val (Uns_Value, Value);
- Prove_Hexa_To_Unsigned_Ghost (Uns_Value rem 10, -(Value rem 10));
- Prove_Uns_Of_Non_Positive_Value;
-
- Prev_Value := Uns_Value;
- Prev_S := S;
- Pow := Pow * 10;
- Uns_Value := Uns_Value / 10;
-
S (P + J) := Character'Val (48 - (Value rem 10));
Value := Value / 10;
-
- Prove_Euclidian
- (Val => Prev_Value,
- Quot => Uns_Value,
- Rest => UP.Hexa_To_Unsigned_Ghost (S (P + J)));
-
- Prove_Scan_Iter
- (S, Prev_S, Uns_Value, Prev_Value, Uns_T, P + J, P + Nb_Digits);
-
- pragma Loop_Invariant (Uns_Value = Uns_Of_Non_Positive (Value));
- pragma Loop_Invariant (Uns_Value <= Uns'Last / 10);
- pragma Loop_Invariant
- (for all K in S'First .. P => S (K) = S_Init (K));
- pragma Loop_Invariant
- (UP.Only_Decimal_Ghost (S, P + J, P + Nb_Digits));
- pragma Loop_Invariant
- (for all K in P + J .. P + Nb_Digits => S (K) in '0' .. '9');
- pragma Loop_Invariant (Pow = Big_10 ** (Nb_Digits - J + 1));
- pragma Loop_Invariant (Big (Uns_Value) = Big (Uns_T) / Pow);
- pragma Loop_Invariant
- (UP.Scan_Based_Number_Ghost
- (Str => S,
- From => P + J,
- To => P + Nb_Digits,
- Base => 10,
- Acc => Uns_Value)
- = UP.Wrap_Option (Uns_T));
end loop;
- pragma Assert (Big (Uns_Value) = Big (Uns_T) / Big_10 ** (Nb_Digits));
- pragma Assert (Uns_Value = 0);
- pragma Assert
- (UP.Scan_Based_Number_Ghost
- (Str => S,
- From => P + 1,
- To => P + Nb_Digits,
- Base => 10,
- Acc => Uns_Value)
- = UP.Wrap_Option (Uns_T));
-
P := P + Nb_Digits;
end Set_Digits;
@@ -448,12 +111,10 @@ package body System.Image_I is
procedure Set_Image_Integer
(V : Int;
S : in out String;
- P : in out Natural)
- is
+ P : in out Natural) is
begin
if V >= 0 then
Set_Digits (-V, S, P);
-
else
pragma Assert (P >= S'First - 1 and P < S'Last);
-- No check is done since, as documented in the specification,