aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/a-strmap.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/libgnat/a-strmap.adb')
-rw-r--r--gcc/ada/libgnat/a-strmap.adb313
1 files changed, 6 insertions, 307 deletions
diff --git a/gcc/ada/libgnat/a-strmap.adb b/gcc/ada/libgnat/a-strmap.adb
index 7490780..2f4cceb 100644
--- a/gcc/ada/libgnat/a-strmap.adb
+++ b/gcc/ada/libgnat/a-strmap.adb
@@ -35,14 +35,6 @@
-- is bit-by-bit or character-by-character and therefore rather slow.
-- Generally for character sets we favor the full 32-byte representation.
--- Assertions, ghost code and loop invariants in this unit are meant for
--- analysis only, not for run-time checking, as it would be too costly
--- otherwise. This is enforced by setting the assertion policy to Ignore.
-
-pragma Assertion_Policy (Assert => Ignore,
- Ghost => Ignore,
- Loop_Invariant => Ignore);
-
package body Ada.Strings.Maps
with SPARK_Mode
is
@@ -131,36 +123,15 @@ is
---------------
function To_Domain (Map : Character_Mapping) return Character_Sequence is
- Result : String (1 .. Map'Length) with Relaxed_Initialization;
+ Result : String (1 .. Map'Length);
J : Natural;
-
- type Character_Index is array (Character) of Natural with Ghost;
- Indexes : Character_Index := [others => 0] with Ghost;
-
begin
J := 0;
for C in Map'Range loop
if Map (C) /= C then
J := J + 1;
Result (J) := C;
- Indexes (C) := J;
end if;
-
- pragma Loop_Invariant (if Map = Identity then J = 0);
- pragma Loop_Invariant (J <= Character'Pos (C) + 1);
- pragma Loop_Invariant (for all K in 1 .. J => Result (K)'Initialized);
- pragma Loop_Invariant (for all K in 1 .. J => Result (K) <= C);
- pragma Loop_Invariant
- (SPARK_Proof_Sorted_Character_Sequence (Result (1 .. J)));
- pragma Loop_Invariant
- (for all D in Map'First .. C =>
- (if Map (D) = D then
- Indexes (D) = 0
- else
- Indexes (D) in 1 .. J
- and then Result (Indexes (D)) = D));
- pragma Loop_Invariant
- (for all Char of Result (1 .. J) => Map (Char) /= Char);
end loop;
return Result (1 .. J);
@@ -173,7 +144,7 @@ is
function To_Mapping
(From, To : Character_Sequence) return Character_Mapping
is
- Result : Character_Mapping with Relaxed_Initialization;
+ Result : Character_Mapping;
Inserted : Character_Set := Null_Set;
From_Len : constant Natural := From'Length;
To_Len : constant Natural := To'Length;
@@ -185,9 +156,6 @@ is
for Char in Character loop
Result (Char) := Char;
- pragma Loop_Invariant (Result (Result'First .. Char)'Initialized);
- pragma Loop_Invariant
- (for all C in Result'First .. Char => Result (C) = C);
end loop;
for J in From'Range loop
@@ -197,23 +165,6 @@ is
Result (From (J)) := To (J - From'First + To'First);
Inserted (From (J)) := True;
-
- pragma Loop_Invariant (Result'Initialized);
- pragma Loop_Invariant
- (for all K in From'First .. J =>
- Result (From (K)) = To (K - From'First + To'First)
- and then Inserted (From (K)));
- pragma Loop_Invariant
- (for all Char in Character =>
- (Inserted (Char) =
- (for some K in From'First .. J => Char = From (K))));
- pragma Loop_Invariant
- (for all Char in Character =>
- (if not Inserted (Char) then Result (Char) = Char));
- pragma Loop_Invariant
- (if (for all K in From'First .. J =>
- From (K) = To (J - From'First + To'First))
- then Result = Identity);
end loop;
return Result;
@@ -224,195 +175,16 @@ is
--------------
function To_Range (Map : Character_Mapping) return Character_Sequence is
-
- -- Extract from the postcondition of To_Domain the essential properties
- -- that define Seq as the domain of Map.
- function Is_Domain
- (Map : Character_Mapping;
- Seq : Character_Sequence)
- return Boolean
- is
- (Seq'First = 1
- and then
- SPARK_Proof_Sorted_Character_Sequence (Seq)
- and then
- (for all Char in Character =>
- (if (for all X of Seq => X /= Char)
- then Map (Char) = Char))
- and then
- (for all Char of Seq => Map (Char) /= Char))
- with
- Ghost;
-
- -- Given Map, there is a unique sequence Seq for which
- -- Is_Domain(Map,Seq) holds.
- procedure Lemma_Domain_Unicity
- (Map : Character_Mapping;
- Seq1, Seq2 : Character_Sequence)
- with
- Ghost,
- Pre => Is_Domain (Map, Seq1)
- and then Is_Domain (Map, Seq2),
- Post => Seq1 = Seq2;
-
- -- Isolate the proof that To_Domain(Map) returns a sequence for which
- -- Is_Domain holds.
- procedure Lemma_Is_Domain (Map : Character_Mapping)
- with
- Ghost,
- Post => Is_Domain (Map, To_Domain (Map));
-
- -- Deduce the alternative expression of sortedness from the one in
- -- SPARK_Proof_Sorted_Character_Sequence which compares consecutive
- -- elements.
- procedure Lemma_Is_Sorted (Seq : Character_Sequence)
- with
- Ghost,
- Pre => SPARK_Proof_Sorted_Character_Sequence (Seq),
- Post => (for all J in Seq'Range =>
- (for all K in Seq'Range =>
- (if J < K then Seq (J) < Seq (K))));
-
- --------------------------
- -- Lemma_Domain_Unicity --
- --------------------------
-
- procedure Lemma_Domain_Unicity
- (Map : Character_Mapping;
- Seq1, Seq2 : Character_Sequence)
- is
- J : Positive := 1;
-
- begin
- while J <= Seq1'Last
- and then J <= Seq2'Last
- and then Seq1 (J) = Seq2 (J)
- loop
- pragma Loop_Invariant
- (Seq1 (Seq1'First .. J) = Seq2 (Seq2'First .. J));
- pragma Loop_Variant (Increases => J);
-
- if J = Positive'Last then
- return;
- end if;
-
- J := J + 1;
- end loop;
-
- Lemma_Is_Sorted (Seq1);
- Lemma_Is_Sorted (Seq2);
-
- if J <= Seq1'Last
- and then J <= Seq2'Last
- then
- if Seq1 (J) < Seq2 (J) then
- pragma Assert (for all X of Seq2 => X /= Seq1 (J));
- pragma Assert (Map (Seq1 (J)) = Seq1 (J));
- pragma Assert (False);
- else
- pragma Assert (for all X of Seq1 => X /= Seq2 (J));
- pragma Assert (Map (Seq2 (J)) = Seq2 (J));
- pragma Assert (False);
- end if;
-
- elsif J <= Seq1'Last then
- pragma Assert (for all X of Seq2 => X /= Seq1 (J));
- pragma Assert (Map (Seq1 (J)) = Seq1 (J));
- pragma Assert (False);
-
- elsif J <= Seq2'Last then
- pragma Assert (for all X of Seq1 => X /= Seq2 (J));
- pragma Assert (Map (Seq2 (J)) = Seq2 (J));
- pragma Assert (False);
- end if;
- end Lemma_Domain_Unicity;
-
- ---------------------
- -- Lemma_Is_Domain --
- ---------------------
-
- procedure Lemma_Is_Domain (Map : Character_Mapping) is
- Ignore : constant Character_Sequence := To_Domain (Map);
- begin
- null;
- end Lemma_Is_Domain;
-
- ---------------------
- -- Lemma_Is_Sorted --
- ---------------------
-
- procedure Lemma_Is_Sorted (Seq : Character_Sequence) is
- begin
- for A in Seq'Range loop
- exit when A = Positive'Last;
-
- for B in A + 1 .. Seq'Last loop
- pragma Loop_Invariant
- (for all K in A + 1 .. B => Seq (A) < Seq (K));
- end loop;
-
- pragma Loop_Invariant
- (for all J in Seq'First .. A =>
- (for all K in Seq'Range =>
- (if J < K then Seq (J) < Seq (K))));
- end loop;
- end Lemma_Is_Sorted;
-
- -- Local variables
-
- Result : String (1 .. Map'Length) with Relaxed_Initialization;
+ Result : String (1 .. Map'Length);
J : Natural;
-
- -- Repeat the computation from To_Domain in ghost code, in order to
- -- prove the relationship between Result and To_Domain(Map).
-
- Domain : String (1 .. Map'Length) with Ghost, Relaxed_Initialization;
- type Character_Index is array (Character) of Natural with Ghost;
- Indexes : Character_Index := [others => 0] with Ghost;
-
- -- Start of processing for To_Range
-
begin
J := 0;
for C in Map'Range loop
if Map (C) /= C then
J := J + 1;
Result (J) := Map (C);
- Domain (J) := C;
- Indexes (C) := J;
end if;
-
- -- Repeat the loop invariants from To_Domain regarding Domain and
- -- Indexes. Add similar loop invariants for Result and Indexes.
-
- pragma Loop_Invariant (J <= Character'Pos (C) + 1);
- pragma Loop_Invariant (Result (1 .. J)'Initialized);
- pragma Loop_Invariant (Domain (1 .. J)'Initialized);
- pragma Loop_Invariant (for all K in 1 .. J => Domain (K) <= C);
- pragma Loop_Invariant
- (SPARK_Proof_Sorted_Character_Sequence (Domain (1 .. J)));
- pragma Loop_Invariant
- (for all D in Map'First .. C =>
- (if Map (D) = D then
- Indexes (D) = 0
- else
- Indexes (D) in 1 .. J
- and then Domain (Indexes (D)) = D
- and then Result (Indexes (D)) = Map (D)));
- pragma Loop_Invariant
- (for all Char of Domain (1 .. J) => Map (Char) /= Char);
- pragma Loop_Invariant
- (for all K in 1 .. J => Result (K) = Map (Domain (K)));
end loop;
- pragma Assert (Is_Domain (Map, Domain (1 .. J)));
-
- -- Show the equality of Domain and To_Domain(Map)
-
- Lemma_Is_Domain (Map);
- Lemma_Domain_Unicity (Map, Domain (1 .. J), To_Domain (Map));
- pragma Assert
- (for all K in 1 .. J => Domain (K) = To_Domain (Map) (K));
- pragma Assert (To_Domain (Map)'Length = J);
return Result (1 .. J);
end To_Range;
@@ -422,27 +194,18 @@ is
---------------
function To_Ranges (Set : Character_Set) return Character_Ranges is
- Max_Ranges : Character_Ranges (1 .. Set'Length / 2 + 1)
- with Relaxed_Initialization;
+ Max_Ranges : Character_Ranges (1 .. Set'Length / 2 + 1);
Range_Num : Natural;
C : Character;
- C_Iter : Character with Ghost;
begin
C := Character'First;
Range_Num := 0;
loop
- C_Iter := C;
-
-- Skip gap between subsets
while not Set (C) loop
- pragma Loop_Invariant
- (Character'Pos (C) >= Character'Pos (C'Loop_Entry));
- pragma Loop_Invariant
- (for all Char in C'Loop_Entry .. C => not Set (Char));
- pragma Loop_Variant (Increases => C);
exit when C = Character'Last;
C := Character'Succ (C);
end loop;
@@ -455,12 +218,6 @@ is
-- Span a subset
loop
- pragma Loop_Invariant
- (Character'Pos (C) >= Character'Pos (C'Loop_Entry));
- pragma Loop_Invariant
- (for all Char in C'Loop_Entry .. C =>
- (if Char /= C then Set (Char)));
- pragma Loop_Variant (Increases => C);
exit when not Set (C) or else C = Character'Last;
C := Character'Succ (C);
end loop;
@@ -471,31 +228,6 @@ is
else
Max_Ranges (Range_Num).High := Character'Pred (C);
end if;
-
- pragma Assert
- (for all Char in C_Iter .. C =>
- (Set (Char) =
- (Char in Max_Ranges (Range_Num).Low ..
- Max_Ranges (Range_Num).High)));
- pragma Assert
- (for all Char in Character'First .. C_Iter =>
- (if Char /= C_Iter then
- (Set (Char) =
- (for some Span of Max_Ranges (1 .. Range_Num - 1) =>
- Char in Span.Low .. Span.High))));
-
- pragma Loop_Invariant (2 * Range_Num <= Character'Pos (C) + 1);
- pragma Loop_Invariant (Max_Ranges (1 .. Range_Num)'Initialized);
- pragma Loop_Invariant (not Set (C));
- pragma Loop_Invariant
- (for all Char in Character'First .. C =>
- (Set (Char) =
- (for some Span of Max_Ranges (1 .. Range_Num) =>
- Char in Span.Low .. Span.High)));
- pragma Loop_Invariant
- (for all Span of Max_Ranges (1 .. Range_Num) =>
- (for all Char in Span.Low .. Span.High => Set (Char)));
- pragma Loop_Variant (Increases => Range_Num);
end loop;
return Max_Ranges (1 .. Range_Num);
@@ -506,8 +238,7 @@ is
-----------------
function To_Sequence (Set : Character_Set) return Character_Sequence is
- Result : String (1 .. Character'Pos (Character'Last) + 1)
- with Relaxed_Initialization;
+ Result : String (1 .. Character'Pos (Character'Last) + 1);
Count : Natural := 0;
begin
for Char in Set'Range loop
@@ -515,17 +246,6 @@ is
Count := Count + 1;
Result (Count) := Char;
end if;
-
- pragma Loop_Invariant (Count <= Character'Pos (Char) + 1);
- pragma Loop_Invariant (Result (1 .. Count)'Initialized);
- pragma Loop_Invariant (for all K in 1 .. Count => Result (K) <= Char);
- pragma Loop_Invariant
- (SPARK_Proof_Sorted_Character_Sequence (Result (1 .. Count)));
- pragma Loop_Invariant
- (for all C in Set'First .. Char =>
- (Set (C) = (for some X of Result (1 .. Count) => C = X)));
- pragma Loop_Invariant
- (for all Char of Result (1 .. Count) => Is_In (Char, Set));
end loop;
return Result (1 .. Count);
@@ -541,19 +261,7 @@ is
for R in Ranges'Range loop
for C in Ranges (R).Low .. Ranges (R).High loop
Result (C) := True;
- pragma Loop_Invariant
- (for all Char in Character =>
- Result (Char) =
- ((for some Prev in Ranges'First .. R - 1 =>
- Char in Ranges (Prev).Low .. Ranges (Prev).High)
- or else Char in Ranges (R).Low .. C));
end loop;
-
- pragma Loop_Invariant
- (for all Char in Character =>
- Result (Char) =
- (for some Prev in Ranges'First .. R =>
- Char in Ranges (Prev).Low .. Ranges (Prev).High));
end loop;
return Result;
@@ -564,9 +272,6 @@ is
begin
for C in Span.Low .. Span.High loop
Result (C) := True;
- pragma Loop_Invariant
- (for all Char in Character =>
- Result (Char) = (Char in Span.Low .. C));
end loop;
return Result;
@@ -577,10 +282,6 @@ is
begin
for J in Sequence'Range loop
Result (Sequence (J)) := True;
- pragma Loop_Invariant
- (for all Char in Character =>
- Result (Char) =
- (for some K in Sequence'First .. J => Char = Sequence (K)));
end loop;
return Result;
@@ -599,8 +300,6 @@ is
function Value
(Map : Character_Mapping;
- Element : Character) return Character
- is
- (Map (Element));
+ Element : Character) return Character is (Map (Element));
end Ada.Strings.Maps;