aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/a-ngrear.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/libgnat/a-ngrear.adb')
-rw-r--r--gcc/ada/libgnat/a-ngrear.adb85
1 files changed, 46 insertions, 39 deletions
diff --git a/gcc/ada/libgnat/a-ngrear.adb b/gcc/ada/libgnat/a-ngrear.adb
index e7b1bcd..524b4a0 100644
--- a/gcc/ada/libgnat/a-ngrear.adb
+++ b/gcc/ada/libgnat/a-ngrear.adb
@@ -85,7 +85,7 @@ package body Ada.Numerics.Generic_Real_Arrays is
function Is_Symmetric (A : Real_Matrix) return Boolean is
(Transpose (A) = A);
- -- Return True iff A is symmetric, see RM G.3.1 (90).
+ -- Return True iff A is symmetric, see RM G.3.1 (90)
function Is_Tiny (Value, Compared_To : Real) return Boolean is
(abs Compared_To + 100.0 * abs Value = abs Compared_To);
@@ -104,7 +104,7 @@ package body Ada.Numerics.Generic_Real_Arrays is
-- not a square matrix, and otherwise returns its length.
procedure Rotate (X, Y : in out Real; Sin, Tau : Real);
- -- Perform a Givens rotation
+ -- Perform a Givens rotation of angle Theta given by sin and sin/(1 + cos)
procedure Sort_Eigensystem
(Values : in out Real_Vector;
@@ -525,13 +525,13 @@ package body Ada.Numerics.Generic_Real_Arrays is
Vectors : out Real_Matrix;
Compute_Vectors : Boolean)
is
- -- This subprogram uses Carl Gustav Jacob Jacobi's iterative method
- -- for computing eigenvalues and eigenvectors and is based on
+ -- This subprogram uses Carl Gustav Jacob Jacobi's cyclic iterative
+ -- method for computing eigenvalues and eigenvectors and is based on
-- Rutishauser's implementation.
-- The given real symmetric matrix is transformed iteratively to
-- diagonal form through a sequence of appropriately chosen elementary
- -- orthogonal transformations, called Jacobi rotations here.
+ -- orthogonal transformations, called Jacobi rotations.
-- The Jacobi method produces a systematic decrease of the sum of the
-- squares of off-diagonal elements. Convergence to zero is quadratic,
@@ -542,41 +542,44 @@ package body Ada.Numerics.Generic_Real_Arrays is
-- best choice here, even though for large matrices other methods will
-- be significantly more efficient in both time and space.
- -- While the eigensystem computations are absolutely foolproof for all
+ -- While the eigensystem computation is absolutely foolproof for all
-- real symmetric matrices, in presence of invalid values, or similar
- -- exceptional situations it might not. In such cases the results cannot
- -- be trusted and Constraint_Error is raised.
+ -- exceptional situations, it may not be. In such cases, the results
+ -- cannot be trusted and Constraint_Error is raised.
-- Note: this implementation needs temporary storage for 2 * N + N**2
-- values of type Real.
- Max_Iterations : constant := 50;
- N : constant Natural := Length (A);
+ Max_Iterations : constant := 50;
+ N : constant Natural := Length (A);
subtype Square_Matrix is Real_Matrix (1 .. N, 1 .. N);
- -- In order to annihilate the M (Row, Col) element, the
- -- rotation parameters Cos and Sin are computed as
- -- follows:
+ -- In order to annihilate the M (Row, Col) element, the rotation angle
+ -- Theta is chosen as follows:
- -- Theta = Cot (2.0 * Phi)
- -- = (Diag (Col) - Diag (Row)) / (2.0 * M (Row, Col))
+ -- Cot (2.0 * Theta) = (Diag (Col) - Diag (Row)) / (2.0 * M (Row, Col))
- -- Then Tan (Phi) as the smaller root (in modulus) of
+ -- If C = Cot (2.0 * Theta), then Tan (Theta) is computed as the smaller
+ -- root (in modulus) of:
- -- T**2 + 2 * T * Theta = 1 (or 0.5 / Theta, if Theta is large)
+ -- X**2 + 2 * C * X - 1 = 0
- function Compute_Tan (Theta : Real) return Real is
- (Real'Copy_Sign (1.0 / (abs Theta + Sqrt (1.0 + Theta**2)), Theta));
+ -- or else as 0.5 / C, if C is large.
+
+ function Compute_Tan (C : Real) return Real is
+ (Real'Copy_Sign (1.0 / (abs C + Sqrt (1.0 + C**2)), C));
function Compute_Tan (P, H : Real) return Real is
- (if Is_Tiny (P, Compared_To => H) then P / H
- else Compute_Tan (Theta => H / (2.0 * P)));
+ (if Is_Tiny (P, Compared_To => H)
+ then P / H
+ else Compute_Tan (C => H / (2.0 * P)));
pragma Annotate
(CodePeer, False_Positive, "divide by zero", "H, P /= 0");
function Sum_Strict_Upper (M : Square_Matrix) return Real;
- -- Return the sum of all elements in the strict upper triangle of M
+ -- Return the sum of the absolute value of all the elements in the
+ -- strict upper triangle of M.
----------------------
-- Sum_Strict_Upper --
@@ -595,11 +598,13 @@ package body Ada.Numerics.Generic_Real_Arrays is
return Sum;
end Sum_Strict_Upper;
+ -- Local variables
+
M : Square_Matrix := A; -- Work space for solving eigensystem
- Threshold : Real;
- Sum : Real;
Diag : Real_Vector (1 .. N);
Diag_Adj : Real_Vector (1 .. N);
+ Sum : Real;
+ Threshold : Real;
-- The vector Diag_Adj indicates the amount of change in each value,
-- while Diag tracks the value itself and Values holds the values as
@@ -621,22 +626,24 @@ package body Ada.Numerics.Generic_Real_Arrays is
raise Constraint_Error with "matrix not symmetric";
end if;
+ Values := Diagonal (M);
+
-- Note: Only the locally declared matrix M and vectors (Diag, Diag_Adj)
-- have lower bound equal to 1. The Vectors matrix may have
-- different bounds, so take care indexing elements. Assignment
-- as a whole is fine as sliding is automatic in that case.
- Vectors := (if not Compute_Vectors then [1 .. 0 => [1 .. 0 => 0.0]]
- else Unit_Matrix (Vectors'Length (1), Vectors'Length (2)));
- Values := Diagonal (M);
+ Vectors := (if Compute_Vectors
+ then Unit_Matrix (N)
+ else [1 .. 0 => [1 .. 0 => 0.0]]);
Sweep : for Iteration in 1 .. Max_Iterations loop
- -- The first three iterations, perform rotation for any non-zero
- -- element. After this, rotate only for those that are not much
- -- smaller than the average off-diagnal element. After the fifth
- -- iteration, additionally zero out off-diagonal elements that are
- -- very small compared to elements on the diagonal with the same
+ -- During the first three iterations, perform the rotation only for
+ -- elements that are not much smaller than the average off-diagonal
+ -- element. After this, rotate for any non-zero elements. After the
+ -- fifth iteration, additionally zero out off-diagonal elements that
+ -- are very small compared to elements on the diagonal with the same
-- column or row index.
Sum := Sum_Strict_Upper (M);
@@ -645,8 +652,8 @@ package body Ada.Numerics.Generic_Real_Arrays is
Threshold := (if Iteration < 4 then 0.2 * Sum / Real (N**2) else 0.0);
- -- Iterate over all off-diagonal elements, rotating any that have
- -- an absolute value that exceeds the threshold.
+ -- Iterate over all off-diagonal elements, rotating any that have an
+ -- absolute value that exceeds the threshold.
Diag := Values;
Diag_Adj := [others => 0.0]; -- Accumulates adjustments to Diag
@@ -654,11 +661,11 @@ package body Ada.Numerics.Generic_Real_Arrays is
for Row in 1 .. N - 1 loop
for Col in Row + 1 .. N loop
- -- If, before the rotation M (Row, Col) is tiny compared to
+ -- If, before the rotation, M (Row, Col) is tiny compared to
-- Diag (Row) and Diag (Col), rotation is skipped. This is
-- meaningful, as it produces no larger error than would be
-- produced anyhow if the rotation had been performed.
- -- Suppress this optimization in the first four sweeps, so
+ -- Suppress this optimization in the first four iterations, so
-- that this procedure can be used for computing eigenvectors
-- of perturbed diagonal matrices.
@@ -670,8 +677,8 @@ package body Ada.Numerics.Generic_Real_Arrays is
elsif abs M (Row, Col) > Threshold then
Perform_Rotation : declare
- Tan : constant Real := Compute_Tan (M (Row, Col),
- Diag (Col) - Diag (Row));
+ Tan : constant Real :=
+ Compute_Tan (M (Row, Col), Diag (Col) - Diag (Row));
Cos : constant Real := 1.0 / Sqrt (1.0 + Tan**2);
Sin : constant Real := Tan * Cos;
Tau : constant Real := Sin / (1.0 + Cos);
@@ -710,7 +717,7 @@ package body Ada.Numerics.Generic_Real_Arrays is
Values := Values + Diag_Adj;
end loop Sweep;
- -- All normal matrices with valid values should converge perfectly.
+ -- All normal matrices with valid values should converge perfectly
if Sum /= 0.0 then
raise Constraint_Error with "eigensystem solution does not converge";