diff options
Diffstat (limited to 'gcc/ada/libgnat/a-cforse.adb')
-rw-r--r-- | gcc/ada/libgnat/a-cforse.adb | 1898 |
1 files changed, 1898 insertions, 0 deletions
diff --git a/gcc/ada/libgnat/a-cforse.adb b/gcc/ada/libgnat/a-cforse.adb new file mode 100644 index 0000000..6c7f8e4 --- /dev/null +++ b/gcc/ada/libgnat/a-cforse.adb @@ -0,0 +1,1898 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT LIBRARY COMPONENTS -- +-- -- +-- A D A . C O N T A I N E R S . F O R M A L _ O R D E R E D _ S E T S -- +-- -- +-- B o d y -- +-- -- +-- Copyright (C) 2010-2017, Free Software Foundation, Inc. -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 3, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. -- +-- -- +-- As a special exception under Section 7 of GPL version 3, you are granted -- +-- additional permissions described in the GCC Runtime Library Exception, -- +-- version 3.1, as published by the Free Software Foundation. -- +-- -- +-- You should have received a copy of the GNU General Public License and -- +-- a copy of the GCC Runtime Library Exception along with this program; -- +-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- +-- <http://www.gnu.org/licenses/>. -- +------------------------------------------------------------------------------ + +with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations; +pragma Elaborate_All + (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations); + +with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys; +pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys); + +with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations; +pragma Elaborate_All + (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations); + +with System; use type System.Address; + +package body Ada.Containers.Formal_Ordered_Sets with + SPARK_Mode => Off +is + + ------------------------------ + -- Access to Fields of Node -- + ------------------------------ + + -- These subprograms provide functional notation for access to fields + -- of a node, and procedural notation for modifiying these fields. + + function Color (Node : Node_Type) return Red_Black_Trees.Color_Type; + pragma Inline (Color); + + function Left_Son (Node : Node_Type) return Count_Type; + pragma Inline (Left_Son); + + function Parent (Node : Node_Type) return Count_Type; + pragma Inline (Parent); + + function Right_Son (Node : Node_Type) return Count_Type; + pragma Inline (Right_Son); + + procedure Set_Color + (Node : in out Node_Type; + Color : Red_Black_Trees.Color_Type); + pragma Inline (Set_Color); + + procedure Set_Left (Node : in out Node_Type; Left : Count_Type); + pragma Inline (Set_Left); + + procedure Set_Right (Node : in out Node_Type; Right : Count_Type); + pragma Inline (Set_Right); + + procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type); + pragma Inline (Set_Parent); + + ----------------------- + -- Local Subprograms -- + ----------------------- + + -- Comments needed??? + + generic + with procedure Set_Element (Node : in out Node_Type); + procedure Generic_Allocate + (Tree : in out Tree_Types.Tree_Type'Class; + Node : out Count_Type); + + procedure Free (Tree : in out Set; X : Count_Type); + + procedure Insert_Sans_Hint + (Container : in out Set; + New_Item : Element_Type; + Node : out Count_Type; + Inserted : out Boolean); + + procedure Insert_With_Hint + (Dst_Set : in out Set; + Dst_Hint : Count_Type; + Src_Node : Node_Type; + Dst_Node : out Count_Type); + + function Is_Greater_Element_Node + (Left : Element_Type; + Right : Node_Type) return Boolean; + pragma Inline (Is_Greater_Element_Node); + + function Is_Less_Element_Node + (Left : Element_Type; + Right : Node_Type) return Boolean; + pragma Inline (Is_Less_Element_Node); + + function Is_Less_Node_Node (L, R : Node_Type) return Boolean; + pragma Inline (Is_Less_Node_Node); + + procedure Replace_Element + (Tree : in out Set; + Node : Count_Type; + Item : Element_Type); + + -------------------------- + -- Local Instantiations -- + -------------------------- + + package Tree_Operations is + new Red_Black_Trees.Generic_Bounded_Operations + (Tree_Types, + Left => Left_Son, + Right => Right_Son); + + use Tree_Operations; + + package Element_Keys is + new Red_Black_Trees.Generic_Bounded_Keys + (Tree_Operations => Tree_Operations, + Key_Type => Element_Type, + Is_Less_Key_Node => Is_Less_Element_Node, + Is_Greater_Key_Node => Is_Greater_Element_Node); + + package Set_Ops is + new Red_Black_Trees.Generic_Bounded_Set_Operations + (Tree_Operations => Tree_Operations, + Set_Type => Set, + Assign => Assign, + Insert_With_Hint => Insert_With_Hint, + Is_Less => Is_Less_Node_Node); + + --------- + -- "=" -- + --------- + + function "=" (Left, Right : Set) return Boolean is + Lst : Count_Type; + Node : Count_Type; + ENode : Count_Type; + + begin + if Length (Left) /= Length (Right) then + return False; + end if; + + if Is_Empty (Left) then + return True; + end if; + + Lst := Next (Left, Last (Left).Node); + + Node := First (Left).Node; + while Node /= Lst loop + ENode := Find (Right, Left.Nodes (Node).Element).Node; + if ENode = 0 + or else Left.Nodes (Node).Element /= Right.Nodes (ENode).Element + then + return False; + end if; + + Node := Next (Left, Node); + end loop; + + return True; + end "="; + + ------------ + -- Assign -- + ------------ + + procedure Assign (Target : in out Set; Source : Set) is + procedure Append_Element (Source_Node : Count_Type); + + procedure Append_Elements is + new Tree_Operations.Generic_Iteration (Append_Element); + + -------------------- + -- Append_Element -- + -------------------- + + procedure Append_Element (Source_Node : Count_Type) is + SN : Node_Type renames Source.Nodes (Source_Node); + + procedure Set_Element (Node : in out Node_Type); + pragma Inline (Set_Element); + + function New_Node return Count_Type; + pragma Inline (New_Node); + + procedure Insert_Post is + new Element_Keys.Generic_Insert_Post (New_Node); + + procedure Unconditional_Insert_Sans_Hint is + new Element_Keys.Generic_Unconditional_Insert (Insert_Post); + + procedure Unconditional_Insert_Avec_Hint is + new Element_Keys.Generic_Unconditional_Insert_With_Hint + (Insert_Post, + Unconditional_Insert_Sans_Hint); + + procedure Allocate is new Generic_Allocate (Set_Element); + + -------------- + -- New_Node -- + -------------- + + function New_Node return Count_Type is + Result : Count_Type; + begin + Allocate (Target, Result); + return Result; + end New_Node; + + ----------------- + -- Set_Element -- + ----------------- + + procedure Set_Element (Node : in out Node_Type) is + begin + Node.Element := SN.Element; + end Set_Element; + + -- Local variables + + Target_Node : Count_Type; + + -- Start of processing for Append_Element + + begin + Unconditional_Insert_Avec_Hint + (Tree => Target, + Hint => 0, + Key => SN.Element, + Node => Target_Node); + end Append_Element; + + -- Start of processing for Assign + + begin + if Target'Address = Source'Address then + return; + end if; + + if Target.Capacity < Source.Length then + raise Constraint_Error + with "Target capacity is less than Source length"; + end if; + + Tree_Operations.Clear_Tree (Target); + Append_Elements (Source); + end Assign; + + ------------- + -- Ceiling -- + ------------- + + function Ceiling (Container : Set; Item : Element_Type) return Cursor is + Node : constant Count_Type := Element_Keys.Ceiling (Container, Item); + + begin + if Node = 0 then + return No_Element; + end if; + + return (Node => Node); + end Ceiling; + + ----------- + -- Clear -- + ----------- + + procedure Clear (Container : in out Set) is + begin + Tree_Operations.Clear_Tree (Container); + end Clear; + + ----------- + -- Color -- + ----------- + + function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is + begin + return Node.Color; + end Color; + + -------------- + -- Contains -- + -------------- + + function Contains + (Container : Set; + Item : Element_Type) return Boolean + is + begin + return Find (Container, Item) /= No_Element; + end Contains; + + ---------- + -- Copy -- + ---------- + + function Copy (Source : Set; Capacity : Count_Type := 0) return Set is + Node : Count_Type; + N : Count_Type; + Target : Set (Count_Type'Max (Source.Capacity, Capacity)); + + begin + if 0 < Capacity and then Capacity < Source.Capacity then + raise Capacity_Error; + end if; + + if Length (Source) > 0 then + Target.Length := Source.Length; + Target.Root := Source.Root; + Target.First := Source.First; + Target.Last := Source.Last; + Target.Free := Source.Free; + + Node := 1; + while Node <= Source.Capacity loop + Target.Nodes (Node).Element := + Source.Nodes (Node).Element; + Target.Nodes (Node).Parent := + Source.Nodes (Node).Parent; + Target.Nodes (Node).Left := + Source.Nodes (Node).Left; + Target.Nodes (Node).Right := + Source.Nodes (Node).Right; + Target.Nodes (Node).Color := + Source.Nodes (Node).Color; + Target.Nodes (Node).Has_Element := + Source.Nodes (Node).Has_Element; + Node := Node + 1; + end loop; + + while Node <= Target.Capacity loop + N := Node; + Formal_Ordered_Sets.Free (Tree => Target, X => N); + Node := Node + 1; + end loop; + end if; + + return Target; + end Copy; + + ------------ + -- Delete -- + ------------ + + procedure Delete (Container : in out Set; Position : in out Cursor) is + begin + if not Has_Element (Container, Position) then + raise Constraint_Error with "Position cursor has no element"; + end if; + + pragma Assert (Vet (Container, Position.Node), + "bad cursor in Delete"); + + Tree_Operations.Delete_Node_Sans_Free (Container, + Position.Node); + Formal_Ordered_Sets.Free (Container, Position.Node); + Position := No_Element; + end Delete; + + procedure Delete (Container : in out Set; Item : Element_Type) is + X : constant Count_Type := Element_Keys.Find (Container, Item); + + begin + if X = 0 then + raise Constraint_Error with "attempt to delete element not in set"; + end if; + + Tree_Operations.Delete_Node_Sans_Free (Container, X); + Formal_Ordered_Sets.Free (Container, X); + end Delete; + + ------------------ + -- Delete_First -- + ------------------ + + procedure Delete_First (Container : in out Set) is + X : constant Count_Type := Container.First; + begin + if X /= 0 then + Tree_Operations.Delete_Node_Sans_Free (Container, X); + Formal_Ordered_Sets.Free (Container, X); + end if; + end Delete_First; + + ----------------- + -- Delete_Last -- + ----------------- + + procedure Delete_Last (Container : in out Set) is + X : constant Count_Type := Container.Last; + begin + if X /= 0 then + Tree_Operations.Delete_Node_Sans_Free (Container, X); + Formal_Ordered_Sets.Free (Container, X); + end if; + end Delete_Last; + + ---------------- + -- Difference -- + ---------------- + + procedure Difference (Target : in out Set; Source : Set) is + begin + Set_Ops.Set_Difference (Target, Source); + end Difference; + + function Difference (Left, Right : Set) return Set is + begin + if Left'Address = Right'Address then + return Empty_Set; + end if; + + if Length (Left) = 0 then + return Empty_Set; + end if; + + if Length (Right) = 0 then + return Left.Copy; + end if; + + return S : Set (Length (Left)) do + Assign (S, Set_Ops.Set_Difference (Left, Right)); + end return; + end Difference; + + ------------- + -- Element -- + ------------- + + function Element (Container : Set; Position : Cursor) return Element_Type is + begin + if not Has_Element (Container, Position) then + raise Constraint_Error with "Position cursor has no element"; + end if; + + pragma Assert (Vet (Container, Position.Node), + "bad cursor in Element"); + + return Container.Nodes (Position.Node).Element; + end Element; + + ------------------------- + -- Equivalent_Elements -- + ------------------------- + + function Equivalent_Elements (Left, Right : Element_Type) return Boolean is + begin + if Left < Right + or else Right < Left + then + return False; + else + return True; + end if; + end Equivalent_Elements; + + --------------------- + -- Equivalent_Sets -- + --------------------- + + function Equivalent_Sets (Left, Right : Set) return Boolean is + function Is_Equivalent_Node_Node + (L, R : Node_Type) return Boolean; + pragma Inline (Is_Equivalent_Node_Node); + + function Is_Equivalent is + new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node); + + ----------------------------- + -- Is_Equivalent_Node_Node -- + ----------------------------- + + function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is + begin + if L.Element < R.Element then + return False; + elsif R.Element < L.Element then + return False; + else + return True; + end if; + end Is_Equivalent_Node_Node; + + -- Start of processing for Equivalent_Sets + + begin + return Is_Equivalent (Left, Right); + end Equivalent_Sets; + + ------------- + -- Exclude -- + ------------- + + procedure Exclude (Container : in out Set; Item : Element_Type) is + X : constant Count_Type := Element_Keys.Find (Container, Item); + begin + if X /= 0 then + Tree_Operations.Delete_Node_Sans_Free (Container, X); + Formal_Ordered_Sets.Free (Container, X); + end if; + end Exclude; + + ---------- + -- Find -- + ---------- + + function Find (Container : Set; Item : Element_Type) return Cursor is + Node : constant Count_Type := Element_Keys.Find (Container, Item); + + begin + if Node = 0 then + return No_Element; + end if; + + return (Node => Node); + end Find; + + ----------- + -- First -- + ----------- + + function First (Container : Set) return Cursor is + begin + if Length (Container) = 0 then + return No_Element; + end if; + + return (Node => Container.First); + end First; + + ------------------- + -- First_Element -- + ------------------- + + function First_Element (Container : Set) return Element_Type is + Fst : constant Count_Type := First (Container).Node; + begin + if Fst = 0 then + raise Constraint_Error with "set is empty"; + end if; + + declare + N : Tree_Types.Nodes_Type renames Container.Nodes; + begin + return N (Fst).Element; + end; + end First_Element; + + ----------- + -- Floor -- + ----------- + + function Floor (Container : Set; Item : Element_Type) return Cursor is + begin + declare + Node : constant Count_Type := Element_Keys.Floor (Container, Item); + + begin + if Node = 0 then + return No_Element; + end if; + + return (Node => Node); + end; + end Floor; + + ------------------ + -- Formal_Model -- + ------------------ + + package body Formal_Model is + + ------------------------- + -- E_Bigger_Than_Range -- + ------------------------- + + function E_Bigger_Than_Range + (Container : E.Sequence; + Fst : Positive_Count_Type; + Lst : Count_Type; + Item : Element_Type) return Boolean + is + begin + for I in Fst .. Lst loop + if not (E.Get (Container, I) < Item) then + return False; + end if; + end loop; + + return True; + end E_Bigger_Than_Range; + + ------------------------- + -- E_Elements_Included -- + ------------------------- + + function E_Elements_Included + (Left : E.Sequence; + Right : E.Sequence) return Boolean + is + begin + for I in 1 .. E.Length (Left) loop + if not E.Contains (Right, 1, E.Length (Right), E.Get (Left, I)) + then + return False; + end if; + end loop; + + return True; + end E_Elements_Included; + + function E_Elements_Included + (Left : E.Sequence; + Model : M.Set; + Right : E.Sequence) return Boolean + is + begin + for I in 1 .. E.Length (Left) loop + declare + Item : constant Element_Type := E.Get (Left, I); + begin + if M.Contains (Model, Item) then + if not E.Contains (Right, 1, E.Length (Right), Item) then + return False; + end if; + end if; + end; + end loop; + + return True; + end E_Elements_Included; + + function E_Elements_Included + (Container : E.Sequence; + Model : M.Set; + Left : E.Sequence; + Right : E.Sequence) return Boolean + is + begin + for I in 1 .. E.Length (Container) loop + declare + Item : constant Element_Type := E.Get (Container, I); + begin + if M.Contains (Model, Item) then + if not E.Contains (Left, 1, E.Length (Left), Item) then + return False; + end if; + else + if not E.Contains (Right, 1, E.Length (Right), Item) then + return False; + end if; + end if; + end; + end loop; + + return True; + end E_Elements_Included; + + --------------- + -- E_Is_Find -- + --------------- + + function E_Is_Find + (Container : E.Sequence; + Item : Element_Type; + Position : Count_Type) return Boolean + is + begin + for I in 1 .. Position - 1 loop + if Item < E.Get (Container, I) then + return False; + end if; + end loop; + + if Position < E.Length (Container) then + for I in Position + 1 .. E.Length (Container) loop + if E.Get (Container, I) < Item then + return False; + end if; + end loop; + end if; + + return True; + end E_Is_Find; + + -------------------------- + -- E_Smaller_Than_Range -- + -------------------------- + + function E_Smaller_Than_Range + (Container : E.Sequence; + Fst : Positive_Count_Type; + Lst : Count_Type; + Item : Element_Type) return Boolean + is + begin + for I in Fst .. Lst loop + if not (Item < E.Get (Container, I)) then + return False; + end if; + end loop; + + return True; + end E_Smaller_Than_Range; + + ---------- + -- Find -- + ---------- + + function Find + (Container : E.Sequence; + Item : Element_Type) return Count_Type + is + begin + for I in 1 .. E.Length (Container) loop + if Equivalent_Elements (Item, E.Get (Container, I)) then + return I; + end if; + end loop; + + return 0; + end Find; + + -------------- + -- Elements -- + -------------- + + function Elements (Container : Set) return E.Sequence is + Position : Count_Type := Container.First; + R : E.Sequence; + + begin + -- Can't use First, Next or Element here, since they depend on models + -- for their postconditions. + + while Position /= 0 loop + R := E.Add (R, Container.Nodes (Position).Element); + Position := Tree_Operations.Next (Container, Position); + end loop; + + return R; + end Elements; + + ---------------------------- + -- Lift_Abstraction_Level -- + ---------------------------- + + procedure Lift_Abstraction_Level (Container : Set) is null; + + ----------------------- + -- Mapping_Preserved -- + ----------------------- + + function Mapping_Preserved + (E_Left : E.Sequence; + E_Right : E.Sequence; + P_Left : P.Map; + P_Right : P.Map) return Boolean + is + begin + for C of P_Left loop + if not P.Has_Key (P_Right, C) + or else P.Get (P_Left, C) > E.Length (E_Left) + or else P.Get (P_Right, C) > E.Length (E_Right) + or else E.Get (E_Left, P.Get (P_Left, C)) /= + E.Get (E_Right, P.Get (P_Right, C)) + then + return False; + end if; + end loop; + + return True; + end Mapping_Preserved; + + ------------------------------ + -- Mapping_Preserved_Except -- + ------------------------------ + + function Mapping_Preserved_Except + (E_Left : E.Sequence; + E_Right : E.Sequence; + P_Left : P.Map; + P_Right : P.Map; + Position : Cursor) return Boolean + is + begin + for C of P_Left loop + if C /= Position + and (not P.Has_Key (P_Right, C) + or else P.Get (P_Left, C) > E.Length (E_Left) + or else P.Get (P_Right, C) > E.Length (E_Right) + or else E.Get (E_Left, P.Get (P_Left, C)) /= + E.Get (E_Right, P.Get (P_Right, C))) + then + return False; + end if; + end loop; + + return True; + end Mapping_Preserved_Except; + + ------------------------- + -- P_Positions_Shifted -- + ------------------------- + + function P_Positions_Shifted + (Small : P.Map; + Big : P.Map; + Cut : Positive_Count_Type; + Count : Count_Type := 1) return Boolean + is + begin + for Cu of Small loop + if not P.Has_Key (Big, Cu) then + return False; + end if; + end loop; + + for Cu of Big loop + declare + Pos : constant Positive_Count_Type := P.Get (Big, Cu); + + begin + if Pos < Cut then + if not P.Has_Key (Small, Cu) + or else Pos /= P.Get (Small, Cu) + then + return False; + end if; + + elsif Pos >= Cut + Count then + if not P.Has_Key (Small, Cu) + or else Pos /= P.Get (Small, Cu) + Count + then + return False; + end if; + + else + if P.Has_Key (Small, Cu) then + return False; + end if; + end if; + end; + end loop; + + return True; + end P_Positions_Shifted; + + ----------- + -- Model -- + ----------- + + function Model (Container : Set) return M.Set is + Position : Count_Type := Container.First; + R : M.Set; + + begin + -- Can't use First, Next or Element here, since they depend on models + -- for their postconditions. + + while Position /= 0 loop + R := + M.Add + (Container => R, + Item => Container.Nodes (Position).Element); + + Position := Tree_Operations.Next (Container, Position); + end loop; + + return R; + end Model; + + --------------- + -- Positions -- + --------------- + + function Positions (Container : Set) return P.Map is + I : Count_Type := 1; + Position : Count_Type := Container.First; + R : P.Map; + + begin + -- Can't use First, Next or Element here, since they depend on models + -- for their postconditions. + + while Position /= 0 loop + R := P.Add (R, (Node => Position), I); + pragma Assert (P.Length (R) = I); + Position := Tree_Operations.Next (Container, Position); + I := I + 1; + end loop; + + return R; + end Positions; + + end Formal_Model; + + ---------- + -- Free -- + ---------- + + procedure Free (Tree : in out Set; X : Count_Type) is + begin + Tree.Nodes (X).Has_Element := False; + Tree_Operations.Free (Tree, X); + end Free; + + ---------------------- + -- Generic_Allocate -- + ---------------------- + + procedure Generic_Allocate + (Tree : in out Tree_Types.Tree_Type'Class; + Node : out Count_Type) + is + procedure Allocate is + new Tree_Operations.Generic_Allocate (Set_Element); + begin + Allocate (Tree, Node); + Tree.Nodes (Node).Has_Element := True; + end Generic_Allocate; + + ------------------ + -- Generic_Keys -- + ------------------ + + package body Generic_Keys with SPARK_Mode => Off is + + ----------------------- + -- Local Subprograms -- + ----------------------- + + function Is_Greater_Key_Node + (Left : Key_Type; + Right : Node_Type) return Boolean; + pragma Inline (Is_Greater_Key_Node); + + function Is_Less_Key_Node + (Left : Key_Type; + Right : Node_Type) return Boolean; + pragma Inline (Is_Less_Key_Node); + + -------------------------- + -- Local Instantiations -- + -------------------------- + + package Key_Keys is + new Red_Black_Trees.Generic_Bounded_Keys + (Tree_Operations => Tree_Operations, + Key_Type => Key_Type, + Is_Less_Key_Node => Is_Less_Key_Node, + Is_Greater_Key_Node => Is_Greater_Key_Node); + + ------------- + -- Ceiling -- + ------------- + + function Ceiling (Container : Set; Key : Key_Type) return Cursor is + Node : constant Count_Type := Key_Keys.Ceiling (Container, Key); + + begin + if Node = 0 then + return No_Element; + end if; + + return (Node => Node); + end Ceiling; + + -------------- + -- Contains -- + -------------- + + function Contains (Container : Set; Key : Key_Type) return Boolean is + begin + return Find (Container, Key) /= No_Element; + end Contains; + + ------------ + -- Delete -- + ------------ + + procedure Delete (Container : in out Set; Key : Key_Type) is + X : constant Count_Type := Key_Keys.Find (Container, Key); + + begin + if X = 0 then + raise Constraint_Error with "attempt to delete key not in set"; + end if; + + Delete_Node_Sans_Free (Container, X); + Formal_Ordered_Sets.Free (Container, X); + end Delete; + + ------------- + -- Element -- + ------------- + + function Element (Container : Set; Key : Key_Type) return Element_Type is + Node : constant Count_Type := Key_Keys.Find (Container, Key); + + begin + if Node = 0 then + raise Constraint_Error with "key not in set"; + end if; + + declare + N : Tree_Types.Nodes_Type renames Container.Nodes; + begin + return N (Node).Element; + end; + end Element; + + --------------------- + -- Equivalent_Keys -- + --------------------- + + function Equivalent_Keys (Left, Right : Key_Type) return Boolean is + begin + if Left < Right + or else Right < Left + then + return False; + else + return True; + end if; + end Equivalent_Keys; + + ------------- + -- Exclude -- + ------------- + + procedure Exclude (Container : in out Set; Key : Key_Type) is + X : constant Count_Type := Key_Keys.Find (Container, Key); + begin + if X /= 0 then + Delete_Node_Sans_Free (Container, X); + Formal_Ordered_Sets.Free (Container, X); + end if; + end Exclude; + + ---------- + -- Find -- + ---------- + + function Find (Container : Set; Key : Key_Type) return Cursor is + Node : constant Count_Type := Key_Keys.Find (Container, Key); + begin + return (if Node = 0 then No_Element else (Node => Node)); + end Find; + + ----------- + -- Floor -- + ----------- + + function Floor (Container : Set; Key : Key_Type) return Cursor is + Node : constant Count_Type := Key_Keys.Floor (Container, Key); + begin + return (if Node = 0 then No_Element else (Node => Node)); + end Floor; + + ------------------ + -- Formal_Model -- + ------------------ + + package body Formal_Model is + + ------------------------- + -- E_Bigger_Than_Range -- + ------------------------- + + function E_Bigger_Than_Range + (Container : E.Sequence; + Fst : Positive_Count_Type; + Lst : Count_Type; + Key : Key_Type) return Boolean + is + begin + for I in Fst .. Lst loop + if not (Generic_Keys.Key (E.Get (Container, I)) < Key) then + return False; + end if; + end loop; + return True; + end E_Bigger_Than_Range; + + --------------- + -- E_Is_Find -- + --------------- + + function E_Is_Find + (Container : E.Sequence; + Key : Key_Type; + Position : Count_Type) return Boolean + is + begin + for I in 1 .. Position - 1 loop + if Key < Generic_Keys.Key (E.Get (Container, I)) then + return False; + end if; + end loop; + + if Position < E.Length (Container) then + for I in Position + 1 .. E.Length (Container) loop + if Generic_Keys.Key (E.Get (Container, I)) < Key then + return False; + end if; + end loop; + end if; + return True; + end E_Is_Find; + + -------------------------- + -- E_Smaller_Than_Range -- + -------------------------- + + function E_Smaller_Than_Range + (Container : E.Sequence; + Fst : Positive_Count_Type; + Lst : Count_Type; + Key : Key_Type) return Boolean + is + begin + for I in Fst .. Lst loop + if not (Key < Generic_Keys.Key (E.Get (Container, I))) then + return False; + end if; + end loop; + return True; + end E_Smaller_Than_Range; + + ---------- + -- Find -- + ---------- + + function Find + (Container : E.Sequence; + Key : Key_Type) return Count_Type + is + begin + for I in 1 .. E.Length (Container) loop + if Equivalent_Keys + (Key, Generic_Keys.Key (E.Get (Container, I))) + then + return I; + end if; + end loop; + return 0; + end Find; + + ----------------------- + -- M_Included_Except -- + ----------------------- + + function M_Included_Except + (Left : M.Set; + Right : M.Set; + Key : Key_Type) return Boolean + is + begin + for E of Left loop + if not Contains (Right, E) + and not Equivalent_Keys (Generic_Keys.Key (E), Key) + then + return False; + end if; + end loop; + return True; + end M_Included_Except; + end Formal_Model; + + ------------------------- + -- Is_Greater_Key_Node -- + ------------------------- + + function Is_Greater_Key_Node + (Left : Key_Type; + Right : Node_Type) return Boolean + is + begin + return Key (Right.Element) < Left; + end Is_Greater_Key_Node; + + ---------------------- + -- Is_Less_Key_Node -- + ---------------------- + + function Is_Less_Key_Node + (Left : Key_Type; + Right : Node_Type) return Boolean + is + begin + return Left < Key (Right.Element); + end Is_Less_Key_Node; + + --------- + -- Key -- + --------- + + function Key (Container : Set; Position : Cursor) return Key_Type is + begin + if not Has_Element (Container, Position) then + raise Constraint_Error with + "Position cursor has no element"; + end if; + + pragma Assert (Vet (Container, Position.Node), + "bad cursor in Key"); + + declare + N : Tree_Types.Nodes_Type renames Container.Nodes; + begin + return Key (N (Position.Node).Element); + end; + end Key; + + ------------- + -- Replace -- + ------------- + + procedure Replace + (Container : in out Set; + Key : Key_Type; + New_Item : Element_Type) + is + Node : constant Count_Type := Key_Keys.Find (Container, Key); + begin + if not Has_Element (Container, (Node => Node)) then + raise Constraint_Error with + "attempt to replace key not in set"; + else + Replace_Element (Container, Node, New_Item); + end if; + end Replace; + + end Generic_Keys; + + ----------------- + -- Has_Element -- + ----------------- + + function Has_Element (Container : Set; Position : Cursor) return Boolean is + begin + if Position.Node = 0 then + return False; + else + return Container.Nodes (Position.Node).Has_Element; + end if; + end Has_Element; + + ------------- + -- Include -- + ------------- + + procedure Include (Container : in out Set; New_Item : Element_Type) is + Position : Cursor; + Inserted : Boolean; + + begin + Insert (Container, New_Item, Position, Inserted); + + if not Inserted then + declare + N : Tree_Types.Nodes_Type renames Container.Nodes; + begin + N (Position.Node).Element := New_Item; + end; + end if; + end Include; + + ------------ + -- Insert -- + ------------ + + procedure Insert + (Container : in out Set; + New_Item : Element_Type; + Position : out Cursor; + Inserted : out Boolean) + is + begin + Insert_Sans_Hint (Container, New_Item, Position.Node, Inserted); + end Insert; + + procedure Insert + (Container : in out Set; + New_Item : Element_Type) + is + Position : Cursor; + Inserted : Boolean; + + begin + Insert (Container, New_Item, Position, Inserted); + + if not Inserted then + raise Constraint_Error with + "attempt to insert element already in set"; + end if; + end Insert; + + ---------------------- + -- Insert_Sans_Hint -- + ---------------------- + + procedure Insert_Sans_Hint + (Container : in out Set; + New_Item : Element_Type; + Node : out Count_Type; + Inserted : out Boolean) + is + procedure Set_Element (Node : in out Node_Type); + + function New_Node return Count_Type; + pragma Inline (New_Node); + + procedure Insert_Post is + new Element_Keys.Generic_Insert_Post (New_Node); + + procedure Conditional_Insert_Sans_Hint is + new Element_Keys.Generic_Conditional_Insert (Insert_Post); + + procedure Allocate is new Generic_Allocate (Set_Element); + + -------------- + -- New_Node -- + -------------- + + function New_Node return Count_Type is + Result : Count_Type; + begin + Allocate (Container, Result); + return Result; + end New_Node; + + ----------------- + -- Set_Element -- + ----------------- + + procedure Set_Element (Node : in out Node_Type) is + begin + Node.Element := New_Item; + end Set_Element; + + -- Start of processing for Insert_Sans_Hint + + begin + Conditional_Insert_Sans_Hint + (Container, + New_Item, + Node, + Inserted); + end Insert_Sans_Hint; + + ---------------------- + -- Insert_With_Hint -- + ---------------------- + + procedure Insert_With_Hint + (Dst_Set : in out Set; + Dst_Hint : Count_Type; + Src_Node : Node_Type; + Dst_Node : out Count_Type) + is + Success : Boolean; + pragma Unreferenced (Success); + + procedure Set_Element (Node : in out Node_Type); + + function New_Node return Count_Type; + pragma Inline (New_Node); + + procedure Insert_Post is + new Element_Keys.Generic_Insert_Post (New_Node); + + procedure Insert_Sans_Hint is + new Element_Keys.Generic_Conditional_Insert (Insert_Post); + + procedure Local_Insert_With_Hint is + new Element_Keys.Generic_Conditional_Insert_With_Hint + (Insert_Post, Insert_Sans_Hint); + + procedure Allocate is new Generic_Allocate (Set_Element); + + -------------- + -- New_Node -- + -------------- + + function New_Node return Count_Type is + Result : Count_Type; + begin + Allocate (Dst_Set, Result); + return Result; + end New_Node; + + ----------------- + -- Set_Element -- + ----------------- + + procedure Set_Element (Node : in out Node_Type) is + begin + Node.Element := Src_Node.Element; + end Set_Element; + + -- Start of processing for Insert_With_Hint + + begin + Local_Insert_With_Hint + (Dst_Set, + Dst_Hint, + Src_Node.Element, + Dst_Node, + Success); + end Insert_With_Hint; + + ------------------ + -- Intersection -- + ------------------ + + procedure Intersection (Target : in out Set; Source : Set) is + begin + Set_Ops.Set_Intersection (Target, Source); + end Intersection; + + function Intersection (Left, Right : Set) return Set is + begin + if Left'Address = Right'Address then + return Left.Copy; + end if; + + return S : Set (Count_Type'Min (Length (Left), Length (Right))) do + Assign (S, Set_Ops.Set_Intersection (Left, Right)); + end return; + end Intersection; + + -------------- + -- Is_Empty -- + -------------- + + function Is_Empty (Container : Set) return Boolean is + begin + return Length (Container) = 0; + end Is_Empty; + + ----------------------------- + -- Is_Greater_Element_Node -- + ----------------------------- + + function Is_Greater_Element_Node + (Left : Element_Type; + Right : Node_Type) return Boolean + is + begin + -- Compute e > node same as node < e + + return Right.Element < Left; + end Is_Greater_Element_Node; + + -------------------------- + -- Is_Less_Element_Node -- + -------------------------- + + function Is_Less_Element_Node + (Left : Element_Type; + Right : Node_Type) return Boolean + is + begin + return Left < Right.Element; + end Is_Less_Element_Node; + + ----------------------- + -- Is_Less_Node_Node -- + ----------------------- + + function Is_Less_Node_Node (L, R : Node_Type) return Boolean is + begin + return L.Element < R.Element; + end Is_Less_Node_Node; + + --------------- + -- Is_Subset -- + --------------- + + function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is + begin + return Set_Ops.Set_Subset (Subset, Of_Set => Of_Set); + end Is_Subset; + + ---------- + -- Last -- + ---------- + + function Last (Container : Set) return Cursor is + begin + return (if Length (Container) = 0 + then No_Element + else (Node => Container.Last)); + end Last; + + ------------------ + -- Last_Element -- + ------------------ + + function Last_Element (Container : Set) return Element_Type is + begin + if Last (Container).Node = 0 then + raise Constraint_Error with "set is empty"; + end if; + + declare + N : Tree_Types.Nodes_Type renames Container.Nodes; + begin + return N (Last (Container).Node).Element; + end; + end Last_Element; + + -------------- + -- Left_Son -- + -------------- + + function Left_Son (Node : Node_Type) return Count_Type is + begin + return Node.Left; + end Left_Son; + + ------------ + -- Length -- + ------------ + + function Length (Container : Set) return Count_Type is + begin + return Container.Length; + end Length; + + ---------- + -- Move -- + ---------- + + procedure Move (Target : in out Set; Source : in out Set) is + N : Tree_Types.Nodes_Type renames Source.Nodes; + X : Count_Type; + + begin + if Target'Address = Source'Address then + return; + end if; + + if Target.Capacity < Length (Source) then + raise Constraint_Error with -- ??? + "Source length exceeds Target capacity"; + end if; + + Clear (Target); + + loop + X := Source.First; + exit when X = 0; + + Insert (Target, N (X).Element); -- optimize??? + + Tree_Operations.Delete_Node_Sans_Free (Source, X); + Formal_Ordered_Sets.Free (Source, X); + end loop; + end Move; + + ---------- + -- Next -- + ---------- + + function Next (Container : Set; Position : Cursor) return Cursor is + begin + if Position = No_Element then + return No_Element; + end if; + + if not Has_Element (Container, Position) then + raise Constraint_Error; + end if; + + pragma Assert (Vet (Container, Position.Node), + "bad cursor in Next"); + return (Node => Tree_Operations.Next (Container, Position.Node)); + end Next; + + procedure Next (Container : Set; Position : in out Cursor) is + begin + Position := Next (Container, Position); + end Next; + + ------------- + -- Overlap -- + ------------- + + function Overlap (Left, Right : Set) return Boolean is + begin + return Set_Ops.Set_Overlap (Left, Right); + end Overlap; + + ------------ + -- Parent -- + ------------ + + function Parent (Node : Node_Type) return Count_Type is + begin + return Node.Parent; + end Parent; + + -------------- + -- Previous -- + -------------- + + function Previous (Container : Set; Position : Cursor) return Cursor is + begin + if Position = No_Element then + return No_Element; + end if; + + if not Has_Element (Container, Position) then + raise Constraint_Error; + end if; + + pragma Assert (Vet (Container, Position.Node), + "bad cursor in Previous"); + + declare + Node : constant Count_Type := + Tree_Operations.Previous (Container, Position.Node); + begin + return (if Node = 0 then No_Element else (Node => Node)); + end; + end Previous; + + procedure Previous (Container : Set; Position : in out Cursor) is + begin + Position := Previous (Container, Position); + end Previous; + + ------------- + -- Replace -- + ------------- + + procedure Replace (Container : in out Set; New_Item : Element_Type) is + Node : constant Count_Type := Element_Keys.Find (Container, New_Item); + + begin + if Node = 0 then + raise Constraint_Error with + "attempt to replace element not in set"; + end if; + + Container.Nodes (Node).Element := New_Item; + end Replace; + + --------------------- + -- Replace_Element -- + --------------------- + + procedure Replace_Element + (Tree : in out Set; + Node : Count_Type; + Item : Element_Type) + is + pragma Assert (Node /= 0); + + function New_Node return Count_Type; + pragma Inline (New_Node); + + procedure Local_Insert_Post is + new Element_Keys.Generic_Insert_Post (New_Node); + + procedure Local_Insert_Sans_Hint is + new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post); + + procedure Local_Insert_With_Hint is + new Element_Keys.Generic_Conditional_Insert_With_Hint + (Local_Insert_Post, + Local_Insert_Sans_Hint); + + NN : Tree_Types.Nodes_Type renames Tree.Nodes; + + -------------- + -- New_Node -- + -------------- + + function New_Node return Count_Type is + N : Node_Type renames NN (Node); + begin + N.Element := Item; + N.Color := Red; + N.Parent := 0; + N.Right := 0; + N.Left := 0; + return Node; + end New_Node; + + Hint : Count_Type; + Result : Count_Type; + Inserted : Boolean; + + -- Start of processing for Insert + + begin + if Item < NN (Node).Element + or else NN (Node).Element < Item + then + null; + + else + NN (Node).Element := Item; + return; + end if; + + Hint := Element_Keys.Ceiling (Tree, Item); + + if Hint = 0 then + null; + + elsif Item < NN (Hint).Element then + if Hint = Node then + NN (Node).Element := Item; + return; + end if; + + else + pragma Assert (not (NN (Hint).Element < Item)); + raise Program_Error with "attempt to replace existing element"; + end if; + + Tree_Operations.Delete_Node_Sans_Free (Tree, Node); + + Local_Insert_With_Hint + (Tree => Tree, + Position => Hint, + Key => Item, + Node => Result, + Inserted => Inserted); + + pragma Assert (Inserted); + pragma Assert (Result = Node); + end Replace_Element; + + procedure Replace_Element + (Container : in out Set; + Position : Cursor; + New_Item : Element_Type) + is + begin + if not Has_Element (Container, Position) then + raise Constraint_Error with + "Position cursor has no element"; + end if; + + pragma Assert (Vet (Container, Position.Node), + "bad cursor in Replace_Element"); + + Replace_Element (Container, Position.Node, New_Item); + end Replace_Element; + + --------------- + -- Right_Son -- + --------------- + + function Right_Son (Node : Node_Type) return Count_Type is + begin + return Node.Right; + end Right_Son; + + --------------- + -- Set_Color -- + --------------- + + procedure Set_Color + (Node : in out Node_Type; + Color : Red_Black_Trees.Color_Type) + is + begin + Node.Color := Color; + end Set_Color; + + -------------- + -- Set_Left -- + -------------- + + procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is + begin + Node.Left := Left; + end Set_Left; + + ---------------- + -- Set_Parent -- + ---------------- + + procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is + begin + Node.Parent := Parent; + end Set_Parent; + + --------------- + -- Set_Right -- + --------------- + + procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is + begin + Node.Right := Right; + end Set_Right; + + -------------------------- + -- Symmetric_Difference -- + -------------------------- + + procedure Symmetric_Difference (Target : in out Set; Source : Set) is + begin + Set_Ops.Set_Symmetric_Difference (Target, Source); + end Symmetric_Difference; + + function Symmetric_Difference (Left, Right : Set) return Set is + begin + if Left'Address = Right'Address then + return Empty_Set; + end if; + + if Length (Right) = 0 then + return Left.Copy; + end if; + + if Length (Left) = 0 then + return Right.Copy; + end if; + + return S : Set (Length (Left) + Length (Right)) do + Assign (S, Set_Ops.Set_Symmetric_Difference (Left, Right)); + end return; + end Symmetric_Difference; + + ------------ + -- To_Set -- + ------------ + + function To_Set (New_Item : Element_Type) return Set is + Node : Count_Type; + Inserted : Boolean; + begin + return S : Set (Capacity => 1) do + Insert_Sans_Hint (S, New_Item, Node, Inserted); + pragma Assert (Inserted); + end return; + end To_Set; + + ----------- + -- Union -- + ----------- + + procedure Union (Target : in out Set; Source : Set) is + begin + Set_Ops.Set_Union (Target, Source); + end Union; + + function Union (Left, Right : Set) return Set is + begin + if Left'Address = Right'Address then + return Left.Copy; + end if; + + if Length (Left) = 0 then + return Right.Copy; + end if; + + if Length (Right) = 0 then + return Left.Copy; + end if; + + return S : Set (Length (Left) + Length (Right)) do + Assign (S, Source => Left); + Union (S, Right); + end return; + end Union; + +end Ada.Containers.Formal_Ordered_Sets; |