aboutsummaryrefslogtreecommitdiff
path: root/libjava/java/util/Timer.java
diff options
context:
space:
mode:
authorJeff Law <law@redhat.com>2005-03-04 14:35:49 -0700
committerJeff Law <law@gcc.gnu.org>2005-03-04 14:35:49 -0700
commitd38ffc55428bbe33b33d8b14693e69cd1b63c820 (patch)
treef9c9a2643a9f3afe1404b5aff6758d8e8da39b9b /libjava/java/util/Timer.java
parent3852e8b8f21397fc719ef45ba404a58bed53a7d0 (diff)
downloadgcc-d38ffc55428bbe33b33d8b14693e69cd1b63c820.zip
gcc-d38ffc55428bbe33b33d8b14693e69cd1b63c820.tar.gz
gcc-d38ffc55428bbe33b33d8b14693e69cd1b63c820.tar.bz2
basic-block.h (rediscover_loops_after_threading): Declare.
* basic-block.h (rediscover_loops_after_threading): Declare. * tree-ssa-dom.c: Include cfgloop.h. (tree_ssa_dominator_optimize): Discover loops and some basic properties. Remove forwarder blocks recreated by loop header canonicalization. Also mark backedges in the CFG. * tree-ssa-threadupdate.c: Include cfgloop.h (rediscover_loops_after_threading): Define. (struct local_info): New field, JUMP_THREADED. (prune_undesirable_thread_requests): New function. (redirect_edges): Clear EDGE_ABNORMAL. If edges were threaded then record that fact for the callers of redirct_edges. (thread_block): If BB has incoming backedges, then call prune_undesirable_thraed_requests. Note when we are going to have to rediscover loop information. Return a boolean indicating if any jumps were threaded. (thread_through_all_blocks): Bubble up boolean indicating if any jumps were threaded. * Makefile.in (tree-ssa-dom.o): Depend on cfgloop.h (tree-ssa-threadupdate.o): Similarly. From-SVN: r95903
Diffstat (limited to 'libjava/java/util/Timer.java')
0 files changed, 0 insertions, 0 deletions
ref='#n242'>242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
#include "dtm.h"
#include "riscv/debug_defines.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <pthread.h>
#include <stdexcept>

#define RV_X(x, s, n) \
  (((x) >> (s)) & ((1 << (n)) - 1))
#define ENCODE_ITYPE_IMM(x) \
  (RV_X(x, 0, 12) << 20)
#define ENCODE_STYPE_IMM(x) \
  ((RV_X(x, 0, 5) << 7) | (RV_X(x, 5, 7) << 25))
#define ENCODE_SBTYPE_IMM(x) \
  ((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | (RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31))
#define ENCODE_UTYPE_IMM(x) \
  (RV_X(x, 12, 20) << 12)
#define ENCODE_UJTYPE_IMM(x) \
  ((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | (RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31))

#define LOAD(xlen, dst, base, imm) \
  (((xlen) == 64 ? 0x00003003 : 0x00002003) \
   | ((dst) << 7) | ((base) << 15) | (uint32_t)ENCODE_ITYPE_IMM(imm))
#define STORE(xlen, src, base, imm) \
  (((xlen) == 64 ? 0x00003023 : 0x00002023) \
   | ((src) << 20) | ((base) << 15) | (uint32_t)ENCODE_STYPE_IMM(imm))
#define JUMP(there, here) (0x6f | (uint32_t)ENCODE_UJTYPE_IMM((there) - (here)))
#define BNE(r1, r2, there, here) (0x1063 | ((r1) << 15) | ((r2) << 20) | (uint32_t)ENCODE_SBTYPE_IMM((there) - (here)))
#define ADDI(dst, src, imm) (0x13 | ((dst) << 7) | ((src) << 15) | (uint32_t)ENCODE_ITYPE_IMM(imm))
#define SRL(dst, src, sh) (0x5033 | ((dst) << 7) | ((src) << 15) | ((sh) << 20))
#define FENCE_I 0x100f
#define EBREAK  0x00100073
#define X0 0
#define S0 8
#define S1 9

#define AC_AR_REGNO(x) ((0x1000 | x) << AC_ACCESS_REGISTER_REGNO_OFFSET)
#define AC_AR_SIZE(x)  (((x == 128)? 4 : (x == 64 ? 3 : 2)) << AC_ACCESS_REGISTER_AARSIZE_OFFSET)

#define WRITE 1
#define SET 2
#define CLEAR 3
#define CSRRx(type, dst, csr, src) (0x73 | ((type) << 12) | ((dst) << 7) | ((src) << 15) | (uint32_t)((csr) << 20))

#define RUN_AC_OR_DIE(a, b, c, d, e) { \
    uint32_t cmderr = run_abstract_command(a, b, c, d, e);      \
    if (cmderr) {                                               \
      die(cmderr);                                              \
    }                                                           \
  }

uint32_t dtm_t::do_command(dtm_t::req r)
{
  req_buf = r;
  target->switch_to();
  assert(resp_buf.resp == 0);
  return resp_buf.data;
}

uint32_t dtm_t::read(uint32_t addr)
{
  return do_command((req){addr, 1, 0});
}

uint32_t dtm_t::write(uint32_t addr, uint32_t data)
{
  return do_command((req){addr, 2, data});
}

void dtm_t::nop()
{
  do_command((req){0, 0, 0});
}

void dtm_t::select_hart(int hartsel) {
  int dmcontrol = read(DM_DMCONTROL);
  write (DM_DMCONTROL, set_field(dmcontrol, DM_DMCONTROL_HASEL, hartsel));
  current_hart = hartsel;
}

int dtm_t::enumerate_harts() {
  int max_hart = (1 << DM_DMCONTROL_HASEL_LENGTH) - 1;
  write(DM_DMCONTROL, set_field(read(DM_DMCONTROL), DM_DMCONTROL_HASEL, max_hart));
  read(DM_DMSTATUS);
  max_hart = get_field(read(DM_DMCONTROL), DM_DMCONTROL_HASEL);

  int hartsel;
  for (hartsel = 0; hartsel <= max_hart; hartsel++) {
    select_hart(hartsel);
    int dmstatus = read(DM_DMSTATUS);
    if (get_field(dmstatus, DM_DMSTATUS_ANYNONEXISTENT))
      break;
  }
  return hartsel;
}

void dtm_t::halt(int hartsel)
{
  if (running) {
    write(DM_DMCONTROL, DM_DMCONTROL_DMACTIVE);
    // Read dmstatus to avoid back-to-back writes to dmcontrol.
    read(DM_DMSTATUS);
  }

  int dmcontrol = DM_DMCONTROL_HALTREQ | DM_DMCONTROL_DMACTIVE;
  dmcontrol = set_field(dmcontrol, DM_DMCONTROL_HASEL, hartsel);
  write(DM_DMCONTROL, dmcontrol);
  int dmstatus;
  do {
    dmstatus = read(DM_DMSTATUS);
  } while(get_field(dmstatus, DM_DMSTATUS_ALLHALTED) == 0);
  dmcontrol &= ~DM_DMCONTROL_HALTREQ;
  write(DM_DMCONTROL, dmcontrol);
  // Read dmstatus to avoid back-to-back writes to dmcontrol.
  read(DM_DMSTATUS);
  current_hart = hartsel;
}

void dtm_t::resume(int hartsel)
{
  int dmcontrol = DM_DMCONTROL_RESUMEREQ | DM_DMCONTROL_DMACTIVE;
  dmcontrol = set_field(dmcontrol, DM_DMCONTROL_HASEL, hartsel);
  write(DM_DMCONTROL, dmcontrol);
  int dmstatus;
  do {
    dmstatus = read(DM_DMSTATUS);
  } while (get_field(dmstatus, DM_DMSTATUS_ALLRESUMEACK) == 0);
  dmcontrol &= ~DM_DMCONTROL_RESUMEREQ;
  write(DM_DMCONTROL, dmcontrol);
  // Read dmstatus to avoid back-to-back writes to dmcontrol.
  read(DM_DMSTATUS);
  current_hart = hartsel;

  if (running) {
    write(DM_DMCONTROL, DM_DMCONTROL_DMACTIVE);
    // Read dmstatus to avoid back-to-back writes to dmcontrol.
    read(DM_DMSTATUS);
  }
}

uint64_t dtm_t::save_reg(unsigned regno)
{
  uint32_t data[xlen/(8*4)];
  uint32_t command = AC_ACCESS_REGISTER_TRANSFER | AC_AR_SIZE(xlen) | AC_AR_REGNO(regno);
  RUN_AC_OR_DIE(command, 0, 0, data, xlen / (8*4));

  uint64_t result = data[0];
  if (xlen > 32) {
    result |= ((uint64_t)data[1]) << 32;
  }
  return result;
}

void dtm_t::restore_reg(unsigned regno, uint64_t val)
{
  uint32_t data[xlen/(8*4)];
  data[0] = (uint32_t) val;
  if (xlen > 32) {
    data[1] = (uint32_t) (val >> 32);
  }

  uint32_t command = AC_ACCESS_REGISTER_TRANSFER |
    AC_ACCESS_REGISTER_WRITE |
    AC_AR_SIZE(xlen) |
    AC_AR_REGNO(regno);
  
  RUN_AC_OR_DIE(command, 0, 0, data, xlen / (8*4));

}

uint32_t dtm_t::run_abstract_command(uint32_t command,
                                     const uint32_t program[], size_t program_n,
                                     uint32_t data[], size_t data_n)
{ 
  assert(program_n <= ram_words);
  assert(data_n    <= data_words);
  
  for (size_t i = 0; i < program_n; i++) {
    write(DM_PROGBUF0 + i, program[i]);
  }

  if (get_field(command, AC_ACCESS_REGISTER_WRITE) &&
      get_field(command, AC_ACCESS_REGISTER_TRANSFER)) {
    for (size_t i = 0; i < data_n; i++) {
      write(DM_DATA0 + i, data[i]);
    }
  }
  
  write(DM_COMMAND, command);
  
  // Wait for not busy and then check for error.
  uint32_t abstractcs;
  do {
    abstractcs = read(DM_ABSTRACTCS);
  } while (abstractcs & DM_ABSTRACTCS_BUSY);

  if ((get_field(command, AC_ACCESS_REGISTER_WRITE) == 0) &&
      get_field(command, AC_ACCESS_REGISTER_TRANSFER)) {
    for (size_t i = 0; i < data_n; i++){
      data[i] = read(DM_DATA0 + i);
    }
  }
  
  return get_field(abstractcs, DM_ABSTRACTCS_CMDERR);

}

size_t dtm_t::chunk_align()
{
  return xlen / 8;
}

void dtm_t::read_chunk(uint64_t taddr, size_t len, void* dst)
{
  uint32_t prog[ram_words];
  uint32_t data[data_words];

  uint8_t * curr = (uint8_t*) dst;

  halt(current_hart);

  uint64_t s0 = save_reg(S0);
  uint64_t s1 = save_reg(S1);
  
  prog[0] = LOAD(xlen, S1, S0, 0);
  prog[1] = ADDI(S0, S0, xlen/8);
  prog[2] = EBREAK;

  data[0] = (uint32_t) taddr;
  if (xlen > 32) {
    data[1] = (uint32_t) (taddr >> 32);
  }

  // Write s0 with the address, then execute program buffer.
  // This will get S1 with the data and increment s0.
  uint32_t command = AC_ACCESS_REGISTER_TRANSFER |
    AC_ACCESS_REGISTER_WRITE |
    AC_ACCESS_REGISTER_POSTEXEC |
    AC_AR_SIZE(xlen) | 
    AC_AR_REGNO(S0);

  RUN_AC_OR_DIE(command, prog, 3, data, xlen/(4*8));

  // TODO: could use autoexec here.
  for (size_t i = 0; i < (len * 8 / xlen); i++){
    command = AC_ACCESS_REGISTER_TRANSFER |
      AC_AR_SIZE(xlen) |
      AC_AR_REGNO(S1);
    if ((i + 1) < (len * 8 / xlen)) {
      command |= AC_ACCESS_REGISTER_POSTEXEC;
    }
    
    RUN_AC_OR_DIE(command, 0, 0, data, xlen/(4*8));

    memcpy(curr, data, xlen/8);
    curr += xlen/8;
  }

  restore_reg(S0, s0);
  restore_reg(S1, s1);

  resume(current_hart); 

}

void dtm_t::write_chunk(uint64_t taddr, size_t len, const void* src)
{  
  uint32_t prog[ram_words];
  uint32_t data[data_words];

  const uint8_t * curr = (const uint8_t*) src;

  halt(current_hart);

  uint64_t s0 = save_reg(S0);
  uint64_t s1 = save_reg(S1);
  
  prog[0] = STORE(xlen, S1, S0, 0);
  prog[1] = ADDI(S0, S0, xlen/8);
  prog[2] = EBREAK;
  
  data[0] = (uint32_t) taddr;
  if (xlen > 32) {
    data[1] = (uint32_t) (taddr >> 32);
  }

  // Write the program (not used yet).
  // Write s0 with the address. 
  uint32_t command = AC_ACCESS_REGISTER_TRANSFER |
    AC_ACCESS_REGISTER_WRITE |
    AC_AR_SIZE(xlen) |
    AC_AR_REGNO(S0);
  
  RUN_AC_OR_DIE(command, prog, 3, data, xlen/(4*8));

  // Use Autoexec for more than one word of transfer.
  // Write S1 with data, then execution stores S1 to
  // 0(S0) and increments S0.
  // Each time we write XLEN bits.
  memcpy(data, curr, xlen/8);
  curr += xlen/8;
  
  command = AC_ACCESS_REGISTER_TRANSFER |
    AC_ACCESS_REGISTER_POSTEXEC |
    AC_ACCESS_REGISTER_WRITE | 
    AC_AR_SIZE(xlen) |
    AC_AR_REGNO(S1);

  RUN_AC_OR_DIE(command, 0, 0, data, xlen/(4*8));

  uint32_t abstractcs;
  for (size_t i = 1; i < (len * 8 / xlen); i++){
    if (i == 1) {
      write(DM_ABSTRACTAUTO, 1 << DM_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
    }
    memcpy(data, curr, xlen/8);
    curr += xlen/8;
    if (xlen == 64) {
      write(DM_DATA0 + 1, data[1]);
    }
    write(DM_DATA0, data[0]); //Triggers a command w/ autoexec.
    
    do {
      abstractcs = read(DM_ABSTRACTCS);
    } while (abstractcs & DM_ABSTRACTCS_BUSY);
    if ( get_field(abstractcs, DM_ABSTRACTCS_CMDERR)) {
      die(get_field(abstractcs, DM_ABSTRACTCS_CMDERR));
    }
  }
  if ((len * 8 / xlen) > 1) {
    write(DM_ABSTRACTAUTO, 0);
  }
  
  restore_reg(S0, s0);
  restore_reg(S1, s1);
  resume(current_hart);
}

void dtm_t::die(uint32_t cmderr)
{
  const char * codes[] = {
    "OK",
    "BUSY",
    "NOT_SUPPORTED",
    "EXCEPTION",
    "HALT/RESUME"
  };
  const char * msg;