aboutsummaryrefslogtreecommitdiff
path: root/libjava/java/awt/geom/QuadCurve2D.java
diff options
context:
space:
mode:
authorSascha Brawer <brawer@dandelis.ch>2004-01-05 20:19:29 +0100
committerMichael Koch <mkoch@gcc.gnu.org>2004-01-05 19:19:29 +0000
commitab22bc9148e058a649bc50cb0bdc160a9ead763b (patch)
tree8383df7e144c69b16c9ccfb5c030244096639ecc /libjava/java/awt/geom/QuadCurve2D.java
parent60b799fd29a61f2970062f08cdb58e6b0956994a (diff)
downloadgcc-ab22bc9148e058a649bc50cb0bdc160a9ead763b.zip
gcc-ab22bc9148e058a649bc50cb0bdc160a9ead763b.tar.gz
gcc-ab22bc9148e058a649bc50cb0bdc160a9ead763b.tar.bz2
Thanks to Brian Gough <bjg@network-theory.com>
2004-01-05 Sascha Brawer <brawer@dandelis.ch> Thanks to Brian Gough <bjg@network-theory.com> * java/awt/geom/CubicCurve2D.java (solveCubic): Implemented. * java/awt/geom/QuadCurve2D.java (solveQuadratic): Re-written. From-SVN: r75437
Diffstat (limited to 'libjava/java/awt/geom/QuadCurve2D.java')
-rw-r--r--libjava/java/awt/geom/QuadCurve2D.java144
1 files changed, 131 insertions, 13 deletions
diff --git a/libjava/java/awt/geom/QuadCurve2D.java b/libjava/java/awt/geom/QuadCurve2D.java
index 5bc63e6..409c484 100644
--- a/libjava/java/awt/geom/QuadCurve2D.java
+++ b/libjava/java/awt/geom/QuadCurve2D.java
@@ -550,39 +550,157 @@ public abstract class QuadCurve2D
}
+ /**
+ * Finds the non-complex roots of a quadratic equation, placing the
+ * results into the same array as the equation coefficients. The
+ * following equation is being solved:
+ *
+ * <blockquote><code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> &#xb7; <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving quadratic equations, see the
+ * article <a href=
+ * "http://planetmath.org/encyclopedia/QuadraticFormula.html"
+ * >&#x201c;Quadratic Formula&#x201d;</a> in <a href=
+ * "http://planetmath.org/">PlanetMath</a>. For an extensive library
+ * of numerical algorithms written in the C programming language,
+ * see the <a href="http://www.gnu.org/software/gsl/">GNU Scientific
+ * Library</a>.
+ *
+ * @see #solveQuadratic(double[], double[])
+ * @see CubicCurve2D#solveCubic(double[], double[])
+ *
+ * @param eqn an array with the coefficients of the equation. When
+ * this procedure has returned, <code>eqn</code> will contain the
+ * non-complex solutions of the equation, in no particular order.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
+ * (adaptation to Java)
+ */
public static int solveQuadratic(double[] eqn)
{
return solveQuadratic(eqn, eqn);
}
+ /**
+ * Finds the non-complex roots of a quadratic equation. The
+ * following equation is being solved:
+ *
+ * <blockquote><code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> &#xb7; <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving quadratic equations, see the
+ * article <a href=
+ * "http://planetmath.org/encyclopedia/QuadraticFormula.html"
+ * >&#x201c;Quadratic Formula&#x201d;</a> in <a href=
+ * "http://planetmath.org/">PlanetMath</a>. For an extensive library
+ * of numerical algorithms written in the C programming language,
+ * see the <a href="http://www.gnu.org/software/gsl/">GNU Scientific
+ * Library</a>.
+ *
+ * @see CubicCurve2D#solveCubic(double[],double[])
+ *
+ * @param eqn an array with the coefficients of the equation.
+ *
+ * @param res an array into which the non-complex roots will be
+ * stored. The results may be in an arbitrary order. It is safe to
+ * pass the same array object reference for both <code>eqn</code>
+ * and <code>res</code>.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
+ * (adaptation to Java)
+ */
public static int solveQuadratic(double[] eqn, double[] res)
{
- double c = eqn[0];
- double b = eqn[1];
- double a = eqn[2];
+ // Taken from poly/solve_quadratic.c in the GNU Scientific Library
+ // (GSL), cvs revision 1.7 of 2003-07-26. For the original source,
+ // see http://www.gnu.org/software/gsl/
+ //
+ // Brian Gough, the author of that code, has granted the
+ // permission to use it in GNU Classpath under the GNU Classpath
+ // license, and has assigned the copyright to the Free Software
+ // Foundation.
+ //
+ // The Java implementation is very similar to the GSL code, but
+ // not a strict one-to-one copy. For example, GSL would sort the
+ // result.
+
+ double a, b, c, disc;
+
+ c = eqn[0];
+ b = eqn[1];
+ a = eqn[2];
+
+ // Check for linear or constant functions. This is not done by the
+ // GNU Scientific Library. Without this special check, we
+ // wouldn't return -1 for constant functions, and 2 instead of 1
+ // for linear functions.
if (a == 0)
{
if (b == 0)
return -1;
+
res[0] = -c / b;
return 1;
}
- c /= a;
- b /= a * 2;
- double det = Math.sqrt(b * b - c);
- if (det != det)
+
+ disc = b * b - 4 * a * c;
+
+ if (disc < 0)
return 0;
- // For fewer rounding errors, we calculate the two roots differently.
- if (b > 0)
+
+ if (disc == 0)
+ {
+ // The GNU Scientific Library returns two identical results here.
+ // We just return one.
+ res[0] = -0.5 * b / a ;
+ return 1;
+ }
+
+ // disc > 0
+ if (b == 0)
{
- res[0] = -b - det;
- res[1] = -c / (b + det);
+ double r;
+
+ r = Math.abs(0.5 * Math.sqrt(disc) / a);
+ res[0] = -r;
+ res[1] = r;
}
else
{
- res[0] = -c / (b - det);
- res[1] = -b + det;
+ double sgnb, temp;
+
+ sgnb = (b > 0 ? 1 : -1);
+ temp = -0.5 * (b + sgnb * Math.sqrt(disc));
+
+ // The GNU Scientific Library sorts the result here. We don't.
+ res[0] = temp / a;
+ res[1] = c / temp;
}
return 2;
}