diff options
author | Tom Tromey <tromey@redhat.com> | 2005-07-16 01:27:14 +0000 |
---|---|---|
committer | Tom Tromey <tromey@gcc.gnu.org> | 2005-07-16 01:27:14 +0000 |
commit | b0fa81eea9a270f23d6ad67ca7a6d25c18d20da1 (patch) | |
tree | 8762d1f992e2f725a6bde1ff966ed6f1e5f4f823 /libjava/java/awt/geom/Area.java | |
parent | ea54b29342c8506acb4f858c68340c44b72e3532 (diff) | |
download | gcc-b0fa81eea9a270f23d6ad67ca7a6d25c18d20da1.zip gcc-b0fa81eea9a270f23d6ad67ca7a6d25c18d20da1.tar.gz gcc-b0fa81eea9a270f23d6ad67ca7a6d25c18d20da1.tar.bz2 |
Major merge with Classpath.
Removed many duplicate files.
* HACKING: Updated.x
* classpath: Imported new directory.
* standard.omit: New file.
* Makefile.in, aclocal.m4, configure: Rebuilt.
* sources.am: New file.
* configure.ac: Run Classpath configure script. Moved code around
to support. Disable xlib AWT peers (temporarily).
* Makefile.am (SUBDIRS): Added 'classpath'
(JAVAC): Removed.
(AM_CPPFLAGS): Added more -I options.
(BOOTCLASSPATH): Simplified.
Completely redid how sources are built.
Include sources.am.
* include/Makefile.am (tool_include__HEADERS): Removed jni.h.
* include/jni.h: Removed (in Classpath).
* scripts/classes.pl: Updated to look at built classes.
* scripts/makemake.tcl: New file.
* testsuite/libjava.jni/jni.exp (gcj_jni_compile_c_to_so): Added
-I options.
(gcj_jni_invocation_compile_c_to_binary): Likewise.
From-SVN: r102082
Diffstat (limited to 'libjava/java/awt/geom/Area.java')
-rw-r--r-- | libjava/java/awt/geom/Area.java | 3312 |
1 files changed, 0 insertions, 3312 deletions
diff --git a/libjava/java/awt/geom/Area.java b/libjava/java/awt/geom/Area.java deleted file mode 100644 index 7a0fac4..0000000 --- a/libjava/java/awt/geom/Area.java +++ /dev/null @@ -1,3312 +0,0 @@ -/* Area.java -- represents a shape built by constructive area geometry - Copyright (C) 2002, 2004 Free Software Foundation - -This file is part of GNU Classpath. - -GNU Classpath is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GNU Classpath is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU Classpath; see the file COPYING. If not, write to the -Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA -02110-1301 USA. - -Linking this library statically or dynamically with other modules is -making a combined work based on this library. Thus, the terms and -conditions of the GNU General Public License cover the whole -combination. - -As a special exception, the copyright holders of this library give you -permission to link this library with independent modules to produce an -executable, regardless of the license terms of these independent -modules, and to copy and distribute the resulting executable under -terms of your choice, provided that you also meet, for each linked -independent module, the terms and conditions of the license of that -module. An independent module is a module which is not derived from -or based on this library. If you modify this library, you may extend -this exception to your version of the library, but you are not -obligated to do so. If you do not wish to do so, delete this -exception statement from your version. */ - -package java.awt.geom; - -import java.awt.Rectangle; -import java.awt.Shape; -import java.util.Vector; - - -/** - * The Area class represents any area for the purpose of - * Constructive Area Geometry (CAG) manipulations. CAG manipulations - * work as an area-wise form of boolean logic, where the basic operations are: - * <P><li>Add (in boolean algebra: A <B>or</B> B)<BR> - * <li>Subtract (in boolean algebra: A <B>and</B> (<B>not</B> B) )<BR> - * <li>Intersect (in boolean algebra: A <B>and</B> B)<BR> - * <li>Exclusive Or <BR> - * <img src="doc-files/Area-1.png" width="342" height="302" - * alt="Illustration of CAG operations" /><BR> - * Above is an illustration of the CAG operations on two ring shapes.<P> - * - * The contains and intersects() methods are also more accurate than the - * specification of #Shape requires.<P> - * - * Please note that constructing an Area can be slow - * (Self-intersection resolving is proportional to the square of - * the number of segments).<P> - * @see #add(Area) - * @see #subtract(Area) - * @see #intersect(Area) - * @see #exclusiveOr(Area) - * - * @author Sven de Marothy (sven@physto.se) - * - * @since 1.2 - * @status Works, but could be faster and more reliable. - */ -public class Area implements Shape, Cloneable -{ - /** - * General numerical precision - */ - private static final double EPSILON = 1E-11; - - /** - * recursive subdivision epsilon - (see getRecursionDepth) - */ - private static final double RS_EPSILON = 1E-13; - - /** - * Snap distance - points within this distance are considered equal - */ - private static final double PE_EPSILON = 1E-11; - - /** - * Segment vectors containing solid areas and holes - * This is package-private to avoid an accessor method. - */ - Vector solids; - - /** - * Segment vectors containing solid areas and holes - * This is package-private to avoid an accessor method. - */ - Vector holes; - - /** - * Vector (temporary) storing curve-curve intersections - */ - private Vector cc_intersections; - - /** - * Winding rule WIND_NON_ZERO used, after construction, - * this is irrelevant. - */ - private int windingRule; - - /** - * Constructs an empty Area - */ - public Area() - { - solids = new Vector(); - holes = new Vector(); - } - - /** - * Constructs an Area from any given Shape. <P> - * - * If the Shape is self-intersecting, the created Area will consist - * of non-self-intersecting subpaths, and any inner paths which - * are found redundant in accordance with the Shape's winding rule - * will not be included. - * - * @param s the shape (<code>null</code> not permitted). - * - * @throws NullPointerException if <code>s</code> is <code>null</code>. - */ - public Area(Shape s) - { - this(); - - Vector p = makeSegment(s); - - // empty path - if (p == null) - return; - - // delete empty paths - for (int i = 0; i < p.size(); i++) - if (((Segment) p.elementAt(i)).getSignedArea() == 0.0) - p.remove(i--); - - /* - * Resolve self intersecting paths into non-intersecting - * solids and holes. - * Algorithm is as follows: - * 1: Create nodes at all self intersections - * 2: Put all segments into a list - * 3: Grab a segment, follow it, change direction at each node, - * removing segments from the list in the process - * 4: Repeat (3) until no segments remain in the list - * 5: Remove redundant paths and sort into solids and holes - */ - Vector paths = new Vector(); - Segment v; - - for (int i = 0; i < p.size(); i++) - { - Segment path = (Segment) p.elementAt(i); - createNodesSelf(path); - } - - if (p.size() > 1) - { - for (int i = 0; i < p.size() - 1; i++) - for (int j = i + 1; j < p.size(); j++) - { - Segment path1 = (Segment) p.elementAt(i); - Segment path2 = (Segment) p.elementAt(j); - createNodes(path1, path2); - } - } - - // we have intersecting points. - Vector segments = new Vector(); - - for (int i = 0; i < p.size(); i++) - { - Segment path = v = (Segment) p.elementAt(i); - do - { - segments.add(v); - v = v.next; - } - while (v != path); - } - - paths = weilerAtherton(segments); - deleteRedundantPaths(paths); - } - - /** - * Performs an add (union) operation on this area with another Area.<BR> - * @param area - the area to be unioned with this one - */ - public void add(Area area) - { - if (equals(area)) - return; - if (area.isEmpty()) - return; - - Area B = (Area) area.clone(); - - Vector pathA = new Vector(); - Vector pathB = new Vector(); - pathA.addAll(solids); - pathA.addAll(holes); - pathB.addAll(B.solids); - pathB.addAll(B.holes); - - int nNodes = 0; - - for (int i = 0; i < pathA.size(); i++) - { - Segment a = (Segment) pathA.elementAt(i); - for (int j = 0; j < pathB.size(); j++) - { - Segment b = (Segment) pathB.elementAt(j); - nNodes += createNodes(a, b); - } - } - - Vector paths = new Vector(); - Segment v; - - // we have intersecting points. - Vector segments = new Vector(); - - // In a union operation, we keep all - // segments of A oustide B and all B outside A - for (int i = 0; i < pathA.size(); i++) - { - v = (Segment) pathA.elementAt(i); - Segment path = v; - do - { - if (v.isSegmentOutside(area)) - segments.add(v); - v = v.next; - } - while (v != path); - } - - for (int i = 0; i < pathB.size(); i++) - { - v = (Segment) pathB.elementAt(i); - Segment path = v; - do - { - if (v.isSegmentOutside(this)) - segments.add(v); - v = v.next; - } - while (v != path); - } - - paths = weilerAtherton(segments); - deleteRedundantPaths(paths); - } - - /** - * Performs a subtraction operation on this Area.<BR> - * @param area the area to be subtracted from this area. - * @throws NullPointerException if <code>area</code> is <code>null</code>. - */ - public void subtract(Area area) - { - if (isEmpty() || area.isEmpty()) - return; - - if (equals(area)) - { - reset(); - return; - } - - Vector pathA = new Vector(); - Area B = (Area) area.clone(); - pathA.addAll(solids); - pathA.addAll(holes); - - // reverse the directions of B paths. - setDirection(B.holes, true); - setDirection(B.solids, false); - - Vector pathB = new Vector(); - pathB.addAll(B.solids); - pathB.addAll(B.holes); - - int nNodes = 0; - - // create nodes - for (int i = 0; i < pathA.size(); i++) - { - Segment a = (Segment) pathA.elementAt(i); - for (int j = 0; j < pathB.size(); j++) - { - Segment b = (Segment) pathB.elementAt(j); - nNodes += createNodes(a, b); - } - } - - Vector paths = new Vector(); - - // we have intersecting points. - Vector segments = new Vector(); - - // In a subtraction operation, we keep all - // segments of A oustide B and all B within A - // We outsideness-test only one segment in each path - // and the segments before and after any node - for (int i = 0; i < pathA.size(); i++) - { - Segment v = (Segment) pathA.elementAt(i); - Segment path = v; - if (v.isSegmentOutside(area) && v.node == null) - segments.add(v); - boolean node = false; - do - { - if ((v.node != null || node)) - { - node = (v.node != null); - if (v.isSegmentOutside(area)) - segments.add(v); - } - v = v.next; - } - while (v != path); - } - - for (int i = 0; i < pathB.size(); i++) - { - Segment v = (Segment) pathB.elementAt(i); - Segment path = v; - if (! v.isSegmentOutside(this) && v.node == null) - segments.add(v); - v = v.next; - boolean node = false; - do - { - if ((v.node != null || node)) - { - node = (v.node != null); - if (! v.isSegmentOutside(this)) - segments.add(v); - } - v = v.next; - } - while (v != path); - } - - paths = weilerAtherton(segments); - deleteRedundantPaths(paths); - } - - /** - * Performs an intersection operation on this Area.<BR> - * @param area - the area to be intersected with this area. - * @throws NullPointerException if <code>area</code> is <code>null</code>. - */ - public void intersect(Area area) - { - if (isEmpty() || area.isEmpty()) - { - reset(); - return; - } - if (equals(area)) - return; - - Vector pathA = new Vector(); - Area B = (Area) area.clone(); - pathA.addAll(solids); - pathA.addAll(holes); - - Vector pathB = new Vector(); - pathB.addAll(B.solids); - pathB.addAll(B.holes); - - int nNodes = 0; - - // create nodes - for (int i = 0; i < pathA.size(); i++) - { - Segment a = (Segment) pathA.elementAt(i); - for (int j = 0; j < pathB.size(); j++) - { - Segment b = (Segment) pathB.elementAt(j); - nNodes += createNodes(a, b); - } - } - - Vector paths = new Vector(); - - // we have intersecting points. - Vector segments = new Vector(); - - // In an intersection operation, we keep all - // segments of A within B and all B within A - // (The rest must be redundant) - // We outsideness-test only one segment in each path - // and the segments before and after any node - for (int i = 0; i < pathA.size(); i++) - { - Segment v = (Segment) pathA.elementAt(i); - Segment path = v; - if (! v.isSegmentOutside(area) && v.node == null) - segments.add(v); - boolean node = false; - do - { - if ((v.node != null || node)) - { - node = (v.node != null); - if (! v.isSegmentOutside(area)) - segments.add(v); - } - v = v.next; - } - while (v != path); - } - - for (int i = 0; i < pathB.size(); i++) - { - Segment v = (Segment) pathB.elementAt(i); - Segment path = v; - if (! v.isSegmentOutside(this) && v.node == null) - segments.add(v); - v = v.next; - boolean node = false; - do - { - if ((v.node != null || node)) - { - node = (v.node != null); - if (! v.isSegmentOutside(this)) - segments.add(v); - } - v = v.next; - } - while (v != path); - } - - paths = weilerAtherton(segments); - deleteRedundantPaths(paths); - } - - /** - * Performs an exclusive-or operation on this Area.<BR> - * @param area - the area to be XORed with this area. - * @throws NullPointerException if <code>area</code> is <code>null</code>. - */ - public void exclusiveOr(Area area) - { - if (area.isEmpty()) - return; - - if (isEmpty()) - { - Area B = (Area) area.clone(); - solids = B.solids; - holes = B.holes; - return; - } - if (equals(area)) - { - reset(); - return; - } - - Vector pathA = new Vector(); - - Area B = (Area) area.clone(); - Vector pathB = new Vector(); - pathA.addAll(solids); - pathA.addAll(holes); - - // reverse the directions of B paths. - setDirection(B.holes, true); - setDirection(B.solids, false); - pathB.addAll(B.solids); - pathB.addAll(B.holes); - - int nNodes = 0; - - for (int i = 0; i < pathA.size(); i++) - { - Segment a = (Segment) pathA.elementAt(i); - for (int j = 0; j < pathB.size(); j++) - { - Segment b = (Segment) pathB.elementAt(j); - nNodes += createNodes(a, b); - } - } - - Vector paths = new Vector(); - Segment v; - - // we have intersecting points. - Vector segments = new Vector(); - - // In an XOR operation, we operate on all segments - for (int i = 0; i < pathA.size(); i++) - { - v = (Segment) pathA.elementAt(i); - Segment path = v; - do - { - segments.add(v); - v = v.next; - } - while (v != path); - } - - for (int i = 0; i < pathB.size(); i++) - { - v = (Segment) pathB.elementAt(i); - Segment path = v; - do - { - segments.add(v); - v = v.next; - } - while (v != path); - } - - paths = weilerAtherton(segments); - deleteRedundantPaths(paths); - } - - /** - * Clears the Area object, creating an empty area. - */ - public void reset() - { - solids = new Vector(); - holes = new Vector(); - } - - /** - * Returns whether this area encloses any area. - * @return true if the object encloses any area. - */ - public boolean isEmpty() - { - if (solids.size() == 0) - return true; - - double totalArea = 0; - for (int i = 0; i < solids.size(); i++) - totalArea += Math.abs(((Segment) solids.elementAt(i)).getSignedArea()); - for (int i = 0; i < holes.size(); i++) - totalArea -= Math.abs(((Segment) holes.elementAt(i)).getSignedArea()); - if (totalArea <= EPSILON) - return true; - - return false; - } - - /** - * Determines whether the Area consists entirely of line segments - * @return true if the Area lines-only, false otherwise - */ - public boolean isPolygonal() - { - for (int i = 0; i < holes.size(); i++) - if (! ((Segment) holes.elementAt(i)).isPolygonal()) - return false; - for (int i = 0; i < solids.size(); i++) - if (! ((Segment) solids.elementAt(i)).isPolygonal()) - return false; - return true; - } - - /** - * Determines if the Area is rectangular.<P> - * - * This is strictly qualified. An area is considered rectangular if:<BR> - * <li>It consists of a single polygonal path.<BR> - * <li>It is oriented parallel/perpendicular to the xy axis<BR> - * <li>It must be exactly rectangular, i.e. small errors induced by - * transformations may cause a false result, although the area is - * visibly rectangular.<P> - * @return true if the above criteria are met, false otherwise - */ - public boolean isRectangular() - { - if (isEmpty()) - return true; - - if (holes.size() != 0 || solids.size() != 1) - return false; - - Segment path = (Segment) solids.elementAt(0); - if (! path.isPolygonal()) - return false; - - int nCorners = 0; - Segment s = path; - do - { - Segment s2 = s.next; - double d1 = (s.P2.getX() - s.P1.getX())*(s2.P2.getX() - s2.P1.getX())/ - ((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2))); - double d2 = (s.P2.getY() - s.P1.getY())*(s2.P2.getY() - s2.P1.getY())/ - ((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2))); - double dotproduct = d1 + d2; - - // For some reason, only rectangles on the XY axis count. - if (d1 != 0 && d2 != 0) - return false; - - if (Math.abs(dotproduct) == 0) // 90 degree angle - nCorners++; - else if ((Math.abs(1.0 - dotproduct) > 0)) // 0 degree angle? - return false; // if not, return false - - s = s.next; - } - while (s != path); - - return nCorners == 4; - } - - /** - * Returns whether the Area consists of more than one simple - * (non self-intersecting) subpath. - * - * @return true if the Area consists of none or one simple subpath, - * false otherwise. - */ - public boolean isSingular() - { - return (holes.size() == 0 && solids.size() <= 1); - } - - /** - * Returns the bounding box of the Area.<P> Unlike the CubicCurve2D and - * QuadraticCurve2D classes, this method will return the tightest possible - * bounding box, evaluating the extreme points of each curved segment.<P> - * @return the bounding box - */ - public Rectangle2D getBounds2D() - { - if (solids.size() == 0) - return new Rectangle2D.Double(0.0, 0.0, 0.0, 0.0); - - double xmin; - double xmax; - double ymin; - double ymax; - xmin = xmax = ((Segment) solids.elementAt(0)).P1.getX(); - ymin = ymax = ((Segment) solids.elementAt(0)).P1.getY(); - - for (int path = 0; path < solids.size(); path++) - { - Rectangle2D r = ((Segment) solids.elementAt(path)).getPathBounds(); - xmin = Math.min(r.getMinX(), xmin); - ymin = Math.min(r.getMinY(), ymin); - xmax = Math.max(r.getMaxX(), xmax); - ymax = Math.max(r.getMaxY(), ymax); - } - - return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin))); - } - - /** - * Returns the bounds of this object in Rectangle format. - * Please note that this may lead to loss of precision. - * - * @return The bounds. - * @see #getBounds2D() - */ - public Rectangle getBounds() - { - return getBounds2D().getBounds(); - } - - /** - * Create a new area of the same run-time type with the same contents as - * this one. - * - * @return the clone - */ - public Object clone() - { - try - { - Area clone = new Area(); - for (int i = 0; i < solids.size(); i++) - clone.solids.add(((Segment) solids.elementAt(i)).cloneSegmentList()); - for (int i = 0; i < holes.size(); i++) - clone.holes.add(((Segment) holes.elementAt(i)).cloneSegmentList()); - return clone; - } - catch (CloneNotSupportedException e) - { - throw (Error) new InternalError().initCause(e); // Impossible - } - } - - /** - * Compares two Areas. - * - * @param area the area to compare against this area (<code>null</code> - * permitted). - * @return <code>true</code> if the areas are equal, and <code>false</code> - * otherwise. - */ - public boolean equals(Area area) - { - if (area == null) - return false; - - if (! getBounds2D().equals(area.getBounds2D())) - return false; - - if (solids.size() != area.solids.size() - || holes.size() != area.holes.size()) - return false; - - Vector pathA = new Vector(); - pathA.addAll(solids); - pathA.addAll(holes); - Vector pathB = new Vector(); - pathB.addAll(area.solids); - pathB.addAll(area.holes); - - int nPaths = pathA.size(); - boolean[][] match = new boolean[2][nPaths]; - - for (int i = 0; i < nPaths; i++) - { - for (int j = 0; j < nPaths; j++) - { - Segment p1 = (Segment) pathA.elementAt(i); - Segment p2 = (Segment) pathB.elementAt(j); - if (! match[0][i] && ! match[1][j]) - if (p1.pathEquals(p2)) - match[0][i] = match[1][j] = true; - } - } - - boolean result = true; - for (int i = 0; i < nPaths; i++) - result = result && match[0][i] && match[1][i]; - return result; - } - - /** - * Transforms this area by the AffineTransform at. - * - * @param at the transform. - */ - public void transform(AffineTransform at) - { - for (int i = 0; i < solids.size(); i++) - ((Segment) solids.elementAt(i)).transformSegmentList(at); - for (int i = 0; i < holes.size(); i++) - ((Segment) holes.elementAt(i)).transformSegmentList(at); - - // Note that the orientation is not invariant under inversion - if ((at.getType() & AffineTransform.TYPE_FLIP) != 0) - { - setDirection(holes, false); - setDirection(solids, true); - } - } - - /** - * Returns a new Area equal to this one, transformed - * by the AffineTransform at. - * @param at the transform. - * @return the transformed area - * @throws NullPointerException if <code>at</code> is <code>null</code>. - */ - public Area createTransformedArea(AffineTransform at) - { - Area a = (Area) clone(); - a.transform(at); - return a; - } - - /** - * Determines if the point (x,y) is contained within this Area. - * - * @param x the x-coordinate of the point. - * @param y the y-coordinate of the point. - * @return true if the point is contained, false otherwise. - */ - public boolean contains(double x, double y) - { - int n = 0; - for (int i = 0; i < solids.size(); i++) - if (((Segment) solids.elementAt(i)).contains(x, y)) - n++; - - for (int i = 0; i < holes.size(); i++) - if (((Segment) holes.elementAt(i)).contains(x, y)) - n--; - - return (n != 0); - } - - /** - * Determines if the Point2D p is contained within this Area. - * - * @param p the point. - * @return <code>true</code> if the point is contained, <code>false</code> - * otherwise. - * @throws NullPointerException if <code>p</code> is <code>null</code>. - */ - public boolean contains(Point2D p) - { - return contains(p.getX(), p.getY()); - } - - /** - * Determines if the rectangle specified by (x,y) as the upper-left - * and with width w and height h is completely contained within this Area, - * returns false otherwise.<P> - * - * This method should always produce the correct results, unlike for other - * classes in geom. - * - * @param x the x-coordinate of the rectangle. - * @param y the y-coordinate of the rectangle. - * @param w the width of the the rectangle. - * @param h the height of the rectangle. - * @return <code>true</code> if the rectangle is considered contained - */ - public boolean contains(double x, double y, double w, double h) - { - LineSegment[] l = new LineSegment[4]; - l[0] = new LineSegment(x, y, x + w, y); - l[1] = new LineSegment(x, y + h, x + w, y + h); - l[2] = new LineSegment(x, y, x, y + h); - l[3] = new LineSegment(x + w, y, x + w, y + h); - - // Since every segment in the area must a contour - // between inside/outside segments, ANY intersection - // will mean the rectangle is not entirely contained. - for (int i = 0; i < 4; i++) - { - for (int path = 0; path < solids.size(); path++) - { - Segment v; - Segment start; - start = v = (Segment) solids.elementAt(path); - do - { - if (l[i].hasIntersections(v)) - return false; - v = v.next; - } - while (v != start); - } - for (int path = 0; path < holes.size(); path++) - { - Segment v; - Segment start; - start = v = (Segment) holes.elementAt(path); - do - { - if (l[i].hasIntersections(v)) - return false; - v = v.next; - } - while (v != start); - } - } - - // Is any point inside? - if (! contains(x, y)) - return false; - - // Final hoop: Is the rectangle non-intersecting and inside, - // but encloses a hole? - Rectangle2D r = new Rectangle2D.Double(x, y, w, h); - for (int path = 0; path < holes.size(); path++) - if (! ((Segment) holes.elementAt(path)).isSegmentOutside(r)) - return false; - - return true; - } - - /** - * Determines if the Rectangle2D specified by r is completely contained - * within this Area, returns false otherwise.<P> - * - * This method should always produce the correct results, unlike for other - * classes in geom. - * - * @param r the rectangle. - * @return <code>true</code> if the rectangle is considered contained - * - * @throws NullPointerException if <code>r</code> is <code>null</code>. - */ - public boolean contains(Rectangle2D r) - { - return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); - } - - /** - * Determines if the rectangle specified by (x,y) as the upper-left - * and with width w and height h intersects any part of this Area. - * - * @param x the x-coordinate for the rectangle. - * @param y the y-coordinate for the rectangle. - * @param w the width of the rectangle. - * @param h the height of the rectangle. - * @return <code>true</code> if the rectangle intersects the area, - * <code>false</code> otherwise. - */ - public boolean intersects(double x, double y, double w, double h) - { - if (solids.size() == 0) - return false; - - LineSegment[] l = new LineSegment[4]; - l[0] = new LineSegment(x, y, x + w, y); - l[1] = new LineSegment(x, y + h, x + w, y + h); - l[2] = new LineSegment(x, y, x, y + h); - l[3] = new LineSegment(x + w, y, x + w, y + h); - - // Return true on any intersection - for (int i = 0; i < 4; i++) - { - for (int path = 0; path < solids.size(); path++) - { - Segment v; - Segment start; - start = v = (Segment) solids.elementAt(path); - do - { - if (l[i].hasIntersections(v)) - return true; - v = v.next; - } - while (v != start); - } - for (int path = 0; path < holes.size(); path++) - { - Segment v; - Segment start; - start = v = (Segment) holes.elementAt(path); - do - { - if (l[i].hasIntersections(v)) - return true; - v = v.next; - } - while (v != start); - } - } - - // Non-intersecting, Is any point inside? - if (contains(x + w * 0.5, y + h * 0.5)) - return true; - - // What if the rectangle encloses the whole shape? - Point2D p = ((Segment) solids.elementAt(0)).getMidPoint(); - if ((new Rectangle2D.Double(x, y, w, h)).contains(p)) - return true; - return false; - } - - /** - * Determines if the Rectangle2D specified by r intersects any - * part of this Area. - * @param r the rectangle to test intersection with (<code>null</code> - * not permitted). - * @return <code>true</code> if the rectangle intersects the area, - * <code>false</code> otherwise. - * @throws NullPointerException if <code>r</code> is <code>null</code>. - */ - public boolean intersects(Rectangle2D r) - { - return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); - } - - /** - * Returns a PathIterator object defining the contour of this Area, - * transformed by at. - * - * @param at the transform. - * @return A path iterator. - */ - public PathIterator getPathIterator(AffineTransform at) - { - return (new AreaIterator(at)); - } - - /** - * Returns a flattened PathIterator object defining the contour of this - * Area, transformed by at and with a defined flatness. - * - * @param at the transform. - * @param flatness the flatness. - * @return A path iterator. - */ - public PathIterator getPathIterator(AffineTransform at, double flatness) - { - return new FlatteningPathIterator(getPathIterator(at), flatness); - } - - //--------------------------------------------------------------------- - // Non-public methods and classes - - /** - * Private pathiterator object. - */ - private class AreaIterator implements PathIterator - { - private Vector segments; - private int index; - private AffineTransform at; - - // Simple compound type for segments - class IteratorSegment - { - int type; - double[] coords; - - IteratorSegment() - { - coords = new double[6]; - } - } - - /** - * The contructor here does most of the work, - * creates a vector of IteratorSegments, which can - * readily be returned - */ - public AreaIterator(AffineTransform at) - { - this.at = at; - index = 0; - segments = new Vector(); - Vector allpaths = new Vector(); - allpaths.addAll(solids); - allpaths.addAll(holes); - - for (int i = 0; i < allpaths.size(); i++) - { - Segment v = (Segment) allpaths.elementAt(i); - Segment start = v; - - IteratorSegment is = new IteratorSegment(); - is.type = SEG_MOVETO; - is.coords[0] = start.P1.getX(); - is.coords[1] = start.P1.getY(); - segments.add(is); - - do - { - is = new IteratorSegment(); - is.type = v.pathIteratorFormat(is.coords); - segments.add(is); - v = v.next; - } - while (v != start); - - is = new IteratorSegment(); - is.type = SEG_CLOSE; - segments.add(is); - } - } - - public int currentSegment(double[] coords) - { - IteratorSegment s = (IteratorSegment) segments.elementAt(index); - if (at != null) - at.transform(s.coords, 0, coords, 0, 3); - else - for (int i = 0; i < 6; i++) - coords[i] = s.coords[i]; - return (s.type); - } - - public int currentSegment(float[] coords) - { - IteratorSegment s = (IteratorSegment) segments.elementAt(index); - double[] d = new double[6]; - if (at != null) - { - at.transform(s.coords, 0, d, 0, 3); - for (int i = 0; i < 6; i++) - coords[i] = (float) d[i]; - } - else - for (int i = 0; i < 6; i++) - coords[i] = (float) s.coords[i]; - return (s.type); - } - - // Note that the winding rule should not matter here, - // EVEN_ODD is chosen because it renders faster. - public int getWindingRule() - { - return (PathIterator.WIND_EVEN_ODD); - } - - public boolean isDone() - { - return (index >= segments.size()); - } - - public void next() - { - index++; - } - } - - /** - * Performs the fundamental task of the Weiler-Atherton algorithm, - * traverse a list of segments, for each segment: - * Follow it, removing segments from the list and switching paths - * at each node. Do so until the starting segment is reached. - * - * Returns a Vector of the resulting paths. - */ - private Vector weilerAtherton(Vector segments) - { - Vector paths = new Vector(); - while (segments.size() > 0) - { - // Iterate over the path - Segment start = (Segment) segments.elementAt(0); - Segment s = start; - do - { - segments.remove(s); - if (s.node != null) - { // switch over - s.next = s.node; - s.node = null; - } - s = s.next; // continue - } - while (s != start); - - paths.add(start); - } - return paths; - } - - /** - * A small wrapper class to store intersection points - */ - private class Intersection - { - Point2D p; // the 2D point of intersection - double ta; // the parametric value on a - double tb; // the parametric value on b - Segment seg; // segment placeholder for node setting - - public Intersection(Point2D p, double ta, double tb) - { - this.p = p; - this.ta = ta; - this.tb = tb; - } - } - - /** - * Returns the recursion depth necessary to approximate the - * curve by line segments within the error RS_EPSILON. - * - * This is done with Wang's formula: - * L0 = max{0<=i<=N-2}(|xi - 2xi+1 + xi+2|,|yi - 2yi+1 + yi+2|) - * r0 = log4(sqrt(2)*N*(N-1)*L0/8e) - * Where e is the maximum distance error (RS_EPSILON) - */ - private int getRecursionDepth(CubicSegment curve) - { - double x0 = curve.P1.getX(); - double y0 = curve.P1.getY(); - - double x1 = curve.cp1.getX(); - double y1 = curve.cp1.getY(); - - double x2 = curve.cp2.getX(); - double y2 = curve.cp2.getY(); - - double x3 = curve.P2.getX(); - double y3 = curve.P2.getY(); - - double L0 = Math.max(Math.max(Math.abs(x0 - 2 * x1 + x2), - Math.abs(x1 - 2 * x2 + x3)), - Math.max(Math.abs(y0 - 2 * y1 + y2), - Math.abs(y1 - 2 * y2 + y3))); - - double f = Math.sqrt(2) * 6.0 * L0 / (8.0 * RS_EPSILON); - - int r0 = (int) Math.ceil(Math.log(f) / Math.log(4.0)); - return (r0); - } - - /** - * Performs recursive subdivision: - * @param c1 - curve 1 - * @param c2 - curve 2 - * @param depth1 - recursion depth of curve 1 - * @param depth2 - recursion depth of curve 2 - * @param t1 - global parametric value of the first curve's starting point - * @param t2 - global parametric value of the second curve's starting point - * @param w1 - global parametric length of curve 1 - * @param c1 - global parametric length of curve 2 - * - * The final four parameters are for keeping track of the parametric - * value of the curve. For a full curve t = 0, w = 1, w is halved with - * each subdivision. - */ - private void recursiveSubdivide(CubicCurve2D c1, CubicCurve2D c2, - int depth1, int depth2, double t1, - double t2, double w1, double w2) - { - boolean flat1 = depth1 <= 0; - boolean flat2 = depth2 <= 0; - - if (flat1 && flat2) - { - double xlk = c1.getP2().getX() - c1.getP1().getX(); - double ylk = c1.getP2().getY() - c1.getP1().getY(); - - double xnm = c2.getP2().getX() - c2.getP1().getX(); - double ynm = c2.getP2().getY() - c2.getP1().getY(); - - double xmk = c2.getP1().getX() - c1.getP1().getX(); - double ymk = c2.getP1().getY() - c1.getP1().getY(); - double det = xnm * ylk - ynm * xlk; - - if (det + 1.0 == 1.0) - return; - - double detinv = 1.0 / det; - double s = (xnm * ymk - ynm * xmk) * detinv; - double t = (xlk * ymk - ylk * xmk) * detinv; - if ((s < 0.0) || (s > 1.0) || (t < 0.0) || (t > 1.0)) - return; - - double[] temp = new double[2]; - temp[0] = t1 + s * w1; - temp[1] = t2 + t * w1; - cc_intersections.add(temp); - return; - } - - CubicCurve2D.Double c11 = new CubicCurve2D.Double(); - CubicCurve2D.Double c12 = new CubicCurve2D.Double(); - CubicCurve2D.Double c21 = new CubicCurve2D.Double(); - CubicCurve2D.Double c22 = new CubicCurve2D.Double(); - - if (! flat1 && ! flat2) - { - depth1--; - depth2--; - w1 = w1 * 0.5; - w2 = w2 * 0.5; - c1.subdivide(c11, c12); - c2.subdivide(c21, c22); - if (c11.getBounds2D().intersects(c21.getBounds2D())) - recursiveSubdivide(c11, c21, depth1, depth2, t1, t2, w1, w2); - if (c11.getBounds2D().intersects(c22.getBounds2D())) - recursiveSubdivide(c11, c22, depth1, depth2, t1, t2 + w2, w1, w2); - if (c12.getBounds2D().intersects(c21.getBounds2D())) - recursiveSubdivide(c12, c21, depth1, depth2, t1 + w1, t2, w1, w2); - if (c12.getBounds2D().intersects(c22.getBounds2D())) - recursiveSubdivide(c12, c22, depth1, depth2, t1 + w1, t2 + w2, w1, w2); - return; - } - - if (! flat1) - { - depth1--; - c1.subdivide(c11, c12); - w1 = w1 * 0.5; - if (c11.getBounds2D().intersects(c2.getBounds2D())) - recursiveSubdivide(c11, c2, depth1, depth2, t1, t2, w1, w2); - if (c12.getBounds2D().intersects(c2.getBounds2D())) - recursiveSubdivide(c12, c2, depth1, depth2, t1 + w1, t2, w1, w2); - return; - } - - depth2--; - c2.subdivide(c21, c22); - w2 = w2 * 0.5; - if (c1.getBounds2D().intersects(c21.getBounds2D())) - recursiveSubdivide(c1, c21, depth1, depth2, t1, t2, w1, w2); - if (c1.getBounds2D().intersects(c22.getBounds2D())) - recursiveSubdivide(c1, c22, depth1, depth2, t1, t2 + w2, w1, w2); - } - - /** - * Returns a set of interesections between two Cubic segments - * Or null if no intersections were found. - * - * The method used to find the intersection is recursive midpoint - * subdivision. Outline description: - * - * 1) Check if the bounding boxes of the curves intersect, - * 2) If so, divide the curves in the middle and test the bounding - * boxes again, - * 3) Repeat until a maximum recursion depth has been reached, where - * the intersecting curves can be approximated by line segments. - * - * This is a reasonably accurate method, although the recursion depth - * is typically around 20, the bounding-box tests allow for significant - * pruning of the subdivision tree. - * - * This is package-private to avoid an accessor method. - */ - Intersection[] cubicCubicIntersect(CubicSegment curve1, CubicSegment curve2) - { - Rectangle2D r1 = curve1.getBounds(); - Rectangle2D r2 = curve2.getBounds(); - - if (! r1.intersects(r2)) - return null; - - cc_intersections = new Vector(); - recursiveSubdivide(curve1.getCubicCurve2D(), curve2.getCubicCurve2D(), - getRecursionDepth(curve1), getRecursionDepth(curve2), - 0.0, 0.0, 1.0, 1.0); - - if (cc_intersections.size() == 0) - return null; - - Intersection[] results = new Intersection[cc_intersections.size()]; - for (int i = 0; i < cc_intersections.size(); i++) - { - double[] temp = (double[]) cc_intersections.elementAt(i); - results[i] = new Intersection(curve1.evaluatePoint(temp[0]), temp[0], - temp[1]); - } - cc_intersections = null; - return (results); - } - - /** - * Returns the intersections between a line and a quadratic bezier - * Or null if no intersections are found1 - * This is done through combining the line's equation with the - * parametric form of the Bezier and solving the resulting quadratic. - * This is package-private to avoid an accessor method. - */ - Intersection[] lineQuadIntersect(LineSegment l, QuadSegment c) - { - double[] y = new double[3]; - double[] x = new double[3]; - double[] r = new double[3]; - int nRoots; - double x0 = c.P1.getX(); - double y0 = c.P1.getY(); - double x1 = c.cp.getX(); - double y1 = c.cp.getY(); - double x2 = c.P2.getX(); - double y2 = c.P2.getY(); - - double lx0 = l.P1.getX(); - double ly0 = l.P1.getY(); - double lx1 = l.P2.getX(); - double ly1 = l.P2.getY(); - double dx = lx1 - lx0; - double dy = ly1 - ly0; - - // form r(t) = y(t) - x(t) for the bezier - y[0] = y0; - y[1] = 2 * (y1 - y0); - y[2] = (y2 - 2 * y1 + y0); - - x[0] = x0; - x[1] = 2 * (x1 - x0); - x[2] = (x2 - 2 * x1 + x0); - - // a point, not a line - if (dy == 0 && dx == 0) - return null; - - // line on y axis - if (dx == 0 || (dy / dx) > 1.0) - { - double k = dx / dy; - x[0] -= lx0; - y[0] -= ly0; - y[0] *= k; - y[1] *= k; - y[2] *= k; - } - else - { - double k = dy / dx; - x[0] -= lx0; - y[0] -= ly0; - x[0] *= k; - x[1] *= k; - x[2] *= k; - } - - for (int i = 0; i < 3; i++) - r[i] = y[i] - x[i]; - - if ((nRoots = QuadCurve2D.solveQuadratic(r)) > 0) - { - Intersection[] temp = new Intersection[nRoots]; - int intersections = 0; - for (int i = 0; i < nRoots; i++) - { - double t = r[i]; - if (t >= 0.0 && t <= 1.0) - { - Point2D p = c.evaluatePoint(t); - - // if the line is on an axis, snap the point to that axis. - if (dx == 0) - p.setLocation(lx0, p.getY()); - if (dy == 0) - p.setLocation(p.getX(), ly0); - - if (p.getX() <= Math.max(lx0, lx1) - && p.getX() >= Math.min(lx0, lx1) - && p.getY() <= Math.max(ly0, ly1) - && p.getY() >= Math.min(ly0, ly1)) - { - double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1); - temp[i] = new Intersection(p, lineparameter, t); - intersections++; - } - } - else - temp[i] = null; - } - if (intersections == 0) - return null; - - Intersection[] rValues = new Intersection[intersections]; - - for (int i = 0; i < nRoots; i++) - if (temp[i] != null) - rValues[--intersections] = temp[i]; - return (rValues); - } - return null; - } - - /** - * Returns the intersections between a line and a cubic segment - * This is done through combining the line's equation with the - * parametric form of the Bezier and solving the resulting quadratic. - * This is package-private to avoid an accessor method. - */ - Intersection[] lineCubicIntersect(LineSegment l, CubicSegment c) - { - double[] y = new double[4]; - double[] x = new double[4]; - double[] r = new double[4]; - int nRoots; - double x0 = c.P1.getX(); - double y0 = c.P1.getY(); - double x1 = c.cp1.getX(); - double y1 = c.cp1.getY(); - double x2 = c.cp2.getX(); - double y2 = c.cp2.getY(); - double x3 = c.P2.getX(); - double y3 = c.P2.getY(); - - double lx0 = l.P1.getX(); - double ly0 = l.P1.getY(); - double lx1 = l.P2.getX(); - double ly1 = l.P2.getY(); - double dx = lx1 - lx0; - double dy = ly1 - ly0; - - // form r(t) = y(t) - x(t) for the bezier - y[0] = y0; - y[1] = 3 * (y1 - y0); - y[2] = 3 * (y2 + y0 - 2 * y1); - y[3] = y3 - 3 * y2 + 3 * y1 - y0; - - x[0] = x0; - x[1] = 3 * (x1 - x0); - x[2] = 3 * (x2 + x0 - 2 * x1); - x[3] = x3 - 3 * x2 + 3 * x1 - x0; - - // a point, not a line - if (dy == 0 && dx == 0) - return null; - - // line on y axis - if (dx == 0 || (dy / dx) > 1.0) - { - double k = dx / dy; - x[0] -= lx0; - y[0] -= ly0; - y[0] *= k; - y[1] *= k; - y[2] *= k; - y[3] *= k; - } - else - { - double k = dy / dx; - x[0] -= lx0; - y[0] -= ly0; - x[0] *= k; - x[1] *= k; - x[2] *= k; - x[3] *= k; - } - for (int i = 0; i < 4; i++) - r[i] = y[i] - x[i]; - - if ((nRoots = CubicCurve2D.solveCubic(r)) > 0) - { - Intersection[] temp = new Intersection[nRoots]; - int intersections = 0; - for (int i = 0; i < nRoots; i++) - { - double t = r[i]; - if (t >= 0.0 && t <= 1.0) - { - // if the line is on an axis, snap the point to that axis. - Point2D p = c.evaluatePoint(t); - if (dx == 0) - p.setLocation(lx0, p.getY()); - if (dy == 0) - p.setLocation(p.getX(), ly0); - - if (p.getX() <= Math.max(lx0, lx1) - && p.getX() >= Math.min(lx0, lx1) - && p.getY() <= Math.max(ly0, ly1) - && p.getY() >= Math.min(ly0, ly1)) - { - double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1); - temp[i] = new Intersection(p, lineparameter, t); - intersections++; - } - } - else - temp[i] = null; - } - - if (intersections == 0) - return null; - - Intersection[] rValues = new Intersection[intersections]; - for (int i = 0; i < nRoots; i++) - if (temp[i] != null) - rValues[--intersections] = temp[i]; - return (rValues); - } - return null; - } - - /** - * Returns the intersection between two lines, or null if there is no - * intersection. - * This is package-private to avoid an accessor method. - */ - Intersection linesIntersect(LineSegment a, LineSegment b) - { - Point2D P1 = a.P1; - Point2D P2 = a.P2; - Point2D P3 = b.P1; - Point2D P4 = b.P2; - - if (! Line2D.linesIntersect(P1.getX(), P1.getY(), P2.getX(), P2.getY(), - P3.getX(), P3.getY(), P4.getX(), P4.getY())) - return null; - - double x1 = P1.getX(); - double y1 = P1.getY(); - double rx = P2.getX() - x1; - double ry = P2.getY() - y1; - - double x2 = P3.getX(); - double y2 = P3.getY(); - double sx = P4.getX() - x2; - double sy = P4.getY() - y2; - - double determinant = sx * ry - sy * rx; - double nom = (sx * (y2 - y1) + sy * (x1 - x2)); - - // Parallel lines don't intersect. At least we pretend they don't. - if (Math.abs(determinant) < EPSILON) - return null; - - nom = nom / determinant; - - if (nom == 0.0) - return null; - if (nom == 1.0) - return null; - - Point2D p = new Point2D.Double(x1 + nom * rx, y1 + nom * ry); - - return new Intersection(p, p.distance(P1) / P1.distance(P2), - p.distance(P3) / P3.distance(P4)); - } - - /** - * Determines if two points are equal, within an error margin - * 'snap distance' - * This is package-private to avoid an accessor method. - */ - boolean pointEquals(Point2D a, Point2D b) - { - return (a.equals(b) || a.distance(b) < PE_EPSILON); - } - - /** - * Helper method - * Turns a shape into a Vector of Segments - */ - private Vector makeSegment(Shape s) - { - Vector paths = new Vector(); - PathIterator pi = s.getPathIterator(null); - double[] coords = new double[6]; - Segment subpath = null; - Segment current = null; - double cx; - double cy; - double subpathx; - double subpathy; - cx = cy = subpathx = subpathy = 0.0; - - this.windingRule = pi.getWindingRule(); - - while (! pi.isDone()) - { - Segment v; - switch (pi.currentSegment(coords)) - { - case PathIterator.SEG_MOVETO: - if (subpath != null) - { // close existing open path - current.next = new LineSegment(cx, cy, subpathx, subpathy); - current = current.next; - current.next = subpath; - } - subpath = null; - subpathx = cx = coords[0]; - subpathy = cy = coords[1]; - break; - - // replace 'close' with a line-to. - case PathIterator.SEG_CLOSE: - if (subpath != null && (subpathx != cx || subpathy != cy)) - { - current.next = new LineSegment(cx, cy, subpathx, subpathy); - current = current.next; - current.next = subpath; - cx = subpathx; - cy = subpathy; - subpath = null; - } - else if (subpath != null) - { - current.next = subpath; - subpath = null; - } - break; - case PathIterator.SEG_LINETO: - if (cx != coords[0] || cy != coords[1]) - { - v = new LineSegment(cx, cy, coords[0], coords[1]); - if (subpath == null) - { - subpath = current = v; - paths.add(subpath); - } - else - { - current.next = v; - current = current.next; - } - cx = coords[0]; - cy = coords[1]; - } - break; - case PathIterator.SEG_QUADTO: - v = new QuadSegment(cx, cy, coords[0], coords[1], coords[2], - coords[3]); - if (subpath == null) - { - subpath = current = v; - paths.add(subpath); - } - else - { - current.next = v; - current = current.next; - } - cx = coords[2]; - cy = coords[3]; - break; - case PathIterator.SEG_CUBICTO: - v = new CubicSegment(cx, cy, coords[0], coords[1], coords[2], - coords[3], coords[4], coords[5]); - if (subpath == null) - { - subpath = current = v; - paths.add(subpath); - } - else - { - current.next = v; - current = current.next; - } - - // check if the cubic is self-intersecting - double[] lpts = ((CubicSegment) v).getLoop(); - if (lpts != null) - { - // if it is, break off the loop into its own path. - v.subdivideInsert(lpts[0]); - v.next.subdivideInsert((lpts[1] - lpts[0]) / (1.0 - lpts[0])); - - CubicSegment loop = (CubicSegment) v.next; - v.next = loop.next; - loop.next = loop; - - v.P2 = v.next.P1 = loop.P2 = loop.P1; // snap points - paths.add(loop); - current = v.next; - } - - cx = coords[4]; - cy = coords[5]; - break; - } - pi.next(); - } - - if (subpath != null) - { // close any open path - if (subpathx != cx || subpathy != cy) - { - current.next = new LineSegment(cx, cy, subpathx, subpathy); - current = current.next; - current.next = subpath; - } - else - current.next = subpath; - } - - if (paths.size() == 0) - return (null); - - return (paths); - } - - /** - * Find the intersections of two separate closed paths, - * A and B, split the segments at the intersection points, - * and create nodes pointing from one to the other - */ - private int createNodes(Segment A, Segment B) - { - int nNodes = 0; - - Segment a = A; - Segment b = B; - - do - { - do - { - nNodes += a.splitIntersections(b); - b = b.next; - } - while (b != B); - - a = a.next; // move to the next segment - } - while (a != A); // until one wrap. - - return (nNodes); - } - - /** - * Find the intersections of a path with itself. - * Splits the segments at the intersection points, - * and create nodes pointing from one to the other. - */ - private int createNodesSelf(Segment A) - { - int nNodes = 0; - Segment a = A; - - if (A.next == A) - return 0; - - do - { - Segment b = a.next; - do - { - if (b != a) // necessary - nNodes += a.splitIntersections(b); - b = b.next; - } - while (b != A); - a = a.next; // move to the next segment - } - while (a != A); // until one wrap. - - return (nNodes); - } - - /** - * Deletes paths which are redundant from a list, (i.e. solid areas within - * solid areas) Clears any nodes. Sorts the remaining paths into solids - * and holes, sets their orientation and sets the solids and holes lists. - */ - private void deleteRedundantPaths(Vector paths) - { - int npaths = paths.size(); - - int[][] contains = new int[npaths][npaths]; - int[][] windingNumbers = new int[npaths][2]; - int neg; - Rectangle2D[] bb = new Rectangle2D[npaths]; // path bounding boxes - - neg = ((windingRule == PathIterator.WIND_NON_ZERO) ? -1 : 1); - - for (int i = 0; i < npaths; i++) - bb[i] = ((Segment) paths.elementAt(i)).getPathBounds(); - - // Find which path contains which, assign winding numbers - for (int i = 0; i < npaths; i++) - { - Segment pathA = (Segment) paths.elementAt(i); - pathA.nullNodes(); // remove any now-redundant nodes, in case. - int windingA = pathA.hasClockwiseOrientation() ? 1 : neg; - - for (int j = 0; j < npaths; j++) - if (i != j) - { - Segment pathB = (Segment) paths.elementAt(j); - - // A contains B - if (bb[i].intersects(bb[j])) - { - Segment s = pathB.next; - while (s.P1.getY() == s.P2.getY() && s != pathB) - s = s.next; - Point2D p = s.getMidPoint(); - if (pathA.contains(p.getX(), p.getY())) - contains[i][j] = windingA; - } - else - // A does not contain B - contains[i][j] = 0; - } - else - contains[i][j] = windingA; // i == j - } - - for (int i = 0; i < npaths; i++) - { - windingNumbers[i][0] = 0; - for (int j = 0; j < npaths; j++) - windingNumbers[i][0] += contains[j][i]; - windingNumbers[i][1] = contains[i][i]; - } - - Vector solids = new Vector(); - Vector holes = new Vector(); - - if (windingRule == PathIterator.WIND_NON_ZERO) - { - for (int i = 0; i < npaths; i++) - { - if (windingNumbers[i][0] == 0) - holes.add(paths.elementAt(i)); - else if (windingNumbers[i][0] - windingNumbers[i][1] == 0 - && Math.abs(windingNumbers[i][0]) == 1) - solids.add(paths.elementAt(i)); - } - } - else - { - windingRule = PathIterator.WIND_NON_ZERO; - for (int i = 0; i < npaths; i++) - { - if ((windingNumbers[i][0] & 1) == 0) - holes.add(paths.elementAt(i)); - else if ((windingNumbers[i][0] & 1) == 1) - solids.add(paths.elementAt(i)); - } - } - - setDirection(holes, false); - setDirection(solids, true); - this.holes = holes; - this.solids = solids; - } - - /** - * Sets the winding direction of a Vector of paths - * @param clockwise gives the direction, - * true = clockwise, false = counter-clockwise - */ - private void setDirection(Vector paths, boolean clockwise) - { - Segment v; - for (int i = 0; i < paths.size(); i++) - { - v = (Segment) paths.elementAt(i); - if (clockwise != v.hasClockwiseOrientation()) - v.reverseAll(); - } - } - - /** - * Class representing a linked-list of vertices forming a closed polygon, - * convex or concave, without holes. - */ - private abstract class Segment implements Cloneable - { - // segment type, PathIterator segment types are used. - Point2D P1; - Point2D P2; - Segment next; - Segment node; - - Segment() - { - P1 = P2 = null; - node = next = null; - } - - /** - * Reverses the direction of a single segment - */ - abstract void reverseCoords(); - - /** - * Returns the segment's midpoint - */ - abstract Point2D getMidPoint(); - - /** - * Returns the bounding box of this segment - */ - abstract Rectangle2D getBounds(); - - /** - * Transforms a single segment - */ - abstract void transform(AffineTransform at); - - /** - * Returns the PathIterator type of a segment - */ - abstract int getType(); - - /** - */ - abstract int splitIntersections(Segment b); - - /** - * Returns the PathIterator coords of a segment - */ - abstract int pathIteratorFormat(double[] coords); - - /** - * Returns the number of intersections on the positive X axis, - * with the origin at (x,y), used for contains()-testing - * - * (Although that could be done by the line-intersect methods, - * a dedicated method is better to guarantee consitent handling - * of endpoint-special-cases) - */ - abstract int rayCrossing(double x, double y); - - /** - * Subdivides the segment at parametric value t, inserting - * the new segment into the linked list after this, - * such that this becomes [0,t] and this.next becomes [t,1] - */ - abstract void subdivideInsert(double t); - - /** - * Returns twice the area of a curve, relative the P1-P2 line - * Used for area calculations. - */ - abstract double curveArea(); - - /** - * Compare two segments. - */ - abstract boolean equals(Segment b); - - /** - * Determines if this path of segments contains the point (x,y) - */ - boolean contains(double x, double y) - { - Segment v = this; - int crossings = 0; - do - { - int n = v.rayCrossing(x, y); - crossings += n; - v = v.next; - } - while (v != this); - return ((crossings & 1) == 1); - } - - /** - * Nulls all nodes of the path. Clean up any 'hairs'. - */ - void nullNodes() - { - Segment v = this; - do - { - v.node = null; - v = v.next; - } - while (v != this); - } - - /** - * Transforms each segment in the closed path - */ - void transformSegmentList(AffineTransform at) - { - Segment v = this; - do - { - v.transform(at); - v = v.next; - } - while (v != this); - } - - /** - * Determines the winding direction of the path - * By the sign of the area. - */ - boolean hasClockwiseOrientation() - { - return (getSignedArea() > 0.0); - } - - /** - * Returns the bounds of this path - */ - public Rectangle2D getPathBounds() - { - double xmin; - double xmax; - double ymin; - double ymax; - xmin = xmax = P1.getX(); - ymin = ymax = P1.getY(); - - Segment v = this; - do - { - Rectangle2D r = v.getBounds(); - xmin = Math.min(r.getMinX(), xmin); - ymin = Math.min(r.getMinY(), ymin); - xmax = Math.max(r.getMaxX(), xmax); - ymax = Math.max(r.getMaxY(), ymax); - v = v.next; - } - while (v != this); - - return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin))); - } - - /** - * Calculates twice the signed area of the path; - */ - double getSignedArea() - { - Segment s; - double area = 0.0; - - s = this; - do - { - area += s.curveArea(); - - area += s.P1.getX() * s.next.P1.getY() - - s.P1.getY() * s.next.P1.getX(); - s = s.next; - } - while (s != this); - - return area; - } - - /** - * Reverses the orientation of the whole polygon - */ - void reverseAll() - { - reverseCoords(); - Segment v = next; - Segment former = this; - while (v != this) - { - v.reverseCoords(); - Segment vnext = v.next; - v.next = former; - former = v; - v = vnext; - } - next = former; - } - - /** - * Inserts a Segment after this one - */ - void insert(Segment v) - { - Segment n = next; - next = v; - v.next = n; - } - - /** - * Returns if this segment path is polygonal - */ - boolean isPolygonal() - { - Segment v = this; - do - { - if (! (v instanceof LineSegment)) - return false; - v = v.next; - } - while (v != this); - return true; - } - - /** - * Clones this path - */ - Segment cloneSegmentList() throws CloneNotSupportedException - { - Vector list = new Vector(); - Segment v = next; - - while (v != this) - { - list.add(v); - v = v.next; - } - - Segment clone = (Segment) this.clone(); - v = clone; - for (int i = 0; i < list.size(); i++) - { - clone.next = (Segment) ((Segment) list.elementAt(i)).clone(); - clone = clone.next; - } - clone.next = v; - return v; - } - - /** - * Creates a node between this segment and segment b - * at the given intersection - * @return the number of nodes created (0 or 1) - */ - int createNode(Segment b, Intersection i) - { - Point2D p = i.p; - if ((pointEquals(P1, p) || pointEquals(P2, p)) - && (pointEquals(b.P1, p) || pointEquals(b.P2, p))) - return 0; - - subdivideInsert(i.ta); - b.subdivideInsert(i.tb); - - // snap points - b.P2 = b.next.P1 = P2 = next.P1 = i.p; - - node = b.next; - b.node = next; - return 1; - } - - /** - * Creates multiple nodes from a list of intersections, - * This must be done in the order of ascending parameters, - * and the parameters must be recalculated in accordance - * with each split. - * @return the number of nodes created - */ - protected int createNodes(Segment b, Intersection[] x) - { - Vector v = new Vector(); - for (int i = 0; i < x.length; i++) - { - Point2D p = x[i].p; - if (! ((pointEquals(P1, p) || pointEquals(P2, p)) - && (pointEquals(b.P1, p) || pointEquals(b.P2, p)))) - v.add(x[i]); - } - - int nNodes = v.size(); - Intersection[] A = new Intersection[nNodes]; - Intersection[] B = new Intersection[nNodes]; - for (int i = 0; i < nNodes; i++) - A[i] = B[i] = (Intersection) v.elementAt(i); - - // Create two lists sorted by the parameter - // Bubble sort, OK I suppose, since the number of intersections - // cannot be larger than 9 (cubic-cubic worst case) anyway - for (int i = 0; i < nNodes - 1; i++) - { - for (int j = i + 1; j < nNodes; j++) - { - if (A[i].ta > A[j].ta) - { - Intersection swap = A[i]; - A[i] = A[j]; - A[j] = swap; - } - if (B[i].tb > B[j].tb) - { - Intersection swap = B[i]; - B[i] = B[j]; - B[j] = swap; - } - } - } - // subdivide a - Segment s = this; - for (int i = 0; i < nNodes; i++) - { - s.subdivideInsert(A[i].ta); - - // renormalize the parameters - for (int j = i + 1; j < nNodes; j++) - A[j].ta = (A[j].ta - A[i].ta) / (1.0 - A[i].ta); - - A[i].seg = s; - s = s.next; - } - - // subdivide b, set nodes - s = b; - for (int i = 0; i < nNodes; i++) - { - s.subdivideInsert(B[i].tb); - - for (int j = i + 1; j < nNodes; j++) - B[j].tb = (B[j].tb - B[i].tb) / (1.0 - B[i].tb); - - // set nodes - B[i].seg.node = s.next; // node a -> b - s.node = B[i].seg.next; // node b -> a - - // snap points - B[i].seg.P2 = B[i].seg.next.P1 = s.P2 = s.next.P1 = B[i].p; - s = s.next; - } - return nNodes; - } - - /** - * Determines if two paths are equal. - * Colinear line segments are ignored in the comparison. - */ - boolean pathEquals(Segment B) - { - if (! getPathBounds().equals(B.getPathBounds())) - return false; - - Segment startA = getTopLeft(); - Segment startB = B.getTopLeft(); - Segment a = startA; - Segment b = startB; - do - { - if (! a.equals(b)) - return false; - - if (a instanceof LineSegment) - a = ((LineSegment) a).lastCoLinear(); - if (b instanceof LineSegment) - b = ((LineSegment) b).lastCoLinear(); - - a = a.next; - b = b.next; - } - while (a != startA && b != startB); - return true; - } - - /** - * Return the segment with the top-leftmost first point - */ - Segment getTopLeft() - { - Segment v = this; - Segment tl = this; - do - { - if (v.P1.getY() < tl.P1.getY()) - tl = v; - else if (v.P1.getY() == tl.P1.getY()) - { - if (v.P1.getX() < tl.P1.getX()) - tl = v; - } - v = v.next; - } - while (v != this); - return tl; - } - - /** - * Returns if the path has a segment outside a shape - */ - boolean isSegmentOutside(Shape shape) - { - return ! shape.contains(getMidPoint()); - } - } // class Segment - - private class LineSegment extends Segment - { - public LineSegment(double x1, double y1, double x2, double y2) - { - super(); - P1 = new Point2D.Double(x1, y1); - P2 = new Point2D.Double(x2, y2); - } - - public LineSegment(Point2D p1, Point2D p2) - { - super(); - P1 = (Point2D) p1.clone(); - P2 = (Point2D) p2.clone(); - } - - /** - * Clones this segment - */ - public Object clone() - { - return new LineSegment(P1, P2); - } - - /** - * Transforms the segment - */ - void transform(AffineTransform at) - { - P1 = at.transform(P1, null); - P2 = at.transform(P2, null); - } - - /** - * Swap start and end points - */ - void reverseCoords() - { - Point2D p = P1; - P1 = P2; - P2 = p; - } - - /** - * Returns the segment's midpoint - */ - Point2D getMidPoint() - { - return (new Point2D.Double(0.5 * (P1.getX() + P2.getX()), - 0.5 * (P1.getY() + P2.getY()))); - } - - /** - * Returns twice the area of a curve, relative the P1-P2 line - * Obviously, a line does not enclose any area besides the line - */ - double curveArea() - { - return 0; - } - - /** - * Returns the PathIterator type of a segment - */ - int getType() - { - return (PathIterator.SEG_LINETO); - } - - /** - * Subdivides the segment at parametric value t, inserting - * the new segment into the linked list after this, - * such that this becomes [0,t] and this.next becomes [t,1] - */ - void subdivideInsert(double t) - { - Point2D p = new Point2D.Double((P2.getX() - P1.getX()) * t + P1.getX(), - (P2.getY() - P1.getY()) * t + P1.getY()); - insert(new LineSegment(p, P2)); - P2 = p; - next.node = node; - node = null; - } - - /** - * Determines if two line segments are strictly colinear - */ - boolean isCoLinear(LineSegment b) - { - double x1 = P1.getX(); - double y1 = P1.getY(); - double x2 = P2.getX(); - double y2 = P2.getY(); - double x3 = b.P1.getX(); - double y3 = b.P1.getY(); - double x4 = b.P2.getX(); - double y4 = b.P2.getY(); - - if ((y1 - y3) * (x4 - x3) - (x1 - x3) * (y4 - y3) != 0.0) - return false; - - return ((x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3) == 0.0); - } - - /** - * Return the last segment colinear with this one. - * Used in comparing paths. - */ - Segment lastCoLinear() - { - Segment prev = this; - Segment v = next; - - while (v instanceof LineSegment) - { - if (isCoLinear((LineSegment) v)) - { - prev = v; - v = v.next; - } - else - return prev; - } - return prev; - } - - /** - * Compare two segments. - * We must take into account that the lines may be broken into colinear - * subsegments and ignore them. - */ - boolean equals(Segment b) - { - if (! (b instanceof LineSegment)) - return false; - Point2D p1 = P1; - Point2D p3 = b.P1; - - if (! p1.equals(p3)) - return false; - - Point2D p2 = lastCoLinear().P2; - Point2D p4 = ((LineSegment) b).lastCoLinear().P2; - return (p2.equals(p4)); - } - - /** - * Returns a line segment - */ - int pathIteratorFormat(double[] coords) - { - coords[0] = P2.getX(); - coords[1] = P2.getY(); - return (PathIterator.SEG_LINETO); - } - - /** - * Returns if the line has intersections. - */ - boolean hasIntersections(Segment b) - { - if (b instanceof LineSegment) - return (linesIntersect(this, (LineSegment) b) != null); - - if (b instanceof QuadSegment) - return (lineQuadIntersect(this, (QuadSegment) b) != null); - - if (b instanceof CubicSegment) - return (lineCubicIntersect(this, (CubicSegment) b) != null); - - return false; - } - - /** - * Splits intersections into nodes, - * This one handles line-line, line-quadratic, line-cubic - */ - int splitIntersections(Segment b) - { - if (b instanceof LineSegment) - { - Intersection i = linesIntersect(this, (LineSegment) b); - - if (i == null) - return 0; - - return createNode(b, i); - } - - Intersection[] x = null; - - if (b instanceof QuadSegment) - x = lineQuadIntersect(this, (QuadSegment) b); - - if (b instanceof CubicSegment) - x = lineCubicIntersect(this, (CubicSegment) b); - - if (x == null) - return 0; - - if (x.length == 1) - return createNode(b, (Intersection) x[0]); - - return createNodes(b, x); - } - - /** - * Returns the bounding box of this segment - */ - Rectangle2D getBounds() - { - return (new Rectangle2D.Double(Math.min(P1.getX(), P2.getX()), - Math.min(P1.getY(), P2.getY()), - Math.abs(P1.getX() - P2.getX()), - Math.abs(P1.getY() - P2.getY()))); - } - - /** - * Returns the number of intersections on the positive X axis, - * with the origin at (x,y), used for contains()-testing - */ - int rayCrossing(double x, double y) - { - double x0 = P1.getX() - x; - double y0 = P1.getY() - y; - double x1 = P2.getX() - x; - double y1 = P2.getY() - y; - - if (y0 * y1 > 0) - return 0; - - if (x0 < 0 && x1 < 0) - return 0; - - if (y0 == 0.0) - y0 -= EPSILON; - - if (y1 == 0.0) - y1 -= EPSILON; - - if (Line2D.linesIntersect(x0, y0, x1, y1, - EPSILON, 0.0, Double.MAX_VALUE, 0.0)) - return 1; - return 0; - } - } // class LineSegment - - /** - * Quadratic Bezier curve segment - * - * Note: Most peers don't support quadratics directly, so it might make - * sense to represent them as cubics internally and just be done with it. - * I think we should be peer-agnostic, however, and stay faithful to the - * input geometry types as far as possible. - */ - private class QuadSegment extends Segment - { - Point2D cp; // control point - - /** - * Constructor, takes the coordinates of the start, control, - * and end point, respectively. - */ - QuadSegment(double x1, double y1, double cx, double cy, double x2, - double y2) - { - super(); - P1 = new Point2D.Double(x1, y1); - P2 = new Point2D.Double(x2, y2); - cp = new Point2D.Double(cx, cy); - } - - /** - * Clones this segment - */ - public Object clone() - { - return new QuadSegment(P1.getX(), P1.getY(), cp.getX(), cp.getY(), - P2.getX(), P2.getY()); - } - - /** - * Returns twice the area of a curve, relative the P1-P2 line - * - * The area formula can be derived by using Green's formula in the - * plane on the parametric form of the bezier. - */ - double curveArea() - { - double x0 = P1.getX(); - double y0 = P1.getY(); - double x1 = cp.getX(); - double y1 = cp.getY(); - double x2 = P2.getX(); - double y2 = P2.getY(); - - double P = (y2 - 2 * y1 + y0); - double Q = 2 * (y1 - y0); - - double A = (x2 - 2 * x1 + x0); - double B = 2 * (x1 - x0); - - double area = (B * P - A * Q) / 3.0; - return (area); - } - - /** - * Compare two segments. - */ - boolean equals(Segment b) - { - if (! (b instanceof QuadSegment)) - return false; - - return (P1.equals(b.P1) && cp.equals(((QuadSegment) b).cp) - && P2.equals(b.P2)); - } - - /** - * Returns a Point2D corresponding to the parametric value t - * of the curve - */ - Point2D evaluatePoint(double t) - { - double x0 = P1.getX(); - double y0 = P1.getY(); - double x1 = cp.getX(); - double y1 = cp.getY(); - double x2 = P2.getX(); - double y2 = P2.getY(); - - return new Point2D.Double(t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0) - + x0, - t * t * (y2 - 2 * y1 + y0) + 2 * t * (y1 - y0) - + y0); - } - - /** - * Returns the bounding box of this segment - */ - Rectangle2D getBounds() - { - double x0 = P1.getX(); - double y0 = P1.getY(); - double x1 = cp.getX(); - double y1 = cp.getY(); - double x2 = P2.getX(); - double y2 = P2.getY(); - double r0; - double r1; - - double xmax = Math.max(x0, x2); - double ymax = Math.max(y0, y2); - double xmin = Math.min(x0, x2); - double ymin = Math.min(y0, y2); - - r0 = 2 * (y1 - y0); - r1 = 2 * (y2 - 2 * y1 + y0); - if (r1 != 0.0) - { - double t = -r0 / r1; - if (t > 0.0 && t < 1.0) - { - double y = evaluatePoint(t).getY(); - ymax = Math.max(y, ymax); - ymin = Math.min(y, ymin); - } - } - r0 = 2 * (x1 - x0); - r1 = 2 * (x2 - 2 * x1 + x0); - if (r1 != 0.0) - { - double t = -r0 / r1; - if (t > 0.0 && t < 1.0) - { - double x = evaluatePoint(t).getY(); - xmax = Math.max(x, xmax); - xmin = Math.min(x, xmin); - } - } - - return (new Rectangle2D.Double(xmin, ymin, xmax - xmin, ymax - ymin)); - } - - /** - * Returns a cubic segment corresponding to this curve - */ - CubicSegment getCubicSegment() - { - double x1 = P1.getX() + 2.0 * (cp.getX() - P1.getX()) / 3.0; - double y1 = P1.getY() + 2.0 * (cp.getY() - P1.getY()) / 3.0; - double x2 = cp.getX() + (P2.getX() - cp.getX()) / 3.0; - double y2 = cp.getY() + (P2.getY() - cp.getY()) / 3.0; - - return new CubicSegment(P1.getX(), P1.getY(), x1, y1, x2, y2, P2.getX(), - P2.getY()); - } - - /** - * Returns the segment's midpoint - */ - Point2D getMidPoint() - { - return evaluatePoint(0.5); - } - - /** - * Returns the PathIterator type of a segment - */ - int getType() - { - return (PathIterator.SEG_QUADTO); - } - - /** - * Returns the PathIterator coords of a segment - */ - int pathIteratorFormat(double[] coords) - { - coords[0] = cp.getX(); - coords[1] = cp.getY(); - coords[2] = P2.getX(); - coords[3] = P2.getY(); - return (PathIterator.SEG_QUADTO); - } - - /** - * Returns the number of intersections on the positive X axis, - * with the origin at (x,y), used for contains()-testing - */ - int rayCrossing(double x, double y) - { - double x0 = P1.getX() - x; - double y0 = P1.getY() - y; - double x1 = cp.getX() - x; - double y1 = cp.getY() - y; - double x2 = P2.getX() - x; - double y2 = P2.getY() - y; - double[] r = new double[3]; - int nRoots; - int nCrossings = 0; - - /* check if curve may intersect X+ axis. */ - if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0) && (y0 * y1 <= 0 || y1 * y2 <= 0)) - { - if (y0 == 0.0) - y0 -= EPSILON; - if (y2 == 0.0) - y2 -= EPSILON; - - r[0] = y0; - r[1] = 2 * (y1 - y0); - r[2] = (y2 - 2 * y1 + y0); - - nRoots = QuadCurve2D.solveQuadratic(r); - for (int i = 0; i < nRoots; i++) - if (r[i] > 0.0f && r[i] < 1.0f) - { - double t = r[i]; - if (t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0) + x0 > 0.0) - nCrossings++; - } - } - return nCrossings; - } - - /** - * Swap start and end points - */ - void reverseCoords() - { - Point2D temp = P1; - P1 = P2; - P2 = temp; - } - - /** - * Splits intersections into nodes, - * This one handles quadratic-quadratic only, - * Quadratic-line is passed on to the LineSegment class, - * Quadratic-cubic is passed on to the CubicSegment class - */ - int splitIntersections(Segment b) - { - if (b instanceof LineSegment) - return (b.splitIntersections(this)); - - if (b instanceof CubicSegment) - return (b.splitIntersections(this)); - - if (b instanceof QuadSegment) - { - // Use the cubic-cubic intersection routine for quads as well, - // Since a quadratic can be exactly described as a cubic, this - // should not be a problem; - // The recursion depth will be the same in any case. - Intersection[] x = cubicCubicIntersect(getCubicSegment(), - ((QuadSegment) b) - .getCubicSegment()); - if (x == null) - return 0; - - if (x.length == 1) - return createNode(b, (Intersection) x[0]); - - return createNodes(b, x); - } - return 0; - } - - /** - * Subdivides the segment at parametric value t, inserting - * the new segment into the linked list after this, - * such that this becomes [0,t] and this.next becomes [t,1] - */ - void subdivideInsert(double t) - { - double x0 = P1.getX(); - double y0 = P1.getY(); - double x1 = cp.getX(); - double y1 = cp.getY(); - double x2 = P2.getX(); - double y2 = P2.getY(); - - double p10x = x0 + t * (x1 - x0); - double p10y = y0 + t * (y1 - y0); - double p11x = x1 + t * (x2 - x1); - double p11y = y1 + t * (y2 - y1); - double p20x = p10x + t * (p11x - p10x); - double p20y = p10y + t * (p11y - p10y); - - insert(new QuadSegment(p20x, p20y, p11x, p11y, x2, y2)); - P2 = next.P1; - cp.setLocation(p10x, p10y); - - next.node = node; - node = null; - } - - /** - * Transforms the segment - */ - void transform(AffineTransform at) - { - P1 = at.transform(P1, null); - P2 = at.transform(P2, null); - cp = at.transform(cp, null); - } - } // class QuadSegment - - /** - * Cubic Bezier curve segment - */ - private class CubicSegment extends Segment - { - Point2D cp1; // control points - Point2D cp2; // control points - - /** - * Constructor - takes coordinates of the starting point, - * first control point, second control point and end point, - * respecively. - */ - public CubicSegment(double x1, double y1, double c1x, double c1y, - double c2x, double c2y, double x2, double y2) - { - super(); - P1 = new Point2D.Double(x1, y1); - P2 = new Point2D.Double(x2, y2); - cp1 = new Point2D.Double(c1x, c1y); - cp2 = new Point2D.Double(c2x, c2y); - } - - /** - * Clones this segment - */ - public Object clone() - { - return new CubicSegment(P1.getX(), P1.getY(), cp1.getX(), cp1.getY(), - cp2.getX(), cp2.getY(), P2.getX(), P2.getY()); - } - - /** - * Returns twice the area of a curve, relative the P1-P2 line - * - * The area formula can be derived by using Green's formula in the - * plane on the parametric form of the bezier. - */ - double curveArea() - { - double x0 = P1.getX(); - double y0 = P1.getY(); - double x1 = cp1.getX(); - double y1 = cp1.getY(); - double x2 = cp2.getX(); - double y2 = cp2.getY(); - double x3 = P2.getX(); - double y3 = P2.getY(); - - double P = y3 - 3 * y2 + 3 * y1 - y0; - double Q = 3 * (y2 + y0 - 2 * y1); - double R = 3 * (y1 - y0); - - double A = x3 - 3 * x2 + 3 * x1 - x0; - double B = 3 * (x2 + x0 - 2 * x1); - double C = 3 * (x1 - x0); - - double area = (B * P - A * Q) / 5.0 + (C * P - A * R) / 2.0 - + (C * Q - B * R) / 3.0; - - return (area); - } - - /** - * Compare two segments. - */ - boolean equals(Segment b) - { - if (! (b instanceof CubicSegment)) - return false; - - return (P1.equals(b.P1) && cp1.equals(((CubicSegment) b).cp1) - && cp2.equals(((CubicSegment) b).cp2) && P2.equals(b.P2)); - } - - /** - * Returns a Point2D corresponding to the parametric value t - * of the curve - */ - Point2D evaluatePoint(double t) - { - double x0 = P1.getX(); - double y0 = P1.getY(); - double x1 = cp1.getX(); - double y1 = cp1.getY(); - double x2 = cp2.getX(); - double y2 = cp2.getY(); - double x3 = P2.getX(); - double y3 = P2.getY(); - - return new Point2D.Double(-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3) - + 3 * t * t * (x0 - 2 * x1 + x2) - + 3 * t * (x1 - x0) + x0, - -(t * t * t) * (y0 - 3 * y1 + 3 * y2 - y3) - + 3 * t * t * (y0 - 2 * y1 + y2) - + 3 * t * (y1 - y0) + y0); - } - - /** - * Returns the bounding box of this segment - */ - Rectangle2D getBounds() - { - double x0 = P1.getX(); - double y0 = P1.getY(); - double x1 = cp1.getX(); - double y1 = cp1.getY(); - double x2 = cp2.getX(); - double y2 = cp2.getY(); - double x3 = P2.getX(); - double y3 = P2.getY(); - double[] r = new double[3]; - - double xmax = Math.max(x0, x3); - double ymax = Math.max(y0, y3); - double xmin = Math.min(x0, x3); - double ymin = Math.min(y0, y3); - - r[0] = 3 * (y1 - y0); - r[1] = 6.0 * (y2 + y0 - 2 * y1); - r[2] = 3.0 * (y3 - 3 * y2 + 3 * y1 - y0); - - int n = QuadCurve2D.solveQuadratic(r); - for (int i = 0; i < n; i++) - { - double t = r[i]; - if (t > 0 && t < 1.0) - { - double y = evaluatePoint(t).getY(); - ymax = Math.max(y, ymax); - ymin = Math.min(y, ymin); - } - } - - r[0] = 3 * (x1 - x0); - r[1] = 6.0 * (x2 + x0 - 2 * x1); - r[2] = 3.0 * (x3 - 3 * x2 + 3 * x1 - x0); - n = QuadCurve2D.solveQuadratic(r); - for (int i = 0; i < n; i++) - { - double t = r[i]; - if (t > 0 && t < 1.0) - { - double x = evaluatePoint(t).getX(); - xmax = Math.max(x, xmax); - xmin = Math.min(x, xmin); - } - } - return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin))); - } - - /** - * Returns a CubicCurve2D object corresponding to this segment. - */ - CubicCurve2D getCubicCurve2D() - { - return new CubicCurve2D.Double(P1.getX(), P1.getY(), cp1.getX(), - cp1.getY(), cp2.getX(), cp2.getY(), - P2.getX(), P2.getY()); - } - - /** - * Returns the parametric points of self-intersection if the cubic - * is self-intersecting, null otherwise. - */ - double[] getLoop() - { - double x0 = P1.getX(); - double y0 = P1.getY(); - double x1 = cp1.getX(); - double y1 = cp1.getY(); - double x2 = cp2.getX(); - double y2 = cp2.getY(); - double x3 = P2.getX(); - double y3 = P2.getY(); - double[] r = new double[4]; - double k; - double R; - double T; - double A; - double B; - double[] results = new double[2]; - - R = x3 - 3 * x2 + 3 * x1 - x0; - T = y3 - 3 * y2 + 3 * y1 - y0; - - // A qudratic - if (R == 0.0 && T == 0.0) - return null; - - // true cubic - if (R != 0.0 && T != 0.0) - { - A = 3 * (x2 + x0 - 2 * x1) / R; - B = 3 * (x1 - x0) / R; - - double P = 3 * (y2 + y0 - 2 * y1) / T; - double Q = 3 * (y1 - y0) / T; - - if (A == P || Q == B) - return null; - - k = (Q - B) / (A - P); - } - else - { - if (R == 0.0) - { - // quadratic in x - k = -(3 * (x1 - x0)) / (3 * (x2 + x0 - 2 * x1)); - A = 3 * (y2 + y0 - 2 * y1) / T; - B = 3 * (y1 - y0) / T; - } - else - { - // quadratic in y - k = -(3 * (y1 - y0)) / (3 * (y2 + y0 - 2 * y1)); - A = 3 * (x2 + x0 - 2 * x1) / R; - B = 3 * (x1 - x0) / R; - } - } - - r[0] = -k * k * k - A * k * k - B * k; - r[1] = 3 * k * k + 2 * k * A + 2 * B; - r[2] = -3 * k; - r[3] = 2; - - int n = CubicCurve2D.solveCubic(r); - if (n != 3) - return null; - - // sort r - double t; - for (int i = 0; i < 2; i++) - for (int j = i + 1; j < 3; j++) - if (r[j] < r[i]) - { - t = r[i]; - r[i] = r[j]; - r[j] = t; - } - - if (Math.abs(r[0] + r[2] - k) < 1E-13) - if (r[0] >= 0.0 && r[0] <= 1.0 && r[2] >= 0.0 && r[2] <= 1.0) - if (evaluatePoint(r[0]).distance(evaluatePoint(r[2])) < PE_EPSILON * 10) - { // we snap the points anyway - results[0] = r[0]; - results[1] = r[2]; - return (results); - } - return null; - } - - /** - * Returns the segment's midpoint - */ - Point2D getMidPoint() - { - return evaluatePoint(0.5); - } - - /** - * Returns the PathIterator type of a segment - */ - int getType() - { - return (PathIterator.SEG_CUBICTO); - } - - /** - * Returns the PathIterator coords of a segment - */ - int pathIteratorFormat(double[] coords) - { - coords[0] = cp1.getX(); - coords[1] = cp1.getY(); - coords[2] = cp2.getX(); - coords[3] = cp2.getY(); - coords[4] = P2.getX(); - coords[5] = P2.getY(); - return (PathIterator.SEG_CUBICTO); - } - - /** - * Returns the number of intersections on the positive X axis, - * with the origin at (x,y), used for contains()-testing - */ - int rayCrossing(double x, double y) - { - double x0 = P1.getX() - x; - double y0 = P1.getY() - y; - double x1 = cp1.getX() - x; - double y1 = cp1.getY() - y; - double x2 = cp2.getX() - x; - double y2 = cp2.getY() - y; - double x3 = P2.getX() - x; - double y3 = P2.getY() - y; - double[] r = new double[4]; - int nRoots; - int nCrossings = 0; - - /* check if curve may intersect X+ axis. */ - if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0 || x3 > 0.0) - && (y0 * y1 <= 0 || y1 * y2 <= 0 || y2 * y3 <= 0)) - { - if (y0 == 0.0) - y0 -= EPSILON; - if (y3 == 0.0) - y3 -= EPSILON; - - r[0] = y0; - r[1] = 3 * (y1 - y0); - r[2] = 3 * (y2 + y0 - 2 * y1); - r[3] = y3 - 3 * y2 + 3 * y1 - y0; - - if ((nRoots = CubicCurve2D.solveCubic(r)) > 0) - for (int i = 0; i < nRoots; i++) - { - if (r[i] > 0.0 && r[i] < 1.0) - { - double t = r[i]; - if (-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3) - + 3 * t * t * (x0 - 2 * x1 + x2) + 3 * t * (x1 - x0) - + x0 > 0.0) - nCrossings++; - } - } - } - return nCrossings; - } - - /** - * Swap start and end points - */ - void reverseCoords() - { - Point2D p = P1; - P1 = P2; - P2 = p; - p = cp1; // swap control points - cp1 = cp2; - cp2 = p; - } - - /** - * Splits intersections into nodes, - * This one handles cubic-cubic and cubic-quadratic intersections - */ - int splitIntersections(Segment b) - { - if (b instanceof LineSegment) - return (b.splitIntersections(this)); - - Intersection[] x = null; - - if (b instanceof QuadSegment) - x = cubicCubicIntersect(this, ((QuadSegment) b).getCubicSegment()); - - if (b instanceof CubicSegment) - x = cubicCubicIntersect(this, (CubicSegment) b); - - if (x == null) - return 0; - - if (x.length == 1) - return createNode(b, x[0]); - - return createNodes(b, x); - } - - /** - * Subdivides the segment at parametric value t, inserting - * the new segment into the linked list after this, - * such that this becomes [0,t] and this.next becomes [t,1] - */ - void subdivideInsert(double t) - { - CubicSegment s = (CubicSegment) clone(); - double p1x = (s.cp1.getX() - s.P1.getX()) * t + s.P1.getX(); - double p1y = (s.cp1.getY() - s.P1.getY()) * t + s.P1.getY(); - - double px = (s.cp2.getX() - s.cp1.getX()) * t + s.cp1.getX(); - double py = (s.cp2.getY() - s.cp1.getY()) * t + s.cp1.getY(); - - s.cp2.setLocation((s.P2.getX() - s.cp2.getX()) * t + s.cp2.getX(), - (s.P2.getY() - s.cp2.getY()) * t + s.cp2.getY()); - - s.cp1.setLocation((s.cp2.getX() - px) * t + px, - (s.cp2.getY() - py) * t + py); - - double p2x = (px - p1x) * t + p1x; - double p2y = (py - p1y) * t + p1y; - - double p3x = (s.cp1.getX() - p2x) * t + p2x; - double p3y = (s.cp1.getY() - p2y) * t + p2y; - s.P1.setLocation(p3x, p3y); - - // insert new curve - insert(s); - - // set this curve - cp1.setLocation(p1x, p1y); - cp2.setLocation(p2x, p2y); - P2 = s.P1; - next.node = node; - node = null; - } - - /** - * Transforms the segment - */ - void transform(AffineTransform at) - { - P1 = at.transform(P1, null); - P2 = at.transform(P2, null); - cp1 = at.transform(cp1, null); - cp2 = at.transform(cp2, null); - } - } // class CubicSegment -} // class Area |