aboutsummaryrefslogtreecommitdiff
path: root/libjava/java/awt/geom/Area.java
diff options
context:
space:
mode:
authorTom Tromey <tromey@redhat.com>2005-07-16 01:27:14 +0000
committerTom Tromey <tromey@gcc.gnu.org>2005-07-16 01:27:14 +0000
commitb0fa81eea9a270f23d6ad67ca7a6d25c18d20da1 (patch)
tree8762d1f992e2f725a6bde1ff966ed6f1e5f4f823 /libjava/java/awt/geom/Area.java
parentea54b29342c8506acb4f858c68340c44b72e3532 (diff)
downloadgcc-b0fa81eea9a270f23d6ad67ca7a6d25c18d20da1.zip
gcc-b0fa81eea9a270f23d6ad67ca7a6d25c18d20da1.tar.gz
gcc-b0fa81eea9a270f23d6ad67ca7a6d25c18d20da1.tar.bz2
Major merge with Classpath.
Removed many duplicate files. * HACKING: Updated.x * classpath: Imported new directory. * standard.omit: New file. * Makefile.in, aclocal.m4, configure: Rebuilt. * sources.am: New file. * configure.ac: Run Classpath configure script. Moved code around to support. Disable xlib AWT peers (temporarily). * Makefile.am (SUBDIRS): Added 'classpath' (JAVAC): Removed. (AM_CPPFLAGS): Added more -I options. (BOOTCLASSPATH): Simplified. Completely redid how sources are built. Include sources.am. * include/Makefile.am (tool_include__HEADERS): Removed jni.h. * include/jni.h: Removed (in Classpath). * scripts/classes.pl: Updated to look at built classes. * scripts/makemake.tcl: New file. * testsuite/libjava.jni/jni.exp (gcj_jni_compile_c_to_so): Added -I options. (gcj_jni_invocation_compile_c_to_binary): Likewise. From-SVN: r102082
Diffstat (limited to 'libjava/java/awt/geom/Area.java')
-rw-r--r--libjava/java/awt/geom/Area.java3312
1 files changed, 0 insertions, 3312 deletions
diff --git a/libjava/java/awt/geom/Area.java b/libjava/java/awt/geom/Area.java
deleted file mode 100644
index 7a0fac4..0000000
--- a/libjava/java/awt/geom/Area.java
+++ /dev/null
@@ -1,3312 +0,0 @@
-/* Area.java -- represents a shape built by constructive area geometry
- Copyright (C) 2002, 2004 Free Software Foundation
-
-This file is part of GNU Classpath.
-
-GNU Classpath is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU Classpath is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU Classpath; see the file COPYING. If not, write to the
-Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301 USA.
-
-Linking this library statically or dynamically with other modules is
-making a combined work based on this library. Thus, the terms and
-conditions of the GNU General Public License cover the whole
-combination.
-
-As a special exception, the copyright holders of this library give you
-permission to link this library with independent modules to produce an
-executable, regardless of the license terms of these independent
-modules, and to copy and distribute the resulting executable under
-terms of your choice, provided that you also meet, for each linked
-independent module, the terms and conditions of the license of that
-module. An independent module is a module which is not derived from
-or based on this library. If you modify this library, you may extend
-this exception to your version of the library, but you are not
-obligated to do so. If you do not wish to do so, delete this
-exception statement from your version. */
-
-package java.awt.geom;
-
-import java.awt.Rectangle;
-import java.awt.Shape;
-import java.util.Vector;
-
-
-/**
- * The Area class represents any area for the purpose of
- * Constructive Area Geometry (CAG) manipulations. CAG manipulations
- * work as an area-wise form of boolean logic, where the basic operations are:
- * <P><li>Add (in boolean algebra: A <B>or</B> B)<BR>
- * <li>Subtract (in boolean algebra: A <B>and</B> (<B>not</B> B) )<BR>
- * <li>Intersect (in boolean algebra: A <B>and</B> B)<BR>
- * <li>Exclusive Or <BR>
- * <img src="doc-files/Area-1.png" width="342" height="302"
- * alt="Illustration of CAG operations" /><BR>
- * Above is an illustration of the CAG operations on two ring shapes.<P>
- *
- * The contains and intersects() methods are also more accurate than the
- * specification of #Shape requires.<P>
- *
- * Please note that constructing an Area can be slow
- * (Self-intersection resolving is proportional to the square of
- * the number of segments).<P>
- * @see #add(Area)
- * @see #subtract(Area)
- * @see #intersect(Area)
- * @see #exclusiveOr(Area)
- *
- * @author Sven de Marothy (sven@physto.se)
- *
- * @since 1.2
- * @status Works, but could be faster and more reliable.
- */
-public class Area implements Shape, Cloneable
-{
- /**
- * General numerical precision
- */
- private static final double EPSILON = 1E-11;
-
- /**
- * recursive subdivision epsilon - (see getRecursionDepth)
- */
- private static final double RS_EPSILON = 1E-13;
-
- /**
- * Snap distance - points within this distance are considered equal
- */
- private static final double PE_EPSILON = 1E-11;
-
- /**
- * Segment vectors containing solid areas and holes
- * This is package-private to avoid an accessor method.
- */
- Vector solids;
-
- /**
- * Segment vectors containing solid areas and holes
- * This is package-private to avoid an accessor method.
- */
- Vector holes;
-
- /**
- * Vector (temporary) storing curve-curve intersections
- */
- private Vector cc_intersections;
-
- /**
- * Winding rule WIND_NON_ZERO used, after construction,
- * this is irrelevant.
- */
- private int windingRule;
-
- /**
- * Constructs an empty Area
- */
- public Area()
- {
- solids = new Vector();
- holes = new Vector();
- }
-
- /**
- * Constructs an Area from any given Shape. <P>
- *
- * If the Shape is self-intersecting, the created Area will consist
- * of non-self-intersecting subpaths, and any inner paths which
- * are found redundant in accordance with the Shape's winding rule
- * will not be included.
- *
- * @param s the shape (<code>null</code> not permitted).
- *
- * @throws NullPointerException if <code>s</code> is <code>null</code>.
- */
- public Area(Shape s)
- {
- this();
-
- Vector p = makeSegment(s);
-
- // empty path
- if (p == null)
- return;
-
- // delete empty paths
- for (int i = 0; i < p.size(); i++)
- if (((Segment) p.elementAt(i)).getSignedArea() == 0.0)
- p.remove(i--);
-
- /*
- * Resolve self intersecting paths into non-intersecting
- * solids and holes.
- * Algorithm is as follows:
- * 1: Create nodes at all self intersections
- * 2: Put all segments into a list
- * 3: Grab a segment, follow it, change direction at each node,
- * removing segments from the list in the process
- * 4: Repeat (3) until no segments remain in the list
- * 5: Remove redundant paths and sort into solids and holes
- */
- Vector paths = new Vector();
- Segment v;
-
- for (int i = 0; i < p.size(); i++)
- {
- Segment path = (Segment) p.elementAt(i);
- createNodesSelf(path);
- }
-
- if (p.size() > 1)
- {
- for (int i = 0; i < p.size() - 1; i++)
- for (int j = i + 1; j < p.size(); j++)
- {
- Segment path1 = (Segment) p.elementAt(i);
- Segment path2 = (Segment) p.elementAt(j);
- createNodes(path1, path2);
- }
- }
-
- // we have intersecting points.
- Vector segments = new Vector();
-
- for (int i = 0; i < p.size(); i++)
- {
- Segment path = v = (Segment) p.elementAt(i);
- do
- {
- segments.add(v);
- v = v.next;
- }
- while (v != path);
- }
-
- paths = weilerAtherton(segments);
- deleteRedundantPaths(paths);
- }
-
- /**
- * Performs an add (union) operation on this area with another Area.<BR>
- * @param area - the area to be unioned with this one
- */
- public void add(Area area)
- {
- if (equals(area))
- return;
- if (area.isEmpty())
- return;
-
- Area B = (Area) area.clone();
-
- Vector pathA = new Vector();
- Vector pathB = new Vector();
- pathA.addAll(solids);
- pathA.addAll(holes);
- pathB.addAll(B.solids);
- pathB.addAll(B.holes);
-
- int nNodes = 0;
-
- for (int i = 0; i < pathA.size(); i++)
- {
- Segment a = (Segment) pathA.elementAt(i);
- for (int j = 0; j < pathB.size(); j++)
- {
- Segment b = (Segment) pathB.elementAt(j);
- nNodes += createNodes(a, b);
- }
- }
-
- Vector paths = new Vector();
- Segment v;
-
- // we have intersecting points.
- Vector segments = new Vector();
-
- // In a union operation, we keep all
- // segments of A oustide B and all B outside A
- for (int i = 0; i < pathA.size(); i++)
- {
- v = (Segment) pathA.elementAt(i);
- Segment path = v;
- do
- {
- if (v.isSegmentOutside(area))
- segments.add(v);
- v = v.next;
- }
- while (v != path);
- }
-
- for (int i = 0; i < pathB.size(); i++)
- {
- v = (Segment) pathB.elementAt(i);
- Segment path = v;
- do
- {
- if (v.isSegmentOutside(this))
- segments.add(v);
- v = v.next;
- }
- while (v != path);
- }
-
- paths = weilerAtherton(segments);
- deleteRedundantPaths(paths);
- }
-
- /**
- * Performs a subtraction operation on this Area.<BR>
- * @param area the area to be subtracted from this area.
- * @throws NullPointerException if <code>area</code> is <code>null</code>.
- */
- public void subtract(Area area)
- {
- if (isEmpty() || area.isEmpty())
- return;
-
- if (equals(area))
- {
- reset();
- return;
- }
-
- Vector pathA = new Vector();
- Area B = (Area) area.clone();
- pathA.addAll(solids);
- pathA.addAll(holes);
-
- // reverse the directions of B paths.
- setDirection(B.holes, true);
- setDirection(B.solids, false);
-
- Vector pathB = new Vector();
- pathB.addAll(B.solids);
- pathB.addAll(B.holes);
-
- int nNodes = 0;
-
- // create nodes
- for (int i = 0; i < pathA.size(); i++)
- {
- Segment a = (Segment) pathA.elementAt(i);
- for (int j = 0; j < pathB.size(); j++)
- {
- Segment b = (Segment) pathB.elementAt(j);
- nNodes += createNodes(a, b);
- }
- }
-
- Vector paths = new Vector();
-
- // we have intersecting points.
- Vector segments = new Vector();
-
- // In a subtraction operation, we keep all
- // segments of A oustide B and all B within A
- // We outsideness-test only one segment in each path
- // and the segments before and after any node
- for (int i = 0; i < pathA.size(); i++)
- {
- Segment v = (Segment) pathA.elementAt(i);
- Segment path = v;
- if (v.isSegmentOutside(area) && v.node == null)
- segments.add(v);
- boolean node = false;
- do
- {
- if ((v.node != null || node))
- {
- node = (v.node != null);
- if (v.isSegmentOutside(area))
- segments.add(v);
- }
- v = v.next;
- }
- while (v != path);
- }
-
- for (int i = 0; i < pathB.size(); i++)
- {
- Segment v = (Segment) pathB.elementAt(i);
- Segment path = v;
- if (! v.isSegmentOutside(this) && v.node == null)
- segments.add(v);
- v = v.next;
- boolean node = false;
- do
- {
- if ((v.node != null || node))
- {
- node = (v.node != null);
- if (! v.isSegmentOutside(this))
- segments.add(v);
- }
- v = v.next;
- }
- while (v != path);
- }
-
- paths = weilerAtherton(segments);
- deleteRedundantPaths(paths);
- }
-
- /**
- * Performs an intersection operation on this Area.<BR>
- * @param area - the area to be intersected with this area.
- * @throws NullPointerException if <code>area</code> is <code>null</code>.
- */
- public void intersect(Area area)
- {
- if (isEmpty() || area.isEmpty())
- {
- reset();
- return;
- }
- if (equals(area))
- return;
-
- Vector pathA = new Vector();
- Area B = (Area) area.clone();
- pathA.addAll(solids);
- pathA.addAll(holes);
-
- Vector pathB = new Vector();
- pathB.addAll(B.solids);
- pathB.addAll(B.holes);
-
- int nNodes = 0;
-
- // create nodes
- for (int i = 0; i < pathA.size(); i++)
- {
- Segment a = (Segment) pathA.elementAt(i);
- for (int j = 0; j < pathB.size(); j++)
- {
- Segment b = (Segment) pathB.elementAt(j);
- nNodes += createNodes(a, b);
- }
- }
-
- Vector paths = new Vector();
-
- // we have intersecting points.
- Vector segments = new Vector();
-
- // In an intersection operation, we keep all
- // segments of A within B and all B within A
- // (The rest must be redundant)
- // We outsideness-test only one segment in each path
- // and the segments before and after any node
- for (int i = 0; i < pathA.size(); i++)
- {
- Segment v = (Segment) pathA.elementAt(i);
- Segment path = v;
- if (! v.isSegmentOutside(area) && v.node == null)
- segments.add(v);
- boolean node = false;
- do
- {
- if ((v.node != null || node))
- {
- node = (v.node != null);
- if (! v.isSegmentOutside(area))
- segments.add(v);
- }
- v = v.next;
- }
- while (v != path);
- }
-
- for (int i = 0; i < pathB.size(); i++)
- {
- Segment v = (Segment) pathB.elementAt(i);
- Segment path = v;
- if (! v.isSegmentOutside(this) && v.node == null)
- segments.add(v);
- v = v.next;
- boolean node = false;
- do
- {
- if ((v.node != null || node))
- {
- node = (v.node != null);
- if (! v.isSegmentOutside(this))
- segments.add(v);
- }
- v = v.next;
- }
- while (v != path);
- }
-
- paths = weilerAtherton(segments);
- deleteRedundantPaths(paths);
- }
-
- /**
- * Performs an exclusive-or operation on this Area.<BR>
- * @param area - the area to be XORed with this area.
- * @throws NullPointerException if <code>area</code> is <code>null</code>.
- */
- public void exclusiveOr(Area area)
- {
- if (area.isEmpty())
- return;
-
- if (isEmpty())
- {
- Area B = (Area) area.clone();
- solids = B.solids;
- holes = B.holes;
- return;
- }
- if (equals(area))
- {
- reset();
- return;
- }
-
- Vector pathA = new Vector();
-
- Area B = (Area) area.clone();
- Vector pathB = new Vector();
- pathA.addAll(solids);
- pathA.addAll(holes);
-
- // reverse the directions of B paths.
- setDirection(B.holes, true);
- setDirection(B.solids, false);
- pathB.addAll(B.solids);
- pathB.addAll(B.holes);
-
- int nNodes = 0;
-
- for (int i = 0; i < pathA.size(); i++)
- {
- Segment a = (Segment) pathA.elementAt(i);
- for (int j = 0; j < pathB.size(); j++)
- {
- Segment b = (Segment) pathB.elementAt(j);
- nNodes += createNodes(a, b);
- }
- }
-
- Vector paths = new Vector();
- Segment v;
-
- // we have intersecting points.
- Vector segments = new Vector();
-
- // In an XOR operation, we operate on all segments
- for (int i = 0; i < pathA.size(); i++)
- {
- v = (Segment) pathA.elementAt(i);
- Segment path = v;
- do
- {
- segments.add(v);
- v = v.next;
- }
- while (v != path);
- }
-
- for (int i = 0; i < pathB.size(); i++)
- {
- v = (Segment) pathB.elementAt(i);
- Segment path = v;
- do
- {
- segments.add(v);
- v = v.next;
- }
- while (v != path);
- }
-
- paths = weilerAtherton(segments);
- deleteRedundantPaths(paths);
- }
-
- /**
- * Clears the Area object, creating an empty area.
- */
- public void reset()
- {
- solids = new Vector();
- holes = new Vector();
- }
-
- /**
- * Returns whether this area encloses any area.
- * @return true if the object encloses any area.
- */
- public boolean isEmpty()
- {
- if (solids.size() == 0)
- return true;
-
- double totalArea = 0;
- for (int i = 0; i < solids.size(); i++)
- totalArea += Math.abs(((Segment) solids.elementAt(i)).getSignedArea());
- for (int i = 0; i < holes.size(); i++)
- totalArea -= Math.abs(((Segment) holes.elementAt(i)).getSignedArea());
- if (totalArea <= EPSILON)
- return true;
-
- return false;
- }
-
- /**
- * Determines whether the Area consists entirely of line segments
- * @return true if the Area lines-only, false otherwise
- */
- public boolean isPolygonal()
- {
- for (int i = 0; i < holes.size(); i++)
- if (! ((Segment) holes.elementAt(i)).isPolygonal())
- return false;
- for (int i = 0; i < solids.size(); i++)
- if (! ((Segment) solids.elementAt(i)).isPolygonal())
- return false;
- return true;
- }
-
- /**
- * Determines if the Area is rectangular.<P>
- *
- * This is strictly qualified. An area is considered rectangular if:<BR>
- * <li>It consists of a single polygonal path.<BR>
- * <li>It is oriented parallel/perpendicular to the xy axis<BR>
- * <li>It must be exactly rectangular, i.e. small errors induced by
- * transformations may cause a false result, although the area is
- * visibly rectangular.<P>
- * @return true if the above criteria are met, false otherwise
- */
- public boolean isRectangular()
- {
- if (isEmpty())
- return true;
-
- if (holes.size() != 0 || solids.size() != 1)
- return false;
-
- Segment path = (Segment) solids.elementAt(0);
- if (! path.isPolygonal())
- return false;
-
- int nCorners = 0;
- Segment s = path;
- do
- {
- Segment s2 = s.next;
- double d1 = (s.P2.getX() - s.P1.getX())*(s2.P2.getX() - s2.P1.getX())/
- ((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2)));
- double d2 = (s.P2.getY() - s.P1.getY())*(s2.P2.getY() - s2.P1.getY())/
- ((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2)));
- double dotproduct = d1 + d2;
-
- // For some reason, only rectangles on the XY axis count.
- if (d1 != 0 && d2 != 0)
- return false;
-
- if (Math.abs(dotproduct) == 0) // 90 degree angle
- nCorners++;
- else if ((Math.abs(1.0 - dotproduct) > 0)) // 0 degree angle?
- return false; // if not, return false
-
- s = s.next;
- }
- while (s != path);
-
- return nCorners == 4;
- }
-
- /**
- * Returns whether the Area consists of more than one simple
- * (non self-intersecting) subpath.
- *
- * @return true if the Area consists of none or one simple subpath,
- * false otherwise.
- */
- public boolean isSingular()
- {
- return (holes.size() == 0 && solids.size() <= 1);
- }
-
- /**
- * Returns the bounding box of the Area.<P> Unlike the CubicCurve2D and
- * QuadraticCurve2D classes, this method will return the tightest possible
- * bounding box, evaluating the extreme points of each curved segment.<P>
- * @return the bounding box
- */
- public Rectangle2D getBounds2D()
- {
- if (solids.size() == 0)
- return new Rectangle2D.Double(0.0, 0.0, 0.0, 0.0);
-
- double xmin;
- double xmax;
- double ymin;
- double ymax;
- xmin = xmax = ((Segment) solids.elementAt(0)).P1.getX();
- ymin = ymax = ((Segment) solids.elementAt(0)).P1.getY();
-
- for (int path = 0; path < solids.size(); path++)
- {
- Rectangle2D r = ((Segment) solids.elementAt(path)).getPathBounds();
- xmin = Math.min(r.getMinX(), xmin);
- ymin = Math.min(r.getMinY(), ymin);
- xmax = Math.max(r.getMaxX(), xmax);
- ymax = Math.max(r.getMaxY(), ymax);
- }
-
- return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
- }
-
- /**
- * Returns the bounds of this object in Rectangle format.
- * Please note that this may lead to loss of precision.
- *
- * @return The bounds.
- * @see #getBounds2D()
- */
- public Rectangle getBounds()
- {
- return getBounds2D().getBounds();
- }
-
- /**
- * Create a new area of the same run-time type with the same contents as
- * this one.
- *
- * @return the clone
- */
- public Object clone()
- {
- try
- {
- Area clone = new Area();
- for (int i = 0; i < solids.size(); i++)
- clone.solids.add(((Segment) solids.elementAt(i)).cloneSegmentList());
- for (int i = 0; i < holes.size(); i++)
- clone.holes.add(((Segment) holes.elementAt(i)).cloneSegmentList());
- return clone;
- }
- catch (CloneNotSupportedException e)
- {
- throw (Error) new InternalError().initCause(e); // Impossible
- }
- }
-
- /**
- * Compares two Areas.
- *
- * @param area the area to compare against this area (<code>null</code>
- * permitted).
- * @return <code>true</code> if the areas are equal, and <code>false</code>
- * otherwise.
- */
- public boolean equals(Area area)
- {
- if (area == null)
- return false;
-
- if (! getBounds2D().equals(area.getBounds2D()))
- return false;
-
- if (solids.size() != area.solids.size()
- || holes.size() != area.holes.size())
- return false;
-
- Vector pathA = new Vector();
- pathA.addAll(solids);
- pathA.addAll(holes);
- Vector pathB = new Vector();
- pathB.addAll(area.solids);
- pathB.addAll(area.holes);
-
- int nPaths = pathA.size();
- boolean[][] match = new boolean[2][nPaths];
-
- for (int i = 0; i < nPaths; i++)
- {
- for (int j = 0; j < nPaths; j++)
- {
- Segment p1 = (Segment) pathA.elementAt(i);
- Segment p2 = (Segment) pathB.elementAt(j);
- if (! match[0][i] && ! match[1][j])
- if (p1.pathEquals(p2))
- match[0][i] = match[1][j] = true;
- }
- }
-
- boolean result = true;
- for (int i = 0; i < nPaths; i++)
- result = result && match[0][i] && match[1][i];
- return result;
- }
-
- /**
- * Transforms this area by the AffineTransform at.
- *
- * @param at the transform.
- */
- public void transform(AffineTransform at)
- {
- for (int i = 0; i < solids.size(); i++)
- ((Segment) solids.elementAt(i)).transformSegmentList(at);
- for (int i = 0; i < holes.size(); i++)
- ((Segment) holes.elementAt(i)).transformSegmentList(at);
-
- // Note that the orientation is not invariant under inversion
- if ((at.getType() & AffineTransform.TYPE_FLIP) != 0)
- {
- setDirection(holes, false);
- setDirection(solids, true);
- }
- }
-
- /**
- * Returns a new Area equal to this one, transformed
- * by the AffineTransform at.
- * @param at the transform.
- * @return the transformed area
- * @throws NullPointerException if <code>at</code> is <code>null</code>.
- */
- public Area createTransformedArea(AffineTransform at)
- {
- Area a = (Area) clone();
- a.transform(at);
- return a;
- }
-
- /**
- * Determines if the point (x,y) is contained within this Area.
- *
- * @param x the x-coordinate of the point.
- * @param y the y-coordinate of the point.
- * @return true if the point is contained, false otherwise.
- */
- public boolean contains(double x, double y)
- {
- int n = 0;
- for (int i = 0; i < solids.size(); i++)
- if (((Segment) solids.elementAt(i)).contains(x, y))
- n++;
-
- for (int i = 0; i < holes.size(); i++)
- if (((Segment) holes.elementAt(i)).contains(x, y))
- n--;
-
- return (n != 0);
- }
-
- /**
- * Determines if the Point2D p is contained within this Area.
- *
- * @param p the point.
- * @return <code>true</code> if the point is contained, <code>false</code>
- * otherwise.
- * @throws NullPointerException if <code>p</code> is <code>null</code>.
- */
- public boolean contains(Point2D p)
- {
- return contains(p.getX(), p.getY());
- }
-
- /**
- * Determines if the rectangle specified by (x,y) as the upper-left
- * and with width w and height h is completely contained within this Area,
- * returns false otherwise.<P>
- *
- * This method should always produce the correct results, unlike for other
- * classes in geom.
- *
- * @param x the x-coordinate of the rectangle.
- * @param y the y-coordinate of the rectangle.
- * @param w the width of the the rectangle.
- * @param h the height of the rectangle.
- * @return <code>true</code> if the rectangle is considered contained
- */
- public boolean contains(double x, double y, double w, double h)
- {
- LineSegment[] l = new LineSegment[4];
- l[0] = new LineSegment(x, y, x + w, y);
- l[1] = new LineSegment(x, y + h, x + w, y + h);
- l[2] = new LineSegment(x, y, x, y + h);
- l[3] = new LineSegment(x + w, y, x + w, y + h);
-
- // Since every segment in the area must a contour
- // between inside/outside segments, ANY intersection
- // will mean the rectangle is not entirely contained.
- for (int i = 0; i < 4; i++)
- {
- for (int path = 0; path < solids.size(); path++)
- {
- Segment v;
- Segment start;
- start = v = (Segment) solids.elementAt(path);
- do
- {
- if (l[i].hasIntersections(v))
- return false;
- v = v.next;
- }
- while (v != start);
- }
- for (int path = 0; path < holes.size(); path++)
- {
- Segment v;
- Segment start;
- start = v = (Segment) holes.elementAt(path);
- do
- {
- if (l[i].hasIntersections(v))
- return false;
- v = v.next;
- }
- while (v != start);
- }
- }
-
- // Is any point inside?
- if (! contains(x, y))
- return false;
-
- // Final hoop: Is the rectangle non-intersecting and inside,
- // but encloses a hole?
- Rectangle2D r = new Rectangle2D.Double(x, y, w, h);
- for (int path = 0; path < holes.size(); path++)
- if (! ((Segment) holes.elementAt(path)).isSegmentOutside(r))
- return false;
-
- return true;
- }
-
- /**
- * Determines if the Rectangle2D specified by r is completely contained
- * within this Area, returns false otherwise.<P>
- *
- * This method should always produce the correct results, unlike for other
- * classes in geom.
- *
- * @param r the rectangle.
- * @return <code>true</code> if the rectangle is considered contained
- *
- * @throws NullPointerException if <code>r</code> is <code>null</code>.
- */
- public boolean contains(Rectangle2D r)
- {
- return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
- }
-
- /**
- * Determines if the rectangle specified by (x,y) as the upper-left
- * and with width w and height h intersects any part of this Area.
- *
- * @param x the x-coordinate for the rectangle.
- * @param y the y-coordinate for the rectangle.
- * @param w the width of the rectangle.
- * @param h the height of the rectangle.
- * @return <code>true</code> if the rectangle intersects the area,
- * <code>false</code> otherwise.
- */
- public boolean intersects(double x, double y, double w, double h)
- {
- if (solids.size() == 0)
- return false;
-
- LineSegment[] l = new LineSegment[4];
- l[0] = new LineSegment(x, y, x + w, y);
- l[1] = new LineSegment(x, y + h, x + w, y + h);
- l[2] = new LineSegment(x, y, x, y + h);
- l[3] = new LineSegment(x + w, y, x + w, y + h);
-
- // Return true on any intersection
- for (int i = 0; i < 4; i++)
- {
- for (int path = 0; path < solids.size(); path++)
- {
- Segment v;
- Segment start;
- start = v = (Segment) solids.elementAt(path);
- do
- {
- if (l[i].hasIntersections(v))
- return true;
- v = v.next;
- }
- while (v != start);
- }
- for (int path = 0; path < holes.size(); path++)
- {
- Segment v;
- Segment start;
- start = v = (Segment) holes.elementAt(path);
- do
- {
- if (l[i].hasIntersections(v))
- return true;
- v = v.next;
- }
- while (v != start);
- }
- }
-
- // Non-intersecting, Is any point inside?
- if (contains(x + w * 0.5, y + h * 0.5))
- return true;
-
- // What if the rectangle encloses the whole shape?
- Point2D p = ((Segment) solids.elementAt(0)).getMidPoint();
- if ((new Rectangle2D.Double(x, y, w, h)).contains(p))
- return true;
- return false;
- }
-
- /**
- * Determines if the Rectangle2D specified by r intersects any
- * part of this Area.
- * @param r the rectangle to test intersection with (<code>null</code>
- * not permitted).
- * @return <code>true</code> if the rectangle intersects the area,
- * <code>false</code> otherwise.
- * @throws NullPointerException if <code>r</code> is <code>null</code>.
- */
- public boolean intersects(Rectangle2D r)
- {
- return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
- }
-
- /**
- * Returns a PathIterator object defining the contour of this Area,
- * transformed by at.
- *
- * @param at the transform.
- * @return A path iterator.
- */
- public PathIterator getPathIterator(AffineTransform at)
- {
- return (new AreaIterator(at));
- }
-
- /**
- * Returns a flattened PathIterator object defining the contour of this
- * Area, transformed by at and with a defined flatness.
- *
- * @param at the transform.
- * @param flatness the flatness.
- * @return A path iterator.
- */
- public PathIterator getPathIterator(AffineTransform at, double flatness)
- {
- return new FlatteningPathIterator(getPathIterator(at), flatness);
- }
-
- //---------------------------------------------------------------------
- // Non-public methods and classes
-
- /**
- * Private pathiterator object.
- */
- private class AreaIterator implements PathIterator
- {
- private Vector segments;
- private int index;
- private AffineTransform at;
-
- // Simple compound type for segments
- class IteratorSegment
- {
- int type;
- double[] coords;
-
- IteratorSegment()
- {
- coords = new double[6];
- }
- }
-
- /**
- * The contructor here does most of the work,
- * creates a vector of IteratorSegments, which can
- * readily be returned
- */
- public AreaIterator(AffineTransform at)
- {
- this.at = at;
- index = 0;
- segments = new Vector();
- Vector allpaths = new Vector();
- allpaths.addAll(solids);
- allpaths.addAll(holes);
-
- for (int i = 0; i < allpaths.size(); i++)
- {
- Segment v = (Segment) allpaths.elementAt(i);
- Segment start = v;
-
- IteratorSegment is = new IteratorSegment();
- is.type = SEG_MOVETO;
- is.coords[0] = start.P1.getX();
- is.coords[1] = start.P1.getY();
- segments.add(is);
-
- do
- {
- is = new IteratorSegment();
- is.type = v.pathIteratorFormat(is.coords);
- segments.add(is);
- v = v.next;
- }
- while (v != start);
-
- is = new IteratorSegment();
- is.type = SEG_CLOSE;
- segments.add(is);
- }
- }
-
- public int currentSegment(double[] coords)
- {
- IteratorSegment s = (IteratorSegment) segments.elementAt(index);
- if (at != null)
- at.transform(s.coords, 0, coords, 0, 3);
- else
- for (int i = 0; i < 6; i++)
- coords[i] = s.coords[i];
- return (s.type);
- }
-
- public int currentSegment(float[] coords)
- {
- IteratorSegment s = (IteratorSegment) segments.elementAt(index);
- double[] d = new double[6];
- if (at != null)
- {
- at.transform(s.coords, 0, d, 0, 3);
- for (int i = 0; i < 6; i++)
- coords[i] = (float) d[i];
- }
- else
- for (int i = 0; i < 6; i++)
- coords[i] = (float) s.coords[i];
- return (s.type);
- }
-
- // Note that the winding rule should not matter here,
- // EVEN_ODD is chosen because it renders faster.
- public int getWindingRule()
- {
- return (PathIterator.WIND_EVEN_ODD);
- }
-
- public boolean isDone()
- {
- return (index >= segments.size());
- }
-
- public void next()
- {
- index++;
- }
- }
-
- /**
- * Performs the fundamental task of the Weiler-Atherton algorithm,
- * traverse a list of segments, for each segment:
- * Follow it, removing segments from the list and switching paths
- * at each node. Do so until the starting segment is reached.
- *
- * Returns a Vector of the resulting paths.
- */
- private Vector weilerAtherton(Vector segments)
- {
- Vector paths = new Vector();
- while (segments.size() > 0)
- {
- // Iterate over the path
- Segment start = (Segment) segments.elementAt(0);
- Segment s = start;
- do
- {
- segments.remove(s);
- if (s.node != null)
- { // switch over
- s.next = s.node;
- s.node = null;
- }
- s = s.next; // continue
- }
- while (s != start);
-
- paths.add(start);
- }
- return paths;
- }
-
- /**
- * A small wrapper class to store intersection points
- */
- private class Intersection
- {
- Point2D p; // the 2D point of intersection
- double ta; // the parametric value on a
- double tb; // the parametric value on b
- Segment seg; // segment placeholder for node setting
-
- public Intersection(Point2D p, double ta, double tb)
- {
- this.p = p;
- this.ta = ta;
- this.tb = tb;
- }
- }
-
- /**
- * Returns the recursion depth necessary to approximate the
- * curve by line segments within the error RS_EPSILON.
- *
- * This is done with Wang's formula:
- * L0 = max{0<=i<=N-2}(|xi - 2xi+1 + xi+2|,|yi - 2yi+1 + yi+2|)
- * r0 = log4(sqrt(2)*N*(N-1)*L0/8e)
- * Where e is the maximum distance error (RS_EPSILON)
- */
- private int getRecursionDepth(CubicSegment curve)
- {
- double x0 = curve.P1.getX();
- double y0 = curve.P1.getY();
-
- double x1 = curve.cp1.getX();
- double y1 = curve.cp1.getY();
-
- double x2 = curve.cp2.getX();
- double y2 = curve.cp2.getY();
-
- double x3 = curve.P2.getX();
- double y3 = curve.P2.getY();
-
- double L0 = Math.max(Math.max(Math.abs(x0 - 2 * x1 + x2),
- Math.abs(x1 - 2 * x2 + x3)),
- Math.max(Math.abs(y0 - 2 * y1 + y2),
- Math.abs(y1 - 2 * y2 + y3)));
-
- double f = Math.sqrt(2) * 6.0 * L0 / (8.0 * RS_EPSILON);
-
- int r0 = (int) Math.ceil(Math.log(f) / Math.log(4.0));
- return (r0);
- }
-
- /**
- * Performs recursive subdivision:
- * @param c1 - curve 1
- * @param c2 - curve 2
- * @param depth1 - recursion depth of curve 1
- * @param depth2 - recursion depth of curve 2
- * @param t1 - global parametric value of the first curve's starting point
- * @param t2 - global parametric value of the second curve's starting point
- * @param w1 - global parametric length of curve 1
- * @param c1 - global parametric length of curve 2
- *
- * The final four parameters are for keeping track of the parametric
- * value of the curve. For a full curve t = 0, w = 1, w is halved with
- * each subdivision.
- */
- private void recursiveSubdivide(CubicCurve2D c1, CubicCurve2D c2,
- int depth1, int depth2, double t1,
- double t2, double w1, double w2)
- {
- boolean flat1 = depth1 <= 0;
- boolean flat2 = depth2 <= 0;
-
- if (flat1 && flat2)
- {
- double xlk = c1.getP2().getX() - c1.getP1().getX();
- double ylk = c1.getP2().getY() - c1.getP1().getY();
-
- double xnm = c2.getP2().getX() - c2.getP1().getX();
- double ynm = c2.getP2().getY() - c2.getP1().getY();
-
- double xmk = c2.getP1().getX() - c1.getP1().getX();
- double ymk = c2.getP1().getY() - c1.getP1().getY();
- double det = xnm * ylk - ynm * xlk;
-
- if (det + 1.0 == 1.0)
- return;
-
- double detinv = 1.0 / det;
- double s = (xnm * ymk - ynm * xmk) * detinv;
- double t = (xlk * ymk - ylk * xmk) * detinv;
- if ((s < 0.0) || (s > 1.0) || (t < 0.0) || (t > 1.0))
- return;
-
- double[] temp = new double[2];
- temp[0] = t1 + s * w1;
- temp[1] = t2 + t * w1;
- cc_intersections.add(temp);
- return;
- }
-
- CubicCurve2D.Double c11 = new CubicCurve2D.Double();
- CubicCurve2D.Double c12 = new CubicCurve2D.Double();
- CubicCurve2D.Double c21 = new CubicCurve2D.Double();
- CubicCurve2D.Double c22 = new CubicCurve2D.Double();
-
- if (! flat1 && ! flat2)
- {
- depth1--;
- depth2--;
- w1 = w1 * 0.5;
- w2 = w2 * 0.5;
- c1.subdivide(c11, c12);
- c2.subdivide(c21, c22);
- if (c11.getBounds2D().intersects(c21.getBounds2D()))
- recursiveSubdivide(c11, c21, depth1, depth2, t1, t2, w1, w2);
- if (c11.getBounds2D().intersects(c22.getBounds2D()))
- recursiveSubdivide(c11, c22, depth1, depth2, t1, t2 + w2, w1, w2);
- if (c12.getBounds2D().intersects(c21.getBounds2D()))
- recursiveSubdivide(c12, c21, depth1, depth2, t1 + w1, t2, w1, w2);
- if (c12.getBounds2D().intersects(c22.getBounds2D()))
- recursiveSubdivide(c12, c22, depth1, depth2, t1 + w1, t2 + w2, w1, w2);
- return;
- }
-
- if (! flat1)
- {
- depth1--;
- c1.subdivide(c11, c12);
- w1 = w1 * 0.5;
- if (c11.getBounds2D().intersects(c2.getBounds2D()))
- recursiveSubdivide(c11, c2, depth1, depth2, t1, t2, w1, w2);
- if (c12.getBounds2D().intersects(c2.getBounds2D()))
- recursiveSubdivide(c12, c2, depth1, depth2, t1 + w1, t2, w1, w2);
- return;
- }
-
- depth2--;
- c2.subdivide(c21, c22);
- w2 = w2 * 0.5;
- if (c1.getBounds2D().intersects(c21.getBounds2D()))
- recursiveSubdivide(c1, c21, depth1, depth2, t1, t2, w1, w2);
- if (c1.getBounds2D().intersects(c22.getBounds2D()))
- recursiveSubdivide(c1, c22, depth1, depth2, t1, t2 + w2, w1, w2);
- }
-
- /**
- * Returns a set of interesections between two Cubic segments
- * Or null if no intersections were found.
- *
- * The method used to find the intersection is recursive midpoint
- * subdivision. Outline description:
- *
- * 1) Check if the bounding boxes of the curves intersect,
- * 2) If so, divide the curves in the middle and test the bounding
- * boxes again,
- * 3) Repeat until a maximum recursion depth has been reached, where
- * the intersecting curves can be approximated by line segments.
- *
- * This is a reasonably accurate method, although the recursion depth
- * is typically around 20, the bounding-box tests allow for significant
- * pruning of the subdivision tree.
- *
- * This is package-private to avoid an accessor method.
- */
- Intersection[] cubicCubicIntersect(CubicSegment curve1, CubicSegment curve2)
- {
- Rectangle2D r1 = curve1.getBounds();
- Rectangle2D r2 = curve2.getBounds();
-
- if (! r1.intersects(r2))
- return null;
-
- cc_intersections = new Vector();
- recursiveSubdivide(curve1.getCubicCurve2D(), curve2.getCubicCurve2D(),
- getRecursionDepth(curve1), getRecursionDepth(curve2),
- 0.0, 0.0, 1.0, 1.0);
-
- if (cc_intersections.size() == 0)
- return null;
-
- Intersection[] results = new Intersection[cc_intersections.size()];
- for (int i = 0; i < cc_intersections.size(); i++)
- {
- double[] temp = (double[]) cc_intersections.elementAt(i);
- results[i] = new Intersection(curve1.evaluatePoint(temp[0]), temp[0],
- temp[1]);
- }
- cc_intersections = null;
- return (results);
- }
-
- /**
- * Returns the intersections between a line and a quadratic bezier
- * Or null if no intersections are found1
- * This is done through combining the line's equation with the
- * parametric form of the Bezier and solving the resulting quadratic.
- * This is package-private to avoid an accessor method.
- */
- Intersection[] lineQuadIntersect(LineSegment l, QuadSegment c)
- {
- double[] y = new double[3];
- double[] x = new double[3];
- double[] r = new double[3];
- int nRoots;
- double x0 = c.P1.getX();
- double y0 = c.P1.getY();
- double x1 = c.cp.getX();
- double y1 = c.cp.getY();
- double x2 = c.P2.getX();
- double y2 = c.P2.getY();
-
- double lx0 = l.P1.getX();
- double ly0 = l.P1.getY();
- double lx1 = l.P2.getX();
- double ly1 = l.P2.getY();
- double dx = lx1 - lx0;
- double dy = ly1 - ly0;
-
- // form r(t) = y(t) - x(t) for the bezier
- y[0] = y0;
- y[1] = 2 * (y1 - y0);
- y[2] = (y2 - 2 * y1 + y0);
-
- x[0] = x0;
- x[1] = 2 * (x1 - x0);
- x[2] = (x2 - 2 * x1 + x0);
-
- // a point, not a line
- if (dy == 0 && dx == 0)
- return null;
-
- // line on y axis
- if (dx == 0 || (dy / dx) > 1.0)
- {
- double k = dx / dy;
- x[0] -= lx0;
- y[0] -= ly0;
- y[0] *= k;
- y[1] *= k;
- y[2] *= k;
- }
- else
- {
- double k = dy / dx;
- x[0] -= lx0;
- y[0] -= ly0;
- x[0] *= k;
- x[1] *= k;
- x[2] *= k;
- }
-
- for (int i = 0; i < 3; i++)
- r[i] = y[i] - x[i];
-
- if ((nRoots = QuadCurve2D.solveQuadratic(r)) > 0)
- {
- Intersection[] temp = new Intersection[nRoots];
- int intersections = 0;
- for (int i = 0; i < nRoots; i++)
- {
- double t = r[i];
- if (t >= 0.0 && t <= 1.0)
- {
- Point2D p = c.evaluatePoint(t);
-
- // if the line is on an axis, snap the point to that axis.
- if (dx == 0)
- p.setLocation(lx0, p.getY());
- if (dy == 0)
- p.setLocation(p.getX(), ly0);
-
- if (p.getX() <= Math.max(lx0, lx1)
- && p.getX() >= Math.min(lx0, lx1)
- && p.getY() <= Math.max(ly0, ly1)
- && p.getY() >= Math.min(ly0, ly1))
- {
- double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1);
- temp[i] = new Intersection(p, lineparameter, t);
- intersections++;
- }
- }
- else
- temp[i] = null;
- }
- if (intersections == 0)
- return null;
-
- Intersection[] rValues = new Intersection[intersections];
-
- for (int i = 0; i < nRoots; i++)
- if (temp[i] != null)
- rValues[--intersections] = temp[i];
- return (rValues);
- }
- return null;
- }
-
- /**
- * Returns the intersections between a line and a cubic segment
- * This is done through combining the line's equation with the
- * parametric form of the Bezier and solving the resulting quadratic.
- * This is package-private to avoid an accessor method.
- */
- Intersection[] lineCubicIntersect(LineSegment l, CubicSegment c)
- {
- double[] y = new double[4];
- double[] x = new double[4];
- double[] r = new double[4];
- int nRoots;
- double x0 = c.P1.getX();
- double y0 = c.P1.getY();
- double x1 = c.cp1.getX();
- double y1 = c.cp1.getY();
- double x2 = c.cp2.getX();
- double y2 = c.cp2.getY();
- double x3 = c.P2.getX();
- double y3 = c.P2.getY();
-
- double lx0 = l.P1.getX();
- double ly0 = l.P1.getY();
- double lx1 = l.P2.getX();
- double ly1 = l.P2.getY();
- double dx = lx1 - lx0;
- double dy = ly1 - ly0;
-
- // form r(t) = y(t) - x(t) for the bezier
- y[0] = y0;
- y[1] = 3 * (y1 - y0);
- y[2] = 3 * (y2 + y0 - 2 * y1);
- y[3] = y3 - 3 * y2 + 3 * y1 - y0;
-
- x[0] = x0;
- x[1] = 3 * (x1 - x0);
- x[2] = 3 * (x2 + x0 - 2 * x1);
- x[3] = x3 - 3 * x2 + 3 * x1 - x0;
-
- // a point, not a line
- if (dy == 0 && dx == 0)
- return null;
-
- // line on y axis
- if (dx == 0 || (dy / dx) > 1.0)
- {
- double k = dx / dy;
- x[0] -= lx0;
- y[0] -= ly0;
- y[0] *= k;
- y[1] *= k;
- y[2] *= k;
- y[3] *= k;
- }
- else
- {
- double k = dy / dx;
- x[0] -= lx0;
- y[0] -= ly0;
- x[0] *= k;
- x[1] *= k;
- x[2] *= k;
- x[3] *= k;
- }
- for (int i = 0; i < 4; i++)
- r[i] = y[i] - x[i];
-
- if ((nRoots = CubicCurve2D.solveCubic(r)) > 0)
- {
- Intersection[] temp = new Intersection[nRoots];
- int intersections = 0;
- for (int i = 0; i < nRoots; i++)
- {
- double t = r[i];
- if (t >= 0.0 && t <= 1.0)
- {
- // if the line is on an axis, snap the point to that axis.
- Point2D p = c.evaluatePoint(t);
- if (dx == 0)
- p.setLocation(lx0, p.getY());
- if (dy == 0)
- p.setLocation(p.getX(), ly0);
-
- if (p.getX() <= Math.max(lx0, lx1)
- && p.getX() >= Math.min(lx0, lx1)
- && p.getY() <= Math.max(ly0, ly1)
- && p.getY() >= Math.min(ly0, ly1))
- {
- double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1);
- temp[i] = new Intersection(p, lineparameter, t);
- intersections++;
- }
- }
- else
- temp[i] = null;
- }
-
- if (intersections == 0)
- return null;
-
- Intersection[] rValues = new Intersection[intersections];
- for (int i = 0; i < nRoots; i++)
- if (temp[i] != null)
- rValues[--intersections] = temp[i];
- return (rValues);
- }
- return null;
- }
-
- /**
- * Returns the intersection between two lines, or null if there is no
- * intersection.
- * This is package-private to avoid an accessor method.
- */
- Intersection linesIntersect(LineSegment a, LineSegment b)
- {
- Point2D P1 = a.P1;
- Point2D P2 = a.P2;
- Point2D P3 = b.P1;
- Point2D P4 = b.P2;
-
- if (! Line2D.linesIntersect(P1.getX(), P1.getY(), P2.getX(), P2.getY(),
- P3.getX(), P3.getY(), P4.getX(), P4.getY()))
- return null;
-
- double x1 = P1.getX();
- double y1 = P1.getY();
- double rx = P2.getX() - x1;
- double ry = P2.getY() - y1;
-
- double x2 = P3.getX();
- double y2 = P3.getY();
- double sx = P4.getX() - x2;
- double sy = P4.getY() - y2;
-
- double determinant = sx * ry - sy * rx;
- double nom = (sx * (y2 - y1) + sy * (x1 - x2));
-
- // Parallel lines don't intersect. At least we pretend they don't.
- if (Math.abs(determinant) < EPSILON)
- return null;
-
- nom = nom / determinant;
-
- if (nom == 0.0)
- return null;
- if (nom == 1.0)
- return null;
-
- Point2D p = new Point2D.Double(x1 + nom * rx, y1 + nom * ry);
-
- return new Intersection(p, p.distance(P1) / P1.distance(P2),
- p.distance(P3) / P3.distance(P4));
- }
-
- /**
- * Determines if two points are equal, within an error margin
- * 'snap distance'
- * This is package-private to avoid an accessor method.
- */
- boolean pointEquals(Point2D a, Point2D b)
- {
- return (a.equals(b) || a.distance(b) < PE_EPSILON);
- }
-
- /**
- * Helper method
- * Turns a shape into a Vector of Segments
- */
- private Vector makeSegment(Shape s)
- {
- Vector paths = new Vector();
- PathIterator pi = s.getPathIterator(null);
- double[] coords = new double[6];
- Segment subpath = null;
- Segment current = null;
- double cx;
- double cy;
- double subpathx;
- double subpathy;
- cx = cy = subpathx = subpathy = 0.0;
-
- this.windingRule = pi.getWindingRule();
-
- while (! pi.isDone())
- {
- Segment v;
- switch (pi.currentSegment(coords))
- {
- case PathIterator.SEG_MOVETO:
- if (subpath != null)
- { // close existing open path
- current.next = new LineSegment(cx, cy, subpathx, subpathy);
- current = current.next;
- current.next = subpath;
- }
- subpath = null;
- subpathx = cx = coords[0];
- subpathy = cy = coords[1];
- break;
-
- // replace 'close' with a line-to.
- case PathIterator.SEG_CLOSE:
- if (subpath != null && (subpathx != cx || subpathy != cy))
- {
- current.next = new LineSegment(cx, cy, subpathx, subpathy);
- current = current.next;
- current.next = subpath;
- cx = subpathx;
- cy = subpathy;
- subpath = null;
- }
- else if (subpath != null)
- {
- current.next = subpath;
- subpath = null;
- }
- break;
- case PathIterator.SEG_LINETO:
- if (cx != coords[0] || cy != coords[1])
- {
- v = new LineSegment(cx, cy, coords[0], coords[1]);
- if (subpath == null)
- {
- subpath = current = v;
- paths.add(subpath);
- }
- else
- {
- current.next = v;
- current = current.next;
- }
- cx = coords[0];
- cy = coords[1];
- }
- break;
- case PathIterator.SEG_QUADTO:
- v = new QuadSegment(cx, cy, coords[0], coords[1], coords[2],
- coords[3]);
- if (subpath == null)
- {
- subpath = current = v;
- paths.add(subpath);
- }
- else
- {
- current.next = v;
- current = current.next;
- }
- cx = coords[2];
- cy = coords[3];
- break;
- case PathIterator.SEG_CUBICTO:
- v = new CubicSegment(cx, cy, coords[0], coords[1], coords[2],
- coords[3], coords[4], coords[5]);
- if (subpath == null)
- {
- subpath = current = v;
- paths.add(subpath);
- }
- else
- {
- current.next = v;
- current = current.next;
- }
-
- // check if the cubic is self-intersecting
- double[] lpts = ((CubicSegment) v).getLoop();
- if (lpts != null)
- {
- // if it is, break off the loop into its own path.
- v.subdivideInsert(lpts[0]);
- v.next.subdivideInsert((lpts[1] - lpts[0]) / (1.0 - lpts[0]));
-
- CubicSegment loop = (CubicSegment) v.next;
- v.next = loop.next;
- loop.next = loop;
-
- v.P2 = v.next.P1 = loop.P2 = loop.P1; // snap points
- paths.add(loop);
- current = v.next;
- }
-
- cx = coords[4];
- cy = coords[5];
- break;
- }
- pi.next();
- }
-
- if (subpath != null)
- { // close any open path
- if (subpathx != cx || subpathy != cy)
- {
- current.next = new LineSegment(cx, cy, subpathx, subpathy);
- current = current.next;
- current.next = subpath;
- }
- else
- current.next = subpath;
- }
-
- if (paths.size() == 0)
- return (null);
-
- return (paths);
- }
-
- /**
- * Find the intersections of two separate closed paths,
- * A and B, split the segments at the intersection points,
- * and create nodes pointing from one to the other
- */
- private int createNodes(Segment A, Segment B)
- {
- int nNodes = 0;
-
- Segment a = A;
- Segment b = B;
-
- do
- {
- do
- {
- nNodes += a.splitIntersections(b);
- b = b.next;
- }
- while (b != B);
-
- a = a.next; // move to the next segment
- }
- while (a != A); // until one wrap.
-
- return (nNodes);
- }
-
- /**
- * Find the intersections of a path with itself.
- * Splits the segments at the intersection points,
- * and create nodes pointing from one to the other.
- */
- private int createNodesSelf(Segment A)
- {
- int nNodes = 0;
- Segment a = A;
-
- if (A.next == A)
- return 0;
-
- do
- {
- Segment b = a.next;
- do
- {
- if (b != a) // necessary
- nNodes += a.splitIntersections(b);
- b = b.next;
- }
- while (b != A);
- a = a.next; // move to the next segment
- }
- while (a != A); // until one wrap.
-
- return (nNodes);
- }
-
- /**
- * Deletes paths which are redundant from a list, (i.e. solid areas within
- * solid areas) Clears any nodes. Sorts the remaining paths into solids
- * and holes, sets their orientation and sets the solids and holes lists.
- */
- private void deleteRedundantPaths(Vector paths)
- {
- int npaths = paths.size();
-
- int[][] contains = new int[npaths][npaths];
- int[][] windingNumbers = new int[npaths][2];
- int neg;
- Rectangle2D[] bb = new Rectangle2D[npaths]; // path bounding boxes
-
- neg = ((windingRule == PathIterator.WIND_NON_ZERO) ? -1 : 1);
-
- for (int i = 0; i < npaths; i++)
- bb[i] = ((Segment) paths.elementAt(i)).getPathBounds();
-
- // Find which path contains which, assign winding numbers
- for (int i = 0; i < npaths; i++)
- {
- Segment pathA = (Segment) paths.elementAt(i);
- pathA.nullNodes(); // remove any now-redundant nodes, in case.
- int windingA = pathA.hasClockwiseOrientation() ? 1 : neg;
-
- for (int j = 0; j < npaths; j++)
- if (i != j)
- {
- Segment pathB = (Segment) paths.elementAt(j);
-
- // A contains B
- if (bb[i].intersects(bb[j]))
- {
- Segment s = pathB.next;
- while (s.P1.getY() == s.P2.getY() && s != pathB)
- s = s.next;
- Point2D p = s.getMidPoint();
- if (pathA.contains(p.getX(), p.getY()))
- contains[i][j] = windingA;
- }
- else
- // A does not contain B
- contains[i][j] = 0;
- }
- else
- contains[i][j] = windingA; // i == j
- }
-
- for (int i = 0; i < npaths; i++)
- {
- windingNumbers[i][0] = 0;
- for (int j = 0; j < npaths; j++)
- windingNumbers[i][0] += contains[j][i];
- windingNumbers[i][1] = contains[i][i];
- }
-
- Vector solids = new Vector();
- Vector holes = new Vector();
-
- if (windingRule == PathIterator.WIND_NON_ZERO)
- {
- for (int i = 0; i < npaths; i++)
- {
- if (windingNumbers[i][0] == 0)
- holes.add(paths.elementAt(i));
- else if (windingNumbers[i][0] - windingNumbers[i][1] == 0
- && Math.abs(windingNumbers[i][0]) == 1)
- solids.add(paths.elementAt(i));
- }
- }
- else
- {
- windingRule = PathIterator.WIND_NON_ZERO;
- for (int i = 0; i < npaths; i++)
- {
- if ((windingNumbers[i][0] & 1) == 0)
- holes.add(paths.elementAt(i));
- else if ((windingNumbers[i][0] & 1) == 1)
- solids.add(paths.elementAt(i));
- }
- }
-
- setDirection(holes, false);
- setDirection(solids, true);
- this.holes = holes;
- this.solids = solids;
- }
-
- /**
- * Sets the winding direction of a Vector of paths
- * @param clockwise gives the direction,
- * true = clockwise, false = counter-clockwise
- */
- private void setDirection(Vector paths, boolean clockwise)
- {
- Segment v;
- for (int i = 0; i < paths.size(); i++)
- {
- v = (Segment) paths.elementAt(i);
- if (clockwise != v.hasClockwiseOrientation())
- v.reverseAll();
- }
- }
-
- /**
- * Class representing a linked-list of vertices forming a closed polygon,
- * convex or concave, without holes.
- */
- private abstract class Segment implements Cloneable
- {
- // segment type, PathIterator segment types are used.
- Point2D P1;
- Point2D P2;
- Segment next;
- Segment node;
-
- Segment()
- {
- P1 = P2 = null;
- node = next = null;
- }
-
- /**
- * Reverses the direction of a single segment
- */
- abstract void reverseCoords();
-
- /**
- * Returns the segment's midpoint
- */
- abstract Point2D getMidPoint();
-
- /**
- * Returns the bounding box of this segment
- */
- abstract Rectangle2D getBounds();
-
- /**
- * Transforms a single segment
- */
- abstract void transform(AffineTransform at);
-
- /**
- * Returns the PathIterator type of a segment
- */
- abstract int getType();
-
- /**
- */
- abstract int splitIntersections(Segment b);
-
- /**
- * Returns the PathIterator coords of a segment
- */
- abstract int pathIteratorFormat(double[] coords);
-
- /**
- * Returns the number of intersections on the positive X axis,
- * with the origin at (x,y), used for contains()-testing
- *
- * (Although that could be done by the line-intersect methods,
- * a dedicated method is better to guarantee consitent handling
- * of endpoint-special-cases)
- */
- abstract int rayCrossing(double x, double y);
-
- /**
- * Subdivides the segment at parametric value t, inserting
- * the new segment into the linked list after this,
- * such that this becomes [0,t] and this.next becomes [t,1]
- */
- abstract void subdivideInsert(double t);
-
- /**
- * Returns twice the area of a curve, relative the P1-P2 line
- * Used for area calculations.
- */
- abstract double curveArea();
-
- /**
- * Compare two segments.
- */
- abstract boolean equals(Segment b);
-
- /**
- * Determines if this path of segments contains the point (x,y)
- */
- boolean contains(double x, double y)
- {
- Segment v = this;
- int crossings = 0;
- do
- {
- int n = v.rayCrossing(x, y);
- crossings += n;
- v = v.next;
- }
- while (v != this);
- return ((crossings & 1) == 1);
- }
-
- /**
- * Nulls all nodes of the path. Clean up any 'hairs'.
- */
- void nullNodes()
- {
- Segment v = this;
- do
- {
- v.node = null;
- v = v.next;
- }
- while (v != this);
- }
-
- /**
- * Transforms each segment in the closed path
- */
- void transformSegmentList(AffineTransform at)
- {
- Segment v = this;
- do
- {
- v.transform(at);
- v = v.next;
- }
- while (v != this);
- }
-
- /**
- * Determines the winding direction of the path
- * By the sign of the area.
- */
- boolean hasClockwiseOrientation()
- {
- return (getSignedArea() > 0.0);
- }
-
- /**
- * Returns the bounds of this path
- */
- public Rectangle2D getPathBounds()
- {
- double xmin;
- double xmax;
- double ymin;
- double ymax;
- xmin = xmax = P1.getX();
- ymin = ymax = P1.getY();
-
- Segment v = this;
- do
- {
- Rectangle2D r = v.getBounds();
- xmin = Math.min(r.getMinX(), xmin);
- ymin = Math.min(r.getMinY(), ymin);
- xmax = Math.max(r.getMaxX(), xmax);
- ymax = Math.max(r.getMaxY(), ymax);
- v = v.next;
- }
- while (v != this);
-
- return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
- }
-
- /**
- * Calculates twice the signed area of the path;
- */
- double getSignedArea()
- {
- Segment s;
- double area = 0.0;
-
- s = this;
- do
- {
- area += s.curveArea();
-
- area += s.P1.getX() * s.next.P1.getY()
- - s.P1.getY() * s.next.P1.getX();
- s = s.next;
- }
- while (s != this);
-
- return area;
- }
-
- /**
- * Reverses the orientation of the whole polygon
- */
- void reverseAll()
- {
- reverseCoords();
- Segment v = next;
- Segment former = this;
- while (v != this)
- {
- v.reverseCoords();
- Segment vnext = v.next;
- v.next = former;
- former = v;
- v = vnext;
- }
- next = former;
- }
-
- /**
- * Inserts a Segment after this one
- */
- void insert(Segment v)
- {
- Segment n = next;
- next = v;
- v.next = n;
- }
-
- /**
- * Returns if this segment path is polygonal
- */
- boolean isPolygonal()
- {
- Segment v = this;
- do
- {
- if (! (v instanceof LineSegment))
- return false;
- v = v.next;
- }
- while (v != this);
- return true;
- }
-
- /**
- * Clones this path
- */
- Segment cloneSegmentList() throws CloneNotSupportedException
- {
- Vector list = new Vector();
- Segment v = next;
-
- while (v != this)
- {
- list.add(v);
- v = v.next;
- }
-
- Segment clone = (Segment) this.clone();
- v = clone;
- for (int i = 0; i < list.size(); i++)
- {
- clone.next = (Segment) ((Segment) list.elementAt(i)).clone();
- clone = clone.next;
- }
- clone.next = v;
- return v;
- }
-
- /**
- * Creates a node between this segment and segment b
- * at the given intersection
- * @return the number of nodes created (0 or 1)
- */
- int createNode(Segment b, Intersection i)
- {
- Point2D p = i.p;
- if ((pointEquals(P1, p) || pointEquals(P2, p))
- && (pointEquals(b.P1, p) || pointEquals(b.P2, p)))
- return 0;
-
- subdivideInsert(i.ta);
- b.subdivideInsert(i.tb);
-
- // snap points
- b.P2 = b.next.P1 = P2 = next.P1 = i.p;
-
- node = b.next;
- b.node = next;
- return 1;
- }
-
- /**
- * Creates multiple nodes from a list of intersections,
- * This must be done in the order of ascending parameters,
- * and the parameters must be recalculated in accordance
- * with each split.
- * @return the number of nodes created
- */
- protected int createNodes(Segment b, Intersection[] x)
- {
- Vector v = new Vector();
- for (int i = 0; i < x.length; i++)
- {
- Point2D p = x[i].p;
- if (! ((pointEquals(P1, p) || pointEquals(P2, p))
- && (pointEquals(b.P1, p) || pointEquals(b.P2, p))))
- v.add(x[i]);
- }
-
- int nNodes = v.size();
- Intersection[] A = new Intersection[nNodes];
- Intersection[] B = new Intersection[nNodes];
- for (int i = 0; i < nNodes; i++)
- A[i] = B[i] = (Intersection) v.elementAt(i);
-
- // Create two lists sorted by the parameter
- // Bubble sort, OK I suppose, since the number of intersections
- // cannot be larger than 9 (cubic-cubic worst case) anyway
- for (int i = 0; i < nNodes - 1; i++)
- {
- for (int j = i + 1; j < nNodes; j++)
- {
- if (A[i].ta > A[j].ta)
- {
- Intersection swap = A[i];
- A[i] = A[j];
- A[j] = swap;
- }
- if (B[i].tb > B[j].tb)
- {
- Intersection swap = B[i];
- B[i] = B[j];
- B[j] = swap;
- }
- }
- }
- // subdivide a
- Segment s = this;
- for (int i = 0; i < nNodes; i++)
- {
- s.subdivideInsert(A[i].ta);
-
- // renormalize the parameters
- for (int j = i + 1; j < nNodes; j++)
- A[j].ta = (A[j].ta - A[i].ta) / (1.0 - A[i].ta);
-
- A[i].seg = s;
- s = s.next;
- }
-
- // subdivide b, set nodes
- s = b;
- for (int i = 0; i < nNodes; i++)
- {
- s.subdivideInsert(B[i].tb);
-
- for (int j = i + 1; j < nNodes; j++)
- B[j].tb = (B[j].tb - B[i].tb) / (1.0 - B[i].tb);
-
- // set nodes
- B[i].seg.node = s.next; // node a -> b
- s.node = B[i].seg.next; // node b -> a
-
- // snap points
- B[i].seg.P2 = B[i].seg.next.P1 = s.P2 = s.next.P1 = B[i].p;
- s = s.next;
- }
- return nNodes;
- }
-
- /**
- * Determines if two paths are equal.
- * Colinear line segments are ignored in the comparison.
- */
- boolean pathEquals(Segment B)
- {
- if (! getPathBounds().equals(B.getPathBounds()))
- return false;
-
- Segment startA = getTopLeft();
- Segment startB = B.getTopLeft();
- Segment a = startA;
- Segment b = startB;
- do
- {
- if (! a.equals(b))
- return false;
-
- if (a instanceof LineSegment)
- a = ((LineSegment) a).lastCoLinear();
- if (b instanceof LineSegment)
- b = ((LineSegment) b).lastCoLinear();
-
- a = a.next;
- b = b.next;
- }
- while (a != startA && b != startB);
- return true;
- }
-
- /**
- * Return the segment with the top-leftmost first point
- */
- Segment getTopLeft()
- {
- Segment v = this;
- Segment tl = this;
- do
- {
- if (v.P1.getY() < tl.P1.getY())
- tl = v;
- else if (v.P1.getY() == tl.P1.getY())
- {
- if (v.P1.getX() < tl.P1.getX())
- tl = v;
- }
- v = v.next;
- }
- while (v != this);
- return tl;
- }
-
- /**
- * Returns if the path has a segment outside a shape
- */
- boolean isSegmentOutside(Shape shape)
- {
- return ! shape.contains(getMidPoint());
- }
- } // class Segment
-
- private class LineSegment extends Segment
- {
- public LineSegment(double x1, double y1, double x2, double y2)
- {
- super();
- P1 = new Point2D.Double(x1, y1);
- P2 = new Point2D.Double(x2, y2);
- }
-
- public LineSegment(Point2D p1, Point2D p2)
- {
- super();
- P1 = (Point2D) p1.clone();
- P2 = (Point2D) p2.clone();
- }
-
- /**
- * Clones this segment
- */
- public Object clone()
- {
- return new LineSegment(P1, P2);
- }
-
- /**
- * Transforms the segment
- */
- void transform(AffineTransform at)
- {
- P1 = at.transform(P1, null);
- P2 = at.transform(P2, null);
- }
-
- /**
- * Swap start and end points
- */
- void reverseCoords()
- {
- Point2D p = P1;
- P1 = P2;
- P2 = p;
- }
-
- /**
- * Returns the segment's midpoint
- */
- Point2D getMidPoint()
- {
- return (new Point2D.Double(0.5 * (P1.getX() + P2.getX()),
- 0.5 * (P1.getY() + P2.getY())));
- }
-
- /**
- * Returns twice the area of a curve, relative the P1-P2 line
- * Obviously, a line does not enclose any area besides the line
- */
- double curveArea()
- {
- return 0;
- }
-
- /**
- * Returns the PathIterator type of a segment
- */
- int getType()
- {
- return (PathIterator.SEG_LINETO);
- }
-
- /**
- * Subdivides the segment at parametric value t, inserting
- * the new segment into the linked list after this,
- * such that this becomes [0,t] and this.next becomes [t,1]
- */
- void subdivideInsert(double t)
- {
- Point2D p = new Point2D.Double((P2.getX() - P1.getX()) * t + P1.getX(),
- (P2.getY() - P1.getY()) * t + P1.getY());
- insert(new LineSegment(p, P2));
- P2 = p;
- next.node = node;
- node = null;
- }
-
- /**
- * Determines if two line segments are strictly colinear
- */
- boolean isCoLinear(LineSegment b)
- {
- double x1 = P1.getX();
- double y1 = P1.getY();
- double x2 = P2.getX();
- double y2 = P2.getY();
- double x3 = b.P1.getX();
- double y3 = b.P1.getY();
- double x4 = b.P2.getX();
- double y4 = b.P2.getY();
-
- if ((y1 - y3) * (x4 - x3) - (x1 - x3) * (y4 - y3) != 0.0)
- return false;
-
- return ((x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3) == 0.0);
- }
-
- /**
- * Return the last segment colinear with this one.
- * Used in comparing paths.
- */
- Segment lastCoLinear()
- {
- Segment prev = this;
- Segment v = next;
-
- while (v instanceof LineSegment)
- {
- if (isCoLinear((LineSegment) v))
- {
- prev = v;
- v = v.next;
- }
- else
- return prev;
- }
- return prev;
- }
-
- /**
- * Compare two segments.
- * We must take into account that the lines may be broken into colinear
- * subsegments and ignore them.
- */
- boolean equals(Segment b)
- {
- if (! (b instanceof LineSegment))
- return false;
- Point2D p1 = P1;
- Point2D p3 = b.P1;
-
- if (! p1.equals(p3))
- return false;
-
- Point2D p2 = lastCoLinear().P2;
- Point2D p4 = ((LineSegment) b).lastCoLinear().P2;
- return (p2.equals(p4));
- }
-
- /**
- * Returns a line segment
- */
- int pathIteratorFormat(double[] coords)
- {
- coords[0] = P2.getX();
- coords[1] = P2.getY();
- return (PathIterator.SEG_LINETO);
- }
-
- /**
- * Returns if the line has intersections.
- */
- boolean hasIntersections(Segment b)
- {
- if (b instanceof LineSegment)
- return (linesIntersect(this, (LineSegment) b) != null);
-
- if (b instanceof QuadSegment)
- return (lineQuadIntersect(this, (QuadSegment) b) != null);
-
- if (b instanceof CubicSegment)
- return (lineCubicIntersect(this, (CubicSegment) b) != null);
-
- return false;
- }
-
- /**
- * Splits intersections into nodes,
- * This one handles line-line, line-quadratic, line-cubic
- */
- int splitIntersections(Segment b)
- {
- if (b instanceof LineSegment)
- {
- Intersection i = linesIntersect(this, (LineSegment) b);
-
- if (i == null)
- return 0;
-
- return createNode(b, i);
- }
-
- Intersection[] x = null;
-
- if (b instanceof QuadSegment)
- x = lineQuadIntersect(this, (QuadSegment) b);
-
- if (b instanceof CubicSegment)
- x = lineCubicIntersect(this, (CubicSegment) b);
-
- if (x == null)
- return 0;
-
- if (x.length == 1)
- return createNode(b, (Intersection) x[0]);
-
- return createNodes(b, x);
- }
-
- /**
- * Returns the bounding box of this segment
- */
- Rectangle2D getBounds()
- {
- return (new Rectangle2D.Double(Math.min(P1.getX(), P2.getX()),
- Math.min(P1.getY(), P2.getY()),
- Math.abs(P1.getX() - P2.getX()),
- Math.abs(P1.getY() - P2.getY())));
- }
-
- /**
- * Returns the number of intersections on the positive X axis,
- * with the origin at (x,y), used for contains()-testing
- */
- int rayCrossing(double x, double y)
- {
- double x0 = P1.getX() - x;
- double y0 = P1.getY() - y;
- double x1 = P2.getX() - x;
- double y1 = P2.getY() - y;
-
- if (y0 * y1 > 0)
- return 0;
-
- if (x0 < 0 && x1 < 0)
- return 0;
-
- if (y0 == 0.0)
- y0 -= EPSILON;
-
- if (y1 == 0.0)
- y1 -= EPSILON;
-
- if (Line2D.linesIntersect(x0, y0, x1, y1,
- EPSILON, 0.0, Double.MAX_VALUE, 0.0))
- return 1;
- return 0;
- }
- } // class LineSegment
-
- /**
- * Quadratic Bezier curve segment
- *
- * Note: Most peers don't support quadratics directly, so it might make
- * sense to represent them as cubics internally and just be done with it.
- * I think we should be peer-agnostic, however, and stay faithful to the
- * input geometry types as far as possible.
- */
- private class QuadSegment extends Segment
- {
- Point2D cp; // control point
-
- /**
- * Constructor, takes the coordinates of the start, control,
- * and end point, respectively.
- */
- QuadSegment(double x1, double y1, double cx, double cy, double x2,
- double y2)
- {
- super();
- P1 = new Point2D.Double(x1, y1);
- P2 = new Point2D.Double(x2, y2);
- cp = new Point2D.Double(cx, cy);
- }
-
- /**
- * Clones this segment
- */
- public Object clone()
- {
- return new QuadSegment(P1.getX(), P1.getY(), cp.getX(), cp.getY(),
- P2.getX(), P2.getY());
- }
-
- /**
- * Returns twice the area of a curve, relative the P1-P2 line
- *
- * The area formula can be derived by using Green's formula in the
- * plane on the parametric form of the bezier.
- */
- double curveArea()
- {
- double x0 = P1.getX();
- double y0 = P1.getY();
- double x1 = cp.getX();
- double y1 = cp.getY();
- double x2 = P2.getX();
- double y2 = P2.getY();
-
- double P = (y2 - 2 * y1 + y0);
- double Q = 2 * (y1 - y0);
-
- double A = (x2 - 2 * x1 + x0);
- double B = 2 * (x1 - x0);
-
- double area = (B * P - A * Q) / 3.0;
- return (area);
- }
-
- /**
- * Compare two segments.
- */
- boolean equals(Segment b)
- {
- if (! (b instanceof QuadSegment))
- return false;
-
- return (P1.equals(b.P1) && cp.equals(((QuadSegment) b).cp)
- && P2.equals(b.P2));
- }
-
- /**
- * Returns a Point2D corresponding to the parametric value t
- * of the curve
- */
- Point2D evaluatePoint(double t)
- {
- double x0 = P1.getX();
- double y0 = P1.getY();
- double x1 = cp.getX();
- double y1 = cp.getY();
- double x2 = P2.getX();
- double y2 = P2.getY();
-
- return new Point2D.Double(t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0)
- + x0,
- t * t * (y2 - 2 * y1 + y0) + 2 * t * (y1 - y0)
- + y0);
- }
-
- /**
- * Returns the bounding box of this segment
- */
- Rectangle2D getBounds()
- {
- double x0 = P1.getX();
- double y0 = P1.getY();
- double x1 = cp.getX();
- double y1 = cp.getY();
- double x2 = P2.getX();
- double y2 = P2.getY();
- double r0;
- double r1;
-
- double xmax = Math.max(x0, x2);
- double ymax = Math.max(y0, y2);
- double xmin = Math.min(x0, x2);
- double ymin = Math.min(y0, y2);
-
- r0 = 2 * (y1 - y0);
- r1 = 2 * (y2 - 2 * y1 + y0);
- if (r1 != 0.0)
- {
- double t = -r0 / r1;
- if (t > 0.0 && t < 1.0)
- {
- double y = evaluatePoint(t).getY();
- ymax = Math.max(y, ymax);
- ymin = Math.min(y, ymin);
- }
- }
- r0 = 2 * (x1 - x0);
- r1 = 2 * (x2 - 2 * x1 + x0);
- if (r1 != 0.0)
- {
- double t = -r0 / r1;
- if (t > 0.0 && t < 1.0)
- {
- double x = evaluatePoint(t).getY();
- xmax = Math.max(x, xmax);
- xmin = Math.min(x, xmin);
- }
- }
-
- return (new Rectangle2D.Double(xmin, ymin, xmax - xmin, ymax - ymin));
- }
-
- /**
- * Returns a cubic segment corresponding to this curve
- */
- CubicSegment getCubicSegment()
- {
- double x1 = P1.getX() + 2.0 * (cp.getX() - P1.getX()) / 3.0;
- double y1 = P1.getY() + 2.0 * (cp.getY() - P1.getY()) / 3.0;
- double x2 = cp.getX() + (P2.getX() - cp.getX()) / 3.0;
- double y2 = cp.getY() + (P2.getY() - cp.getY()) / 3.0;
-
- return new CubicSegment(P1.getX(), P1.getY(), x1, y1, x2, y2, P2.getX(),
- P2.getY());
- }
-
- /**
- * Returns the segment's midpoint
- */
- Point2D getMidPoint()
- {
- return evaluatePoint(0.5);
- }
-
- /**
- * Returns the PathIterator type of a segment
- */
- int getType()
- {
- return (PathIterator.SEG_QUADTO);
- }
-
- /**
- * Returns the PathIterator coords of a segment
- */
- int pathIteratorFormat(double[] coords)
- {
- coords[0] = cp.getX();
- coords[1] = cp.getY();
- coords[2] = P2.getX();
- coords[3] = P2.getY();
- return (PathIterator.SEG_QUADTO);
- }
-
- /**
- * Returns the number of intersections on the positive X axis,
- * with the origin at (x,y), used for contains()-testing
- */
- int rayCrossing(double x, double y)
- {
- double x0 = P1.getX() - x;
- double y0 = P1.getY() - y;
- double x1 = cp.getX() - x;
- double y1 = cp.getY() - y;
- double x2 = P2.getX() - x;
- double y2 = P2.getY() - y;
- double[] r = new double[3];
- int nRoots;
- int nCrossings = 0;
-
- /* check if curve may intersect X+ axis. */
- if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0) && (y0 * y1 <= 0 || y1 * y2 <= 0))
- {
- if (y0 == 0.0)
- y0 -= EPSILON;
- if (y2 == 0.0)
- y2 -= EPSILON;
-
- r[0] = y0;
- r[1] = 2 * (y1 - y0);
- r[2] = (y2 - 2 * y1 + y0);
-
- nRoots = QuadCurve2D.solveQuadratic(r);
- for (int i = 0; i < nRoots; i++)
- if (r[i] > 0.0f && r[i] < 1.0f)
- {
- double t = r[i];
- if (t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0) + x0 > 0.0)
- nCrossings++;
- }
- }
- return nCrossings;
- }
-
- /**
- * Swap start and end points
- */
- void reverseCoords()
- {
- Point2D temp = P1;
- P1 = P2;
- P2 = temp;
- }
-
- /**
- * Splits intersections into nodes,
- * This one handles quadratic-quadratic only,
- * Quadratic-line is passed on to the LineSegment class,
- * Quadratic-cubic is passed on to the CubicSegment class
- */
- int splitIntersections(Segment b)
- {
- if (b instanceof LineSegment)
- return (b.splitIntersections(this));
-
- if (b instanceof CubicSegment)
- return (b.splitIntersections(this));
-
- if (b instanceof QuadSegment)
- {
- // Use the cubic-cubic intersection routine for quads as well,
- // Since a quadratic can be exactly described as a cubic, this
- // should not be a problem;
- // The recursion depth will be the same in any case.
- Intersection[] x = cubicCubicIntersect(getCubicSegment(),
- ((QuadSegment) b)
- .getCubicSegment());
- if (x == null)
- return 0;
-
- if (x.length == 1)
- return createNode(b, (Intersection) x[0]);
-
- return createNodes(b, x);
- }
- return 0;
- }
-
- /**
- * Subdivides the segment at parametric value t, inserting
- * the new segment into the linked list after this,
- * such that this becomes [0,t] and this.next becomes [t,1]
- */
- void subdivideInsert(double t)
- {
- double x0 = P1.getX();
- double y0 = P1.getY();
- double x1 = cp.getX();
- double y1 = cp.getY();
- double x2 = P2.getX();
- double y2 = P2.getY();
-
- double p10x = x0 + t * (x1 - x0);
- double p10y = y0 + t * (y1 - y0);
- double p11x = x1 + t * (x2 - x1);
- double p11y = y1 + t * (y2 - y1);
- double p20x = p10x + t * (p11x - p10x);
- double p20y = p10y + t * (p11y - p10y);
-
- insert(new QuadSegment(p20x, p20y, p11x, p11y, x2, y2));
- P2 = next.P1;
- cp.setLocation(p10x, p10y);
-
- next.node = node;
- node = null;
- }
-
- /**
- * Transforms the segment
- */
- void transform(AffineTransform at)
- {
- P1 = at.transform(P1, null);
- P2 = at.transform(P2, null);
- cp = at.transform(cp, null);
- }
- } // class QuadSegment
-
- /**
- * Cubic Bezier curve segment
- */
- private class CubicSegment extends Segment
- {
- Point2D cp1; // control points
- Point2D cp2; // control points
-
- /**
- * Constructor - takes coordinates of the starting point,
- * first control point, second control point and end point,
- * respecively.
- */
- public CubicSegment(double x1, double y1, double c1x, double c1y,
- double c2x, double c2y, double x2, double y2)
- {
- super();
- P1 = new Point2D.Double(x1, y1);
- P2 = new Point2D.Double(x2, y2);
- cp1 = new Point2D.Double(c1x, c1y);
- cp2 = new Point2D.Double(c2x, c2y);
- }
-
- /**
- * Clones this segment
- */
- public Object clone()
- {
- return new CubicSegment(P1.getX(), P1.getY(), cp1.getX(), cp1.getY(),
- cp2.getX(), cp2.getY(), P2.getX(), P2.getY());
- }
-
- /**
- * Returns twice the area of a curve, relative the P1-P2 line
- *
- * The area formula can be derived by using Green's formula in the
- * plane on the parametric form of the bezier.
- */
- double curveArea()
- {
- double x0 = P1.getX();
- double y0 = P1.getY();
- double x1 = cp1.getX();
- double y1 = cp1.getY();
- double x2 = cp2.getX();
- double y2 = cp2.getY();
- double x3 = P2.getX();
- double y3 = P2.getY();
-
- double P = y3 - 3 * y2 + 3 * y1 - y0;
- double Q = 3 * (y2 + y0 - 2 * y1);
- double R = 3 * (y1 - y0);
-
- double A = x3 - 3 * x2 + 3 * x1 - x0;
- double B = 3 * (x2 + x0 - 2 * x1);
- double C = 3 * (x1 - x0);
-
- double area = (B * P - A * Q) / 5.0 + (C * P - A * R) / 2.0
- + (C * Q - B * R) / 3.0;
-
- return (area);
- }
-
- /**
- * Compare two segments.
- */
- boolean equals(Segment b)
- {
- if (! (b instanceof CubicSegment))
- return false;
-
- return (P1.equals(b.P1) && cp1.equals(((CubicSegment) b).cp1)
- && cp2.equals(((CubicSegment) b).cp2) && P2.equals(b.P2));
- }
-
- /**
- * Returns a Point2D corresponding to the parametric value t
- * of the curve
- */
- Point2D evaluatePoint(double t)
- {
- double x0 = P1.getX();
- double y0 = P1.getY();
- double x1 = cp1.getX();
- double y1 = cp1.getY();
- double x2 = cp2.getX();
- double y2 = cp2.getY();
- double x3 = P2.getX();
- double y3 = P2.getY();
-
- return new Point2D.Double(-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3)
- + 3 * t * t * (x0 - 2 * x1 + x2)
- + 3 * t * (x1 - x0) + x0,
- -(t * t * t) * (y0 - 3 * y1 + 3 * y2 - y3)
- + 3 * t * t * (y0 - 2 * y1 + y2)
- + 3 * t * (y1 - y0) + y0);
- }
-
- /**
- * Returns the bounding box of this segment
- */
- Rectangle2D getBounds()
- {
- double x0 = P1.getX();
- double y0 = P1.getY();
- double x1 = cp1.getX();
- double y1 = cp1.getY();
- double x2 = cp2.getX();
- double y2 = cp2.getY();
- double x3 = P2.getX();
- double y3 = P2.getY();
- double[] r = new double[3];
-
- double xmax = Math.max(x0, x3);
- double ymax = Math.max(y0, y3);
- double xmin = Math.min(x0, x3);
- double ymin = Math.min(y0, y3);
-
- r[0] = 3 * (y1 - y0);
- r[1] = 6.0 * (y2 + y0 - 2 * y1);
- r[2] = 3.0 * (y3 - 3 * y2 + 3 * y1 - y0);
-
- int n = QuadCurve2D.solveQuadratic(r);
- for (int i = 0; i < n; i++)
- {
- double t = r[i];
- if (t > 0 && t < 1.0)
- {
- double y = evaluatePoint(t).getY();
- ymax = Math.max(y, ymax);
- ymin = Math.min(y, ymin);
- }
- }
-
- r[0] = 3 * (x1 - x0);
- r[1] = 6.0 * (x2 + x0 - 2 * x1);
- r[2] = 3.0 * (x3 - 3 * x2 + 3 * x1 - x0);
- n = QuadCurve2D.solveQuadratic(r);
- for (int i = 0; i < n; i++)
- {
- double t = r[i];
- if (t > 0 && t < 1.0)
- {
- double x = evaluatePoint(t).getX();
- xmax = Math.max(x, xmax);
- xmin = Math.min(x, xmin);
- }
- }
- return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
- }
-
- /**
- * Returns a CubicCurve2D object corresponding to this segment.
- */
- CubicCurve2D getCubicCurve2D()
- {
- return new CubicCurve2D.Double(P1.getX(), P1.getY(), cp1.getX(),
- cp1.getY(), cp2.getX(), cp2.getY(),
- P2.getX(), P2.getY());
- }
-
- /**
- * Returns the parametric points of self-intersection if the cubic
- * is self-intersecting, null otherwise.
- */
- double[] getLoop()
- {
- double x0 = P1.getX();
- double y0 = P1.getY();
- double x1 = cp1.getX();
- double y1 = cp1.getY();
- double x2 = cp2.getX();
- double y2 = cp2.getY();
- double x3 = P2.getX();
- double y3 = P2.getY();
- double[] r = new double[4];
- double k;
- double R;
- double T;
- double A;
- double B;
- double[] results = new double[2];
-
- R = x3 - 3 * x2 + 3 * x1 - x0;
- T = y3 - 3 * y2 + 3 * y1 - y0;
-
- // A qudratic
- if (R == 0.0 && T == 0.0)
- return null;
-
- // true cubic
- if (R != 0.0 && T != 0.0)
- {
- A = 3 * (x2 + x0 - 2 * x1) / R;
- B = 3 * (x1 - x0) / R;
-
- double P = 3 * (y2 + y0 - 2 * y1) / T;
- double Q = 3 * (y1 - y0) / T;
-
- if (A == P || Q == B)
- return null;
-
- k = (Q - B) / (A - P);
- }
- else
- {
- if (R == 0.0)
- {
- // quadratic in x
- k = -(3 * (x1 - x0)) / (3 * (x2 + x0 - 2 * x1));
- A = 3 * (y2 + y0 - 2 * y1) / T;
- B = 3 * (y1 - y0) / T;
- }
- else
- {
- // quadratic in y
- k = -(3 * (y1 - y0)) / (3 * (y2 + y0 - 2 * y1));
- A = 3 * (x2 + x0 - 2 * x1) / R;
- B = 3 * (x1 - x0) / R;
- }
- }
-
- r[0] = -k * k * k - A * k * k - B * k;
- r[1] = 3 * k * k + 2 * k * A + 2 * B;
- r[2] = -3 * k;
- r[3] = 2;
-
- int n = CubicCurve2D.solveCubic(r);
- if (n != 3)
- return null;
-
- // sort r
- double t;
- for (int i = 0; i < 2; i++)
- for (int j = i + 1; j < 3; j++)
- if (r[j] < r[i])
- {
- t = r[i];
- r[i] = r[j];
- r[j] = t;
- }
-
- if (Math.abs(r[0] + r[2] - k) < 1E-13)
- if (r[0] >= 0.0 && r[0] <= 1.0 && r[2] >= 0.0 && r[2] <= 1.0)
- if (evaluatePoint(r[0]).distance(evaluatePoint(r[2])) < PE_EPSILON * 10)
- { // we snap the points anyway
- results[0] = r[0];
- results[1] = r[2];
- return (results);
- }
- return null;
- }
-
- /**
- * Returns the segment's midpoint
- */
- Point2D getMidPoint()
- {
- return evaluatePoint(0.5);
- }
-
- /**
- * Returns the PathIterator type of a segment
- */
- int getType()
- {
- return (PathIterator.SEG_CUBICTO);
- }
-
- /**
- * Returns the PathIterator coords of a segment
- */
- int pathIteratorFormat(double[] coords)
- {
- coords[0] = cp1.getX();
- coords[1] = cp1.getY();
- coords[2] = cp2.getX();
- coords[3] = cp2.getY();
- coords[4] = P2.getX();
- coords[5] = P2.getY();
- return (PathIterator.SEG_CUBICTO);
- }
-
- /**
- * Returns the number of intersections on the positive X axis,
- * with the origin at (x,y), used for contains()-testing
- */
- int rayCrossing(double x, double y)
- {
- double x0 = P1.getX() - x;
- double y0 = P1.getY() - y;
- double x1 = cp1.getX() - x;
- double y1 = cp1.getY() - y;
- double x2 = cp2.getX() - x;
- double y2 = cp2.getY() - y;
- double x3 = P2.getX() - x;
- double y3 = P2.getY() - y;
- double[] r = new double[4];
- int nRoots;
- int nCrossings = 0;
-
- /* check if curve may intersect X+ axis. */
- if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0 || x3 > 0.0)
- && (y0 * y1 <= 0 || y1 * y2 <= 0 || y2 * y3 <= 0))
- {
- if (y0 == 0.0)
- y0 -= EPSILON;
- if (y3 == 0.0)
- y3 -= EPSILON;
-
- r[0] = y0;
- r[1] = 3 * (y1 - y0);
- r[2] = 3 * (y2 + y0 - 2 * y1);
- r[3] = y3 - 3 * y2 + 3 * y1 - y0;
-
- if ((nRoots = CubicCurve2D.solveCubic(r)) > 0)
- for (int i = 0; i < nRoots; i++)
- {
- if (r[i] > 0.0 && r[i] < 1.0)
- {
- double t = r[i];
- if (-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3)
- + 3 * t * t * (x0 - 2 * x1 + x2) + 3 * t * (x1 - x0)
- + x0 > 0.0)
- nCrossings++;
- }
- }
- }
- return nCrossings;
- }
-
- /**
- * Swap start and end points
- */
- void reverseCoords()
- {
- Point2D p = P1;
- P1 = P2;
- P2 = p;
- p = cp1; // swap control points
- cp1 = cp2;
- cp2 = p;
- }
-
- /**
- * Splits intersections into nodes,
- * This one handles cubic-cubic and cubic-quadratic intersections
- */
- int splitIntersections(Segment b)
- {
- if (b instanceof LineSegment)
- return (b.splitIntersections(this));
-
- Intersection[] x = null;
-
- if (b instanceof QuadSegment)
- x = cubicCubicIntersect(this, ((QuadSegment) b).getCubicSegment());
-
- if (b instanceof CubicSegment)
- x = cubicCubicIntersect(this, (CubicSegment) b);
-
- if (x == null)
- return 0;
-
- if (x.length == 1)
- return createNode(b, x[0]);
-
- return createNodes(b, x);
- }
-
- /**
- * Subdivides the segment at parametric value t, inserting
- * the new segment into the linked list after this,
- * such that this becomes [0,t] and this.next becomes [t,1]
- */
- void subdivideInsert(double t)
- {
- CubicSegment s = (CubicSegment) clone();
- double p1x = (s.cp1.getX() - s.P1.getX()) * t + s.P1.getX();
- double p1y = (s.cp1.getY() - s.P1.getY()) * t + s.P1.getY();
-
- double px = (s.cp2.getX() - s.cp1.getX()) * t + s.cp1.getX();
- double py = (s.cp2.getY() - s.cp1.getY()) * t + s.cp1.getY();
-
- s.cp2.setLocation((s.P2.getX() - s.cp2.getX()) * t + s.cp2.getX(),
- (s.P2.getY() - s.cp2.getY()) * t + s.cp2.getY());
-
- s.cp1.setLocation((s.cp2.getX() - px) * t + px,
- (s.cp2.getY() - py) * t + py);
-
- double p2x = (px - p1x) * t + p1x;
- double p2y = (py - p1y) * t + p1y;
-
- double p3x = (s.cp1.getX() - p2x) * t + p2x;
- double p3y = (s.cp1.getY() - p2y) * t + p2y;
- s.P1.setLocation(p3x, p3y);
-
- // insert new curve
- insert(s);
-
- // set this curve
- cp1.setLocation(p1x, p1y);
- cp2.setLocation(p2x, p2y);
- P2 = s.P1;
- next.node = node;
- node = null;
- }
-
- /**
- * Transforms the segment
- */
- void transform(AffineTransform at)
- {
- P1 = at.transform(P1, null);
- P2 = at.transform(P2, null);
- cp1 = at.transform(cp1, null);
- cp2 = at.transform(cp2, null);
- }
- } // class CubicSegment
-} // class Area