aboutsummaryrefslogtreecommitdiff
path: root/libjava/gnu
diff options
context:
space:
mode:
authorWarren Levy <warrenl@cygnus.com>2000-02-04 22:00:36 +0000
committerWarren Levy <warrenl@gcc.gnu.org>2000-02-04 22:00:36 +0000
commit25c449becfb98ce3a675ffe952311aa0dae5dab1 (patch)
tree32dc44df4a2e1888445ef6a33f348ad21fb02700 /libjava/gnu
parentbff0dc38c2f7a20945942c52039866a82572e5ef (diff)
downloadgcc-25c449becfb98ce3a675ffe952311aa0dae5dab1.zip
gcc-25c449becfb98ce3a675ffe952311aa0dae5dab1.tar.gz
gcc-25c449becfb98ce3a675ffe952311aa0dae5dab1.tar.bz2
Makefile.am: Added MPN.java and BigInteger.java.
* Makefile.am: Added MPN.java and BigInteger.java. * Makefile.in: Rebuilt. * gnu/gcj/math/MPN.java: New file. * java/math/BigInteger.java: New file. From-SVN: r31794
Diffstat (limited to 'libjava/gnu')
-rw-r--r--libjava/gnu/gcj/math/MPN.java736
1 files changed, 736 insertions, 0 deletions
diff --git a/libjava/gnu/gcj/math/MPN.java b/libjava/gnu/gcj/math/MPN.java
new file mode 100644
index 0000000..5bbabfd
--- /dev/null
+++ b/libjava/gnu/gcj/math/MPN.java
@@ -0,0 +1,736 @@
+/* Copyright (C) 1999, 2000 Red Hat, Inc.
+
+ This file is part of libgcj.
+
+This software is copyrighted work licensed under the terms of the
+Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
+details. */
+
+// Included from Kawa 1.6.62 with permission of the author,
+// Per Bothner <per@bothner.com>.
+
+package gnu.gcj.math;
+
+/** This contains various low-level routines for unsigned bigints.
+ * The interfaces match the mpn interfaces in gmp,
+ * so it should be easy to replace them with fast native functions
+ * that are trivial wrappers around the mpn_ functions in gmp
+ * (at least on platforms that use 32-bit "limbs").
+ */
+
+public class MPN
+{
+ /** Add x[0:size-1] and y, and write the size least
+ * significant words of the result to dest.
+ * Return carry, either 0 or 1.
+ * All values are unsigned.
+ * This is basically the same as gmp's mpn_add_1. */
+ public static int add_1 (int[] dest, int[] x, int size, int y)
+ {
+ long carry = (long) y & 0xffffffffL;
+ for (int i = 0; i < size; i++)
+ {
+ carry += ((long) x[i] & 0xffffffffL);
+ dest[i] = (int) carry;
+ carry >>= 32;
+ }
+ return (int) carry;
+ }
+
+ /** Add x[0:len-1] and y[0:len-1] and write the len least
+ * significant words of the result to dest[0:len-1].
+ * All words are treated as unsigned.
+ * @return the carry, either 0 or 1
+ * This function is basically the same as gmp's mpn_add_n.
+ */
+ public static int add_n (int dest[], int[] x, int[] y, int len)
+ {
+ long carry = 0;
+ for (int i = 0; i < len; i++)
+ {
+ carry += ((long) x[i] & 0xffffffffL)
+ + ((long) y[i] & 0xffffffffL);
+ dest[i] = (int) carry;
+ carry >>>= 32;
+ }
+ return (int) carry;
+ }
+
+ /** Subtract Y[0:size-1] from X[0:size-1], and write
+ * the size least significant words of the result to dest[0:size-1].
+ * Return borrow, either 0 or 1.
+ * This is basically the same as gmp's mpn_sub_n function.
+ */
+
+ public static int sub_n (int[] dest, int[] X, int[] Y, int size)
+ {
+ int cy = 0;
+ for (int i = 0; i < size; i++)
+ {
+ int y = Y[i];
+ int x = X[i];
+ y += cy; /* add previous carry to subtrahend */
+ // Invert the high-order bit, because: (unsigned) X > (unsigned) Y
+ // iff: (int) (X^0x80000000) > (int) (Y^0x80000000).
+ cy = (y^0x80000000) < (cy^0x80000000) ? 1 : 0;
+ y = x - y;
+ cy += (y^0x80000000) > (x ^ 0x80000000) ? 1 : 0;
+ dest[i] = y;
+ }
+ return cy;
+ }
+
+ /** Multiply x[0:len-1] by y, and write the len least
+ * significant words of the product to dest[0:len-1].
+ * Return the most significant word of the product.
+ * All values are treated as if they were unsigned
+ * (i.e. masked with 0xffffffffL).
+ * OK if dest==x (not sure if this is guaranteed for mpn_mul_1).
+ * This function is basically the same as gmp's mpn_mul_1.
+ */
+
+ public static int mul_1 (int[] dest, int[] x, int len, int y)
+ {
+ long yword = (long) y & 0xffffffffL;
+ long carry = 0;
+ for (int j = 0; j < len; j++)
+ {
+ carry += ((long) x[j] & 0xffffffffL) * yword;
+ dest[j] = (int) carry;
+ carry >>>= 32;
+ }
+ return (int) carry;
+ }
+
+ /**
+ * Multiply x[0:xlen-1] and y[0:ylen-1], and
+ * write the result to dest[0:xlen+ylen-1].
+ * The destination has to have space for xlen+ylen words,
+ * even if the result might be one limb smaller.
+ * This function requires that xlen >= ylen.
+ * The destination must be distinct from either input operands.
+ * All operands are unsigned.
+ * This function is basically the same gmp's mpn_mul. */
+
+ public static void mul (int[] dest,
+ int[] x, int xlen,
+ int[] y, int ylen)
+ {
+ dest[xlen] = MPN.mul_1 (dest, x, xlen, y[0]);
+
+ for (int i = 1; i < ylen; i++)
+ {
+ long yword = (long) y[i] & 0xffffffffL;
+ long carry = 0;
+ for (int j = 0; j < xlen; j++)
+ {
+ carry += ((long) x[j] & 0xffffffffL) * yword
+ + ((long) dest[i+j] & 0xffffffffL);
+ dest[i+j] = (int) carry;
+ carry >>>= 32;
+ }
+ dest[i+xlen] = (int) carry;
+ }
+ }
+
+ /* Divide (unsigned long) N by (unsigned int) D.
+ * Returns (remainder << 32)+(unsigned int)(quotient).
+ * Assumes (unsigned int)(N>>32) < (unsigned int)D.
+ * Code transcribed from gmp-2.0's mpn_udiv_w_sdiv function.
+ */
+ public static long udiv_qrnnd (long N, int D)
+ {
+ long q, r;
+ long a1 = N >>> 32;
+ long a0 = N & 0xffffffffL;
+ if (D >= 0)
+ {
+ if (a1 < ((D - a1 - (a0 >>> 31)) & 0xffffffffL))
+ {
+ /* dividend, divisor, and quotient are nonnegative */
+ q = N / D;
+ r = N % D;
+ }
+ else
+ {
+ /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */
+ long c = N - ((long) D << 31);
+ /* Divide (c1*2^32 + c0) by d */
+ q = c / D;
+ r = c % D;
+ /* Add 2^31 to quotient */
+ q += 1 << 31;
+ }
+ }
+ else
+ {
+ long b1 = D >>> 1; /* d/2, between 2^30 and 2^31 - 1 */
+ //long c1 = (a1 >> 1); /* A/2 */
+ //int c0 = (a1 << 31) + (a0 >> 1);
+ long c = N >>> 1;
+ if (a1 < b1 || (a1 >> 1) < b1)
+ {
+ if (a1 < b1)
+ {
+ q = c / b1;
+ r = c % b1;
+ }
+ else /* c1 < b1, so 2^31 <= (A/2)/b1 < 2^32 */
+ {
+ c = ~(c - (b1 << 32));
+ q = c / b1; /* (A/2) / (d/2) */
+ r = c % b1;
+ q = (~q) & 0xffffffffL; /* (A/2)/b1 */
+ r = (b1 - 1) - r; /* r < b1 => new r >= 0 */
+ }
+ r = 2 * r + (a0 & 1);
+ if ((D & 1) != 0)
+ {
+ if (r >= q) {
+ r = r - q;
+ } else if (q - r <= ((long) D & 0xffffffffL)) {
+ r = r - q + D;
+ q -= 1;
+ } else {
+ r = r - q + D + D;
+ q -= 2;
+ }
+ }
+ }
+ else /* Implies c1 = b1 */
+ { /* Hence a1 = d - 1 = 2*b1 - 1 */
+ if (a0 >= ((long)(-D) & 0xffffffffL))
+ {
+ q = -1;
+ r = a0 + D;
+ }
+ else
+ {
+ q = -2;
+ r = a0 + D + D;
+ }
+ }
+ }
+
+ return (r << 32) | (q & 0xFFFFFFFFl);
+ }
+
+ /** Divide divident[0:len-1] by (unsigned int)divisor.
+ * Write result into quotient[0:len-1.
+ * Return the one-word (unsigned) remainder.
+ * OK for quotient==dividend.
+ */
+
+ public static int divmod_1 (int[] quotient, int[] dividend,
+ int len, int divisor)
+ {
+ int i = len - 1;
+ long r = dividend[i];
+ if ((r & 0xffffffffL) >= ((long)divisor & 0xffffffffL))
+ r = 0;
+ else
+ {
+ quotient[i--] = 0;
+ r <<= 32;
+ }
+
+ for (; i >= 0; i--)
+ {
+ int n0 = dividend[i];
+ r = (r & ~0xffffffffL) | (n0 & 0xffffffffL);
+ r = udiv_qrnnd (r, divisor);
+ quotient[i] = (int) r;
+ }
+ return (int)(r >> 32);
+ }
+
+ /* Subtract x[0:len-1]*y from dest[offset:offset+len-1].
+ * All values are treated as if unsigned.
+ * @return the most significant word of
+ * the product, minus borrow-out from the subtraction.
+ */
+ public static int submul_1 (int[] dest, int offset, int[] x, int len, int y)
+ {
+ long yl = (long) y & 0xffffffffL;
+ int carry = 0;
+ int j = 0;
+ do
+ {
+ long prod = ((long) x[j] & 0xffffffffL) * yl;
+ int prod_low = (int) prod;
+ int prod_high = (int) (prod >> 32);
+ prod_low += carry;
+ // Invert the high-order bit, because: (unsigned) X > (unsigned) Y
+ // iff: (int) (X^0x80000000) > (int) (Y^0x80000000).
+ carry = ((prod_low ^ 0x80000000) < (carry ^ 0x80000000) ? 1 : 0)
+ + prod_high;
+ int x_j = dest[offset+j];
+ prod_low = x_j - prod_low;
+ if ((prod_low ^ 0x80000000) > (x_j ^ 0x80000000))
+ carry++;
+ dest[offset+j] = prod_low;
+ }
+ while (++j < len);
+ return carry;
+ }
+
+ /** Divide zds[0:nx] by y[0:ny-1].
+ * The remainder ends up in zds[0:ny-1].
+ * The quotient ends up in zds[ny:nx].
+ * Assumes: nx>ny.
+ * (int)y[ny-1] < 0 (i.e. most significant bit set)
+ */
+
+ public static void divide (int[] zds, int nx, int[] y, int ny)
+ {
+ // This is basically Knuth's formulation of the classical algorithm,
+ // but translated from in scm_divbigbig in Jaffar's SCM implementation.
+
+ // Correspondance with Knuth's notation:
+ // Knuth's u[0:m+n] == zds[nx:0].
+ // Knuth's v[1:n] == y[ny-1:0]
+ // Knuth's n == ny.
+ // Knuth's m == nx-ny.
+ // Our nx == Knuth's m+n.
+
+ // Could be re-implemented using gmp's mpn_divrem:
+ // zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
+
+ int j = nx;
+ do
+ { // loop over digits of quotient
+ // Knuth's j == our nx-j.
+ // Knuth's u[j:j+n] == our zds[j:j-ny].
+ int qhat; // treated as unsigned
+ if (zds[j]==y[ny-1])
+ qhat = -1; // 0xffffffff
+ else
+ {
+ long w = (((long)(zds[j])) << 32) + ((long)zds[j-1] & 0xffffffffL);
+ qhat = (int) udiv_qrnnd (w, y[ny-1]);
+ }
+ if (qhat != 0)
+ {
+ int borrow = submul_1 (zds, j - ny, y, ny, qhat);
+ int save = zds[j];
+ long num = ((long)save&0xffffffffL) - ((long)borrow&0xffffffffL);
+ while (num != 0)
+ {
+ qhat--;
+ long carry = 0;
+ for (int i = 0; i < ny; i++)
+ {
+ carry += ((long) zds[j-ny+i] & 0xffffffffL)
+ + ((long) y[i] & 0xffffffffL);
+ zds[j-ny+i] = (int) carry;
+ carry >>>= 32;
+ }
+ zds[j] += carry;
+ num = carry - 1;
+ }
+ }
+ zds[j] = qhat;
+ } while (--j >= ny);
+ }
+
+ /** Number of digits in the conversion base that always fits in a word.
+ * For example, for base 10 this is 9, since 10**9 is the
+ * largest number that fits into a words (assuming 32-bit words).
+ * This is the same as gmp's __mp_bases[radix].chars_per_limb.
+ * @param radix the base
+ * @return number of digits */
+ public static int chars_per_word (int radix)
+ {
+ if (radix < 10)
+ {
+ if (radix < 8)
+ {
+ if (radix <= 2)
+ return 32;
+ else if (radix == 3)
+ return 20;
+ else if (radix == 4)
+ return 16;
+ else
+ return 18 - radix;
+ }
+ else
+ return 10;
+ }
+ else if (radix < 12)
+ return 9;
+ else if (radix <= 16)
+ return 8;
+ else if (radix <= 23)
+ return 7;
+ else if (radix <= 40)
+ return 6;
+ // The following are conservative, but we don't care.
+ else if (radix <= 256)
+ return 4;
+ else
+ return 1;
+ }
+
+ /** Count the number of leading zero bits in an int. */
+ public static int count_leading_zeros (int i)
+ {
+ if (i == 0)
+ return 32;
+ int count = 0;
+ for (int k = 16; k > 0; k = k >> 1) {
+ int j = i >>> k;
+ if (j == 0)
+ count += k;
+ else
+ i = j;
+ }
+ return count;
+ }
+
+ public static int set_str (int dest[], byte[] str, int str_len, int base)
+ {
+ int size = 0;
+ if ((base & (base - 1)) == 0)
+ {
+ // The base is a power of 2. Read the input string from
+ // least to most significant character/digit. */
+
+ int next_bitpos = 0;
+ int bits_per_indigit = 0;
+ for (int i = base; (i >>= 1) != 0; ) bits_per_indigit++;
+ int res_digit = 0;
+
+ for (int i = str_len; --i >= 0; )
+ {
+ int inp_digit = str[i];
+ res_digit |= inp_digit << next_bitpos;
+ next_bitpos += bits_per_indigit;
+ if (next_bitpos >= 32)
+ {
+ dest[size++] = res_digit;
+ next_bitpos -= 32;
+ res_digit = inp_digit >> (bits_per_indigit - next_bitpos);
+ }
+ }
+
+ if (res_digit != 0)
+ dest[size++] = res_digit;
+ }
+ else
+ {
+ // General case. The base is not a power of 2.
+ int indigits_per_limb = MPN.chars_per_word (base);
+ int str_pos = 0;
+
+ while (str_pos < str_len)
+ {
+ int chunk = str_len - str_pos;
+ if (chunk > indigits_per_limb)
+ chunk = indigits_per_limb;
+ int res_digit = str[str_pos++];
+ int big_base = base;
+
+ while (--chunk > 0)
+ {
+ res_digit = res_digit * base + str[str_pos++];
+ big_base *= base;
+ }
+
+ int cy_limb;
+ if (size == 0)
+ cy_limb = res_digit;
+ else
+ {
+ cy_limb = MPN.mul_1 (dest, dest, size, big_base);
+ cy_limb += MPN.add_1 (dest, dest, size, res_digit);
+ }
+ if (cy_limb != 0)
+ dest[size++] = cy_limb;
+ }
+ }
+ return size;
+ }
+
+ /** Compare x[0:size-1] with y[0:size-1], treating them as unsigned integers.
+ * @result -1, 0, or 1 depending on if x<y, x==y, or x>y.
+ * This is basically the same as gmp's mpn_cmp function.
+ */
+ public static int cmp (int[] x, int[] y, int size)
+ {
+ while (--size >= 0)
+ {
+ int x_word = x[size];
+ int y_word = y[size];
+ if (x_word != y_word)
+ {
+ // Invert the high-order bit, because:
+ // (unsigned) X > (unsigned) Y iff
+ // (int) (X^0x80000000) > (int) (Y^0x80000000).
+ return (x_word ^ 0x80000000) > (y_word ^0x80000000) ? 1 : -1;
+ }
+ }
+ return 0;
+ }
+
+ /** Compare x[0:xlen-1] with y[0:ylen-1], treating them as unsigned integers.
+ * @result -1, 0, or 1 depending on if x<y, x==y, or x>y.
+ */
+ public static int cmp (int[] x, int xlen, int[] y, int ylen)
+ {
+ return xlen > ylen ? 1 : xlen < ylen ? -1 : cmp (x, y, xlen);
+ }
+
+ /* Shift x[x_start:x_start+len-1]count bits to the "right"
+ * (i.e. divide by 2**count).
+ * Store the len least significant words of the result at dest.
+ * The bits shifted out to the right are returned.
+ * OK if dest==x.
+ * Assumes: 0 < count < 32
+ */
+
+ public static int rshift (int[] dest, int[] x, int x_start,
+ int len, int count)
+ {
+ int count_2 = 32 - count;
+ int low_word = x[x_start];
+ int retval = low_word << count_2;
+ int i = 1;
+ for (; i < len; i++)
+ {
+ int high_word = x[x_start+i];
+ dest[i-1] = (low_word >>> count) | (high_word << count_2);
+ low_word = high_word;
+ }
+ dest[i-1] = low_word >>> count;
+ return retval;
+ }
+
+ /** Return the long-truncated value of right shifting.
+ * @param x a two's-complement "bignum"
+ * @param len the number of significant words in x
+ * @param count the shift count
+ * @return (long)(x[0..len-1] >> count).
+ */
+ public static long rshift_long (int[] x, int len, int count)
+ {
+ int wordno = count >> 5;
+ count &= 31;
+ int sign = x[len-1] < 0 ? -1 : 0;
+ int w0 = wordno >= len ? sign : x[wordno];
+ wordno++;
+ int w1 = wordno >= len ? sign : x[wordno];
+ if (count != 0)
+ {
+ wordno++;
+ int w2 = wordno >= len ? sign : x[wordno];
+ w0 = (w0 >>> count) | (w1 << (32-count));
+ w1 = (w1 >>> count) | (w2 << (32-count));
+ }
+ return ((long)w1 << 32) | ((long)w0 & 0xffffffffL);
+ }
+
+ /* Shift x[0:len-1]count bits to the "right" (i.e. divide by 2**count).
+ * Store the len least significant words of the result at dest.
+ * OK if dest==x.
+ * OK if count > 32 (but must be >= 0).
+ */
+ public static void rshift (int[] dest, int[] x, int len, int count)
+ {
+ int word_count = count >> 5;
+ count &= 31;
+ rshift (dest, x, word_count, len, count);
+ while (word_count < len)
+ dest[word_count++] = 0;
+ }
+
+ /* Shift x[0:len-1] left by count bits, and store the len least
+ * significant words of the result in dest[d_offset:d_offset+len-1].
+ * Return the bits shifted out from the most significant digit.
+ * Assumes 0 < count < 32.
+ * OK if dest==x.
+ */
+
+ public static int lshift (int[] dest, int d_offset,
+ int[] x, int len, int count)
+ {
+ int count_2 = 32 - count;
+ int i = len - 1;
+ int high_word = x[i];
+ int retval = high_word >>> count_2;
+ d_offset++;
+ while (--i >= 0)
+ {
+ int low_word = x[i];
+ dest[d_offset+i] = (high_word << count) | (low_word >>> count_2);
+ high_word = low_word;
+ }
+ dest[d_offset+i] = high_word << count;
+ return retval;
+ }
+
+ /** Return least i such that word&(1<<i). Assumes word!=0. */
+
+ static int findLowestBit (int word)
+ {
+ int i = 0;
+ while ((word & 0xF) == 0)
+ {
+ word >>= 4;
+ i += 4;
+ }
+ if ((word & 3) == 0)
+ {
+ word >>= 2;
+ i += 2;
+ }
+ if ((word & 1) == 0)
+ i += 1;
+ return i;
+ }
+
+ /** Return least i such that words & (1<<i). Assumes there is such an i. */
+
+ static int findLowestBit (int[] words)
+ {
+ for (int i = 0; ; i++)
+ {
+ if (words[i] != 0)
+ return 32 * i + findLowestBit (words[i]);
+ }
+ }
+
+ /** Calculate Greatest Common Divisior of x[0:len-1] and y[0:len-1].
+ * Assumes both arguments are non-zero.
+ * Leaves result in x, and returns len of result.
+ * Also destroys y (actually sets it to a copy of the result). */
+
+ public static int gcd (int[] x, int[] y, int len)
+ {
+ int i, word;
+ // Find sh such that both x and y are divisible by 2**sh.
+ for (i = 0; ; i++)
+ {
+ word = x[i] | y[i];
+ if (word != 0)
+ {
+ // Must terminate, since x and y are non-zero.
+ break;
+ }
+ }
+ int initShiftWords = i;
+ int initShiftBits = findLowestBit (word);
+ // Logically: sh = initShiftWords * 32 + initShiftBits
+
+ // Temporarily devide both x and y by 2**sh.
+ len -= initShiftWords;
+ MPN.rshift (x, x, initShiftWords, len, initShiftBits);
+ MPN.rshift (y, y, initShiftWords, len, initShiftBits);
+
+ int[] odd_arg; /* One of x or y which is odd. */
+ int[] other_arg; /* The other one can be even or odd. */
+ if ((x[0] & 1) != 0)
+ {
+ odd_arg = x;
+ other_arg = y;
+ }
+ else
+ {
+ odd_arg = y;
+ other_arg = x;
+ }
+
+ for (;;)
+ {
+ // Shift other_arg until it is odd; this doesn't
+ // affect the gcd, since we divide by 2**k, which does not
+ // divide odd_arg.
+ for (i = 0; other_arg[i] == 0; ) i++;
+ if (i > 0)
+ {
+ int j;
+ for (j = 0; j < len-i; j++)
+ other_arg[j] = other_arg[j+i];
+ for ( ; j < len; j++)
+ other_arg[j] = 0;
+ }
+ i = findLowestBit(other_arg[0]);
+ if (i > 0)
+ MPN.rshift (other_arg, other_arg, 0, len, i);
+
+ // Now both odd_arg and other_arg are odd.
+
+ // Subtract the smaller from the larger.
+ // This does not change the result, since gcd(a-b,b)==gcd(a,b).
+ i = MPN.cmp(odd_arg, other_arg, len);
+ if (i == 0)
+ break;
+ if (i > 0)
+ { // odd_arg > other_arg
+ MPN.sub_n (odd_arg, odd_arg, other_arg, len);
+ // Now odd_arg is even, so swap with other_arg;
+ int[] tmp = odd_arg; odd_arg = other_arg; other_arg = tmp;
+ }
+ else
+ { // other_arg > odd_arg
+ MPN.sub_n (other_arg, other_arg, odd_arg, len);
+ }
+ while (odd_arg[len-1] == 0 && other_arg[len-1] == 0)
+ len--;
+ }
+ if (initShiftWords + initShiftBits > 0)
+ {
+ if (initShiftBits > 0)
+ {
+ int sh_out = MPN.lshift (x, initShiftWords, x, len, initShiftBits);
+ if (sh_out != 0)
+ x[(len++)+initShiftWords] = sh_out;
+ }
+ else
+ {
+ for (i = len; --i >= 0;)
+ x[i+initShiftWords] = x[i];
+ }
+ for (i = initShiftWords; --i >= 0; )
+ x[i] = 0;
+ len += initShiftWords;
+ }
+ return len;
+ }
+
+ public static int intLength (int i)
+ {
+ return 32 - count_leading_zeros (i < 0 ? ~i : i);
+ }
+
+ /** Calcaulte the Common Lisp "integer-length" function.
+ * Assumes input is canonicalized: len==IntNum.wordsNeeded(words,len) */
+ public static int intLength (int[] words, int len)
+ {
+ len--;
+ return intLength (words[len]) + 32 * len;
+ }
+
+ /* DEBUGGING:
+ public static void dprint (IntNum x)
+ {
+ if (x.words == null)
+ System.err.print(Long.toString((long) x.ival & 0xffffffffL, 16));
+ else
+ dprint (System.err, x.words, x.ival);
+ }
+ public static void dprint (int[] x) { dprint (System.err, x, x.length); }
+ public static void dprint (int[] x, int len) { dprint (System.err, x, len); }
+ public static void dprint (java.io.PrintStream ps, int[] x, int len)
+ {
+ ps.print('(');
+ for (int i = 0; i < len; i++)
+ {
+ if (i > 0)
+ ps.print (' ');
+ ps.print ("#x" + Long.toString ((long) x[i] & 0xffffffffL, 16));
+ }
+ ps.print(')');
+ }
+ */
+}