aboutsummaryrefslogtreecommitdiff
path: root/libjava/classpath/lib/java
diff options
context:
space:
mode:
authorThiemo Seufer <ths@mips.com>2007-04-25 12:05:48 +0000
committerThiemo Seufer <ths@gcc.gnu.org>2007-04-25 12:05:48 +0000
commit500fc425860f86c0c9f38ea6a2a3f5b32e8549c2 (patch)
tree4bf01dcdb081595abc17dd7312a331135339ffde /libjava/classpath/lib/java
parentc1e5569062a3d302e8a0d0b6be83a772b652bc95 (diff)
downloadgcc-500fc425860f86c0c9f38ea6a2a3f5b32e8549c2.zip
gcc-500fc425860f86c0c9f38ea6a2a3f5b32e8549c2.tar.gz
gcc-500fc425860f86c0c9f38ea6a2a3f5b32e8549c2.tar.bz2
mips.opt (mdmx, [...]): New options.
* config/mips/mips.opt (mdmx, mmt, mno-mdmx): New options. (mips16): Fix typo. * config/mips/mips.h (ASM_SPEC): Pass -mmt/-mno-mt and -mdmx/-mno-mdmx on to the assembler. Improve handling of -mno-mips16. Add handling of -mno-mips3d, -mno-dsp, -mno-dspr2. * doc/invoke.texi (MIPS Options): Whitespace cleanup. Fix wrong use of @itemx. Document -mno-dsp, -mno-dspr2, -mno-paired-single, -mdmx, -mno-mdmx, -mno-mips3d, -mmt and -mno-mt. From-SVN: r124153
Diffstat (limited to 'libjava/classpath/lib/java')
0 files changed, 0 insertions, 0 deletions
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
/* Scalar evolution detector.
   Copyright (C) 2003-2021 Free Software Foundation, Inc.
   Contributed by Sebastian Pop <s.pop@laposte.net>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/*
   Description:

   This pass analyzes the evolution of scalar variables in loop
   structures.  The algorithm is based on the SSA representation,
   and on the loop hierarchy tree.  This algorithm is not based on
   the notion of versions of a variable, as it was the case for the
   previous implementations of the scalar evolution algorithm, but
   it assumes that each defined name is unique.

   The notation used in this file is called "chains of recurrences",
   and has been proposed by Eugene Zima, Robert Van Engelen, and
   others for describing induction variables in programs.  For example
   "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
   when entering in the loop_1 and has a step 2 in this loop, in other
   words "for (b = 0; b < N; b+=2);".  Note that the coefficients of
   this chain of recurrence (or chrec [shrek]) can contain the name of
   other variables, in which case they are called parametric chrecs.
   For example, "b -> {a, +, 2}_1" means that the initial value of "b"
   is the value of "a".  In most of the cases these parametric chrecs
   are fully instantiated before their use because symbolic names can
   hide some difficult cases such as self-references described later
   (see the Fibonacci example).

   A short sketch of the algorithm is:

   Given a scalar variable to be analyzed, follow the SSA edge to
   its definition:

   - When the definition is a GIMPLE_ASSIGN: if the right hand side
   (RHS) of the definition cannot be statically analyzed, the answer
   of the analyzer is: "don't know".
   Otherwise, for all the variables that are not yet analyzed in the
   RHS, try to determine their evolution, and finally try to
   evaluate the operation of the RHS that gives the evolution
   function of the analyzed variable.

   - When the definition is a condition-phi-node: determine the
   evolution function for all the branches of the phi node, and
   finally merge these evolutions (see chrec_merge).

   - When the definition is a loop-phi-node: determine its initial
   condition, that is the SSA edge defined in an outer loop, and
   keep it symbolic.  Then determine the SSA edges that are defined
   in the body of the loop.  Follow the inner edges until ending on
   another loop-phi-node of the same analyzed loop.  If the reached
   loop-phi-node is not the starting loop-phi-node, then we keep
   this definition under a symbolic form.  If the reached
   loop-phi-node is the same as the starting one, then we compute a
   symbolic stride on the return path.  The result is then the
   symbolic chrec {initial_condition, +, symbolic_stride}_loop.

   Examples:

   Example 1: Illustration of the basic algorithm.

   | a = 3
   | loop_1
   |   b = phi (a, c)
   |   c = b + 1
   |   if (c > 10) exit_loop
   | endloop

   Suppose that we want to know the number of iterations of the
   loop_1.  The exit_loop is controlled by a COND_EXPR (c > 10).  We
   ask the scalar evolution analyzer two questions: what's the
   scalar evolution (scev) of "c", and what's the scev of "10".  For
   "10" the answer is "10" since it is a scalar constant.  For the
   scalar variable "c", it follows the SSA edge to its definition,
   "c = b + 1", and then asks again what's the scev of "b".
   Following the SSA edge, we end on a loop-phi-node "b = phi (a,
   c)", where the initial condition is "a", and the inner loop edge
   is "c".  The initial condition is kept under a symbolic form (it
   may be the case that the copy constant propagation has done its
   work and we end with the constant "3" as one of the edges of the
   loop-phi-node).  The update edge is followed to the end of the
   loop, and until reaching again the starting loop-phi-node: b -> c
   -> b.  At this point we have drawn a path from "b" to "b" from
   which we compute the stride in the loop: in this example it is
   "+1".  The resulting scev for "b" is "b -> {a, +, 1}_1".  Now
   that the scev for "b" is known, it is possible to compute the
   scev for "c", that is "c -> {a + 1, +, 1}_1".  In order to
   determine the number of iterations in the loop_1, we have to
   instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
   more analysis the scev {4, +, 1}_1, or in other words, this is
   the function "f (x) = x + 4", where x is the iteration count of
   the loop_1.  Now we have to solve the inequality "x + 4 > 10",
   and take the smallest iteration number for which the loop is
   exited: x = 7.  This loop runs from x = 0 to x = 7, and in total
   there are 8 iterations.  In terms of loop normalization, we have
   created a variable that is implicitly defined, "x" or just "_1",
   and all the other analyzed scalars of the loop are defined in
   function of this variable:

   a -> 3
   b -> {3, +, 1}_1
   c -> {4, +, 1}_1

   or in terms of a C program:

   | a = 3
   | for (x = 0; x <= 7; x++)
   |   {
   |     b = x + 3
   |     c = x + 4
   |   }

   Example 2a: Illustration of the algorithm on nested loops.

   | loop_1
   |   a = phi (1, b)
   |   c = a + 2
   |   loop_2  10 times
   |     b = phi (c, d)
   |     d = b + 3
   |   endloop
   | endloop

   For analyzing the scalar evolution of "a", the algorithm follows
   the SSA edge into the loop's body: "a -> b".  "b" is an inner
   loop-phi-node, and its analysis as in Example 1, gives:

   b -> {c, +, 3}_2
   d -> {c + 3, +, 3}_2

   Following the SSA edge for the initial condition, we end on "c = a
   + 2", and then on the starting loop-phi-node "a".  From this point,
   the loop stride is computed: back on "c = a + 2" we get a "+2" in
   the loop_1, then on the loop-phi-node "b" we compute the overall
   effect of the inner loop that is "b = c + 30", and we get a "+30"
   in the loop_1.  That means that the overall stride in loop_1 is
   equal to "+32", and the result is:

   a -> {1, +, 32}_1
   c -> {3, +, 32}_1

   Example 2b: Multivariate chains of recurrences.

   | loop_1
   |   k = phi (0, k + 1)
   |   loop_2  4 times
   |     j = phi (0, j + 1)
   |     loop_3 4 times
   |       i = phi (0, i + 1)
   |       A[j + k] = ...
   |     endloop
   |   endloop
   | endloop

   Analyzing the access function of array A with
   instantiate_parameters (loop_1, "j + k"), we obtain the
   instantiation and the analysis of the scalar variables "j" and "k"
   in loop_1.  This leads to the scalar evolution {4, +, 1}_1: the end
   value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
   {0, +, 1}_1.  To obtain the evolution function in loop_3 and
   instantiate the scalar variables up to loop_1, one has to use:
   instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
   The result of this call is {{0, +, 1}_1, +, 1}_2.

   Example 3: Higher degree polynomials.

   | loop_1
   |   a = phi (2, b)
   |   c = phi (5, d)
   |   b = a + 1
   |   d = c + a
   | endloop

   a -> {2, +, 1}_1
   b -> {3, +, 1}_1
   c -> {5, +, a}_1
   d -> {5 + a, +, a}_1

   instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
   instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1

   Example 4: Lucas, Fibonacci, or mixers in general.

   | loop_1
   |   a = phi (1, b)
   |   c = phi (3, d)
   |   b = c
   |   d = c + a
   | endloop

   a -> (1, c)_1
   c -> {3, +, a}_1

   The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
   following semantics: during the first iteration of the loop_1, the
   variable contains the value 1, and then it contains the value "c".
   Note that this syntax is close to the syntax of the loop-phi-node:
   "a -> (1, c)_1" vs. "a = phi (1, c)".

   The symbolic chrec representation contains all the semantics of the
   original code.  What is more difficult is to use this information.

   Example 5: Flip-flops, or exchangers.

   | loop_1
   |   a = phi (1, b)
   |   c = phi (3, d)
   |   b = c
   |   d = a
   | endloop

   a -> (1, c)_1
   c -> (3, a)_1

   Based on these symbolic chrecs, it is possible to refine this
   information into the more precise PERIODIC_CHRECs:

   a -> |1, 3|_1
   c -> |3, 1|_1

   This transformation is not yet implemented.

   Further readings:

   You can find a more detailed description of the algorithm in:
   http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
   http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz.  But note that
   this is a preliminary report and some of the details of the
   algorithm have changed.  I'm working on a research report that
   updates the description of the algorithms to reflect the design
   choices used in this implementation.

   A set of slides show a high level overview of the algorithm and run
   an example through the scalar evolution analyzer:
   http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf

   The slides that I have presented at the GCC Summit'04 are available
   at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "optabs-query.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-affine.h"
#include "tree-scalar-evolution.h"
#include "dumpfile.h"
#include "tree-ssa-propagate.h"
#include "gimple-fold.h"
#include "tree-into-ssa.h"
#include "builtins.h"
#include "case-cfn-macros.h"

static tree analyze_scalar_evolution_1 (class loop *, tree);
static tree analyze_scalar_evolution_for_address_of (class loop *loop,
						     tree var);

/* The cached information about an SSA name with version NAME_VERSION,
   claiming that below basic block with index INSTANTIATED_BELOW, the
   value of the SSA name can be expressed as CHREC.  */

struct GTY((for_user)) scev_info_str {
  unsigned int name_version;
  int instantiated_below;
  tree chrec;
};

/* Counters for the scev database.  */
static unsigned nb_set_scev = 0;
static unsigned nb_get_scev = 0;

struct scev_info_hasher : ggc_ptr_hash<scev_info_str>
{
  static hashval_t hash (scev_info_str *i);
  static bool equal (const scev_info_str *a, const scev_info_str *b);
};

static GTY (()) hash_table<scev_info_hasher> *scalar_evolution_info;


/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW.  */

static inline struct scev_info_str *
new_scev_info_str (basic_block instantiated_below, tree var)
{
  struct scev_info_str *res;

  res = ggc_alloc<scev_info_str> ();
  res->name_version = SSA_NAME_VERSION (var);
  res->chrec = chrec_not_analyzed_yet;
  res->instantiated_below = instantiated_below->index;

  return res;
}

/* Computes a hash function for database element ELT.  */

hashval_t
scev_info_hasher::hash (scev_info_str *elt)
{
  return elt->name_version ^ elt->instantiated_below;
}

/* Compares database elements E1 and E2.  */

bool
scev_info_hasher::equal (const scev_info_str *elt1, const scev_info_str *elt2)
{
  return (elt1->name_version == elt2->name_version
	  && elt1->instantiated_below == elt2->instantiated_below);
}

/* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
   A first query on VAR returns chrec_not_analyzed_yet.  */

static tree *
find_var_scev_info (basic_block instantiated_below, tree var)
{
  struct scev_info_str *res;
  struct scev_info_str tmp;

  tmp.name_version = SSA_NAME_VERSION (var);
  tmp.instantiated_below = instantiated_below->index;
  scev_info_str **slot = scalar_evolution_info->find_slot (&tmp, INSERT);

  if (!*slot)
    *slot = new_scev_info_str (instantiated_below, var);
  res = *slot;

  return &res->chrec;
}


/* Hashtable helpers for a temporary hash-table used when
   analyzing a scalar evolution, instantiating a CHREC or
   resolving mixers.  */

class instantiate_cache_type
{
public:
  htab_t map;
  vec<scev_info_str> entries;

  instantiate_cache_type () : map (NULL), entries (vNULL) {}
  ~instantiate_cache_type ();
  tree get (unsigned slot) { return entries[slot].chrec; }
  void set (unsigned slot, tree chrec) { entries[slot].chrec = chrec; }
};

instantiate_cache_type::~instantiate_cache_type ()
{
  if (map != NULL)
    {
      htab_delete (map);
      entries.release ();
    }
}

/* Cache to avoid infinite recursion when instantiating an SSA name.
   Live during the outermost analyze_scalar_evolution, instantiate_scev
   or resolve_mixers call.  */
static instantiate_cache_type *global_cache;


/* Return true when PHI is a loop-phi-node.  */

static bool
loop_phi_node_p (gimple *phi)
{
  /* The implementation of this function is based on the following
     property: "all the loop-phi-nodes of a loop are contained in the
     loop's header basic block".  */

  return loop_containing_stmt (phi)->header == gimple_bb (phi);
}

/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
   In general, in the case of multivariate evolutions we want to get
   the evolution in different loops.  LOOP specifies the level for
   which to get the evolution.

   Example:

   | for (j = 0; j < 100; j++)
   |   {
   |     for (k = 0; k < 100; k++)
   |       {
   |         i = k + j;   - Here the value of i is a function of j, k.
   |       }
   |      ... = i         - Here the value of i is a function of j.
   |   }
   | ... = i              - Here the value of i is a scalar.

   Example:

   | i_0 = ...
   | loop_1 10 times
   |   i_1 = phi (i_0, i_2)
   |   i_2 = i_1 + 2
   | endloop

   This loop has the same effect as:
   LOOP_1 has the same effect as:

   | i_1 = i_0 + 20

   The overall effect of the loop, "i_0 + 20" in the previous example,
   is obtained by passing in the parameters: LOOP = 1,
   EVOLUTION_FN = {i_0, +, 2}_1.
*/

tree
compute_overall_effect_of_inner_loop (class loop *loop, tree evolution_fn)
{
  bool val = false;

  if (evolution_fn == chrec_dont_know)
    return chrec_dont_know;

  else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
    {
      class loop *inner_loop = get_chrec_loop (evolution_fn);

      if (inner_loop == loop
	  || flow_loop_nested_p (loop, inner_loop))
	{
	  tree nb_iter = number_of_latch_executions (inner_loop);

	  if (nb_iter == chrec_dont_know)
	    return chrec_dont_know;
	  else
	    {
	      tree res;

	      /* evolution_fn is the evolution function in LOOP.  Get
		 its value in the nb_iter-th iteration.  */
	      res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);

	      if (chrec_contains_symbols_defined_in_loop (res, loop->num))
		res = instantiate_parameters (loop, res);

	      /* Continue the computation until ending on a parent of LOOP.  */
	      return compute_overall_effect_of_inner_loop (loop, res);
	    }
	}
      else
	return evolution_fn;
     }

  /* If the evolution function is an invariant, there is nothing to do.  */
  else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
    return evolution_fn;

  else
    return chrec_dont_know;
}

/* Associate CHREC to SCALAR.  */

static void
set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
{
  tree *scalar_info;

  if (TREE_CODE (scalar) != SSA_NAME)
    return;

  scalar_info = find_var_scev_info (instantiated_below, scalar);

  if (dump_file)
    {
      if (dump_flags & TDF_SCEV)
	{
	  fprintf (dump_file, "(set_scalar_evolution \n");
	  fprintf (dump_file, "  instantiated_below = %d \n",
		   instantiated_below->index);
	  fprintf (dump_file, "  (scalar = ");
	  print_generic_expr (dump_file, scalar);
	  fprintf (dump_file, ")\n  (scalar_evolution = ");
	  print_generic_expr (dump_file, chrec);
	  fprintf (dump_file, "))\n");
	}
      if (dump_flags & TDF_STATS)
	nb_set_scev++;
    }

  *scalar_info = chrec;
}

/* Retrieve the chrec associated to SCALAR instantiated below
   INSTANTIATED_BELOW block.  */

static tree
get_scalar_evolution (basic_block instantiated_below, tree scalar)
{
  tree res;

  if (dump_file)
    {
      if (dump_flags & TDF_SCEV)
	{
	  fprintf (dump_file, "(get_scalar_evolution \n");
	  fprintf (dump_file, "  (scalar = ");
	  print_generic_expr (dump_file, scalar);
	  fprintf (dump_file, ")\n");
	}
      if (dump_flags & TDF_STATS)
	nb_get_scev++;
    }

  if (VECTOR_TYPE_P (TREE_TYPE (scalar))
      || TREE_CODE (TREE_TYPE (scalar)) == COMPLEX_TYPE)
    /* For chrec_dont_know we keep the symbolic form.  */
    res = scalar;
  else
    switch (TREE_CODE (scalar))
      {
      case SSA_NAME:
        if (SSA_NAME_IS_DEFAULT_DEF (scalar))
	  res = scalar;
	else
	  res = *find_var_scev_info (instantiated_below, scalar);
	break;

      case REAL_CST:
      case FIXED_CST:
      case INTEGER_CST:
	res = scalar;
	break;

      default:
	res = chrec_not_analyzed_yet;
	break;
      }

  if (dump_file && (dump_flags & TDF_SCEV))
    {
      fprintf (dump_file, "  (scalar_evolution = ");
      print_generic_expr (dump_file, res);
      fprintf (dump_file, "))\n");
    }

  return res;
}

/* Helper function for add_to_evolution.  Returns the evolution
   function for an assignment of the form "a = b + c", where "a" and
   "b" are on the strongly connected component.  CHREC_BEFORE is the
   information that we already have collected up to this point.
   TO_ADD is the evolution of "c".

   When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
   evolution the expression TO_ADD, otherwise construct an evolution
   part for this loop.  */

static tree
add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
		    gimple *at_stmt)
{
  tree type, left, right;
  class loop *loop = get_loop (cfun, loop_nb), *chloop;

  switch (TREE_CODE (chrec_before))
    {
    case POLYNOMIAL_CHREC:
      chloop = get_chrec_loop (chrec_before);
      if (chloop == loop
	  || flow_loop_nested_p (chloop, loop))
	{
	  unsigned var;

	  type = chrec_type (chrec_before);

	  /* When there is no evolution part in this loop, build it.  */
	  if (chloop != loop)
	    {
	      var = loop_nb;
	      left = chrec_before;
	      right = SCALAR_FLOAT_TYPE_P (type)
		? build_real (type, dconst0)
		: build_int_cst (type, 0);
	    }
	  else
	    {
	      var = CHREC_VARIABLE (chrec_before);
	      left = CHREC_LEFT (chrec_before);
	      right = CHREC_RIGHT (chrec_before);
	    }

	  to_add = chrec_convert (type, to_add, at_stmt);
	  right = chrec_convert_rhs (type, right, at_stmt);
	  right = chrec_fold_plus (chrec_type (right), right, to_add);
	  return build_polynomial_chrec (var, left, right);
	}
      else
	{
	  gcc_assert (flow_loop_nested_p (loop, chloop));

	  /* Search the evolution in LOOP_NB.  */
	  left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
				     to_add, at_stmt);
	  right = CHREC_RIGHT (chrec_before);
	  right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
	  return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
					 left, right);
	}

    default:
      /* These nodes do not depend on a loop.  */
      if (chrec_before == chrec_dont_know)
	return chrec_dont_know;

      left = chrec_before;
      right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
      return build_polynomial_chrec (loop_nb, left, right);
    }
}

/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
   of LOOP_NB.

   Description (provided for completeness, for those who read code in
   a plane, and for my poor 62 bytes brain that would have forgotten
   all this in the next two or three months):

   The algorithm of translation of programs from the SSA representation
   into the chrecs syntax is based on a pattern matching.  After having
   reconstructed the overall tree expression for a loop, there are only
   two cases that can arise:

   1. a = loop-phi (init, a + expr)
   2. a = loop-phi (init, expr)

   where EXPR is either a scalar constant with respect to the analyzed
   loop (this is a degree 0 polynomial), or an expression containing
   other loop-phi definitions (these are higher degree polynomials).

   Examples:

   1.
   | init = ...
   | loop_1
   |   a = phi (init, a + 5)
   | endloop

   2.
   | inita = ...
   | initb = ...
   | loop_1
   |   a = phi (inita, 2 * b + 3)
   |   b = phi (initb, b + 1)
   | endloop

   For the first case, the semantics of the SSA representation is:

   | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)

   that is, there is a loop index "x" that determines the scalar value
   of the variable during the loop execution.  During the first
   iteration, the value is that of the initial condition INIT, while
   during the subsequent iterations, it is the sum of the initial
   condition with the sum of all the values of EXPR from the initial
   iteration to the before last considered iteration.

   For the second case, the semantics of the SSA program is:

   | a (x) = init, if x = 0;
   |         expr (x - 1), otherwise.

   The second case corresponds to the PEELED_CHREC, whose syntax is
   close to the syntax of a loop-phi-node:

   | phi (init, expr)  vs.  (init, expr)_x

   The proof of the translation algorithm for the first case is a
   proof by structural induction based on the degree of EXPR.

   Degree 0:
   When EXPR is a constant with respect to the analyzed loop, or in
   other words when EXPR is a polynomial of degree 0, the evolution of
   the variable A in the loop is an affine function with an initial
   condition INIT, and a step EXPR.  In order to show this, we start
   from the semantics of the SSA representation:

   f (x) = init + \sum_{j = 0}^{x - 1} expr (j)

   and since "expr (j)" is a constant with respect to "j",

   f (x) = init + x * expr

   Finally, based on the semantics of the pure sum chrecs, by
   identification we get the corresponding chrecs syntax:

   f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
   f (x) -> {init, +, expr}_x

   Higher degree:
   Suppose that EXPR is a polynomial of degree N with respect to the
   analyzed loop_x for which we have already determined that it is
   written under the chrecs syntax:

   | expr (x)  ->  {b_0, +, b_1, +, ..., +, b_{n-1}} (x)

   We start from the semantics of the SSA program:

   | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
   |
   | f (x) = init + \sum_{j = 0}^{x - 1}
   |                (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
   |
   | f (x) = init + \sum_{j = 0}^{x - 1}
   |                \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
   |
   | f (x) = init + \sum_{k = 0}^{n - 1}
   |                (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
   |
   | f (x) = init + \sum_{k = 0}^{n - 1}
   |                (b_k * \binom{x}{k + 1})
   |
   | f (x) = init + b_0 * \binom{x}{1} + ...
   |              + b_{n-1} * \binom{x}{n}
   |
   | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
   |                             + b_{n-1} * \binom{x}{n}
   |

   And finally from the definition of the chrecs syntax, we identify:
   | f (x)  ->  {init, +, b_0, +, ..., +, b_{n-1}}_x

   This shows the mechanism that stands behind the add_to_evolution
   function.  An important point is that the use of symbolic
   parameters avoids the need of an analysis schedule.

   Example:

   | inita = ...
   | initb = ...
   | loop_1
   |   a = phi (inita, a + 2 + b)
   |   b = phi (initb, b + 1)
   | endloop

   When analyzing "a", the algorithm keeps "b" symbolically:

   | a  ->  {inita, +, 2 + b}_1

   Then, after instantiation, the analyzer ends on the evolution:

   | a  ->  {inita, +, 2 + initb, +, 1}_1

*/

static tree
add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
		  tree to_add, gimple *at_stmt)
{
  tree type = chrec_type (to_add);
  tree res = NULL_TREE;

  if (to_add == NULL_TREE)
    return chrec_before;

  /* TO_ADD is either a scalar, or a parameter.  TO_ADD is not
     instantiated at this point.  */
  if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
    /* This should not happen.  */
    return chrec_dont_know;

  if (dump_file && (dump_flags & TDF_SCEV))
    {
      fprintf (dump_file, "(add_to_evolution \n");
      fprintf (dump_file, "  (loop_nb = %d)\n", loop_nb);
      fprintf (dump_file, "  (chrec_before = ");
      print_generic_expr (dump_file, chrec_before);
      fprintf (dump_file, ")\n  (to_add = ");
      print_generic_expr (dump_file, to_add);
      fprintf (dump_file, ")\n");
    }

  if (code == MINUS_EXPR)
    to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
				  ? build_real (type, dconstm1)
				  : build_int_cst_type (type, -1));

  res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);

  if (dump_file && (dump_flags & TDF_SCEV))
    {
      fprintf (dump_file, "  (res = ");
      print_generic_expr (dump_file, res);
      fprintf (dump_file, "))\n");
    }

  return res;
}



/* This section selects the loops that will be good candidates for the
   scalar evolution analysis.  For the moment, greedily select all the
   loop nests we could analyze.  */

/* For a loop with a single exit edge, return the COND_EXPR that
   guards the exit edge.  If the expression is too difficult to
   analyze, then give up.  */

gcond *
get_loop_exit_condition (const class loop *loop)
{
  gcond *res = NULL;
  edge exit_edge = single_exit (loop);

  if (dump_file && (dump_flags & TDF_SCEV))
    fprintf (dump_file, "(get_loop_exit_condition \n  ");

  if (exit_edge)
    {
      gimple *stmt;

      stmt = last_stmt (exit_edge->src);
      if (gcond *cond_stmt = safe_dyn_cast <gcond *> (stmt))
	res = cond_stmt;
    }

  if (dump_file && (dump_flags & TDF_SCEV))
    {
      print_gimple_stmt (dump_file, res, 0);
      fprintf (dump_file, ")\n");
    }

  return res;
}


/* Depth first search algorithm.  */

enum t_bool {
  t_false,
  t_true,
  t_dont_know
};


static t_bool follow_ssa_edge_expr (class loop *loop, gimple *, tree, gphi *,
				    tree *, int);

/* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
   Return true if the strongly connected component has been found.  */

static t_bool
follow_ssa_edge_binary (class loop *loop, gimple *at_stmt,
			tree type, tree rhs0, enum tree_code code, tree rhs1,
			gphi *halting_phi, tree *evolution_of_loop,
			int limit)
{
  t_bool res = t_false;
  tree evol;

  switch (code)
    {
    case POINTER_PLUS_EXPR:
    case PLUS_EXPR:
      if (TREE_CODE (rhs0) == SSA_NAME)
	{
	  if (TREE_CODE (rhs1) == SSA_NAME)
	    {
	      /* Match an assignment under the form:
		 "a = b + c".  */

	      /* We want only assignments of form "name + name" contribute to
		 LIMIT, as the other cases do not necessarily contribute to
		 the complexity of the expression.  */
	      limit++;

	      evol = *evolution_of_loop;
	      evol = add_to_evolution
		  (loop->num,
		   chrec_convert (type, evol, at_stmt),
		   code, rhs1, at_stmt);
	      res = follow_ssa_edge_expr
		(loop, at_stmt, rhs0, halting_phi, &evol, limit);
	      if (res == t_true)
		*evolution_of_loop = evol;
	      else if (res == t_false)
		{
		  *evolution_of_loop = add_to_evolution
		      (loop->num,
		       chrec_convert (type, *evolution_of_loop, at_stmt),
		       code, rhs0, at_stmt);
		  res = follow_ssa_edge_expr
		    (loop, at_stmt, rhs1, halting_phi,
		     evolution_of_loop, limit);
		}
	    }

	  else
	    gcc_unreachable ();  /* Handled in caller.  */
	}

      else if (TREE_CODE (rhs1) == SSA_NAME)
	{
	  /* Match an assignment under the form:
	     "a = ... + c".  */
	  *evolution_of_loop = add_to_evolution
	      (loop->num, chrec_convert (type, *evolution_of_loop,
					 at_stmt),
	       code, rhs0, at_stmt);
	  res = follow_ssa_edge_expr
	    (loop, at_stmt, rhs1, halting_phi,
	     evolution_of_loop, limit);
	}

      else
	/* Otherwise, match an assignment under the form:
	   "a = ... + ...".  */
	/* And there is nothing to do.  */
	res = t_false;
      break;

    case MINUS_EXPR:
      /* This case is under the form "opnd0 = rhs0 - rhs1".  */
      if (TREE_CODE (rhs0) == SSA_NAME)
	gcc_unreachable (); /* Handled in caller.  */
      else
	/* Otherwise, match an assignment under the form:
	   "a = ... - ...".  */
	/* And there is nothing to do.  */
	res = t_false;
      break;

    default:
      res = t_false;
    }

  return res;
}

/* Checks whether the I-th argument of a PHI comes from a backedge.  */

static bool
backedge_phi_arg_p (gphi *phi, int i)
{
  const_edge e = gimple_phi_arg_edge (phi, i);

  /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
     about updating it anywhere, and this should work as well most of the
     time.  */
  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
    return true;

  return false;
}

/* Helper function for one branch of the condition-phi-node.  Return
   true if the strongly connected component has been found following
   this path.  */

static inline t_bool
follow_ssa_edge_in_condition_phi_branch (int i,
					 class loop *loop,
					 gphi *condition_phi,
					 gphi *halting_phi,
					 tree *evolution_of_branch,
					 tree init_cond, int limit)
{
  tree branch = PHI_ARG_DEF (condition_phi, i);
  *evolution_of_branch = chrec_dont_know;

  /* Do not follow back edges (they must belong to an irreducible loop, which
     we really do not want to worry about).  */
  if (backedge_phi_arg_p (condition_phi, i))
    return t_false;

  if (TREE_CODE (branch) == SSA_NAME)
    {
      *evolution_of_branch = init_cond;
      return follow_ssa_edge_expr (loop, condition_phi, branch, halting_phi,
				   evolution_of_branch, limit);
    }

  /* This case occurs when one of the condition branches sets
     the variable to a constant: i.e. a phi-node like
     "a_2 = PHI <a_7(5), 2(6)>;".

     FIXME:  This case have to be refined correctly:
     in some cases it is possible to say something better than
     chrec_dont_know, for example using a wrap-around notation.  */
  return t_false;
}

/* This function merges the branches of a condition-phi-node in a
   loop.  */

static t_bool
follow_ssa_edge_in_condition_phi (class loop *loop,
				  gphi *condition_phi,
				  gphi *halting_phi,
				  tree *evolution_of_loop, int limit)
{
  int i, n;
  tree init = *evolution_of_loop;
  tree evolution_of_branch;
  t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
							halting_phi,
							&evolution_of_branch,
							init, limit);
  if (res == t_false || res == t_dont_know)
    return res;

  *evolution_of_loop = evolution_of_branch;

  n = gimple_phi_num_args (condition_phi);
  for (i = 1; i < n; i++)
    {
      /* Quickly give up when the evolution of one of the branches is
	 not known.  */
      if (*evolution_of_loop == chrec_dont_know)
	return t_true;

      /* Increase the limit by the PHI argument number to avoid exponential
	 time and memory complexity.  */
      res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
						     halting_phi,
						     &evolution_of_branch,
						     init, limit + i);
      if (res == t_false || res == t_dont_know)
	return res;

      *evolution_of_loop = chrec_merge (*evolution_of_loop,
					evolution_of_branch);
    }

  return t_true;
}

/* Follow an SSA edge in an inner loop.  It computes the overall
   effect of the loop, and following the symbolic initial conditions,
   it follows the edges in the parent loop.  The inner loop is
   considered as a single statement.  */

static t_bool
follow_ssa_edge_inner_loop_phi (class loop *outer_loop,
				gphi *loop_phi_node,
				gphi *halting_phi,
				tree *evolution_of_loop, int limit)
{
  class loop *loop = loop_containing_stmt (loop_phi_node);
  tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));

  /* Sometimes, the inner loop is too difficult to analyze, and the
     result of the analysis is a symbolic parameter.  */
  if (ev == PHI_RESULT (loop_phi_node))
    {
      t_bool res = t_false;
      int i, n = gimple_phi_num_args (loop_phi_node);

      for (i = 0; i < n; i++)
	{
	  tree arg = PHI_ARG_DEF (loop_phi_node, i);
	  basic_block bb;

	  /* Follow the edges that exit the inner loop.  */
	  bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
	  if (!flow_bb_inside_loop_p (loop, bb))
	    res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
					arg, halting_phi,
					evolution_of_loop, limit);
	  if (res == t_true)
	    break;
	}

      /* If the path crosses this loop-phi, give up.  */
      if (res == t_true)
	*evolution_of_loop = chrec_dont_know;

      return res;
    }

  /* Otherwise, compute the overall effect of the inner loop.  */
  ev = compute_overall_effect_of_inner_loop (loop, ev);
  return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
			       evolution_of_loop, limit);
}

/* Follow the ssa edge into the expression EXPR.
   Return true if the strongly connected component has been found.  */

static t_bool
follow_ssa_edge_expr (class loop *loop, gimple *at_stmt, tree expr,
		      gphi *halting_phi, tree *evolution_of_loop,
		      int limit)
{
  enum tree_code code;
  tree type, rhs0, rhs1 = NULL_TREE;

  /* The EXPR is one of the following cases:
     - an SSA_NAME,
     - an INTEGER_CST,
     - a PLUS_EXPR,
     - a POINTER_PLUS_EXPR,
     - a MINUS_EXPR,
     - an ASSERT_EXPR,
     - other cases are not yet handled.  */

  /* For SSA_NAME look at the definition statement, handling
     PHI nodes and otherwise expand appropriately for the expression
     handling below.  */
tail_recurse:
  if (TREE_CODE (expr) == SSA_NAME)
    {
      gimple *def = SSA_NAME_DEF_STMT (expr);

      if (gimple_nop_p (def))
	return t_false;

      /* Give up if the path is longer than the MAX that we allow.  */
      if (limit > param_scev_max_expr_complexity)
	{
	  *evolution_of_loop = chrec_dont_know;
	  return t_dont_know;
	}

      if (gphi *phi = dyn_cast <gphi *>(def))
	{
	  if (!loop_phi_node_p (phi))
	    /* DEF is a condition-phi-node.  Follow the branches, and
	       record their evolutions.  Finally, merge the collected
	       information and set the approximation to the main
	       variable.  */
	    return follow_ssa_edge_in_condition_phi
		(loop, phi, halting_phi, evolution_of_loop, limit);

	  /* When the analyzed phi is the halting_phi, the
	     depth-first search is over: we have found a path from
	     the halting_phi to itself in the loop.  */
	  if (phi == halting_phi)
	    return t_true;

	  /* Otherwise, the evolution of the HALTING_PHI depends
	     on the evolution of another loop-phi-node, i.e. the
	     evolution function is a higher degree polynomial.  */
	  class loop *def_loop = loop_containing_stmt (def);
	  if (def_loop == loop)
	    return t_false;

	  /* Inner loop.  */
	  if (flow_loop_nested_p (loop, def_loop))
	    return follow_ssa_edge_inner_loop_phi
		(loop, phi, halting_phi, evolution_of_loop,
		 limit + 1);

	  /* Outer loop.  */
	  return t_false;
	}

      /* At this level of abstraction, the program is just a set
	 of GIMPLE_ASSIGNs and PHI_NODEs.  In principle there is no
	 other def to be handled.  */
      if (!is_gimple_assign (def))
	return t_false;

      code = gimple_assign_rhs_code (def);
      switch (get_gimple_rhs_class (code))
	{
	case GIMPLE_BINARY_RHS:
	  rhs0 = gimple_assign_rhs1 (def);
	  rhs1 = gimple_assign_rhs2 (def);
	  break;
	case GIMPLE_UNARY_RHS:
	case GIMPLE_SINGLE_RHS:
	  rhs0 = gimple_assign_rhs1 (def);
	  break;
	default:
	  return t_false;
	}
      type = TREE_TYPE (gimple_assign_lhs (def));
      at_stmt = def;
    }
  else
    {
      code = TREE_CODE (expr);
      type = TREE_TYPE (expr);
      switch (code)
	{
	CASE_CONVERT:
	  rhs0 = TREE_OPERAND (expr, 0);
	  break;
	case POINTER_PLUS_EXPR:
	case PLUS_EXPR:
	case MINUS_EXPR:
	  rhs0 = TREE_OPERAND (expr, 0);
	  rhs1 = TREE_OPERAND (expr, 1);
	  break;
	default:
	  rhs0 = expr;
	}
    }

  switch (code)
    {
    CASE_CONVERT:
      {
	/* This assignment is under the form "a_1 = (cast) rhs.  */
	t_bool res = follow_ssa_edge_expr (loop, at_stmt, rhs0, halting_phi,
					   evolution_of_loop, limit);
	*evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
	return res;
      }

    case INTEGER_CST:
      /* This assignment is under the form "a_1 = 7".  */
      return t_false;

    case ADDR_EXPR:
      {
	/* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR.  */
	if (TREE_CODE (TREE_OPERAND (rhs0, 0)) != MEM_REF)
	  return t_false;
	tree mem = TREE_OPERAND (rhs0, 0);
	rhs0 = TREE_OPERAND (mem, 0);
	rhs1 = TREE_OPERAND (mem, 1);
	code = POINTER_PLUS_EXPR;
      }
      /* Fallthru.  */
    case POINTER_PLUS_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
      /* This case is under the form "rhs0 +- rhs1".  */
      STRIP_USELESS_TYPE_CONVERSION (rhs0);
      STRIP_USELESS_TYPE_CONVERSION (rhs1);
      if (TREE_CODE (rhs0) == SSA_NAME
	  && (TREE_CODE (rhs1) != SSA_NAME || code == MINUS_EXPR))
	{
	  /* Match an assignment under the form:
	     "a = b +- ...".
	     Use tail-recursion for the simple case.  */
	  *evolution_of_loop = add_to_evolution
	      (loop->num, chrec_convert (type, *evolution_of_loop,
					 at_stmt),
	       code, rhs1, at_stmt);
	  expr = rhs0;
	  goto tail_recurse;
	}
      /* Else search for the SCC in both rhs0 and rhs1.  */
      return follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
				     halting_phi, evolution_of_loop, limit);

    case ASSERT_EXPR:
      /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
	 It must be handled as a copy assignment of the form a_1 = a_2.  */
      expr = ASSERT_EXPR_VAR (rhs0);
      goto tail_recurse;

    default:
      return t_false;
    }
}


/* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
   Handle below case and return the corresponding POLYNOMIAL_CHREC:

   # i_17 = PHI <i_13(5), 0(3)>
   # _20 = PHI <_5(5), start_4(D)(3)>
   ...
   i_13 = i_17 + 1;
   _5 = start_4(D) + i_13;

   Though variable _20 appears as a PEELED_CHREC in the form of
   (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.

   See PR41488.  */

static tree
simplify_peeled_chrec (class loop *loop, tree arg, tree init_cond)
{
  aff_tree aff1, aff2;
  tree ev, left, right, type, step_val;
  hash_map<tree, name_expansion *> *peeled_chrec_map = NULL;

  ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, arg));
  if (ev == NULL_TREE || TREE_CODE (ev) != POLYNOMIAL_CHREC)
    return chrec_dont_know;

  left = CHREC_LEFT (ev);
  right = CHREC_RIGHT (ev);
  type = TREE_TYPE (left);
  step_val = chrec_fold_plus (type, init_cond, right);

  /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
     if "left" equals to "init + right".  */
  if (operand_equal_p (left, step_val, 0))
    {
      if (dump_file && (dump_flags & TDF_SCEV))
	fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");

      return build_polynomial_chrec (loop->num, init_cond, right);
    }

  /* The affine code only deals with pointer and integer types.  */
  if (!POINTER_TYPE_P (type)
      && !INTEGRAL_TYPE_P (type))
    return chrec_dont_know;

  /* Try harder to check if they are equal.  */
  tree_to_aff_combination_expand (left, type, &aff1, &peeled_chrec_map);
  tree_to_aff_combination_expand (step_val, type, &aff2, &peeled_chrec_map);
  free_affine_expand_cache (&peeled_chrec_map);
  aff_combination_scale (&aff2, -1);
  aff_combination_add (&aff1, &aff2);

  /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
     if "left" equals to "init + right".  */
  if (aff_combination_zero_p (&aff1))
    {
      if (dump_file && (dump_flags & TDF_SCEV))
	fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");

      return build_polynomial_chrec (loop->num, init_cond, right);
    }
  return chrec_dont_know;
}

/* Given a LOOP_PHI_NODE, this function determines the evolution
   function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop.  */

static tree
analyze_evolution_in_loop (gphi *loop_phi_node,
			   tree init_cond)
{
  int i, n = gimple_phi_num_args (loop_phi_node);
  tree evolution_function = chrec_not_analyzed_yet;
  class loop *loop = loop_containing_stmt (loop_phi_node);
  basic_block bb;
  static bool simplify_peeled_chrec_p = true;

  if (dump_file && (dump_flags & TDF_SCEV))
    {
      fprintf (dump_file, "(analyze_evolution_in_loop \n");
      fprintf (dump_file, "  (loop_phi_node = ");
      print_gimple_stmt (dump_file, loop_phi_node, 0);
      fprintf (dump_file, ")\n");
    }

  for (i = 0; i < n; i++)
    {
      tree arg = PHI_ARG_DEF (loop_phi_node, i);
      tree ev_fn;
      t_bool res;

      /* Select the edges that enter the loop body.  */
      bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
      if (!flow_bb_inside_loop_p (loop, bb))
	continue;

      if (TREE_CODE (arg) == SSA_NAME)
	{
	  bool val = false;

	  /* Pass in the initial condition to the follow edge function.  */
	  ev_fn = init_cond;
	  res = follow_ssa_edge_expr (loop, loop_phi_node, arg,
				      loop_phi_node, &ev_fn, 0);

	  /* If ev_fn has no evolution in the inner loop, and the
	     init_cond is not equal to ev_fn, then we have an
	     ambiguity between two possible values, as we cannot know
	     the number of iterations at this point.  */
	  if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
	      && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
	      && !operand_equal_p (init_cond, ev_fn, 0))
	    ev_fn = chrec_dont_know;
	}
      else
	res = t_false;

      /* When it is impossible to go back on the same
	 loop_phi_node by following the ssa edges, the
	 evolution is represented by a peeled chrec, i.e. the
	 first iteration, EV_FN has the value INIT_COND, then
	 all the other iterations it has the value of ARG.
	 For the moment, PEELED_CHREC nodes are not built.  */
      if (res != t_true)
	{
	  ev_fn = chrec_dont_know;
	  /* Try to recognize POLYNOMIAL_CHREC which appears in
	     the form of PEELED_CHREC, but guard the process with
	     a bool variable to keep the analyzer from infinite
	     recurrence for real PEELED_RECs.  */
	  if (simplify_peeled_chrec_p && TREE_CODE (arg) == SSA_NAME)
	    {
	      simplify_peeled_chrec_p = false;
	      ev_fn = simplify_peeled_chrec (loop, arg, init_cond);
	      simplify_peeled_chrec_p = true;
	    }
	}

      /* When there are multiple back edges of the loop (which in fact never
	 happens currently, but nevertheless), merge their evolutions.  */
      evolution_function = chrec_merge (evolution_function, ev_fn);

      if (evolution_function == chrec_dont_know)
	break;
    }

  if (dump_file && (dump_flags & TDF_SCEV))
    {
      fprintf (dump_file, "  (evolution_function = ");
      print_generic_expr (dump_file, evolution_function);
      fprintf (dump_file, "))\n");
    }

  return evolution_function;
}

/* Looks to see if VAR is a copy of a constant (via straightforward assignments
   or degenerate phi's).  If so, returns the constant; else, returns VAR.  */

static tree
follow_copies_to_constant (tree var)
{
  tree res = var;
  while (TREE_CODE (res) == SSA_NAME
	 /* We face not updated SSA form in multiple places and this walk
	    may end up in sibling loops so we have to guard it.  */
	 && !name_registered_for_update_p (res))
    {
      gimple *def = SSA_NAME_DEF_STMT (res);
      if (gphi *phi = dyn_cast <gphi *> (def))
	{
	  if (tree rhs = degenerate_phi_result (phi))
	    res = rhs;
	  else
	    break;
	}
      else if (gimple_assign_single_p (def))
	/* Will exit loop if not an SSA_NAME.  */
	res = gimple_assign_rhs1 (def);
      else
	break;
    }
  if (CONSTANT_CLASS_P (res))
    return res;
  return var;
}

/* Given a loop-phi-node, return the initial conditions of the
   variable on entry of the loop.  When the CCP has propagated
   constants into the loop-phi-node, the initial condition is
   instantiated, otherwise the initial condition is kept symbolic.
   This analyzer does not analyze the evolution outside the current
   loop, and leaves this task to the on-demand tree reconstructor.  */

static tree
analyze_initial_condition (gphi *loop_phi_node)
{
  int i, n;
  tree init_cond = chrec_not_analyzed_yet;
  class loop *loop = loop_containing_stmt (loop_phi_node);

  if (dump_file && (dump_flags & TDF_SCEV))
    {
      fprintf (dump_file, "(analyze_initial_condition \n");
      fprintf (dump_file, "  (loop_phi_node = \n");
      print_gimple_stmt (dump_file, loop_phi_node, 0);
      fprintf (dump_file, ")\n");
    }

  n = gimple_phi_num_args (loop_phi_node);
  for (i = 0; i < n; i++)
    {
      tree branch = PHI_ARG_DEF (loop_phi_node, i);
      basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;

      /* When the branch is oriented to the loop's body, it does
     	 not contribute to the initial condition.  */
      if (flow_bb_inside_loop_p (loop, bb))
       	continue;

      if (init_cond == chrec_not_analyzed_yet)
	{
	  init_cond = branch;
	  continue;
	}

      if (TREE_CODE (branch) == SSA_NAME)
	{
	  init_cond = chrec_dont_know;
      	  break;
	}

      init_cond = chrec_merge (init_cond, branch);
    }

  /* Ooops -- a loop without an entry???  */
  if (init_cond == chrec_not_analyzed_yet)
    init_cond = chrec_dont_know;

  /* We may not have fully constant propagated IL.  Handle degenerate PHIs here
     to not miss important early loop unrollings.  */
  init_cond = follow_copies_to_constant (init_cond);

  if (dump_file && (dump_flags & TDF_SCEV))
    {
      fprintf (dump_file, "  (init_cond = ");
      print_generic_expr (dump_file, init_cond);
      fprintf (dump_file, "))\n");
    }

  return init_cond;
}

/* Analyze the scalar evolution for LOOP_PHI_NODE.  */

static tree
interpret_loop_phi (class loop *loop, gphi *loop_phi_node)
{
  tree res;
  class loop *phi_loop = loop_containing_stmt (loop_phi_node);
  tree init_cond;

  gcc_assert (phi_loop == loop);

  /* Otherwise really interpret the loop phi.  */
  init_cond = analyze_initial_condition (loop_phi_node);
  res = analyze_evolution_in_loop (loop_phi_node, init_cond);

  /* Verify we maintained the correct initial condition throughout
     possible conversions in the SSA chain.  */
  if (res != chrec_dont_know)
    {
      tree new_init = res;
      if (CONVERT_EXPR_P (res)
	  && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
	new_init = fold_convert (TREE_TYPE (res),
				 CHREC_LEFT (TREE_OPERAND (res, 0)));
      else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
	new_init = CHREC_LEFT (res);
      STRIP_USELESS_TYPE_CONVERSION (new_init);
      if (TREE_CODE (new_init) == POLYNOMIAL_CHREC
	  || !operand_equal_p (init_cond, new_init, 0))
	return chrec_dont_know;
    }

  return res;
}

/* This function merges the branches of a condition-phi-node,
   contained in the outermost loop, and whose arguments are already
   analyzed.  */

static tree
interpret_condition_phi (class loop *loop, gphi *condition_phi)
{
  int i, n = gimple_phi_num_args (condition_phi);
  tree res = chrec_not_analyzed_yet;

  for (i = 0; i < n; i++)
    {
      tree branch_chrec;

      if (backedge_phi_arg_p (condition_phi, i))
	{
	  res = chrec_dont_know;
	  break;
	}

      branch_chrec = analyze_scalar_evolution
	(loop, PHI_ARG_DEF (condition_phi, i));

      res = chrec_merge (res, branch_chrec);
      if (res == chrec_dont_know)
	break;
    }

  return res;
}

/* Interpret the operation RHS1 OP RHS2.  If we didn't
   analyze this node before, follow the definitions until ending
   either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node.  On the
   return path, this function propagates evolutions (ala constant copy
   propagation).  OPND1 is not a GIMPLE expression because we could
   analyze the effect of an inner loop: see interpret_loop_phi.  */

static tree
interpret_rhs_expr (class loop *loop, gimple *at_stmt,
		    tree type, tree rhs1, enum tree_code code, tree rhs2)
{
  tree res, chrec1, chrec2, ctype;
  gimple *def;

  if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
    {
      if (is_gimple_min_invariant (rhs1))
	return chrec_convert (type, rhs1, at_stmt);

      if (code == SSA_NAME)
	return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
			      at_stmt);

      if (code == ASSERT_EXPR)
	{
	  rhs1 = ASSERT_EXPR_VAR (rhs1);
	  return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
				at_stmt);
	}
    }

  switch (code)
    {
    case ADDR_EXPR:
      if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF
	  || handled_component_p (TREE_OPERAND (rhs1, 0)))
        {
	  machine_mode mode;
	  poly_int64 bitsize, bitpos;
	  int unsignedp, reversep;
	  int volatilep = 0;
	  tree base, offset;
	  tree chrec3;
	  tree unitpos;

	  base = get_inner_reference (TREE_OPERAND (rhs1, 0),
				      &bitsize, &bitpos, &offset, &mode,
				      &unsignedp, &reversep, &volatilep);

	  if (TREE_CODE (base) == MEM_REF)
	    {
	      rhs2 = TREE_OPERAND (base, 1);
	      rhs1 = TREE_OPERAND (base, 0);

	      chrec1 = analyze_scalar_evolution (loop, rhs1);
	      chrec2 = analyze_scalar_evolution (loop, rhs2);
	      chrec1 = chrec_convert (type, chrec1, at_stmt);
	      chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
	      chrec1 = instantiate_parameters (loop, chrec1);
	      chrec2 = instantiate_parameters (loop, chrec2);
	      res = chrec_fold_plus (type, chrec1, chrec2);
	    }
	  else
	    {
	      chrec1 = analyze_scalar_evolution_for_address_of (loop, base);
	      chrec1 = chrec_convert (type, chrec1, at_stmt);
	      res = chrec1;
	    }

	  if (offset != NULL_TREE)
	    {
	      chrec2 = analyze_scalar_evolution (loop, offset);
	      chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt);
	      chrec2 = instantiate_parameters (loop, chrec2);
	      res = chrec_fold_plus (type, res, chrec2);
	    }

	  if (maybe_ne (bitpos, 0))
	    {
	      unitpos = size_int (exact_div (bitpos, BITS_PER_UNIT));
	      chrec3 = analyze_scalar_evolution (loop, unitpos);
	      chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt);
	      chrec3 = instantiate_parameters (loop, chrec3);
	      res = chrec_fold_plus (type, res, chrec3);
	    }
        }
      else
	res = chrec_dont_know;
      break;

    case POINTER_PLUS_EXPR:
      chrec1 = analyze_scalar_evolution (loop, rhs1);
      chrec2 = analyze_scalar_evolution (loop, rhs2);
      chrec1 = chrec_convert (type, chrec1, at_stmt);
      chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
      chrec1 = instantiate_parameters (loop, chrec1);
      chrec2 = instantiate_parameters (loop, chrec2);
      res = chrec_fold_plus (type, chrec1, chrec2);
      break;

    case PLUS_EXPR:
      chrec1 = analyze_scalar_evolution (loop, rhs1);
      chrec2 = analyze_scalar_evolution (loop, rhs2);
      ctype = type;
      /* When the stmt is conditionally executed re-write the CHREC
         into a form that has well-defined behavior on overflow.  */
      if (at_stmt
	  && INTEGRAL_TYPE_P (type)
	  && ! TYPE_OVERFLOW_WRAPS (type)
	  && ! dominated_by_p (CDI_DOMINATORS, loop->latch,
			       gimple_bb (at_stmt)))
	ctype = unsigned_type_for (type);
      chrec1 = chrec_convert (ctype, chrec1, at_stmt);
      chrec2 = chrec_convert (ctype, chrec2, at_stmt);
      chrec1 = instantiate_parameters (loop, chrec1);
      chrec2 = instantiate_parameters (loop, chrec2);
      res = chrec_fold_plus (ctype, chrec1, chrec2);
      if (type != ctype)
	res = chrec_convert (type, res, at_stmt);
      break;

    case MINUS_EXPR:
      chrec1 = analyze_scalar_evolution (loop, rhs1);
      chrec2 = analyze_scalar_evolution (loop, rhs2);
      ctype = type;
      /* When the stmt is conditionally executed re-write the CHREC
         into a form that has well-defined behavior on overflow.  */
      if (at_stmt
	  && INTEGRAL_TYPE_P (type)
	  && ! TYPE_OVERFLOW_WRAPS (type)
	  && ! dominated_by_p (CDI_DOMINATORS,
			       loop->latch, gimple_bb (at_stmt)))
	ctype = unsigned_type_for (type);
      chrec1 = chrec_convert (ctype, chrec1, at_stmt);
      chrec2 = chrec_convert (ctype, chrec2, at_stmt);
      chrec1 = instantiate_parameters (loop, chrec1);
      chrec2 = instantiate_parameters (loop, chrec2);
      res = chrec_fold_minus (ctype, chrec1, chrec2);
      if (type != ctype)
	res = chrec_convert (type, res, at_stmt);
      break;

    case NEGATE_EXPR:
      chrec1 = analyze_scalar_evolution (loop, rhs1);
      ctype = type;
      /* When the stmt is conditionally executed re-write the CHREC
         into a form that has well-defined behavior on overflow.  */
      if (at_stmt
	  && INTEGRAL_TYPE_P (type)
	  && ! TYPE_OVERFLOW_WRAPS (type)
	  && ! dominated_by_p (CDI_DOMINATORS,
			       loop->latch, gimple_bb (at_stmt)))
	ctype = unsigned_type_for (type);
      chrec1 = chrec_convert (ctype, chrec1, at_stmt);
      /* TYPE may be integer, real or complex, so use fold_convert.  */
      chrec1 = instantiate_parameters (loop, chrec1);
      res = chrec_fold_multiply (ctype, chrec1,
				 fold_convert (ctype, integer_minus_one_node));
      if (type != ctype)
	res = chrec_convert (type, res, at_stmt);
      break;

    case BIT_NOT_EXPR:
      /* Handle ~X as -1 - X.  */
      chrec1 = analyze_scalar_evolution (loop, rhs1);
      chrec1 = chrec_convert (type, chrec1, at_stmt);
      chrec1 = instantiate_parameters (loop, chrec1);
      res = chrec_fold_minus (type,
			      fold_convert (type, integer_minus_one_node),
			      chrec1);
      break;

    case MULT_EXPR:
      chrec1 = analyze_scalar_evolution (loop, rhs1);
      chrec2 = analyze_scalar_evolution (loop, rhs2);
      ctype = type;
      /* When the stmt is conditionally executed re-write the CHREC
         into a form that has well-defined behavior on overflow.  */
      if (at_stmt
	  && INTEGRAL_TYPE_P (type)
	  && ! TYPE_OVERFLOW_WRAPS (type)
	  && ! dominated_by_p (CDI_DOMINATORS,
			       loop->latch, gimple_bb (at_stmt)))
	ctype = unsigned_type_for (type);
      chrec1 = chrec_convert (ctype, chrec1, at_stmt);
      chrec2 = chrec_convert (ctype, chrec2, at_stmt);
      chrec1 = instantiate_parameters (loop, chrec1);
      chrec2 = instantiate_parameters (loop, chrec2);
      res = chrec_fold_multiply (ctype, chrec1, chrec2);
      if (type != ctype)
	res = chrec_convert (type, res, at_stmt);
      break;

    case LSHIFT_EXPR:
      {
	/* Handle A<<B as A * (1<<B).  */
	tree uns = unsigned_type_for (type);
	chrec1 = analyze_scalar_evolution (loop, rhs1);
	chrec2 = analyze_scalar_evolution (loop, rhs2);
	chrec1 = chrec_convert (uns, chrec1, at_stmt);
	chrec1 = instantiate_parameters (loop, chrec1);
	chrec2 = instantiate_parameters (loop, chrec2);

	tree one = build_int_cst (uns, 1);
	chrec2 = fold_build2 (LSHIFT_EXPR, uns, one, chrec2);
	res = chrec_fold_multiply (uns, chrec1, chrec2);
	res = chrec_convert (type, res, at_stmt);
      }
      break;

    CASE_CONVERT:
      /* In case we have a truncation of a widened operation that in
         the truncated type has undefined overflow behavior analyze
	 the operation done in an unsigned type of the same precision
	 as the final truncation.  We cannot derive a scalar evolution
	 for the widened operation but for the truncated result.  */
      if (TREE_CODE (type) == INTEGER_TYPE
	  && TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE
	  && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1))
	  && TYPE_OVERFLOW_UNDEFINED (type)
	  && TREE_CODE (rhs1) == SSA_NAME
	  && (def = SSA_NAME_DEF_STMT (rhs1))
	  && is_gimple_assign (def)
	  && TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary
	  && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
	{
	  tree utype = unsigned_type_for (type);
	  chrec1 = interpret_rhs_expr (loop, at_stmt, utype,
				       gimple_assign_rhs1 (def),
				       gimple_assign_rhs_code (def),
				       gimple_assign_rhs2 (def));
	}
      else
	chrec1 = analyze_scalar_evolution (loop, rhs1);
      res = chrec_convert (type, chrec1, at_stmt, true, rhs1);
      break;

    case BIT_AND_EXPR:
      /* Given int variable A, handle A&0xffff as (int)(unsigned short)A.
	 If A is SCEV and its value is in the range of representable set
	 of type unsigned short, the result expression is a (no-overflow)
	 SCEV.  */
      res = chrec_dont_know;
      if (tree_fits_uhwi_p (rhs2))
	{
	  int precision;
	  unsigned HOST_WIDE_INT val = tree_to_uhwi (rhs2);

	  val ++;
	  /* Skip if value of rhs2 wraps in unsigned HOST_WIDE_INT or
	     it's not the maximum value of a smaller type than rhs1.  */
	  if (val != 0
	      && (precision = exact_log2 (val)) > 0
	      && (unsigned) precision < TYPE_PRECISION (TREE_TYPE (rhs1)))
	    {
	      tree utype = build_nonstandard_integer_type (precision, 1);

	      if (TYPE_PRECISION (utype) < TYPE_PRECISION (TREE_TYPE (rhs1)))
		{
		  chrec1 = analyze_scalar_evolution (loop, rhs1);
		  chrec1 = chrec_convert (utype, chrec1, at_stmt);
		  res = chrec_convert (TREE_TYPE (rhs1), chrec1, at_stmt);
		}
	    }
	}
      break;

    default:
      res = chrec_dont_know;
      break;
    }

  return res;
}

/* Interpret the expression EXPR.  */

static tree
interpret_expr (class loop *loop, gimple *at_stmt, tree expr)
{
  enum tree_code code;
  tree type = TREE_TYPE (expr), op0, op1;

  if (automatically_generated_chrec_p (expr))
    return expr;

  if (TREE_CODE (expr) == POLYNOMIAL_CHREC
      || TREE_CODE (expr) == CALL_EXPR
      || get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS)
    return chrec_dont_know;

  extract_ops_from_tree (expr, &code, &op0, &op1);

  return interpret_rhs_expr (loop, at_stmt, type,
			     op0, code, op1);
}

/* Interpret the rhs of the assignment STMT.  */

static tree
interpret_gimple_assign (class loop *loop, gimple *stmt)
{
  tree type = TREE_TYPE (gimple_assign_lhs (stmt));
  enum tree_code code = gimple_assign_rhs_code (stmt);

  return interpret_rhs_expr (loop, stmt, type,
			     gimple_assign_rhs1 (stmt), code,
			     gimple_assign_rhs2 (stmt));
}



/* This section contains all the entry points:
   - number_of_iterations_in_loop,
   - analyze_scalar_evolution,
   - instantiate_parameters.
*/

/* Helper recursive function.  */

static tree
analyze_scalar_evolution_1 (class loop *loop, tree var)
{
  gimple *def;
  basic_block bb;
  class loop *def_loop;
  tree res;

  if (TREE_CODE (var) != SSA_NAME)
    return interpret_expr (loop, NULL, var);

  def = SSA_NAME_DEF_STMT (var);
  bb = gimple_bb (def);
  def_loop = bb->loop_father;

  if (!flow_bb_inside_loop_p (loop, bb))
    {
      /* Keep symbolic form, but look through obvious copies for constants.  */
      res = follow_copies_to_constant (var);
      goto set_and_end;
    }

  if (loop != def_loop)
    {
      res = analyze_scalar_evolution_1 (def_loop, var);
      class loop *loop_to_skip = superloop_at_depth (def_loop,
						      loop_depth (loop) + 1);
      res = compute_overall_effect_of_inner_loop (loop_to_skip, res);
      if (chrec_contains_symbols_defined_in_loop (res, loop->num))
	res = analyze_scalar_evolution_1 (loop, res);
      goto set_and_end;
    }

  switch (gimple_code (def))
    {
    case GIMPLE_ASSIGN:
      res = interpret_gimple_assign (loop, def);
      break;

    case GIMPLE_PHI:
      if (loop_phi_node_p (def))
	res = interpret_loop_phi (loop, as_a <gphi *> (def));
      else
	res = interpret_condition_phi (loop, as_a <gphi *> (def));
      break;

    default:
      res = chrec_dont_know;
      break;
    }

 set_and_end:

  /* Keep the symbolic form.  */
  if (res == chrec_dont_know)
    res = var;

  if (loop == def_loop)
    set_scalar_evolution (block_before_loop (loop), var, res);

  return res;
}

/* Analyzes and returns the scalar evolution of the ssa_name VAR in
   LOOP.  LOOP is the loop in which the variable is used.

   Example of use: having a pointer VAR to a SSA_NAME node, STMT a
   pointer to the statement that uses this variable, in order to
   determine the evolution function of the variable, use the following
   calls:

   loop_p loop = loop_containing_stmt (stmt);
   tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
   tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
*/

tree
analyze_scalar_evolution (class loop *loop, tree var)
{
  tree res;

  /* ???  Fix callers.  */
  if (! loop)
    return var;

  if (dump_file && (dump_flags & TDF_SCEV))
    {
      fprintf (dump_file, "(analyze_scalar_evolution \n");
      fprintf (dump_file, "  (loop_nb = %d)\n", loop->num);
      fprintf (dump_file, "  (scalar = ");
      print_generic_expr (dump_file, var);
      fprintf (dump_file, ")\n");
    }

  res = get_scalar_evolution (block_before_loop (loop), var);
  if (res == chrec_not_analyzed_yet)
    {
      /* We'll recurse into instantiate_scev, avoid tearing down the
         instantiate cache repeatedly and keep it live from here.  */
      bool destr = false;
      if (!global_cache)
	{
	  global_cache = new instantiate_cache_type;
	  destr = true;
	}
      res = analyze_scalar_evolution_1 (loop, var);
      if (destr)
	{
	  delete global_cache;
	  global_cache = NULL;
	}
    }

  if (dump_file && (dump_flags & TDF_SCEV))
    fprintf (dump_file, ")\n");

  return res;
}

/* Analyzes and returns the scalar evolution of VAR address in LOOP.  */

static tree
analyze_scalar_evolution_for_address_of (class loop *loop, tree var)
{
  return analyze_scalar_evolution (loop, build_fold_addr_expr (var));
}

/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
   WRTO_LOOP (which should be a superloop of USE_LOOP)

   FOLDED_CASTS is set to true if resolve_mixers used
   chrec_convert_aggressive (TODO -- not really, we are way too conservative
   at the moment in order to keep things simple).

   To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
   example:

   for (i = 0; i < 100; i++)			-- loop 1
     {
       for (j = 0; j < 100; j++)		-- loop 2
         {
	   k1 = i;
	   k2 = j;

	   use2 (k1, k2);

	   for (t = 0; t < 100; t++)		-- loop 3
	     use3 (k1, k2);

	 }
       use1 (k1, k2);
     }

   Both k1 and k2 are invariants in loop3, thus
     analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
     analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2

   As they are invariant, it does not matter whether we consider their
   usage in loop 3 or loop 2, hence
     analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
       analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
     analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
       analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2

   Similarly for their evolutions with respect to loop 1.  The values of K2
   in the use in loop 2 vary independently on loop 1, thus we cannot express
   the evolution with respect to loop 1:
     analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
       analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
     analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
       analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know

   The value of k2 in the use in loop 1 is known, though:
     analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
     analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
   */

static tree
analyze_scalar_evolution_in_loop (class loop *wrto_loop, class loop *use_loop,
				  tree version, bool *folded_casts)
{
  bool val = false;
  tree ev = version, tmp;

  /* We cannot just do

     tmp = analyze_scalar_evolution (use_loop, version);
     ev = resolve_mixers (wrto_loop, tmp, folded_casts);

     as resolve_mixers would query the scalar evolution with respect to
     wrto_loop.  For example, in the situation described in the function
     comment, suppose that wrto_loop = loop1, use_loop = loop3 and
     version = k2.  Then

     analyze_scalar_evolution (use_loop, version) = k2

     and resolve_mixers (loop1, k2, folded_casts) finds that the value of
     k2 in loop 1 is 100, which is a wrong result, since we are interested
     in the value in loop 3.

     Instead, we need to proceed from use_loop to wrto_loop loop by loop,
     each time checking that there is no evolution in the inner loop.  */

  if (folded_casts)
    *folded_casts = false;
  while (1)
    {
      tmp = analyze_scalar_evolution (use_loop, ev);
      ev = resolve_mixers (use_loop, tmp, folded_casts);

      if (use_loop == wrto_loop)
	return ev;

      /* If the value of the use changes in the inner loop, we cannot express
	 its value in the outer loop (we might try to return interval chrec,
	 but we do not have a user for it anyway)  */
      if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
	  || !val)
	return chrec_dont_know;

      use_loop = loop_outer (use_loop);
    }
}


/* Computes a hash function for database element ELT.  */

static inline hashval_t
hash_idx_scev_info (const void *elt_)
{
  unsigned idx = ((size_t) elt_) - 2;
  return scev_info_hasher::hash (&global_cache->entries[idx]);
}

/* Compares database elements E1 and E2.  */

static inline int
eq_idx_scev_info (const void *e1, const void *e2)
{
  unsigned idx1 = ((size_t) e1) - 2;
  return scev_info_hasher::equal (&global_cache->entries[idx1],
				  (const scev_info_str *) e2);
}

/* Returns from CACHE the slot number of the cached chrec for NAME.  */

static unsigned
get_instantiated_value_entry (instantiate_cache_type &cache,
			      tree name, edge instantiate_below)
{
  if (!cache.map)
    {
      cache.map = htab_create (10, hash_idx_scev_info, eq_idx_scev_info, NULL);
      cache.entries.create (10);
    }

  scev_info_str e;
  e.name_version = SSA_NAME_VERSION (name);
  e.instantiated_below = instantiate_below->dest->index;
  void **slot = htab_find_slot_with_hash (cache.map, &e,
					  scev_info_hasher::hash (&e), INSERT);
  if (!*slot)
    {
      e.chrec = chrec_not_analyzed_yet;
      *slot = (void *)(size_t)(cache.entries.length () + 2);
      cache.entries.safe_push (e);
    }

  return ((size_t)*slot) - 2;
}


/* Return the closed_loop_phi node for VAR.  If there is none, return
   NULL_TREE.  */

static tree
loop_closed_phi_def (tree var)
{
  class loop *loop;
  edge exit;
  gphi *phi;
  gphi_iterator psi;

  if (var == NULL_TREE
      || TREE_CODE (var) != SSA_NAME)
    return NULL_TREE;

  loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
  exit = single_exit (loop);
  if (!exit)
    return NULL_TREE;

  for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
    {
      phi = psi.phi ();
      if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
	return PHI_RESULT (phi);
    }

  return NULL_TREE;
}

static tree instantiate_scev_r (edge, class loop *, class loop *,
				tree, bool *, int);

/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
   and EVOLUTION_LOOP, that were left under a symbolic form.

   CHREC is an SSA_NAME to be instantiated.

   CACHE is the cache of already instantiated values.

   Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
   conversions that may wrap in signed/pointer type are folded, as long
   as the value of the chrec is preserved.  If FOLD_CONVERSIONS is NULL
   then we don't do such fold.

   SIZE_EXPR is used for computing the size of the expression to be
   instantiated, and to stop if it exceeds some limit.  */

static tree
instantiate_scev_name (edge instantiate_below,
		       class loop *evolution_loop, class loop *inner_loop,
		       tree chrec,
		       bool *fold_conversions,
		       int size_expr)
{
  tree res;
  class loop *def_loop;
  basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));

  /* A parameter, nothing to do.  */
  if (!def_bb
      || !dominated_by_p (CDI_DOMINATORS, def_bb, instantiate_below->dest))
    return chrec;

  /* We cache the value of instantiated variable to avoid exponential
     time complexity due to reevaluations.  We also store the convenient
     value in the cache in order to prevent infinite recursion -- we do
     not want to instantiate the SSA_NAME if it is in a mixer
     structure.  This is used for avoiding the instantiation of
     recursively defined functions, such as:

     | a_2 -> {0, +, 1, +, a_2}_1  */

  unsigned si = get_instantiated_value_entry (*global_cache,
					      chrec, instantiate_below);
  if (global_cache->get (si) != chrec_not_analyzed_yet)
    return global_cache->get (si);

  /* On recursion return chrec_dont_know.  */
  global_cache->set (si, chrec_dont_know);

  def_loop = find_common_loop (evolution_loop, def_bb->loop_father);

  if (! dominated_by_p (CDI_DOMINATORS,
			def_loop->header, instantiate_below->dest))
    {
      gimple *def = SSA_NAME_DEF_STMT (chrec);
      if (gassign *ass = dyn_cast <gassign *> (def))
	{
	  switch (gimple_assign_rhs_class (ass))
	    {
	    case GIMPLE_UNARY_RHS:
	      {
		tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
					       inner_loop, gimple_assign_rhs1 (ass),
					       fold_conversions, size_expr);
		if (op0 == chrec_dont_know)
		  return chrec_dont_know;
		res = fold_build1 (gimple_assign_rhs_code (ass),
				   TREE_TYPE (chrec), op0);
		break;
	      }
	    case GIMPLE_BINARY_RHS:
	      {
		tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
					       inner_loop, gimple_assign_rhs1 (ass),
					       fold_conversions, size_expr);
		if (op0 == chrec_dont_know)
		  return chrec_dont_know;
		tree op1 = instantiate_scev_r (instantiate_below, evolution_loop,
					       inner_loop, gimple_assign_rhs2 (ass),
					       fold_conversions, size_expr);
		if (op1 == chrec_dont_know)
		  return chrec_dont_know;
		res = fold_build2 (gimple_assign_rhs_code (ass),
				   TREE_TYPE (chrec), op0, op1);
		break;
	      }
	    default:
	      res = chrec_dont_know;
	    }
	}
      else
	res = chrec_dont_know;
      global_cache->set (si, res);
      return res;
    }

  /* If the analysis yields a parametric chrec, instantiate the
     result again.  */
  res = analyze_scalar_evolution (def_loop, chrec);

  /* Don't instantiate default definitions.  */
  if (TREE_CODE (res) == SSA_NAME
      && SSA_NAME_IS_DEFAULT_DEF (res))
    ;

  /* Don't instantiate loop-closed-ssa phi nodes.  */
  else if (TREE_CODE (res) == SSA_NAME
	   && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
	   > loop_depth (def_loop))
    {
      if (res == chrec)
	res = loop_closed_phi_def (chrec);
      else
	res = chrec;

      /* When there is no loop_closed_phi_def, it means that the
	 variable is not used after the loop: try to still compute the
	 value of the variable when exiting the loop.  */
      if (res == NULL_TREE)
	{
	  loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
	  res = analyze_scalar_evolution (loop, chrec);
	  res = compute_overall_effect_of_inner_loop (loop, res);
	  res = instantiate_scev_r (instantiate_below, evolution_loop,
				    inner_loop, res,
				    fold_conversions, size_expr);
	}
      else if (dominated_by_p (CDI_DOMINATORS,
				gimple_bb (SSA_NAME_DEF_STMT (res)),
				instantiate_below->dest))
	res = chrec_dont_know;
    }

  else if (res != chrec_dont_know)
    {
      if (inner_loop
	  && def_bb->loop_father != inner_loop
	  && !flow_loop_nested_p (def_bb->loop_father, inner_loop))
	/* ???  We could try to compute the overall effect of the loop here.  */
	res = chrec_dont_know;
      else
	res = instantiate_scev_r (instantiate_below, evolution_loop,
				  inner_loop, res,
				  fold_conversions, size_expr);
    }

  /* Store the correct value to the cache.  */
  global_cache->set (si, res);
  return res;
}

/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
   and EVOLUTION_LOOP, that were left under a symbolic form.

   CHREC is a polynomial chain of recurrence to be instantiated.

   CACHE is the cache of already instantiated values.

   Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
   conversions that may wrap in signed/pointer type are folded, as long
   as the value of the chrec is preserved.  If FOLD_CONVERSIONS is NULL
   then we don't do such fold.

   SIZE_EXPR is used for computing the size of the expression to be
   instantiated, and to stop if it exceeds some limit.  */

static tree
instantiate_scev_poly (edge instantiate_below,
		       class loop *evolution_loop, class loop *,
		       tree chrec, bool *fold_conversions, int size_expr)
{
  tree op1;
  tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
				 get_chrec_loop (chrec),
				 CHREC_LEFT (chrec), fold_conversions,
				 size_expr);
  if (op0 == chrec_dont_know)
    return chrec_dont_know;

  op1 = instantiate_scev_r (instantiate_below, evolution_loop,
			    get_chrec_loop (chrec),
			    CHREC_RIGHT (chrec), fold_conversions,
			    size_expr);
  if (op1 == chrec_dont_know)
    return chrec_dont_know;

  if (CHREC_LEFT (chrec) != op0
      || CHREC_RIGHT (chrec) != op1)
    {
      op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
      chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
    }

  return chrec;
}

/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
   and EVOLUTION_LOOP, that were left under a symbolic form.

   "C0 CODE C1" is a binary expression of type TYPE to be instantiated.

   CACHE is the cache of already instantiated values.

   Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
   conversions that may wrap in signed/pointer type are folded, as long
   as the value of the chrec is preserved.  If FOLD_CONVERSIONS is NULL
   then we don't do such fold.

   SIZE_EXPR is used for computing the size of the expression to be
   instantiated, and to stop if it exceeds some limit.  */

static tree
instantiate_scev_binary (edge instantiate_below,
			 class loop *evolution_loop, class loop *inner_loop,
			 tree chrec, enum tree_code code,
			 tree type, tree c0, tree c1,
			 bool *fold_conversions, int size_expr)
{
  tree op1;
  tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,