aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/rand/rand_test.go
diff options
context:
space:
mode:
authorIan Lance Taylor <ian@gcc.gnu.org>2011-12-07 01:11:29 +0000
committerIan Lance Taylor <ian@gcc.gnu.org>2011-12-07 01:11:29 +0000
commit9c63abc9a1d127f95162756467284cf76b47aff8 (patch)
tree84f27a6ab44d932e4b0455f18390b070b4de626e /libgo/go/rand/rand_test.go
parent374280238f934fa851273e2ee16ba53be890c6b8 (diff)
downloadgcc-9c63abc9a1d127f95162756467284cf76b47aff8.zip
gcc-9c63abc9a1d127f95162756467284cf76b47aff8.tar.gz
gcc-9c63abc9a1d127f95162756467284cf76b47aff8.tar.bz2
libgo: Update to weekly 2011-11-09.
From-SVN: r182073
Diffstat (limited to 'libgo/go/rand/rand_test.go')
-rw-r--r--libgo/go/rand/rand_test.go350
1 files changed, 0 insertions, 350 deletions
diff --git a/libgo/go/rand/rand_test.go b/libgo/go/rand/rand_test.go
deleted file mode 100644
index 66ffa58..0000000
--- a/libgo/go/rand/rand_test.go
+++ /dev/null
@@ -1,350 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package rand
-
-import (
- "errors"
- "math"
- "fmt"
- "testing"
-)
-
-const (
- numTestSamples = 10000
-)
-
-type statsResults struct {
- mean float64
- stddev float64
- closeEnough float64
- maxError float64
-}
-
-func max(a, b float64) float64 {
- if a > b {
- return a
- }
- return b
-}
-
-func nearEqual(a, b, closeEnough, maxError float64) bool {
- absDiff := math.Abs(a - b)
- if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
- return true
- }
- return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
-}
-
-var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}
-
-// checkSimilarDistribution returns success if the mean and stddev of the
-// two statsResults are similar.
-func (this *statsResults) checkSimilarDistribution(expected *statsResults) error {
- if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) {
- s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError)
- fmt.Println(s)
- return errors.New(s)
- }
- if !nearEqual(this.stddev, expected.stddev, 0, expected.maxError) {
- s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError)
- fmt.Println(s)
- return errors.New(s)
- }
- return nil
-}
-
-func getStatsResults(samples []float64) *statsResults {
- res := new(statsResults)
- var sum float64
- for i := range samples {
- sum += samples[i]
- }
- res.mean = sum / float64(len(samples))
- var devsum float64
- for i := range samples {
- devsum += math.Pow(samples[i]-res.mean, 2)
- }
- res.stddev = math.Sqrt(devsum / float64(len(samples)))
- return res
-}
-
-func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
- actual := getStatsResults(samples)
- err := actual.checkSimilarDistribution(expected)
- if err != nil {
- t.Errorf(err.Error())
- }
-}
-
-func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
- chunk := len(samples) / nslices
- for i := 0; i < nslices; i++ {
- low := i * chunk
- var high int
- if i == nslices-1 {
- high = len(samples) - 1
- } else {
- high = (i + 1) * chunk
- }
- checkSampleDistribution(t, samples[low:high], expected)
- }
-}
-
-//
-// Normal distribution tests
-//
-
-func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
- r := New(NewSource(seed))
- samples := make([]float64, nsamples)
- for i := range samples {
- samples[i] = r.NormFloat64()*stddev + mean
- }
- return samples
-}
-
-func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
- //fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
-
- samples := generateNormalSamples(nsamples, mean, stddev, seed)
- errorScale := max(1.0, stddev) // Error scales with stddev
- expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
-
- // Make sure that the entire set matches the expected distribution.
- checkSampleDistribution(t, samples, expected)
-
- // Make sure that each half of the set matches the expected distribution.
- checkSampleSliceDistributions(t, samples, 2, expected)
-
- // Make sure that each 7th of the set matches the expected distribution.
- checkSampleSliceDistributions(t, samples, 7, expected)
-}
-
-// Actual tests
-
-func TestStandardNormalValues(t *testing.T) {
- for _, seed := range testSeeds {
- testNormalDistribution(t, numTestSamples, 0, 1, seed)
- }
-}
-
-func TestNonStandardNormalValues(t *testing.T) {
- for sd := 0.5; sd < 1000; sd *= 2 {
- for m := 0.5; m < 1000; m *= 2 {
- for _, seed := range testSeeds {
- testNormalDistribution(t, numTestSamples, m, sd, seed)
- }
- }
- }
-}
-
-//
-// Exponential distribution tests
-//
-
-func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
- r := New(NewSource(seed))
- samples := make([]float64, nsamples)
- for i := range samples {
- samples[i] = r.ExpFloat64() / rate
- }
- return samples
-}
-
-func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
- //fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);
-
- mean := 1 / rate
- stddev := mean
-
- samples := generateExponentialSamples(nsamples, rate, seed)
- errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
- expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}
-
- // Make sure that the entire set matches the expected distribution.
- checkSampleDistribution(t, samples, expected)
-
- // Make sure that each half of the set matches the expected distribution.
- checkSampleSliceDistributions(t, samples, 2, expected)
-
- // Make sure that each 7th of the set matches the expected distribution.
- checkSampleSliceDistributions(t, samples, 7, expected)
-}
-
-// Actual tests
-
-func TestStandardExponentialValues(t *testing.T) {
- for _, seed := range testSeeds {
- testExponentialDistribution(t, numTestSamples, 1, seed)
- }
-}
-
-func TestNonStandardExponentialValues(t *testing.T) {
- for rate := 0.05; rate < 10; rate *= 2 {
- for _, seed := range testSeeds {
- testExponentialDistribution(t, numTestSamples, rate, seed)
- }
- }
-}
-
-//
-// Table generation tests
-//
-
-func initNorm() (testKn []uint32, testWn, testFn []float32) {
- const m1 = 1 << 31
- var (
- dn float64 = rn
- tn = dn
- vn float64 = 9.91256303526217e-3
- )
-
- testKn = make([]uint32, 128)
- testWn = make([]float32, 128)
- testFn = make([]float32, 128)
-
- q := vn / math.Exp(-0.5*dn*dn)
- testKn[0] = uint32((dn / q) * m1)
- testKn[1] = 0
- testWn[0] = float32(q / m1)
- testWn[127] = float32(dn / m1)
- testFn[0] = 1.0
- testFn[127] = float32(math.Exp(-0.5 * dn * dn))
- for i := 126; i >= 1; i-- {
- dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))
- testKn[i+1] = uint32((dn / tn) * m1)
- tn = dn
- testFn[i] = float32(math.Exp(-0.5 * dn * dn))
- testWn[i] = float32(dn / m1)
- }
- return
-}
-
-func initExp() (testKe []uint32, testWe, testFe []float32) {
- const m2 = 1 << 32
- var (
- de float64 = re
- te = de
- ve float64 = 3.9496598225815571993e-3
- )
-
- testKe = make([]uint32, 256)
- testWe = make([]float32, 256)
- testFe = make([]float32, 256)
-
- q := ve / math.Exp(-de)
- testKe[0] = uint32((de / q) * m2)
- testKe[1] = 0
- testWe[0] = float32(q / m2)
- testWe[255] = float32(de / m2)
- testFe[0] = 1.0
- testFe[255] = float32(math.Exp(-de))
- for i := 254; i >= 1; i-- {
- de = -math.Log(ve/de + math.Exp(-de))
- testKe[i+1] = uint32((de / te) * m2)
- te = de
- testFe[i] = float32(math.Exp(-de))
- testWe[i] = float32(de / m2)
- }
- return
-}
-
-// compareUint32Slices returns the first index where the two slices
-// disagree, or <0 if the lengths are the same and all elements
-// are identical.
-func compareUint32Slices(s1, s2 []uint32) int {
- if len(s1) != len(s2) {
- if len(s1) > len(s2) {
- return len(s2) + 1
- }
- return len(s1) + 1
- }
- for i := range s1 {
- if s1[i] != s2[i] {
- return i
- }
- }
- return -1
-}
-
-// compareFloat32Slices returns the first index where the two slices
-// disagree, or <0 if the lengths are the same and all elements
-// are identical.
-func compareFloat32Slices(s1, s2 []float32) int {
- if len(s1) != len(s2) {
- if len(s1) > len(s2) {
- return len(s2) + 1
- }
- return len(s1) + 1
- }
- for i := range s1 {
- if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
- return i
- }
- }
- return -1
-}
-
-func TestNormTables(t *testing.T) {
- testKn, testWn, testFn := initNorm()
- if i := compareUint32Slices(kn[0:], testKn); i >= 0 {
- t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])
- }
- if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {
- t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])
- }
- if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {
- t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])
- }
-}
-
-func TestExpTables(t *testing.T) {
- testKe, testWe, testFe := initExp()
- if i := compareUint32Slices(ke[0:], testKe); i >= 0 {
- t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])
- }
- if i := compareFloat32Slices(we[0:], testWe); i >= 0 {
- t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])
- }
- if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {
- t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])
- }
-}
-
-// Benchmarks
-
-func BenchmarkInt63Threadsafe(b *testing.B) {
- for n := b.N; n > 0; n-- {
- Int63()
- }
-}
-
-func BenchmarkInt63Unthreadsafe(b *testing.B) {
- r := New(NewSource(1))
- for n := b.N; n > 0; n-- {
- r.Int63()
- }
-}
-
-func BenchmarkIntn1000(b *testing.B) {
- r := New(NewSource(1))
- for n := b.N; n > 0; n-- {
- r.Intn(1000)
- }
-}
-
-func BenchmarkInt63n1000(b *testing.B) {
- r := New(NewSource(1))
- for n := b.N; n > 0; n-- {
- r.Int63n(1000)
- }
-}
-
-func BenchmarkInt31n1000(b *testing.B) {
- r := New(NewSource(1))
- for n := b.N; n > 0; n-- {
- r.Int31n(1000)
- }
-}