diff options
author | Ian Lance Taylor <ian@gcc.gnu.org> | 2011-12-07 01:11:29 +0000 |
---|---|---|
committer | Ian Lance Taylor <ian@gcc.gnu.org> | 2011-12-07 01:11:29 +0000 |
commit | 9c63abc9a1d127f95162756467284cf76b47aff8 (patch) | |
tree | 84f27a6ab44d932e4b0455f18390b070b4de626e /libgo/go/rand/rand_test.go | |
parent | 374280238f934fa851273e2ee16ba53be890c6b8 (diff) | |
download | gcc-9c63abc9a1d127f95162756467284cf76b47aff8.zip gcc-9c63abc9a1d127f95162756467284cf76b47aff8.tar.gz gcc-9c63abc9a1d127f95162756467284cf76b47aff8.tar.bz2 |
libgo: Update to weekly 2011-11-09.
From-SVN: r182073
Diffstat (limited to 'libgo/go/rand/rand_test.go')
-rw-r--r-- | libgo/go/rand/rand_test.go | 350 |
1 files changed, 0 insertions, 350 deletions
diff --git a/libgo/go/rand/rand_test.go b/libgo/go/rand/rand_test.go deleted file mode 100644 index 66ffa58..0000000 --- a/libgo/go/rand/rand_test.go +++ /dev/null @@ -1,350 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package rand - -import ( - "errors" - "math" - "fmt" - "testing" -) - -const ( - numTestSamples = 10000 -) - -type statsResults struct { - mean float64 - stddev float64 - closeEnough float64 - maxError float64 -} - -func max(a, b float64) float64 { - if a > b { - return a - } - return b -} - -func nearEqual(a, b, closeEnough, maxError float64) bool { - absDiff := math.Abs(a - b) - if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero. - return true - } - return absDiff/max(math.Abs(a), math.Abs(b)) < maxError -} - -var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961} - -// checkSimilarDistribution returns success if the mean and stddev of the -// two statsResults are similar. -func (this *statsResults) checkSimilarDistribution(expected *statsResults) error { - if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) { - s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError) - fmt.Println(s) - return errors.New(s) - } - if !nearEqual(this.stddev, expected.stddev, 0, expected.maxError) { - s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError) - fmt.Println(s) - return errors.New(s) - } - return nil -} - -func getStatsResults(samples []float64) *statsResults { - res := new(statsResults) - var sum float64 - for i := range samples { - sum += samples[i] - } - res.mean = sum / float64(len(samples)) - var devsum float64 - for i := range samples { - devsum += math.Pow(samples[i]-res.mean, 2) - } - res.stddev = math.Sqrt(devsum / float64(len(samples))) - return res -} - -func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) { - actual := getStatsResults(samples) - err := actual.checkSimilarDistribution(expected) - if err != nil { - t.Errorf(err.Error()) - } -} - -func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) { - chunk := len(samples) / nslices - for i := 0; i < nslices; i++ { - low := i * chunk - var high int - if i == nslices-1 { - high = len(samples) - 1 - } else { - high = (i + 1) * chunk - } - checkSampleDistribution(t, samples[low:high], expected) - } -} - -// -// Normal distribution tests -// - -func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 { - r := New(NewSource(seed)) - samples := make([]float64, nsamples) - for i := range samples { - samples[i] = r.NormFloat64()*stddev + mean - } - return samples -} - -func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) { - //fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed); - - samples := generateNormalSamples(nsamples, mean, stddev, seed) - errorScale := max(1.0, stddev) // Error scales with stddev - expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale} - - // Make sure that the entire set matches the expected distribution. - checkSampleDistribution(t, samples, expected) - - // Make sure that each half of the set matches the expected distribution. - checkSampleSliceDistributions(t, samples, 2, expected) - - // Make sure that each 7th of the set matches the expected distribution. - checkSampleSliceDistributions(t, samples, 7, expected) -} - -// Actual tests - -func TestStandardNormalValues(t *testing.T) { - for _, seed := range testSeeds { - testNormalDistribution(t, numTestSamples, 0, 1, seed) - } -} - -func TestNonStandardNormalValues(t *testing.T) { - for sd := 0.5; sd < 1000; sd *= 2 { - for m := 0.5; m < 1000; m *= 2 { - for _, seed := range testSeeds { - testNormalDistribution(t, numTestSamples, m, sd, seed) - } - } - } -} - -// -// Exponential distribution tests -// - -func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 { - r := New(NewSource(seed)) - samples := make([]float64, nsamples) - for i := range samples { - samples[i] = r.ExpFloat64() / rate - } - return samples -} - -func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) { - //fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed); - - mean := 1 / rate - stddev := mean - - samples := generateExponentialSamples(nsamples, rate, seed) - errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate - expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale} - - // Make sure that the entire set matches the expected distribution. - checkSampleDistribution(t, samples, expected) - - // Make sure that each half of the set matches the expected distribution. - checkSampleSliceDistributions(t, samples, 2, expected) - - // Make sure that each 7th of the set matches the expected distribution. - checkSampleSliceDistributions(t, samples, 7, expected) -} - -// Actual tests - -func TestStandardExponentialValues(t *testing.T) { - for _, seed := range testSeeds { - testExponentialDistribution(t, numTestSamples, 1, seed) - } -} - -func TestNonStandardExponentialValues(t *testing.T) { - for rate := 0.05; rate < 10; rate *= 2 { - for _, seed := range testSeeds { - testExponentialDistribution(t, numTestSamples, rate, seed) - } - } -} - -// -// Table generation tests -// - -func initNorm() (testKn []uint32, testWn, testFn []float32) { - const m1 = 1 << 31 - var ( - dn float64 = rn - tn = dn - vn float64 = 9.91256303526217e-3 - ) - - testKn = make([]uint32, 128) - testWn = make([]float32, 128) - testFn = make([]float32, 128) - - q := vn / math.Exp(-0.5*dn*dn) - testKn[0] = uint32((dn / q) * m1) - testKn[1] = 0 - testWn[0] = float32(q / m1) - testWn[127] = float32(dn / m1) - testFn[0] = 1.0 - testFn[127] = float32(math.Exp(-0.5 * dn * dn)) - for i := 126; i >= 1; i-- { - dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn))) - testKn[i+1] = uint32((dn / tn) * m1) - tn = dn - testFn[i] = float32(math.Exp(-0.5 * dn * dn)) - testWn[i] = float32(dn / m1) - } - return -} - -func initExp() (testKe []uint32, testWe, testFe []float32) { - const m2 = 1 << 32 - var ( - de float64 = re - te = de - ve float64 = 3.9496598225815571993e-3 - ) - - testKe = make([]uint32, 256) - testWe = make([]float32, 256) - testFe = make([]float32, 256) - - q := ve / math.Exp(-de) - testKe[0] = uint32((de / q) * m2) - testKe[1] = 0 - testWe[0] = float32(q / m2) - testWe[255] = float32(de / m2) - testFe[0] = 1.0 - testFe[255] = float32(math.Exp(-de)) - for i := 254; i >= 1; i-- { - de = -math.Log(ve/de + math.Exp(-de)) - testKe[i+1] = uint32((de / te) * m2) - te = de - testFe[i] = float32(math.Exp(-de)) - testWe[i] = float32(de / m2) - } - return -} - -// compareUint32Slices returns the first index where the two slices -// disagree, or <0 if the lengths are the same and all elements -// are identical. -func compareUint32Slices(s1, s2 []uint32) int { - if len(s1) != len(s2) { - if len(s1) > len(s2) { - return len(s2) + 1 - } - return len(s1) + 1 - } - for i := range s1 { - if s1[i] != s2[i] { - return i - } - } - return -1 -} - -// compareFloat32Slices returns the first index where the two slices -// disagree, or <0 if the lengths are the same and all elements -// are identical. -func compareFloat32Slices(s1, s2 []float32) int { - if len(s1) != len(s2) { - if len(s1) > len(s2) { - return len(s2) + 1 - } - return len(s1) + 1 - } - for i := range s1 { - if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) { - return i - } - } - return -1 -} - -func TestNormTables(t *testing.T) { - testKn, testWn, testFn := initNorm() - if i := compareUint32Slices(kn[0:], testKn); i >= 0 { - t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i]) - } - if i := compareFloat32Slices(wn[0:], testWn); i >= 0 { - t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i]) - } - if i := compareFloat32Slices(fn[0:], testFn); i >= 0 { - t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i]) - } -} - -func TestExpTables(t *testing.T) { - testKe, testWe, testFe := initExp() - if i := compareUint32Slices(ke[0:], testKe); i >= 0 { - t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i]) - } - if i := compareFloat32Slices(we[0:], testWe); i >= 0 { - t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i]) - } - if i := compareFloat32Slices(fe[0:], testFe); i >= 0 { - t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i]) - } -} - -// Benchmarks - -func BenchmarkInt63Threadsafe(b *testing.B) { - for n := b.N; n > 0; n-- { - Int63() - } -} - -func BenchmarkInt63Unthreadsafe(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Int63() - } -} - -func BenchmarkIntn1000(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Intn(1000) - } -} - -func BenchmarkInt63n1000(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Int63n(1000) - } -} - -func BenchmarkInt31n1000(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Int31n(1000) - } -} |