diff options
author | Ian Lance Taylor <iant@google.com> | 2015-01-15 00:27:56 +0000 |
---|---|---|
committer | Ian Lance Taylor <ian@gcc.gnu.org> | 2015-01-15 00:27:56 +0000 |
commit | f8d9fa9e80b57f89e7877ce6cad8a3464879009b (patch) | |
tree | 58a1724fee16d2b03c65678c4dd9b50bb97137a9 /libgo/go/math | |
parent | 6bd3f109d8d8fa58eeccd6b3504721b4f20c00c2 (diff) | |
download | gcc-f8d9fa9e80b57f89e7877ce6cad8a3464879009b.zip gcc-f8d9fa9e80b57f89e7877ce6cad8a3464879009b.tar.gz gcc-f8d9fa9e80b57f89e7877ce6cad8a3464879009b.tar.bz2 |
libgo, compiler: Upgrade libgo to Go 1.4, except for runtime.
This upgrades all of libgo other than the runtime package to
the Go 1.4 release. In Go 1.4 much of the runtime was
rewritten into Go. Merging that code will take more time and
will not change the API, so I'm putting it off for now.
There are a few runtime changes anyhow, to accomodate other
packages that rely on minor modifications to the runtime
support.
The compiler changes slightly to add a one-bit flag to each
type descriptor kind that is stored directly in an interface,
which for gccgo is currently only pointer types. Another
one-bit flag (gcprog) is reserved because it is used by the gc
compiler, but gccgo does not currently use it.
There is another error check in the compiler since I ran
across it during testing.
gotools/:
* Makefile.am (go_cmd_go_files): Sort entries. Add generate.go.
* Makefile.in: Rebuild.
From-SVN: r219627
Diffstat (limited to 'libgo/go/math')
-rw-r--r-- | libgo/go/math/all_test.go | 77 | ||||
-rw-r--r-- | libgo/go/math/big/int.go | 56 | ||||
-rw-r--r-- | libgo/go/math/big/int_test.go | 50 | ||||
-rw-r--r-- | libgo/go/math/big/rat.go | 184 | ||||
-rw-r--r-- | libgo/go/math/big/rat_test.go | 196 | ||||
-rw-r--r-- | libgo/go/math/nextafter.go | 32 | ||||
-rw-r--r-- | libgo/go/math/sqrt.go | 2 |
7 files changed, 500 insertions, 97 deletions
diff --git a/libgo/go/math/all_test.go b/libgo/go/math/all_test.go index 0d8b10f..763efb2 100644 --- a/libgo/go/math/all_test.go +++ b/libgo/go/math/all_test.go @@ -456,7 +456,19 @@ var modf = [][2]float64{ {1.0000000000000000e+00, 8.2530809168085506044576505e-01}, {-8.0000000000000000e+00, -6.8592476857560136238589621e-01}, } -var nextafter = []float64{ +var nextafter32 = []float32{ + 4.979012489318848e+00, + 7.738873004913330e+00, + -2.768800258636475e-01, + -5.010602951049805e+00, + 9.636294364929199e+00, + 2.926377534866333e+00, + 5.229084014892578e+00, + 2.727940082550049e+00, + 1.825308203697205e+00, + -8.685923576354980e+00, +} +var nextafter64 = []float64{ 4.97901192488367438926388786e+00, 7.73887247457810545370193722e+00, -2.7688005719200153853520874e-01, @@ -1331,7 +1343,32 @@ var modfSC = [][2]float64{ {NaN(), NaN()}, } -var vfnextafterSC = [][2]float64{ +var vfnextafter32SC = [][2]float32{ + {0, 0}, + {0, float32(Copysign(0, -1))}, + {0, -1}, + {0, float32(NaN())}, + {float32(Copysign(0, -1)), 1}, + {float32(Copysign(0, -1)), 0}, + {float32(Copysign(0, -1)), float32(Copysign(0, -1))}, + {float32(Copysign(0, -1)), -1}, + {float32(NaN()), 0}, + {float32(NaN()), float32(NaN())}, +} +var nextafter32SC = []float32{ + 0, + 0, + -1.401298464e-45, // Float32frombits(0x80000001) + float32(NaN()), + 1.401298464e-45, // Float32frombits(0x00000001) + float32(Copysign(0, -1)), + float32(Copysign(0, -1)), + -1.401298464e-45, // Float32frombits(0x80000001) + float32(NaN()), + float32(NaN()), +} + +var vfnextafter64SC = [][2]float64{ {0, 0}, {0, Copysign(0, -1)}, {0, -1}, @@ -1343,7 +1380,7 @@ var vfnextafterSC = [][2]float64{ {NaN(), 0}, {NaN(), NaN()}, } -var nextafterSC = []float64{ +var nextafter64SC = []float64{ 0, 0, -4.9406564584124654418e-324, // Float64frombits(0x8000000000000001) @@ -2303,15 +2340,29 @@ func TestModf(t *testing.T) { } } -func TestNextafter(t *testing.T) { +func TestNextafter32(t *testing.T) { + for i := 0; i < len(vf); i++ { + vfi := float32(vf[i]) + if f := Nextafter32(vfi, 10); nextafter32[i] != f { + t.Errorf("Nextafter32(%g, %g) = %g want %g", vfi, 10.0, f, nextafter32[i]) + } + } + for i := 0; i < len(vfnextafter32SC); i++ { + if f := Nextafter32(vfnextafter32SC[i][0], vfnextafter32SC[i][1]); !alike(float64(nextafter32SC[i]), float64(f)) { + t.Errorf("Nextafter32(%g, %g) = %g want %g", vfnextafter32SC[i][0], vfnextafter32SC[i][1], f, nextafter32SC[i]) + } + } +} + +func TestNextafter64(t *testing.T) { for i := 0; i < len(vf); i++ { - if f := Nextafter(vf[i], 10); nextafter[i] != f { - t.Errorf("Nextafter(%g, %g) = %g want %g", vf[i], 10.0, f, nextafter[i]) + if f := Nextafter(vf[i], 10); nextafter64[i] != f { + t.Errorf("Nextafter64(%g, %g) = %g want %g", vf[i], 10.0, f, nextafter64[i]) } } - for i := 0; i < len(vfnextafterSC); i++ { - if f := Nextafter(vfnextafterSC[i][0], vfnextafterSC[i][1]); !alike(nextafterSC[i], f) { - t.Errorf("Nextafter(%g, %g) = %g want %g", vfnextafterSC[i][0], vfnextafterSC[i][1], f, nextafterSC[i]) + for i := 0; i < len(vfnextafter64SC); i++ { + if f := Nextafter(vfnextafter64SC[i][0], vfnextafter64SC[i][1]); !alike(nextafter64SC[i], f) { + t.Errorf("Nextafter64(%g, %g) = %g want %g", vfnextafter64SC[i][0], vfnextafter64SC[i][1], f, nextafter64SC[i]) } } } @@ -2827,7 +2878,13 @@ func BenchmarkModf(b *testing.B) { } } -func BenchmarkNextafter(b *testing.B) { +func BenchmarkNextafter32(b *testing.B) { + for i := 0; i < b.N; i++ { + Nextafter32(.5, 1) + } +} + +func BenchmarkNextafter64(b *testing.B) { for i := 0; i < b.N; i++ { Nextafter(.5, 1) } diff --git a/libgo/go/math/big/int.go b/libgo/go/math/big/int.go index 269949d..d22e39e 100644 --- a/libgo/go/math/big/int.go +++ b/libgo/go/math/big/int.go @@ -510,10 +510,30 @@ func (z *Int) Scan(s fmt.ScanState, ch rune) error { return err } +// low32 returns the least significant 32 bits of z. +func low32(z nat) uint32 { + if len(z) == 0 { + return 0 + } + return uint32(z[0]) +} + +// low64 returns the least significant 64 bits of z. +func low64(z nat) uint64 { + if len(z) == 0 { + return 0 + } + v := uint64(z[0]) + if _W == 32 && len(z) > 1 { + v |= uint64(z[1]) << 32 + } + return v +} + // Int64 returns the int64 representation of x. // If x cannot be represented in an int64, the result is undefined. func (x *Int) Int64() int64 { - v := int64(x.Uint64()) + v := int64(low64(x.abs)) if x.neg { v = -v } @@ -523,14 +543,7 @@ func (x *Int) Int64() int64 { // Uint64 returns the uint64 representation of x. // If x cannot be represented in a uint64, the result is undefined. func (x *Int) Uint64() uint64 { - if len(x.abs) == 0 { - return 0 - } - v := uint64(x.abs[0]) - if _W == 32 && len(x.abs) > 1 { - v |= uint64(x.abs[1]) << 32 - } - return v + return low64(x.abs) } // SetString sets z to the value of s, interpreted in the given base, @@ -592,6 +605,12 @@ func (z *Int) Exp(x, y, m *Int) *Int { z.abs = z.abs.expNN(x.abs, yWords, mWords) z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign + if z.neg && len(mWords) > 0 { + // make modulus result positive + z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m| + z.neg = false + } + return z } @@ -733,15 +752,16 @@ func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { return z } -// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where -// p is a prime) and returns z. -func (z *Int) ModInverse(g, p *Int) *Int { +// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ +// and returns z. If g and n are not relatively prime, the result is undefined. +func (z *Int) ModInverse(g, n *Int) *Int { var d Int - d.GCD(z, nil, g, p) - // x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking - // that modulo p results in g*x = 1, therefore x is the inverse element. + d.GCD(z, nil, g, n) + // x and y are such that g*x + n*y = d. Since g and n are + // relatively prime, d = 1. Taking that modulo n results in + // g*x = 1, therefore x is the inverse element. if z.neg { - z.Add(z, p) + z.Add(z, n) } return z } @@ -997,12 +1017,12 @@ func (z *Int) UnmarshalJSON(text []byte) error { return nil } -// MarshalText implements the encoding.TextMarshaler interface +// MarshalText implements the encoding.TextMarshaler interface. func (z *Int) MarshalText() (text []byte, err error) { return []byte(z.String()), nil } -// UnmarshalText implements the encoding.TextUnmarshaler interface +// UnmarshalText implements the encoding.TextUnmarshaler interface. func (z *Int) UnmarshalText(text []byte) error { if _, ok := z.SetString(string(text), 0); !ok { return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text) diff --git a/libgo/go/math/big/int_test.go b/libgo/go/math/big/int_test.go index 299dc72..6070cf3 100644 --- a/libgo/go/math/big/int_test.go +++ b/libgo/go/math/big/int_test.go @@ -787,6 +787,7 @@ var expTests = []struct { {"-5", "0", "", "1"}, {"5", "1", "", "5"}, {"-5", "1", "", "-5"}, + {"-5", "1", "7", "2"}, {"-2", "3", "2", "0"}, {"5", "2", "", "25"}, {"1", "65537", "2", "1"}, @@ -802,6 +803,13 @@ var expTests = []struct { "29834729834729834729347290846729561262544958723956495615629569234729836259263598127342374289365912465901365498236492183464", "23537740700184054162508175125554701713153216681790245129157191391322321508055833908509185839069455749219131480588829346291", }, + // test case for issue 8822 + { + "-0x1BCE04427D8032319A89E5C4136456671AC620883F2C4139E57F91307C485AD2D6204F4F87A58262652DB5DBBAC72B0613E51B835E7153BEC6068F5C8D696B74DBD18FEC316AEF73985CF0475663208EB46B4F17DD9DA55367B03323E5491A70997B90C059FB34809E6EE55BCFBD5F2F52233BFE62E6AA9E4E26A1D4C2439883D14F2633D55D8AA66A1ACD5595E778AC3A280517F1157989E70C1A437B849F1877B779CC3CDDEDE2DAA6594A6C66D181A00A5F777EE60596D8773998F6E988DEAE4CCA60E4DDCF9590543C89F74F603259FCAD71660D30294FBBE6490300F78A9D63FA660DC9417B8B9DDA28BEB3977B621B988E23D4D954F322C3540541BC649ABD504C50FADFD9F0987D58A2BF689313A285E773FF02899A6EF887D1D4A0D2", + "0xB08FFB20760FFED58FADA86DFEF71AD72AA0FA763219618FE022C197E54708BB1191C66470250FCE8879487507CEE41381CA4D932F81C2B3F1AB20B539D50DCD", + "0xAC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC3192943DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310DCD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FBD5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF747359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E7303CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB694B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F9E4AFF73", + "21484252197776302499639938883777710321993113097987201050501182909581359357618579566746556372589385361683610524730509041328855066514963385522570894839035884713051640171474186548713546686476761306436434146475140156284389181808675016576845833340494848283681088886584219750554408060556769486628029028720727393293111678826356480455433909233520504112074401376133077150471237549474149190242010469539006449596611576612573955754349042329130631128234637924786466585703488460540228477440853493392086251021228087076124706778899179648655221663765993962724699135217212118535057766739392069738618682722216712319320435674779146070442", + }, } func TestExp(t *testing.T) { @@ -833,12 +841,12 @@ func TestExp(t *testing.T) { } if m == nil { - // the result should be the same as for m == 0; - // specifically, there should be no div-zero panic + // The result should be the same as for m == 0; + // specifically, there should be no div-zero panic. m = &Int{abs: nat{}} // m != nil && len(m.abs) == 0 z2 := new(Int).Exp(x, y, m) if z2.Cmp(z1) != 0 { - t.Errorf("#%d: got %s want %s", i, z1, z2) + t.Errorf("#%d: got %s want %s", i, z2, z1) } } } @@ -1440,24 +1448,40 @@ func TestNot(t *testing.T) { var modInverseTests = []struct { element string - prime string + modulus string }{ - {"1", "7"}, - {"1", "13"}, + {"1234567", "458948883992"}, {"239487239847", "2410312426921032588552076022197566074856950548502459942654116941958108831682612228890093858261341614673227141477904012196503648957050582631942730706805009223062734745341073406696246014589361659774041027169249453200378729434170325843778659198143763193776859869524088940195577346119843545301547043747207749969763750084308926339295559968882457872412993810129130294592999947926365264059284647209730384947211681434464714438488520940127459844288859336526896320919633919"}, } func TestModInverse(t *testing.T) { - var element, prime Int + var element, modulus, gcd, inverse Int one := NewInt(1) for i, test := range modInverseTests { (&element).SetString(test.element, 10) - (&prime).SetString(test.prime, 10) - inverse := new(Int).ModInverse(&element, &prime) - inverse.Mul(inverse, &element) - inverse.Mod(inverse, &prime) - if inverse.Cmp(one) != 0 { - t.Errorf("#%d: failed (e·e^(-1)=%s)", i, inverse) + (&modulus).SetString(test.modulus, 10) + (&inverse).ModInverse(&element, &modulus) + (&inverse).Mul(&inverse, &element) + (&inverse).Mod(&inverse, &modulus) + if (&inverse).Cmp(one) != 0 { + t.Errorf("#%d: failed (e·e^(-1)=%s)", i, &inverse) + } + } + // exhaustive test for small values + for n := 2; n < 100; n++ { + (&modulus).SetInt64(int64(n)) + for x := 1; x < n; x++ { + (&element).SetInt64(int64(x)) + (&gcd).GCD(nil, nil, &element, &modulus) + if (&gcd).Cmp(one) != 0 { + continue + } + (&inverse).ModInverse(&element, &modulus) + (&inverse).Mul(&inverse, &element) + (&inverse).Mod(&inverse, &modulus) + if (&inverse).Cmp(one) != 0 { + t.Errorf("ModInverse(%d,%d)*%d%%%d=%d, not 1", &element, &modulus, &element, &modulus, &inverse) + } } } } diff --git a/libgo/go/math/big/rat.go b/libgo/go/math/big/rat.go index f0973b3..c5339fe 100644 --- a/libgo/go/math/big/rat.go +++ b/libgo/go/math/big/rat.go @@ -64,28 +64,125 @@ func (z *Rat) SetFloat64(f float64) *Rat { return z.norm() } -// isFinite reports whether f represents a finite rational value. -// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0). -func isFinite(f float64) bool { - return math.Abs(f) <= math.MaxFloat64 -} +// quotToFloat32 returns the non-negative float32 value +// nearest to the quotient a/b, using round-to-even in +// halfway cases. It does not mutate its arguments. +// Preconditions: b is non-zero; a and b have no common factors. +func quotToFloat32(a, b nat) (f float32, exact bool) { + const ( + // float size in bits + Fsize = 32 + + // mantissa + Msize = 23 + Msize1 = Msize + 1 // incl. implicit 1 + Msize2 = Msize1 + 1 + + // exponent + Esize = Fsize - Msize1 + Ebias = 1<<(Esize-1) - 1 + Emin = 1 - Ebias + Emax = Ebias + ) -// low64 returns the least significant 64 bits of natural number z. -func low64(z nat) uint64 { - if len(z) == 0 { - return 0 + // TODO(adonovan): specialize common degenerate cases: 1.0, integers. + alen := a.bitLen() + if alen == 0 { + return 0, true } - if _W == 32 && len(z) > 1 { - return uint64(z[1])<<32 | uint64(z[0]) + blen := b.bitLen() + if blen == 0 { + panic("division by zero") } - return uint64(z[0]) + + // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) + // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). + // This is 2 or 3 more than the float32 mantissa field width of Msize: + // - the optional extra bit is shifted away in step 3 below. + // - the high-order 1 is omitted in "normal" representation; + // - the low-order 1 will be used during rounding then discarded. + exp := alen - blen + var a2, b2 nat + a2 = a2.set(a) + b2 = b2.set(b) + if shift := Msize2 - exp; shift > 0 { + a2 = a2.shl(a2, uint(shift)) + } else if shift < 0 { + b2 = b2.shl(b2, uint(-shift)) + } + + // 2. Compute quotient and remainder (q, r). NB: due to the + // extra shift, the low-order bit of q is logically the + // high-order bit of r. + var q nat + q, r := q.div(a2, a2, b2) // (recycle a2) + mantissa := low32(q) + haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half + + // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 + // (in effect---we accomplish this incrementally). + if mantissa>>Msize2 == 1 { + if mantissa&1 == 1 { + haveRem = true + } + mantissa >>= 1 + exp++ + } + if mantissa>>Msize1 != 1 { + panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) + } + + // 4. Rounding. + if Emin-Msize <= exp && exp <= Emin { + // Denormal case; lose 'shift' bits of precision. + shift := uint(Emin - (exp - 1)) // [1..Esize1) + lostbits := mantissa & (1<<shift - 1) + haveRem = haveRem || lostbits != 0 + mantissa >>= shift + exp = 2 - Ebias // == exp + shift + } + // Round q using round-half-to-even. + exact = !haveRem + if mantissa&1 != 0 { + exact = false + if haveRem || mantissa&2 != 0 { + if mantissa++; mantissa >= 1<<Msize2 { + // Complete rollover 11...1 => 100...0, so shift is safe + mantissa >>= 1 + exp++ + } + } + } + mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1. + + f = float32(math.Ldexp(float64(mantissa), exp-Msize1)) + if math.IsInf(float64(f), 0) { + exact = false + } + return } -// quotToFloat returns the non-negative IEEE 754 double-precision -// value nearest to the quotient a/b, using round-to-even in halfway -// cases. It does not mutate its arguments. +// quotToFloat64 returns the non-negative float64 value +// nearest to the quotient a/b, using round-to-even in +// halfway cases. It does not mutate its arguments. // Preconditions: b is non-zero; a and b have no common factors. -func quotToFloat(a, b nat) (f float64, exact bool) { +func quotToFloat64(a, b nat) (f float64, exact bool) { + const ( + // float size in bits + Fsize = 64 + + // mantissa + Msize = 52 + Msize1 = Msize + 1 // incl. implicit 1 + Msize2 = Msize1 + 1 + + // exponent + Esize = Fsize - Msize1 + Ebias = 1<<(Esize-1) - 1 + Emin = 1 - Ebias + Emax = Ebias + ) + // TODO(adonovan): specialize common degenerate cases: 1.0, integers. alen := a.bitLen() if alen == 0 { @@ -96,17 +193,17 @@ func quotToFloat(a, b nat) (f float64, exact bool) { panic("division by zero") } - // 1. Left-shift A or B such that quotient A/B is in [1<<53, 1<<55). - // (54 bits if A<B when they are left-aligned, 55 bits if A>=B.) - // This is 2 or 3 more than the float64 mantissa field width of 52: + // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) + // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). + // This is 2 or 3 more than the float64 mantissa field width of Msize: // - the optional extra bit is shifted away in step 3 below. - // - the high-order 1 is omitted in float64 "normal" representation; + // - the high-order 1 is omitted in "normal" representation; // - the low-order 1 will be used during rounding then discarded. exp := alen - blen var a2, b2 nat a2 = a2.set(a) b2 = b2.set(b) - if shift := 54 - exp; shift > 0 { + if shift := Msize2 - exp; shift > 0 { a2 = a2.shl(a2, uint(shift)) } else if shift < 0 { b2 = b2.shl(b2, uint(-shift)) @@ -120,49 +217,65 @@ func quotToFloat(a, b nat) (f float64, exact bool) { mantissa := low64(q) haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half - // 3. If quotient didn't fit in 54 bits, re-do division by b2<<1 + // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 // (in effect---we accomplish this incrementally). - if mantissa>>54 == 1 { + if mantissa>>Msize2 == 1 { if mantissa&1 == 1 { haveRem = true } mantissa >>= 1 exp++ } - if mantissa>>53 != 1 { - panic("expected exactly 54 bits of result") + if mantissa>>Msize1 != 1 { + panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) } // 4. Rounding. - if -1022-52 <= exp && exp <= -1022 { + if Emin-Msize <= exp && exp <= Emin { // Denormal case; lose 'shift' bits of precision. - shift := uint64(-1022 - (exp - 1)) // [1..53) + shift := uint(Emin - (exp - 1)) // [1..Esize1) lostbits := mantissa & (1<<shift - 1) haveRem = haveRem || lostbits != 0 mantissa >>= shift - exp = -1023 + 2 + exp = 2 - Ebias // == exp + shift } // Round q using round-half-to-even. exact = !haveRem if mantissa&1 != 0 { exact = false if haveRem || mantissa&2 != 0 { - if mantissa++; mantissa >= 1<<54 { + if mantissa++; mantissa >= 1<<Msize2 { // Complete rollover 11...1 => 100...0, so shift is safe mantissa >>= 1 exp++ } } } - mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 2^53. + mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1. - f = math.Ldexp(float64(mantissa), exp-53) + f = math.Ldexp(float64(mantissa), exp-Msize1) if math.IsInf(f, 0) { exact = false } return } +// Float32 returns the nearest float32 value for x and a bool indicating +// whether f represents x exactly. If the magnitude of x is too large to +// be represented by a float32, f is an infinity and exact is false. +// The sign of f always matches the sign of x, even if f == 0. +func (x *Rat) Float32() (f float32, exact bool) { + b := x.b.abs + if len(b) == 0 { + b = b.set(natOne) // materialize denominator + } + f, exact = quotToFloat32(x.a.abs, b) + if x.a.neg { + f = -f + } + return +} + // Float64 returns the nearest float64 value for x and a bool indicating // whether f represents x exactly. If the magnitude of x is too large to // be represented by a float64, f is an infinity and exact is false. @@ -172,7 +285,7 @@ func (x *Rat) Float64() (f float64, exact bool) { if len(b) == 0 { b = b.set(natOne) // materialize denominator } - f, exact = quotToFloat(x.a.abs, b) + f, exact = quotToFloat64(x.a.abs, b) if x.a.neg { f = -f } @@ -439,6 +552,9 @@ func (z *Rat) SetString(s string) (*Rat, bool) { if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil { return nil, false } + if len(z.b.abs) == 0 { + return nil, false + } return z.norm(), true } @@ -586,12 +702,12 @@ func (z *Rat) GobDecode(buf []byte) error { return nil } -// MarshalText implements the encoding.TextMarshaler interface +// MarshalText implements the encoding.TextMarshaler interface. func (r *Rat) MarshalText() (text []byte, err error) { return []byte(r.RatString()), nil } -// UnmarshalText implements the encoding.TextUnmarshaler interface +// UnmarshalText implements the encoding.TextUnmarshaler interface. func (r *Rat) UnmarshalText(text []byte) error { if _, ok := r.SetString(string(text)); !ok { return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Rat", text) diff --git a/libgo/go/math/big/rat_test.go b/libgo/go/math/big/rat_test.go index 414a67d..5dbbb35 100644 --- a/libgo/go/math/big/rat_test.go +++ b/libgo/go/math/big/rat_test.go @@ -89,6 +89,7 @@ var setStringTests = []struct { {"53/70893980658822810696", "53/70893980658822810696", true}, {"106/141787961317645621392", "53/70893980658822810696", true}, {"204211327800791583.81095", "4084226556015831676219/20000", true}, + {in: "1/0", ok: false}, } func TestRatSetString(t *testing.T) { @@ -751,7 +752,6 @@ var float64inputs = []string{ // http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/ "2.2250738585072012e-308", // http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/ - "2.2250738585072011e-308", // A very large number (initially wrongly parsed by the fast algorithm). @@ -790,6 +790,68 @@ var float64inputs = []string{ "1/3", } +// isFinite reports whether f represents a finite rational value. +// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0). +func isFinite(f float64) bool { + return math.Abs(f) <= math.MaxFloat64 +} + +func TestFloat32SpecialCases(t *testing.T) { + for _, input := range float64inputs { + if strings.HasPrefix(input, "long:") { + if testing.Short() { + continue + } + input = input[len("long:"):] + } + + r, ok := new(Rat).SetString(input) + if !ok { + t.Errorf("Rat.SetString(%q) failed", input) + continue + } + f, exact := r.Float32() + + // 1. Check string -> Rat -> float32 conversions are + // consistent with strconv.ParseFloat. + // Skip this check if the input uses "a/b" rational syntax. + if !strings.Contains(input, "/") { + e64, _ := strconv.ParseFloat(input, 32) + e := float32(e64) + + // Careful: negative Rats too small for + // float64 become -0, but Rat obviously cannot + // preserve the sign from SetString("-0"). + switch { + case math.Float32bits(e) == math.Float32bits(f): + // Ok: bitwise equal. + case f == 0 && r.Num().BitLen() == 0: + // Ok: Rat(0) is equivalent to both +/- float64(0). + default: + t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e) + } + } + + if !isFinite(float64(f)) { + continue + } + + // 2. Check f is best approximation to r. + if !checkIsBestApprox32(t, f, r) { + // Append context information. + t.Errorf("(input was %q)", input) + } + + // 3. Check f->R->f roundtrip is non-lossy. + checkNonLossyRoundtrip32(t, f) + + // 4. Check exactness using slow algorithm. + if wasExact := new(Rat).SetFloat64(float64(f)).Cmp(r) == 0; wasExact != exact { + t.Errorf("Rat.SetString(%q).Float32().exact = %t, want %t", input, exact, wasExact) + } + } +} + func TestFloat64SpecialCases(t *testing.T) { for _, input := range float64inputs { if strings.HasPrefix(input, "long:") { @@ -830,13 +892,13 @@ func TestFloat64SpecialCases(t *testing.T) { } // 2. Check f is best approximation to r. - if !checkIsBestApprox(t, f, r) { + if !checkIsBestApprox64(t, f, r) { // Append context information. t.Errorf("(input was %q)", input) } // 3. Check f->R->f roundtrip is non-lossy. - checkNonLossyRoundtrip(t, f) + checkNonLossyRoundtrip64(t, f) // 4. Check exactness using slow algorithm. if wasExact := new(Rat).SetFloat64(f).Cmp(r) == 0; wasExact != exact { @@ -845,6 +907,54 @@ func TestFloat64SpecialCases(t *testing.T) { } } +func TestFloat32Distribution(t *testing.T) { + // Generate a distribution of (sign, mantissa, exp) values + // broader than the float32 range, and check Rat.Float32() + // always picks the closest float32 approximation. + var add = []int64{ + 0, + 1, + 3, + 5, + 7, + 9, + 11, + } + var winc, einc = uint64(1), 1 // soak test (~1.5s on x86-64) + if testing.Short() { + winc, einc = 5, 15 // quick test (~60ms on x86-64) + } + + for _, sign := range "+-" { + for _, a := range add { + for wid := uint64(0); wid < 30; wid += winc { + b := 1<<wid + a + if sign == '-' { + b = -b + } + for exp := -150; exp < 150; exp += einc { + num, den := NewInt(b), NewInt(1) + if exp > 0 { + num.Lsh(num, uint(exp)) + } else { + den.Lsh(den, uint(-exp)) + } + r := new(Rat).SetFrac(num, den) + f, _ := r.Float32() + + if !checkIsBestApprox32(t, f, r) { + // Append context information. + t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", + b, exp, f, f, math.Ldexp(float64(b), exp), r) + } + + checkNonLossyRoundtrip32(t, f) + } + } + } + } +} + func TestFloat64Distribution(t *testing.T) { // Generate a distribution of (sign, mantissa, exp) values // broader than the float64 range, and check Rat.Float64() @@ -858,7 +968,7 @@ func TestFloat64Distribution(t *testing.T) { 9, 11, } - var winc, einc = uint64(1), int(1) // soak test (~75s on x86-64) + var winc, einc = uint64(1), 1 // soak test (~75s on x86-64) if testing.Short() { winc, einc = 10, 500 // quick test (~12ms on x86-64) } @@ -866,7 +976,7 @@ func TestFloat64Distribution(t *testing.T) { for _, sign := range "+-" { for _, a := range add { for wid := uint64(0); wid < 60; wid += winc { - b := int64(1<<wid + a) + b := 1<<wid + a if sign == '-' { b = -b } @@ -880,20 +990,20 @@ func TestFloat64Distribution(t *testing.T) { r := new(Rat).SetFrac(num, den) f, _ := r.Float64() - if !checkIsBestApprox(t, f, r) { + if !checkIsBestApprox64(t, f, r) { // Append context information. t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", b, exp, f, f, math.Ldexp(float64(b), exp), r) } - checkNonLossyRoundtrip(t, f) + checkNonLossyRoundtrip64(t, f) } } } } } -// TestFloat64NonFinite checks that SetFloat64 of a non-finite value +// TestSetFloat64NonFinite checks that SetFloat64 of a non-finite value // returns nil. func TestSetFloat64NonFinite(t *testing.T) { for _, f := range []float64{math.NaN(), math.Inf(+1), math.Inf(-1)} { @@ -904,9 +1014,27 @@ func TestSetFloat64NonFinite(t *testing.T) { } } -// checkNonLossyRoundtrip checks that a float->Rat->float roundtrip is +// checkNonLossyRoundtrip32 checks that a float->Rat->float roundtrip is // non-lossy for finite f. -func checkNonLossyRoundtrip(t *testing.T, f float64) { +func checkNonLossyRoundtrip32(t *testing.T, f float32) { + if !isFinite(float64(f)) { + return + } + r := new(Rat).SetFloat64(float64(f)) + if r == nil { + t.Errorf("Rat.SetFloat64(float64(%g) (%b)) == nil", f, f) + return + } + f2, exact := r.Float32() + if f != f2 || !exact { + t.Errorf("Rat.SetFloat64(float64(%g)).Float32() = %g (%b), %v, want %g (%b), %v; delta = %b", + f, f2, f2, exact, f, f, true, f2-f) + } +} + +// checkNonLossyRoundtrip64 checks that a float->Rat->float roundtrip is +// non-lossy for finite f. +func checkNonLossyRoundtrip64(t *testing.T, f float64) { if !isFinite(f) { return } @@ -928,10 +1056,47 @@ func delta(r *Rat, f float64) *Rat { return d.Abs(d) } -// checkIsBestApprox checks that f is the best possible float64 +// checkIsBestApprox32 checks that f is the best possible float32 +// approximation of r. +// Returns true on success. +func checkIsBestApprox32(t *testing.T, f float32, r *Rat) bool { + if math.Abs(float64(f)) >= math.MaxFloat32 { + // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat32). + // But we have tests for these special cases. + return true + } + + // r must be strictly between f0 and f1, the floats bracketing f. + f0 := math.Nextafter32(f, float32(math.Inf(-1))) + f1 := math.Nextafter32(f, float32(math.Inf(+1))) + + // For f to be correct, r must be closer to f than to f0 or f1. + df := delta(r, float64(f)) + df0 := delta(r, float64(f0)) + df1 := delta(r, float64(f1)) + if df.Cmp(df0) > 0 { + t.Errorf("Rat(%v).Float32() = %g (%b), but previous float32 %g (%b) is closer", r, f, f, f0, f0) + return false + } + if df.Cmp(df1) > 0 { + t.Errorf("Rat(%v).Float32() = %g (%b), but next float32 %g (%b) is closer", r, f, f, f1, f1) + return false + } + if df.Cmp(df0) == 0 && !isEven32(f) { + t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) + return false + } + if df.Cmp(df1) == 0 && !isEven32(f) { + t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) + return false + } + return true +} + +// checkIsBestApprox64 checks that f is the best possible float64 // approximation of r. // Returns true on success. -func checkIsBestApprox(t *testing.T, f float64, r *Rat) bool { +func checkIsBestApprox64(t *testing.T, f float64, r *Rat) bool { if math.Abs(f) >= math.MaxFloat64 { // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat64). // But we have tests for these special cases. @@ -954,18 +1119,19 @@ func checkIsBestApprox(t *testing.T, f float64, r *Rat) bool { t.Errorf("Rat(%v).Float64() = %g (%b), but next float64 %g (%b) is closer", r, f, f, f1, f1) return false } - if df.Cmp(df0) == 0 && !isEven(f) { + if df.Cmp(df0) == 0 && !isEven64(f) { t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) return false } - if df.Cmp(df1) == 0 && !isEven(f) { + if df.Cmp(df1) == 0 && !isEven64(f) { t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) return false } return true } -func isEven(f float64) bool { return math.Float64bits(f)&1 == 0 } +func isEven32(f float32) bool { return math.Float32bits(f)&1 == 0 } +func isEven64(f float64) bool { return math.Float64bits(f)&1 == 0 } func TestIsFinite(t *testing.T) { finites := []float64{ diff --git a/libgo/go/math/nextafter.go b/libgo/go/math/nextafter.go index 7c4b5bc..bbb1399 100644 --- a/libgo/go/math/nextafter.go +++ b/libgo/go/math/nextafter.go @@ -4,12 +4,32 @@ package math -// Nextafter returns the next representable value after x towards y. -// If x == y, then x is returned. -// -// Special cases are: -// Nextafter(NaN, y) = NaN -// Nextafter(x, NaN) = NaN +// Nextafter32 returns the next representable float32 value after x towards y. +// Special cases: +// Nextafter32(x, x) = x +// Nextafter32(NaN, y) = NaN +// Nextafter32(x, NaN) = NaN +func Nextafter32(x, y float32) (r float32) { + switch { + case IsNaN(float64(x)) || IsNaN(float64(y)): // special case + r = float32(NaN()) + case x == y: + r = x + case x == 0: + r = float32(Copysign(float64(Float32frombits(1)), float64(y))) + case (y > x) == (x > 0): + r = Float32frombits(Float32bits(x) + 1) + default: + r = Float32frombits(Float32bits(x) - 1) + } + return +} + +// Nextafter returns the next representable float64 value after x towards y. +// Special cases: +// Nextafter64(x, x) = x +// Nextafter64(NaN, y) = NaN +// Nextafter64(x, NaN) = NaN func Nextafter(x, y float64) (r float64) { switch { case IsNaN(x) || IsNaN(y): // special case diff --git a/libgo/go/math/sqrt.go b/libgo/go/math/sqrt.go index 7847597..56122b59 100644 --- a/libgo/go/math/sqrt.go +++ b/libgo/go/math/sqrt.go @@ -87,7 +87,7 @@ func Sqrt(x float64) float64 { // // // Notes: Rounding mode detection omitted. The constants "mask", "shift", -// and "bias" are found in src/pkg/math/bits.go +// and "bias" are found in src/math/bits.go // Sqrt returns the square root of x. // |