aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/image
diff options
context:
space:
mode:
authorIan Lance Taylor <ian@gcc.gnu.org>2011-05-20 00:18:15 +0000
committerIan Lance Taylor <ian@gcc.gnu.org>2011-05-20 00:18:15 +0000
commit9ff56c9570642711d5b7ab29920ecf5dbff14a27 (patch)
treec891bdec1e6f073f73fedeef23718bc3ac30d499 /libgo/go/image
parent37cb25ed7acdb844b218231130e54b8b7a0ff6e6 (diff)
downloadgcc-9ff56c9570642711d5b7ab29920ecf5dbff14a27.zip
gcc-9ff56c9570642711d5b7ab29920ecf5dbff14a27.tar.gz
gcc-9ff56c9570642711d5b7ab29920ecf5dbff14a27.tar.bz2
Update to current version of Go library.
From-SVN: r173931
Diffstat (limited to 'libgo/go/image')
-rw-r--r--libgo/go/image/decode_test.go8
-rw-r--r--libgo/go/image/format.go22
-rw-r--r--libgo/go/image/gif/reader.go392
-rw-r--r--libgo/go/image/image.go58
-rw-r--r--libgo/go/image/jpeg/fdct.go190
-rw-r--r--libgo/go/image/jpeg/idct.go2
-rw-r--r--libgo/go/image/jpeg/reader.go154
-rw-r--r--libgo/go/image/jpeg/writer.go553
-rw-r--r--libgo/go/image/jpeg/writer_test.go115
-rw-r--r--libgo/go/image/png/reader.go24
-rw-r--r--libgo/go/image/png/reader_test.go20
-rw-r--r--libgo/go/image/png/testdata/pngsuite/README3
-rw-r--r--libgo/go/image/png/writer.go53
-rw-r--r--libgo/go/image/png/writer_test.go40
-rw-r--r--libgo/go/image/testdata/video-001.bmpbin0 -> 46610 bytes
-rw-r--r--libgo/go/image/testdata/video-001.gifbin0 -> 13106 bytes
-rw-r--r--libgo/go/image/testdata/video-001.jpegbin0 -> 21459 bytes
-rw-r--r--libgo/go/image/testdata/video-001.pngbin0 -> 29228 bytes
-rw-r--r--libgo/go/image/testdata/video-001.tiffbin0 -> 30810 bytes
-rw-r--r--libgo/go/image/tiff/buffer.go57
-rw-r--r--libgo/go/image/tiff/buffer_test.go36
-rw-r--r--libgo/go/image/tiff/consts.go102
-rw-r--r--libgo/go/image/tiff/reader.go385
-rw-r--r--libgo/go/image/ycbcr/ycbcr.go174
-rw-r--r--libgo/go/image/ycbcr/ycbcr_test.go33
25 files changed, 2307 insertions, 114 deletions
diff --git a/libgo/go/image/decode_test.go b/libgo/go/image/decode_test.go
index 0716ad9..fee537c 100644
--- a/libgo/go/image/decode_test.go
+++ b/libgo/go/image/decode_test.go
@@ -10,9 +10,11 @@ import (
"os"
"testing"
- // TODO(nigeltao): implement bmp, gif and tiff decoders.
+ // TODO(nigeltao): implement bmp decoder.
+ _ "image/gif"
_ "image/jpeg"
_ "image/png"
+ _ "image/tiff"
)
const goldenFile = "testdata/video-001.png"
@@ -26,11 +28,11 @@ var imageTests = []imageTest{
//{"testdata/video-001.bmp", 0},
// GIF images are restricted to a 256-color palette and the conversion
// to GIF loses significant image quality.
- //{"testdata/video-001.gif", 64<<8},
+ {"testdata/video-001.gif", 64 << 8},
// JPEG is a lossy format and hence needs a non-zero tolerance.
{"testdata/video-001.jpeg", 8 << 8},
{"testdata/video-001.png", 0},
- //{"testdata/video-001.tiff", 0},
+ {"testdata/video-001.tiff", 0},
}
func decode(filename string) (image.Image, string, os.Error) {
diff --git a/libgo/go/image/format.go b/libgo/go/image/format.go
index 1d541b0..b485932 100644
--- a/libgo/go/image/format.go
+++ b/libgo/go/image/format.go
@@ -25,7 +25,8 @@ var formats []format
// RegisterFormat registers an image format for use by Decode.
// Name is the name of the format, like "jpeg" or "png".
-// Magic is the magic prefix that identifies the format's encoding.
+// Magic is the magic prefix that identifies the format's encoding. The magic
+// string can contain "?" wildcards that each match any one byte.
// Decode is the function that decodes the encoded image.
// DecodeConfig is the function that decodes just its configuration.
func RegisterFormat(name, magic string, decode func(io.Reader) (Image, os.Error), decodeConfig func(io.Reader) (Config, os.Error)) {
@@ -46,11 +47,24 @@ func asReader(r io.Reader) reader {
return bufio.NewReader(r)
}
-// sniff determines the format of r's data.
+// Match returns whether magic matches b. Magic may contain "?" wildcards.
+func match(magic string, b []byte) bool {
+ if len(magic) != len(b) {
+ return false
+ }
+ for i, c := range b {
+ if magic[i] != c && magic[i] != '?' {
+ return false
+ }
+ }
+ return true
+}
+
+// Sniff determines the format of r's data.
func sniff(r reader) format {
for _, f := range formats {
- s, err := r.Peek(len(f.magic))
- if err == nil && string(s) == f.magic {
+ b, err := r.Peek(len(f.magic))
+ if err == nil && match(f.magic, b) {
return f
}
}
diff --git a/libgo/go/image/gif/reader.go b/libgo/go/image/gif/reader.go
new file mode 100644
index 0000000..d37f526
--- /dev/null
+++ b/libgo/go/image/gif/reader.go
@@ -0,0 +1,392 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package gif implements a GIF image decoder.
+//
+// The GIF specification is at http://www.w3.org/Graphics/GIF/spec-gif89a.txt.
+package gif
+
+import (
+ "bufio"
+ "compress/lzw"
+ "fmt"
+ "image"
+ "io"
+ "os"
+)
+
+// If the io.Reader does not also have ReadByte, then decode will introduce its own buffering.
+type reader interface {
+ io.Reader
+ io.ByteReader
+}
+
+// Masks etc.
+const (
+ // Fields.
+ fColorMapFollows = 1 << 7
+
+ // Image fields.
+ ifInterlace = 1 << 6
+
+ // Graphic control flags.
+ gcTransparentColorSet = 1 << 0
+)
+
+// Section indicators.
+const (
+ sExtension = 0x21
+ sImageDescriptor = 0x2C
+ sTrailer = 0x3B
+)
+
+// Extensions.
+const (
+ eText = 0x01 // Plain Text
+ eGraphicControl = 0xF9 // Graphic Control
+ eComment = 0xFE // Comment
+ eApplication = 0xFF // Application
+)
+
+// decoder is the type used to decode a GIF file.
+type decoder struct {
+ r reader
+
+ // From header.
+ vers string
+ width int
+ height int
+ flags byte
+ headerFields byte
+ backgroundIndex byte
+ loopCount int
+ delayTime int
+
+ // Unused from header.
+ aspect byte
+
+ // From image descriptor.
+ imageFields byte
+
+ // From graphics control.
+ transparentIndex byte
+
+ // Computed.
+ pixelSize uint
+ globalColorMap image.PalettedColorModel
+
+ // Used when decoding.
+ delay []int
+ image []*image.Paletted
+ tmp [1024]byte // must be at least 768 so we can read color map
+}
+
+// blockReader parses the block structure of GIF image data, which
+// comprises (n, (n bytes)) blocks, with 1 <= n <= 255. It is the
+// reader given to the LZW decoder, which is thus immune to the
+// blocking. After the LZW decoder completes, there will be a 0-byte
+// block remaining (0, ()), but under normal execution blockReader
+// doesn't consume it, so it is handled in decode.
+type blockReader struct {
+ r reader
+ slice []byte
+ tmp [256]byte
+}
+
+func (b *blockReader) Read(p []byte) (n int, err os.Error) {
+ if len(p) == 0 {
+ return
+ }
+ if len(b.slice) > 0 {
+ n = copy(p, b.slice)
+ b.slice = b.slice[n:]
+ return
+ }
+ var blockLen uint8
+ blockLen, err = b.r.ReadByte()
+ if err != nil {
+ return
+ }
+ if blockLen == 0 {
+ return 0, os.EOF
+ }
+ b.slice = b.tmp[0:blockLen]
+ if _, err = io.ReadFull(b.r, b.slice); err != nil {
+ return
+ }
+ return b.Read(p)
+}
+
+// decode reads a GIF image from r and stores the result in d.
+func (d *decoder) decode(r io.Reader, configOnly bool) os.Error {
+ // Add buffering if r does not provide ReadByte.
+ if rr, ok := r.(reader); ok {
+ d.r = rr
+ } else {
+ d.r = bufio.NewReader(r)
+ }
+
+ err := d.readHeaderAndScreenDescriptor()
+ if err != nil {
+ return err
+ }
+ if configOnly {
+ return nil
+ }
+
+ if d.headerFields&fColorMapFollows != 0 {
+ if d.globalColorMap, err = d.readColorMap(); err != nil {
+ return err
+ }
+ }
+
+ d.image = nil
+
+Loop:
+ for err == nil {
+ var c byte
+ c, err = d.r.ReadByte()
+ if err == os.EOF {
+ break
+ }
+ switch c {
+ case sExtension:
+ err = d.readExtension()
+
+ case sImageDescriptor:
+ var m *image.Paletted
+ m, err = d.newImageFromDescriptor()
+ if err != nil {
+ break
+ }
+ if d.imageFields&fColorMapFollows != 0 {
+ m.Palette, err = d.readColorMap()
+ if err != nil {
+ break
+ }
+ // TODO: do we set transparency in this map too? That would be
+ // d.setTransparency(m.Palette)
+ } else {
+ m.Palette = d.globalColorMap
+ }
+ var litWidth uint8
+ litWidth, err = d.r.ReadByte()
+ if err != nil {
+ return err
+ }
+ if litWidth > 8 {
+ return fmt.Errorf("gif: pixel size in decode out of range: %d", litWidth)
+ }
+ // A wonderfully Go-like piece of magic. Unfortunately it's only at its
+ // best for 8-bit pixels.
+ lzwr := lzw.NewReader(&blockReader{r: d.r}, lzw.LSB, int(litWidth))
+ if _, err = io.ReadFull(lzwr, m.Pix); err != nil {
+ break
+ }
+
+ // There should be a "0" block remaining; drain that.
+ c, err = d.r.ReadByte()
+ if err != nil {
+ return err
+ }
+ if c != 0 {
+ return os.ErrorString("gif: extra data after image")
+ }
+ d.image = append(d.image, m)
+ d.delay = append(d.delay, d.delayTime)
+ d.delayTime = 0 // TODO: is this correct, or should we hold on to the value?
+
+ case sTrailer:
+ break Loop
+
+ default:
+ err = fmt.Errorf("gif: unknown block type: 0x%.2x", c)
+ }
+ }
+ if err != nil {
+ return err
+ }
+ if len(d.image) == 0 {
+ return io.ErrUnexpectedEOF
+ }
+ return nil
+}
+
+func (d *decoder) readHeaderAndScreenDescriptor() os.Error {
+ _, err := io.ReadFull(d.r, d.tmp[0:13])
+ if err != nil {
+ return err
+ }
+ d.vers = string(d.tmp[0:6])
+ if d.vers != "GIF87a" && d.vers != "GIF89a" {
+ return fmt.Errorf("gif: can't recognize format %s", d.vers)
+ }
+ d.width = int(d.tmp[6]) + int(d.tmp[7])<<8
+ d.height = int(d.tmp[8]) + int(d.tmp[9])<<8
+ d.headerFields = d.tmp[10]
+ d.backgroundIndex = d.tmp[11]
+ d.aspect = d.tmp[12]
+ d.loopCount = -1
+ d.pixelSize = uint(d.headerFields&7) + 1
+ return nil
+}
+
+func (d *decoder) readColorMap() (image.PalettedColorModel, os.Error) {
+ if d.pixelSize > 8 {
+ return nil, fmt.Errorf("gif: can't handle %d bits per pixel", d.pixelSize)
+ }
+ numColors := 1 << d.pixelSize
+ numValues := 3 * numColors
+ _, err := io.ReadFull(d.r, d.tmp[0:numValues])
+ if err != nil {
+ return nil, fmt.Errorf("gif: short read on color map: %s", err)
+ }
+ colorMap := make(image.PalettedColorModel, numColors)
+ j := 0
+ for i := range colorMap {
+ colorMap[i] = image.RGBAColor{d.tmp[j+0], d.tmp[j+1], d.tmp[j+2], 0xFF}
+ j += 3
+ }
+ return colorMap, nil
+}
+
+func (d *decoder) readExtension() os.Error {
+ extension, err := d.r.ReadByte()
+ if err != nil {
+ return err
+ }
+ size := 0
+ switch extension {
+ case eText:
+ size = 13
+ case eGraphicControl:
+ return d.readGraphicControl()
+ case eComment:
+ // nothing to do but read the data.
+ case eApplication:
+ b, err := d.r.ReadByte()
+ if err != nil {
+ return err
+ }
+ // The spec requires size be 11, but Adobe sometimes uses 10.
+ size = int(b)
+ default:
+ return fmt.Errorf("gif: unknown extension 0x%.2x", extension)
+ }
+ if size > 0 {
+ if _, err := d.r.Read(d.tmp[0:size]); err != nil {
+ return err
+ }
+ }
+
+ // Application Extension with "NETSCAPE2.0" as string and 1 in data means
+ // this extension defines a loop count.
+ if extension == eApplication && string(d.tmp[:size]) == "NETSCAPE2.0" {
+ n, err := d.readBlock()
+ if n == 0 || err != nil {
+ return err
+ }
+ if n == 3 && d.tmp[0] == 1 {
+ d.loopCount = int(d.tmp[1]) | int(d.tmp[2])<<8
+ }
+ }
+ for {
+ n, err := d.readBlock()
+ if n == 0 || err != nil {
+ return err
+ }
+ }
+ panic("unreachable")
+}
+
+func (d *decoder) readGraphicControl() os.Error {
+ if _, err := io.ReadFull(d.r, d.tmp[0:6]); err != nil {
+ return fmt.Errorf("gif: can't read graphic control: %s", err)
+ }
+ d.flags = d.tmp[1]
+ d.delayTime = int(d.tmp[2]) | int(d.tmp[3])<<8
+ if d.flags&gcTransparentColorSet != 0 {
+ d.transparentIndex = d.tmp[4]
+ d.setTransparency(d.globalColorMap)
+ }
+ return nil
+}
+
+func (d *decoder) setTransparency(colorMap image.PalettedColorModel) {
+ if int(d.transparentIndex) < len(colorMap) {
+ colorMap[d.transparentIndex] = image.RGBAColor{}
+ }
+}
+
+func (d *decoder) newImageFromDescriptor() (*image.Paletted, os.Error) {
+ if _, err := io.ReadFull(d.r, d.tmp[0:9]); err != nil {
+ return nil, fmt.Errorf("gif: can't read image descriptor: %s", err)
+ }
+ _ = int(d.tmp[0]) + int(d.tmp[1])<<8 // TODO: honor left value
+ _ = int(d.tmp[2]) + int(d.tmp[3])<<8 // TODO: honor top value
+ width := int(d.tmp[4]) + int(d.tmp[5])<<8
+ height := int(d.tmp[6]) + int(d.tmp[7])<<8
+ d.imageFields = d.tmp[8]
+ if d.imageFields&ifInterlace != 0 {
+ return nil, os.ErrorString("gif: can't handle interlaced images")
+ }
+ return image.NewPaletted(width, height, nil), nil
+}
+
+func (d *decoder) readBlock() (int, os.Error) {
+ n, err := d.r.ReadByte()
+ if n == 0 || err != nil {
+ return 0, err
+ }
+ return io.ReadFull(d.r, d.tmp[0:n])
+}
+
+// Decode reads a GIF image from r and returns the first embedded
+// image as an image.Image.
+// Limitation: The file must be 8 bits per pixel and have no interlacing.
+func Decode(r io.Reader) (image.Image, os.Error) {
+ var d decoder
+ if err := d.decode(r, false); err != nil {
+ return nil, err
+ }
+ return d.image[0], nil
+}
+
+// GIF represents the possibly multiple images stored in a GIF file.
+type GIF struct {
+ Image []*image.Paletted // The successive images.
+ Delay []int // The successive delay times, one per frame, in 100ths of a second.
+ LoopCount int // The loop count.
+}
+
+// DecodeAll reads a GIF image from r and returns the sequential frames
+// and timing information.
+// Limitation: The file must be 8 bits per pixel and have no interlacing.
+func DecodeAll(r io.Reader) (*GIF, os.Error) {
+ var d decoder
+ if err := d.decode(r, false); err != nil {
+ return nil, err
+ }
+ gif := &GIF{
+ Image: d.image,
+ LoopCount: d.loopCount,
+ Delay: d.delay,
+ }
+ return gif, nil
+}
+
+// DecodeConfig returns the color model and dimensions of a GIF image without
+// decoding the entire image.
+func DecodeConfig(r io.Reader) (image.Config, os.Error) {
+ var d decoder
+ if err := d.decode(r, true); err != nil {
+ return image.Config{}, err
+ }
+ colorMap := d.globalColorMap
+ return image.Config{colorMap, d.width, d.height}, nil
+}
+
+func init() {
+ image.RegisterFormat("gif", "GIF8?a", Decode, DecodeConfig)
+}
diff --git a/libgo/go/image/image.go b/libgo/go/image/image.go
index c0e96e1..4350acc 100644
--- a/libgo/go/image/image.go
+++ b/libgo/go/image/image.go
@@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
-// The image package implements a basic 2-D image library.
+// Package image implements a basic 2-D image library.
package image
// A Config consists of an image's color model and dimensions.
@@ -51,6 +51,13 @@ func (p *RGBA) Set(x, y int, c Color) {
p.Pix[y*p.Stride+x] = toRGBAColor(c).(RGBAColor)
}
+func (p *RGBA) SetRGBA(x, y int, c RGBAColor) {
+ if !p.Rect.Contains(Point{x, y}) {
+ return
+ }
+ p.Pix[y*p.Stride+x] = c
+}
+
// Opaque scans the entire image and returns whether or not it is fully opaque.
func (p *RGBA) Opaque() bool {
if p.Rect.Empty() {
@@ -103,6 +110,13 @@ func (p *RGBA64) Set(x, y int, c Color) {
p.Pix[y*p.Stride+x] = toRGBA64Color(c).(RGBA64Color)
}
+func (p *RGBA64) SetRGBA64(x, y int, c RGBA64Color) {
+ if !p.Rect.Contains(Point{x, y}) {
+ return
+ }
+ p.Pix[y*p.Stride+x] = c
+}
+
// Opaque scans the entire image and returns whether or not it is fully opaque.
func (p *RGBA64) Opaque() bool {
if p.Rect.Empty() {
@@ -155,6 +169,13 @@ func (p *NRGBA) Set(x, y int, c Color) {
p.Pix[y*p.Stride+x] = toNRGBAColor(c).(NRGBAColor)
}
+func (p *NRGBA) SetNRGBA(x, y int, c NRGBAColor) {
+ if !p.Rect.Contains(Point{x, y}) {
+ return
+ }
+ p.Pix[y*p.Stride+x] = c
+}
+
// Opaque scans the entire image and returns whether or not it is fully opaque.
func (p *NRGBA) Opaque() bool {
if p.Rect.Empty() {
@@ -207,6 +228,13 @@ func (p *NRGBA64) Set(x, y int, c Color) {
p.Pix[y*p.Stride+x] = toNRGBA64Color(c).(NRGBA64Color)
}
+func (p *NRGBA64) SetNRGBA64(x, y int, c NRGBA64Color) {
+ if !p.Rect.Contains(Point{x, y}) {
+ return
+ }
+ p.Pix[y*p.Stride+x] = c
+}
+
// Opaque scans the entire image and returns whether or not it is fully opaque.
func (p *NRGBA64) Opaque() bool {
if p.Rect.Empty() {
@@ -259,6 +287,13 @@ func (p *Alpha) Set(x, y int, c Color) {
p.Pix[y*p.Stride+x] = toAlphaColor(c).(AlphaColor)
}
+func (p *Alpha) SetAlpha(x, y int, c AlphaColor) {
+ if !p.Rect.Contains(Point{x, y}) {
+ return
+ }
+ p.Pix[y*p.Stride+x] = c
+}
+
// Opaque scans the entire image and returns whether or not it is fully opaque.
func (p *Alpha) Opaque() bool {
if p.Rect.Empty() {
@@ -311,6 +346,13 @@ func (p *Alpha16) Set(x, y int, c Color) {
p.Pix[y*p.Stride+x] = toAlpha16Color(c).(Alpha16Color)
}
+func (p *Alpha16) SetAlpha16(x, y int, c Alpha16Color) {
+ if !p.Rect.Contains(Point{x, y}) {
+ return
+ }
+ p.Pix[y*p.Stride+x] = c
+}
+
// Opaque scans the entire image and returns whether or not it is fully opaque.
func (p *Alpha16) Opaque() bool {
if p.Rect.Empty() {
@@ -363,6 +405,13 @@ func (p *Gray) Set(x, y int, c Color) {
p.Pix[y*p.Stride+x] = toGrayColor(c).(GrayColor)
}
+func (p *Gray) SetGray(x, y int, c GrayColor) {
+ if !p.Rect.Contains(Point{x, y}) {
+ return
+ }
+ p.Pix[y*p.Stride+x] = c
+}
+
// Opaque scans the entire image and returns whether or not it is fully opaque.
func (p *Gray) Opaque() bool {
return true
@@ -401,6 +450,13 @@ func (p *Gray16) Set(x, y int, c Color) {
p.Pix[y*p.Stride+x] = toGray16Color(c).(Gray16Color)
}
+func (p *Gray16) SetGray16(x, y int, c Gray16Color) {
+ if !p.Rect.Contains(Point{x, y}) {
+ return
+ }
+ p.Pix[y*p.Stride+x] = c
+}
+
// Opaque scans the entire image and returns whether or not it is fully opaque.
func (p *Gray16) Opaque() bool {
return true
diff --git a/libgo/go/image/jpeg/fdct.go b/libgo/go/image/jpeg/fdct.go
new file mode 100644
index 0000000..3f8be4e
--- /dev/null
+++ b/libgo/go/image/jpeg/fdct.go
@@ -0,0 +1,190 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+// This file implements a Forward Discrete Cosine Transformation.
+
+/*
+It is based on the code in jfdctint.c from the Independent JPEG Group,
+found at http://www.ijg.org/files/jpegsrc.v8c.tar.gz.
+
+The "LEGAL ISSUES" section of the README in that archive says:
+
+In plain English:
+
+1. We don't promise that this software works. (But if you find any bugs,
+ please let us know!)
+2. You can use this software for whatever you want. You don't have to pay us.
+3. You may not pretend that you wrote this software. If you use it in a
+ program, you must acknowledge somewhere in your documentation that
+ you've used the IJG code.
+
+In legalese:
+
+The authors make NO WARRANTY or representation, either express or implied,
+with respect to this software, its quality, accuracy, merchantability, or
+fitness for a particular purpose. This software is provided "AS IS", and you,
+its user, assume the entire risk as to its quality and accuracy.
+
+This software is copyright (C) 1991-2011, Thomas G. Lane, Guido Vollbeding.
+All Rights Reserved except as specified below.
+
+Permission is hereby granted to use, copy, modify, and distribute this
+software (or portions thereof) for any purpose, without fee, subject to these
+conditions:
+(1) If any part of the source code for this software is distributed, then this
+README file must be included, with this copyright and no-warranty notice
+unaltered; and any additions, deletions, or changes to the original files
+must be clearly indicated in accompanying documentation.
+(2) If only executable code is distributed, then the accompanying
+documentation must state that "this software is based in part on the work of
+the Independent JPEG Group".
+(3) Permission for use of this software is granted only if the user accepts
+full responsibility for any undesirable consequences; the authors accept
+NO LIABILITY for damages of any kind.
+
+These conditions apply to any software derived from or based on the IJG code,
+not just to the unmodified library. If you use our work, you ought to
+acknowledge us.
+
+Permission is NOT granted for the use of any IJG author's name or company name
+in advertising or publicity relating to this software or products derived from
+it. This software may be referred to only as "the Independent JPEG Group's
+software".
+
+We specifically permit and encourage the use of this software as the basis of
+commercial products, provided that all warranty or liability claims are
+assumed by the product vendor.
+*/
+
+// Trigonometric constants in 13-bit fixed point format.
+const (
+ fix_0_298631336 = 2446
+ fix_0_390180644 = 3196
+ fix_0_541196100 = 4433
+ fix_0_765366865 = 6270
+ fix_0_899976223 = 7373
+ fix_1_175875602 = 9633
+ fix_1_501321110 = 12299
+ fix_1_847759065 = 15137
+ fix_1_961570560 = 16069
+ fix_2_053119869 = 16819
+ fix_2_562915447 = 20995
+ fix_3_072711026 = 25172
+)
+
+const (
+ constBits = 13
+ pass1Bits = 2
+ centerJSample = 128
+)
+
+// fdct performs a forward DCT on an 8x8 block of coefficients, including a
+// level shift.
+func fdct(b *block) {
+ // Pass 1: process rows.
+ for y := 0; y < 8; y++ {
+ x0 := b[y*8+0]
+ x1 := b[y*8+1]
+ x2 := b[y*8+2]
+ x3 := b[y*8+3]
+ x4 := b[y*8+4]
+ x5 := b[y*8+5]
+ x6 := b[y*8+6]
+ x7 := b[y*8+7]
+
+ tmp0 := x0 + x7
+ tmp1 := x1 + x6
+ tmp2 := x2 + x5
+ tmp3 := x3 + x4
+
+ tmp10 := tmp0 + tmp3
+ tmp12 := tmp0 - tmp3
+ tmp11 := tmp1 + tmp2
+ tmp13 := tmp1 - tmp2
+
+ tmp0 = x0 - x7
+ tmp1 = x1 - x6
+ tmp2 = x2 - x5
+ tmp3 = x3 - x4
+
+ b[y*8+0] = (tmp10 + tmp11 - 8*centerJSample) << pass1Bits
+ b[y*8+4] = (tmp10 - tmp11) << pass1Bits
+ z1 := (tmp12 + tmp13) * fix_0_541196100
+ z1 += 1 << (constBits - pass1Bits - 1)
+ b[y*8+2] = (z1 + tmp12*fix_0_765366865) >> (constBits - pass1Bits)
+ b[y*8+6] = (z1 - tmp13*fix_1_847759065) >> (constBits - pass1Bits)
+
+ tmp10 = tmp0 + tmp3
+ tmp11 = tmp1 + tmp2
+ tmp12 = tmp0 + tmp2
+ tmp13 = tmp1 + tmp3
+ z1 = (tmp12 + tmp13) * fix_1_175875602
+ z1 += 1 << (constBits - pass1Bits - 1)
+ tmp0 = tmp0 * fix_1_501321110
+ tmp1 = tmp1 * fix_3_072711026
+ tmp2 = tmp2 * fix_2_053119869
+ tmp3 = tmp3 * fix_0_298631336
+ tmp10 = tmp10 * -fix_0_899976223
+ tmp11 = tmp11 * -fix_2_562915447
+ tmp12 = tmp12 * -fix_0_390180644
+ tmp13 = tmp13 * -fix_1_961570560
+
+ tmp12 += z1
+ tmp13 += z1
+ b[y*8+1] = (tmp0 + tmp10 + tmp12) >> (constBits - pass1Bits)
+ b[y*8+3] = (tmp1 + tmp11 + tmp13) >> (constBits - pass1Bits)
+ b[y*8+5] = (tmp2 + tmp11 + tmp12) >> (constBits - pass1Bits)
+ b[y*8+7] = (tmp3 + tmp10 + tmp13) >> (constBits - pass1Bits)
+ }
+ // Pass 2: process columns.
+ // We remove pass1Bits scaling, but leave results scaled up by an overall factor of 8.
+ for x := 0; x < 8; x++ {
+ tmp0 := b[0*8+x] + b[7*8+x]
+ tmp1 := b[1*8+x] + b[6*8+x]
+ tmp2 := b[2*8+x] + b[5*8+x]
+ tmp3 := b[3*8+x] + b[4*8+x]
+
+ tmp10 := tmp0 + tmp3 + 1<<(pass1Bits-1)
+ tmp12 := tmp0 - tmp3
+ tmp11 := tmp1 + tmp2
+ tmp13 := tmp1 - tmp2
+
+ tmp0 = b[0*8+x] - b[7*8+x]
+ tmp1 = b[1*8+x] - b[6*8+x]
+ tmp2 = b[2*8+x] - b[5*8+x]
+ tmp3 = b[3*8+x] - b[4*8+x]
+
+ b[0*8+x] = (tmp10 + tmp11) >> pass1Bits
+ b[4*8+x] = (tmp10 - tmp11) >> pass1Bits
+
+ z1 := (tmp12 + tmp13) * fix_0_541196100
+ z1 += 1 << (constBits + pass1Bits - 1)
+ b[2*8+x] = (z1 + tmp12*fix_0_765366865) >> (constBits + pass1Bits)
+ b[6*8+x] = (z1 - tmp13*fix_1_847759065) >> (constBits + pass1Bits)
+
+ tmp10 = tmp0 + tmp3
+ tmp11 = tmp1 + tmp2
+ tmp12 = tmp0 + tmp2
+ tmp13 = tmp1 + tmp3
+ z1 = (tmp12 + tmp13) * fix_1_175875602
+ z1 += 1 << (constBits + pass1Bits - 1)
+ tmp0 = tmp0 * fix_1_501321110
+ tmp1 = tmp1 * fix_3_072711026
+ tmp2 = tmp2 * fix_2_053119869
+ tmp3 = tmp3 * fix_0_298631336
+ tmp10 = tmp10 * -fix_0_899976223
+ tmp11 = tmp11 * -fix_2_562915447
+ tmp12 = tmp12 * -fix_0_390180644
+ tmp13 = tmp13 * -fix_1_961570560
+
+ tmp12 += z1
+ tmp13 += z1
+ b[1*8+x] = (tmp0 + tmp10 + tmp12) >> (constBits + pass1Bits)
+ b[3*8+x] = (tmp1 + tmp11 + tmp13) >> (constBits + pass1Bits)
+ b[5*8+x] = (tmp2 + tmp11 + tmp12) >> (constBits + pass1Bits)
+ b[7*8+x] = (tmp3 + tmp10 + tmp13) >> (constBits + pass1Bits)
+ }
+}
diff --git a/libgo/go/image/jpeg/idct.go b/libgo/go/image/jpeg/idct.go
index 5189931..e5a2f40 100644
--- a/libgo/go/image/jpeg/idct.go
+++ b/libgo/go/image/jpeg/idct.go
@@ -63,7 +63,7 @@ const (
//
// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the discrete W transform and
// for the discrete Fourier transform", IEEE Trans. on ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
-func idct(b *[blockSize]int) {
+func idct(b *block) {
// Horizontal 1-D IDCT.
for y := 0; y < 8; y++ {
// If all the AC components are zero, then the IDCT is trivial.
diff --git a/libgo/go/image/jpeg/reader.go b/libgo/go/image/jpeg/reader.go
index fb9cb11..21a6fff 100644
--- a/libgo/go/image/jpeg/reader.go
+++ b/libgo/go/image/jpeg/reader.go
@@ -2,18 +2,22 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
-// The jpeg package implements a decoder for JPEG images, as defined in ITU-T T.81.
+// Package jpeg implements a JPEG image decoder and encoder.
+//
+// JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
package jpeg
-// See http://www.w3.org/Graphics/JPEG/itu-t81.pdf
-
import (
"bufio"
"image"
+ "image/ycbcr"
"io"
"os"
)
+// TODO(nigeltao): fix up the doc comment style so that sentences start with
+// the name of the type or function that they annotate.
+
// A FormatError reports that the input is not a valid JPEG.
type FormatError string
@@ -26,12 +30,14 @@ func (e UnsupportedError) String() string { return "unsupported JPEG feature: "
// Component specification, specified in section B.2.2.
type component struct {
+ h int // Horizontal sampling factor.
+ v int // Vertical sampling factor.
c uint8 // Component identifier.
- h uint8 // Horizontal sampling factor.
- v uint8 // Vertical sampling factor.
tq uint8 // Quantization table destination selector.
}
+type block [blockSize]int
+
const (
blockSize = 64 // A DCT block is 8x8.
@@ -84,13 +90,13 @@ type Reader interface {
type decoder struct {
r Reader
width, height int
- image *image.RGBA
+ img *ycbcr.YCbCr
ri int // Restart Interval.
comps [nComponent]component
huff [maxTc + 1][maxTh + 1]huffman
- quant [maxTq + 1][blockSize]int
+ quant [maxTq + 1]block
b bits
- blocks [nComponent][maxH * maxV][blockSize]int
+ blocks [nComponent][maxH * maxV]block
tmp [1024]byte
}
@@ -130,9 +136,9 @@ func (d *decoder) processSOF(n int) os.Error {
}
for i := 0; i < nComponent; i++ {
hv := d.tmp[7+3*i]
+ d.comps[i].h = int(hv >> 4)
+ d.comps[i].v = int(hv & 0x0f)
d.comps[i].c = d.tmp[6+3*i]
- d.comps[i].h = hv >> 4
- d.comps[i].v = hv & 0x0f
d.comps[i].tq = d.tmp[8+3*i]
// We only support YCbCr images, and 4:4:4, 4:2:2 or 4:2:0 chroma downsampling ratios. This implies that
// the (h, v) values for the Y component are either (1, 1), (2, 1) or (2, 2), and the
@@ -176,71 +182,47 @@ func (d *decoder) processDQT(n int) os.Error {
return nil
}
-// Set the Pixel (px, py)'s RGB value, based on its YCbCr value.
-func (d *decoder) calcPixel(px, py, lumaBlock, lumaIndex, chromaIndex int) {
- y, cb, cr := d.blocks[0][lumaBlock][lumaIndex], d.blocks[1][0][chromaIndex], d.blocks[2][0][chromaIndex]
- // The JFIF specification (http://www.w3.org/Graphics/JPEG/jfif3.pdf, page 3) gives the formula
- // for translating YCbCr to RGB as:
- // R = Y + 1.402 (Cr-128)
- // G = Y - 0.34414 (Cb-128) - 0.71414 (Cr-128)
- // B = Y + 1.772 (Cb-128)
- yPlusHalf := 100000*y + 50000
- cb -= 128
- cr -= 128
- r := (yPlusHalf + 140200*cr) / 100000
- g := (yPlusHalf - 34414*cb - 71414*cr) / 100000
- b := (yPlusHalf + 177200*cb) / 100000
- if r < 0 {
- r = 0
- } else if r > 255 {
- r = 255
+// Clip x to the range [0, 255] inclusive.
+func clip(x int) uint8 {
+ if x < 0 {
+ return 0
}
- if g < 0 {
- g = 0
- } else if g > 255 {
- g = 255
+ if x > 255 {
+ return 255
}
- if b < 0 {
- b = 0
- } else if b > 255 {
- b = 255
- }
- d.image.Pix[py*d.image.Stride+px] = image.RGBAColor{uint8(r), uint8(g), uint8(b), 0xff}
+ return uint8(x)
}
-// Convert the MCU from YCbCr to RGB.
-func (d *decoder) convertMCU(mx, my, h0, v0 int) {
- lumaBlock := 0
+// Store the MCU to the image.
+func (d *decoder) storeMCU(mx, my int) {
+ h0, v0 := d.comps[0].h, d.comps[0].v
+ // Store the luma blocks.
for v := 0; v < v0; v++ {
for h := 0; h < h0; h++ {
- chromaBase := 8*4*v + 4*h
- py := 8 * (v0*my + v)
- for y := 0; y < 8 && py < d.height; y++ {
- px := 8 * (h0*mx + h)
- lumaIndex := 8 * y
- chromaIndex := chromaBase + 8*(y/v0)
- for x := 0; x < 8 && px < d.width; x++ {
- d.calcPixel(px, py, lumaBlock, lumaIndex, chromaIndex)
- if h0 == 1 {
- chromaIndex += 1
- } else {
- chromaIndex += x % 2
- }
- lumaIndex++
- px++
+ p := 8 * ((v0*my+v)*d.img.YStride + (h0*mx + h))
+ for y := 0; y < 8; y++ {
+ for x := 0; x < 8; x++ {
+ d.img.Y[p] = clip(d.blocks[0][h0*v+h][8*y+x])
+ p++
}
- py++
+ p += d.img.YStride - 8
}
- lumaBlock++
}
}
+ // Store the chroma blocks.
+ p := 8 * (my*d.img.CStride + mx)
+ for y := 0; y < 8; y++ {
+ for x := 0; x < 8; x++ {
+ d.img.Cb[p] = clip(d.blocks[1][0][8*y+x])
+ d.img.Cr[p] = clip(d.blocks[2][0][8*y+x])
+ p++
+ }
+ p += d.img.CStride - 8
+ }
}
// Specified in section B.2.3.
func (d *decoder) processSOS(n int) os.Error {
- if d.image == nil {
- d.image = image.NewRGBA(d.width, d.height)
- }
if n != 4+2*nComponent {
return UnsupportedError("SOS has wrong length")
}
@@ -255,7 +237,6 @@ func (d *decoder) processSOS(n int) os.Error {
td uint8 // DC table selector.
ta uint8 // AC table selector.
}
- h0, v0 := int(d.comps[0].h), int(d.comps[0].v) // The h and v values from the Y components.
for i := 0; i < nComponent; i++ {
cs := d.tmp[1+2*i] // Component selector.
if cs != d.comps[i].c {
@@ -265,17 +246,42 @@ func (d *decoder) processSOS(n int) os.Error {
scanComps[i].ta = d.tmp[2+2*i] & 0x0f
}
// mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
- mxx := (d.width + 8*int(h0) - 1) / (8 * int(h0))
- myy := (d.height + 8*int(v0) - 1) / (8 * int(v0))
+ h0, v0 := d.comps[0].h, d.comps[0].v // The h and v values from the Y components.
+ mxx := (d.width + 8*h0 - 1) / (8 * h0)
+ myy := (d.height + 8*v0 - 1) / (8 * v0)
+ if d.img == nil {
+ var subsampleRatio ycbcr.SubsampleRatio
+ n := h0 * v0
+ switch n {
+ case 1:
+ subsampleRatio = ycbcr.SubsampleRatio444
+ case 2:
+ subsampleRatio = ycbcr.SubsampleRatio422
+ case 4:
+ subsampleRatio = ycbcr.SubsampleRatio420
+ default:
+ panic("unreachable")
+ }
+ b := make([]byte, mxx*myy*(1*8*8*n+2*8*8))
+ d.img = &ycbcr.YCbCr{
+ Y: b[mxx*myy*(0*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+0*8*8)],
+ Cb: b[mxx*myy*(1*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+1*8*8)],
+ Cr: b[mxx*myy*(1*8*8*n+1*8*8) : mxx*myy*(1*8*8*n+2*8*8)],
+ SubsampleRatio: subsampleRatio,
+ YStride: mxx * 8 * h0,
+ CStride: mxx * 8,
+ Rect: image.Rect(0, 0, d.width, d.height),
+ }
+ }
mcu, expectedRST := 0, uint8(rst0Marker)
- var allZeroes [blockSize]int
+ var allZeroes block
var dc [nComponent]int
for my := 0; my < myy; my++ {
for mx := 0; mx < mxx; mx++ {
for i := 0; i < nComponent; i++ {
qt := &d.quant[d.comps[i].tq]
- for j := 0; j < int(d.comps[i].h*d.comps[i].v); j++ {
+ for j := 0; j < d.comps[i].h*d.comps[i].v; j++ {
d.blocks[i][j] = allZeroes
// Decode the DC coefficient, as specified in section F.2.2.1.
@@ -299,20 +305,20 @@ func (d *decoder) processSOS(n int) os.Error {
if err != nil {
return err
}
- v0 := value >> 4
- v1 := value & 0x0f
- if v1 != 0 {
- k += int(v0)
+ val0 := value >> 4
+ val1 := value & 0x0f
+ if val1 != 0 {
+ k += int(val0)
if k > blockSize {
return FormatError("bad DCT index")
}
- ac, err := d.receiveExtend(v1)
+ ac, err := d.receiveExtend(val1)
if err != nil {
return err
}
d.blocks[i][j][unzig[k]] = ac * qt[k]
} else {
- if v0 != 0x0f {
+ if val0 != 0x0f {
break
}
k += 0x0f
@@ -322,7 +328,7 @@ func (d *decoder) processSOS(n int) os.Error {
idct(&d.blocks[i][j])
} // for j
} // for i
- d.convertMCU(mx, my, int(d.comps[0].h), int(d.comps[0].v))
+ d.storeMCU(mx, my)
mcu++
if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
@@ -431,7 +437,7 @@ func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, os.Error) {
return nil, err
}
}
- return d.image, nil
+ return d.img, nil
}
// Decode reads a JPEG image from r and returns it as an image.Image.
diff --git a/libgo/go/image/jpeg/writer.go b/libgo/go/image/jpeg/writer.go
new file mode 100644
index 0000000..52b3dc4
--- /dev/null
+++ b/libgo/go/image/jpeg/writer.go
@@ -0,0 +1,553 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+import (
+ "bufio"
+ "image"
+ "image/ycbcr"
+ "io"
+ "os"
+)
+
+// min returns the minimum of two integers.
+func min(x, y int) int {
+ if x < y {
+ return x
+ }
+ return y
+}
+
+// div returns a/b rounded to the nearest integer, instead of rounded to zero.
+func div(a int, b int) int {
+ if a >= 0 {
+ return (a + (b >> 1)) / b
+ }
+ return -((-a + (b >> 1)) / b)
+}
+
+// bitCount counts the number of bits needed to hold an integer.
+var bitCount = [256]byte{
+ 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+}
+
+type quantIndex int
+
+const (
+ quantIndexLuminance quantIndex = iota
+ quantIndexChrominance
+ nQuantIndex
+)
+
+// unscaledQuant are the unscaled quantization tables. Each encoder copies and
+// scales the tables according to its quality parameter.
+var unscaledQuant = [nQuantIndex][blockSize]byte{
+ // Luminance.
+ {
+ 16, 11, 10, 16, 24, 40, 51, 61,
+ 12, 12, 14, 19, 26, 58, 60, 55,
+ 14, 13, 16, 24, 40, 57, 69, 56,
+ 14, 17, 22, 29, 51, 87, 80, 62,
+ 18, 22, 37, 56, 68, 109, 103, 77,
+ 24, 35, 55, 64, 81, 104, 113, 92,
+ 49, 64, 78, 87, 103, 121, 120, 101,
+ 72, 92, 95, 98, 112, 100, 103, 99,
+ },
+ // Chrominance.
+ {
+ 17, 18, 24, 47, 99, 99, 99, 99,
+ 18, 21, 26, 66, 99, 99, 99, 99,
+ 24, 26, 56, 99, 99, 99, 99, 99,
+ 47, 66, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ },
+}
+
+type huffIndex int
+
+const (
+ huffIndexLuminanceDC huffIndex = iota
+ huffIndexLuminanceAC
+ huffIndexChrominanceDC
+ huffIndexChrominanceAC
+ nHuffIndex
+)
+
+// huffmanSpec specifies a Huffman encoding.
+type huffmanSpec struct {
+ // count[i] is the number of codes of length i bits.
+ count [16]byte
+ // value[i] is the decoded value of the i'th codeword.
+ value []byte
+}
+
+// theHuffmanSpec is the Huffman encoding specifications.
+// This encoder uses the same Huffman encoding for all images.
+var theHuffmanSpec = [nHuffIndex]huffmanSpec{
+ // Luminance DC.
+ {
+ [16]byte{0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0},
+ []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
+ },
+ // Luminance AC.
+ {
+ [16]byte{0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125},
+ []byte{
+ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
+ 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
+ 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
+ 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
+ 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
+ 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
+ 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
+ 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
+ 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
+ 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
+ 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
+ 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
+ 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
+ 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+ 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
+ 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
+ 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
+ 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
+ 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
+ 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+ 0xf9, 0xfa,
+ },
+ },
+ // Chrominance DC.
+ {
+ [16]byte{0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0},
+ []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
+ },
+ // Chrominance AC.
+ {
+ [16]byte{0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 119},
+ []byte{
+ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
+ 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
+ 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
+ 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
+ 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
+ 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
+ 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
+ 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
+ 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
+ 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
+ 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
+ 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+ 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
+ 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
+ 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
+ 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
+ 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
+ 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
+ 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
+ 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+ 0xf9, 0xfa,
+ },
+ },
+}
+
+// huffmanLUT is a compiled look-up table representation of a huffmanSpec.
+// Each value maps to a uint32 of which the 8 most significant bits hold the
+// codeword size in bits and the 24 least significant bits hold the codeword.
+// The maximum codeword size is 16 bits.
+type huffmanLUT []uint32
+
+func (h *huffmanLUT) init(s huffmanSpec) {
+ maxValue := 0
+ for _, v := range s.value {
+ if int(v) > maxValue {
+ maxValue = int(v)
+ }
+ }
+ *h = make([]uint32, maxValue+1)
+ code, k := uint32(0), 0
+ for i := 0; i < len(s.count); i++ {
+ nBits := uint32(i+1) << 24
+ for j := uint8(0); j < s.count[i]; j++ {
+ (*h)[s.value[k]] = nBits | code
+ code++
+ k++
+ }
+ code <<= 1
+ }
+}
+
+// theHuffmanLUT are compiled representations of theHuffmanSpec.
+var theHuffmanLUT [4]huffmanLUT
+
+func init() {
+ for i, s := range theHuffmanSpec {
+ theHuffmanLUT[i].init(s)
+ }
+}
+
+// writer is a buffered writer.
+type writer interface {
+ Flush() os.Error
+ Write([]byte) (int, os.Error)
+ WriteByte(byte) os.Error
+}
+
+// encoder encodes an image to the JPEG format.
+type encoder struct {
+ // w is the writer to write to. err is the first error encountered during
+ // writing. All attempted writes after the first error become no-ops.
+ w writer
+ err os.Error
+ // buf is a scratch buffer.
+ buf [16]byte
+ // bits and nBits are accumulated bits to write to w.
+ bits uint32
+ nBits uint8
+ // quant is the scaled quantization tables.
+ quant [nQuantIndex][blockSize]byte
+}
+
+func (e *encoder) flush() {
+ if e.err != nil {
+ return
+ }
+ e.err = e.w.Flush()
+}
+
+func (e *encoder) write(p []byte) {
+ if e.err != nil {
+ return
+ }
+ _, e.err = e.w.Write(p)
+}
+
+func (e *encoder) writeByte(b byte) {
+ if e.err != nil {
+ return
+ }
+ e.err = e.w.WriteByte(b)
+}
+
+// emit emits the least significant nBits bits of bits to the bitstream.
+// The precondition is bits < 1<<nBits && nBits <= 16.
+func (e *encoder) emit(bits uint32, nBits uint8) {
+ nBits += e.nBits
+ bits <<= 32 - nBits
+ bits |= e.bits
+ for nBits >= 8 {
+ b := uint8(bits >> 24)
+ e.writeByte(b)
+ if b == 0xff {
+ e.writeByte(0x00)
+ }
+ bits <<= 8
+ nBits -= 8
+ }
+ e.bits, e.nBits = bits, nBits
+}
+
+// emitHuff emits the given value with the given Huffman encoder.
+func (e *encoder) emitHuff(h huffIndex, value int) {
+ x := theHuffmanLUT[h][value]
+ e.emit(x&(1<<24-1), uint8(x>>24))
+}
+
+// emitHuffRLE emits a run of runLength copies of value encoded with the given
+// Huffman encoder.
+func (e *encoder) emitHuffRLE(h huffIndex, runLength, value int) {
+ a, b := value, value
+ if a < 0 {
+ a, b = -value, value-1
+ }
+ var nBits uint8
+ if a < 0x100 {
+ nBits = bitCount[a]
+ } else {
+ nBits = 8 + bitCount[a>>8]
+ }
+ e.emitHuff(h, runLength<<4|int(nBits))
+ if nBits > 0 {
+ e.emit(uint32(b)&(1<<nBits-1), nBits)
+ }
+}
+
+// writeMarkerHeader writes the header for a marker with the given length.
+func (e *encoder) writeMarkerHeader(marker uint8, markerlen int) {
+ e.buf[0] = 0xff
+ e.buf[1] = marker
+ e.buf[2] = uint8(markerlen >> 8)
+ e.buf[3] = uint8(markerlen & 0xff)
+ e.write(e.buf[:4])
+}
+
+// writeDQT writes the Define Quantization Table marker.
+func (e *encoder) writeDQT() {
+ markerlen := 2
+ for _, q := range e.quant {
+ markerlen += 1 + len(q)
+ }
+ e.writeMarkerHeader(dqtMarker, markerlen)
+ for i, q := range e.quant {
+ e.writeByte(uint8(i))
+ e.write(q[:])
+ }
+}
+
+// writeSOF0 writes the Start Of Frame (Baseline) marker.
+func (e *encoder) writeSOF0(size image.Point) {
+ markerlen := 8 + 3*nComponent
+ e.writeMarkerHeader(sof0Marker, markerlen)
+ e.buf[0] = 8 // 8-bit color.
+ e.buf[1] = uint8(size.Y >> 8)
+ e.buf[2] = uint8(size.Y & 0xff)
+ e.buf[3] = uint8(size.X >> 8)
+ e.buf[4] = uint8(size.X & 0xff)
+ e.buf[5] = nComponent
+ for i := 0; i < nComponent; i++ {
+ e.buf[3*i+6] = uint8(i + 1)
+ // We use 4:2:0 chroma subsampling.
+ e.buf[3*i+7] = "\x22\x11\x11"[i]
+ e.buf[3*i+8] = "\x00\x01\x01"[i]
+ }
+ e.write(e.buf[:3*(nComponent-1)+9])
+}
+
+// writeDHT writes the Define Huffman Table marker.
+func (e *encoder) writeDHT() {
+ markerlen := 2
+ for _, s := range theHuffmanSpec {
+ markerlen += 1 + 16 + len(s.value)
+ }
+ e.writeMarkerHeader(dhtMarker, markerlen)
+ for i, s := range theHuffmanSpec {
+ e.writeByte("\x00\x10\x01\x11"[i])
+ e.write(s.count[:])
+ e.write(s.value)
+ }
+}
+
+// writeBlock writes a block of pixel data using the given quantization table,
+// returning the post-quantized DC value of the DCT-transformed block.
+func (e *encoder) writeBlock(b *block, q quantIndex, prevDC int) int {
+ fdct(b)
+ // Emit the DC delta.
+ dc := div(b[0], (8 * int(e.quant[q][0])))
+ e.emitHuffRLE(huffIndex(2*q+0), 0, dc-prevDC)
+ // Emit the AC components.
+ h, runLength := huffIndex(2*q+1), 0
+ for k := 1; k < blockSize; k++ {
+ ac := div(b[unzig[k]], (8 * int(e.quant[q][k])))
+ if ac == 0 {
+ runLength++
+ } else {
+ for runLength > 15 {
+ e.emitHuff(h, 0xf0)
+ runLength -= 16
+ }
+ e.emitHuffRLE(h, runLength, ac)
+ runLength = 0
+ }
+ }
+ if runLength > 0 {
+ e.emitHuff(h, 0x00)
+ }
+ return dc
+}
+
+// toYCbCr converts the 8x8 region of m whose top-left corner is p to its
+// YCbCr values.
+func toYCbCr(m image.Image, p image.Point, yBlock, cbBlock, crBlock *block) {
+ b := m.Bounds()
+ xmax := b.Max.X - 1
+ ymax := b.Max.Y - 1
+ for j := 0; j < 8; j++ {
+ for i := 0; i < 8; i++ {
+ r, g, b, _ := m.At(min(p.X+i, xmax), min(p.Y+j, ymax)).RGBA()
+ yy, cb, cr := ycbcr.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
+ yBlock[8*j+i] = int(yy)
+ cbBlock[8*j+i] = int(cb)
+ crBlock[8*j+i] = int(cr)
+ }
+ }
+}
+
+// rgbaToYCbCr is a specialized version of toYCbCr for image.RGBA images.
+func rgbaToYCbCr(m *image.RGBA, p image.Point, yBlock, cbBlock, crBlock *block) {
+ b := m.Bounds()
+ xmax := b.Max.X - 1
+ ymax := b.Max.Y - 1
+ for j := 0; j < 8; j++ {
+ sj := p.Y + j
+ if sj > ymax {
+ sj = ymax
+ }
+ yoff := sj * m.Stride
+ for i := 0; i < 8; i++ {
+ sx := p.X + i
+ if sx > xmax {
+ sx = xmax
+ }
+ col := &m.Pix[yoff+sx]
+ yy, cb, cr := ycbcr.RGBToYCbCr(col.R, col.G, col.B)
+ yBlock[8*j+i] = int(yy)
+ cbBlock[8*j+i] = int(cb)
+ crBlock[8*j+i] = int(cr)
+ }
+ }
+}
+
+// scale scales the 16x16 region represented by the 4 src blocks to the 8x8
+// dst block.
+func scale(dst *block, src *[4]block) {
+ for i := 0; i < 4; i++ {
+ dstOff := (i&2)<<4 | (i&1)<<2
+ for y := 0; y < 4; y++ {
+ for x := 0; x < 4; x++ {
+ j := 16*y + 2*x
+ sum := src[i][j] + src[i][j+1] + src[i][j+8] + src[i][j+9]
+ dst[8*y+x+dstOff] = (sum + 2) >> 2
+ }
+ }
+ }
+}
+
+// sosHeader is the SOS marker "\xff\xda" followed by 12 bytes:
+// - the marker length "\x00\x0c",
+// - the number of components "\x03",
+// - component 1 uses DC table 0 and AC table 0 "\x01\x00",
+// - component 2 uses DC table 1 and AC table 1 "\x02\x11",
+// - component 3 uses DC table 1 and AC table 1 "\x03\x11",
+// - padding "\x00\x00\x00".
+var sosHeader = []byte{
+ 0xff, 0xda, 0x00, 0x0c, 0x03, 0x01, 0x00, 0x02,
+ 0x11, 0x03, 0x11, 0x00, 0x00, 0x00,
+}
+
+// writeSOS writes the StartOfScan marker.
+func (e *encoder) writeSOS(m image.Image) {
+ e.write(sosHeader)
+ var (
+ // Scratch buffers to hold the YCbCr values.
+ yBlock block
+ cbBlock [4]block
+ crBlock [4]block
+ cBlock block
+ // DC components are delta-encoded.
+ prevDCY, prevDCCb, prevDCCr int
+ )
+ bounds := m.Bounds()
+ rgba, _ := m.(*image.RGBA)
+ for y := bounds.Min.Y; y < bounds.Max.Y; y += 16 {
+ for x := bounds.Min.X; x < bounds.Max.X; x += 16 {
+ for i := 0; i < 4; i++ {
+ xOff := (i & 1) * 8
+ yOff := (i & 2) * 4
+ p := image.Point{x + xOff, y + yOff}
+ if rgba != nil {
+ rgbaToYCbCr(rgba, p, &yBlock, &cbBlock[i], &crBlock[i])
+ } else {
+ toYCbCr(m, p, &yBlock, &cbBlock[i], &crBlock[i])
+ }
+ prevDCY = e.writeBlock(&yBlock, 0, prevDCY)
+ }
+ scale(&cBlock, &cbBlock)
+ prevDCCb = e.writeBlock(&cBlock, 1, prevDCCb)
+ scale(&cBlock, &crBlock)
+ prevDCCr = e.writeBlock(&cBlock, 1, prevDCCr)
+ }
+ }
+ // Pad the last byte with 1's.
+ e.emit(0x7f, 7)
+}
+
+// DefaultQuality is the default quality encoding parameter.
+const DefaultQuality = 75
+
+// Options are the encoding parameters.
+// Quality ranges from 1 to 100 inclusive, higher is better.
+type Options struct {
+ Quality int
+}
+
+// Encode writes the Image m to w in JPEG 4:2:0 baseline format with the given
+// options. Default parameters are used if a nil *Options is passed.
+func Encode(w io.Writer, m image.Image, o *Options) os.Error {
+ b := m.Bounds()
+ if b.Dx() >= 1<<16 || b.Dy() >= 1<<16 {
+ return os.NewError("jpeg: image is too large to encode")
+ }
+ var e encoder
+ if ww, ok := w.(writer); ok {
+ e.w = ww
+ } else {
+ e.w = bufio.NewWriter(w)
+ }
+ // Clip quality to [1, 100].
+ quality := DefaultQuality
+ if o != nil {
+ quality = o.Quality
+ if quality < 1 {
+ quality = 1
+ } else if quality > 100 {
+ quality = 100
+ }
+ }
+ // Convert from a quality rating to a scaling factor.
+ var scale int
+ if quality < 50 {
+ scale = 5000 / quality
+ } else {
+ scale = 200 - quality*2
+ }
+ // Initialize the quantization tables.
+ for i := range e.quant {
+ for j := range e.quant[i] {
+ x := int(unscaledQuant[i][j])
+ x = (x*scale + 50) / 100
+ if x < 1 {
+ x = 1
+ } else if x > 255 {
+ x = 255
+ }
+ e.quant[i][j] = uint8(x)
+ }
+ }
+ // Write the Start Of Image marker.
+ e.buf[0] = 0xff
+ e.buf[1] = 0xd8
+ e.write(e.buf[:2])
+ // Write the quantization tables.
+ e.writeDQT()
+ // Write the image dimensions.
+ e.writeSOF0(b.Size())
+ // Write the Huffman tables.
+ e.writeDHT()
+ // Write the image data.
+ e.writeSOS(m)
+ // Write the End Of Image marker.
+ e.buf[0] = 0xff
+ e.buf[1] = 0xd9
+ e.write(e.buf[:2])
+ e.flush()
+ return e.err
+}
diff --git a/libgo/go/image/jpeg/writer_test.go b/libgo/go/image/jpeg/writer_test.go
new file mode 100644
index 0000000..7aec70f
--- /dev/null
+++ b/libgo/go/image/jpeg/writer_test.go
@@ -0,0 +1,115 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+import (
+ "bytes"
+ "image"
+ "image/png"
+ "io/ioutil"
+ "rand"
+ "os"
+ "testing"
+)
+
+var testCase = []struct {
+ filename string
+ quality int
+ tolerance int64
+}{
+ {"../testdata/video-001.png", 1, 24 << 8},
+ {"../testdata/video-001.png", 20, 12 << 8},
+ {"../testdata/video-001.png", 60, 8 << 8},
+ {"../testdata/video-001.png", 80, 6 << 8},
+ {"../testdata/video-001.png", 90, 4 << 8},
+ {"../testdata/video-001.png", 100, 2 << 8},
+}
+
+func delta(u0, u1 uint32) int64 {
+ d := int64(u0) - int64(u1)
+ if d < 0 {
+ return -d
+ }
+ return d
+}
+
+func readPng(filename string) (image.Image, os.Error) {
+ f, err := os.Open(filename)
+ if err != nil {
+ return nil, err
+ }
+ defer f.Close()
+ return png.Decode(f)
+}
+
+func TestWriter(t *testing.T) {
+ for _, tc := range testCase {
+ // Read the image.
+ m0, err := readPng(tc.filename)
+ if err != nil {
+ t.Error(tc.filename, err)
+ continue
+ }
+ // Encode that image as JPEG.
+ buf := bytes.NewBuffer(nil)
+ err = Encode(buf, m0, &Options{Quality: tc.quality})
+ if err != nil {
+ t.Error(tc.filename, err)
+ continue
+ }
+ // Decode that JPEG.
+ m1, err := Decode(buf)
+ if err != nil {
+ t.Error(tc.filename, err)
+ continue
+ }
+ // Compute the average delta in RGB space.
+ b := m0.Bounds()
+ var sum, n int64
+ for y := b.Min.Y; y < b.Max.Y; y++ {
+ for x := b.Min.X; x < b.Max.X; x++ {
+ c0 := m0.At(x, y)
+ c1 := m1.At(x, y)
+ r0, g0, b0, _ := c0.RGBA()
+ r1, g1, b1, _ := c1.RGBA()
+ sum += delta(r0, r1)
+ sum += delta(g0, g1)
+ sum += delta(b0, b1)
+ n += 3
+ }
+ }
+ // Compare the average delta to the tolerance level.
+ if sum/n > tc.tolerance {
+ t.Errorf("%s, quality=%d: average delta is too high", tc.filename, tc.quality)
+ continue
+ }
+ }
+}
+
+func BenchmarkEncodeRGBOpaque(b *testing.B) {
+ b.StopTimer()
+ img := image.NewRGBA(640, 480)
+ // Set all pixels to 0xFF alpha to force opaque mode.
+ bo := img.Bounds()
+ rnd := rand.New(rand.NewSource(123))
+ for y := bo.Min.Y; y < bo.Max.Y; y++ {
+ for x := bo.Min.X; x < bo.Max.X; x++ {
+ img.Set(x, y, image.RGBAColor{
+ uint8(rnd.Intn(256)),
+ uint8(rnd.Intn(256)),
+ uint8(rnd.Intn(256)),
+ 255})
+ }
+ }
+ if !img.Opaque() {
+ panic("expected image to be opaque")
+ }
+ b.SetBytes(640 * 480 * 4)
+ b.StartTimer()
+ options := &Options{Quality: 90}
+ for i := 0; i < b.N; i++ {
+ Encode(ioutil.Discard, img, options)
+ }
+}
diff --git a/libgo/go/image/png/reader.go b/libgo/go/image/png/reader.go
index eee4eac..8c76afa 100644
--- a/libgo/go/image/png/reader.go
+++ b/libgo/go/image/png/reader.go
@@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
-// The png package implements a PNG image decoder and encoder.
+// Package png implements a PNG image decoder and encoder.
//
// The PNG specification is at http://www.libpng.org/pub/png/spec/1.2/PNG-Contents.html
package png
@@ -378,7 +378,7 @@ func (d *decoder) idatReader(idat io.Reader) (image.Image, os.Error) {
for x := 0; x < d.width; x += 8 {
b := cdat[x/8]
for x2 := 0; x2 < 8 && x+x2 < d.width; x2++ {
- gray.Set(x+x2, y, image.GrayColor{(b >> 7) * 0xff})
+ gray.SetGray(x+x2, y, image.GrayColor{(b >> 7) * 0xff})
b <<= 1
}
}
@@ -386,7 +386,7 @@ func (d *decoder) idatReader(idat io.Reader) (image.Image, os.Error) {
for x := 0; x < d.width; x += 4 {
b := cdat[x/4]
for x2 := 0; x2 < 4 && x+x2 < d.width; x2++ {
- gray.Set(x+x2, y, image.GrayColor{(b >> 6) * 0x55})
+ gray.SetGray(x+x2, y, image.GrayColor{(b >> 6) * 0x55})
b <<= 2
}
}
@@ -394,22 +394,22 @@ func (d *decoder) idatReader(idat io.Reader) (image.Image, os.Error) {
for x := 0; x < d.width; x += 2 {
b := cdat[x/2]
for x2 := 0; x2 < 2 && x+x2 < d.width; x2++ {
- gray.Set(x+x2, y, image.GrayColor{(b >> 4) * 0x11})
+ gray.SetGray(x+x2, y, image.GrayColor{(b >> 4) * 0x11})
b <<= 4
}
}
case cbG8:
for x := 0; x < d.width; x++ {
- gray.Set(x, y, image.GrayColor{cdat[x]})
+ gray.SetGray(x, y, image.GrayColor{cdat[x]})
}
case cbGA8:
for x := 0; x < d.width; x++ {
ycol := cdat[2*x+0]
- nrgba.Set(x, y, image.NRGBAColor{ycol, ycol, ycol, cdat[2*x+1]})
+ nrgba.SetNRGBA(x, y, image.NRGBAColor{ycol, ycol, ycol, cdat[2*x+1]})
}
case cbTC8:
for x := 0; x < d.width; x++ {
- rgba.Set(x, y, image.RGBAColor{cdat[3*x+0], cdat[3*x+1], cdat[3*x+2], 0xff})
+ rgba.SetRGBA(x, y, image.RGBAColor{cdat[3*x+0], cdat[3*x+1], cdat[3*x+2], 0xff})
}
case cbP1:
for x := 0; x < d.width; x += 8 {
@@ -456,25 +456,25 @@ func (d *decoder) idatReader(idat io.Reader) (image.Image, os.Error) {
}
case cbTCA8:
for x := 0; x < d.width; x++ {
- nrgba.Set(x, y, image.NRGBAColor{cdat[4*x+0], cdat[4*x+1], cdat[4*x+2], cdat[4*x+3]})
+ nrgba.SetNRGBA(x, y, image.NRGBAColor{cdat[4*x+0], cdat[4*x+1], cdat[4*x+2], cdat[4*x+3]})
}
case cbG16:
for x := 0; x < d.width; x++ {
ycol := uint16(cdat[2*x+0])<<8 | uint16(cdat[2*x+1])
- gray16.Set(x, y, image.Gray16Color{ycol})
+ gray16.SetGray16(x, y, image.Gray16Color{ycol})
}
case cbGA16:
for x := 0; x < d.width; x++ {
ycol := uint16(cdat[4*x+0])<<8 | uint16(cdat[4*x+1])
acol := uint16(cdat[4*x+2])<<8 | uint16(cdat[4*x+3])
- nrgba64.Set(x, y, image.NRGBA64Color{ycol, ycol, ycol, acol})
+ nrgba64.SetNRGBA64(x, y, image.NRGBA64Color{ycol, ycol, ycol, acol})
}
case cbTC16:
for x := 0; x < d.width; x++ {
rcol := uint16(cdat[6*x+0])<<8 | uint16(cdat[6*x+1])
gcol := uint16(cdat[6*x+2])<<8 | uint16(cdat[6*x+3])
bcol := uint16(cdat[6*x+4])<<8 | uint16(cdat[6*x+5])
- rgba64.Set(x, y, image.RGBA64Color{rcol, gcol, bcol, 0xffff})
+ rgba64.SetRGBA64(x, y, image.RGBA64Color{rcol, gcol, bcol, 0xffff})
}
case cbTCA16:
for x := 0; x < d.width; x++ {
@@ -482,7 +482,7 @@ func (d *decoder) idatReader(idat io.Reader) (image.Image, os.Error) {
gcol := uint16(cdat[8*x+2])<<8 | uint16(cdat[8*x+3])
bcol := uint16(cdat[8*x+4])<<8 | uint16(cdat[8*x+5])
acol := uint16(cdat[8*x+6])<<8 | uint16(cdat[8*x+7])
- nrgba64.Set(x, y, image.NRGBA64Color{rcol, gcol, bcol, acol})
+ nrgba64.SetNRGBA64(x, y, image.NRGBA64Color{rcol, gcol, bcol, acol})
}
}
diff --git a/libgo/go/image/png/reader_test.go b/libgo/go/image/png/reader_test.go
index efa6336..bcc1a3d 100644
--- a/libgo/go/image/png/reader_test.go
+++ b/libgo/go/image/png/reader_test.go
@@ -28,6 +28,7 @@ var filenames = []string{
"basn3p02",
"basn3p04",
"basn3p08",
+ "basn3p08-trns",
"basn4a08",
"basn4a16",
"basn6a08",
@@ -98,17 +99,30 @@ func sng(w io.WriteCloser, filename string, png image.Image) {
// (the PNG spec section 11.3 says "Ancillary chunks may be ignored by a decoder").
io.WriteString(w, "gAMA {1.0000}\n")
- // Write the PLTE (if applicable).
+ // Write the PLTE and tRNS (if applicable).
if cpm != nil {
+ lastAlpha := -1
io.WriteString(w, "PLTE {\n")
- for i := 0; i < len(cpm); i++ {
- r, g, b, _ := cpm[i].RGBA()
+ for i, c := range cpm {
+ r, g, b, a := c.RGBA()
+ if a != 0xffff {
+ lastAlpha = i
+ }
r >>= 8
g >>= 8
b >>= 8
fmt.Fprintf(w, " (%3d,%3d,%3d) # rgb = (0x%02x,0x%02x,0x%02x)\n", r, g, b, r, g, b)
}
io.WriteString(w, "}\n")
+ if lastAlpha != -1 {
+ io.WriteString(w, "tRNS {\n")
+ for i := 0; i <= lastAlpha; i++ {
+ _, _, _, a := cpm[i].RGBA()
+ a >>= 8
+ fmt.Fprintf(w, " %d", a)
+ }
+ io.WriteString(w, "}\n")
+ }
}
// Write the IMAGE.
diff --git a/libgo/go/image/png/testdata/pngsuite/README b/libgo/go/image/png/testdata/pngsuite/README
index abe3ecb..c0f78bd 100644
--- a/libgo/go/image/png/testdata/pngsuite/README
+++ b/libgo/go/image/png/testdata/pngsuite/README
@@ -10,6 +10,9 @@ The files basn0g01-30.png, basn0g02-29.png and basn0g04-31.png are in fact
not part of pngsuite but were created from files in pngsuite. Their non-power-
of-two sizes makes them useful for testing bit-depths smaller than a byte.
+basn3a08.png was generated from basn6a08.png using the pngnq tool, which
+converted it to the 8-bit paletted image with alpha values in tRNS chunk.
+
The *.sng files in this directory were generated from the *.png files
by the sng command-line tool and some hand editing. The files
basn0g0{1,2,4}.sng were actually generated by first converting the PNG
diff --git a/libgo/go/image/png/writer.go b/libgo/go/image/png/writer.go
index 081d06b..a27586f 100644
--- a/libgo/go/image/png/writer.go
+++ b/libgo/go/image/png/writer.go
@@ -130,12 +130,8 @@ func (e *encoder) writePLTE(p image.PalettedColorModel) {
e.err = FormatError("bad palette length: " + strconv.Itoa(len(p)))
return
}
- for i := 0; i < len(p); i++ {
- r, g, b, a := p[i].RGBA()
- if a != 0xffff {
- e.err = UnsupportedError("non-opaque palette color")
- return
- }
+ for i, c := range p {
+ r, g, b, _ := c.RGBA()
e.tmp[3*i+0] = uint8(r >> 8)
e.tmp[3*i+1] = uint8(g >> 8)
e.tmp[3*i+2] = uint8(b >> 8)
@@ -143,6 +139,21 @@ func (e *encoder) writePLTE(p image.PalettedColorModel) {
e.writeChunk(e.tmp[0:3*len(p)], "PLTE")
}
+func (e *encoder) maybeWritetRNS(p image.PalettedColorModel) {
+ last := -1
+ for i, c := range p {
+ _, _, _, a := c.RGBA()
+ if a != 0xffff {
+ last = i
+ }
+ e.tmp[i] = uint8(a >> 8)
+ }
+ if last == -1 {
+ return
+ }
+ e.writeChunk(e.tmp[:last+1], "tRNS")
+}
+
// An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks,
// including an 8-byte header and 4-byte CRC checksum per Write call. Such calls
// should be relatively infrequent, since writeIDATs uses a bufio.Writer.
@@ -263,7 +274,12 @@ func writeImage(w io.Writer, m image.Image, cb int) os.Error {
defer zw.Close()
bpp := 0 // Bytes per pixel.
+
+ // Used by fast paths for common image types
var paletted *image.Paletted
+ var rgba *image.RGBA
+ rgba, _ = m.(*image.RGBA)
+
switch cb {
case cbG8:
bpp = 1
@@ -303,12 +319,24 @@ func writeImage(w io.Writer, m image.Image, cb int) os.Error {
cr[0][x+1] = c.Y
}
case cbTC8:
- for x := b.Min.X; x < b.Max.X; x++ {
- // We have previously verified that the alpha value is fully opaque.
- r, g, b, _ := m.At(x, y).RGBA()
- cr[0][3*x+1] = uint8(r >> 8)
- cr[0][3*x+2] = uint8(g >> 8)
- cr[0][3*x+3] = uint8(b >> 8)
+ // We have previously verified that the alpha value is fully opaque.
+ cr0 := cr[0]
+ if rgba != nil {
+ yoff := y * rgba.Stride
+ xoff := 3*b.Min.X + 1
+ for _, color := range rgba.Pix[yoff+b.Min.X : yoff+b.Max.X] {
+ cr0[xoff] = color.R
+ cr0[xoff+1] = color.G
+ cr0[xoff+2] = color.B
+ xoff += 3
+ }
+ } else {
+ for x := b.Min.X; x < b.Max.X; x++ {
+ r, g, b, _ := m.At(x, y).RGBA()
+ cr0[3*x+1] = uint8(r >> 8)
+ cr0[3*x+2] = uint8(g >> 8)
+ cr0[3*x+3] = uint8(b >> 8)
+ }
}
case cbP8:
rowOffset := y * paletted.Stride
@@ -430,6 +458,7 @@ func Encode(w io.Writer, m image.Image) os.Error {
e.writeIHDR()
if pal != nil {
e.writePLTE(pal.Palette)
+ e.maybeWritetRNS(pal.Palette)
}
e.writeIDATs()
e.writeIEND()
diff --git a/libgo/go/image/png/writer_test.go b/libgo/go/image/png/writer_test.go
index 4d9929f..6b054aa 100644
--- a/libgo/go/image/png/writer_test.go
+++ b/libgo/go/image/png/writer_test.go
@@ -5,10 +5,10 @@
package png
import (
- "bytes"
"fmt"
"image"
"io"
+ "io/ioutil"
"os"
"testing"
)
@@ -81,10 +81,42 @@ func BenchmarkEncodePaletted(b *testing.B) {
image.RGBAColor{0, 0, 0, 255},
image.RGBAColor{255, 255, 255, 255},
})
+ b.SetBytes(640 * 480 * 1)
b.StartTimer()
- buffer := new(bytes.Buffer)
for i := 0; i < b.N; i++ {
- buffer.Reset()
- Encode(buffer, img)
+ Encode(ioutil.Discard, img)
+ }
+}
+
+func BenchmarkEncodeRGBOpaque(b *testing.B) {
+ b.StopTimer()
+ img := image.NewRGBA(640, 480)
+ // Set all pixels to 0xFF alpha to force opaque mode.
+ bo := img.Bounds()
+ for y := bo.Min.Y; y < bo.Max.Y; y++ {
+ for x := bo.Min.X; x < bo.Max.X; x++ {
+ img.Set(x, y, image.RGBAColor{0, 0, 0, 255})
+ }
+ }
+ if !img.Opaque() {
+ panic("expected image to be opaque")
+ }
+ b.SetBytes(640 * 480 * 4)
+ b.StartTimer()
+ for i := 0; i < b.N; i++ {
+ Encode(ioutil.Discard, img)
+ }
+}
+
+func BenchmarkEncodeRGBA(b *testing.B) {
+ b.StopTimer()
+ img := image.NewRGBA(640, 480)
+ if img.Opaque() {
+ panic("expected image to not be opaque")
+ }
+ b.SetBytes(640 * 480 * 4)
+ b.StartTimer()
+ for i := 0; i < b.N; i++ {
+ Encode(ioutil.Discard, img)
}
}
diff --git a/libgo/go/image/testdata/video-001.bmp b/libgo/go/image/testdata/video-001.bmp
new file mode 100644
index 0000000..ca3dd42
--- /dev/null
+++ b/libgo/go/image/testdata/video-001.bmp
Binary files differ
diff --git a/libgo/go/image/testdata/video-001.gif b/libgo/go/image/testdata/video-001.gif
new file mode 100644
index 0000000..ca06af6
--- /dev/null
+++ b/libgo/go/image/testdata/video-001.gif
Binary files differ
diff --git a/libgo/go/image/testdata/video-001.jpeg b/libgo/go/image/testdata/video-001.jpeg
new file mode 100644
index 0000000..1b87c93
--- /dev/null
+++ b/libgo/go/image/testdata/video-001.jpeg
Binary files differ
diff --git a/libgo/go/image/testdata/video-001.png b/libgo/go/image/testdata/video-001.png
new file mode 100644
index 0000000..d3468bb
--- /dev/null
+++ b/libgo/go/image/testdata/video-001.png
Binary files differ
diff --git a/libgo/go/image/testdata/video-001.tiff b/libgo/go/image/testdata/video-001.tiff
new file mode 100644
index 0000000..0dd6cd9
--- /dev/null
+++ b/libgo/go/image/testdata/video-001.tiff
Binary files differ
diff --git a/libgo/go/image/tiff/buffer.go b/libgo/go/image/tiff/buffer.go
new file mode 100644
index 0000000..7c07142
--- /dev/null
+++ b/libgo/go/image/tiff/buffer.go
@@ -0,0 +1,57 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tiff
+
+import (
+ "io"
+ "os"
+)
+
+// buffer buffers an io.Reader to satisfy io.ReaderAt.
+type buffer struct {
+ r io.Reader
+ buf []byte
+}
+
+func (b *buffer) ReadAt(p []byte, off int64) (int, os.Error) {
+ o := int(off)
+ end := o + len(p)
+ if int64(end) != off+int64(len(p)) {
+ return 0, os.EINVAL
+ }
+
+ m := len(b.buf)
+ if end > m {
+ if end > cap(b.buf) {
+ newcap := 1024
+ for newcap < end {
+ newcap *= 2
+ }
+ newbuf := make([]byte, end, newcap)
+ copy(newbuf, b.buf)
+ b.buf = newbuf
+ } else {
+ b.buf = b.buf[:end]
+ }
+ if n, err := io.ReadFull(b.r, b.buf[m:end]); err != nil {
+ end = m + n
+ b.buf = b.buf[:end]
+ return copy(p, b.buf[o:end]), err
+ }
+ }
+
+ return copy(p, b.buf[o:end]), nil
+}
+
+// newReaderAt converts an io.Reader into an io.ReaderAt.
+func newReaderAt(r io.Reader) io.ReaderAt {
+ if ra, ok := r.(io.ReaderAt); ok {
+ return ra
+ }
+ return &buffer{
+ r: r,
+ buf: make([]byte, 0, 1024),
+ }
+}
diff --git a/libgo/go/image/tiff/buffer_test.go b/libgo/go/image/tiff/buffer_test.go
new file mode 100644
index 0000000..4f3e68e
--- /dev/null
+++ b/libgo/go/image/tiff/buffer_test.go
@@ -0,0 +1,36 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tiff
+
+import (
+ "os"
+ "strings"
+ "testing"
+)
+
+var readAtTests = []struct {
+ n int
+ off int64
+ s string
+ err os.Error
+}{
+ {2, 0, "ab", nil},
+ {6, 0, "abcdef", nil},
+ {3, 3, "def", nil},
+ {3, 5, "f", os.EOF},
+ {3, 6, "", os.EOF},
+}
+
+func TestReadAt(t *testing.T) {
+ r := newReaderAt(strings.NewReader("abcdef"))
+ b := make([]byte, 10)
+ for _, test := range readAtTests {
+ n, err := r.ReadAt(b[:test.n], test.off)
+ s := string(b[:n])
+ if s != test.s || err != test.err {
+ t.Errorf("buffer.ReadAt(<%v bytes>, %v): got %v, %q; want %v, %q", test.n, test.off, err, s, test.err, test.s)
+ }
+ }
+}
diff --git a/libgo/go/image/tiff/consts.go b/libgo/go/image/tiff/consts.go
new file mode 100644
index 0000000..761ac9d
--- /dev/null
+++ b/libgo/go/image/tiff/consts.go
@@ -0,0 +1,102 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tiff
+
+// A tiff image file contains one or more images. The metadata
+// of each image is contained in an Image File Directory (IFD),
+// which contains entries of 12 bytes each and is described
+// on page 14-16 of the specification. An IFD entry consists of
+//
+// - a tag, which describes the signification of the entry,
+// - the data type and length of the entry,
+// - the data itself or a pointer to it if it is more than 4 bytes.
+//
+// The presence of a length means that each IFD is effectively an array.
+
+const (
+ leHeader = "II\x2A\x00" // Header for little-endian files.
+ beHeader = "MM\x00\x2A" // Header for big-endian files.
+
+ ifdLen = 12 // Length of an IFD entry in bytes.
+)
+
+// Data types (p. 14-16 of the spec).
+const (
+ dtByte = 1
+ dtASCII = 2
+ dtShort = 3
+ dtLong = 4
+ dtRational = 5
+)
+
+// The length of one instance of each data type in bytes.
+var lengths = [...]uint32{0, 1, 1, 2, 4, 8}
+
+// Tags (see p. 28-41 of the spec).
+const (
+ tImageWidth = 256
+ tImageLength = 257
+ tBitsPerSample = 258
+ tCompression = 259
+ tPhotometricInterpretation = 262
+
+ tStripOffsets = 273
+ tSamplesPerPixel = 277
+ tRowsPerStrip = 278
+ tStripByteCounts = 279
+
+ tXResolution = 282
+ tYResolution = 283
+ tResolutionUnit = 296
+
+ tPredictor = 317
+ tColorMap = 320
+ tExtraSamples = 338
+)
+
+// Compression types (defined in various places in the spec and supplements).
+const (
+ cNone = 1
+ cCCITT = 2
+ cG3 = 3 // Group 3 Fax.
+ cG4 = 4 // Group 4 Fax.
+ cLZW = 5
+ cJPEGOld = 6 // Superseded by cJPEG.
+ cJPEG = 7
+ cDeflate = 8 // zlib compression.
+ cPackBits = 32773
+ cDeflateOld = 32946 // Superseded by cDeflate.
+)
+
+// Photometric interpretation values (see p. 37 of the spec).
+const (
+ pWhiteIsZero = 0
+ pBlackIsZero = 1
+ pRGB = 2
+ pPaletted = 3
+ pTransMask = 4 // transparency mask
+ pCMYK = 5
+ pYCbCr = 6
+ pCIELab = 8
+)
+
+// Values for the tPredictor tag (page 64-65 of the spec).
+const (
+ prNone = 1
+ prHorizontal = 2
+)
+
+// imageMode represents the mode of the image.
+type imageMode int
+
+const (
+ mBilevel imageMode = iota
+ mPaletted
+ mGray
+ mGrayInvert
+ mRGB
+ mRGBA
+ mNRGBA
+)
diff --git a/libgo/go/image/tiff/reader.go b/libgo/go/image/tiff/reader.go
new file mode 100644
index 0000000..40f659c
--- /dev/null
+++ b/libgo/go/image/tiff/reader.go
@@ -0,0 +1,385 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package tiff implements a TIFF image decoder.
+//
+// The TIFF specification is at http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
+package tiff
+
+import (
+ "compress/lzw"
+ "compress/zlib"
+ "encoding/binary"
+ "image"
+ "io"
+ "io/ioutil"
+ "os"
+)
+
+// A FormatError reports that the input is not a valid TIFF image.
+type FormatError string
+
+func (e FormatError) String() string {
+ return "tiff: invalid format: " + string(e)
+}
+
+// An UnsupportedError reports that the input uses a valid but
+// unimplemented feature.
+type UnsupportedError string
+
+func (e UnsupportedError) String() string {
+ return "tiff: unsupported feature: " + string(e)
+}
+
+// An InternalError reports that an internal error was encountered.
+type InternalError string
+
+func (e InternalError) String() string {
+ return "tiff: internal error: " + string(e)
+}
+
+type decoder struct {
+ r io.ReaderAt
+ byteOrder binary.ByteOrder
+ config image.Config
+ mode imageMode
+ features map[int][]uint
+ palette []image.Color
+}
+
+// firstVal returns the first uint of the features entry with the given tag,
+// or 0 if the tag does not exist.
+func (d *decoder) firstVal(tag int) uint {
+ f := d.features[tag]
+ if len(f) == 0 {
+ return 0
+ }
+ return f[0]
+}
+
+// ifdUint decodes the IFD entry in p, which must be of the Byte, Short
+// or Long type, and returns the decoded uint values.
+func (d *decoder) ifdUint(p []byte) (u []uint, err os.Error) {
+ var raw []byte
+ datatype := d.byteOrder.Uint16(p[2:4])
+ count := d.byteOrder.Uint32(p[4:8])
+ if datalen := lengths[datatype] * count; datalen > 4 {
+ // The IFD contains a pointer to the real value.
+ raw = make([]byte, datalen)
+ _, err = d.r.ReadAt(raw, int64(d.byteOrder.Uint32(p[8:12])))
+ } else {
+ raw = p[8 : 8+datalen]
+ }
+ if err != nil {
+ return nil, err
+ }
+
+ u = make([]uint, count)
+ switch datatype {
+ case dtByte:
+ for i := uint32(0); i < count; i++ {
+ u[i] = uint(raw[i])
+ }
+ case dtShort:
+ for i := uint32(0); i < count; i++ {
+ u[i] = uint(d.byteOrder.Uint16(raw[2*i : 2*(i+1)]))
+ }
+ case dtLong:
+ for i := uint32(0); i < count; i++ {
+ u[i] = uint(d.byteOrder.Uint32(raw[4*i : 4*(i+1)]))
+ }
+ default:
+ return nil, UnsupportedError("data type")
+ }
+ return u, nil
+}
+
+// parseIFD decides whether the the IFD entry in p is "interesting" and
+// stows away the data in the decoder.
+func (d *decoder) parseIFD(p []byte) os.Error {
+ tag := d.byteOrder.Uint16(p[0:2])
+ switch tag {
+ case tBitsPerSample,
+ tExtraSamples,
+ tPhotometricInterpretation,
+ tCompression,
+ tPredictor,
+ tStripOffsets,
+ tStripByteCounts,
+ tRowsPerStrip,
+ tImageLength,
+ tImageWidth:
+ val, err := d.ifdUint(p)
+ if err != nil {
+ return err
+ }
+ d.features[int(tag)] = val
+ case tColorMap:
+ val, err := d.ifdUint(p)
+ if err != nil {
+ return err
+ }
+ numcolors := len(val) / 3
+ if len(val)%3 != 0 || numcolors <= 0 || numcolors > 256 {
+ return FormatError("bad ColorMap length")
+ }
+ d.palette = make([]image.Color, numcolors)
+ for i := 0; i < numcolors; i++ {
+ d.palette[i] = image.RGBA64Color{
+ uint16(val[i]),
+ uint16(val[i+numcolors]),
+ uint16(val[i+2*numcolors]),
+ 0xffff,
+ }
+ }
+ }
+ return nil
+}
+
+// decode decodes the raw data of an image with 8 bits in each sample.
+// It reads from p and writes the strip with ymin <= y < ymax into dst.
+func (d *decoder) decode(dst image.Image, p []byte, ymin, ymax int) os.Error {
+ spp := len(d.features[tBitsPerSample]) // samples per pixel
+ off := 0
+ width := dst.Bounds().Dx()
+
+ if len(p) < spp*(ymax-ymin)*width {
+ return FormatError("short data strip")
+ }
+
+ // Apply horizontal predictor if necessary.
+ // In this case, p contains the color difference to the preceding pixel.
+ // See page 64-65 of the spec.
+ if d.firstVal(tPredictor) == prHorizontal {
+ for y := ymin; y < ymax; y++ {
+ off += spp
+ for x := 0; x < (width-1)*spp; x++ {
+ p[off] += p[off-spp]
+ off++
+ }
+ }
+ off = 0
+ }
+
+ switch d.mode {
+ case mGray:
+ img := dst.(*image.Gray)
+ for y := ymin; y < ymax; y++ {
+ for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
+ img.Set(x, y, image.GrayColor{p[off]})
+ off += spp
+ }
+ }
+ case mGrayInvert:
+ img := dst.(*image.Gray)
+ for y := ymin; y < ymax; y++ {
+ for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
+ img.Set(x, y, image.GrayColor{0xff - p[off]})
+ off += spp
+ }
+ }
+ case mPaletted:
+ img := dst.(*image.Paletted)
+ for y := ymin; y < ymax; y++ {
+ for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
+ img.SetColorIndex(x, y, p[off])
+ off += spp
+ }
+ }
+ case mRGB:
+ img := dst.(*image.RGBA)
+ for y := ymin; y < ymax; y++ {
+ for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
+ img.Set(x, y, image.RGBAColor{p[off], p[off+1], p[off+2], 0xff})
+ off += spp
+ }
+ }
+ case mNRGBA:
+ img := dst.(*image.NRGBA)
+ for y := ymin; y < ymax; y++ {
+ for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
+ img.Set(x, y, image.NRGBAColor{p[off], p[off+1], p[off+2], p[off+3]})
+ off += spp
+ }
+ }
+ case mRGBA:
+ img := dst.(*image.RGBA)
+ for y := ymin; y < ymax; y++ {
+ for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
+ img.Set(x, y, image.RGBAColor{p[off], p[off+1], p[off+2], p[off+3]})
+ off += spp
+ }
+ }
+ }
+
+ return nil
+}
+
+func newDecoder(r io.Reader) (*decoder, os.Error) {
+ d := &decoder{
+ r: newReaderAt(r),
+ features: make(map[int][]uint),
+ }
+
+ p := make([]byte, 8)
+ if _, err := d.r.ReadAt(p, 0); err != nil {
+ return nil, err
+ }
+ switch string(p[0:4]) {
+ case leHeader:
+ d.byteOrder = binary.LittleEndian
+ case beHeader:
+ d.byteOrder = binary.BigEndian
+ default:
+ return nil, FormatError("malformed header")
+ }
+
+ ifdOffset := int64(d.byteOrder.Uint32(p[4:8]))
+
+ // The first two bytes contain the number of entries (12 bytes each).
+ if _, err := d.r.ReadAt(p[0:2], ifdOffset); err != nil {
+ return nil, err
+ }
+ numItems := int(d.byteOrder.Uint16(p[0:2]))
+
+ // All IFD entries are read in one chunk.
+ p = make([]byte, ifdLen*numItems)
+ if _, err := d.r.ReadAt(p, ifdOffset+2); err != nil {
+ return nil, err
+ }
+
+ for i := 0; i < len(p); i += ifdLen {
+ if err := d.parseIFD(p[i : i+ifdLen]); err != nil {
+ return nil, err
+ }
+ }
+
+ d.config.Width = int(d.firstVal(tImageWidth))
+ d.config.Height = int(d.firstVal(tImageLength))
+
+ // Determine the image mode.
+ switch d.firstVal(tPhotometricInterpretation) {
+ case pRGB:
+ d.config.ColorModel = image.RGBAColorModel
+ // RGB images normally have 3 samples per pixel.
+ // If there are more, ExtraSamples (p. 31-32 of the spec)
+ // gives their meaning (usually an alpha channel).
+ switch len(d.features[tBitsPerSample]) {
+ case 3:
+ d.mode = mRGB
+ case 4:
+ switch d.firstVal(tExtraSamples) {
+ case 1:
+ d.mode = mRGBA
+ case 2:
+ d.mode = mNRGBA
+ d.config.ColorModel = image.NRGBAColorModel
+ default:
+ // The extra sample is discarded.
+ d.mode = mRGB
+ }
+ default:
+ return nil, FormatError("wrong number of samples for RGB")
+ }
+ case pPaletted:
+ d.mode = mPaletted
+ d.config.ColorModel = image.PalettedColorModel(d.palette)
+ case pWhiteIsZero:
+ d.mode = mGrayInvert
+ d.config.ColorModel = image.GrayColorModel
+ case pBlackIsZero:
+ d.mode = mGray
+ d.config.ColorModel = image.GrayColorModel
+ default:
+ return nil, UnsupportedError("color model")
+ }
+
+ if _, ok := d.features[tBitsPerSample]; !ok {
+ return nil, FormatError("BitsPerSample tag missing")
+ }
+ for _, b := range d.features[tBitsPerSample] {
+ if b != 8 {
+ return nil, UnsupportedError("not an 8-bit image")
+ }
+ }
+
+ return d, nil
+}
+
+// DecodeConfig returns the color model and dimensions of a TIFF image without
+// decoding the entire image.
+func DecodeConfig(r io.Reader) (image.Config, os.Error) {
+ d, err := newDecoder(r)
+ if err != nil {
+ return image.Config{}, err
+ }
+ return d.config, nil
+}
+
+// Decode reads a TIFF image from r and returns it as an image.Image.
+// The type of Image returned depends on the contents of the TIFF.
+func Decode(r io.Reader) (img image.Image, err os.Error) {
+ d, err := newDecoder(r)
+ if err != nil {
+ return
+ }
+
+ // Check if we have the right number of strips, offsets and counts.
+ rps := int(d.firstVal(tRowsPerStrip))
+ numStrips := (d.config.Height + rps - 1) / rps
+ if rps == 0 || len(d.features[tStripOffsets]) < numStrips || len(d.features[tStripByteCounts]) < numStrips {
+ return nil, FormatError("inconsistent header")
+ }
+
+ switch d.mode {
+ case mGray, mGrayInvert:
+ img = image.NewGray(d.config.Width, d.config.Height)
+ case mPaletted:
+ img = image.NewPaletted(d.config.Width, d.config.Height, d.palette)
+ case mNRGBA:
+ img = image.NewNRGBA(d.config.Width, d.config.Height)
+ case mRGB, mRGBA:
+ img = image.NewRGBA(d.config.Width, d.config.Height)
+ }
+
+ var p []byte
+ for i := 0; i < numStrips; i++ {
+ ymin := i * rps
+ // The last strip may be shorter.
+ if i == numStrips-1 && d.config.Height%rps != 0 {
+ rps = d.config.Height % rps
+ }
+ offset := int64(d.features[tStripOffsets][i])
+ n := int64(d.features[tStripByteCounts][i])
+ switch d.firstVal(tCompression) {
+ case cNone:
+ // TODO(bsiegert): Avoid copy if r is a tiff.buffer.
+ p = make([]byte, 0, n)
+ _, err = d.r.ReadAt(p, offset)
+ case cLZW:
+ r := lzw.NewReader(io.NewSectionReader(d.r, offset, n), lzw.MSB, 8)
+ p, err = ioutil.ReadAll(r)
+ r.Close()
+ case cDeflate, cDeflateOld:
+ r, err := zlib.NewReader(io.NewSectionReader(d.r, offset, n))
+ if err != nil {
+ return nil, err
+ }
+ p, err = ioutil.ReadAll(r)
+ r.Close()
+ default:
+ err = UnsupportedError("compression")
+ }
+ if err != nil {
+ return
+ }
+ err = d.decode(img, p, ymin, ymin+rps)
+ }
+ return
+}
+
+func init() {
+ image.RegisterFormat("tiff", leHeader, Decode, DecodeConfig)
+ image.RegisterFormat("tiff", beHeader, Decode, DecodeConfig)
+}
diff --git a/libgo/go/image/ycbcr/ycbcr.go b/libgo/go/image/ycbcr/ycbcr.go
new file mode 100644
index 0000000..cda4599
--- /dev/null
+++ b/libgo/go/image/ycbcr/ycbcr.go
@@ -0,0 +1,174 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package ycbcr provides images from the Y'CbCr color model.
+//
+// JPEG, VP8, the MPEG family and other codecs use this color model. Such
+// codecs often use the terms YUV and Y'CbCr interchangeably, but strictly
+// speaking, the term YUV applies only to analog video signals.
+//
+// Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly
+// different formulae for converting between the two. This package follows
+// the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf.
+package ycbcr
+
+import (
+ "image"
+)
+
+// RGBToYCbCr converts an RGB triple to a YCbCr triple. All components lie
+// within the range [0, 255].
+func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) {
+ // The JFIF specification says:
+ // Y' = 0.2990*R + 0.5870*G + 0.1140*B
+ // Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128
+ // Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128
+ // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
+ r1 := int(r)
+ g1 := int(g)
+ b1 := int(b)
+ yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16
+ cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16
+ cr := (32768*r1 - 27440*g1 - 5328*b1 + 257<<15) >> 16
+ if yy < 0 {
+ yy = 0
+ } else if yy > 255 {
+ yy = 255
+ }
+ if cb < 0 {
+ cb = 0
+ } else if cb > 255 {
+ cb = 255
+ }
+ if cr < 0 {
+ cr = 0
+ } else if cr > 255 {
+ cr = 255
+ }
+ return uint8(yy), uint8(cb), uint8(cr)
+}
+
+// YCbCrToRGB converts a YCbCr triple to an RGB triple. All components lie
+// within the range [0, 255].
+func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) {
+ // The JFIF specification says:
+ // R = Y' + 1.40200*(Cr-128)
+ // G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128)
+ // B = Y' + 1.77200*(Cb-128)
+ // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
+ yy1 := int(y)<<16 + 1<<15
+ cb1 := int(cb) - 128
+ cr1 := int(cr) - 128
+ r := (yy1 + 91881*cr1) >> 16
+ g := (yy1 - 22554*cb1 - 46802*cr1) >> 16
+ b := (yy1 + 116130*cb1) >> 16
+ if r < 0 {
+ r = 0
+ } else if r > 255 {
+ r = 255
+ }
+ if g < 0 {
+ g = 0
+ } else if g > 255 {
+ g = 255
+ }
+ if b < 0 {
+ b = 0
+ } else if b > 255 {
+ b = 255
+ }
+ return uint8(r), uint8(g), uint8(b)
+}
+
+// YCbCrColor represents a fully opaque 24-bit Y'CbCr color, having 8 bits for
+// each of one luma and two chroma components.
+type YCbCrColor struct {
+ Y, Cb, Cr uint8
+}
+
+func (c YCbCrColor) RGBA() (uint32, uint32, uint32, uint32) {
+ r, g, b := YCbCrToRGB(c.Y, c.Cb, c.Cr)
+ return uint32(r) * 0x101, uint32(g) * 0x101, uint32(b) * 0x101, 0xffff
+}
+
+func toYCbCrColor(c image.Color) image.Color {
+ if _, ok := c.(YCbCrColor); ok {
+ return c
+ }
+ r, g, b, _ := c.RGBA()
+ y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
+ return YCbCrColor{y, u, v}
+}
+
+// YCbCrColorModel is the color model for YCbCrColor.
+var YCbCrColorModel image.ColorModel = image.ColorModelFunc(toYCbCrColor)
+
+// SubsampleRatio is the chroma subsample ratio used in a YCbCr image.
+type SubsampleRatio int
+
+const (
+ SubsampleRatio444 SubsampleRatio = iota
+ SubsampleRatio422
+ SubsampleRatio420
+)
+
+// YCbCr is an in-memory image of YCbCr colors. There is one Y sample per pixel,
+// but each Cb and Cr sample can span one or more pixels.
+// YStride is the Y slice index delta between vertically adjacent pixels.
+// CStride is the Cb and Cr slice index delta between vertically adjacent pixels
+// that map to separate chroma samples.
+// It is not an absolute requirement, but YStride and len(Y) are typically
+// multiples of 8, and:
+// For 4:4:4, CStride == YStride/1 && len(Cb) == len(Cr) == len(Y)/1.
+// For 4:2:2, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/2.
+// For 4:2:0, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/4.
+type YCbCr struct {
+ Y []uint8
+ Cb []uint8
+ Cr []uint8
+ YStride int
+ CStride int
+ SubsampleRatio SubsampleRatio
+ Rect image.Rectangle
+}
+
+func (p *YCbCr) ColorModel() image.ColorModel {
+ return YCbCrColorModel
+}
+
+func (p *YCbCr) Bounds() image.Rectangle {
+ return p.Rect
+}
+
+func (p *YCbCr) At(x, y int) image.Color {
+ if !p.Rect.Contains(image.Point{x, y}) {
+ return YCbCrColor{}
+ }
+ switch p.SubsampleRatio {
+ case SubsampleRatio422:
+ i := x / 2
+ return YCbCrColor{
+ p.Y[y*p.YStride+x],
+ p.Cb[y*p.CStride+i],
+ p.Cr[y*p.CStride+i],
+ }
+ case SubsampleRatio420:
+ i, j := x/2, y/2
+ return YCbCrColor{
+ p.Y[y*p.YStride+x],
+ p.Cb[j*p.CStride+i],
+ p.Cr[j*p.CStride+i],
+ }
+ }
+ // Default to 4:4:4 subsampling.
+ return YCbCrColor{
+ p.Y[y*p.YStride+x],
+ p.Cb[y*p.CStride+x],
+ p.Cr[y*p.CStride+x],
+ }
+}
+
+func (p *YCbCr) Opaque() bool {
+ return true
+}
diff --git a/libgo/go/image/ycbcr/ycbcr_test.go b/libgo/go/image/ycbcr/ycbcr_test.go
new file mode 100644
index 0000000..2e60a6f
--- /dev/null
+++ b/libgo/go/image/ycbcr/ycbcr_test.go
@@ -0,0 +1,33 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ycbcr
+
+import (
+ "testing"
+)
+
+func delta(x, y uint8) uint8 {
+ if x >= y {
+ return x - y
+ }
+ return y - x
+}
+
+// Test that a subset of RGB space can be converted to YCbCr and back to within
+// 1/256 tolerance.
+func TestRoundtrip(t *testing.T) {
+ for r := 0; r < 255; r += 7 {
+ for g := 0; g < 255; g += 5 {
+ for b := 0; b < 255; b += 3 {
+ r0, g0, b0 := uint8(r), uint8(g), uint8(b)
+ y, cb, cr := RGBToYCbCr(r0, g0, b0)
+ r1, g1, b1 := YCbCrToRGB(y, cb, cr)
+ if delta(r0, r1) > 1 || delta(g0, g1) > 1 || delta(b0, b1) > 1 {
+ t.Fatalf("r0, g0, b0 = %d, %d, %d r1, g1, b1 = %d, %d, %d", r0, g0, b0, r1, g1, b1)
+ }
+ }
+ }
+ }
+}