diff options
author | Ian Lance Taylor <ian@gcc.gnu.org> | 2010-12-03 04:34:57 +0000 |
---|---|---|
committer | Ian Lance Taylor <ian@gcc.gnu.org> | 2010-12-03 04:34:57 +0000 |
commit | 7a9389330e91acc3ed05deac2d198af25d13cf3c (patch) | |
tree | 38fe54a4f38ede5d949c915d66191f24a6fe5153 /libgo/go/fmt/print.go | |
parent | 1aa6700378e5188a853c018256113ce6e1fb5c05 (diff) | |
download | gcc-7a9389330e91acc3ed05deac2d198af25d13cf3c.zip gcc-7a9389330e91acc3ed05deac2d198af25d13cf3c.tar.gz gcc-7a9389330e91acc3ed05deac2d198af25d13cf3c.tar.bz2 |
Add Go frontend, libgo library, and Go testsuite.
gcc/:
* gcc.c (default_compilers): Add entry for ".go".
* common.opt: Add -static-libgo as a driver option.
* doc/install.texi (Configuration): Mention libgo as an option for
--enable-shared. Mention go as an option for --enable-languages.
* doc/invoke.texi (Overall Options): Mention .go as a file name
suffix. Mention go as a -x option.
* doc/frontends.texi (G++ and GCC): Mention Go as a supported
language.
* doc/sourcebuild.texi (Top Level): Mention libgo.
* doc/standards.texi (Standards): Add section on Go language.
Move references for other languages into their own section.
* doc/contrib.texi (Contributors): Mention that I contributed the
Go frontend.
gcc/testsuite/:
* lib/go.exp: New file.
* lib/go-dg.exp: New file.
* lib/go-torture.exp: New file.
* lib/target-supports.exp (check_compile): Match // Go.
From-SVN: r167407
Diffstat (limited to 'libgo/go/fmt/print.go')
-rw-r--r-- | libgo/go/fmt/print.go | 913 |
1 files changed, 913 insertions, 0 deletions
diff --git a/libgo/go/fmt/print.go b/libgo/go/fmt/print.go new file mode 100644 index 0000000..24b1eb3 --- /dev/null +++ b/libgo/go/fmt/print.go @@ -0,0 +1,913 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package fmt + +import ( + "bytes" + "io" + "os" + "reflect" + "utf8" +) + +// Some constants in the form of bytes, to avoid string overhead. +// Needlessly fastidious, I suppose. +var ( + commaSpaceBytes = []byte(", ") + nilAngleBytes = []byte("<nil>") + nilParenBytes = []byte("(nil)") + nilBytes = []byte("nil") + mapBytes = []byte("map[") + missingBytes = []byte("(MISSING)") + extraBytes = []byte("%!(EXTRA ") + irparenBytes = []byte("i)") + bytesBytes = []byte("[]byte{") + widthBytes = []byte("%!(BADWIDTH)") + precBytes = []byte("%!(BADPREC)") +) + +// State represents the printer state passed to custom formatters. +// It provides access to the io.Writer interface plus information about +// the flags and options for the operand's format specifier. +type State interface { + // Write is the function to call to emit formatted output to be printed. + Write(b []byte) (ret int, err os.Error) + // Width returns the value of the width option and whether it has been set. + Width() (wid int, ok bool) + // Precision returns the value of the precision option and whether it has been set. + Precision() (prec int, ok bool) + + // Flag returns whether the flag c, a character, has been set. + Flag(int) bool +} + +// Formatter is the interface implemented by values with a custom formatter. +// The implementation of Format may call Sprintf or Fprintf(f) etc. +// to generate its output. +type Formatter interface { + Format(f State, c int) +} + +// Stringer is implemented by any value that has a String method(), +// which defines the ``native'' format for that value. +// The String method is used to print values passed as an operand +// to a %s or %v format or to an unformatted printer such as Print. +type Stringer interface { + String() string +} + +// GoStringer is implemented by any value that has a GoString() method, +// which defines the Go syntax for that value. +// The GoString method is used to print values passed as an operand +// to a %#v format. +type GoStringer interface { + GoString() string +} + +type pp struct { + n int + buf bytes.Buffer + runeBuf [utf8.UTFMax]byte + fmt fmt +} + +// A leaky bucket of reusable pp structures. +var ppFree = make(chan *pp, 100) + +// Allocate a new pp struct. Probably can grab the previous one from ppFree. +func newPrinter() *pp { + p, ok := <-ppFree + if !ok { + p = new(pp) + } + p.fmt.init(&p.buf) + return p +} + +// Save used pp structs in ppFree; avoids an allocation per invocation. +func (p *pp) free() { + // Don't hold on to pp structs with large buffers. + if cap(p.buf.Bytes()) > 1024 { + return + } + p.buf.Reset() + _ = ppFree <- p +} + +func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent } + +func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent } + +func (p *pp) Flag(b int) bool { + switch b { + case '-': + return p.fmt.minus + case '+': + return p.fmt.plus + case '#': + return p.fmt.sharp + case ' ': + return p.fmt.space + case '0': + return p.fmt.zero + } + return false +} + +func (p *pp) add(c int) { + if c < utf8.RuneSelf { + p.buf.WriteByte(byte(c)) + } else { + w := utf8.EncodeRune(c, p.runeBuf[0:]) + p.buf.Write(p.runeBuf[0:w]) + } +} + +// Implement Write so we can call Fprintf on a pp (through State), for +// recursive use in custom verbs. +func (p *pp) Write(b []byte) (ret int, err os.Error) { + return p.buf.Write(b) +} + +// These routines end in 'f' and take a format string. + +// Fprintf formats according to a format specifier and writes to w. +// It returns the number of bytes written and any write error encountered. +func Fprintf(w io.Writer, format string, a ...interface{}) (n int, error os.Error) { + p := newPrinter() + p.doPrintf(format, a) + n64, error := p.buf.WriteTo(w) + p.free() + return int(n64), error +} + +// Printf formats according to a format specifier and writes to standard output. +// It returns the number of bytes written and any write error encountered. +func Printf(format string, a ...interface{}) (n int, errno os.Error) { + n, errno = Fprintf(os.Stdout, format, a...) + return n, errno +} + +// Sprintf formats according to a format specifier and returns the resulting string. +func Sprintf(format string, a ...interface{}) string { + p := newPrinter() + p.doPrintf(format, a) + s := p.buf.String() + p.free() + return s +} + +// Errorf formats according to a format specifier and returns the string +// converted to an os.ErrorString, which satisfies the os.Error interface. +func Errorf(format string, a ...interface{}) os.Error { + return os.ErrorString(Sprintf(format, a...)) +} + +// These routines do not take a format string + +// Fprint formats using the default formats for its operands and writes to w. +// Spaces are added between operands when neither is a string. +// It returns the number of bytes written and any write error encountered. +func Fprint(w io.Writer, a ...interface{}) (n int, error os.Error) { + p := newPrinter() + p.doPrint(a, false, false) + n64, error := p.buf.WriteTo(w) + p.free() + return int(n64), error +} + +// Print formats using the default formats for its operands and writes to standard output. +// Spaces are added between operands when neither is a string. +// It returns the number of bytes written and any write error encountered. +func Print(a ...interface{}) (n int, errno os.Error) { + n, errno = Fprint(os.Stdout, a...) + return n, errno +} + +// Sprint formats using the default formats for its operands and returns the resulting string. +// Spaces are added between operands when neither is a string. +func Sprint(a ...interface{}) string { + p := newPrinter() + p.doPrint(a, false, false) + s := p.buf.String() + p.free() + return s +} + +// These routines end in 'ln', do not take a format string, +// always add spaces between operands, and add a newline +// after the last operand. + +// Fprintln formats using the default formats for its operands and writes to w. +// Spaces are always added between operands and a newline is appended. +// It returns the number of bytes written and any write error encountered. +func Fprintln(w io.Writer, a ...interface{}) (n int, error os.Error) { + p := newPrinter() + p.doPrint(a, true, true) + n64, error := p.buf.WriteTo(w) + p.free() + return int(n64), error +} + +// Println formats using the default formats for its operands and writes to standard output. +// Spaces are always added between operands and a newline is appended. +// It returns the number of bytes written and any write error encountered. +func Println(a ...interface{}) (n int, errno os.Error) { + n, errno = Fprintln(os.Stdout, a...) + return n, errno +} + +// Sprintln formats using the default formats for its operands and returns the resulting string. +// Spaces are always added between operands and a newline is appended. +func Sprintln(a ...interface{}) string { + p := newPrinter() + p.doPrint(a, true, true) + s := p.buf.String() + p.free() + return s +} + + +// Get the i'th arg of the struct value. +// If the arg itself is an interface, return a value for +// the thing inside the interface, not the interface itself. +func getField(v *reflect.StructValue, i int) reflect.Value { + val := v.Field(i) + if i, ok := val.(*reflect.InterfaceValue); ok { + if inter := i.Interface(); inter != nil { + return reflect.NewValue(inter) + } + } + return val +} + +// Convert ASCII to integer. n is 0 (and got is false) if no number present. +func parsenum(s string, start, end int) (num int, isnum bool, newi int) { + if start >= end { + return 0, false, end + } + for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ { + num = num*10 + int(s[newi]-'0') + isnum = true + } + return +} + +// Reflection values like reflect.FuncValue implement this method. We use it for %p. +type uintptrGetter interface { + Get() uintptr +} + +func (p *pp) unknownType(v interface{}) { + if v == nil { + p.buf.Write(nilAngleBytes) + return + } + p.buf.WriteByte('?') + p.buf.WriteString(reflect.Typeof(v).String()) + p.buf.WriteByte('?') +} + +func (p *pp) badVerb(verb int, val interface{}) { + p.add('%') + p.add('!') + p.add(verb) + p.add('(') + if val == nil { + p.buf.Write(nilAngleBytes) + } else { + p.buf.WriteString(reflect.Typeof(val).String()) + p.add('=') + p.printField(val, 'v', false, false, 0) + } + p.add(')') +} + +func (p *pp) fmtBool(v bool, verb int, value interface{}) { + switch verb { + case 't', 'v': + p.fmt.fmt_boolean(v) + default: + p.badVerb(verb, value) + } +} + +// fmtC formats a rune for the 'c' format. +func (p *pp) fmtC(c int64) { + rune := int(c) // Check for overflow. + if int64(rune) != c { + rune = utf8.RuneError + } + w := utf8.EncodeRune(rune, p.runeBuf[0:utf8.UTFMax]) + p.fmt.pad(p.runeBuf[0:w]) +} + +func (p *pp) fmtInt64(v int64, verb int, value interface{}) { + switch verb { + case 'b': + p.fmt.integer(v, 2, signed, ldigits) + case 'c': + p.fmtC(v) + case 'd', 'v': + p.fmt.integer(v, 10, signed, ldigits) + case 'o': + p.fmt.integer(v, 8, signed, ldigits) + case 'x': + p.fmt.integer(v, 16, signed, ldigits) + case 'X': + p.fmt.integer(v, 16, signed, udigits) + default: + p.badVerb(verb, value) + } +} + +// fmt_sharpHex64 formats a uint64 in hexadecimal and prefixes it with 0x by +// temporarily turning on the sharp flag. +func (p *pp) fmt0x64(v uint64) { + sharp := p.fmt.sharp + p.fmt.sharp = true // turn on 0x + p.fmt.integer(int64(v), 16, unsigned, ldigits) + p.fmt.sharp = sharp +} + +func (p *pp) fmtUint64(v uint64, verb int, goSyntax bool, value interface{}) { + switch verb { + case 'b': + p.fmt.integer(int64(v), 2, unsigned, ldigits) + case 'c': + p.fmtC(int64(v)) + case 'd': + p.fmt.integer(int64(v), 10, unsigned, ldigits) + case 'v': + if goSyntax { + p.fmt0x64(v) + } else { + p.fmt.integer(int64(v), 10, unsigned, ldigits) + } + case 'o': + p.fmt.integer(int64(v), 8, unsigned, ldigits) + case 'x': + p.fmt.integer(int64(v), 16, unsigned, ldigits) + case 'X': + p.fmt.integer(int64(v), 16, unsigned, udigits) + default: + p.badVerb(verb, value) + } +} + +func (p *pp) fmtFloat32(v float32, verb int, value interface{}) { + switch verb { + case 'b': + p.fmt.fmt_fb32(v) + case 'e': + p.fmt.fmt_e32(v) + case 'E': + p.fmt.fmt_E32(v) + case 'f': + p.fmt.fmt_f32(v) + case 'g', 'v': + p.fmt.fmt_g32(v) + case 'G': + p.fmt.fmt_G32(v) + default: + p.badVerb(verb, value) + } +} + +func (p *pp) fmtFloat64(v float64, verb int, value interface{}) { + switch verb { + case 'b': + p.fmt.fmt_fb64(v) + case 'e': + p.fmt.fmt_e64(v) + case 'E': + p.fmt.fmt_E64(v) + case 'f': + p.fmt.fmt_f64(v) + case 'g', 'v': + p.fmt.fmt_g64(v) + case 'G': + p.fmt.fmt_G64(v) + default: + p.badVerb(verb, value) + } +} + +func (p *pp) fmtComplex64(v complex64, verb int, value interface{}) { + switch verb { + case 'e', 'E', 'f', 'F', 'g', 'G': + p.fmt.fmt_c64(v, verb) + case 'v': + p.fmt.fmt_c64(v, 'g') + default: + p.badVerb(verb, value) + } +} + +func (p *pp) fmtComplex128(v complex128, verb int, value interface{}) { + switch verb { + case 'e', 'E', 'f', 'F', 'g', 'G': + p.fmt.fmt_c128(v, verb) + case 'v': + p.fmt.fmt_c128(v, 'g') + default: + p.badVerb(verb, value) + } +} + +func (p *pp) fmtString(v string, verb int, goSyntax bool, value interface{}) { + switch verb { + case 'v': + if goSyntax { + p.fmt.fmt_q(v) + } else { + p.fmt.fmt_s(v) + } + case 's': + p.fmt.fmt_s(v) + case 'x': + p.fmt.fmt_sx(v) + case 'X': + p.fmt.fmt_sX(v) + case 'q': + p.fmt.fmt_q(v) + default: + p.badVerb(verb, value) + } +} + +func (p *pp) fmtBytes(v []byte, verb int, goSyntax bool, depth int, value interface{}) { + if verb == 'v' || verb == 'd' { + if goSyntax { + p.buf.Write(bytesBytes) + } else { + p.buf.WriteByte('[') + } + for i, c := range v { + if i > 0 { + if goSyntax { + p.buf.Write(commaSpaceBytes) + } else { + p.buf.WriteByte(' ') + } + } + p.printField(c, 'v', p.fmt.plus, goSyntax, depth+1) + } + if goSyntax { + p.buf.WriteByte('}') + } else { + p.buf.WriteByte(']') + } + return + } + s := string(v) + switch verb { + case 's': + p.fmt.fmt_s(s) + case 'x': + p.fmt.fmt_sx(s) + case 'X': + p.fmt.fmt_sX(s) + case 'q': + p.fmt.fmt_q(s) + default: + p.badVerb(verb, value) + } +} + +func (p *pp) fmtPointer(field interface{}, value reflect.Value, verb int, goSyntax bool) { + v, ok := value.(uintptrGetter) + if !ok { // reflect.PtrValue is a uintptrGetter, so failure means it's not a pointer at all. + p.badVerb(verb, field) + return + } + u := v.Get() + if goSyntax { + p.add('(') + p.buf.WriteString(reflect.Typeof(field).String()) + p.add(')') + p.add('(') + if u == 0 { + p.buf.Write(nilBytes) + } else { + p.fmt0x64(uint64(v.Get())) + } + p.add(')') + } else { + p.fmt0x64(uint64(u)) + } +} + +var ( + intBits = reflect.Typeof(0).Bits() + floatBits = reflect.Typeof(0.0).Bits() + complexBits = reflect.Typeof(1i).Bits() + uintptrBits = reflect.Typeof(uintptr(0)).Bits() +) + +func (p *pp) printField(field interface{}, verb int, plus, goSyntax bool, depth int) (wasString bool) { + if field == nil { + if verb == 'T' || verb == 'v' { + p.buf.Write(nilAngleBytes) + } else { + p.badVerb(verb, field) + } + return false + } + + // Special processing considerations. + // %T (the value's type) and %p (its address) are special; we always do them first. + switch verb { + case 'T': + p.printField(reflect.Typeof(field).String(), 's', false, false, 0) + return false + case 'p': + p.fmtPointer(field, reflect.NewValue(field), verb, goSyntax) + return false + } + // Is it a Formatter? + if formatter, ok := field.(Formatter); ok { + formatter.Format(p, verb) + return false // this value is not a string + + } + // Must not touch flags before Formatter looks at them. + if plus { + p.fmt.plus = false + } + // If we're doing Go syntax and the field knows how to supply it, take care of it now. + if goSyntax { + p.fmt.sharp = false + if stringer, ok := field.(GoStringer); ok { + // Print the result of GoString unadorned. + p.fmtString(stringer.GoString(), 's', false, field) + return false // this value is not a string + } + } else { + // Is it a Stringer? + if stringer, ok := field.(Stringer); ok { + p.printField(stringer.String(), verb, plus, false, depth) + return false // this value is not a string + } + } + + // Some types can be done without reflection. + switch f := field.(type) { + case bool: + p.fmtBool(f, verb, field) + return false + case float: + if floatBits == 32 { + p.fmtFloat32(float32(f), verb, field) + } else { + p.fmtFloat64(float64(f), verb, field) + } + return false + case float32: + p.fmtFloat32(f, verb, field) + return false + case float64: + p.fmtFloat64(f, verb, field) + return false + case complex: + if complexBits == 64 { + p.fmtComplex64(complex64(f), verb, field) + } else { + p.fmtComplex128(complex128(f), verb, field) + } + return false + case complex64: + p.fmtComplex64(complex64(f), verb, field) + return false + case complex128: + p.fmtComplex128(f, verb, field) + return false + case int: + p.fmtInt64(int64(f), verb, field) + return false + case int8: + p.fmtInt64(int64(f), verb, field) + return false + case int16: + p.fmtInt64(int64(f), verb, field) + return false + case int32: + p.fmtInt64(int64(f), verb, field) + return false + case int64: + p.fmtInt64(f, verb, field) + return false + case uint: + p.fmtUint64(uint64(f), verb, goSyntax, field) + return false + case uint8: + p.fmtUint64(uint64(f), verb, goSyntax, field) + return false + case uint16: + p.fmtUint64(uint64(f), verb, goSyntax, field) + return false + case uint32: + p.fmtUint64(uint64(f), verb, goSyntax, field) + return false + case uint64: + p.fmtUint64(f, verb, goSyntax, field) + return false + case uintptr: + p.fmtUint64(uint64(f), verb, goSyntax, field) + return false + case string: + p.fmtString(f, verb, goSyntax, field) + return verb == 's' || verb == 'v' + case []byte: + p.fmtBytes(f, verb, goSyntax, depth, field) + return verb == 's' + } + + // Need to use reflection + value := reflect.NewValue(field) + +BigSwitch: + switch f := value.(type) { + case *reflect.BoolValue: + p.fmtBool(f.Get(), verb, field) + case *reflect.IntValue: + p.fmtInt64(f.Get(), verb, field) + case *reflect.UintValue: + p.fmtUint64(uint64(f.Get()), verb, goSyntax, field) + case *reflect.FloatValue: + if f.Type().Size() == 4 { + p.fmtFloat32(float32(f.Get()), verb, field) + } else { + p.fmtFloat64(float64(f.Get()), verb, field) + } + case *reflect.ComplexValue: + if f.Type().Size() == 8 { + p.fmtComplex64(complex64(f.Get()), verb, field) + } else { + p.fmtComplex128(complex128(f.Get()), verb, field) + } + case *reflect.StringValue: + p.fmtString(f.Get(), verb, goSyntax, field) + case *reflect.MapValue: + if goSyntax { + p.buf.WriteString(f.Type().String()) + p.buf.WriteByte('{') + } else { + p.buf.Write(mapBytes) + } + keys := f.Keys() + for i, key := range keys { + if i > 0 { + if goSyntax { + p.buf.Write(commaSpaceBytes) + } else { + p.buf.WriteByte(' ') + } + } + p.printField(key.Interface(), verb, plus, goSyntax, depth+1) + p.buf.WriteByte(':') + p.printField(f.Elem(key).Interface(), verb, plus, goSyntax, depth+1) + } + if goSyntax { + p.buf.WriteByte('}') + } else { + p.buf.WriteByte(']') + } + case *reflect.StructValue: + if goSyntax { + p.buf.WriteString(reflect.Typeof(field).String()) + } + p.add('{') + v := f + t := v.Type().(*reflect.StructType) + for i := 0; i < v.NumField(); i++ { + if i > 0 { + if goSyntax { + p.buf.Write(commaSpaceBytes) + } else { + p.buf.WriteByte(' ') + } + } + if plus || goSyntax { + if f := t.Field(i); f.Name != "" { + p.buf.WriteString(f.Name) + p.buf.WriteByte(':') + } + } + p.printField(getField(v, i).Interface(), verb, plus, goSyntax, depth+1) + } + p.buf.WriteByte('}') + case *reflect.InterfaceValue: + value := f.Elem() + if value == nil { + if goSyntax { + p.buf.WriteString(reflect.Typeof(field).String()) + p.buf.Write(nilParenBytes) + } else { + p.buf.Write(nilAngleBytes) + } + } else { + return p.printField(value.Interface(), verb, plus, goSyntax, depth+1) + } + case reflect.ArrayOrSliceValue: + // Byte slices are special. + if f.Type().(reflect.ArrayOrSliceType).Elem().Kind() == reflect.Uint8 { + // We know it's a slice of bytes, but we also know it does not have static type + // []byte, or it would have been caught above. Therefore we cannot convert + // it directly in the (slightly) obvious way: f.Interface().([]byte); it doesn't have + // that type, and we can't write an expression of the right type and do a + // conversion because we don't have a static way to write the right type. + // So we build a slice by hand. This is a rare case but it would be nice + // if reflection could help a little more. + bytes := make([]byte, f.Len()) + for i := range bytes { + bytes[i] = byte(f.Elem(i).(*reflect.UintValue).Get()) + } + p.fmtBytes(bytes, verb, goSyntax, depth, field) + return verb == 's' + } + if goSyntax { + p.buf.WriteString(reflect.Typeof(field).String()) + p.buf.WriteByte('{') + } else { + p.buf.WriteByte('[') + } + for i := 0; i < f.Len(); i++ { + if i > 0 { + if goSyntax { + p.buf.Write(commaSpaceBytes) + } else { + p.buf.WriteByte(' ') + } + } + p.printField(f.Elem(i).Interface(), verb, plus, goSyntax, depth+1) + } + if goSyntax { + p.buf.WriteByte('}') + } else { + p.buf.WriteByte(']') + } + case *reflect.PtrValue: + v := f.Get() + // pointer to array or slice or struct? ok at top level + // but not embedded (avoid loops) + if v != 0 && depth == 0 { + switch a := f.Elem().(type) { + case reflect.ArrayOrSliceValue: + p.buf.WriteByte('&') + p.printField(a.Interface(), verb, plus, goSyntax, depth+1) + break BigSwitch + case *reflect.StructValue: + p.buf.WriteByte('&') + p.printField(a.Interface(), verb, plus, goSyntax, depth+1) + break BigSwitch + } + } + if goSyntax { + p.buf.WriteByte('(') + p.buf.WriteString(reflect.Typeof(field).String()) + p.buf.WriteByte(')') + p.buf.WriteByte('(') + if v == 0 { + p.buf.Write(nilBytes) + } else { + p.fmt0x64(uint64(v)) + } + p.buf.WriteByte(')') + break + } + if v == 0 { + p.buf.Write(nilAngleBytes) + break + } + p.fmt0x64(uint64(v)) + case uintptrGetter: + p.fmtPointer(field, value, verb, goSyntax) + default: + p.unknownType(f) + } + return false +} + +// intFromArg gets the fieldnumth element of a. On return, isInt reports whether the argument has type int. +func intFromArg(a []interface{}, end, i, fieldnum int) (num int, isInt bool, newi, newfieldnum int) { + newi, newfieldnum = end, fieldnum + if i < end && fieldnum < len(a) { + num, isInt = a[fieldnum].(int) + newi, newfieldnum = i+1, fieldnum+1 + } + return +} + +func (p *pp) doPrintf(format string, a []interface{}) { + end := len(format) - 1 + fieldnum := 0 // we process one field per non-trivial format + for i := 0; i <= end; { + c, w := utf8.DecodeRuneInString(format[i:]) + if c != '%' || i == end { + if w == 1 { + p.buf.WriteByte(byte(c)) + } else { + p.buf.WriteString(format[i : i+w]) + } + i += w + continue + } + i++ + // flags and widths + p.fmt.clearflags() + F: + for ; i < end; i++ { + switch format[i] { + case '#': + p.fmt.sharp = true + case '0': + p.fmt.zero = true + case '+': + p.fmt.plus = true + case '-': + p.fmt.minus = true + case ' ': + p.fmt.space = true + default: + break F + } + } + // do we have width? + if format[i] == '*' { + p.fmt.wid, p.fmt.widPresent, i, fieldnum = intFromArg(a, end, i, fieldnum) + if !p.fmt.widPresent { + p.buf.Write(widthBytes) + } + } else { + p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end) + } + // do we have precision? + if i < end && format[i] == '.' { + if format[i+1] == '*' { + p.fmt.prec, p.fmt.precPresent, i, fieldnum = intFromArg(a, end, i+1, fieldnum) + if !p.fmt.precPresent { + p.buf.Write(precBytes) + } + } else { + p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i+1, end) + } + } + c, w = utf8.DecodeRuneInString(format[i:]) + i += w + // percent is special - absorbs no operand + if c == '%' { + p.buf.WriteByte('%') // We ignore width and prec. + continue + } + if fieldnum >= len(a) { // out of operands + p.buf.WriteByte('%') + p.add(c) + p.buf.Write(missingBytes) + continue + } + field := a[fieldnum] + fieldnum++ + + goSyntax := c == 'v' && p.fmt.sharp + plus := c == 'v' && p.fmt.plus + p.printField(field, c, plus, goSyntax, 0) + } + + if fieldnum < len(a) { + p.buf.Write(extraBytes) + for ; fieldnum < len(a); fieldnum++ { + field := a[fieldnum] + if field != nil { + p.buf.WriteString(reflect.Typeof(field).String()) + p.buf.WriteByte('=') + } + p.printField(field, 'v', false, false, 0) + if fieldnum+1 < len(a) { + p.buf.Write(commaSpaceBytes) + } + } + p.buf.WriteByte(')') + } +} + +func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) { + prevString := false + for fieldnum := 0; fieldnum < len(a); fieldnum++ { + p.fmt.clearflags() + // always add spaces if we're doing println + field := a[fieldnum] + if fieldnum > 0 { + isString := field != nil && reflect.Typeof(field).Kind() == reflect.String + if addspace || !isString && !prevString { + p.buf.WriteByte(' ') + } + } + prevString = p.printField(field, 'v', false, false, 0) + } + if addnewline { + p.buf.WriteByte('\n') + } +} |