diff options
author | Thomas Koenig <tkoenig@gcc.gnu.org> | 2008-03-23 22:19:19 +0000 |
---|---|---|
committer | Thomas Koenig <tkoenig@gcc.gnu.org> | 2008-03-23 22:19:19 +0000 |
commit | 3478bba4660b29dc76202c955b709bf484dacf1f (patch) | |
tree | b07d6c628b5ec47255fa6723cf727cb89ace575e /libgfortran | |
parent | 2ff8644d33a8b9f3ca7c7c870c011a07da852ab3 (diff) | |
download | gcc-3478bba4660b29dc76202c955b709bf484dacf1f.zip gcc-3478bba4660b29dc76202c955b709bf484dacf1f.tar.gz gcc-3478bba4660b29dc76202c955b709bf484dacf1f.tar.bz2 |
re PR libfortran/32972 (performance of pack/unpack)
2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org
PR libfortran/32972
* Makefile.am: Add new variable, i_unpack_c, containing
unpack_i1.c, unpack_i2.c, unpack_i4.c, unpack_i8.c,
unpack_i16.c, unpack_r4.c, unpack_r8.c, unpack_r10.c,
unpack_r16.c, unpack_c4.c, unpack_c8.c, unpack_c10.c
and unpack_c16.c
Add i_unpack_c to gfor_built_src.
Add rule to generate i_unpack_c from m4/unpack.m4.
* Makefile.in: Regenerated.
* libgfortran.h: Add prototypes for unpack0_i1, unpack0_i2,
unpack0_i4, unpack0_i8, unpack0_i16, unpack0_r4, unpack0_r8,
unpack0_r10, unpack0_r16, unpack0_c4, unpack0_c8, unpack0_c10,
unpack0_c16, unpack1_i1, unpack1_i2, unpack1_i4, unpack1_i8,
unpack1_i16, unpack1_r4, unpack1_r8, unpack1_r10, unpack1_r16,
unpack1_c4, unpack1_c8, unpack1_c10 and unpack1_c16.
* intrinsics/pack_generic.c (unpack1): Add calls to specific
unpack1 functions.
(unpack0): Add calls to specific unpack0 functions.
* m4/unpack.m4: New file.
* generated/unpack_i1.c: New file.
* generated/unpack_i2.c: New file.
* generated/unpack_i4.c: New file.
* generated/unpack_i8.c: New file.
* generated/unpack_i16.c: New file.
* generated/unpack_r4.c: New file.
* generated/unpack_r8.c: New file.
* generated/unpack_r10.c: New file.
* generated/unpack_r16.c: New file.
* generated/unpack_c4.c: New file.
* generated/unpack_c8.c: New file.
* generated/unpack_c10.c: New file.
* generated/unpack_c16.c: New file.
2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org
PR libfortran/32972
* gfortran.dg/intrinsic_unpack_1.f90: New test case.
* gfortran.dg/intrinsic_unpack_2.f90: New test case.
* gfortran.dg/intrinsic_unpack_3.f90: New test case.
From-SVN: r133469
Diffstat (limited to 'libgfortran')
-rw-r--r-- | libgfortran/ChangeLog | 35 | ||||
-rw-r--r-- | libgfortran/Makefile.am | 23 | ||||
-rw-r--r-- | libgfortran/Makefile.in | 169 | ||||
-rw-r--r-- | libgfortran/generated/unpack_c10.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_c16.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_c4.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_c8.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_i1.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_i16.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_i2.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_i4.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_i8.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_r10.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_r16.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_r4.c | 338 | ||||
-rw-r--r-- | libgfortran/generated/unpack_r8.c | 338 | ||||
-rw-r--r-- | libgfortran/intrinsics/unpack_generic.c | 195 | ||||
-rw-r--r-- | libgfortran/libgfortran.h | 136 | ||||
-rw-r--r-- | libgfortran/m4/unpack.m4 | 339 |
19 files changed, 5272 insertions, 19 deletions
diff --git a/libgfortran/ChangeLog b/libgfortran/ChangeLog index 3ccccc9..6ac6dfe 100644 --- a/libgfortran/ChangeLog +++ b/libgfortran/ChangeLog @@ -1,3 +1,38 @@ +2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org + + PR libfortran/32972 + * Makefile.am: Add new variable, i_unpack_c, containing + unpack_i1.c, unpack_i2.c, unpack_i4.c, unpack_i8.c, + unpack_i16.c, unpack_r4.c, unpack_r8.c, unpack_r10.c, + unpack_r16.c, unpack_c4.c, unpack_c8.c, unpack_c10.c + and unpack_c16.c + Add i_unpack_c to gfor_built_src. + Add rule to generate i_unpack_c from m4/unpack.m4. + * Makefile.in: Regenerated. + * libgfortran.h: Add prototypes for unpack0_i1, unpack0_i2, + unpack0_i4, unpack0_i8, unpack0_i16, unpack0_r4, unpack0_r8, + unpack0_r10, unpack0_r16, unpack0_c4, unpack0_c8, unpack0_c10, + unpack0_c16, unpack1_i1, unpack1_i2, unpack1_i4, unpack1_i8, + unpack1_i16, unpack1_r4, unpack1_r8, unpack1_r10, unpack1_r16, + unpack1_c4, unpack1_c8, unpack1_c10 and unpack1_c16. + * intrinsics/pack_generic.c (unpack1): Add calls to specific + unpack1 functions. + (unpack0): Add calls to specific unpack0 functions. + * m4/unpack.m4: New file. + * generated/unpack_i1.c: New file. + * generated/unpack_i2.c: New file. + * generated/unpack_i4.c: New file. + * generated/unpack_i8.c: New file. + * generated/unpack_i16.c: New file. + * generated/unpack_r4.c: New file. + * generated/unpack_r8.c: New file. + * generated/unpack_r10.c: New file. + * generated/unpack_r16.c: New file. + * generated/unpack_c4.c: New file. + * generated/unpack_c8.c: New file. + * generated/unpack_c10.c: New file. + * generated/unpack_c16.c: New file. + 2008-03-22 Jerry DeLisle <jvdelisle@gcc.gnu.org> PR libfortran/35632 diff --git a/libgfortran/Makefile.am b/libgfortran/Makefile.am index 1706c6a..4e9655a6 100644 --- a/libgfortran/Makefile.am +++ b/libgfortran/Makefile.am @@ -491,6 +491,21 @@ $(srcdir)/generated/pack_c8.c \ $(srcdir)/generated/pack_c10.c \ $(srcdir)/generated/pack_c16.c +i_unpack_c = \ +$(srcdir)/generated/unpack_i1.c \ +$(srcdir)/generated/unpack_i2.c \ +$(srcdir)/generated/unpack_i4.c \ +$(srcdir)/generated/unpack_i8.c \ +$(srcdir)/generated/unpack_i16.c \ +$(srcdir)/generated/unpack_r4.c \ +$(srcdir)/generated/unpack_r8.c \ +$(srcdir)/generated/unpack_r10.c \ +$(srcdir)/generated/unpack_r16.c \ +$(srcdir)/generated/unpack_c4.c \ +$(srcdir)/generated/unpack_c8.c \ +$(srcdir)/generated/unpack_c10.c \ +$(srcdir)/generated/unpack_c16.c + m4_files= m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \ m4/any.m4 m4/count.m4 m4/maxloc0.m4 m4/maxloc1.m4 m4/maxval.m4 \ m4/minloc0.m4 m4/minloc1.m4 m4/minval.m4 m4/product.m4 m4/sum.m4 \ @@ -499,7 +514,8 @@ m4_files= m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \ m4/specific.m4 m4/specific2.m4 m4/head.m4 m4/shape.m4 m4/reshape.m4 \ m4/transpose.m4 m4/eoshift1.m4 m4/eoshift3.m4 m4/exponent.m4 \ m4/fraction.m4 m4/nearest.m4 m4/set_exponent.m4 m4/pow.m4 \ - m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4 + m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4 \ + m4/unpack.m4 gfor_built_src= $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \ $(i_maxloc1_c) $(i_maxval_c) $(i_minloc0_c) $(i_minloc1_c) $(i_minval_c) \ @@ -507,7 +523,7 @@ gfor_built_src= $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \ $(i_matmul_c) $(i_matmull_c) $(i_transpose_c) $(i_shape_c) $(i_eoshift1_c) \ $(i_eoshift3_c) $(i_cshift1_c) $(i_reshape_c) $(in_pack_c) $(in_unpack_c) \ $(i_exponent_c) $(i_fraction_c) $(i_nearest_c) $(i_set_exponent_c) \ - $(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) \ + $(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) $(i_unpack_c) \ selected_int_kind.inc selected_real_kind.inc kinds.h \ kinds.inc c99_protos.inc fpu-target.h @@ -826,6 +842,9 @@ $(i_pow_c): m4/pow.m4 $(I_M4_DEPS) $(i_pack_c): m4/pack.m4 $(I_M4_DEPS) $(M4) -Dfile=$@ -I$(srcdir)/m4 pack.m4 > $@ +$(i_unpack_c): m4/unpack.m4 $(I_M4_DEPS) + $(M4) -Dfile=$@ -I$(srcdir)/m4 unpack.m4 > $@ + $(gfor_built_specific_src): m4/specific.m4 m4/head.m4 $(M4) -Dfile=$@ -I$(srcdir)/m4 specific.m4 > $@ diff --git a/libgfortran/Makefile.in b/libgfortran/Makefile.in index 286338b..fb6056f 100644 --- a/libgfortran/Makefile.in +++ b/libgfortran/Makefile.in @@ -370,7 +370,19 @@ am__libgfortran_la_SOURCES_DIST = runtime/backtrace.c \ $(srcdir)/generated/pack_r8.c $(srcdir)/generated/pack_r10.c \ $(srcdir)/generated/pack_r16.c $(srcdir)/generated/pack_c4.c \ $(srcdir)/generated/pack_c8.c $(srcdir)/generated/pack_c10.c \ - $(srcdir)/generated/pack_c16.c selected_int_kind.inc \ + $(srcdir)/generated/pack_c16.c $(srcdir)/generated/unpack_i1.c \ + $(srcdir)/generated/unpack_i2.c \ + $(srcdir)/generated/unpack_i4.c \ + $(srcdir)/generated/unpack_i8.c \ + $(srcdir)/generated/unpack_i16.c \ + $(srcdir)/generated/unpack_r4.c \ + $(srcdir)/generated/unpack_r8.c \ + $(srcdir)/generated/unpack_r10.c \ + $(srcdir)/generated/unpack_r16.c \ + $(srcdir)/generated/unpack_c4.c \ + $(srcdir)/generated/unpack_c8.c \ + $(srcdir)/generated/unpack_c10.c \ + $(srcdir)/generated/unpack_c16.c selected_int_kind.inc \ selected_real_kind.inc kinds.h kinds.inc c99_protos.inc \ fpu-target.h io/close.c io/file_pos.c io/format.c io/inquire.c \ io/intrinsics.c io/list_read.c io/lock.c io/open.c io/read.c \ @@ -643,7 +655,11 @@ am__objects_29 = spacing_r4.lo spacing_r8.lo spacing_r10.lo \ am__objects_30 = pack_i1.lo pack_i2.lo pack_i4.lo pack_i8.lo \ pack_i16.lo pack_r4.lo pack_r8.lo pack_r10.lo pack_r16.lo \ pack_c4.lo pack_c8.lo pack_c10.lo pack_c16.lo -am__objects_31 = $(am__objects_2) $(am__objects_3) $(am__objects_4) \ +am__objects_31 = unpack_i1.lo unpack_i2.lo unpack_i4.lo unpack_i8.lo \ + unpack_i16.lo unpack_r4.lo unpack_r8.lo unpack_r10.lo \ + unpack_r16.lo unpack_c4.lo unpack_c8.lo unpack_c10.lo \ + unpack_c16.lo +am__objects_32 = $(am__objects_2) $(am__objects_3) $(am__objects_4) \ $(am__objects_5) $(am__objects_6) $(am__objects_7) \ $(am__objects_8) $(am__objects_9) $(am__objects_10) \ $(am__objects_11) $(am__objects_12) $(am__objects_13) \ @@ -652,11 +668,11 @@ am__objects_31 = $(am__objects_2) $(am__objects_3) $(am__objects_4) \ $(am__objects_20) $(am__objects_21) $(am__objects_22) \ $(am__objects_23) $(am__objects_24) $(am__objects_25) \ $(am__objects_26) $(am__objects_27) $(am__objects_28) \ - $(am__objects_29) $(am__objects_30) -am__objects_32 = close.lo file_pos.lo format.lo inquire.lo \ + $(am__objects_29) $(am__objects_30) $(am__objects_31) +am__objects_33 = close.lo file_pos.lo format.lo inquire.lo \ intrinsics.lo list_read.lo lock.lo open.lo read.lo \ size_from_kind.lo transfer.lo unit.lo unix.lo write.lo -am__objects_33 = associated.lo abort.lo access.lo args.lo \ +am__objects_34 = associated.lo abort.lo access.lo args.lo \ c99_functions.lo chdir.lo chmod.lo clock.lo cpu_time.lo \ cshift0.lo ctime.lo date_and_time.lo dtime.lo env.lo \ eoshift0.lo eoshift2.lo erfc_scaled.lo etime.lo exit.lo \ @@ -670,8 +686,8 @@ am__objects_33 = associated.lo abort.lo access.lo args.lo \ system_clock.lo time.lo transpose_generic.lo umask.lo \ unlink.lo unpack_generic.lo in_pack_generic.lo \ in_unpack_generic.lo -am__objects_34 = -am__objects_35 = _abs_c4.lo _abs_c8.lo _abs_c10.lo _abs_c16.lo \ +am__objects_35 = +am__objects_36 = _abs_c4.lo _abs_c8.lo _abs_c10.lo _abs_c16.lo \ _abs_i4.lo _abs_i8.lo _abs_i16.lo _abs_r4.lo _abs_r8.lo \ _abs_r10.lo _abs_r16.lo _aimag_c4.lo _aimag_c8.lo \ _aimag_c10.lo _aimag_c16.lo _exp_r4.lo _exp_r8.lo _exp_r10.lo \ @@ -695,18 +711,18 @@ am__objects_35 = _abs_c4.lo _abs_c8.lo _abs_c10.lo _abs_c16.lo \ _conjg_c4.lo _conjg_c8.lo _conjg_c10.lo _conjg_c16.lo \ _aint_r4.lo _aint_r8.lo _aint_r10.lo _aint_r16.lo _anint_r4.lo \ _anint_r8.lo _anint_r10.lo _anint_r16.lo -am__objects_36 = _sign_i4.lo _sign_i8.lo _sign_i16.lo _sign_r4.lo \ +am__objects_37 = _sign_i4.lo _sign_i8.lo _sign_i16.lo _sign_r4.lo \ _sign_r8.lo _sign_r10.lo _sign_r16.lo _dim_i4.lo _dim_i8.lo \ _dim_i16.lo _dim_r4.lo _dim_r8.lo _dim_r10.lo _dim_r16.lo \ _atan2_r4.lo _atan2_r8.lo _atan2_r10.lo _atan2_r16.lo \ _mod_i4.lo _mod_i8.lo _mod_i16.lo _mod_r4.lo _mod_r8.lo \ _mod_r10.lo _mod_r16.lo -am__objects_37 = misc_specifics.lo -am__objects_38 = $(am__objects_35) $(am__objects_36) $(am__objects_37) \ +am__objects_38 = misc_specifics.lo +am__objects_39 = $(am__objects_36) $(am__objects_37) $(am__objects_38) \ dprod_r8.lo f2c_specifics.lo -am__objects_39 = $(am__objects_1) $(am__objects_31) $(am__objects_32) \ - $(am__objects_33) $(am__objects_34) $(am__objects_38) -@onestep_FALSE@am_libgfortran_la_OBJECTS = $(am__objects_39) +am__objects_40 = $(am__objects_1) $(am__objects_32) $(am__objects_33) \ + $(am__objects_34) $(am__objects_35) $(am__objects_39) +@onestep_FALSE@am_libgfortran_la_OBJECTS = $(am__objects_40) @onestep_TRUE@am_libgfortran_la_OBJECTS = libgfortran_c.lo libgfortran_la_OBJECTS = $(am_libgfortran_la_OBJECTS) libgfortranbegin_la_LIBADD = @@ -1355,6 +1371,21 @@ $(srcdir)/generated/pack_c8.c \ $(srcdir)/generated/pack_c10.c \ $(srcdir)/generated/pack_c16.c +i_unpack_c = \ +$(srcdir)/generated/unpack_i1.c \ +$(srcdir)/generated/unpack_i2.c \ +$(srcdir)/generated/unpack_i4.c \ +$(srcdir)/generated/unpack_i8.c \ +$(srcdir)/generated/unpack_i16.c \ +$(srcdir)/generated/unpack_r4.c \ +$(srcdir)/generated/unpack_r8.c \ +$(srcdir)/generated/unpack_r10.c \ +$(srcdir)/generated/unpack_r16.c \ +$(srcdir)/generated/unpack_c4.c \ +$(srcdir)/generated/unpack_c8.c \ +$(srcdir)/generated/unpack_c10.c \ +$(srcdir)/generated/unpack_c16.c + m4_files = m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \ m4/any.m4 m4/count.m4 m4/maxloc0.m4 m4/maxloc1.m4 m4/maxval.m4 \ m4/minloc0.m4 m4/minloc1.m4 m4/minval.m4 m4/product.m4 m4/sum.m4 \ @@ -1363,7 +1394,8 @@ m4_files = m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \ m4/specific.m4 m4/specific2.m4 m4/head.m4 m4/shape.m4 m4/reshape.m4 \ m4/transpose.m4 m4/eoshift1.m4 m4/eoshift3.m4 m4/exponent.m4 \ m4/fraction.m4 m4/nearest.m4 m4/set_exponent.m4 m4/pow.m4 \ - m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4 + m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4 \ + m4/unpack.m4 gfor_built_src = $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \ $(i_maxloc1_c) $(i_maxval_c) $(i_minloc0_c) $(i_minloc1_c) $(i_minval_c) \ @@ -1371,7 +1403,7 @@ gfor_built_src = $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \ $(i_matmul_c) $(i_matmull_c) $(i_transpose_c) $(i_shape_c) $(i_eoshift1_c) \ $(i_eoshift3_c) $(i_cshift1_c) $(i_reshape_c) $(in_pack_c) $(in_unpack_c) \ $(i_exponent_c) $(i_fraction_c) $(i_nearest_c) $(i_set_exponent_c) \ - $(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) \ + $(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) $(i_unpack_c) \ selected_int_kind.inc selected_real_kind.inc kinds.h \ kinds.inc c99_protos.inc fpu-target.h @@ -2061,7 +2093,20 @@ distclean-compile: @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unit.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unix.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unlink.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c10.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c16.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c4.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c8.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_generic.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i1.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i16.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i2.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i4.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i8.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r10.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r16.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r4.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r8.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/write.Plo@am__quote@ .F90.o: @@ -4748,6 +4793,97 @@ pack_c16.lo: $(srcdir)/generated/pack_c16.c @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o pack_c16.lo `test -f '$(srcdir)/generated/pack_c16.c' || echo '$(srcdir)/'`$(srcdir)/generated/pack_c16.c +unpack_i1.lo: $(srcdir)/generated/unpack_i1.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i1.lo -MD -MP -MF "$(DEPDIR)/unpack_i1.Tpo" -c -o unpack_i1.lo `test -f '$(srcdir)/generated/unpack_i1.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i1.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i1.Tpo" "$(DEPDIR)/unpack_i1.Plo"; else rm -f "$(DEPDIR)/unpack_i1.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i1.c' object='unpack_i1.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i1.lo `test -f '$(srcdir)/generated/unpack_i1.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i1.c + +unpack_i2.lo: $(srcdir)/generated/unpack_i2.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i2.lo -MD -MP -MF "$(DEPDIR)/unpack_i2.Tpo" -c -o unpack_i2.lo `test -f '$(srcdir)/generated/unpack_i2.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i2.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i2.Tpo" "$(DEPDIR)/unpack_i2.Plo"; else rm -f "$(DEPDIR)/unpack_i2.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i2.c' object='unpack_i2.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i2.lo `test -f '$(srcdir)/generated/unpack_i2.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i2.c + +unpack_i4.lo: $(srcdir)/generated/unpack_i4.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i4.lo -MD -MP -MF "$(DEPDIR)/unpack_i4.Tpo" -c -o unpack_i4.lo `test -f '$(srcdir)/generated/unpack_i4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i4.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i4.Tpo" "$(DEPDIR)/unpack_i4.Plo"; else rm -f "$(DEPDIR)/unpack_i4.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i4.c' object='unpack_i4.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i4.lo `test -f '$(srcdir)/generated/unpack_i4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i4.c + +unpack_i8.lo: $(srcdir)/generated/unpack_i8.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i8.lo -MD -MP -MF "$(DEPDIR)/unpack_i8.Tpo" -c -o unpack_i8.lo `test -f '$(srcdir)/generated/unpack_i8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i8.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i8.Tpo" "$(DEPDIR)/unpack_i8.Plo"; else rm -f "$(DEPDIR)/unpack_i8.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i8.c' object='unpack_i8.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i8.lo `test -f '$(srcdir)/generated/unpack_i8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i8.c + +unpack_i16.lo: $(srcdir)/generated/unpack_i16.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i16.lo -MD -MP -MF "$(DEPDIR)/unpack_i16.Tpo" -c -o unpack_i16.lo `test -f '$(srcdir)/generated/unpack_i16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i16.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i16.Tpo" "$(DEPDIR)/unpack_i16.Plo"; else rm -f "$(DEPDIR)/unpack_i16.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i16.c' object='unpack_i16.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i16.lo `test -f '$(srcdir)/generated/unpack_i16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i16.c + +unpack_r4.lo: $(srcdir)/generated/unpack_r4.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r4.lo -MD -MP -MF "$(DEPDIR)/unpack_r4.Tpo" -c -o unpack_r4.lo `test -f '$(srcdir)/generated/unpack_r4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r4.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r4.Tpo" "$(DEPDIR)/unpack_r4.Plo"; else rm -f "$(DEPDIR)/unpack_r4.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r4.c' object='unpack_r4.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r4.lo `test -f '$(srcdir)/generated/unpack_r4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r4.c + +unpack_r8.lo: $(srcdir)/generated/unpack_r8.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r8.lo -MD -MP -MF "$(DEPDIR)/unpack_r8.Tpo" -c -o unpack_r8.lo `test -f '$(srcdir)/generated/unpack_r8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r8.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r8.Tpo" "$(DEPDIR)/unpack_r8.Plo"; else rm -f "$(DEPDIR)/unpack_r8.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r8.c' object='unpack_r8.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r8.lo `test -f '$(srcdir)/generated/unpack_r8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r8.c + +unpack_r10.lo: $(srcdir)/generated/unpack_r10.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r10.lo -MD -MP -MF "$(DEPDIR)/unpack_r10.Tpo" -c -o unpack_r10.lo `test -f '$(srcdir)/generated/unpack_r10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r10.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r10.Tpo" "$(DEPDIR)/unpack_r10.Plo"; else rm -f "$(DEPDIR)/unpack_r10.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r10.c' object='unpack_r10.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r10.lo `test -f '$(srcdir)/generated/unpack_r10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r10.c + +unpack_r16.lo: $(srcdir)/generated/unpack_r16.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r16.lo -MD -MP -MF "$(DEPDIR)/unpack_r16.Tpo" -c -o unpack_r16.lo `test -f '$(srcdir)/generated/unpack_r16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r16.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r16.Tpo" "$(DEPDIR)/unpack_r16.Plo"; else rm -f "$(DEPDIR)/unpack_r16.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r16.c' object='unpack_r16.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r16.lo `test -f '$(srcdir)/generated/unpack_r16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r16.c + +unpack_c4.lo: $(srcdir)/generated/unpack_c4.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c4.lo -MD -MP -MF "$(DEPDIR)/unpack_c4.Tpo" -c -o unpack_c4.lo `test -f '$(srcdir)/generated/unpack_c4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c4.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c4.Tpo" "$(DEPDIR)/unpack_c4.Plo"; else rm -f "$(DEPDIR)/unpack_c4.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c4.c' object='unpack_c4.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c4.lo `test -f '$(srcdir)/generated/unpack_c4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c4.c + +unpack_c8.lo: $(srcdir)/generated/unpack_c8.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c8.lo -MD -MP -MF "$(DEPDIR)/unpack_c8.Tpo" -c -o unpack_c8.lo `test -f '$(srcdir)/generated/unpack_c8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c8.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c8.Tpo" "$(DEPDIR)/unpack_c8.Plo"; else rm -f "$(DEPDIR)/unpack_c8.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c8.c' object='unpack_c8.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c8.lo `test -f '$(srcdir)/generated/unpack_c8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c8.c + +unpack_c10.lo: $(srcdir)/generated/unpack_c10.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c10.lo -MD -MP -MF "$(DEPDIR)/unpack_c10.Tpo" -c -o unpack_c10.lo `test -f '$(srcdir)/generated/unpack_c10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c10.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c10.Tpo" "$(DEPDIR)/unpack_c10.Plo"; else rm -f "$(DEPDIR)/unpack_c10.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c10.c' object='unpack_c10.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c10.lo `test -f '$(srcdir)/generated/unpack_c10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c10.c + +unpack_c16.lo: $(srcdir)/generated/unpack_c16.c +@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c16.lo -MD -MP -MF "$(DEPDIR)/unpack_c16.Tpo" -c -o unpack_c16.lo `test -f '$(srcdir)/generated/unpack_c16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c16.c; \ +@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c16.Tpo" "$(DEPDIR)/unpack_c16.Plo"; else rm -f "$(DEPDIR)/unpack_c16.Tpo"; exit 1; fi +@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c16.c' object='unpack_c16.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c16.lo `test -f '$(srcdir)/generated/unpack_c16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c16.c + close.lo: io/close.c @am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT close.lo -MD -MP -MF "$(DEPDIR)/close.Tpo" -c -o close.lo `test -f 'io/close.c' || echo '$(srcdir)/'`io/close.c; \ @am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/close.Tpo" "$(DEPDIR)/close.Plo"; else rm -f "$(DEPDIR)/close.Tpo"; exit 1; fi @@ -5702,6 +5838,9 @@ fpu-target.h: $(srcdir)/$(FPU_HOST_HEADER) @MAINTAINER_MODE_TRUE@$(i_pack_c): m4/pack.m4 $(I_M4_DEPS) @MAINTAINER_MODE_TRUE@ $(M4) -Dfile=$@ -I$(srcdir)/m4 pack.m4 > $@ +@MAINTAINER_MODE_TRUE@$(i_unpack_c): m4/unpack.m4 $(I_M4_DEPS) +@MAINTAINER_MODE_TRUE@ $(M4) -Dfile=$@ -I$(srcdir)/m4 unpack.m4 > $@ + @MAINTAINER_MODE_TRUE@$(gfor_built_specific_src): m4/specific.m4 m4/head.m4 @MAINTAINER_MODE_TRUE@ $(M4) -Dfile=$@ -I$(srcdir)/m4 specific.m4 > $@ diff --git a/libgfortran/generated/unpack_c10.c b/libgfortran/generated/unpack_c10.c new file mode 100644 index 0000000..e6f3ecf --- /dev/null +++ b/libgfortran/generated/unpack_c10.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_COMPLEX_10) + +void +unpack0_c10 (gfc_array_c10 *ret, const gfc_array_c10 *vector, + const gfc_array_l1 *mask, const GFC_COMPLEX_10 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_COMPLEX_10 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_COMPLEX_10 *vptr; + /* Value for field, this is constant. */ + const GFC_COMPLEX_10 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_10)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_c10 (gfc_array_c10 *ret, const gfc_array_c10 *vector, + const gfc_array_l1 *mask, const gfc_array_c10 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_COMPLEX_10 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_COMPLEX_10 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_COMPLEX_10 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_10)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_c16.c b/libgfortran/generated/unpack_c16.c new file mode 100644 index 0000000..2d82a10 --- /dev/null +++ b/libgfortran/generated/unpack_c16.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_COMPLEX_16) + +void +unpack0_c16 (gfc_array_c16 *ret, const gfc_array_c16 *vector, + const gfc_array_l1 *mask, const GFC_COMPLEX_16 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_COMPLEX_16 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_COMPLEX_16 *vptr; + /* Value for field, this is constant. */ + const GFC_COMPLEX_16 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_16)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_c16 (gfc_array_c16 *ret, const gfc_array_c16 *vector, + const gfc_array_l1 *mask, const gfc_array_c16 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_COMPLEX_16 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_COMPLEX_16 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_COMPLEX_16 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_16)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_c4.c b/libgfortran/generated/unpack_c4.c new file mode 100644 index 0000000..472ce48 --- /dev/null +++ b/libgfortran/generated/unpack_c4.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_COMPLEX_4) + +void +unpack0_c4 (gfc_array_c4 *ret, const gfc_array_c4 *vector, + const gfc_array_l1 *mask, const GFC_COMPLEX_4 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_COMPLEX_4 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_COMPLEX_4 *vptr; + /* Value for field, this is constant. */ + const GFC_COMPLEX_4 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_4)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_c4 (gfc_array_c4 *ret, const gfc_array_c4 *vector, + const gfc_array_l1 *mask, const gfc_array_c4 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_COMPLEX_4 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_COMPLEX_4 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_COMPLEX_4 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_4)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_c8.c b/libgfortran/generated/unpack_c8.c new file mode 100644 index 0000000..62116b7 --- /dev/null +++ b/libgfortran/generated/unpack_c8.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_COMPLEX_8) + +void +unpack0_c8 (gfc_array_c8 *ret, const gfc_array_c8 *vector, + const gfc_array_l1 *mask, const GFC_COMPLEX_8 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_COMPLEX_8 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_COMPLEX_8 *vptr; + /* Value for field, this is constant. */ + const GFC_COMPLEX_8 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_8)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_c8 (gfc_array_c8 *ret, const gfc_array_c8 *vector, + const gfc_array_l1 *mask, const gfc_array_c8 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_COMPLEX_8 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_COMPLEX_8 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_COMPLEX_8 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_8)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_i1.c b/libgfortran/generated/unpack_i1.c new file mode 100644 index 0000000..46a9d4e --- /dev/null +++ b/libgfortran/generated/unpack_i1.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_INTEGER_1) + +void +unpack0_i1 (gfc_array_i1 *ret, const gfc_array_i1 *vector, + const gfc_array_l1 *mask, const GFC_INTEGER_1 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_INTEGER_1 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_INTEGER_1 *vptr; + /* Value for field, this is constant. */ + const GFC_INTEGER_1 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_1)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_i1 (gfc_array_i1 *ret, const gfc_array_i1 *vector, + const gfc_array_l1 *mask, const gfc_array_i1 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_INTEGER_1 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_INTEGER_1 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_INTEGER_1 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_1)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_i16.c b/libgfortran/generated/unpack_i16.c new file mode 100644 index 0000000..0fbd744 --- /dev/null +++ b/libgfortran/generated/unpack_i16.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_INTEGER_16) + +void +unpack0_i16 (gfc_array_i16 *ret, const gfc_array_i16 *vector, + const gfc_array_l1 *mask, const GFC_INTEGER_16 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_INTEGER_16 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_INTEGER_16 *vptr; + /* Value for field, this is constant. */ + const GFC_INTEGER_16 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_16)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_i16 (gfc_array_i16 *ret, const gfc_array_i16 *vector, + const gfc_array_l1 *mask, const gfc_array_i16 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_INTEGER_16 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_INTEGER_16 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_INTEGER_16 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_16)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_i2.c b/libgfortran/generated/unpack_i2.c new file mode 100644 index 0000000..096c7858 --- /dev/null +++ b/libgfortran/generated/unpack_i2.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_INTEGER_2) + +void +unpack0_i2 (gfc_array_i2 *ret, const gfc_array_i2 *vector, + const gfc_array_l1 *mask, const GFC_INTEGER_2 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_INTEGER_2 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_INTEGER_2 *vptr; + /* Value for field, this is constant. */ + const GFC_INTEGER_2 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_2)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_i2 (gfc_array_i2 *ret, const gfc_array_i2 *vector, + const gfc_array_l1 *mask, const gfc_array_i2 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_INTEGER_2 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_INTEGER_2 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_INTEGER_2 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_2)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_i4.c b/libgfortran/generated/unpack_i4.c new file mode 100644 index 0000000..08f197c --- /dev/null +++ b/libgfortran/generated/unpack_i4.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_INTEGER_4) + +void +unpack0_i4 (gfc_array_i4 *ret, const gfc_array_i4 *vector, + const gfc_array_l1 *mask, const GFC_INTEGER_4 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_INTEGER_4 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_INTEGER_4 *vptr; + /* Value for field, this is constant. */ + const GFC_INTEGER_4 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_4)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_i4 (gfc_array_i4 *ret, const gfc_array_i4 *vector, + const gfc_array_l1 *mask, const gfc_array_i4 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_INTEGER_4 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_INTEGER_4 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_INTEGER_4 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_4)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_i8.c b/libgfortran/generated/unpack_i8.c new file mode 100644 index 0000000..0847c1f --- /dev/null +++ b/libgfortran/generated/unpack_i8.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_INTEGER_8) + +void +unpack0_i8 (gfc_array_i8 *ret, const gfc_array_i8 *vector, + const gfc_array_l1 *mask, const GFC_INTEGER_8 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_INTEGER_8 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_INTEGER_8 *vptr; + /* Value for field, this is constant. */ + const GFC_INTEGER_8 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_8)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_i8 (gfc_array_i8 *ret, const gfc_array_i8 *vector, + const gfc_array_l1 *mask, const gfc_array_i8 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_INTEGER_8 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_INTEGER_8 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_INTEGER_8 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_8)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_r10.c b/libgfortran/generated/unpack_r10.c new file mode 100644 index 0000000..694d2c5 --- /dev/null +++ b/libgfortran/generated/unpack_r10.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_REAL_10) + +void +unpack0_r10 (gfc_array_r10 *ret, const gfc_array_r10 *vector, + const gfc_array_l1 *mask, const GFC_REAL_10 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_REAL_10 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_REAL_10 *vptr; + /* Value for field, this is constant. */ + const GFC_REAL_10 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_10)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_r10 (gfc_array_r10 *ret, const gfc_array_r10 *vector, + const gfc_array_l1 *mask, const gfc_array_r10 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_REAL_10 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_REAL_10 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_REAL_10 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_10)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_r16.c b/libgfortran/generated/unpack_r16.c new file mode 100644 index 0000000..65121c1 --- /dev/null +++ b/libgfortran/generated/unpack_r16.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_REAL_16) + +void +unpack0_r16 (gfc_array_r16 *ret, const gfc_array_r16 *vector, + const gfc_array_l1 *mask, const GFC_REAL_16 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_REAL_16 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_REAL_16 *vptr; + /* Value for field, this is constant. */ + const GFC_REAL_16 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_16)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_r16 (gfc_array_r16 *ret, const gfc_array_r16 *vector, + const gfc_array_l1 *mask, const gfc_array_r16 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_REAL_16 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_REAL_16 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_REAL_16 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_16)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_r4.c b/libgfortran/generated/unpack_r4.c new file mode 100644 index 0000000..b998318 --- /dev/null +++ b/libgfortran/generated/unpack_r4.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_REAL_4) + +void +unpack0_r4 (gfc_array_r4 *ret, const gfc_array_r4 *vector, + const gfc_array_l1 *mask, const GFC_REAL_4 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_REAL_4 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_REAL_4 *vptr; + /* Value for field, this is constant. */ + const GFC_REAL_4 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_4)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_r4 (gfc_array_r4 *ret, const gfc_array_r4 *vector, + const gfc_array_l1 *mask, const gfc_array_r4 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_REAL_4 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_REAL_4 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_REAL_4 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_4)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/generated/unpack_r8.c b/libgfortran/generated/unpack_r8.c new file mode 100644 index 0000000..cccf759 --- /dev/null +++ b/libgfortran/generated/unpack_r8.c @@ -0,0 +1,338 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + + +#if defined (HAVE_GFC_REAL_8) + +void +unpack0_r8 (gfc_array_r8 *ret, const gfc_array_r8 *vector, + const gfc_array_l1 *mask, const GFC_REAL_8 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_REAL_8 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_REAL_8 *vptr; + /* Value for field, this is constant. */ + const GFC_REAL_8 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_8)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_r8 (gfc_array_r8 *ret, const gfc_array_r8 *vector, + const gfc_array_l1 *mask, const gfc_array_r8 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_REAL_8 *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_REAL_8 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_REAL_8 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_8)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + diff --git a/libgfortran/intrinsics/unpack_generic.c b/libgfortran/intrinsics/unpack_generic.c index 05141ed..145dd35 100644 --- a/libgfortran/intrinsics/unpack_generic.c +++ b/libgfortran/intrinsics/unpack_generic.c @@ -196,8 +196,103 @@ void unpack1 (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field) { - unpack_internal (ret, vector, mask, field, - GFC_DESCRIPTOR_SIZE (vector), + int type; + index_type size; + + type = GFC_DESCRIPTOR_TYPE (vector); + size = GFC_DESCRIPTOR_SIZE (vector); + + switch(type) + { + case GFC_DTYPE_INTEGER: + case GFC_DTYPE_LOGICAL: + switch(size) + { + case sizeof (GFC_INTEGER_1): + unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector, + mask, (gfc_array_i1 *) field); + return; + + case sizeof (GFC_INTEGER_2): + unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, + mask, (gfc_array_i2 *) field); + return; + + case sizeof (GFC_INTEGER_4): + unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, + mask, (gfc_array_i4 *) field); + return; + + case sizeof (GFC_INTEGER_8): + unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, + mask, (gfc_array_i8 *) field); + return; + +#ifdef HAVE_GFC_INTEGER_16 + case sizeof (GFC_INTEGER_16): + unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, + mask, (gfc_array_i16 *) field); + return; +#endif + } + case GFC_DTYPE_REAL: + switch (size) + { + case sizeof (GFC_REAL_4): + unpack1_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector, + mask, (gfc_array_r4 *) field); + return; + + case sizeof (GFC_REAL_8): + unpack1_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) vector, + mask, (gfc_array_r8 *) field); + return; + +#ifdef HAVE_GFC_REAL_10 + case sizeof (GFC_REAL_10): + unpack1_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector, + mask, (gfc_array_r10 *) field); + return; +#endif + +#ifdef HAVE_GFC_REAL_16 + case sizeof (GFC_REAL_16): + unpack1_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector, + mask, (gfc_array_r16 *) field); + return; +#endif + } + + case GFC_DTYPE_COMPLEX: + switch (size) + { + case sizeof (GFC_COMPLEX_4): + unpack1_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector, + mask, (gfc_array_c4 *) field); + return; + + case sizeof (GFC_COMPLEX_8): + unpack1_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector, + mask, (gfc_array_c8 *) field); + return; + +#ifdef HAVE_GFC_COMPLEX_10 + case sizeof (GFC_COMPLEX_10): + unpack1_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector, + mask, (gfc_array_c10 *) field); + return; +#endif + +#ifdef HAVE_GFC_COMPLEX_16 + case sizeof (GFC_COMPLEX_16): + unpack1_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector, + mask, (gfc_array_c16 *) field); + return; +#endif + } + + } + unpack_internal (ret, vector, mask, field, size, GFC_DESCRIPTOR_SIZE (field)); } @@ -227,6 +322,102 @@ unpack0 (gfc_array_char *ret, const gfc_array_char *vector, { gfc_array_char tmp; + int type; + index_type size; + + type = GFC_DESCRIPTOR_TYPE (vector); + size = GFC_DESCRIPTOR_SIZE (vector); + + switch(type) + { + case GFC_DTYPE_INTEGER: + case GFC_DTYPE_LOGICAL: + switch(size) + { + case sizeof (GFC_INTEGER_1): + unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector, + mask, (GFC_INTEGER_1 *) field); + return; + + case sizeof (GFC_INTEGER_2): + unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, + mask, (GFC_INTEGER_2 *) field); + return; + + case sizeof (GFC_INTEGER_4): + unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, + mask, (GFC_INTEGER_4 *) field); + return; + + case sizeof (GFC_INTEGER_8): + unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, + mask, (GFC_INTEGER_8 *) field); + return; + +#ifdef HAVE_GFC_INTEGER_16 + case sizeof (GFC_INTEGER_16): + unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, + mask, (GFC_INTEGER_16 *) field); + return; +#endif + } + + case GFC_DTYPE_REAL: + switch(size) + { + case sizeof (GFC_REAL_4): + unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector, + mask, (GFC_REAL_4 *) field); + return; + + case sizeof (GFC_REAL_8): + unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector, + mask, (GFC_REAL_8 *) field); + return; + +#ifdef HAVE_GFC_REAL_10 + case sizeof (GFC_REAL_10): + unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector, + mask, (GFC_REAL_10 *) field); + return; +#endif + +#ifdef HAVE_GFC_REAL_16 + case sizeof (GFC_REAL_16): + unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector, + mask, (GFC_REAL_16 *) field); + return; +#endif + } + + case GFC_DTYPE_COMPLEX: + switch(size) + { + case sizeof (GFC_COMPLEX_4): + unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector, + mask, (GFC_COMPLEX_4 *) field); + return; + + case sizeof (GFC_COMPLEX_8): + unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector, + mask, (GFC_COMPLEX_8 *) field); + return; + +#ifdef HAVE_GFC_COMPLEX_10 + case sizeof (GFC_COMPLEX_10): + unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector, + mask, (GFC_COMPLEX_10 *) field); + return; +#endif + +#ifdef HAVE_GFC_COMPLEX_16 + case sizeof (GFC_COMPLEX_16): + unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector, + mask, (GFC_COMPLEX_16 *) field); + return; +#endif + } + } memset (&tmp, 0, sizeof (tmp)); tmp.dtype = 0; tmp.data = field; diff --git a/libgfortran/libgfortran.h b/libgfortran/libgfortran.h index a2b023b..9a1f643 100644 --- a/libgfortran/libgfortran.h +++ b/libgfortran/libgfortran.h @@ -774,6 +774,142 @@ extern void pack_c16 (gfc_array_c16 *, const gfc_array_c16 *, internal_proto(pack_c16); #endif +/* Internal auxiliary functions for the unpack intrinsic. */ + +extern void unpack0_i1 (gfc_array_i1 *, const gfc_array_i1 *, + const gfc_array_l1 *, const GFC_INTEGER_1 *); +internal_proto(unpack0_i1); + +extern void unpack0_i2 (gfc_array_i2 *, const gfc_array_i2 *, + const gfc_array_l1 *, const GFC_INTEGER_2 *); +internal_proto(unpack0_i2); + +extern void unpack0_i4 (gfc_array_i4 *, const gfc_array_i4 *, + const gfc_array_l1 *, const GFC_INTEGER_4 *); +internal_proto(unpack0_i4); + +extern void unpack0_i8 (gfc_array_i8 *, const gfc_array_i8 *, + const gfc_array_l1 *, const GFC_INTEGER_8 *); +internal_proto(unpack0_i8); + +#ifdef HAVE_GFC_INTEGER_16 + +extern void unpack0_i16 (gfc_array_i16 *, const gfc_array_i16 *, + const gfc_array_l1 *, const GFC_INTEGER_16 *); +internal_proto(unpack0_i16); + +#endif + +extern void unpack0_r4 (gfc_array_r4 *, const gfc_array_r4 *, + const gfc_array_l1 *, const GFC_REAL_4 *); +internal_proto(unpack0_r4); + +extern void unpack0_r8 (gfc_array_r8 *, const gfc_array_r8 *, + const gfc_array_l1 *, const GFC_REAL_8 *); +internal_proto(unpack0_r8); + +#ifdef HAVE_GFC_REAL_10 + +extern void unpack0_r10 (gfc_array_r10 *, const gfc_array_r10 *, + const gfc_array_l1 *, const GFC_REAL_10 *); +internal_proto(unpack0_r10); + +#endif + +#ifdef HAVE_GFC_REAL_16 + +extern void unpack0_r16 (gfc_array_r16 *, const gfc_array_r16 *, + const gfc_array_l1 *, const GFC_REAL_16 *); +internal_proto(unpack0_r16); + +#endif + +extern void unpack0_c4 (gfc_array_c4 *, const gfc_array_c4 *, + const gfc_array_l1 *, const GFC_COMPLEX_4 *); +internal_proto(unpack0_c4); + +extern void unpack0_c8 (gfc_array_c8 *, const gfc_array_c8 *, + const gfc_array_l1 *, const GFC_COMPLEX_8 *); +internal_proto(unpack0_c8); + +#ifdef HAVE_GFC_COMPLEX_10 + +extern void unpack0_c10 (gfc_array_c10 *, const gfc_array_c10 *, + const gfc_array_l1 *mask, const GFC_COMPLEX_10 *); +internal_proto(unpack0_c10); + +#endif + +#ifdef HAVE_GFC_COMPLEX_16 + +extern void unpack0_c16 (gfc_array_c16 *, const gfc_array_c16 *, + const gfc_array_l1 *, const GFC_COMPLEX_16 *); +internal_proto(unpack0_c16); + +#endif + +extern void unpack1_i1 (gfc_array_i1 *, const gfc_array_i1 *, + const gfc_array_l1 *, const gfc_array_i1 *); +internal_proto(unpack1_i1); + +extern void unpack1_i2 (gfc_array_i2 *, const gfc_array_i2 *, + const gfc_array_l1 *, const gfc_array_i2 *); +internal_proto(unpack1_i2); + +extern void unpack1_i4 (gfc_array_i4 *, const gfc_array_i4 *, + const gfc_array_l1 *, const gfc_array_i4 *); +internal_proto(unpack1_i4); + +extern void unpack1_i8 (gfc_array_i8 *, const gfc_array_i8 *, + const gfc_array_l1 *, const gfc_array_i8 *); +internal_proto(unpack1_i8); + +#ifdef HAVE_GFC_INTEGER_16 +extern void unpack1_i16 (gfc_array_i16 *, const gfc_array_i16 *, + const gfc_array_l1 *, const gfc_array_i16 *); +internal_proto(unpack1_i16); +#endif + +extern void unpack1_r4 (gfc_array_r4 *, const gfc_array_r4 *, + const gfc_array_l1 *, const gfc_array_r4 *); +internal_proto(unpack1_r4); + +extern void unpack1_r8 (gfc_array_r8 *, const gfc_array_r8 *, + const gfc_array_l1 *, const gfc_array_r8 *); +internal_proto(unpack1_r8); + +#ifdef HAVE_GFC_REAL_10 +extern void unpack1_r10 (gfc_array_r10 *, const gfc_array_r10 *, + const gfc_array_l1 *, const gfc_array_r10 *); +internal_proto(unpack1_r10); +#endif + +#ifdef HAVE_GFC_REAL_16 +extern void unpack1_r16 (gfc_array_r16 *, const gfc_array_r16 *, + const gfc_array_l1 *, const gfc_array_r16 *); +internal_proto(unpack1_r16); +#endif + +extern void unpack1_c4 (gfc_array_c4 *, const gfc_array_c4 *, + const gfc_array_l1 *, const gfc_array_c4 *); +internal_proto(unpack1_c4); + +extern void unpack1_c8 (gfc_array_c8 *, const gfc_array_c8 *, + const gfc_array_l1 *, const gfc_array_c8 *); +internal_proto(unpack1_c8); + +#ifdef HAVE_GFC_COMPLEX_10 +extern void unpack1_c10 (gfc_array_c10 *, const gfc_array_c10 *, + const gfc_array_l1 *, const gfc_array_c10 *); +internal_proto(unpack1_c10); +#endif + +#ifdef HAVE_GFC_COMPLEX_16 +extern void unpack1_c16 (gfc_array_c16 *, const gfc_array_c16 *, + const gfc_array_l1 *, const gfc_array_c16 *); +internal_proto(unpack1_c16); +#endif + /* string_intrinsics.c */ extern int compare_string (GFC_INTEGER_4, const char *, diff --git a/libgfortran/m4/unpack.m4 b/libgfortran/m4/unpack.m4 new file mode 100644 index 0000000..2ad6841 --- /dev/null +++ b/libgfortran/m4/unpack.m4 @@ -0,0 +1,339 @@ +`/* Specific implementation of the UNPACK intrinsic + Copyright 2008 Free Software Foundation, Inc. + Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on + unpack_generic.c by Paul Brook <paul@nowt.org>. + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h>' + +include(iparm.m4)dnl + +`#if defined (HAVE_'rtype_name`) + +void +unpack0_'rtype_code` ('rtype` *ret, const 'rtype` *vector, + const gfc_array_l1 *mask, const 'rtype_name` *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + 'rtype_name` *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + 'rtype_name` *vptr; + /* Value for field, this is constant. */ + const 'rtype_name` fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof ('rtype_name`)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_'rtype_code` ('rtype` *ret, const 'rtype` *vector, + const gfc_array_l1 *mask, const 'rtype` *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + 'rtype_name` *rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + 'rtype_name` *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const 'rtype_name` *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + ret->dim[n].stride = rs; + ret->dim[n].lbound = 0; + ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; + extent[n] = ret->dim[n].ubound + 1; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof ('rtype_name`)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; + empty = empty || extent[n] <= 0; + rstride[n] = ret->dim[n].stride; + fstride[n] = field->dim[n].stride; + mstride[n] = mask->dim[n].stride * mask_kind; + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = vector->dim[0].stride; + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif +' |