diff options
author | Arthur Cohen <arthur.cohen@embecosm.com> | 2023-06-23 16:37:16 +0200 |
---|---|---|
committer | Arthur Cohen <arthur.cohen@embecosm.com> | 2024-01-16 18:49:34 +0100 |
commit | c3d5d8bee12e5e18d89db6126fbdd0edde110bf7 (patch) | |
tree | 6c720f933df2e0ae2c421531ad6030e0897c8096 /gcc | |
parent | 1678cdd3aac83c3e255e4395c12a9d7dff350a70 (diff) | |
download | gcc-c3d5d8bee12e5e18d89db6126fbdd0edde110bf7.zip gcc-c3d5d8bee12e5e18d89db6126fbdd0edde110bf7.tar.gz gcc-c3d5d8bee12e5e18d89db6126fbdd0edde110bf7.tar.bz2 |
gccrs: optional: Import tl's optional type
This is directly adapted from https://github.com/TartanLlama/optional.
This class is tested for C++11 and on GCC 4.8, which is our target mimimum
GCC version.
This optional class provides multiple advantages over our existing
implementation of Optional<T>:
- Easier API (no static constructors)
- Better method chaining (and_then, map...)
- Harsher semantics (no assign-through on Optional<T&>)
Over the std::optional type present in C++'s standard library, this type offers:
- Optional references without going through std::reference_wrapper
- Better method chaining
For these reasons, I am in favor of importing it directly rather than
adapt C++14's std::optional type to work with C++11 and GCC 4.8.
gcc/rust/ChangeLog:
* util/optional.h: New file.
Diffstat (limited to 'gcc')
-rw-r--r-- | gcc/rust/util/optional.h | 2062 |
1 files changed, 2062 insertions, 0 deletions
diff --git a/gcc/rust/util/optional.h b/gcc/rust/util/optional.h new file mode 100644 index 0000000..2b48c45d --- /dev/null +++ b/gcc/rust/util/optional.h @@ -0,0 +1,2062 @@ + +/// +// optional - An implementation of std::optional with extensions +// Written in 2017 by Sy Brand (tartanllama@gmail.com, @TartanLlama) +// +// Documentation available at https://tl.tartanllama.xyz/ +// +// To the extent possible under law, the author(s) have dedicated all +// copyright and related and neighboring rights to this software to the +// public domain worldwide. This software is distributed without any warranty. +// +// You should have received a copy of the CC0 Public Domain Dedication +// along with this software. If not, see +// <http://creativecommons.org/publicdomain/zero/1.0/>. +/// + +#ifndef TL_OPTIONAL_HPP +#define TL_OPTIONAL_HPP + +#define TL_OPTIONAL_VERSION_MAJOR 1 +#define TL_OPTIONAL_VERSION_MINOR 1 +#define TL_OPTIONAL_VERSION_PATCH 0 + +#include <exception> +#include <functional> +#include <new> +#include <type_traits> +#include <utility> + +#if (defined(_MSC_VER) && _MSC_VER == 1900) +#define TL_OPTIONAL_MSVC2015 +#endif + +#if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && \ + !defined(__clang__)) +#define TL_OPTIONAL_GCC49 +#endif + +#if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 4 && \ + !defined(__clang__)) +#define TL_OPTIONAL_GCC54 +#endif + +#if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 5 && \ + !defined(__clang__)) +#define TL_OPTIONAL_GCC55 +#endif + +#if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && \ + !defined(__clang__)) +// GCC < 5 doesn't support overloading on const&& for member functions +#define TL_OPTIONAL_NO_CONSTRR + +// GCC < 5 doesn't support some standard C++11 type traits +#define TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \ + std::has_trivial_copy_constructor<T>::value +#define TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::has_trivial_copy_assign<T>::value + +// This one will be different for GCC 5.7 if it's ever supported +#define TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value + +// GCC 5 < v < 8 has a bug in is_trivially_copy_constructible which breaks std::vector +// for non-copyable types +#elif (defined(__GNUC__) && __GNUC__ < 8 && \ + !defined(__clang__)) +#ifndef TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX +#define TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX +namespace tl { + namespace detail { + template<class T> + struct is_trivially_copy_constructible : std::is_trivially_copy_constructible<T>{}; +#ifdef _GLIBCXX_VECTOR + template<class T, class A> + struct is_trivially_copy_constructible<std::vector<T,A>> + : std::is_trivially_copy_constructible<T>{}; +#endif + } +} +#endif + +#define TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \ + tl::detail::is_trivially_copy_constructible<T>::value +#define TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) \ + std::is_trivially_copy_assignable<T>::value +#define TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value +#else +#define TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \ + std::is_trivially_copy_constructible<T>::value +#define TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) \ + std::is_trivially_copy_assignable<T>::value +#define TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value +#endif + +#if __cplusplus > 201103L +#define TL_OPTIONAL_CXX14 +#endif + +// constexpr implies const in C++11, not C++14 +#if (__cplusplus == 201103L || defined(TL_OPTIONAL_MSVC2015) || \ + defined(TL_OPTIONAL_GCC49)) +#define TL_OPTIONAL_11_CONSTEXPR +#else +#define TL_OPTIONAL_11_CONSTEXPR constexpr +#endif + +namespace tl { +#ifndef TL_MONOSTATE_INPLACE_MUTEX +#define TL_MONOSTATE_INPLACE_MUTEX +/// Used to represent an optional with no data; essentially a bool +class monostate {}; + +/// A tag type to tell optional to construct its value in-place +struct in_place_t { + explicit in_place_t() = default; +}; +/// A tag to tell optional to construct its value in-place +static constexpr in_place_t in_place{}; +#endif + +template <class T> class optional; + +namespace detail { +#ifndef TL_TRAITS_MUTEX +#define TL_TRAITS_MUTEX +// C++14-style aliases for brevity +template <class T> using remove_const_t = typename std::remove_const<T>::type; +template <class T> +using remove_reference_t = typename std::remove_reference<T>::type; +template <class T> using decay_t = typename std::decay<T>::type; +template <bool E, class T = void> +using enable_if_t = typename std::enable_if<E, T>::type; +template <bool B, class T, class F> +using conditional_t = typename std::conditional<B, T, F>::type; + +// std::conjunction from C++17 +template <class...> struct conjunction : std::true_type {}; +template <class B> struct conjunction<B> : B {}; +template <class B, class... Bs> +struct conjunction<B, Bs...> + : std::conditional<bool(B::value), conjunction<Bs...>, B>::type {}; + +#if defined(_LIBCPP_VERSION) && __cplusplus == 201103L +#define TL_TRAITS_LIBCXX_MEM_FN_WORKAROUND +#endif + +// In C++11 mode, there's an issue in libc++'s std::mem_fn +// which results in a hard-error when using it in a noexcept expression +// in some cases. This is a check to workaround the common failing case. +#ifdef TL_TRAITS_LIBCXX_MEM_FN_WORKAROUND +template <class T> struct is_pointer_to_non_const_member_func : std::false_type{}; +template <class T, class Ret, class... Args> +struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...)> : std::true_type{}; +template <class T, class Ret, class... Args> +struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...)&> : std::true_type{}; +template <class T, class Ret, class... Args> +struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...)&&> : std::true_type{}; +template <class T, class Ret, class... Args> +struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...) volatile> : std::true_type{}; +template <class T, class Ret, class... Args> +struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...) volatile&> : std::true_type{}; +template <class T, class Ret, class... Args> +struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...) volatile&&> : std::true_type{}; + +template <class T> struct is_const_or_const_ref : std::false_type{}; +template <class T> struct is_const_or_const_ref<T const&> : std::true_type{}; +template <class T> struct is_const_or_const_ref<T const> : std::true_type{}; +#endif + +// std::invoke from C++17 +// https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround +template <typename Fn, typename... Args, +#ifdef TL_TRAITS_LIBCXX_MEM_FN_WORKAROUND + typename = enable_if_t<!(is_pointer_to_non_const_member_func<Fn>::value + && is_const_or_const_ref<Args...>::value)>, +#endif + typename = enable_if_t<std::is_member_pointer<decay_t<Fn>>::value>, + int = 0> +constexpr auto invoke(Fn &&f, Args &&... args) noexcept( + noexcept(std::mem_fn(f)(std::forward<Args>(args)...))) + -> decltype(std::mem_fn(f)(std::forward<Args>(args)...)) { + return std::mem_fn(f)(std::forward<Args>(args)...); +} + +template <typename Fn, typename... Args, + typename = enable_if_t<!std::is_member_pointer<decay_t<Fn>>::value>> +constexpr auto invoke(Fn &&f, Args &&... args) noexcept( + noexcept(std::forward<Fn>(f)(std::forward<Args>(args)...))) + -> decltype(std::forward<Fn>(f)(std::forward<Args>(args)...)) { + return std::forward<Fn>(f)(std::forward<Args>(args)...); +} + +// std::invoke_result from C++17 +template <class F, class, class... Us> struct invoke_result_impl; + +template <class F, class... Us> +struct invoke_result_impl< + F, decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...), void()), + Us...> { + using type = decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...)); +}; + +template <class F, class... Us> +using invoke_result = invoke_result_impl<F, void, Us...>; + +template <class F, class... Us> +using invoke_result_t = typename invoke_result<F, Us...>::type; + +#if defined(_MSC_VER) && _MSC_VER <= 1900 +// TODO make a version which works with MSVC 2015 +template <class T, class U = T> struct is_swappable : std::true_type {}; + +template <class T, class U = T> struct is_nothrow_swappable : std::true_type {}; +#else +// https://stackoverflow.com/questions/26744589/what-is-a-proper-way-to-implement-is-swappable-to-test-for-the-swappable-concept +namespace swap_adl_tests { +// if swap ADL finds this then it would call std::swap otherwise (same +// signature) +struct tag {}; + +template <class T> tag swap(T &, T &); +template <class T, std::size_t N> tag swap(T (&a)[N], T (&b)[N]); + +// helper functions to test if an unqualified swap is possible, and if it +// becomes std::swap +template <class, class> std::false_type can_swap(...) noexcept(false); +template <class T, class U, + class = decltype(swap(std::declval<T &>(), std::declval<U &>()))> +std::true_type can_swap(int) noexcept(noexcept(swap(std::declval<T &>(), + std::declval<U &>()))); + +template <class, class> std::false_type uses_std(...); +template <class T, class U> +std::is_same<decltype(swap(std::declval<T &>(), std::declval<U &>())), tag> +uses_std(int); + +template <class T> +struct is_std_swap_noexcept + : std::integral_constant<bool, + std::is_nothrow_move_constructible<T>::value && + std::is_nothrow_move_assignable<T>::value> {}; + +template <class T, std::size_t N> +struct is_std_swap_noexcept<T[N]> : is_std_swap_noexcept<T> {}; + +template <class T, class U> +struct is_adl_swap_noexcept + : std::integral_constant<bool, noexcept(can_swap<T, U>(0))> {}; +} // namespace swap_adl_tests + +template <class T, class U = T> +struct is_swappable + : std::integral_constant< + bool, + decltype(detail::swap_adl_tests::can_swap<T, U>(0))::value && + (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value || + (std::is_move_assignable<T>::value && + std::is_move_constructible<T>::value))> {}; + +template <class T, std::size_t N> +struct is_swappable<T[N], T[N]> + : std::integral_constant< + bool, + decltype(detail::swap_adl_tests::can_swap<T[N], T[N]>(0))::value && + (!decltype( + detail::swap_adl_tests::uses_std<T[N], T[N]>(0))::value || + is_swappable<T, T>::value)> {}; + +template <class T, class U = T> +struct is_nothrow_swappable + : std::integral_constant< + bool, + is_swappable<T, U>::value && + ((decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value + &&detail::swap_adl_tests::is_std_swap_noexcept<T>::value) || + (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value && + detail::swap_adl_tests::is_adl_swap_noexcept<T, + U>::value))> { +}; +#endif +#endif + +// std::void_t from C++17 +template <class...> struct voider { using type = void; }; +template <class... Ts> using void_t = typename voider<Ts...>::type; + +// Trait for checking if a type is a tl::optional +template <class T> struct is_optional_impl : std::false_type {}; +template <class T> struct is_optional_impl<optional<T>> : std::true_type {}; +template <class T> using is_optional = is_optional_impl<decay_t<T>>; + +// Change void to tl::monostate +template <class U> +using fixup_void = conditional_t<std::is_void<U>::value, monostate, U>; + +template <class F, class U, class = invoke_result_t<F, U>> +using get_map_return = optional<fixup_void<invoke_result_t<F, U>>>; + +// Check if invoking F for some Us returns void +template <class F, class = void, class... U> struct returns_void_impl; +template <class F, class... U> +struct returns_void_impl<F, void_t<invoke_result_t<F, U...>>, U...> + : std::is_void<invoke_result_t<F, U...>> {}; +template <class F, class... U> +using returns_void = returns_void_impl<F, void, U...>; + +template <class T, class... U> +using enable_if_ret_void = enable_if_t<returns_void<T &&, U...>::value>; + +template <class T, class... U> +using disable_if_ret_void = enable_if_t<!returns_void<T &&, U...>::value>; + +template <class T, class U> +using enable_forward_value = + detail::enable_if_t<std::is_constructible<T, U &&>::value && + !std::is_same<detail::decay_t<U>, in_place_t>::value && + !std::is_same<optional<T>, detail::decay_t<U>>::value>; + +template <class T, class U, class Other> +using enable_from_other = detail::enable_if_t< + std::is_constructible<T, Other>::value && + !std::is_constructible<T, optional<U> &>::value && + !std::is_constructible<T, optional<U> &&>::value && + !std::is_constructible<T, const optional<U> &>::value && + !std::is_constructible<T, const optional<U> &&>::value && + !std::is_convertible<optional<U> &, T>::value && + !std::is_convertible<optional<U> &&, T>::value && + !std::is_convertible<const optional<U> &, T>::value && + !std::is_convertible<const optional<U> &&, T>::value>; + +template <class T, class U> +using enable_assign_forward = detail::enable_if_t< + !std::is_same<optional<T>, detail::decay_t<U>>::value && + !detail::conjunction<std::is_scalar<T>, + std::is_same<T, detail::decay_t<U>>>::value && + std::is_constructible<T, U>::value && std::is_assignable<T &, U>::value>; + +template <class T, class U, class Other> +using enable_assign_from_other = detail::enable_if_t< + std::is_constructible<T, Other>::value && + std::is_assignable<T &, Other>::value && + !std::is_constructible<T, optional<U> &>::value && + !std::is_constructible<T, optional<U> &&>::value && + !std::is_constructible<T, const optional<U> &>::value && + !std::is_constructible<T, const optional<U> &&>::value && + !std::is_convertible<optional<U> &, T>::value && + !std::is_convertible<optional<U> &&, T>::value && + !std::is_convertible<const optional<U> &, T>::value && + !std::is_convertible<const optional<U> &&, T>::value && + !std::is_assignable<T &, optional<U> &>::value && + !std::is_assignable<T &, optional<U> &&>::value && + !std::is_assignable<T &, const optional<U> &>::value && + !std::is_assignable<T &, const optional<U> &&>::value>; + +// The storage base manages the actual storage, and correctly propagates +// trivial destruction from T. This case is for when T is not trivially +// destructible. +template <class T, bool = ::std::is_trivially_destructible<T>::value> +struct optional_storage_base { + TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept + : m_dummy(), m_has_value(false) {} + + template <class... U> + TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U &&... u) + : m_value(std::forward<U>(u)...), m_has_value(true) {} + + ~optional_storage_base() { + if (m_has_value) { + m_value.~T(); + m_has_value = false; + } + } + + struct dummy {}; + union { + dummy m_dummy; + T m_value; + }; + + bool m_has_value; +}; + +// This case is for when T is trivially destructible. +template <class T> struct optional_storage_base<T, true> { + TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept + : m_dummy(), m_has_value(false) {} + + template <class... U> + TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U &&... u) + : m_value(std::forward<U>(u)...), m_has_value(true) {} + + // No destructor, so this class is trivially destructible + + struct dummy {}; + union { + dummy m_dummy; + T m_value; + }; + + bool m_has_value = false; +}; + +// This base class provides some handy member functions which can be used in +// further derived classes +template <class T> struct optional_operations_base : optional_storage_base<T> { + using optional_storage_base<T>::optional_storage_base; + + void hard_reset() noexcept { + get().~T(); + this->m_has_value = false; + } + + template <class... Args> void construct(Args &&... args) { + new (std::addressof(this->m_value)) T(std::forward<Args>(args)...); + this->m_has_value = true; + } + + template <class Opt> void assign(Opt &&rhs) { + if (this->has_value()) { + if (rhs.has_value()) { + this->m_value = std::forward<Opt>(rhs).get(); + } else { + this->m_value.~T(); + this->m_has_value = false; + } + } + + else if (rhs.has_value()) { + construct(std::forward<Opt>(rhs).get()); + } + } + + bool has_value() const { return this->m_has_value; } + + TL_OPTIONAL_11_CONSTEXPR T &get() & { return this->m_value; } + TL_OPTIONAL_11_CONSTEXPR const T &get() const & { return this->m_value; } + TL_OPTIONAL_11_CONSTEXPR T &&get() && { return std::move(this->m_value); } +#ifndef TL_OPTIONAL_NO_CONSTRR + constexpr const T &&get() const && { return std::move(this->m_value); } +#endif +}; + +// This class manages conditionally having a trivial copy constructor +// This specialization is for when T is trivially copy constructible +template <class T, bool = TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)> +struct optional_copy_base : optional_operations_base<T> { + using optional_operations_base<T>::optional_operations_base; +}; + +// This specialization is for when T is not trivially copy constructible +template <class T> +struct optional_copy_base<T, false> : optional_operations_base<T> { + using optional_operations_base<T>::optional_operations_base; + + optional_copy_base() = default; + optional_copy_base(const optional_copy_base &rhs) + : optional_operations_base<T>() { + if (rhs.has_value()) { + this->construct(rhs.get()); + } else { + this->m_has_value = false; + } + } + + optional_copy_base(optional_copy_base &&rhs) = default; + optional_copy_base &operator=(const optional_copy_base &rhs) = default; + optional_copy_base &operator=(optional_copy_base &&rhs) = default; +}; + +// This class manages conditionally having a trivial move constructor +// Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it +// doesn't implement an analogue to std::is_trivially_move_constructible. We +// have to make do with a non-trivial move constructor even if T is trivially +// move constructible +#ifndef TL_OPTIONAL_GCC49 +template <class T, bool = std::is_trivially_move_constructible<T>::value> +struct optional_move_base : optional_copy_base<T> { + using optional_copy_base<T>::optional_copy_base; +}; +#else +template <class T, bool = false> struct optional_move_base; +#endif +template <class T> struct optional_move_base<T, false> : optional_copy_base<T> { + using optional_copy_base<T>::optional_copy_base; + + optional_move_base() = default; + optional_move_base(const optional_move_base &rhs) = default; + + optional_move_base(optional_move_base &&rhs) noexcept( + std::is_nothrow_move_constructible<T>::value) { + if (rhs.has_value()) { + this->construct(std::move(rhs.get())); + } else { + this->m_has_value = false; + } + } + optional_move_base &operator=(const optional_move_base &rhs) = default; + optional_move_base &operator=(optional_move_base &&rhs) = default; +}; + +// This class manages conditionally having a trivial copy assignment operator +template <class T, bool = TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) && + TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) && + TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T)> +struct optional_copy_assign_base : optional_move_base<T> { + using optional_move_base<T>::optional_move_base; +}; + +template <class T> +struct optional_copy_assign_base<T, false> : optional_move_base<T> { + using optional_move_base<T>::optional_move_base; + + optional_copy_assign_base() = default; + optional_copy_assign_base(const optional_copy_assign_base &rhs) = default; + + optional_copy_assign_base(optional_copy_assign_base &&rhs) = default; + optional_copy_assign_base &operator=(const optional_copy_assign_base &rhs) { + this->assign(rhs); + return *this; + } + optional_copy_assign_base & + operator=(optional_copy_assign_base &&rhs) = default; +}; + +// This class manages conditionally having a trivial move assignment operator +// Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it +// doesn't implement an analogue to std::is_trivially_move_assignable. We have +// to make do with a non-trivial move assignment operator even if T is trivially +// move assignable +#ifndef TL_OPTIONAL_GCC49 +template <class T, bool = std::is_trivially_destructible<T>::value + &&std::is_trivially_move_constructible<T>::value + &&std::is_trivially_move_assignable<T>::value> +struct optional_move_assign_base : optional_copy_assign_base<T> { + using optional_copy_assign_base<T>::optional_copy_assign_base; +}; +#else +template <class T, bool = false> struct optional_move_assign_base; +#endif + +template <class T> +struct optional_move_assign_base<T, false> : optional_copy_assign_base<T> { + using optional_copy_assign_base<T>::optional_copy_assign_base; + + optional_move_assign_base() = default; + optional_move_assign_base(const optional_move_assign_base &rhs) = default; + + optional_move_assign_base(optional_move_assign_base &&rhs) = default; + + optional_move_assign_base & + operator=(const optional_move_assign_base &rhs) = default; + + optional_move_assign_base & + operator=(optional_move_assign_base &&rhs) noexcept( + std::is_nothrow_move_constructible<T>::value + &&std::is_nothrow_move_assignable<T>::value) { + this->assign(std::move(rhs)); + return *this; + } +}; + +// optional_delete_ctor_base will conditionally delete copy and move +// constructors depending on whether T is copy/move constructible +template <class T, bool EnableCopy = std::is_copy_constructible<T>::value, + bool EnableMove = std::is_move_constructible<T>::value> +struct optional_delete_ctor_base { + optional_delete_ctor_base() = default; + optional_delete_ctor_base(const optional_delete_ctor_base &) = default; + optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = default; + optional_delete_ctor_base & + operator=(const optional_delete_ctor_base &) = default; + optional_delete_ctor_base & + operator=(optional_delete_ctor_base &&) noexcept = default; +}; + +template <class T> struct optional_delete_ctor_base<T, true, false> { + optional_delete_ctor_base() = default; + optional_delete_ctor_base(const optional_delete_ctor_base &) = default; + optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = delete; + optional_delete_ctor_base & + operator=(const optional_delete_ctor_base &) = default; + optional_delete_ctor_base & + operator=(optional_delete_ctor_base &&) noexcept = default; +}; + +template <class T> struct optional_delete_ctor_base<T, false, true> { + optional_delete_ctor_base() = default; + optional_delete_ctor_base(const optional_delete_ctor_base &) = delete; + optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = default; + optional_delete_ctor_base & + operator=(const optional_delete_ctor_base &) = default; + optional_delete_ctor_base & + operator=(optional_delete_ctor_base &&) noexcept = default; +}; + +template <class T> struct optional_delete_ctor_base<T, false, false> { + optional_delete_ctor_base() = default; + optional_delete_ctor_base(const optional_delete_ctor_base &) = delete; + optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = delete; + optional_delete_ctor_base & + operator=(const optional_delete_ctor_base &) = default; + optional_delete_ctor_base & + operator=(optional_delete_ctor_base &&) noexcept = default; +}; + +// optional_delete_assign_base will conditionally delete copy and move +// constructors depending on whether T is copy/move constructible + assignable +template <class T, + bool EnableCopy = (std::is_copy_constructible<T>::value && + std::is_copy_assignable<T>::value), + bool EnableMove = (std::is_move_constructible<T>::value && + std::is_move_assignable<T>::value)> +struct optional_delete_assign_base { + optional_delete_assign_base() = default; + optional_delete_assign_base(const optional_delete_assign_base &) = default; + optional_delete_assign_base(optional_delete_assign_base &&) noexcept = + default; + optional_delete_assign_base & + operator=(const optional_delete_assign_base &) = default; + optional_delete_assign_base & + operator=(optional_delete_assign_base &&) noexcept = default; +}; + +template <class T> struct optional_delete_assign_base<T, true, false> { + optional_delete_assign_base() = default; + optional_delete_assign_base(const optional_delete_assign_base &) = default; + optional_delete_assign_base(optional_delete_assign_base &&) noexcept = + default; + optional_delete_assign_base & + operator=(const optional_delete_assign_base &) = default; + optional_delete_assign_base & + operator=(optional_delete_assign_base &&) noexcept = delete; +}; + +template <class T> struct optional_delete_assign_base<T, false, true> { + optional_delete_assign_base() = default; + optional_delete_assign_base(const optional_delete_assign_base &) = default; + optional_delete_assign_base(optional_delete_assign_base &&) noexcept = + default; + optional_delete_assign_base & + operator=(const optional_delete_assign_base &) = delete; + optional_delete_assign_base & + operator=(optional_delete_assign_base &&) noexcept = default; +}; + +template <class T> struct optional_delete_assign_base<T, false, false> { + optional_delete_assign_base() = default; + optional_delete_assign_base(const optional_delete_assign_base &) = default; + optional_delete_assign_base(optional_delete_assign_base &&) noexcept = + default; + optional_delete_assign_base & + operator=(const optional_delete_assign_base &) = delete; + optional_delete_assign_base & + operator=(optional_delete_assign_base &&) noexcept = delete; +}; + +} // namespace detail + +/// A tag type to represent an empty optional +struct nullopt_t { + struct do_not_use {}; + constexpr explicit nullopt_t(do_not_use, do_not_use) noexcept {} +}; +/// Represents an empty optional +static constexpr nullopt_t nullopt{nullopt_t::do_not_use{}, + nullopt_t::do_not_use{}}; + +class bad_optional_access : public std::exception { +public: + bad_optional_access() = default; + const char *what() const noexcept { return "Optional has no value"; } +}; + +/// An optional object is an object that contains the storage for another +/// object and manages the lifetime of this contained object, if any. The +/// contained object may be initialized after the optional object has been +/// initialized, and may be destroyed before the optional object has been +/// destroyed. The initialization state of the contained object is tracked by +/// the optional object. +template <class T> +class optional : private detail::optional_move_assign_base<T>, + private detail::optional_delete_ctor_base<T>, + private detail::optional_delete_assign_base<T> { + using base = detail::optional_move_assign_base<T>; + + static_assert(!std::is_same<T, in_place_t>::value, + "instantiation of optional with in_place_t is ill-formed"); + static_assert(!std::is_same<detail::decay_t<T>, nullopt_t>::value, + "instantiation of optional with nullopt_t is ill-formed"); + +public: +// The different versions for C++14 and 11 are needed because deduced return +// types are not SFINAE-safe. This provides better support for things like +// generic lambdas. C.f. +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0826r0.html +#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \ + !defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55) + /// Carries out some operation which returns an optional on the stored + /// object if there is one. + template <class F> TL_OPTIONAL_11_CONSTEXPR auto and_then(F &&f) & { + using result = detail::invoke_result_t<F, T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : result(nullopt); + } + + template <class F> TL_OPTIONAL_11_CONSTEXPR auto and_then(F &&f) && { + using result = detail::invoke_result_t<F, T &&>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : result(nullopt); + } + + template <class F> constexpr auto and_then(F &&f) const & { + using result = detail::invoke_result_t<F, const T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : result(nullopt); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F> constexpr auto and_then(F &&f) const && { + using result = detail::invoke_result_t<F, const T &&>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : result(nullopt); + } +#endif +#else + /// Carries out some operation which returns an optional on the stored + /// object if there is one. + template <class F> + TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T &> and_then(F &&f) & { + using result = detail::invoke_result_t<F, T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } + + template <class F> + TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T &&> and_then(F &&f) && { + using result = detail::invoke_result_t<F, T &&>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : result(nullopt); + } + + template <class F> + constexpr detail::invoke_result_t<F, const T &> and_then(F &&f) const & { + using result = detail::invoke_result_t<F, const T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : result(nullopt); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F> + constexpr detail::invoke_result_t<F, const T &&> and_then(F &&f) const && { + using result = detail::invoke_result_t<F, const T &&>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : result(nullopt); + } +#endif +#endif + +#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \ + !defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55) + /// Carries out some operation on the stored object if there is one. + template <class F> TL_OPTIONAL_11_CONSTEXPR auto map(F &&f) & { + return optional_map_impl(*this, std::forward<F>(f)); + } + + template <class F> TL_OPTIONAL_11_CONSTEXPR auto map(F &&f) && { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + template <class F> constexpr auto map(F &&f) const & { + return optional_map_impl(*this, std::forward<F>(f)); + } + + template <class F> constexpr auto map(F &&f) const && { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#else + /// Carries out some operation on the stored object if there is one. + template <class F> + TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional &>(), + std::declval<F &&>())) + map(F &&f) & { + return optional_map_impl(*this, std::forward<F>(f)); + } + + template <class F> + TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional &&>(), + std::declval<F &&>())) + map(F &&f) && { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + template <class F> + constexpr decltype(optional_map_impl(std::declval<const optional &>(), + std::declval<F &&>())) + map(F &&f) const & { + return optional_map_impl(*this, std::forward<F>(f)); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F> + constexpr decltype(optional_map_impl(std::declval<const optional &&>(), + std::declval<F &&>())) + map(F &&f) const && { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#endif +#endif + +#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \ + !defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55) + /// Carries out some operation on the stored object if there is one. + template <class F> TL_OPTIONAL_11_CONSTEXPR auto transform(F&& f) & { + return optional_map_impl(*this, std::forward<F>(f)); + } + + template <class F> TL_OPTIONAL_11_CONSTEXPR auto transform(F&& f) && { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + template <class F> constexpr auto transform(F&& f) const & { + return optional_map_impl(*this, std::forward<F>(f)); + } + + template <class F> constexpr auto transform(F&& f) const && { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#else + /// Carries out some operation on the stored object if there is one. + template <class F> + TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&>(), + std::declval<F&&>())) + transform(F&& f) & { + return optional_map_impl(*this, std::forward<F>(f)); + } + + template <class F> + TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&&>(), + std::declval<F&&>())) + transform(F&& f) && { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + template <class F> + constexpr decltype(optional_map_impl(std::declval<const optional&>(), + std::declval<F&&>())) + transform(F&& f) const & { + return optional_map_impl(*this, std::forward<F>(f)); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F> + constexpr decltype(optional_map_impl(std::declval<const optional&&>(), + std::declval<F&&>())) + transform(F&& f) const && { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#endif +#endif + + /// Calls `f` if the optional is empty + template <class F, detail::enable_if_ret_void<F> * = nullptr> + optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) & { + if (has_value()) + return *this; + + std::forward<F>(f)(); + return nullopt; + } + + template <class F, detail::disable_if_ret_void<F> * = nullptr> + optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) & { + return has_value() ? *this : std::forward<F>(f)(); + } + + template <class F, detail::enable_if_ret_void<F> * = nullptr> + optional<T> or_else(F &&f) && { + if (has_value()) + return std::move(*this); + + std::forward<F>(f)(); + return nullopt; + } + + template <class F, detail::disable_if_ret_void<F> * = nullptr> + optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) && { + return has_value() ? std::move(*this) : std::forward<F>(f)(); + } + + template <class F, detail::enable_if_ret_void<F> * = nullptr> + optional<T> or_else(F &&f) const & { + if (has_value()) + return *this; + + std::forward<F>(f)(); + return nullopt; + } + + template <class F, detail::disable_if_ret_void<F> * = nullptr> + optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) const & { + return has_value() ? *this : std::forward<F>(f)(); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F, detail::enable_if_ret_void<F> * = nullptr> + optional<T> or_else(F &&f) const && { + if (has_value()) + return std::move(*this); + + std::forward<F>(f)(); + return nullopt; + } + + template <class F, detail::disable_if_ret_void<F> * = nullptr> + optional<T> or_else(F &&f) const && { + return has_value() ? std::move(*this) : std::forward<F>(f)(); + } +#endif + + /// Maps the stored value with `f` if there is one, otherwise returns `u`. + template <class F, class U> U map_or(F &&f, U &&u) & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : std::forward<U>(u); + } + + template <class F, class U> U map_or(F &&f, U &&u) && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : std::forward<U>(u); + } + + template <class F, class U> U map_or(F &&f, U &&u) const & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : std::forward<U>(u); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F, class U> U map_or(F &&f, U &&u) const && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : std::forward<U>(u); + } +#endif + + /// Maps the stored value with `f` if there is one, otherwise calls + /// `u` and returns the result. + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F &&f, U &&u) & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : std::forward<U>(u)(); + } + + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F &&f, U &&u) && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : std::forward<U>(u)(); + } + + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F &&f, U &&u) const & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : std::forward<U>(u)(); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F &&f, U &&u) const && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : std::forward<U>(u)(); + } +#endif + + /// Returns `u` if `*this` has a value, otherwise an empty optional. + template <class U> + constexpr optional<typename std::decay<U>::type> conjunction(U &&u) const { + using result = optional<detail::decay_t<U>>; + return has_value() ? result{u} : result{nullopt}; + } + + /// Returns `rhs` if `*this` is empty, otherwise the current value. + TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional &rhs) & { + return has_value() ? *this : rhs; + } + + constexpr optional disjunction(const optional &rhs) const & { + return has_value() ? *this : rhs; + } + + TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional &rhs) && { + return has_value() ? std::move(*this) : rhs; + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + constexpr optional disjunction(const optional &rhs) const && { + return has_value() ? std::move(*this) : rhs; + } +#endif + + TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional &&rhs) & { + return has_value() ? *this : std::move(rhs); + } + + constexpr optional disjunction(optional &&rhs) const & { + return has_value() ? *this : std::move(rhs); + } + + TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional &&rhs) && { + return has_value() ? std::move(*this) : std::move(rhs); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + constexpr optional disjunction(optional &&rhs) const && { + return has_value() ? std::move(*this) : std::move(rhs); + } +#endif + + /// Takes the value out of the optional, leaving it empty + optional take() { + optional ret = std::move(*this); + reset(); + return ret; + } + + using value_type = T; + + /// Constructs an optional that does not contain a value. + constexpr optional() noexcept = default; + + constexpr optional(nullopt_t) noexcept {} + + /// Copy constructor + /// + /// If `rhs` contains a value, the stored value is direct-initialized with + /// it. Otherwise, the constructed optional is empty. + TL_OPTIONAL_11_CONSTEXPR optional(const optional &rhs) = default; + + /// Move constructor + /// + /// If `rhs` contains a value, the stored value is direct-initialized with + /// it. Otherwise, the constructed optional is empty. + TL_OPTIONAL_11_CONSTEXPR optional(optional &&rhs) = default; + + /// Constructs the stored value in-place using the given arguments. + template <class... Args> + constexpr explicit optional( + detail::enable_if_t<std::is_constructible<T, Args...>::value, in_place_t>, + Args &&... args) + : base(in_place, std::forward<Args>(args)...) {} + + template <class U, class... Args> + TL_OPTIONAL_11_CONSTEXPR explicit optional( + detail::enable_if_t<std::is_constructible<T, std::initializer_list<U> &, + Args &&...>::value, + in_place_t>, + std::initializer_list<U> il, Args &&... args) { + this->construct(il, std::forward<Args>(args)...); + } + + /// Constructs the stored value with `u`. + template < + class U = T, + detail::enable_if_t<std::is_convertible<U &&, T>::value> * = nullptr, + detail::enable_forward_value<T, U> * = nullptr> + constexpr optional(U &&u) : base(in_place, std::forward<U>(u)) {} + + template < + class U = T, + detail::enable_if_t<!std::is_convertible<U &&, T>::value> * = nullptr, + detail::enable_forward_value<T, U> * = nullptr> + constexpr explicit optional(U &&u) : base(in_place, std::forward<U>(u)) {} + + /// Converting copy constructor. + template < + class U, detail::enable_from_other<T, U, const U &> * = nullptr, + detail::enable_if_t<std::is_convertible<const U &, T>::value> * = nullptr> + optional(const optional<U> &rhs) { + if (rhs.has_value()) { + this->construct(*rhs); + } + } + + template <class U, detail::enable_from_other<T, U, const U &> * = nullptr, + detail::enable_if_t<!std::is_convertible<const U &, T>::value> * = + nullptr> + explicit optional(const optional<U> &rhs) { + if (rhs.has_value()) { + this->construct(*rhs); + } + } + + /// Converting move constructor. + template < + class U, detail::enable_from_other<T, U, U &&> * = nullptr, + detail::enable_if_t<std::is_convertible<U &&, T>::value> * = nullptr> + optional(optional<U> &&rhs) { + if (rhs.has_value()) { + this->construct(std::move(*rhs)); + } + } + + template < + class U, detail::enable_from_other<T, U, U &&> * = nullptr, + detail::enable_if_t<!std::is_convertible<U &&, T>::value> * = nullptr> + explicit optional(optional<U> &&rhs) { + if (rhs.has_value()) { + this->construct(std::move(*rhs)); + } + } + + /// Destroys the stored value if there is one. + ~optional() = default; + + /// Assignment to empty. + /// + /// Destroys the current value if there is one. + optional &operator=(nullopt_t) noexcept { + if (has_value()) { + this->m_value.~T(); + this->m_has_value = false; + } + + return *this; + } + + /// Copy assignment. + /// + /// Copies the value from `rhs` if there is one. Otherwise resets the stored + /// value in `*this`. + optional &operator=(const optional &rhs) = default; + + /// Move assignment. + /// + /// Moves the value from `rhs` if there is one. Otherwise resets the stored + /// value in `*this`. + optional &operator=(optional &&rhs) = default; + + /// Assigns the stored value from `u`, destroying the old value if there was + /// one. + template <class U = T, detail::enable_assign_forward<T, U> * = nullptr> + optional &operator=(U &&u) { + if (has_value()) { + this->m_value = std::forward<U>(u); + } else { + this->construct(std::forward<U>(u)); + } + + return *this; + } + + /// Converting copy assignment operator. + /// + /// Copies the value from `rhs` if there is one. Otherwise resets the stored + /// value in `*this`. + template <class U, + detail::enable_assign_from_other<T, U, const U &> * = nullptr> + optional &operator=(const optional<U> &rhs) { + if (has_value()) { + if (rhs.has_value()) { + this->m_value = *rhs; + } else { + this->hard_reset(); + } + } + + else if (rhs.has_value()) { + this->construct(*rhs); + } + + return *this; + } + + // TODO check exception guarantee + /// Converting move assignment operator. + /// + /// Moves the value from `rhs` if there is one. Otherwise resets the stored + /// value in `*this`. + template <class U, detail::enable_assign_from_other<T, U, U> * = nullptr> + optional &operator=(optional<U> &&rhs) { + if (has_value()) { + if (rhs.has_value()) { + this->m_value = std::move(*rhs); + } else { + this->hard_reset(); + } + } + + else if (rhs.has_value()) { + this->construct(std::move(*rhs)); + } + + return *this; + } + + /// Constructs the value in-place, destroying the current one if there is + /// one. + template <class... Args> T &emplace(Args &&... args) { + static_assert(std::is_constructible<T, Args &&...>::value, + "T must be constructible with Args"); + + *this = nullopt; + this->construct(std::forward<Args>(args)...); + return value(); + } + + template <class U, class... Args> + detail::enable_if_t< + std::is_constructible<T, std::initializer_list<U> &, Args &&...>::value, + T &> + emplace(std::initializer_list<U> il, Args &&... args) { + *this = nullopt; + this->construct(il, std::forward<Args>(args)...); + return value(); + } + + /// Swaps this optional with the other. + /// + /// If neither optionals have a value, nothing happens. + /// If both have a value, the values are swapped. + /// If one has a value, it is moved to the other and the movee is left + /// valueless. + void + swap(optional &rhs) noexcept(std::is_nothrow_move_constructible<T>::value + &&detail::is_nothrow_swappable<T>::value) { + using std::swap; + if (has_value()) { + if (rhs.has_value()) { + swap(**this, *rhs); + } else { + new (std::addressof(rhs.m_value)) T(std::move(this->m_value)); + this->m_value.T::~T(); + } + } else if (rhs.has_value()) { + new (std::addressof(this->m_value)) T(std::move(rhs.m_value)); + rhs.m_value.T::~T(); + } + swap(this->m_has_value, rhs.m_has_value); + } + + /// Returns a pointer to the stored value + constexpr const T *operator->() const { + return std::addressof(this->m_value); + } + + TL_OPTIONAL_11_CONSTEXPR T *operator->() { + return std::addressof(this->m_value); + } + + /// Returns the stored value + TL_OPTIONAL_11_CONSTEXPR T &operator*() & { return this->m_value; } + + constexpr const T &operator*() const & { return this->m_value; } + + TL_OPTIONAL_11_CONSTEXPR T &&operator*() && { + return std::move(this->m_value); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + constexpr const T &&operator*() const && { return std::move(this->m_value); } +#endif + + /// Returns whether or not the optional has a value + constexpr bool has_value() const noexcept { return this->m_has_value; } + + constexpr explicit operator bool() const noexcept { + return this->m_has_value; + } + + /// Returns the contained value if there is one, otherwise throws bad_optional_access + TL_OPTIONAL_11_CONSTEXPR T &value() & { + if (has_value()) + return this->m_value; + throw bad_optional_access(); + } + TL_OPTIONAL_11_CONSTEXPR const T &value() const & { + if (has_value()) + return this->m_value; + throw bad_optional_access(); + } + TL_OPTIONAL_11_CONSTEXPR T &&value() && { + if (has_value()) + return std::move(this->m_value); + throw bad_optional_access(); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + TL_OPTIONAL_11_CONSTEXPR const T &&value() const && { + if (has_value()) + return std::move(this->m_value); + throw bad_optional_access(); + } +#endif + + /// Returns the stored value if there is one, otherwise returns `u` + template <class U> constexpr T value_or(U &&u) const & { + static_assert(std::is_copy_constructible<T>::value && + std::is_convertible<U &&, T>::value, + "T must be copy constructible and convertible from U"); + return has_value() ? **this : static_cast<T>(std::forward<U>(u)); + } + + template <class U> TL_OPTIONAL_11_CONSTEXPR T value_or(U &&u) && { + static_assert(std::is_move_constructible<T>::value && + std::is_convertible<U &&, T>::value, + "T must be move constructible and convertible from U"); + return has_value() ? std::move(**this) : static_cast<T>(std::forward<U>(u)); + } + + /// Destroys the stored value if one exists, making the optional empty + void reset() noexcept { + if (has_value()) { + this->m_value.~T(); + this->m_has_value = false; + } + } +}; // namespace tl + +/// Compares two optional objects +template <class T, class U> +inline constexpr bool operator==(const optional<T> &lhs, + const optional<U> &rhs) { + return lhs.has_value() == rhs.has_value() && + (!lhs.has_value() || *lhs == *rhs); +} +template <class T, class U> +inline constexpr bool operator!=(const optional<T> &lhs, + const optional<U> &rhs) { + return lhs.has_value() != rhs.has_value() || + (lhs.has_value() && *lhs != *rhs); +} +template <class T, class U> +inline constexpr bool operator<(const optional<T> &lhs, + const optional<U> &rhs) { + return rhs.has_value() && (!lhs.has_value() || *lhs < *rhs); +} +template <class T, class U> +inline constexpr bool operator>(const optional<T> &lhs, + const optional<U> &rhs) { + return lhs.has_value() && (!rhs.has_value() || *lhs > *rhs); +} +template <class T, class U> +inline constexpr bool operator<=(const optional<T> &lhs, + const optional<U> &rhs) { + return !lhs.has_value() || (rhs.has_value() && *lhs <= *rhs); +} +template <class T, class U> +inline constexpr bool operator>=(const optional<T> &lhs, + const optional<U> &rhs) { + return !rhs.has_value() || (lhs.has_value() && *lhs >= *rhs); +} + +/// Compares an optional to a `nullopt` +template <class T> +inline constexpr bool operator==(const optional<T> &lhs, nullopt_t) noexcept { + return !lhs.has_value(); +} +template <class T> +inline constexpr bool operator==(nullopt_t, const optional<T> &rhs) noexcept { + return !rhs.has_value(); +} +template <class T> +inline constexpr bool operator!=(const optional<T> &lhs, nullopt_t) noexcept { + return lhs.has_value(); +} +template <class T> +inline constexpr bool operator!=(nullopt_t, const optional<T> &rhs) noexcept { + return rhs.has_value(); +} +template <class T> +inline constexpr bool operator<(const optional<T> &, nullopt_t) noexcept { + return false; +} +template <class T> +inline constexpr bool operator<(nullopt_t, const optional<T> &rhs) noexcept { + return rhs.has_value(); +} +template <class T> +inline constexpr bool operator<=(const optional<T> &lhs, nullopt_t) noexcept { + return !lhs.has_value(); +} +template <class T> +inline constexpr bool operator<=(nullopt_t, const optional<T> &) noexcept { + return true; +} +template <class T> +inline constexpr bool operator>(const optional<T> &lhs, nullopt_t) noexcept { + return lhs.has_value(); +} +template <class T> +inline constexpr bool operator>(nullopt_t, const optional<T> &) noexcept { + return false; +} +template <class T> +inline constexpr bool operator>=(const optional<T> &, nullopt_t) noexcept { + return true; +} +template <class T> +inline constexpr bool operator>=(nullopt_t, const optional<T> &rhs) noexcept { + return !rhs.has_value(); +} + +/// Compares the optional with a value. +template <class T, class U> +inline constexpr bool operator==(const optional<T> &lhs, const U &rhs) { + return lhs.has_value() ? *lhs == rhs : false; +} +template <class T, class U> +inline constexpr bool operator==(const U &lhs, const optional<T> &rhs) { + return rhs.has_value() ? lhs == *rhs : false; +} +template <class T, class U> +inline constexpr bool operator!=(const optional<T> &lhs, const U &rhs) { + return lhs.has_value() ? *lhs != rhs : true; +} +template <class T, class U> +inline constexpr bool operator!=(const U &lhs, const optional<T> &rhs) { + return rhs.has_value() ? lhs != *rhs : true; +} +template <class T, class U> +inline constexpr bool operator<(const optional<T> &lhs, const U &rhs) { + return lhs.has_value() ? *lhs < rhs : true; +} +template <class T, class U> +inline constexpr bool operator<(const U &lhs, const optional<T> &rhs) { + return rhs.has_value() ? lhs < *rhs : false; +} +template <class T, class U> +inline constexpr bool operator<=(const optional<T> &lhs, const U &rhs) { + return lhs.has_value() ? *lhs <= rhs : true; +} +template <class T, class U> +inline constexpr bool operator<=(const U &lhs, const optional<T> &rhs) { + return rhs.has_value() ? lhs <= *rhs : false; +} +template <class T, class U> +inline constexpr bool operator>(const optional<T> &lhs, const U &rhs) { + return lhs.has_value() ? *lhs > rhs : false; +} +template <class T, class U> +inline constexpr bool operator>(const U &lhs, const optional<T> &rhs) { + return rhs.has_value() ? lhs > *rhs : true; +} +template <class T, class U> +inline constexpr bool operator>=(const optional<T> &lhs, const U &rhs) { + return lhs.has_value() ? *lhs >= rhs : false; +} +template <class T, class U> +inline constexpr bool operator>=(const U &lhs, const optional<T> &rhs) { + return rhs.has_value() ? lhs >= *rhs : true; +} + +template <class T, + detail::enable_if_t<std::is_move_constructible<T>::value> * = nullptr, + detail::enable_if_t<detail::is_swappable<T>::value> * = nullptr> +void swap(optional<T> &lhs, + optional<T> &rhs) noexcept(noexcept(lhs.swap(rhs))) { + return lhs.swap(rhs); +} + +namespace detail { +struct i_am_secret {}; +} // namespace detail + +template <class T = detail::i_am_secret, class U, + class Ret = + detail::conditional_t<std::is_same<T, detail::i_am_secret>::value, + detail::decay_t<U>, T>> +inline constexpr optional<Ret> make_optional(U &&v) { + return optional<Ret>(std::forward<U>(v)); +} + +template <class T, class... Args> +inline constexpr optional<T> make_optional(Args &&... args) { + return optional<T>(in_place, std::forward<Args>(args)...); +} +template <class T, class U, class... Args> +inline constexpr optional<T> make_optional(std::initializer_list<U> il, + Args &&... args) { + return optional<T>(in_place, il, std::forward<Args>(args)...); +} + +#if __cplusplus >= 201703L +template <class T> optional(T)->optional<T>; +#endif + +/// \exclude +namespace detail { +#ifdef TL_OPTIONAL_CXX14 +template <class Opt, class F, + class Ret = decltype(detail::invoke(std::declval<F>(), + *std::declval<Opt>())), + detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> +constexpr auto optional_map_impl(Opt &&opt, F &&f) { + return opt.has_value() + ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) + : optional<Ret>(nullopt); +} + +template <class Opt, class F, + class Ret = decltype(detail::invoke(std::declval<F>(), + *std::declval<Opt>())), + detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> +auto optional_map_impl(Opt &&opt, F &&f) { + if (opt.has_value()) { + detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)); + return make_optional(monostate{}); + } + + return optional<monostate>(nullopt); +} +#else +template <class Opt, class F, + class Ret = decltype(detail::invoke(std::declval<F>(), + *std::declval<Opt>())), + detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> + +constexpr auto optional_map_impl(Opt &&opt, F &&f) -> optional<Ret> { + return opt.has_value() + ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) + : optional<Ret>(nullopt); +} + +template <class Opt, class F, + class Ret = decltype(detail::invoke(std::declval<F>(), + *std::declval<Opt>())), + detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> + +auto optional_map_impl(Opt &&opt, F &&f) -> optional<monostate> { + if (opt.has_value()) { + detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)); + return monostate{}; + } + + return nullopt; +} +#endif +} // namespace detail + +/// Specialization for when `T` is a reference. `optional<T&>` acts similarly +/// to a `T*`, but provides more operations and shows intent more clearly. +template <class T> class optional<T &> { +public: +// The different versions for C++14 and 11 are needed because deduced return +// types are not SFINAE-safe. This provides better support for things like +// generic lambdas. C.f. +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0826r0.html +#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \ + !defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55) + + /// Carries out some operation which returns an optional on the stored + /// object if there is one. + template <class F> TL_OPTIONAL_11_CONSTEXPR auto and_then(F &&f) & { + using result = detail::invoke_result_t<F, T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : result(nullopt); + } + + template <class F> TL_OPTIONAL_11_CONSTEXPR auto and_then(F &&f) && { + using result = detail::invoke_result_t<F, T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : result(nullopt); + } + + template <class F> constexpr auto and_then(F &&f) const & { + using result = detail::invoke_result_t<F, const T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : result(nullopt); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F> constexpr auto and_then(F &&f) const && { + using result = detail::invoke_result_t<F, const T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : result(nullopt); + } +#endif +#else + /// Carries out some operation which returns an optional on the stored + /// object if there is one. + template <class F> + TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T &> and_then(F &&f) & { + using result = detail::invoke_result_t<F, T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : result(nullopt); + } + + template <class F> + TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T &> and_then(F &&f) && { + using result = detail::invoke_result_t<F, T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : result(nullopt); + } + + template <class F> + constexpr detail::invoke_result_t<F, const T &> and_then(F &&f) const & { + using result = detail::invoke_result_t<F, const T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : result(nullopt); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F> + constexpr detail::invoke_result_t<F, const T &> and_then(F &&f) const && { + using result = detail::invoke_result_t<F, const T &>; + static_assert(detail::is_optional<result>::value, + "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : result(nullopt); + } +#endif +#endif + +#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \ + !defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55) + /// Carries out some operation on the stored object if there is one. + template <class F> TL_OPTIONAL_11_CONSTEXPR auto map(F &&f) & { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + + template <class F> TL_OPTIONAL_11_CONSTEXPR auto map(F &&f) && { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + template <class F> constexpr auto map(F &&f) const & { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + + template <class F> constexpr auto map(F &&f) const && { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#else + /// Carries out some operation on the stored object if there is one. + template <class F> + TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional &>(), + std::declval<F &&>())) + map(F &&f) & { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + + template <class F> + TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional &&>(), + std::declval<F &&>())) + map(F &&f) && { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + template <class F> + constexpr decltype(detail::optional_map_impl(std::declval<const optional &>(), + std::declval<F &&>())) + map(F &&f) const & { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F> + constexpr decltype(detail::optional_map_impl(std::declval<const optional &&>(), + std::declval<F &&>())) + map(F &&f) const && { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#endif +#endif + +#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \ + !defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55) + /// Carries out some operation on the stored object if there is one. + template <class F> TL_OPTIONAL_11_CONSTEXPR auto transform(F&& f) & { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + + template <class F> TL_OPTIONAL_11_CONSTEXPR auto transform(F&& f) && { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + template <class F> constexpr auto transform(F&& f) const & { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + + template <class F> constexpr auto transform(F&& f) const && { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#else + /// Carries out some operation on the stored object if there is one. + template <class F> + TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&>(), + std::declval<F&&>())) + transform(F&& f) & { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + + /// \group map + /// \synopsis template <class F> auto transform(F &&f) &&; + template <class F> + TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&&>(), + std::declval<F&&>())) + transform(F&& f) && { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + template <class F> + constexpr decltype(detail::optional_map_impl(std::declval<const optional&>(), + std::declval<F&&>())) + transform(F&& f) const & { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F> + constexpr decltype(detail::optional_map_impl(std::declval<const optional&&>(), + std::declval<F&&>())) + transform(F&& f) const && { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#endif +#endif + + /// Calls `f` if the optional is empty + template <class F, detail::enable_if_ret_void<F> * = nullptr> + optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) & { + if (has_value()) + return *this; + + std::forward<F>(f)(); + return nullopt; + } + + template <class F, detail::disable_if_ret_void<F> * = nullptr> + optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) & { + return has_value() ? *this : std::forward<F>(f)(); + } + + template <class F, detail::enable_if_ret_void<F> * = nullptr> + optional<T> or_else(F &&f) && { + if (has_value()) + return std::move(*this); + + std::forward<F>(f)(); + return nullopt; + } + + template <class F, detail::disable_if_ret_void<F> * = nullptr> + optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) && { + return has_value() ? std::move(*this) : std::forward<F>(f)(); + } + + template <class F, detail::enable_if_ret_void<F> * = nullptr> + optional<T> or_else(F &&f) const & { + if (has_value()) + return *this; + + std::forward<F>(f)(); + return nullopt; + } + + template <class F, detail::disable_if_ret_void<F> * = nullptr> + optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) const & { + return has_value() ? *this : std::forward<F>(f)(); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F, detail::enable_if_ret_void<F> * = nullptr> + optional<T> or_else(F &&f) const && { + if (has_value()) + return std::move(*this); + + std::forward<F>(f)(); + return nullopt; + } + + template <class F, detail::disable_if_ret_void<F> * = nullptr> + optional<T> or_else(F &&f) const && { + return has_value() ? std::move(*this) : std::forward<F>(f)(); + } +#endif + + /// Maps the stored value with `f` if there is one, otherwise returns `u` + template <class F, class U> U map_or(F &&f, U &&u) & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : std::forward<U>(u); + } + + template <class F, class U> U map_or(F &&f, U &&u) && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : std::forward<U>(u); + } + + template <class F, class U> U map_or(F &&f, U &&u) const & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : std::forward<U>(u); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F, class U> U map_or(F &&f, U &&u) const && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : std::forward<U>(u); + } +#endif + + /// Maps the stored value with `f` if there is one, otherwise calls + /// `u` and returns the result. + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F &&f, U &&u) & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : std::forward<U>(u)(); + } + + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F &&f, U &&u) && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : std::forward<U>(u)(); + } + + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F &&f, U &&u) const & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) + : std::forward<U>(u)(); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F &&f, U &&u) const && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) + : std::forward<U>(u)(); + } +#endif + + /// Returns `u` if `*this` has a value, otherwise an empty optional. + template <class U> + constexpr optional<typename std::decay<U>::type> conjunction(U &&u) const { + using result = optional<detail::decay_t<U>>; + return has_value() ? result{u} : result{nullopt}; + } + + /// Returns `rhs` if `*this` is empty, otherwise the current value. + TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional &rhs) & { + return has_value() ? *this : rhs; + } + + constexpr optional disjunction(const optional &rhs) const & { + return has_value() ? *this : rhs; + } + + TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional &rhs) && { + return has_value() ? std::move(*this) : rhs; + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + constexpr optional disjunction(const optional &rhs) const && { + return has_value() ? std::move(*this) : rhs; + } +#endif + + TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional &&rhs) & { + return has_value() ? *this : std::move(rhs); + } + + constexpr optional disjunction(optional &&rhs) const & { + return has_value() ? *this : std::move(rhs); + } + + TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional &&rhs) && { + return has_value() ? std::move(*this) : std::move(rhs); + } + +#ifndef TL_OPTIONAL_NO_CONSTRR + constexpr optional disjunction(optional &&rhs) const && { + return has_value() ? std::move(*this) : std::move(rhs); + } +#endif + + /// Takes the value out of the optional, leaving it empty + optional take() { + optional ret = std::move(*this); + reset(); + return ret; + } + + using value_type = T &; + + /// Constructs an optional that does not contain a value. + constexpr optional() noexcept : m_value(nullptr) {} + + constexpr optional(nullopt_t) noexcept : m_value(nullptr) {} + + /// Copy constructor + /// + /// If `rhs` contains a value, the stored value is direct-initialized with + /// it. Otherwise, the constructed optional is empty. + TL_OPTIONAL_11_CONSTEXPR optional(const optional &rhs) noexcept = default; + + /// Move constructor + /// + /// If `rhs` contains a value, the stored value is direct-initialized with + /// it. Otherwise, the constructed optional is empty. + TL_OPTIONAL_11_CONSTEXPR optional(optional &&rhs) = default; + + /// Constructs the stored value with `u`. + template <class U = T, + detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value> + * = nullptr> + constexpr optional(U &&u) noexcept : m_value(std::addressof(u)) { + static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue"); + } + + template <class U> + constexpr explicit optional(const optional<U> &rhs) noexcept : optional(*rhs) {} + + /// No-op + ~optional() = default; + + /// Assignment to empty. + /// + /// Destroys the current value if there is one. + optional &operator=(nullopt_t) noexcept { + m_value = nullptr; + return *this; + } + + /// Copy assignment. + /// + /// Rebinds this optional to the referee of `rhs` if there is one. Otherwise + /// resets the stored value in `*this`. + optional &operator=(const optional &rhs) = default; + + /// Rebinds this optional to `u`. + template <class U = T, + detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value> + * = nullptr> + optional &operator=(U &&u) { + static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue"); + m_value = std::addressof(u); + return *this; + } + + /// Converting copy assignment operator. + /// + /// Rebinds this optional to the referee of `rhs` if there is one. Otherwise + /// resets the stored value in `*this`. + template <class U> optional &operator=(const optional<U> &rhs) noexcept { + m_value = std::addressof(rhs.value()); + return *this; + } + + /// Rebinds this optional to `u`. + template <class U = T, + detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value> + * = nullptr> + optional &emplace(U &&u) noexcept { + return *this = std::forward<U>(u); + } + + void swap(optional &rhs) noexcept { std::swap(m_value, rhs.m_value); } + + /// Returns a pointer to the stored value + constexpr const T *operator->() const noexcept { return m_value; } + + TL_OPTIONAL_11_CONSTEXPR T *operator->() noexcept { return m_value; } + + /// Returns the stored value + TL_OPTIONAL_11_CONSTEXPR T &operator*() noexcept { return *m_value; } + + constexpr const T &operator*() const noexcept { return *m_value; } + + constexpr bool has_value() const noexcept { return m_value != nullptr; } + + constexpr explicit operator bool() const noexcept { + return m_value != nullptr; + } + + /// Returns the contained value if there is one, otherwise throws bad_optional_access + TL_OPTIONAL_11_CONSTEXPR T &value() { + if (has_value()) + return *m_value; + throw bad_optional_access(); + } + TL_OPTIONAL_11_CONSTEXPR const T &value() const { + if (has_value()) + return *m_value; + throw bad_optional_access(); + } + + /// Returns the stored value if there is one, otherwise returns `u` + template <class U> constexpr T value_or(U &&u) const & noexcept { + static_assert(std::is_copy_constructible<T>::value && + std::is_convertible<U &&, T>::value, + "T must be copy constructible and convertible from U"); + return has_value() ? **this : static_cast<T>(std::forward<U>(u)); + } + + /// \group value_or + template <class U> TL_OPTIONAL_11_CONSTEXPR T value_or(U &&u) && noexcept { + static_assert(std::is_move_constructible<T>::value && + std::is_convertible<U &&, T>::value, + "T must be move constructible and convertible from U"); + return has_value() ? **this : static_cast<T>(std::forward<U>(u)); + } + + /// Destroys the stored value if one exists, making the optional empty + void reset() noexcept { m_value = nullptr; } + +private: + T *m_value; +}; // namespace tl + + + +} // namespace tl + +namespace std { +// TODO SFINAE +template <class T> struct hash<tl::optional<T>> { + ::std::size_t operator()(const tl::optional<T> &o) const { + if (!o.has_value()) + return 0; + + return std::hash<tl::detail::remove_const_t<T>>()(*o); + } +}; +} // namespace std + +#endif
\ No newline at end of file |