aboutsummaryrefslogtreecommitdiff
path: root/gcc
diff options
context:
space:
mode:
authorRichard Sandiford <richard.sandiford@arm.com>2025-08-11 09:24:10 +0100
committerRichard Sandiford <richard.sandiford@arm.com>2025-08-11 09:24:10 +0100
commit3e6e885beb7097c5c5ee2c48ddb3b0e61f3a1fc7 (patch)
treef6d9f4422ff20b8304ec3c25b33c87f44f7ab55f /gcc
parent1138d716c449051aca30fc7a82db606bd2e8378c (diff)
downloadgcc-3e6e885beb7097c5c5ee2c48ddb3b0e61f3a1fc7.zip
gcc-3e6e885beb7097c5c5ee2c48ddb3b0e61f3a1fc7.tar.gz
gcc-3e6e885beb7097c5c5ee2c48ddb3b0e61f3a1fc7.tar.bz2
simplify-rtx: Distribute some non-narrowing subregs [PR121306]
In g:965564eafb721f8000013a3112f1bba8d8fae32b I'd added code to try distributing non-widening subregs through logic ops, in cases where that would eliminate a term of the logic op. For "reasons", this indirectly caused combine to generate: (set (zero_extract:SI (reg/v:SI 101 [ a ]) (const_int 8 [0x8]) (const_int 8 [0x8])) (not:SI (sign_extract:SI (reg:SI 107 [ b ]) (const_int 8 [0x8]) (const_int 8 [0x8])))) instead of: (set (zero_extract:SI (reg/v:SI 101 [ a ]) (const_int 8 [0x8]) (const_int 8 [0x8])) (subreg:SI (not:QI (subreg:QI (sign_extract:SI (reg:SI 107 [ b ]) (const_int 8 [0x8]) (const_int 8 [0x8])) 0)) 0)) for some tests that were intended to match x86's *one_cmplqi_ext<mode>_1 (see g:a58d770fa1d17ead3c38417b299cce3f19f392db). However, other more direct ways of generating the pattern continued to have the unsimplified (subreg:SI (not:QI (subreg:QI (...:SI ...)))) structure, since that structure wasn't the focus of the original patch. This patch tries to tackle that simplification head-on. It's another case of distributing subregs, but this time for non-narrowing rather than non-widening subregs. We already do the same distribution for word_mode: /* Attempt to simplify WORD_MODE SUBREGs of bitwise expressions. */ if (outermode == word_mode && (GET_CODE (op) == IOR || GET_CODE (op) == XOR || GET_CODE (op) == AND) && SCALAR_INT_MODE_P (innermode)) { rtx op0 = simplify_subreg (outermode, XEXP (op, 0), innermode, byte); rtx op1 = simplify_subreg (outermode, XEXP (op, 1), innermode, byte); if (op0 && op1) return simplify_gen_binary (GET_CODE (op), outermode, op0, op1); } which g:0340177d54d08b6375391ba164a878e6a596275e extended to NOT. For word_mode, there are (reasonably) no restrictions on the inner mode other than that it is an integer. Doing word_mode logic ops should be at least as efficient as subword logic ops (if the target provides subword ops at all). And word_mode logic ops should be cheaper than multi-word logic ops. But here we need the distribution for SImode rather than word_mode (DImode). The patch therefore extends the word_mode distributions to non-narrowing subregs in which the two modes occupy the same number of words. This should hopefully be relatively conservative. It prevents the new rule from going away from word_mode, and attempting to convert (say) a QImode subreg of a word_mode AND into a QImode AND. It should be suitable for both CISCy and RISCy targets, including those that define WORD_REGISTER_OPERATIONS. The patch also fixes some overlong lines in related code. gcc/ PR rtl-optimization/121306 * simplify-rtx.cc (simplify_context::simplify_subreg): Distribute non-narrowing integer-to-integer subregs through logic ops, in a similar way to the existing word_mode handling.
Diffstat (limited to 'gcc')
-rw-r--r--gcc/simplify-rtx.cc102
1 files changed, 81 insertions, 21 deletions
diff --git a/gcc/simplify-rtx.cc b/gcc/simplify-rtx.cc
index ee9c048..8f0f16c 100644
--- a/gcc/simplify-rtx.cc
+++ b/gcc/simplify-rtx.cc
@@ -8333,29 +8333,58 @@ simplify_context::simplify_subreg (machine_mode outermode, rtx op,
return XEXP (XEXP (op, 0), 0);
}
- /* Attempt to simplify WORD_MODE SUBREGs of bitwise expressions. */
- if (outermode == word_mode
- && (GET_CODE (op) == IOR || GET_CODE (op) == XOR || GET_CODE (op) == AND)
- && SCALAR_INT_MODE_P (innermode))
+ auto distribute_subreg = [&](rtx op)
{
- rtx op0 = simplify_subreg (outermode, XEXP (op, 0), innermode, byte);
- rtx op1 = simplify_subreg (outermode, XEXP (op, 1), innermode, byte);
- if (op0 && op1)
- return simplify_gen_binary (GET_CODE (op), outermode, op0, op1);
- }
+ return simplify_subreg (outermode, op, innermode, byte);
+ };
- /* Attempt to simplify WORD_MODE SUBREGs of unary bitwise expression. */
- if (outermode == word_mode && GET_CODE (op) == NOT
- && SCALAR_INT_MODE_P (innermode))
- {
- rtx op0 = simplify_subreg (outermode, XEXP (op, 0), innermode, byte);
- if (op0)
- return simplify_gen_unary (GET_CODE (op), outermode, op0, outermode);
- }
+ /* Try distributing the subreg through logic operations, if that
+ leads to all subexpressions being simplified. For example,
+ distributing the outer subreg in:
+
+ (subreg:SI (not:QI (subreg:QI (reg:SI X) <lowpart>)) 0)
+
+ gives:
+ (not:SI (reg:SI X))
+
+ This should be a win if the outermode is word_mode, since logical
+ operations on word_mode should (a) be no more expensive than logical
+ operations on subword modes and (b) are likely to be cheaper than
+ logical operations on multiword modes.
+
+ Otherwise, handle the case where the subreg is non-narrowing and does
+ not change the number of words. The non-narrowing condition ensures
+ that we don't convert word_mode operations to subword operations. */
scalar_int_mode int_outermode, int_innermode;
if (is_a <scalar_int_mode> (outermode, &int_outermode)
&& is_a <scalar_int_mode> (innermode, &int_innermode)
+ && (outermode == word_mode
+ || ((GET_MODE_PRECISION (int_outermode)
+ >= GET_MODE_PRECISION (int_innermode))
+ && (CEIL (GET_MODE_SIZE (int_outermode), UNITS_PER_WORD)
+ <= CEIL (GET_MODE_SIZE (int_innermode), UNITS_PER_WORD)))))
+ switch (GET_CODE (op))
+ {
+ case NOT:
+ if (rtx op0 = distribute_subreg (XEXP (op, 0)))
+ return simplify_gen_unary (GET_CODE (op), outermode, op0, outermode);
+ break;
+
+ case AND:
+ case IOR:
+ case XOR:
+ if (rtx op0 = distribute_subreg (XEXP (op, 0)))
+ if (rtx op1 = distribute_subreg (XEXP (op, 1)))
+ return simplify_gen_binary (GET_CODE (op), outermode, op0, op1);
+ break;
+
+ default:
+ break;
+ }
+
+ if (is_a <scalar_int_mode> (outermode, &int_outermode)
+ && is_a <scalar_int_mode> (innermode, &int_innermode)
&& known_eq (byte, subreg_lowpart_offset (int_outermode, int_innermode)))
{
/* Handle polynomial integers. The upper bits of a paradoxical
@@ -8407,8 +8436,8 @@ simplify_context::simplify_subreg (machine_mode outermode, rtx op,
return simplify_gen_relational (GET_CODE (op), outermode, innermode,
XEXP (op, 0), XEXP (op, 1));
- /* Distribute non-paradoxical subregs through logic ops in cases where one term
- disappears.
+ /* Distribute non-paradoxical subregs through logic ops in cases where
+ one term disappears.
(subreg:M1 (and:M2 X C1)) -> (subreg:M1 X)
(subreg:M1 (ior:M2 X C1)) -> (subreg:M1 C1)
@@ -8425,7 +8454,7 @@ simplify_context::simplify_subreg (machine_mode outermode, rtx op,
&& (GET_CODE (op) == AND || GET_CODE (op) == IOR || GET_CODE (op) == XOR)
&& CONSTANT_P (XEXP (op, 1)))
{
- rtx op1_subreg = simplify_subreg (outermode, XEXP (op, 1), innermode, byte);
+ rtx op1_subreg = distribute_subreg (XEXP (op, 1));
if (op1_subreg == CONSTM1_RTX (outermode))
{
if (GET_CODE (op) == IOR)
@@ -8439,7 +8468,7 @@ simplify_context::simplify_subreg (machine_mode outermode, rtx op,
if (op1_subreg == CONST0_RTX (outermode))
return (GET_CODE (op) == AND
? op1_subreg
- : simplify_gen_subreg (outermode, XEXP (op, 0), innermode, byte));
+ : distribute_subreg (XEXP (op, 0)));
}
return NULL_RTX;
@@ -8746,6 +8775,37 @@ test_scalar_int_ext_ops (machine_mode bmode, machine_mode smode)
bsubreg, inv_smask),
bmode),
sreg);
+
+ if (known_le (GET_MODE_PRECISION (bmode), BITS_PER_WORD))
+ {
+ rtx breg1 = make_test_reg (bmode);
+ rtx breg2 = make_test_reg (bmode);
+ rtx ssubreg1 = lowpart_subreg (smode, breg1, bmode);
+ rtx ssubreg2 = lowpart_subreg (smode, breg2, bmode);
+ rtx not_1 = simplify_gen_unary (NOT, smode, ssubreg1, smode);
+ rtx and_12 = simplify_gen_binary (AND, smode, ssubreg1, ssubreg2);
+ rtx ior_12 = simplify_gen_binary (IOR, smode, ssubreg1, ssubreg2);
+ rtx xor_12 = simplify_gen_binary (XOR, smode, ssubreg1, ssubreg2);
+ rtx and_n12 = simplify_gen_binary (AND, smode, not_1, ssubreg2);
+ rtx ior_n12 = simplify_gen_binary (IOR, smode, not_1, ssubreg2);
+ rtx xor_12_c = simplify_gen_binary (XOR, smode, xor_12, const1_rtx);
+ ASSERT_RTX_EQ (lowpart_subreg (bmode, not_1, smode),
+ gen_rtx_NOT (bmode, breg1));
+ ASSERT_RTX_EQ (lowpart_subreg (bmode, and_12, smode),
+ gen_rtx_AND (bmode, breg1, breg2));
+ ASSERT_RTX_EQ (lowpart_subreg (bmode, ior_12, smode),
+ gen_rtx_IOR (bmode, breg1, breg2));
+ ASSERT_RTX_EQ (lowpart_subreg (bmode, xor_12, smode),
+ gen_rtx_XOR (bmode, breg1, breg2));
+ ASSERT_RTX_EQ (lowpart_subreg (bmode, and_n12, smode),
+ gen_rtx_AND (bmode, gen_rtx_NOT (bmode, breg1), breg2));
+ ASSERT_RTX_EQ (lowpart_subreg (bmode, ior_n12, smode),
+ gen_rtx_IOR (bmode, gen_rtx_NOT (bmode, breg1), breg2));
+ ASSERT_RTX_EQ (lowpart_subreg (bmode, xor_12_c, smode),
+ gen_rtx_XOR (bmode,
+ gen_rtx_XOR (bmode, breg1, breg2),
+ const1_rtx));
+ }
}
/* Verify more simplifications of integer extension/truncation.