aboutsummaryrefslogtreecommitdiff
path: root/gcc/reload1.c
diff options
context:
space:
mode:
authorRichard Kenner <kenner@gcc.gnu.org>1991-12-16 07:45:50 -0500
committerRichard Kenner <kenner@gcc.gnu.org>1991-12-16 07:45:50 -0500
commit32131a9c0b124bf0dfa81c39744ae588e37bae6f (patch)
tree338095b309b81e3a8e618d1a031b4588687709b2 /gcc/reload1.c
parent0dbbbb09d3c7c393dc1b7774fee3caa95d9b3cb1 (diff)
downloadgcc-32131a9c0b124bf0dfa81c39744ae588e37bae6f.zip
gcc-32131a9c0b124bf0dfa81c39744ae588e37bae6f.tar.gz
gcc-32131a9c0b124bf0dfa81c39744ae588e37bae6f.tar.bz2
Initial revision
From-SVN: r120
Diffstat (limited to 'gcc/reload1.c')
-rw-r--r--gcc/reload1.c5648
1 files changed, 5648 insertions, 0 deletions
diff --git a/gcc/reload1.c b/gcc/reload1.c
new file mode 100644
index 0000000..cc196a8
--- /dev/null
+++ b/gcc/reload1.c
@@ -0,0 +1,5648 @@
+/* Reload pseudo regs into hard regs for insns that require hard regs.
+ Copyright (C) 1987-1991 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+
+#include "config.h"
+#include "rtl.h"
+#include "obstack.h"
+#include "insn-config.h"
+#include "insn-flags.h"
+#include "insn-codes.h"
+#include "flags.h"
+#include "expr.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "reload.h"
+#include "recog.h"
+#include "basic-block.h"
+#include "output.h"
+#include <stdio.h>
+
+/* This file contains the reload pass of the compiler, which is
+ run after register allocation has been done. It checks that
+ each insn is valid (operands required to be in registers really
+ are in registers of the proper class) and fixes up invalid ones
+ by copying values temporarily into registers for the insns
+ that need them.
+
+ The results of register allocation are described by the vector
+ reg_renumber; the insns still contain pseudo regs, but reg_renumber
+ can be used to find which hard reg, if any, a pseudo reg is in.
+
+ The technique we always use is to free up a few hard regs that are
+ called ``reload regs'', and for each place where a pseudo reg
+ must be in a hard reg, copy it temporarily into one of the reload regs.
+
+ All the pseudos that were formerly allocated to the hard regs that
+ are now in use as reload regs must be ``spilled''. This means
+ that they go to other hard regs, or to stack slots if no other
+ available hard regs can be found. Spilling can invalidate more
+ insns, requiring additional need for reloads, so we must keep checking
+ until the process stabilizes.
+
+ For machines with different classes of registers, we must keep track
+ of the register class needed for each reload, and make sure that
+ we allocate enough reload registers of each class.
+
+ The file reload.c contains the code that checks one insn for
+ validity and reports the reloads that it needs. This file
+ is in charge of scanning the entire rtl code, accumulating the
+ reload needs, spilling, assigning reload registers to use for
+ fixing up each insn, and generating the new insns to copy values
+ into the reload registers. */
+
+/* During reload_as_needed, element N contains a REG rtx for the hard reg
+ into which pseudo reg N has been reloaded (perhaps for a previous insn). */
+static rtx *reg_last_reload_reg;
+
+/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
+ for an output reload that stores into reg N. */
+static char *reg_has_output_reload;
+
+/* Indicates which hard regs are reload-registers for an output reload
+ in the current insn. */
+static HARD_REG_SET reg_is_output_reload;
+
+/* Element N is the constant value to which pseudo reg N is equivalent,
+ or zero if pseudo reg N is not equivalent to a constant.
+ find_reloads looks at this in order to replace pseudo reg N
+ with the constant it stands for. */
+rtx *reg_equiv_constant;
+
+/* Element N is a memory location to which pseudo reg N is equivalent,
+ prior to any register elimination (such as frame pointer to stack
+ pointer). Depending on whether or not it is a valid address, this value
+ is transferred to either reg_equiv_address or reg_equiv_mem. */
+static rtx *reg_equiv_memory_loc;
+
+/* Element N is the address of stack slot to which pseudo reg N is equivalent.
+ This is used when the address is not valid as a memory address
+ (because its displacement is too big for the machine.) */
+rtx *reg_equiv_address;
+
+/* Element N is the memory slot to which pseudo reg N is equivalent,
+ or zero if pseudo reg N is not equivalent to a memory slot. */
+rtx *reg_equiv_mem;
+
+/* Widest width in which each pseudo reg is referred to (via subreg). */
+static int *reg_max_ref_width;
+
+/* Element N is the insn that initialized reg N from its equivalent
+ constant or memory slot. */
+static rtx *reg_equiv_init;
+
+/* During reload_as_needed, element N contains the last pseudo regno
+ reloaded into the Nth reload register. This vector is in parallel
+ with spill_regs. If that pseudo reg occupied more than one register,
+ reg_reloaded_contents points to that pseudo for each spill register in
+ use; all of these must remain set for an inheritance to occur. */
+static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
+
+/* During reload_as_needed, element N contains the insn for which
+ the Nth reload register was last used. This vector is in parallel
+ with spill_regs, and its contents are significant only when
+ reg_reloaded_contents is significant. */
+static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
+
+/* Number of spill-regs so far; number of valid elements of spill_regs. */
+static int n_spills;
+
+/* In parallel with spill_regs, contains REG rtx's for those regs.
+ Holds the last rtx used for any given reg, or 0 if it has never
+ been used for spilling yet. This rtx is reused, provided it has
+ the proper mode. */
+static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
+
+/* In parallel with spill_regs, contains nonzero for a spill reg
+ that was stored after the last time it was used.
+ The precise value is the insn generated to do the store. */
+static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
+
+/* This table is the inverse mapping of spill_regs:
+ indexed by hard reg number,
+ it contains the position of that reg in spill_regs,
+ or -1 for something that is not in spill_regs. */
+static short spill_reg_order[FIRST_PSEUDO_REGISTER];
+
+/* This reg set indicates registers that may not be used for retrying global
+ allocation. The registers that may not be used include all spill registers
+ and the frame pointer (if we are using one). */
+HARD_REG_SET forbidden_regs;
+
+/* This reg set indicates registers that are not good for spill registers.
+ They will not be used to complete groups of spill registers. This includes
+ all fixed registers, registers that may be eliminated, and registers
+ explicitly used in the rtl.
+
+ (spill_reg_order prevents these registers from being used to start a
+ group.) */
+static HARD_REG_SET bad_spill_regs;
+
+/* Describes order of use of registers for reloading
+ of spilled pseudo-registers. `spills' is the number of
+ elements that are actually valid; new ones are added at the end. */
+static short spill_regs[FIRST_PSEUDO_REGISTER];
+
+/* Describes order of preference for putting regs into spill_regs.
+ Contains the numbers of all the hard regs, in order most preferred first.
+ This order is different for each function.
+ It is set up by order_regs_for_reload.
+ Empty elements at the end contain -1. */
+static short potential_reload_regs[FIRST_PSEUDO_REGISTER];
+
+/* 1 for a hard register that appears explicitly in the rtl
+ (for example, function value registers, special registers
+ used by insns, structure value pointer registers). */
+static char regs_explicitly_used[FIRST_PSEUDO_REGISTER];
+
+/* Indicates if a register was counted against the need for
+ groups. 0 means it can count against max_nongroup instead. */
+static HARD_REG_SET counted_for_groups;
+
+/* Indicates if a register was counted against the need for
+ non-groups. 0 means it can become part of a new group.
+ During choose_reload_regs, 1 here means don't use this reg
+ as part of a group, even if it seems to be otherwise ok. */
+static HARD_REG_SET counted_for_nongroups;
+
+/* Nonzero if indirect addressing is supported on the machine; this means
+ that spilling (REG n) does not require reloading it into a register in
+ order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
+ value indicates the level of indirect addressing supported, e.g., two
+ means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
+ a hard register. */
+
+static char spill_indirect_levels;
+
+/* Nonzero if indirect addressing is supported when the innermost MEM is
+ of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
+ which these are valid is the same as spill_indirect_levels, above. */
+
+char indirect_symref_ok;
+
+/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
+
+char double_reg_address_ok;
+
+/* Record the stack slot for each spilled hard register. */
+
+static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
+
+/* Width allocated so far for that stack slot. */
+
+static int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
+
+/* Indexed by register class and basic block number, nonzero if there is
+ any need for a spill register of that class in that basic block.
+ The pointer is 0 if we did stupid allocation and don't know
+ the structure of basic blocks. */
+
+char *basic_block_needs[N_REG_CLASSES];
+
+/* First uid used by insns created by reload in this function.
+ Used in find_equiv_reg. */
+int reload_first_uid;
+
+/* Flag set by local-alloc or global-alloc if anything is live in
+ a call-clobbered reg across calls. */
+
+int caller_save_needed;
+
+/* Set to 1 while reload_as_needed is operating.
+ Required by some machines to handle any generated moves differently. */
+
+int reload_in_progress = 0;
+
+/* These arrays record the insn_code of insns that may be needed to
+ perform input and output reloads of special objects. They provide a
+ place to pass a scratch register. */
+
+enum insn_code reload_in_optab[NUM_MACHINE_MODES];
+enum insn_code reload_out_optab[NUM_MACHINE_MODES];
+
+/* This obstack is used for allocation of rtl during register elmination.
+ The allocated storage can be freed once find_reloads has processed the
+ insn. */
+
+struct obstack reload_obstack;
+char *reload_firstobj;
+
+#define obstack_chunk_alloc xmalloc
+#define obstack_chunk_free free
+
+extern int xmalloc ();
+extern void free ();
+
+/* List of labels that must never be deleted. */
+extern rtx forced_labels;
+
+/* This structure is used to record information about register eliminations.
+ Each array entry describes one possible way of eliminating a register
+ in favor of another. If there is more than one way of eliminating a
+ particular register, the most preferred should be specified first. */
+
+static struct elim_table
+{
+ int from; /* Register number to be eliminated. */
+ int to; /* Register number used as replacement. */
+ int initial_offset; /* Initial difference between values. */
+ int can_eliminate; /* Non-zero if this elimination can be done. */
+ int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
+ insns made by reload. */
+ int offset; /* Current offset between the two regs. */
+ int previous_offset; /* Offset at end of previous insn. */
+ int ref_outside_mem; /* "to" has been referenced outside a MEM. */
+ rtx from_rtx; /* REG rtx for the register to be eliminated.
+ We cannot simply compare the number since
+ we might then spuriously replace a hard
+ register corresponding to a pseudo
+ assigned to the reg to be eliminated. */
+ rtx to_rtx; /* REG rtx for the replacement. */
+} reg_eliminate[] =
+
+/* If a set of eliminable registers was specified, define the table from it.
+ Otherwise, default to the normal case of the frame pointer being
+ replaced by the stack pointer. */
+
+#ifdef ELIMINABLE_REGS
+ ELIMINABLE_REGS;
+#else
+ {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
+#endif
+
+#define NUM_ELIMINABLE_REGS (sizeof reg_eliminate / sizeof reg_eliminate[0])
+
+/* Record the number of pending eliminations that have an offset not equal
+ to their initial offset. If non-zero, we use a new copy of each
+ replacement result in any insns encountered. */
+static int num_not_at_initial_offset;
+
+/* Count the number of registers that we may be able to eliminate. */
+static int num_eliminable;
+
+/* For each label, we record the offset of each elimination. If we reach
+ a label by more than one path and an offset differs, we cannot do the
+ elimination. This information is indexed by the number of the label.
+ The first table is an array of flags that records whether we have yet
+ encountered a label and the second table is an array of arrays, one
+ entry in the latter array for each elimination. */
+
+static char *offsets_known_at;
+static int (*offsets_at)[NUM_ELIMINABLE_REGS];
+
+/* Number of labels in the current function. */
+
+static int num_labels;
+
+void mark_home_live ();
+static void count_possible_groups ();
+static int possible_group_p ();
+static void scan_paradoxical_subregs ();
+static void reload_as_needed ();
+static int modes_equiv_for_class_p ();
+static void alter_reg ();
+static void delete_dead_insn ();
+static int new_spill_reg();
+static void set_label_offsets ();
+static int eliminate_regs_in_insn ();
+static void mark_not_eliminable ();
+static int spill_hard_reg ();
+static void choose_reload_regs ();
+static void emit_reload_insns ();
+static void delete_output_reload ();
+static void forget_old_reloads_1 ();
+static void order_regs_for_reload ();
+static rtx inc_for_reload ();
+static int constraint_accepts_reg_p ();
+static int count_occurrences ();
+
+extern void remove_death ();
+extern rtx adj_offsettable_operand ();
+extern rtx form_sum ();
+
+void
+init_reload ()
+{
+ register int i;
+
+ /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
+ Set spill_indirect_levels to the number of levels such addressing is
+ permitted, zero if it is not permitted at all. */
+
+ register rtx tem
+ = gen_rtx (MEM, Pmode,
+ gen_rtx (PLUS, Pmode,
+ gen_rtx (REG, Pmode, LAST_VIRTUAL_REGISTER + 1),
+ gen_rtx (CONST_INT, VOIDmode, 4)));
+ spill_indirect_levels = 0;
+
+ while (memory_address_p (QImode, tem))
+ {
+ spill_indirect_levels++;
+ tem = gen_rtx (MEM, Pmode, tem);
+ }
+
+ /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
+
+ tem = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, Pmode, "foo"));
+ indirect_symref_ok = memory_address_p (QImode, tem);
+
+ /* See if reg+reg is a valid (and offsettable) address. */
+
+ tem = gen_rtx (PLUS, Pmode,
+ gen_rtx (REG, Pmode, FRAME_POINTER_REGNUM),
+ gen_rtx (REG, Pmode, FRAME_POINTER_REGNUM));
+ /* This way, we make sure that reg+reg is an offsettable address. */
+ tem = plus_constant (tem, 4);
+
+ double_reg_address_ok = memory_address_p (QImode, tem);
+
+ /* Initialize obstack for our rtl allocation. */
+ gcc_obstack_init (&reload_obstack);
+ reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
+
+#ifdef HAVE_SECONDARY_RELOADS
+
+ /* Initialize the optabs for doing special input and output reloads. */
+
+ for (i = 0; i < NUM_MACHINE_MODES; i++)
+ reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
+
+#ifdef HAVE_reload_inqi
+ if (HAVE_reload_inqi)
+ reload_in_optab[(int) QImode] = CODE_FOR_reload_inqi;
+#endif
+#ifdef HAVE_reload_inhi
+ if (HAVE_reload_inhi)
+ reload_in_optab[(int) HImode] = CODE_FOR_reload_inhi;
+#endif
+#ifdef HAVE_reload_insi
+ if (HAVE_reload_insi)
+ reload_in_optab[(int) SImode] = CODE_FOR_reload_insi;
+#endif
+#ifdef HAVE_reload_indi
+ if (HAVE_reload_indi)
+ reload_in_optab[(int) DImode] = CODE_FOR_reload_indi;
+#endif
+#ifdef HAVE_reload_inti
+ if (HAVE_reload_inti)
+ reload_in_optab[(int) TImode] = CODE_FOR_reload_inti;
+#endif
+#ifdef HAVE_reload_insf
+ if (HAVE_reload_insf)
+ reload_in_optab[(int) SFmode] = CODE_FOR_reload_insf;
+#endif
+#ifdef HAVE_reload_indf
+ if (HAVE_reload_indf)
+ reload_in_optab[(int) DFmode] = CODE_FOR_reload_indf;
+#endif
+#ifdef HAVE_reload_inxf
+ if (HAVE_reload_inxf)
+ reload_in_optab[(int) XFmode] = CODE_FOR_reload_inxf;
+#endif
+#ifdef HAVE_reload_intf
+ if (HAVE_reload_intf)
+ reload_in_optab[(int) TFmode] = CODE_FOR_reload_intf;
+#endif
+
+#ifdef HAVE_reload_outqi
+ if (HAVE_reload_outqi)
+ reload_out_optab[(int) QImode] = CODE_FOR_reload_outqi;
+#endif
+#ifdef HAVE_reload_outhi
+ if (HAVE_reload_outhi)
+ reload_out_optab[(int) HImode] = CODE_FOR_reload_outhi;
+#endif
+#ifdef HAVE_reload_outsi
+ if (HAVE_reload_outsi)
+ reload_out_optab[(int) SImode] = CODE_FOR_reload_outsi;
+#endif
+#ifdef HAVE_reload_outdi
+ if (HAVE_reload_outdi)
+ reload_out_optab[(int) DImode] = CODE_FOR_reload_outdi;
+#endif
+#ifdef HAVE_reload_outti
+ if (HAVE_reload_outti)
+ reload_out_optab[(int) TImode] = CODE_FOR_reload_outti;
+#endif
+#ifdef HAVE_reload_outsf
+ if (HAVE_reload_outsf)
+ reload_out_optab[(int) SFmode] = CODE_FOR_reload_outsf;
+#endif
+#ifdef HAVE_reload_outdf
+ if (HAVE_reload_outdf)
+ reload_out_optab[(int) DFmode] = CODE_FOR_reload_outdf;
+#endif
+#ifdef HAVE_reload_outxf
+ if (HAVE_reload_outxf)
+ reload_out_optab[(int) XFmode] = CODE_FOR_reload_outxf;
+#endif
+#ifdef HAVE_reload_outtf
+ if (HAVE_reload_outtf)
+ reload_out_optab[(int) TFmode] = CODE_FOR_reload_outtf;
+#endif
+
+#endif /* HAVE_SECONDARY_RELOADS */
+
+}
+
+/* Main entry point for the reload pass, and only entry point
+ in this file.
+
+ FIRST is the first insn of the function being compiled.
+
+ GLOBAL nonzero means we were called from global_alloc
+ and should attempt to reallocate any pseudoregs that we
+ displace from hard regs we will use for reloads.
+ If GLOBAL is zero, we do not have enough information to do that,
+ so any pseudo reg that is spilled must go to the stack.
+
+ DUMPFILE is the global-reg debugging dump file stream, or 0.
+ If it is nonzero, messages are written to it to describe
+ which registers are seized as reload regs, which pseudo regs
+ are spilled from them, and where the pseudo regs are reallocated to. */
+
+void
+reload (first, global, dumpfile)
+ rtx first;
+ int global;
+ FILE *dumpfile;
+{
+ register int class;
+ register int i;
+ register rtx insn;
+ register struct elim_table *ep;
+
+ int something_changed;
+ int something_needs_reloads;
+ int something_needs_elimination;
+ int new_basic_block_needs;
+ int caller_save_needs_spill;
+ int old_caller_save_needed = caller_save_needed;
+
+ /* The basic block number currently being processed for INSN. */
+ int this_block;
+
+ /* Make sure even insns with volatile mem refs are recognizable. */
+ init_recog ();
+
+ /* Enable find_equiv_reg to distinguish insns made by reload. */
+ reload_first_uid = get_max_uid ();
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ basic_block_needs[i] = 0;
+
+ /* Remember which hard regs appear explicitly
+ before we merge into `regs_ever_live' the ones in which
+ pseudo regs have been allocated. */
+ bcopy (regs_ever_live, regs_explicitly_used, sizeof regs_ever_live);
+
+ /* We don't have a stack slot for any spill reg yet. */
+ bzero (spill_stack_slot, sizeof spill_stack_slot);
+ bzero (spill_stack_slot_width, sizeof spill_stack_slot_width);
+
+ /* If caller-saves are needed, allocate the required save areas. */
+ if (caller_save_needed)
+ allocate_save_areas ();
+
+ /* Compute which hard registers are now in use
+ as homes for pseudo registers.
+ This is done here rather than (eg) in global_alloc
+ because this point is reached even if not optimizing. */
+
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ mark_home_live (i);
+
+ /* Make sure that the last insn in the chain
+ is not something that needs reloading. */
+ emit_note (0, NOTE_INSN_DELETED);
+
+ /* Find all the pseudo registers that didn't get hard regs
+ but do have known equivalent constants or memory slots.
+ These include parameters (known equivalent to parameter slots)
+ and cse'd or loop-moved constant memory addresses.
+
+ Record constant equivalents in reg_equiv_constant
+ so they will be substituted by find_reloads.
+ Record memory equivalents in reg_mem_equiv so they can
+ be substituted eventually by altering the REG-rtx's. */
+
+ reg_equiv_constant = (rtx *) alloca (max_regno * sizeof (rtx));
+ bzero (reg_equiv_constant, max_regno * sizeof (rtx));
+ reg_equiv_memory_loc = (rtx *) alloca (max_regno * sizeof (rtx));
+ bzero (reg_equiv_memory_loc, max_regno * sizeof (rtx));
+ reg_equiv_mem = (rtx *) alloca (max_regno * sizeof (rtx));
+ bzero (reg_equiv_mem, max_regno * sizeof (rtx));
+ reg_equiv_init = (rtx *) alloca (max_regno * sizeof (rtx));
+ bzero (reg_equiv_init, max_regno * sizeof (rtx));
+ reg_equiv_address = (rtx *) alloca (max_regno * sizeof (rtx));
+ bzero (reg_equiv_address, max_regno * sizeof (rtx));
+ reg_max_ref_width = (int *) alloca (max_regno * sizeof (int));
+ bzero (reg_max_ref_width, max_regno * sizeof (int));
+
+ /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
+ Also find all paradoxical subregs
+ and find largest such for each pseudo. */
+
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ {
+ rtx set = single_set (insn);
+
+ if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
+ {
+ rtx note = find_reg_note (insn, REG_EQUIV, 0);
+ if (note)
+ {
+ rtx x = XEXP (note, 0);
+ i = REGNO (SET_DEST (set));
+ if (i > LAST_VIRTUAL_REGISTER)
+ {
+ if (GET_CODE (x) == MEM)
+ reg_equiv_memory_loc[i] = x;
+ else if (CONSTANT_P (x))
+ {
+ if (LEGITIMATE_CONSTANT_P (x))
+ reg_equiv_constant[i] = x;
+ else
+ reg_equiv_memory_loc[i]
+ = force_const_mem (GET_MODE (x), x);
+ }
+ else
+ continue;
+
+ /* If this register is being made equivalent to a MEM
+ and the MEM is not SET_SRC, the equivalencing insn
+ is one with the MEM as a SET_DEST and it occurs later.
+ So don't mark this insn now. */
+ if (GET_CODE (x) != MEM
+ || rtx_equal_p (SET_SRC (set), x))
+ reg_equiv_init[i] = insn;
+ }
+ }
+ }
+
+ /* If this insn is setting a MEM from a register equivalent to it,
+ this is the equivalencing insn. */
+ else if (set && GET_CODE (SET_DEST (set)) == MEM
+ && GET_CODE (SET_SRC (set)) == REG
+ && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
+ && rtx_equal_p (SET_DEST (set),
+ reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
+ reg_equiv_init[REGNO (SET_SRC (set))] = insn;
+
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ scan_paradoxical_subregs (PATTERN (insn));
+ }
+
+ /* Does this function require a frame pointer? */
+
+ frame_pointer_needed = (! flag_omit_frame_pointer
+#ifdef EXIT_IGNORE_STACK
+ /* ?? If EXIT_IGNORE_STACK is set, we will not save
+ and restore sp for alloca. So we can't eliminate
+ the frame pointer in that case. At some point,
+ we should improve this by emitting the
+ sp-adjusting insns for this case. */
+ || (current_function_calls_alloca
+ && EXIT_IGNORE_STACK)
+#endif
+ || FRAME_POINTER_REQUIRED);
+
+ num_eliminable = 0;
+
+ /* Initialize the table of registers to eliminate. The way we do this
+ depends on how the eliminable registers were defined. */
+#ifdef ELIMINABLE_REGS
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+ {
+ ep->can_eliminate = ep->can_eliminate_previous
+ = (CAN_ELIMINATE (ep->from, ep->to)
+ && (ep->from != FRAME_POINTER_REGNUM || ! frame_pointer_needed));
+ }
+#else
+ reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
+ = ! frame_pointer_needed;
+#endif
+
+ /* Count the number of eliminable registers and build the FROM and TO
+ REG rtx's. Note that code in gen_rtx will cause, e.g.,
+ gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
+ We depend on this. */
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+ {
+ num_eliminable += ep->can_eliminate;
+ ep->from_rtx = gen_rtx (REG, Pmode, ep->from);
+ ep->to_rtx = gen_rtx (REG, Pmode, ep->to);
+ }
+
+ num_labels = max_label_num () - get_first_label_num ();
+
+ /* Allocate the tables used to store offset information at labels. */
+ offsets_known_at = (char *) alloca (num_labels);
+ offsets_at
+ = (int (*)[NUM_ELIMINABLE_REGS])
+ alloca (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
+
+ offsets_known_at -= get_first_label_num ();
+ offsets_at -= get_first_label_num ();
+
+ /* Alter each pseudo-reg rtx to contain its hard reg number.
+ Assign stack slots to the pseudos that lack hard regs or equivalents.
+ Do not touch virtual registers. */
+
+ for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
+ alter_reg (i, -1);
+
+ /* Round size of stack frame to BIGGEST_ALIGNMENT. This must be done here
+ because the stack size may be a part of the offset computation for
+ register elimination. */
+ assign_stack_local (BLKmode, 0, 0);
+
+ /* If we have some registers we think can be eliminated, scan all insns to
+ see if there is an insn that sets one of these registers to something
+ other than itself plus a constant. If so, the register cannot be
+ eliminated. Doing this scan here eliminates an extra pass through the
+ main reload loop in the most common case where register elimination
+ cannot be done. */
+ for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
+ || GET_CODE (insn) == CALL_INSN)
+ note_stores (PATTERN (insn), mark_not_eliminable);
+
+#ifndef REGISTER_CONSTRAINTS
+ /* If all the pseudo regs have hard regs,
+ except for those that are never referenced,
+ we know that no reloads are needed. */
+ /* But that is not true if there are register constraints, since
+ in that case some pseudos might be in the wrong kind of hard reg. */
+
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ if (reg_renumber[i] == -1 && reg_n_refs[i] != 0)
+ break;
+
+ if (i == max_regno && num_eliminable = 0 && ! caller_save_needed)
+ return;
+#endif
+
+ /* Compute the order of preference for hard registers to spill.
+ Store them by decreasing preference in potential_reload_regs. */
+
+ order_regs_for_reload ();
+
+ /* So far, no hard regs have been spilled. */
+ n_spills = 0;
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ spill_reg_order[i] = -1;
+
+ /* On most machines, we can't use any register explicitly used in the
+ rtl as a spill register. But on some, we have to. Those will have
+ taken care to keep the life of hard regs as short as possible. */
+
+#ifdef SMALL_REGISTER_CLASSES
+ CLEAR_HARD_REG_SET (forbidden_regs);
+#else
+ COPY_HARD_REG_SET (forbidden_regs, bad_spill_regs);
+#endif
+
+ /* Spill any hard regs that we know we can't eliminate. */
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+ if (! ep->can_eliminate)
+ {
+ spill_hard_reg (ep->from, global, dumpfile, 1);
+ regs_ever_live[ep->from] = 1;
+ }
+
+ if (global)
+ for (i = 0; i < N_REG_CLASSES; i++)
+ {
+ basic_block_needs[i] = (char *)alloca (n_basic_blocks);
+ bzero (basic_block_needs[i], n_basic_blocks);
+ }
+
+ /* This loop scans the entire function each go-round
+ and repeats until one repetition spills no additional hard regs. */
+
+ /* This flag is set when a psuedo reg is spilled,
+ to require another pass. Note that getting an additional reload
+ reg does not necessarily imply any pseudo reg was spilled;
+ sometimes we find a reload reg that no pseudo reg was allocated in. */
+ something_changed = 1;
+ /* This flag is set if there are any insns that require reloading. */
+ something_needs_reloads = 0;
+ /* This flag is set if there are any insns that require register
+ eliminations. */
+ something_needs_elimination = 0;
+ while (something_changed)
+ {
+ rtx after_call = 0;
+
+ /* For each class, number of reload regs needed in that class.
+ This is the maximum over all insns of the needs in that class
+ of the individual insn. */
+ int max_needs[N_REG_CLASSES];
+ /* For each class, size of group of consecutive regs
+ that is needed for the reloads of this class. */
+ int group_size[N_REG_CLASSES];
+ /* For each class, max number of consecutive groups needed.
+ (Each group contains group_size[CLASS] consecutive registers.) */
+ int max_groups[N_REG_CLASSES];
+ /* For each class, max number needed of regs that don't belong
+ to any of the groups. */
+ int max_nongroups[N_REG_CLASSES];
+ /* For each class, the machine mode which requires consecutive
+ groups of regs of that class.
+ If two different modes ever require groups of one class,
+ they must be the same size and equally restrictive for that class,
+ otherwise we can't handle the complexity. */
+ enum machine_mode group_mode[N_REG_CLASSES];
+ rtx x;
+
+ something_changed = 0;
+ bzero (max_needs, sizeof max_needs);
+ bzero (max_groups, sizeof max_groups);
+ bzero (max_nongroups, sizeof max_nongroups);
+ bzero (group_size, sizeof group_size);
+ for (i = 0; i < N_REG_CLASSES; i++)
+ group_mode[i] = VOIDmode;
+
+ /* Keep track of which basic blocks are needing the reloads. */
+ this_block = 0;
+
+ /* Remember whether any element of basic_block_needs
+ changes from 0 to 1 in this pass. */
+ new_basic_block_needs = 0;
+
+ /* Reset all offsets on eliminable registers to their initial values. */
+#ifdef ELIMINABLE_REGS
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+ {
+ INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
+ ep->previous_offset = ep->offset = ep->initial_offset;
+ }
+#else
+#ifdef INITIAL_FRAME_POINTER_OFFSET
+ INITIAL_FRAME_POINTER_OFFSET (reg_eliminate[0].initial_offset);
+#else
+ if (!FRAME_POINTER_REQUIRED)
+ abort ();
+ reg_eliminate[0].initial_offset = 0;
+#endif
+ reg_eliminate[0].previous_offset
+ = reg_eliminate[0].offset = reg_eliminate[0].initial_offset;
+#endif
+
+ num_not_at_initial_offset = 0;
+
+ bzero (&offsets_known_at[get_first_label_num ()], num_labels);
+
+ /* Set a known offset for each forced label to be at the initial offset
+ of each elimination. We do this because we assume that all
+ computed jumps occur from a location where each elimination is
+ at its initial offset. */
+
+ for (x = forced_labels; x; x = XEXP (x, 1))
+ if (XEXP (x, 0))
+ set_label_offsets (XEXP (x, 0), 0, 1);
+
+ /* For each pseudo register that has an equivalent location defined,
+ try to eliminate any eliminable registers (such as the frame pointer)
+ assuming initial offsets for the replacement register, which
+ is the normal case.
+
+ If the resulting location is directly addressable, substitute
+ the MEM we just got directly for the old REG.
+
+ If it is not addressable but is a constant or the sum of a hard reg
+ and constant, it is probably not addressable because the constant is
+ out of range, in that case record the address; we will generate
+ hairy code to compute the address in a register each time it is
+ needed.
+
+ If the location is not addressable, but does not have one of the
+ above forms, assign a stack slot. We have to do this to avoid the
+ potential of producing lots of reloads if, e.g., a location involves
+ a pseudo that didn't get a hard register and has an equivalent memory
+ location that also involves a pseudo that didn't get a hard register.
+
+ Perhaps at some point we will improve reload_when_needed handling
+ so this problem goes away. But that's very hairy. */
+
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
+ {
+ rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, 0);
+
+ if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
+ XEXP (x, 0)))
+ reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
+ else if (CONSTANT_P (XEXP (x, 0))
+ || (GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
+ && (REGNO (XEXP (XEXP (x, 0), 0))
+ < FIRST_PSEUDO_REGISTER)
+ && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
+ reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
+ else
+ {
+ /* Make a new stack slot. Then indicate that something
+ changed so we go back and recompute offsets for
+ eliminable registers because the allocation of memory
+ below might change some offset. reg_equiv_{mem,address}
+ will be set up for this pseudo on the next pass around
+ the loop. */
+ reg_equiv_memory_loc[i] = 0;
+ reg_equiv_init[i] = 0;
+ alter_reg (i, -1);
+ something_changed = 1;
+ }
+ }
+
+ /* If we allocated another psuedo to the stack, redo elimination
+ bookkeeping. */
+ if (something_changed)
+ continue;
+
+ /* Compute the most additional registers needed by any instruction.
+ Collect information separately for each class of regs. */
+
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ {
+ if (global && this_block + 1 < n_basic_blocks
+ && insn == basic_block_head[this_block+1])
+ ++this_block;
+
+ /* If this is a label, a JUMP_INSN, or has REG_NOTES (which
+ might include REG_LABEL), we need to see what effects this
+ has on the known offsets at labels. */
+
+ if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
+ || (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
+ && REG_NOTES (insn) != 0))
+ set_label_offsets (insn, insn, 0);
+
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ /* Nonzero means don't use a reload reg that overlaps
+ the place where a function value can be returned. */
+ rtx avoid_return_reg = 0;
+
+ rtx old_body = PATTERN (insn);
+ int old_code = INSN_CODE (insn);
+ rtx old_notes = REG_NOTES (insn);
+ int did_elimination = 0;
+
+ /* Initially, count RELOAD_OTHER reloads.
+ Later, merge in the other kinds. */
+ int insn_needs[N_REG_CLASSES];
+ int insn_groups[N_REG_CLASSES];
+ int insn_total_groups = 0;
+
+ /* Count RELOAD_FOR_INPUT_RELOAD_ADDRESS reloads. */
+ int insn_needs_for_inputs[N_REG_CLASSES];
+ int insn_groups_for_inputs[N_REG_CLASSES];
+ int insn_total_groups_for_inputs = 0;
+
+ /* Count RELOAD_FOR_OUTPUT_RELOAD_ADDRESS reloads. */
+ int insn_needs_for_outputs[N_REG_CLASSES];
+ int insn_groups_for_outputs[N_REG_CLASSES];
+ int insn_total_groups_for_outputs = 0;
+
+ /* Count RELOAD_FOR_OPERAND_ADDRESS reloads. */
+ int insn_needs_for_operands[N_REG_CLASSES];
+ int insn_groups_for_operands[N_REG_CLASSES];
+ int insn_total_groups_for_operands = 0;
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ {
+ insn_needs[i] = 0, insn_groups[i] = 0;
+ insn_needs_for_inputs[i] = 0, insn_groups_for_inputs[i] = 0;
+ insn_needs_for_outputs[i] = 0, insn_groups_for_outputs[i] = 0;
+ insn_needs_for_operands[i] = 0, insn_groups_for_operands[i] = 0;
+ }
+
+#if 0 /* This wouldn't work nowadays, since optimize_bit_field
+ looks for non-strict memory addresses. */
+ /* Optimization: a bit-field instruction whose field
+ happens to be a byte or halfword in memory
+ can be changed to a move instruction. */
+
+ if (GET_CODE (PATTERN (insn)) == SET)
+ {
+ rtx dest = SET_DEST (PATTERN (insn));
+ rtx src = SET_SRC (PATTERN (insn));
+
+ if (GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == SIGN_EXTRACT)
+ optimize_bit_field (PATTERN (insn), insn, reg_equiv_mem);
+ if (GET_CODE (src) == ZERO_EXTRACT
+ || GET_CODE (src) == SIGN_EXTRACT)
+ optimize_bit_field (PATTERN (insn), insn, reg_equiv_mem);
+ }
+#endif
+
+ /* If needed, eliminate any eliminable registers. */
+ if (num_eliminable)
+ did_elimination = eliminate_regs_in_insn (insn, 0);
+
+#ifdef SMALL_REGISTER_CLASSES
+ /* Set avoid_return_reg if this is an insn
+ that might use the value of a function call. */
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ if (GET_CODE (PATTERN (insn)) == SET)
+ after_call = SET_DEST (PATTERN (insn));
+ else if (GET_CODE (PATTERN (insn)) == PARALLEL
+ && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
+ after_call = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
+ else
+ after_call = 0;
+ }
+ else if (after_call != 0
+ && !(GET_CODE (PATTERN (insn)) == SET
+ && SET_DEST (PATTERN (insn)) == stack_pointer_rtx))
+ {
+ if (reg_mentioned_p (after_call, PATTERN (insn)))
+ avoid_return_reg = after_call;
+ after_call = 0;
+ }
+#endif /* SMALL_REGISTER_CLASSES */
+
+ /* Analyze the instruction. */
+ find_reloads (insn, 0, spill_indirect_levels, global,
+ spill_reg_order);
+
+ /* Remember for later shortcuts which insns had any reloads or
+ register eliminations.
+
+ One might think that it would be worthwhile to mark insns
+ that need register replacements but not reloads, but this is
+ not safe because find_reloads may do some manipulation of
+ the insn (such as swapping commutative operands), which would
+ be lost when we restore the old pattern after register
+ replacement. So the actions of find_reloads must be redone in
+ subsequent passes or in reload_as_needed.
+
+ However, it is safe to mark insns that need reloads
+ but not register replacement. */
+
+ PUT_MODE (insn, (did_elimination ? QImode
+ : n_reloads ? HImode
+ : VOIDmode));
+
+ /* Discard any register replacements done. */
+ if (did_elimination)
+ {
+ obstack_free (&reload_obstack, reload_firstobj);
+ PATTERN (insn) = old_body;
+ INSN_CODE (insn) = old_code;
+ REG_NOTES (insn) = old_notes;
+ something_needs_elimination = 1;
+ }
+
+ if (n_reloads == 0)
+ continue;
+
+ something_needs_reloads = 1;
+
+ /* Count each reload once in every class
+ containing the reload's own class. */
+
+ for (i = 0; i < n_reloads; i++)
+ {
+ register enum reg_class *p;
+ int size;
+ enum machine_mode mode;
+ int *this_groups;
+ int *this_needs;
+ int *this_total_groups;
+
+ /* Don't count the dummy reloads, for which one of the
+ regs mentioned in the insn can be used for reloading.
+ Don't count optional reloads.
+ Don't count reloads that got combined with others. */
+ if (reload_reg_rtx[i] != 0
+ || reload_optional[i] != 0
+ || (reload_out[i] == 0 && reload_in[i] == 0
+ && ! reload_secondary_p[i]))
+ continue;
+
+ /* Decide which time-of-use to count this reload for. */
+ switch (reload_when_needed[i])
+ {
+ case RELOAD_OTHER:
+ case RELOAD_FOR_OUTPUT:
+ case RELOAD_FOR_INPUT:
+ this_needs = insn_needs;
+ this_groups = insn_groups;
+ this_total_groups = &insn_total_groups;
+ break;
+
+ case RELOAD_FOR_INPUT_RELOAD_ADDRESS:
+ this_needs = insn_needs_for_inputs;
+ this_groups = insn_groups_for_inputs;
+ this_total_groups = &insn_total_groups_for_inputs;
+ break;
+
+ case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS:
+ this_needs = insn_needs_for_outputs;
+ this_groups = insn_groups_for_outputs;
+ this_total_groups = &insn_total_groups_for_outputs;
+ break;
+
+ case RELOAD_FOR_OPERAND_ADDRESS:
+ this_needs = insn_needs_for_operands;
+ this_groups = insn_groups_for_operands;
+ this_total_groups = &insn_total_groups_for_operands;
+ break;
+ }
+
+ mode = reload_inmode[i];
+ if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
+ mode = reload_outmode[i];
+ size = CLASS_MAX_NREGS (reload_reg_class[i], mode);
+ if (size > 1)
+ {
+ enum machine_mode other_mode, allocate_mode;
+
+ /* Count number of groups needed separately from
+ number of individual regs needed. */
+ this_groups[(int) reload_reg_class[i]]++;
+ p = reg_class_superclasses[(int) reload_reg_class[i]];
+ while (*p != LIM_REG_CLASSES)
+ this_groups[(int) *p++]++;
+ (*this_total_groups)++;
+
+ /* Record size and mode of a group of this class. */
+ /* If more than one size group is needed,
+ make all groups the largest needed size. */
+ if (group_size[(int) reload_reg_class[i]] < size)
+ {
+ other_mode = group_mode[(int) reload_reg_class[i]];
+ allocate_mode = mode;
+
+ group_size[(int) reload_reg_class[i]] = size;
+ group_mode[(int) reload_reg_class[i]] = mode;
+ }
+ else
+ {
+ other_mode = mode;
+ allocate_mode = group_mode[(int) reload_reg_class[i]];
+ }
+
+ /* Crash if two dissimilar machine modes both need
+ groups of consecutive regs of the same class. */
+
+ if (other_mode != VOIDmode
+ && other_mode != allocate_mode
+ && ! modes_equiv_for_class_p (allocate_mode,
+ other_mode,
+ reload_reg_class[i]))
+ abort ();
+ }
+ else if (size == 1)
+ {
+ this_needs[(int) reload_reg_class[i]] += 1;
+ p = reg_class_superclasses[(int) reload_reg_class[i]];
+ while (*p != LIM_REG_CLASSES)
+ this_needs[(int) *p++] += 1;
+ }
+ else
+ abort ();
+ }
+
+ /* All reloads have been counted for this insn;
+ now merge the various times of use.
+ This sets insn_needs, etc., to the maximum total number
+ of registers needed at any point in this insn. */
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ {
+ int this_max;
+ this_max = insn_needs_for_inputs[i];
+ if (insn_needs_for_outputs[i] > this_max)
+ this_max = insn_needs_for_outputs[i];
+ if (insn_needs_for_operands[i] > this_max)
+ this_max = insn_needs_for_operands[i];
+ insn_needs[i] += this_max;
+ this_max = insn_groups_for_inputs[i];
+ if (insn_groups_for_outputs[i] > this_max)
+ this_max = insn_groups_for_outputs[i];
+ if (insn_groups_for_operands[i] > this_max)
+ this_max = insn_groups_for_operands[i];
+ insn_groups[i] += this_max;
+
+ if (global && (insn_needs[i] || insn_groups[i])
+ && ! basic_block_needs[i][this_block])
+ {
+ new_basic_block_needs = 1;
+ basic_block_needs[i][this_block] = 1;
+ }
+ }
+ insn_total_groups += MAX (insn_total_groups_for_inputs,
+ MAX (insn_total_groups_for_outputs,
+ insn_total_groups_for_operands));
+
+#ifdef SMALL_REGISTER_CLASSES
+ /* If this insn stores the value of a function call,
+ and that value is in a register that has been spilled,
+ and if the insn needs a reload in a class
+ that might use that register as the reload register,
+ then add add an extra need in that class.
+ This makes sure we have a register available that does
+ not overlap the return value. */
+ if (avoid_return_reg)
+ {
+ int regno = REGNO (avoid_return_reg);
+ int nregs
+ = HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg));
+ int r;
+ int inc_groups = 0;
+ for (r = regno; r < regno + nregs; r++)
+ if (spill_reg_order[r] >= 0)
+ for (i = 0; i < N_REG_CLASSES; i++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[i], r))
+ {
+ if (insn_needs[i] > 0)
+ insn_needs[i]++;
+ if (insn_groups[i] > 0
+ && nregs > 1)
+ inc_groups = 1;
+ }
+ if (inc_groups)
+ insn_groups[i]++;
+ }
+#endif /* SMALL_REGISTER_CLASSES */
+
+ /* For each class, collect maximum need of any insn. */
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ {
+ if (max_needs[i] < insn_needs[i])
+ max_needs[i] = insn_needs[i];
+ if (max_groups[i] < insn_groups[i])
+ max_groups[i] = insn_groups[i];
+ if (insn_total_groups > 0)
+ if (max_nongroups[i] < insn_needs[i])
+ max_nongroups[i] = insn_needs[i];
+ }
+ }
+ /* Note that there is a continue statement above. */
+ }
+
+ /* If we have caller-saves, perform register elimination in the
+ save area addresses and see if caller-save will need a spill register.
+ If it will and we don't already have a need of class BASE_REG_CLASS,
+ create such a need. If we didn't need caller-saves before this
+ pass, allocate the save area and show something changed. */
+
+ if (caller_save_needed)
+ {
+ if (! old_caller_save_needed)
+ {
+ allocate_save_areas ();
+ something_changed = 1;
+ }
+
+ old_caller_save_needed = 1;
+
+ caller_save_needs_spill = ! elim_save_addrs ();
+ if (caller_save_needs_spill
+ && max_needs[(int) BASE_REG_CLASS] == 0)
+ {
+ register enum reg_class *p
+ = reg_class_superclasses[(int) BASE_REG_CLASS];
+
+ max_needs[(int) BASE_REG_CLASS] = 1;
+ while (*p != LIM_REG_CLASSES)
+ max_needs[(int) *p++] += 1;
+ }
+ }
+
+ /* Now deduct from the needs for the registers already
+ available (already spilled). */
+
+ CLEAR_HARD_REG_SET (counted_for_groups);
+ CLEAR_HARD_REG_SET (counted_for_nongroups);
+
+ /* First find all regs alone in their class
+ and count them (if desired) for non-groups.
+ We would be screwed if a group took the only reg in a class
+ for which a non-group reload ius needed.
+ (Note there is still a bug; if a class has 2 regs,
+ both could be stolen by groups and we would lose the same way.
+ With luck, no machine will need a nongroup in a 2-reg class.) */
+
+ for (i = 0; i < n_spills; i++)
+ {
+ register enum reg_class *p;
+ class = (int) REGNO_REG_CLASS (spill_regs[i]);
+
+ if (reg_class_size[class] == 1 && max_nongroups[class] > 0)
+ {
+ max_needs[class]--;
+ p = reg_class_superclasses[class];
+ while (*p != LIM_REG_CLASSES)
+ max_needs[(int) *p++]--;
+
+ SET_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]);
+ max_nongroups[class]--;
+ p = reg_class_superclasses[class];
+ while (*p != LIM_REG_CLASSES)
+ {
+ if (max_nongroups[(int) *p] > 0)
+ SET_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]);
+ max_nongroups[(int) *p++]--;
+ }
+ }
+ }
+
+ /* Now find all consecutive groups of spilled registers
+ and mark each group off against the need for such groups.
+ But don't count them against ordinary need, yet. */
+
+ count_possible_groups (group_size, group_mode, max_groups);
+
+ /* Now count all spill regs against the individual need,
+ This includes those counted above for groups,
+ but not those previously counted for nongroups.
+
+ Those that weren't counted_for_groups can also count against
+ the not-in-group need. */
+
+ for (i = 0; i < n_spills; i++)
+ {
+ register enum reg_class *p;
+ class = (int) REGNO_REG_CLASS (spill_regs[i]);
+
+ /* Those counted at the beginning shouldn't be counted twice. */
+ if (! TEST_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]))
+ {
+ max_needs[class]--;
+ p = reg_class_superclasses[class];
+ while (*p != LIM_REG_CLASSES)
+ max_needs[(int) *p++]--;
+
+ if (! TEST_HARD_REG_BIT (counted_for_groups, spill_regs[i]))
+ {
+ if (max_nongroups[class] > 0)
+ SET_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]);
+ max_nongroups[class]--;
+ p = reg_class_superclasses[class];
+ while (*p != LIM_REG_CLASSES)
+ {
+ if (max_nongroups[(int) *p] > 0)
+ SET_HARD_REG_BIT (counted_for_nongroups,
+ spill_regs[i]);
+ max_nongroups[(int) *p++]--;
+ }
+ }
+ }
+ }
+
+ /* Look for the case where we have discovered that we can't replace
+ register A with register B and that means that we will now be
+ trying to replace register A with register C. This means we can
+ no longer replace register C with register B and we need to disable
+ such an elimination, if it exists. This occurs often with A == ap,
+ B == sp, and C == fp. */
+
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+ {
+ struct elim_table *op;
+ register int new_to = -1;
+
+ if (! ep->can_eliminate && ep->can_eliminate_previous)
+ {
+ /* Find the current elimination for ep->from, if there is a
+ new one. */
+ for (op = reg_eliminate;
+ op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
+ if (op->from == ep->from && op->can_eliminate)
+ {
+ new_to = op->to;
+ break;
+ }
+
+ /* See if there is an elimination of NEW_TO -> EP->TO. If so,
+ disable it. */
+ for (op = reg_eliminate;
+ op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
+ if (op->from == new_to && op->to == ep->to)
+ op->can_eliminate = 0;
+ }
+ }
+
+ /* See if any registers that we thought we could eliminate the previous
+ time are no longer eliminable. If so, something has changed and we
+ must spill the register. Also, recompute the number of eliminable
+ registers and see if the frame pointer is needed; it is if there is
+ no elimination of the frame pointer that we can perform. */
+
+ frame_pointer_needed = 1;
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+ {
+ if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM)
+ frame_pointer_needed = 0;
+
+ if (! ep->can_eliminate && ep->can_eliminate_previous)
+ {
+ ep->can_eliminate_previous = 0;
+ spill_hard_reg (ep->from, global, dumpfile, 1);
+ regs_ever_live[ep->from] = 1;
+ something_changed = 1;
+ num_eliminable--;
+ }
+ }
+
+ /* If all needs are met, we win. */
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ if (max_needs[i] > 0 || max_groups[i] > 0 || max_nongroups[i] > 0)
+ break;
+ if (i == N_REG_CLASSES && !new_basic_block_needs && ! something_changed)
+ break;
+
+ /* Not all needs are met; must spill more hard regs. */
+
+ /* If any element of basic_block_needs changed from 0 to 1,
+ re-spill all the regs already spilled. This may spill
+ additional pseudos that didn't spill before. */
+
+ if (new_basic_block_needs)
+ for (i = 0; i < n_spills; i++)
+ something_changed
+ |= spill_hard_reg (spill_regs[i], global, dumpfile, 0);
+
+ /* Now find more reload regs to satisfy the remaining need
+ Do it by ascending class number, since otherwise a reg
+ might be spilled for a big class and might fail to count
+ for a smaller class even though it belongs to that class.
+
+ Count spilled regs in `spills', and add entries to
+ `spill_regs' and `spill_reg_order'.
+
+ ??? Note there is a problem here.
+ When there is a need for a group in a high-numbered class,
+ and also need for non-group regs that come from a lower class,
+ the non-group regs are chosen first. If there aren't many regs,
+ they might leave no room for a group.
+
+ This was happening on the 386. To fix it, we added the code
+ that calls possible_group_p, so that the lower class won't
+ break up the last possible group.
+
+ Really fixing the problem would require changes above
+ in counting the regs already spilled, and in choose_reload_regs.
+ It might be hard to avoid introducing bugs there. */
+
+ for (class = 0; class < N_REG_CLASSES; class++)
+ {
+ /* First get the groups of registers.
+ If we got single registers first, we might fragment
+ possible groups. */
+ while (max_groups[class] > 0)
+ {
+ /* If any single spilled regs happen to form groups,
+ count them now. Maybe we don't really need
+ to spill another group. */
+ count_possible_groups (group_size, group_mode, max_groups);
+
+ /* Groups of size 2 (the only groups used on most machines)
+ are treated specially. */
+ if (group_size[class] == 2)
+ {
+ /* First, look for a register that will complete a group. */
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ int j = potential_reload_regs[i];
+ int other;
+ if (j >= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j)
+ &&
+ ((j > 0 && (other = j - 1, spill_reg_order[other] >= 0)
+ && TEST_HARD_REG_BIT (reg_class_contents[class], j)
+ && TEST_HARD_REG_BIT (reg_class_contents[class], other)
+ && HARD_REGNO_MODE_OK (other, group_mode[class])
+ && ! TEST_HARD_REG_BIT (counted_for_nongroups,
+ other)
+ /* We don't want one part of another group.
+ We could get "two groups" that overlap! */
+ && ! TEST_HARD_REG_BIT (counted_for_groups, other))
+ ||
+ (j < FIRST_PSEUDO_REGISTER - 1
+ && (other = j + 1, spill_reg_order[other] >= 0)
+ && TEST_HARD_REG_BIT (reg_class_contents[class], j)
+ && TEST_HARD_REG_BIT (reg_class_contents[class], other)
+ && HARD_REGNO_MODE_OK (j, group_mode[class])
+ && ! TEST_HARD_REG_BIT (counted_for_nongroups,
+ other)
+ && ! TEST_HARD_REG_BIT (counted_for_groups,
+ other))))
+ {
+ register enum reg_class *p;
+
+ /* We have found one that will complete a group,
+ so count off one group as provided. */
+ max_groups[class]--;
+ p = reg_class_superclasses[class];
+ while (*p != LIM_REG_CLASSES)
+ max_groups[(int) *p++]--;
+
+ /* Indicate both these regs are part of a group. */
+ SET_HARD_REG_BIT (counted_for_groups, j);
+ SET_HARD_REG_BIT (counted_for_groups, other);
+ break;
+ }
+ }
+ /* We can't complete a group, so start one. */
+ if (i == FIRST_PSEUDO_REGISTER)
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ int j = potential_reload_regs[i];
+ if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
+ && spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0
+ && TEST_HARD_REG_BIT (reg_class_contents[class], j)
+ && TEST_HARD_REG_BIT (reg_class_contents[class], j + 1)
+ && HARD_REGNO_MODE_OK (j, group_mode[class])
+ && ! TEST_HARD_REG_BIT (counted_for_nongroups,
+ j + 1))
+ break;
+ }
+
+ /* I should be the index in potential_reload_regs
+ of the new reload reg we have found. */
+
+ something_changed
+ |= new_spill_reg (i, class, max_needs, 0,
+ global, dumpfile);
+ }
+ else
+ {
+ /* For groups of more than 2 registers,
+ look for a sufficient sequence of unspilled registers,
+ and spill them all at once. */
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ int j = potential_reload_regs[i];
+ int k;
+ if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
+ && HARD_REGNO_MODE_OK (j, group_mode[class]))
+ {
+ /* Check each reg in the sequence. */
+ for (k = 0; k < group_size[class]; k++)
+ if (! (spill_reg_order[j + k] < 0
+ && ! TEST_HARD_REG_BIT (bad_spill_regs, j + k)
+ && TEST_HARD_REG_BIT (reg_class_contents[class], j + k)))
+ break;
+ /* We got a full sequence, so spill them all. */
+ if (k == group_size[class])
+ {
+ register enum reg_class *p;
+ for (k = 0; k < group_size[class]; k++)
+ {
+ int idx;
+ SET_HARD_REG_BIT (counted_for_groups, j + k);
+ for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++)
+ if (potential_reload_regs[idx] == j + k)
+ break;
+ something_changed
+ |= new_spill_reg (idx, class, max_needs, 0,
+ global, dumpfile);
+ }
+
+ /* We have found one that will complete a group,
+ so count off one group as provided. */
+ max_groups[class]--;
+ p = reg_class_superclasses[class];
+ while (*p != LIM_REG_CLASSES)
+ max_groups[(int) *p++]--;
+
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ /* Now similarly satisfy all need for single registers. */
+
+ while (max_needs[class] > 0 || max_nongroups[class] > 0)
+ {
+ /* Consider the potential reload regs that aren't
+ yet in use as reload regs, in order of preference.
+ Find the most preferred one that's in this class. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (potential_reload_regs[i] >= 0
+ && TEST_HARD_REG_BIT (reg_class_contents[class],
+ potential_reload_regs[i])
+ /* If this reg will not be available for groups,
+ pick one that does not foreclose possible groups.
+ This is a kludge, and not very general,
+ but it should be sufficient to make the 386 work,
+ and the problem should not occur on machines with
+ more registers. */
+ && (max_nongroups[class] == 0
+ || possible_group_p (potential_reload_regs[i], max_groups)))
+ break;
+
+ /* I should be the index in potential_reload_regs
+ of the new reload reg we have found. */
+
+ something_changed
+ |= new_spill_reg (i, class, max_needs, max_nongroups,
+ global, dumpfile);
+ }
+ }
+ }
+
+ /* If global-alloc was run, notify it of any register eliminations we have
+ done. */
+ if (global)
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+ if (ep->can_eliminate)
+ mark_elimination (ep->from, ep->to);
+
+ /* From now on, we need to emit any moves without making new pseudos. */
+ reload_in_progress = 1;
+
+ /* Insert code to save and restore call-clobbered hard regs
+ around calls. If caller-save needs a spill register, find one
+ for it to use. */
+
+ if (caller_save_needed)
+ {
+ register int regno = -1;
+
+ if (caller_save_needs_spill)
+ for (i = 0; i < n_spills; i++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS],
+ spill_regs[i])
+ && HARD_REGNO_MODE_OK (spill_regs[i], Pmode))
+ regno = spill_regs[i];
+
+ save_call_clobbered_regs (regno);
+ }
+
+ /* If a pseudo has no hard reg, delete the insns that made the equivalence.
+ If that insn didn't set the register (i.e., it copied the register to
+ memory), just delete that insn instead of the equivalencing insn plus
+ anything now dead. If we call delete_dead_insn on that insn, we may
+ delete the insn that actually sets the register if the register die
+ there and that is incorrect. */
+
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0
+ && GET_CODE (reg_equiv_init[i]) != NOTE)
+ {
+ if (reg_set_p (regno_reg_rtx[i], PATTERN (reg_equiv_init[i])))
+ delete_dead_insn (reg_equiv_init[i]);
+ else
+ {
+ PUT_CODE (reg_equiv_init[i], NOTE);
+ NOTE_SOURCE_FILE (reg_equiv_init[i]) = 0;
+ NOTE_LINE_NUMBER (reg_equiv_init[i]) = NOTE_INSN_DELETED;
+ }
+ }
+
+ /* Use the reload registers where necessary
+ by generating move instructions to move the must-be-register
+ values into or out of the reload registers. */
+
+ if (something_needs_reloads || something_needs_elimination)
+ reload_as_needed (first, global);
+
+ reload_in_progress = 0;
+
+ /* Now eliminate all pseudo regs by modifying them into
+ their equivalent memory references.
+ The REG-rtx's for the pseudos are modified in place,
+ so all insns that used to refer to them now refer to memory.
+
+ For a reg that has a reg_equiv_address, all those insns
+ were changed by reloading so that no insns refer to it any longer;
+ but the DECL_RTL of a variable decl may refer to it,
+ and if so this causes the debugging info to mention the variable. */
+
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ {
+ rtx addr = 0;
+ if (reg_equiv_mem[i])
+ addr = XEXP (reg_equiv_mem[i], 0);
+ if (reg_equiv_address[i])
+ addr = reg_equiv_address[i];
+ if (addr)
+ {
+ if (reg_renumber[i] < 0)
+ {
+ rtx reg = regno_reg_rtx[i];
+ XEXP (reg, 0) = addr;
+ REG_USERVAR_P (reg) = 0;
+ PUT_CODE (reg, MEM);
+ }
+ else if (reg_equiv_mem[i])
+ XEXP (reg_equiv_mem[i], 0) = addr;
+ }
+ }
+
+#ifdef PRESERVE_DEATH_INFO_REGNO_P
+ /* Make a pass over all the insns and remove death notes for things that
+ are no longer registers or no longer die in the insn (e.g., an input
+ and output pseudo being tied). */
+
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ rtx note, next;
+
+ for (note = REG_NOTES (insn); note; note = next)
+ {
+ next = XEXP (note, 1);
+ if (REG_NOTE_KIND (note) == REG_DEAD
+ && (GET_CODE (XEXP (note, 0)) != REG
+ || reg_set_p (XEXP (note, 0), PATTERN (insn))))
+ remove_note (insn, note);
+ }
+ }
+#endif
+
+ /* Indicate that we no longer have known memory locations or constants. */
+ reg_equiv_constant = 0;
+ reg_equiv_memory_loc = 0;
+}
+
+/* Nonzero if, after spilling reg REGNO for non-groups,
+ it will still be possible to find a group if we still need one. */
+
+static int
+possible_group_p (regno, max_groups)
+ int regno;
+ int *max_groups;
+{
+ int i;
+ int class = (int) NO_REGS;
+
+ for (i = 0; i < (int) N_REG_CLASSES; i++)
+ if (max_groups[i] > 0)
+ {
+ class = i;
+ break;
+ }
+
+ if (class == (int) NO_REGS)
+ return 1;
+
+ /* Consider each pair of consecutive registers. */
+ for (i = 0; i < FIRST_PSEUDO_REGISTER - 1; i++)
+ {
+ /* Ignore pairs that include reg REGNO. */
+ if (i == regno || i + 1 == regno)
+ continue;
+
+ /* Ignore pairs that are outside the class that needs the group.
+ ??? Here we fail to handle the case where two different classes
+ independently need groups. But this never happens with our
+ current machine descriptions. */
+ if (! (TEST_HARD_REG_BIT (reg_class_contents[class], i)
+ && TEST_HARD_REG_BIT (reg_class_contents[class], i + 1)))
+ continue;
+
+ /* A pair of consecutive regs we can still spill does the trick. */
+ if (spill_reg_order[i] < 0 && spill_reg_order[i + 1] < 0
+ && ! TEST_HARD_REG_BIT (bad_spill_regs, i)
+ && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1))
+ return 1;
+
+ /* A pair of one already spilled and one we can spill does it
+ provided the one already spilled is not otherwise reserved. */
+ if (spill_reg_order[i] < 0
+ && ! TEST_HARD_REG_BIT (bad_spill_regs, i)
+ && spill_reg_order[i + 1] >= 0
+ && ! TEST_HARD_REG_BIT (counted_for_groups, i + 1)
+ && ! TEST_HARD_REG_BIT (counted_for_nongroups, i + 1))
+ return 1;
+ if (spill_reg_order[i + 1] < 0
+ && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1)
+ && spill_reg_order[i] >= 0
+ && ! TEST_HARD_REG_BIT (counted_for_groups, i)
+ && ! TEST_HARD_REG_BIT (counted_for_nongroups, i))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Count any groups that can be formed from the registers recently spilled.
+ This is done class by class, in order of ascending class number. */
+
+static void
+count_possible_groups (group_size, group_mode, max_groups)
+ int *group_size, *max_groups;
+ enum machine_mode *group_mode;
+{
+ int i;
+ /* Now find all consecutive groups of spilled registers
+ and mark each group off against the need for such groups.
+ But don't count them against ordinary need, yet. */
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ if (group_size[i] > 1)
+ {
+ char regmask[FIRST_PSEUDO_REGISTER];
+ int j;
+
+ bzero (regmask, sizeof regmask);
+ /* Make a mask of all the regs that are spill regs in class I. */
+ for (j = 0; j < n_spills; j++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[i], spill_regs[j])
+ && ! TEST_HARD_REG_BIT (counted_for_groups, spill_regs[j])
+ && ! TEST_HARD_REG_BIT (counted_for_nongroups,
+ spill_regs[j]))
+ regmask[spill_regs[j]] = 1;
+ /* Find each consecutive group of them. */
+ for (j = 0; j < FIRST_PSEUDO_REGISTER && max_groups[i] > 0; j++)
+ if (regmask[j] && j + group_size[i] <= FIRST_PSEUDO_REGISTER
+ /* Next line in case group-mode for this class
+ demands an even-odd pair. */
+ && HARD_REGNO_MODE_OK (j, group_mode[i]))
+ {
+ int k;
+ for (k = 1; k < group_size[i]; k++)
+ if (! regmask[j + k])
+ break;
+ if (k == group_size[i])
+ {
+ /* We found a group. Mark it off against this class's
+ need for groups, and against each superclass too. */
+ register enum reg_class *p;
+ max_groups[i]--;
+ p = reg_class_superclasses[i];
+ while (*p != LIM_REG_CLASSES)
+ max_groups[(int) *p++]--;
+ /* Don't count these registers again. */
+ for (k = 0; k < group_size[i]; k++)
+ SET_HARD_REG_BIT (counted_for_groups, j + k);
+ }
+ j += k;
+ }
+ }
+
+}
+
+/* ALLOCATE_MODE is a register mode that needs to be reloaded. OTHER_MODE is
+ another mode that needs to be reloaded for the same register class CLASS.
+ If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail.
+ ALLOCATE_MODE will never be smaller than OTHER_MODE.
+
+ This code used to also fail if any reg in CLASS allows OTHER_MODE but not
+ ALLOCATE_MODE. This test is unnecessary, because we will never try to put
+ something of mode ALLOCATE_MODE into an OTHER_MODE register. Testing this
+ causes unnecessary failures on machines requiring alignment of register
+ groups when the two modes are different sizes, because the larger mode has
+ more strict alignment rules than the smaller mode. */
+
+static int
+modes_equiv_for_class_p (allocate_mode, other_mode, class)
+ enum machine_mode allocate_mode, other_mode;
+ enum reg_class class;
+{
+ register int regno;
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ {
+ if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
+ && HARD_REGNO_MODE_OK (regno, allocate_mode)
+ && ! HARD_REGNO_MODE_OK (regno, other_mode))
+ return 0;
+ }
+ return 1;
+}
+
+/* Add a new register to the tables of available spill-registers
+ (as well as spilling all pseudos allocated to the register).
+ I is the index of this register in potential_reload_regs.
+ CLASS is the regclass whose need is being satisfied.
+ MAX_NEEDS and MAX_NONGROUPS are the vectors of needs,
+ so that this register can count off against them.
+ MAX_NONGROUPS is 0 if this register is part of a group.
+ GLOBAL and DUMPFILE are the same as the args that `reload' got. */
+
+static int
+new_spill_reg (i, class, max_needs, max_nongroups, global, dumpfile)
+ int i;
+ int class;
+ int *max_needs;
+ int *max_nongroups;
+ int global;
+ FILE *dumpfile;
+{
+ register enum reg_class *p;
+ int val;
+ int regno = potential_reload_regs[i];
+
+ if (i >= FIRST_PSEUDO_REGISTER)
+ abort (); /* Caller failed to find any register. */
+
+ if (fixed_regs[regno] || TEST_HARD_REG_BIT (forbidden_regs, regno))
+ fatal ("fixed or forbidden register was spilled.\n\
+This may be due to a compiler bug or to impossible asm statements.");
+
+ /* Make reg REGNO an additional reload reg. */
+
+ potential_reload_regs[i] = -1;
+ spill_regs[n_spills] = regno;
+ spill_reg_order[regno] = n_spills;
+ if (dumpfile)
+ fprintf (dumpfile, "Spilling reg %d.\n", spill_regs[n_spills]);
+
+ /* Clear off the needs we just satisfied. */
+
+ max_needs[class]--;
+ p = reg_class_superclasses[class];
+ while (*p != LIM_REG_CLASSES)
+ max_needs[(int) *p++]--;
+
+ if (max_nongroups && max_nongroups[class] > 0)
+ {
+ SET_HARD_REG_BIT (counted_for_nongroups, regno);
+ max_nongroups[class]--;
+ p = reg_class_superclasses[class];
+ while (*p != LIM_REG_CLASSES)
+ max_nongroups[(int) *p++]--;
+ }
+
+ /* Spill every pseudo reg that was allocated to this reg
+ or to something that overlaps this reg. */
+
+ val = spill_hard_reg (spill_regs[n_spills], global, dumpfile, 0);
+
+ /* If there are some registers still to eliminate and this register
+ wasn't ever used before, additional stack space may have to be
+ allocated to store this register. Thus, we may have changed the offset
+ between the stack and frame pointers, so mark that something has changed.
+ (If new pseudos were spilled, thus requiring more space, VAL would have
+ been set non-zero by the call to spill_hard_reg above since additional
+ reloads may be needed in that case.
+
+ One might think that we need only set VAL to 1 if this is a call-used
+ register. However, the set of registers that must be saved by the
+ prologue is not identical to the call-used set. For example, the
+ register used by the call insn for the return PC is a call-used register,
+ but must be saved by the prologue. */
+ if (num_eliminable && ! regs_ever_live[spill_regs[n_spills]])
+ val = 1;
+
+ regs_ever_live[spill_regs[n_spills]] = 1;
+ n_spills++;
+
+ return val;
+}
+
+/* Delete an unneeded INSN and any previous insns who sole purpose is loading
+ data that is dead in INSN. */
+
+static void
+delete_dead_insn (insn)
+ rtx insn;
+{
+ rtx prev = prev_real_insn (insn);
+ rtx prev_dest;
+
+ /* If the previous insn sets a register that dies in our insn, delete it
+ too. */
+ if (prev && GET_CODE (PATTERN (prev)) == SET
+ && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
+ && reg_mentioned_p (prev_dest, PATTERN (insn))
+ && find_regno_note (insn, REG_DEAD, REGNO (prev_dest)))
+ delete_dead_insn (prev);
+
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+}
+
+/* Modify the home of pseudo-reg I.
+ The new home is present in reg_renumber[I].
+
+ FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
+ or it may be -1, meaning there is none or it is not relevant.
+ This is used so that all pseudos spilled from a given hard reg
+ can share one stack slot. */
+
+static void
+alter_reg (i, from_reg)
+ register int i;
+ int from_reg;
+{
+ /* When outputting an inline function, this can happen
+ for a reg that isn't actually used. */
+ if (regno_reg_rtx[i] == 0)
+ return;
+
+ /* If the reg got changed to a MEM at rtl-generation time,
+ ignore it. */
+ if (GET_CODE (regno_reg_rtx[i]) != REG)
+ return;
+
+ /* Modify the reg-rtx to contain the new hard reg
+ number or else to contain its pseudo reg number. */
+ REGNO (regno_reg_rtx[i])
+ = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
+
+ /* If we have a pseudo that is needed but has no hard reg or equivalent,
+ allocate a stack slot for it. */
+
+ if (reg_renumber[i] < 0
+ && reg_n_refs[i] > 0
+ && reg_equiv_constant[i] == 0
+ && reg_equiv_memory_loc[i] == 0)
+ {
+ register rtx x;
+ int inherent_size = PSEUDO_REGNO_BYTES (i);
+ int total_size = MAX (inherent_size, reg_max_ref_width[i]);
+ int adjust = 0;
+
+ /* Each pseudo reg has an inherent size which comes from its own mode,
+ and a total size which provides room for paradoxical subregs
+ which refer to the pseudo reg in wider modes.
+
+ We can use a slot already allocated if it provides both
+ enough inherent space and enough total space.
+ Otherwise, we allocate a new slot, making sure that it has no less
+ inherent space, and no less total space, then the previous slot. */
+ if (from_reg == -1)
+ {
+ /* No known place to spill from => no slot to reuse. */
+ x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size, -1);
+#if BYTES_BIG_ENDIAN
+ /* Cancel the big-endian correction done in assign_stack_local.
+ Get the address of the beginning of the slot.
+ This is so we can do a big-endian correction unconditionally
+ below. */
+ adjust = inherent_size - total_size;
+#endif
+ }
+ /* Reuse a stack slot if possible. */
+ else if (spill_stack_slot[from_reg] != 0
+ && spill_stack_slot_width[from_reg] >= total_size
+ && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
+ >= inherent_size))
+ x = spill_stack_slot[from_reg];
+ /* Allocate a bigger slot. */
+ else
+ {
+ /* Compute maximum size needed, both for inherent size
+ and for total size. */
+ enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
+ if (spill_stack_slot[from_reg])
+ {
+ if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
+ > inherent_size)
+ mode = GET_MODE (spill_stack_slot[from_reg]);
+ if (spill_stack_slot_width[from_reg] > total_size)
+ total_size = spill_stack_slot_width[from_reg];
+ }
+ /* Make a slot with that size. */
+ x = assign_stack_local (mode, total_size, -1);
+#if BYTES_BIG_ENDIAN
+ /* Cancel the big-endian correction done in assign_stack_local.
+ Get the address of the beginning of the slot.
+ This is so we can do a big-endian correction unconditionally
+ below. */
+ adjust = GET_MODE_SIZE (mode) - total_size;
+#endif
+ spill_stack_slot[from_reg] = x;
+ spill_stack_slot_width[from_reg] = total_size;
+ }
+
+#if BYTES_BIG_ENDIAN
+ /* On a big endian machine, the "address" of the slot
+ is the address of the low part that fits its inherent mode. */
+ if (inherent_size < total_size)
+ adjust += (total_size - inherent_size);
+#endif /* BYTES_BIG_ENDIAN */
+
+ /* If we have any adjustment to make, or if the stack slot is the
+ wrong mode, make a new stack slot. */
+ if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
+ {
+ x = gen_rtx (MEM, GET_MODE (regno_reg_rtx[i]),
+ plus_constant (XEXP (x, 0), adjust));
+ RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
+ }
+
+ /* Save the stack slot for later. */
+ reg_equiv_memory_loc[i] = x;
+ }
+}
+
+/* Mark the slots in regs_ever_live for the hard regs
+ used by pseudo-reg number REGNO. */
+
+void
+mark_home_live (regno)
+ int regno;
+{
+ register int i, lim;
+ i = reg_renumber[regno];
+ if (i < 0)
+ return;
+ lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
+ while (i < lim)
+ regs_ever_live[i++] = 1;
+}
+
+/* This function handles the tracking of elimination offsets around branches.
+
+ X is a piece of RTL being scanned.
+
+ INSN is the insn that it came from, if any.
+
+ INITIAL_P is non-zero if we are to set the offset to be the initial
+ offset and zero if we are setting the offset of the label to be the
+ current offset. */
+
+static void
+set_label_offsets (x, insn, initial_p)
+ rtx x;
+ rtx insn;
+ int initial_p;
+{
+ enum rtx_code code = GET_CODE (x);
+ rtx tem;
+ int i;
+ struct elim_table *p;
+
+ switch (code)
+ {
+ case LABEL_REF:
+ x = XEXP (x, 0);
+
+ /* ... fall through ... */
+
+ case CODE_LABEL:
+ /* If we know nothing about this label, set the desired offsets. Note
+ that this sets the offset at a label to be the offset before a label
+ if we don't know anything about the label. This is not correct for
+ the label after a BARRIER, but is the best guess we can make. If
+ we guessed wrong, we will suppress an elimination that might have
+ been possible had we been able to guess correctly. */
+
+ if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
+ {
+ for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
+ offsets_at[CODE_LABEL_NUMBER (x)][i]
+ = (initial_p ? reg_eliminate[i].initial_offset
+ : reg_eliminate[i].offset);
+ offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
+ }
+
+ /* Otherwise, if this is the definition of a label and it is
+ preceeded by a BARRIER, set our offsets to the known offset of
+ that label. */
+
+ else if (x == insn
+ && (tem = prev_nonnote_insn (insn)) != 0
+ && GET_CODE (tem) == BARRIER)
+ for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
+ reg_eliminate[i].offset = reg_eliminate[i].previous_offset
+ = offsets_at[CODE_LABEL_NUMBER (x)][i];
+
+ else
+ /* If neither of the above cases is true, compare each offset
+ with those previously recorded and suppress any eliminations
+ where the offsets disagree. */
+
+ for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
+ if (offsets_at[CODE_LABEL_NUMBER (x)][i]
+ != (initial_p ? reg_eliminate[i].initial_offset
+ : reg_eliminate[i].offset))
+ reg_eliminate[i].can_eliminate = 0;
+
+ return;
+
+ case JUMP_INSN:
+ set_label_offsets (PATTERN (insn), insn, initial_p);
+
+ /* ... fall through ... */
+
+ case INSN:
+ case CALL_INSN:
+ /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
+ and hence must have all eliminations at their initial offsets. */
+ for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
+ if (REG_NOTE_KIND (tem) == REG_LABEL)
+ set_label_offsets (XEXP (tem, 0), insn, 1);
+ return;
+
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ /* Each of the labels in the address vector must be at their initial
+ offsets. We want the first first for ADDR_VEC and the second
+ field for ADDR_DIFF_VEC. */
+
+ for (i = 0; i < XVECLEN (x, code == ADDR_DIFF_VEC); i++)
+ set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
+ insn, initial_p);
+ return;
+
+ case SET:
+ /* We only care about setting PC. If the source is not RETURN,
+ IF_THEN_ELSE, or a label, disable any eliminations not at
+ their initial offsets. Similarly if any arm of the IF_THEN_ELSE
+ isn't one of those possibilities. For branches to a label,
+ call ourselves recursively.
+
+ Note that this can disable elimination unnecessarily when we have
+ a non-local goto since it will look like a non-constant jump to
+ someplace in the current function. This isn't a significant
+ problem since such jumps will normally be when all elimination
+ pairs are back to their initial offsets. */
+
+ if (SET_DEST (x) != pc_rtx)
+ return;
+
+ switch (GET_CODE (SET_SRC (x)))
+ {
+ case PC:
+ case RETURN:
+ return;
+
+ case LABEL_REF:
+ set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
+ return;
+
+ case IF_THEN_ELSE:
+ tem = XEXP (SET_SRC (x), 1);
+ if (GET_CODE (tem) == LABEL_REF)
+ set_label_offsets (XEXP (tem, 0), insn, initial_p);
+ else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
+ break;
+
+ tem = XEXP (SET_SRC (x), 2);
+ if (GET_CODE (tem) == LABEL_REF)
+ set_label_offsets (XEXP (tem, 0), insn, initial_p);
+ else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
+ break;
+ return;
+ }
+
+ /* If we reach here, all eliminations must be at their initial
+ offset because we are doing a jump to a variable address. */
+ for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
+ if (p->offset != p->initial_offset)
+ p->can_eliminate = 0;
+ }
+}
+
+/* Used for communication between the next two function to properly share
+ the vector for an ASM_OPERANDS. */
+
+static struct rtvec_def *old_asm_operands_vec, *new_asm_operands_vec;
+
+/* Scan X and replace any eliminable registers (such as fp) with a
+ replacement (such as sp), plus an offset.
+
+ MEM_MODE is the mode of an enclosing MEM. We need this to know how
+ much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
+ MEM, we are allowed to replace a sum of a register and the constant zero
+ with the register, which we cannot do outside a MEM. In addition, we need
+ to record the fact that a register is referenced outside a MEM.
+
+ If INSN is nonzero, it is the insn containing X. If we replace a REG
+ in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
+ CLOBBER of the pseudo after INSN so find_equiv_regs will know that
+ that the REG is being modified.
+
+ If we see a modification to a register we know about, take the
+ appropriate action (see case SET, below).
+
+ REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
+ replacements done assuming all offsets are at their initial values. If
+ they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
+ encounter, return the actual location so that find_reloads will do
+ the proper thing. */
+
+rtx
+eliminate_regs (x, mem_mode, insn)
+ rtx x;
+ enum machine_mode mem_mode;
+ rtx insn;
+{
+ enum rtx_code code = GET_CODE (x);
+ struct elim_table *ep;
+ int regno;
+ rtx new;
+ int i, j;
+ char *fmt;
+ int copied = 0;
+
+ switch (code)
+ {
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case CONST:
+ case SYMBOL_REF:
+ case CODE_LABEL:
+ case PC:
+ case CC0:
+ case ASM_INPUT:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ case RETURN:
+ return x;
+
+ case REG:
+ regno = REGNO (x);
+
+ /* First handle the case where we encounter a bare register that
+ is eliminable. Replace it with a PLUS. */
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
+ ep++)
+ if (ep->from_rtx == x && ep->can_eliminate)
+ {
+ if (! mem_mode)
+ ep->ref_outside_mem = 1;
+ return plus_constant (ep->to_rtx, ep->previous_offset);
+ }
+
+ }
+ else if (reg_equiv_memory_loc && reg_equiv_memory_loc[regno]
+ && (reg_equiv_address[regno] || num_not_at_initial_offset))
+ {
+ /* In this case, find_reloads would attempt to either use an
+ incorrect address (if something is not at its initial offset)
+ or substitute an replaced address into an insn (which loses
+ if the offset is changed by some later action). So we simply
+ return the replaced stack slot (assuming it is changed by
+ elimination) and ignore the fact that this is actually a
+ reference to the pseudo. Ensure we make a copy of the
+ address in case it is shared. */
+ new = eliminate_regs (reg_equiv_memory_loc[regno], mem_mode, 0);
+ if (new != reg_equiv_memory_loc[regno])
+ return copy_rtx (new);
+ }
+ return x;
+
+ case PLUS:
+ /* If this is the sum of an eliminable register and a constant, rework
+ the sum. */
+ if (GET_CODE (XEXP (x, 0)) == REG
+ && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
+ && CONSTANT_P (XEXP (x, 1)))
+ {
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
+ ep++)
+ if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
+ {
+ if (! mem_mode)
+ ep->ref_outside_mem = 1;
+
+ /* The only time we want to replace a PLUS with a REG (this
+ occurs when the constant operand of the PLUS is the negative
+ of the offset) is when we are inside a MEM. We won't want
+ to do so at other times because that would change the
+ structure of the insn in a way that reload can't handle.
+ We special-case the commonest situation in
+ eliminate_regs_in_insn, so just replace a PLUS with a
+ PLUS here, unless inside a MEM. */
+ if (mem_mode && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
+ return ep->to_rtx;
+ else
+ return gen_rtx (PLUS, Pmode, ep->to_rtx,
+ plus_constant (XEXP (x, 1),
+ ep->previous_offset));
+ }
+
+ /* If the register is not eliminable, we are done since the other
+ operand is a constant. */
+ return x;
+ }
+
+ /* If this is part of an address, we want to bring any constant to the
+ outermost PLUS. We will do this by doing register replacement in
+ our operands and seeing if a constant shows up in one of them.
+
+ We assume here this is part of an address (or a "load address" insn)
+ since an eliminable register is not likely to appear in any other
+ context.
+
+ If we have (plus (eliminable) (reg)), we want to produce
+ (plus (plus (replacement) (reg) (const))). If this was part of a
+ normal add insn, (plus (replacement) (reg)) will be pushed as a
+ reload. This is the desired action. */
+
+ {
+ rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, 0);
+ rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, 0);
+
+ if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
+ {
+ /* If one side is a PLUS and the other side is a pseudo that
+ didn't get a hard register but has a reg_equiv_constant,
+ we must replace the constant here since it may no longer
+ be in the position of any operand. */
+ if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
+ && REGNO (new1) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[REGNO (new1)] < 0
+ && reg_equiv_constant != 0
+ && reg_equiv_constant[REGNO (new1)] != 0)
+ new1 = reg_equiv_constant[REGNO (new1)];
+ else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
+ && REGNO (new0) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[REGNO (new0)] < 0
+ && reg_equiv_constant[REGNO (new0)] != 0)
+ new0 = reg_equiv_constant[REGNO (new0)];
+
+ new = form_sum (new0, new1);
+
+ /* As above, if we are not inside a MEM we do not want to
+ turn a PLUS into something else. We might try to do so here
+ for an addition of 0 if we aren't optimizing. */
+ if (! mem_mode && GET_CODE (new) != PLUS)
+ return gen_rtx (PLUS, GET_MODE (x), new, const0_rtx);
+ else
+ return new;
+ }
+ }
+ return x;
+
+ case EXPR_LIST:
+ /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
+ if (XEXP (x, 0))
+ {
+ new = eliminate_regs (XEXP (x, 0), mem_mode, 0);
+ if (new != XEXP (x, 0))
+ x = gen_rtx (EXPR_LIST, REG_NOTE_KIND (x), new, XEXP (x, 1));
+ }
+
+ /* ... fall through ... */
+
+ case INSN_LIST:
+ /* Now do eliminations in the rest of the chain. If this was
+ an EXPR_LIST, this might result in allocating more memory than is
+ strictly needed, but it simplifies the code. */
+ if (XEXP (x, 1))
+ {
+ new = eliminate_regs (XEXP (x, 1), mem_mode, 0);
+ if (new != XEXP (x, 1))
+ return gen_rtx (INSN_LIST, GET_MODE (x), XEXP (x, 0), new);
+ }
+ return x;
+
+ case CALL:
+ case COMPARE:
+ case MINUS:
+ case MULT:
+ case DIV: case UDIV:
+ case MOD: case UMOD:
+ case AND: case IOR: case XOR:
+ case LSHIFT: case ASHIFT: case ROTATE:
+ case ASHIFTRT: case LSHIFTRT: case ROTATERT:
+ case NE: case EQ:
+ case GE: case GT: case GEU: case GTU:
+ case LE: case LT: case LEU: case LTU:
+ {
+ rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, 0);
+ rtx new1 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, 0) : 0;
+
+ if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
+ return gen_rtx (code, GET_MODE (x), new0, new1);
+ }
+ return x;
+
+ case PRE_INC:
+ case POST_INC:
+ case PRE_DEC:
+ case POST_DEC:
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+ if (ep->to_rtx == XEXP (x, 0))
+ {
+ if (code == PRE_DEC || code == POST_DEC)
+ ep->offset += GET_MODE_SIZE (mem_mode);
+ else
+ ep->offset -= GET_MODE_SIZE (mem_mode);
+ }
+
+ /* Fall through to generic unary operation case. */
+ case USE:
+ case STRICT_LOW_PART:
+ case NEG: case NOT:
+ case SIGN_EXTEND: case ZERO_EXTEND:
+ case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
+ case FLOAT: case FIX:
+ case UNSIGNED_FIX: case UNSIGNED_FLOAT:
+ case ABS:
+ case SQRT:
+ case FFS:
+ new = eliminate_regs (XEXP (x, 0), mem_mode, 0);
+ if (new != XEXP (x, 0))
+ return gen_rtx (code, GET_MODE (x), new);
+ return x;
+
+ case SUBREG:
+ /* Similar to above processing, but preserve SUBREG_WORD.
+ Convert (subreg (mem)) to (mem) if not paradoxical.
+ Also, if we have a non-paradoxical (subreg (pseudo)) and the
+ pseudo didn't get a hard reg, we must replace this with the
+ eliminated version of the memory location because push_reloads
+ may do the replacement in certain circumstances. */
+ if (GET_CODE (SUBREG_REG (x)) == REG
+ && (GET_MODE_SIZE (GET_MODE (x))
+ <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
+ && reg_equiv_memory_loc != 0
+ && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
+ {
+ new = eliminate_regs (reg_equiv_memory_loc[REGNO (SUBREG_REG (x))],
+ mem_mode, 0);
+
+ /* If we didn't change anything, we must retain the pseudo. */
+ if (new == reg_equiv_memory_loc[REGNO (SUBREG_REG (x))])
+ new = XEXP (x, 0);
+ else
+ /* Otherwise, ensure NEW isn't shared in case we have to reload
+ it. */
+ new = copy_rtx (new);
+ }
+ else
+ new = eliminate_regs (SUBREG_REG (x), mem_mode, 0);
+
+ if (new != XEXP (x, 0))
+ {
+ if (GET_CODE (new) == MEM
+ && (GET_MODE_SIZE (GET_MODE (x))
+ <= GET_MODE_SIZE (GET_MODE (new))))
+ {
+ int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
+ enum machine_mode mode = GET_MODE (x);
+
+#if BYTES_BIG_ENDIAN
+ offset += (MIN (UNITS_PER_WORD,
+ GET_MODE_SIZE (GET_MODE (new)))
+ - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
+#endif
+
+ PUT_MODE (new, mode);
+ XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
+ return new;
+ }
+ else
+ return gen_rtx (SUBREG, GET_MODE (x), new, SUBREG_WORD (x));
+ }
+
+ return x;
+
+ case CLOBBER:
+ /* If clobbering a register that is the replacement register for an
+ elimination we still think can be peformed, note that it cannot
+ be performed. Otherwise, we need not be concerned about it. */
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+ if (ep->to_rtx == XEXP (x, 0))
+ ep->can_eliminate = 0;
+
+ return x;
+
+ case ASM_OPERANDS:
+ {
+ rtx *temp_vec;
+ /* Properly handle sharing input and constraint vectors. */
+ if (ASM_OPERANDS_INPUT_VEC (x) != old_asm_operands_vec)
+ {
+ /* When we come to a new vector not seen before,
+ scan all its elements; keep the old vector if none
+ of them changes; otherwise, make a copy. */
+ old_asm_operands_vec = ASM_OPERANDS_INPUT_VEC (x);
+ temp_vec = (rtx *) alloca (XVECLEN (x, 3) * sizeof (rtx));
+ for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
+ temp_vec[i] = eliminate_regs (ASM_OPERANDS_INPUT (x, i),
+ mem_mode, 0);
+
+ for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
+ if (temp_vec[i] != ASM_OPERANDS_INPUT (x, i))
+ break;
+
+ if (i == ASM_OPERANDS_INPUT_LENGTH (x))
+ new_asm_operands_vec = old_asm_operands_vec;
+ else
+ new_asm_operands_vec
+ = gen_rtvec_v (ASM_OPERANDS_INPUT_LENGTH (x), temp_vec);
+ }
+
+ /* If we had to copy the vector, copy the entire ASM_OPERANDS. */
+ if (new_asm_operands_vec == old_asm_operands_vec)
+ return x;
+
+ new = gen_rtx (ASM_OPERANDS, VOIDmode, ASM_OPERANDS_TEMPLATE (x),
+ ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
+ ASM_OPERANDS_OUTPUT_IDX (x), new_asm_operands_vec,
+ ASM_OPERANDS_INPUT_CONSTRAINT_VEC (x),
+ ASM_OPERANDS_SOURCE_FILE (x),
+ ASM_OPERANDS_SOURCE_LINE (x));
+ new->volatil = x->volatil;
+ return new;
+ }
+
+ case SET:
+ /* Check for setting a register that we know about. */
+ if (GET_CODE (SET_DEST (x)) == REG)
+ {
+ /* See if this is setting the replacement register for an
+ elimination.
+
+ If DEST is the frame pointer, we do nothing because we assume that
+ all assignments to the frame pointer are for non-local gotos and
+ are being done at a time when they are valid and do not disturb
+ anything else. Some machines want to eliminate a fake argument
+ pointer with either the frame or stack pointer. Assignments to
+ the frame pointer must not prevent this elimination. */
+
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
+ ep++)
+ if (ep->to_rtx == SET_DEST (x)
+ && SET_DEST (x) != frame_pointer_rtx)
+ {
+ /* If it is being incrememented, adjust the offset. Otherwise,
+ this elimination can't be done. */
+ rtx src = SET_SRC (x);
+
+ if (GET_CODE (src) == PLUS
+ && XEXP (src, 0) == SET_DEST (x)
+ && GET_CODE (XEXP (src, 1)) == CONST_INT)
+ ep->offset -= INTVAL (XEXP (src, 1));
+ else
+ ep->can_eliminate = 0;
+ }
+
+ /* Now check to see we are assigning to a register that can be
+ eliminated. If so, it must be as part of a PARALLEL, since we
+ will not have been called if this is a single SET. So indicate
+ that we can no longer eliminate this reg. */
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
+ ep++)
+ if (ep->from_rtx == SET_DEST (x) && ep->can_eliminate)
+ ep->can_eliminate = 0;
+ }
+
+ /* Now avoid the loop below in this common case. */
+ {
+ rtx new0 = eliminate_regs (SET_DEST (x), 0, 0);
+ rtx new1 = eliminate_regs (SET_SRC (x), 0, 0);
+
+ /* If SET_DEST changed from a REG to a MEM and INSN is non-zero,
+ write a CLOBBER insn. */
+ if (GET_CODE (SET_DEST (x)) == REG && GET_CODE (new0) == MEM
+ && insn != 0)
+ emit_insn_after (gen_rtx (CLOBBER, VOIDmode, SET_DEST (x)), insn);
+
+ if (new0 != SET_DEST (x) || new1 != SET_SRC (x))
+ return gen_rtx (SET, VOIDmode, new0, new1);
+ }
+
+ return x;
+
+ case MEM:
+ /* Our only special processing is to pass the mode of the MEM to our
+ recursive call and copy the flags. While we are here, handle this
+ case more efficiently. */
+ new = eliminate_regs (XEXP (x, 0), GET_MODE (x), 0);
+ if (new != XEXP (x, 0))
+ {
+ new = gen_rtx (MEM, GET_MODE (x), new);
+ new->volatil = x->volatil;
+ new->unchanging = x->unchanging;
+ new->in_struct = x->in_struct;
+ return new;
+ }
+ else
+ return x;
+ }
+
+ /* Process each of our operands recursively. If any have changed, make a
+ copy of the rtx. */
+ fmt = GET_RTX_FORMAT (code);
+ for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
+ {
+ if (*fmt == 'e')
+ {
+ new = eliminate_regs (XEXP (x, i), mem_mode, 0);
+ if (new != XEXP (x, i) && ! copied)
+ {
+ rtx new_x = rtx_alloc (code);
+ bcopy (x, new_x, (sizeof (*new_x) - sizeof (new_x->fld)
+ + (sizeof (new_x->fld[0])
+ * GET_RTX_LENGTH (code))));
+ x = new_x;
+ copied = 1;
+ }
+ XEXP (x, i) = new;
+ }
+ else if (*fmt == 'E')
+ {
+ int copied_vec = 0;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
+ if (new != XVECEXP (x, i, j) && ! copied_vec)
+ {
+ rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
+ &XVECEXP (x, i, 0));
+ if (! copied)
+ {
+ rtx new_x = rtx_alloc (code);
+ bcopy (x, new_x, (sizeof (*new_x) - sizeof (new_x->fld)
+ + (sizeof (new_x->fld[0])
+ * GET_RTX_LENGTH (code))));
+ x = new_x;
+ copied = 1;
+ }
+ XVEC (x, i) = new_v;
+ copied_vec = 1;
+ }
+ XVECEXP (x, i, j) = new;
+ }
+ }
+ }
+
+ return x;
+}
+
+/* Scan INSN and eliminate all eliminable registers in it.
+
+ If REPLACE is nonzero, do the replacement destructively. Also
+ delete the insn as dead it if it is setting an eliminable register.
+
+ If REPLACE is zero, do all our allocations in reload_obstack.
+
+ If no eliminations were done and this insn doesn't require any elimination
+ processing (these are not identical conditions: it might be updating sp,
+ but not referencing fp; this needs to be seen during reload_as_needed so
+ that the offset between fp and sp can be taken into consideration), zero
+ is returned. Otherwise, 1 is returned. */
+
+static int
+eliminate_regs_in_insn (insn, replace)
+ rtx insn;
+ int replace;
+{
+ rtx old_body = PATTERN (insn);
+ rtx new_body;
+ int val = 0;
+ struct elim_table *ep;
+
+ if (! replace)
+ push_obstacks (&reload_obstack, &reload_obstack);
+
+ if (GET_CODE (old_body) == SET && GET_CODE (SET_DEST (old_body)) == REG
+ && REGNO (SET_DEST (old_body)) < FIRST_PSEUDO_REGISTER)
+ {
+ /* Check for setting an eliminable register. */
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+ if (ep->from_rtx == SET_DEST (old_body) && ep->can_eliminate)
+ {
+ /* In this case this insn isn't serving a useful purpose. We
+ will delete it in reload_as_needed once we know that this
+ elimination is, in fact, being done.
+
+ If REPLACE isn't set, we can't delete this insn, but neededn't
+ process it since it won't be used unless something changes. */
+ if (replace)
+ delete_dead_insn (insn);
+ val = 1;
+ goto done;
+ }
+
+ /* Check for (set (reg) (plus (reg from) (offset))) where the offset
+ in the insn is the negative of the offset in FROM. Substitute
+ (set (reg) (reg to)) for the insn and change its code.
+
+ We have to do this here, rather than in eliminate_regs, do that we can
+ change the insn code. */
+
+ if (GET_CODE (SET_SRC (old_body)) == PLUS
+ && GET_CODE (XEXP (SET_SRC (old_body), 0)) == REG
+ && GET_CODE (XEXP (SET_SRC (old_body), 1)) == CONST_INT)
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
+ ep++)
+ if (ep->from_rtx == XEXP (SET_SRC (old_body), 0)
+ && ep->can_eliminate
+ && ep->offset == - INTVAL (XEXP (SET_SRC (old_body), 1)))
+ {
+ PATTERN (insn) = gen_rtx (SET, VOIDmode,
+ SET_DEST (old_body), ep->to_rtx);
+ INSN_CODE (insn) = -1;
+ val = 1;
+ goto done;
+ }
+ }
+
+ old_asm_operands_vec = 0;
+
+ /* Replace the body of this insn with a substituted form. If we changed
+ something, return non-zero. If this is the final call for this
+ insn (REPLACE is non-zero), do the elimination in REG_NOTES as well.
+
+ If we are replacing a body that was a (set X (plus Y Z)), try to
+ re-recognize the insn. We do this in case we had a simple addition
+ but now can do this as a load-address. This saves an insn in this
+ common case. */
+
+ new_body = eliminate_regs (old_body, 0, replace ? insn : 0);
+ if (new_body != old_body)
+ {
+ if (GET_CODE (old_body) != SET || GET_CODE (SET_SRC (old_body)) != PLUS
+ || ! validate_change (insn, &PATTERN (insn), new_body, 0))
+ PATTERN (insn) = new_body;
+
+ if (replace && REG_NOTES (insn))
+ REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, 0);
+ val = 1;
+ }
+
+ /* Loop through all elimination pairs. See if any have changed and
+ recalculate the number not at initial offset.
+
+ We also detect a cases where register elimination cannot be done,
+ namely, if a register would be both changed and referenced outside a MEM
+ in the resulting insn since such an insn is often undefined and, even if
+ not, we cannot know what meaning will be given to it. Note that it is
+ valid to have a register used in an address in an insn that changes it
+ (presumably with a pre- or post-increment or decrement).
+
+ If anything changes, return nonzero. */
+
+ num_not_at_initial_offset = 0;
+ for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+ {
+ if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
+ ep->can_eliminate = 0;
+
+ ep->ref_outside_mem = 0;
+
+ if (ep->previous_offset != ep->offset)
+ val = 1;
+
+ ep->previous_offset = ep->offset;
+ if (ep->can_eliminate && ep->offset != ep->initial_offset)
+ num_not_at_initial_offset++;
+ }
+
+ done:
+ if (! replace)
+ pop_obstacks ();
+
+ return val;
+}
+
+/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
+ replacement we currently believe is valid, mark it as not eliminable if X
+ modifies DEST in any way other than by adding a constant integer to it.
+
+ If DEST is the frame pointer, we do nothing because we assume that
+ all assignments to the frame pointer are nonlocal gotos and are being done
+ at a time when they are valid and do not disturb anything else.
+ Some machines want to eliminate a fake argument pointer with either the
+ frame or stack pointer. Assignments to the frame pointer must not prevent
+ this elimination.
+
+ Called via note_stores from reload before starting its passes to scan
+ the insns of the function. */
+
+static void
+mark_not_eliminable (dest, x)
+ rtx dest;
+ rtx x;
+{
+ register int i;
+
+ /* A SUBREG of a hard register here is just changing its mode. We should
+ not see a SUBREG of an eliminable hard register, but check just in
+ case. */
+ if (GET_CODE (dest) == SUBREG)
+ dest = SUBREG_REG (dest);
+
+ if (dest == frame_pointer_rtx)
+ return;
+
+ for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
+ if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
+ && (GET_CODE (x) != SET
+ || GET_CODE (SET_SRC (x)) != PLUS
+ || XEXP (SET_SRC (x), 0) != dest
+ || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
+ {
+ reg_eliminate[i].can_eliminate_previous
+ = reg_eliminate[i].can_eliminate = 0;
+ num_eliminable--;
+ }
+}
+
+/* Kick all pseudos out of hard register REGNO.
+ If GLOBAL is nonzero, try to find someplace else to put them.
+ If DUMPFILE is nonzero, log actions taken on that file.
+
+ If CANT_ELIMINATE is nonzero, it means that we are doing this spill
+ because we found we can't eliminate some register. In the case, no pseudos
+ are allowed to be in the register, even if they are only in a block that
+ doesn't require spill registers, unlike the case when we are spilling this
+ hard reg to produce another spill register.
+
+ Return nonzero if any pseudos needed to be kicked out. */
+
+static int
+spill_hard_reg (regno, global, dumpfile, cant_eliminate)
+ register int regno;
+ int global;
+ FILE *dumpfile;
+ int cant_eliminate;
+{
+ int something_changed = 0;
+ register int i;
+
+ SET_HARD_REG_BIT (forbidden_regs, regno);
+
+ /* Spill every pseudo reg that was allocated to this reg
+ or to something that overlaps this reg. */
+
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ if (reg_renumber[i] >= 0
+ && reg_renumber[i] <= regno
+ && (reg_renumber[i]
+ + HARD_REGNO_NREGS (reg_renumber[i],
+ PSEUDO_REGNO_MODE (i))
+ > regno))
+ {
+ enum reg_class class = REGNO_REG_CLASS (regno);
+
+ /* If this register belongs solely to a basic block which needed no
+ spilling of any class that this register is contained in,
+ leave it be, unless we are spilling this register because
+ it was a hard register that can't be eliminated. */
+
+ if (! cant_eliminate
+ && basic_block_needs[0]
+ && reg_basic_block[i] >= 0
+ && basic_block_needs[(int) class][reg_basic_block[i]] == 0)
+ {
+ enum reg_class *p;
+
+ for (p = reg_class_superclasses[(int) class];
+ *p != LIM_REG_CLASSES; p++)
+ if (basic_block_needs[(int) *p][reg_basic_block[i]] > 0)
+ break;
+
+ if (*p == LIM_REG_CLASSES)
+ continue;
+ }
+
+ /* Mark it as no longer having a hard register home. */
+ reg_renumber[i] = -1;
+ /* We will need to scan everything again. */
+ something_changed = 1;
+ if (global)
+ retry_global_alloc (i, forbidden_regs);
+
+ alter_reg (i, regno);
+ if (dumpfile)
+ {
+ if (reg_renumber[i] == -1)
+ fprintf (dumpfile, " Register %d now on stack.\n\n", i);
+ else
+ fprintf (dumpfile, " Register %d now in %d.\n\n",
+ i, reg_renumber[i]);
+ }
+ }
+
+ return something_changed;
+}
+
+/* Find all paradoxical subregs within X and update reg_max_ref_width. */
+
+static void
+scan_paradoxical_subregs (x)
+ register rtx x;
+{
+ register int i;
+ register char *fmt;
+ register enum rtx_code code = GET_CODE (x);
+
+ switch (code)
+ {
+ case CONST_INT:
+ case CONST:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case CONST_DOUBLE:
+ case CC0:
+ case PC:
+ case REG:
+ case USE:
+ case CLOBBER:
+ return;
+
+ case SUBREG:
+ if (GET_CODE (SUBREG_REG (x)) == REG
+ && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
+ reg_max_ref_width[REGNO (SUBREG_REG (x))]
+ = GET_MODE_SIZE (GET_MODE (x));
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ scan_paradoxical_subregs (XEXP (x, i));
+ else if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = XVECLEN (x, i) - 1; j >=0; j--)
+ scan_paradoxical_subregs (XVECEXP (x, i, j));
+ }
+ }
+}
+
+struct hard_reg_n_uses { int regno; int uses; };
+
+static int
+hard_reg_use_compare (p1, p2)
+ struct hard_reg_n_uses *p1, *p2;
+{
+ int tem = p1->uses - p2->uses;
+ if (tem != 0) return tem;
+ /* If regs are equally good, sort by regno,
+ so that the results of qsort leave nothing to chance. */
+ return p1->regno - p2->regno;
+}
+
+/* Choose the order to consider regs for use as reload registers
+ based on how much trouble would be caused by spilling one.
+ Store them in order of decreasing preference in potential_reload_regs. */
+
+static void
+order_regs_for_reload ()
+{
+ register int i;
+ register int o = 0;
+ int large = 0;
+
+ struct hard_reg_n_uses hard_reg_n_uses[FIRST_PSEUDO_REGISTER];
+
+ CLEAR_HARD_REG_SET (bad_spill_regs);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ potential_reload_regs[i] = -1;
+
+ /* Count number of uses of each hard reg by pseudo regs allocated to it
+ and then order them by decreasing use. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ hard_reg_n_uses[i].uses = 0;
+ hard_reg_n_uses[i].regno = i;
+ }
+
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ {
+ int regno = reg_renumber[i];
+ if (regno >= 0)
+ {
+ int lim = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
+ while (regno < lim)
+ hard_reg_n_uses[regno++].uses += reg_n_refs[i];
+ }
+ large += reg_n_refs[i];
+ }
+
+ /* Now fixed registers (which cannot safely be used for reloading)
+ get a very high use count so they will be considered least desirable.
+ Registers used explicitly in the rtl code are almost as bad. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ if (fixed_regs[i])
+ {
+ hard_reg_n_uses[i].uses += 2 * large + 2;
+ SET_HARD_REG_BIT (bad_spill_regs, i);
+ }
+ else if (regs_explicitly_used[i])
+ {
+ hard_reg_n_uses[i].uses += large + 1;
+ /* ??? We are doing this here because of the potential that
+ bad code may be generated if a register explicitly used in
+ an insn was used as a spill register for that insn. But
+ not using these are spill registers may lose on some machine.
+ We'll have to see how this works out. */
+ SET_HARD_REG_BIT (bad_spill_regs, i);
+ }
+ }
+ hard_reg_n_uses[FRAME_POINTER_REGNUM].uses += 2 * large + 2;
+ SET_HARD_REG_BIT (bad_spill_regs, FRAME_POINTER_REGNUM);
+
+#ifdef ELIMINABLE_REGS
+ /* If registers other than the frame pointer are eliminable, mark them as
+ poor choices. */
+ for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
+ {
+ hard_reg_n_uses[reg_eliminate[i].from].uses += 2 * large + 2;
+ SET_HARD_REG_BIT (bad_spill_regs, reg_eliminate[i].from);
+ }
+#endif
+
+ /* Prefer registers not so far used, for use in temporary loading.
+ Among them, if REG_ALLOC_ORDER is defined, use that order.
+ Otherwise, prefer registers not preserved by calls. */
+
+#ifdef REG_ALLOC_ORDER
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ int regno = reg_alloc_order[i];
+
+ if (hard_reg_n_uses[regno].uses == 0)
+ potential_reload_regs[o++] = regno;
+ }
+#else
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ if (hard_reg_n_uses[i].uses == 0 && call_used_regs[i])
+ potential_reload_regs[o++] = i;
+ }
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ if (hard_reg_n_uses[i].uses == 0 && ! call_used_regs[i])
+ potential_reload_regs[o++] = i;
+ }
+#endif
+
+ qsort (hard_reg_n_uses, FIRST_PSEUDO_REGISTER,
+ sizeof hard_reg_n_uses[0], hard_reg_use_compare);
+
+ /* Now add the regs that are already used,
+ preferring those used less often. The fixed and otherwise forbidden
+ registers will be at the end of this list. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (hard_reg_n_uses[i].uses != 0)
+ potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
+}
+
+/* Reload pseudo-registers into hard regs around each insn as needed.
+ Additional register load insns are output before the insn that needs it
+ and perhaps store insns after insns that modify the reloaded pseudo reg.
+
+ reg_last_reload_reg and reg_reloaded_contents keep track of
+ which pseudo-registers are already available in reload registers.
+ We update these for the reloads that we perform,
+ as the insns are scanned. */
+
+static void
+reload_as_needed (first, live_known)
+ rtx first;
+ int live_known;
+{
+ register rtx insn;
+ register int i;
+ int this_block = 0;
+ rtx x;
+ rtx after_call = 0;
+
+ bzero (spill_reg_rtx, sizeof spill_reg_rtx);
+ reg_last_reload_reg = (rtx *) alloca (max_regno * sizeof (rtx));
+ bzero (reg_last_reload_reg, max_regno * sizeof (rtx));
+ reg_has_output_reload = (char *) alloca (max_regno);
+ for (i = 0; i < n_spills; i++)
+ {
+ reg_reloaded_contents[i] = -1;
+ reg_reloaded_insn[i] = 0;
+ }
+
+ /* Reset all offsets on eliminable registers to their initial values. */
+#ifdef ELIMINABLE_REGS
+ for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
+ {
+ INITIAL_ELIMINATION_OFFSET (reg_eliminate[i].from, reg_eliminate[i].to,
+ reg_eliminate[i].initial_offset)
+ reg_eliminate[i].previous_offset
+ = reg_eliminate[i].offset = reg_eliminate[i].initial_offset;
+ }
+#else
+ INITIAL_FRAME_POINTER_OFFSET (reg_eliminate[0].initial_offset);
+ reg_eliminate[0].previous_offset
+ = reg_eliminate[0].offset = reg_eliminate[0].initial_offset;
+#endif
+
+ num_not_at_initial_offset = 0;
+
+ for (insn = first; insn;)
+ {
+ register rtx next = NEXT_INSN (insn);
+
+ /* Notice when we move to a new basic block. */
+ if (live_known && basic_block_needs && this_block + 1 < n_basic_blocks
+ && insn == basic_block_head[this_block+1])
+ ++this_block;
+
+ /* If we pass a label, copy the offsets from the label information
+ into the current offsets of each elimination. */
+ if (GET_CODE (insn) == CODE_LABEL)
+ for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
+ reg_eliminate[i].offset = reg_eliminate[i].previous_offset
+ = offsets_at[CODE_LABEL_NUMBER (insn)][i];
+
+ else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ rtx avoid_return_reg = 0;
+
+#ifdef SMALL_REGISTER_CLASSES
+ /* Set avoid_return_reg if this is an insn
+ that might use the value of a function call. */
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ if (GET_CODE (PATTERN (insn)) == SET)
+ after_call = SET_DEST (PATTERN (insn));
+ else if (GET_CODE (PATTERN (insn)) == PARALLEL
+ && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
+ after_call = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
+ else
+ after_call = 0;
+ }
+ else if (after_call != 0
+ && !(GET_CODE (PATTERN (insn)) == SET
+ && SET_DEST (PATTERN (insn)) == stack_pointer_rtx))
+ {
+ if (reg_mentioned_p (after_call, PATTERN (insn)))
+ avoid_return_reg = after_call;
+ after_call = 0;
+ }
+#endif /* SMALL_REGISTER_CLASSES */
+
+ /* If we need to do register elimination processing, do so.
+ This might delete the insn, in which case we are done. */
+ if (num_eliminable && GET_MODE (insn) == QImode)
+ {
+ eliminate_regs_in_insn (insn, 1);
+ if (GET_CODE (insn) == NOTE)
+ {
+ insn = next;
+ continue;
+ }
+ }
+
+ if (GET_MODE (insn) == VOIDmode)
+ n_reloads = 0;
+ /* First find the pseudo regs that must be reloaded for this insn.
+ This info is returned in the tables reload_... (see reload.h).
+ Also modify the body of INSN by substituting RELOAD
+ rtx's for those pseudo regs. */
+ else
+ {
+ bzero (reg_has_output_reload, max_regno);
+ CLEAR_HARD_REG_SET (reg_is_output_reload);
+
+ find_reloads (insn, 1, spill_indirect_levels, live_known,
+ spill_reg_order);
+ }
+
+ if (n_reloads > 0)
+ {
+ int class;
+
+ /* If this block has not had spilling done for a
+ particular class, deactivate any optional reloads
+ of that class lest they try to use a spill-reg which isn't
+ available here. If we have any non-optionals that need a
+ spill reg, abort. */
+
+ for (class = 0; class < N_REG_CLASSES; class++)
+ if (basic_block_needs[class] != 0
+ && basic_block_needs[class][this_block] == 0)
+ for (i = 0; i < n_reloads; i++)
+ if (class == (int) reload_reg_class[i])
+ {
+ if (reload_optional[i])
+ reload_in[i] = reload_out[i] = reload_reg_rtx[i] = 0;
+ else if (reload_reg_rtx[i] == 0)
+ abort ();
+ }
+
+ /* Now compute which reload regs to reload them into. Perhaps
+ reusing reload regs from previous insns, or else output
+ load insns to reload them. Maybe output store insns too.
+ Record the choices of reload reg in reload_reg_rtx. */
+ choose_reload_regs (insn, avoid_return_reg);
+
+ /* Generate the insns to reload operands into or out of
+ their reload regs. */
+ emit_reload_insns (insn);
+
+ /* Substitute the chosen reload regs from reload_reg_rtx
+ into the insn's body (or perhaps into the bodies of other
+ load and store insn that we just made for reloading
+ and that we moved the structure into). */
+ subst_reloads ();
+ }
+ /* Any previously reloaded spilled pseudo reg, stored in this insn,
+ is no longer validly lying around to save a future reload.
+ Note that this does not detect pseudos that were reloaded
+ for this insn in order to be stored in
+ (obeying register constraints). That is correct; such reload
+ registers ARE still valid. */
+ note_stores (PATTERN (insn), forget_old_reloads_1);
+
+ /* There may have been CLOBBER insns placed after INSN. So scan
+ between INSN and NEXT and use them to forget old reloads. */
+ for (x = NEXT_INSN (insn); x != next; x = NEXT_INSN (x))
+ if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
+ note_stores (PATTERN (x), forget_old_reloads_1);
+
+#ifdef AUTO_INC_DEC
+ /* Likewise for regs altered by auto-increment in this insn.
+ But note that the reg-notes are not changed by reloading:
+ they still contain the pseudo-regs, not the spill regs. */
+ for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
+ if (REG_NOTE_KIND (x) == REG_INC)
+ {
+ /* See if this pseudo reg was reloaded in this insn.
+ If so, its last-reload info is still valid
+ because it is based on this insn's reload. */
+ for (i = 0; i < n_reloads; i++)
+ if (reload_out[i] == XEXP (x, 0))
+ break;
+
+ if (i != n_reloads)
+ forget_old_reloads_1 (XEXP (x, 0));
+ }
+#endif
+ }
+ /* A reload reg's contents are unknown after a label. */
+ if (GET_CODE (insn) == CODE_LABEL)
+ for (i = 0; i < n_spills; i++)
+ {
+ reg_reloaded_contents[i] = -1;
+ reg_reloaded_insn[i] = 0;
+ }
+
+ /* Don't assume a reload reg is still good after a call insn
+ if it is a call-used reg. */
+ if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == CALL_INSN)
+ for (i = 0; i < n_spills; i++)
+ if (call_used_regs[spill_regs[i]])
+ {
+ reg_reloaded_contents[i] = -1;
+ reg_reloaded_insn[i] = 0;
+ }
+
+ /* In case registers overlap, allow certain insns to invalidate
+ particular hard registers. */
+
+#ifdef INSN_CLOBBERS_REGNO_P
+ for (i = 0 ; i < n_spills ; i++)
+ if (INSN_CLOBBERS_REGNO_P (insn, spill_regs[i]))
+ {
+ reg_reloaded_contents[i] = -1;
+ reg_reloaded_insn[i] = 0;
+ }
+#endif
+
+ insn = next;
+
+#ifdef USE_C_ALLOCA
+ alloca (0);
+#endif
+ }
+}
+
+/* Discard all record of any value reloaded from X,
+ or reloaded in X from someplace else;
+ unless X is an output reload reg of the current insn.
+
+ X may be a hard reg (the reload reg)
+ or it may be a pseudo reg that was reloaded from. */
+
+static void
+forget_old_reloads_1 (x)
+ rtx x;
+{
+ register int regno;
+ int nr;
+
+ if (GET_CODE (x) != REG)
+ return;
+
+ regno = REGNO (x);
+
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ nr = 1;
+ else
+ {
+ int i;
+ nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
+ /* Storing into a spilled-reg invalidates its contents.
+ This can happen if a block-local pseudo is allocated to that reg
+ and it wasn't spilled because this block's total need is 0.
+ Then some insn might have an optional reload and use this reg. */
+ for (i = 0; i < nr; i++)
+ if (spill_reg_order[regno + i] >= 0
+ /* But don't do this if the reg actually serves as an output
+ reload reg in the current instruction. */
+ && (n_reloads == 0
+ || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i)))
+ {
+ reg_reloaded_contents[spill_reg_order[regno + i]] = -1;
+ reg_reloaded_insn[spill_reg_order[regno + i]] = 0;
+ }
+ }
+
+ /* Since value of X has changed,
+ forget any value previously copied from it. */
+
+ while (nr-- > 0)
+ /* But don't forget a copy if this is the output reload
+ that establishes the copy's validity. */
+ if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
+ reg_last_reload_reg[regno + nr] = 0;
+}
+
+/* For each reload, the mode of the reload register. */
+static enum machine_mode reload_mode[MAX_RELOADS];
+
+/* For each reload, the largest number of registers it will require. */
+static int reload_nregs[MAX_RELOADS];
+
+/* Comparison function for qsort to decide which of two reloads
+ should be handled first. *P1 and *P2 are the reload numbers. */
+
+static int
+reload_reg_class_lower (p1, p2)
+ short *p1, *p2;
+{
+ register int r1 = *p1, r2 = *p2;
+ register int t;
+
+ /* Consider required reloads before optional ones. */
+ t = reload_optional[r1] - reload_optional[r2];
+ if (t != 0)
+ return t;
+
+ /* Count all solitary classes before non-solitary ones. */
+ t = ((reg_class_size[(int) reload_reg_class[r2]] == 1)
+ - (reg_class_size[(int) reload_reg_class[r1]] == 1));
+ if (t != 0)
+ return t;
+
+ /* Aside from solitaires, consider all multi-reg groups first. */
+ t = reload_nregs[r2] - reload_nregs[r1];
+ if (t != 0)
+ return t;
+
+ /* Consider reloads in order of increasing reg-class number. */
+ t = (int) reload_reg_class[r1] - (int) reload_reg_class[r2];
+ if (t != 0)
+ return t;
+
+ /* If reloads are equally urgent, sort by reload number,
+ so that the results of qsort leave nothing to chance. */
+ return r1 - r2;
+}
+
+/* The following HARD_REG_SETs indicate when each hard register is
+ used for a reload of various parts of the current insn. */
+
+/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
+static HARD_REG_SET reload_reg_used;
+/* If reg is in use for a RELOAD_FOR_INPUT_RELOAD_ADDRESS reload. */
+static HARD_REG_SET reload_reg_used_in_input_addr;
+/* If reg is in use for a RELOAD_FOR_OUTPUT_RELOAD_ADDRESS reload. */
+static HARD_REG_SET reload_reg_used_in_output_addr;
+/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
+static HARD_REG_SET reload_reg_used_in_op_addr;
+/* If reg is in use for a RELOAD_FOR_INPUT reload. */
+static HARD_REG_SET reload_reg_used_in_input;
+/* If reg is in use for a RELOAD_FOR_OUTPUT reload. */
+static HARD_REG_SET reload_reg_used_in_output;
+
+/* If reg is in use as a reload reg for any sort of reload. */
+static HARD_REG_SET reload_reg_used_at_all;
+
+/* Mark reg REGNO as in use for a reload of the sort spec'd by WHEN_NEEDED.
+ MODE is used to indicate how many consecutive regs are actually used. */
+
+static void
+mark_reload_reg_in_use (regno, when_needed, mode)
+ int regno;
+ enum reload_when_needed when_needed;
+ enum machine_mode mode;
+{
+ int nregs = HARD_REGNO_NREGS (regno, mode);
+ int i;
+
+ for (i = regno; i < nregs + regno; i++)
+ {
+ switch (when_needed)
+ {
+ case RELOAD_OTHER:
+ SET_HARD_REG_BIT (reload_reg_used, i);
+ break;
+
+ case RELOAD_FOR_INPUT_RELOAD_ADDRESS:
+ SET_HARD_REG_BIT (reload_reg_used_in_input_addr, i);
+ break;
+
+ case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS:
+ SET_HARD_REG_BIT (reload_reg_used_in_output_addr, i);
+ break;
+
+ case RELOAD_FOR_OPERAND_ADDRESS:
+ SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
+ break;
+
+ case RELOAD_FOR_INPUT:
+ SET_HARD_REG_BIT (reload_reg_used_in_input, i);
+ break;
+
+ case RELOAD_FOR_OUTPUT:
+ SET_HARD_REG_BIT (reload_reg_used_in_output, i);
+ break;
+ }
+
+ SET_HARD_REG_BIT (reload_reg_used_at_all, i);
+ }
+}
+
+/* 1 if reg REGNO is free as a reload reg for a reload of the sort
+ specified by WHEN_NEEDED. */
+
+static int
+reload_reg_free_p (regno, when_needed)
+ int regno;
+ enum reload_when_needed when_needed;
+{
+ /* In use for a RELOAD_OTHER means it's not available for anything. */
+ if (TEST_HARD_REG_BIT (reload_reg_used, regno))
+ return 0;
+ switch (when_needed)
+ {
+ case RELOAD_OTHER:
+ /* In use for anything means not available for a RELOAD_OTHER. */
+ return ! TEST_HARD_REG_BIT (reload_reg_used_at_all, regno);
+
+ /* The other kinds of use can sometimes share a register. */
+ case RELOAD_FOR_INPUT:
+ return (! TEST_HARD_REG_BIT (reload_reg_used_in_input, regno)
+ && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
+ && ! TEST_HARD_REG_BIT (reload_reg_used_in_input_addr, regno));
+ case RELOAD_FOR_INPUT_RELOAD_ADDRESS:
+ return (! TEST_HARD_REG_BIT (reload_reg_used_in_input_addr, regno)
+ && ! TEST_HARD_REG_BIT (reload_reg_used_in_input, regno));
+ case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS:
+ return (! TEST_HARD_REG_BIT (reload_reg_used_in_output_addr, regno)
+ && ! TEST_HARD_REG_BIT (reload_reg_used_in_output, regno));
+ case RELOAD_FOR_OPERAND_ADDRESS:
+ return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
+ && ! TEST_HARD_REG_BIT (reload_reg_used_in_input, regno)
+ && ! TEST_HARD_REG_BIT (reload_reg_used_in_output, regno));
+ case RELOAD_FOR_OUTPUT:
+ return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
+ && ! TEST_HARD_REG_BIT (reload_reg_used_in_output_addr, regno)
+ && ! TEST_HARD_REG_BIT (reload_reg_used_in_output, regno));
+ }
+ abort ();
+}
+
+/* Return 1 if the value in reload reg REGNO, as used by a reload
+ needed for the part of the insn specified by WHEN_NEEDED,
+ is not in use for a reload in any prior part of the insn.
+
+ We can assume that the reload reg was already tested for availability
+ at the time it is needed, and we should not check this again,
+ in case the reg has already been marked in use. */
+
+static int
+reload_reg_free_before_p (regno, when_needed)
+ int regno;
+ enum reload_when_needed when_needed;
+{
+ switch (when_needed)
+ {
+ case RELOAD_OTHER:
+ /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
+ its use starts from the beginning, so nothing can use it earlier. */
+ return 1;
+
+ /* If this use is for part of the insn,
+ check the reg is not in use for any prior part. */
+ case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS:
+ if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
+ return 0;
+ case RELOAD_FOR_OUTPUT:
+ if (TEST_HARD_REG_BIT (reload_reg_used_in_input, regno))
+ return 0;
+ case RELOAD_FOR_OPERAND_ADDRESS:
+ if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr, regno))
+ return 0;
+ case RELOAD_FOR_INPUT_RELOAD_ADDRESS:
+ case RELOAD_FOR_INPUT:
+ return 1;
+ }
+ abort ();
+}
+
+/* Return 1 if the value in reload reg REGNO, as used by a reload
+ needed for the part of the insn specified by WHEN_NEEDED,
+ is still available in REGNO at the end of the insn.
+
+ We can assume that the reload reg was already tested for availability
+ at the time it is needed, and we should not check this again,
+ in case the reg has already been marked in use. */
+
+static int
+reload_reg_reaches_end_p (regno, when_needed)
+ int regno;
+ enum reload_when_needed when_needed;
+{
+ switch (when_needed)
+ {
+ case RELOAD_OTHER:
+ /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
+ its value must reach the end. */
+ return 1;
+
+ /* If this use is for part of the insn,
+ its value reaches if no subsequent part uses the same register. */
+ case RELOAD_FOR_INPUT_RELOAD_ADDRESS:
+ case RELOAD_FOR_INPUT:
+ if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
+ || TEST_HARD_REG_BIT (reload_reg_used_in_output, regno))
+ return 0;
+ case RELOAD_FOR_OPERAND_ADDRESS:
+ if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr, regno))
+ return 0;
+ case RELOAD_FOR_OUTPUT:
+ case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS:
+ return 1;
+ }
+ abort ();
+}
+
+/* Vector of reload-numbers showing the order in which the reloads should
+ be processed. */
+short reload_order[MAX_RELOADS];
+
+/* Indexed by reload number, 1 if incoming value
+ inherited from previous insns. */
+char reload_inherited[MAX_RELOADS];
+
+/* For an inherited reload, this is the insn the reload was inherited from,
+ if we know it. Otherwise, this is 0. */
+rtx reload_inheritance_insn[MAX_RELOADS];
+
+/* If non-zero, this is a place to get the value of the reload,
+ rather than using reload_in. */
+rtx reload_override_in[MAX_RELOADS];
+
+/* For each reload, the index in spill_regs of the spill register used,
+ or -1 if we did not need one of the spill registers for this reload. */
+int reload_spill_index[MAX_RELOADS];
+
+/* Index of last register assigned as a spill register. We allocate in
+ a round-robin fashio. */
+
+static last_spill_reg = 0;
+
+/* Find a spill register to use as a reload register for reload R.
+ LAST_RELOAD is non-zero if this is the last reload for the insn being
+ processed.
+
+ Set reload_reg_rtx[R] to the register allocated.
+
+ If NOERROR is nonzero, we return 1 if successful,
+ or 0 if we couldn't find a spill reg and we didn't change anything. */
+
+static int
+allocate_reload_reg (r, insn, last_reload, noerror)
+ int r;
+ rtx insn;
+ int last_reload;
+ int noerror;
+{
+ int i;
+ int pass;
+ int count;
+ rtx new;
+ int regno;
+
+ /* If we put this reload ahead, thinking it is a group,
+ then insist on finding a group. Otherwise we can grab a
+ reg that some other reload needs.
+ (That can happen when we have a 68000 DATA_OR_FP_REG
+ which is a group of data regs or one fp reg.)
+ We need not be so restrictive if there are no more reloads
+ for this insn.
+
+ ??? Really it would be nicer to have smarter handling
+ for that kind of reg class, where a problem like this is normal.
+ Perhaps those classes should be avoided for reloading
+ by use of more alternatives. */
+
+ int force_group = reload_nregs[r] > 1 && ! last_reload;
+
+ /* If we want a single register and haven't yet found one,
+ take any reg in the right class and not in use.
+ If we want a consecutive group, here is where we look for it.
+
+ We use two passes so we can first look for reload regs to
+ reuse, which are already in use for other reloads in this insn,
+ and only then use additional registers.
+ I think that maximizing reuse is needed to make sure we don't
+ run out of reload regs. Suppose we have three reloads, and
+ reloads A and B can share regs. These need two regs.
+ Suppose A and B are given different regs.
+ That leaves none for C. */
+ for (pass = 0; pass < 2; pass++)
+ {
+ /* I is the index in spill_regs.
+ We advance it round-robin between insns to use all spill regs
+ equally, so that inherited reloads have a chance
+ of leapfrogging each other. */
+
+ for (count = 0, i = last_spill_reg; count < n_spills; count++)
+ {
+ int class = (int) reload_reg_class[r];
+
+ i = (i + 1) % n_spills;
+
+ if (reload_reg_free_p (spill_regs[i], reload_when_needed[r])
+ && TEST_HARD_REG_BIT (reg_class_contents[class], spill_regs[i])
+ && HARD_REGNO_MODE_OK (spill_regs[i], reload_mode[r])
+ /* Look first for regs to share, then for unshared. */
+ && (pass || TEST_HARD_REG_BIT (reload_reg_used_at_all,
+ spill_regs[i])))
+ {
+ int nr = HARD_REGNO_NREGS (spill_regs[i], reload_mode[r]);
+ /* Avoid the problem where spilling a GENERAL_OR_FP_REG
+ (on 68000) got us two FP regs. If NR is 1,
+ we would reject both of them. */
+ if (force_group)
+ nr = CLASS_MAX_NREGS (reload_reg_class[r], reload_mode[r]);
+ /* If we need only one reg, we have already won. */
+ if (nr == 1)
+ {
+ /* But reject a single reg if we demand a group. */
+ if (force_group)
+ continue;
+ break;
+ }
+ /* Otherwise check that as many consecutive regs as we need
+ are available here.
+ Also, don't use for a group registers that are
+ needed for nongroups. */
+ if (! TEST_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]))
+ while (nr > 1)
+ {
+ regno = spill_regs[i] + nr - 1;
+ if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
+ && spill_reg_order[regno] >= 0
+ && reload_reg_free_p (regno, reload_when_needed[r])
+ && ! TEST_HARD_REG_BIT (counted_for_nongroups,
+ regno)))
+ break;
+ nr--;
+ }
+ if (nr == 1)
+ break;
+ }
+ }
+
+ /* If we found something on pass 1, omit pass 2. */
+ if (count < n_spills)
+ break;
+ }
+
+ /* We should have found a spill register by now. */
+ if (count == n_spills)
+ {
+ if (noerror)
+ return 0;
+ abort ();
+ }
+
+ last_spill_reg = i;
+
+ /* Mark as in use for this insn the reload regs we use for this. */
+ mark_reload_reg_in_use (spill_regs[i], reload_when_needed[r],
+ reload_mode[r]);
+
+ new = spill_reg_rtx[i];
+
+ if (new == 0 || GET_MODE (new) != reload_mode[r])
+ spill_reg_rtx[i] = new = gen_rtx (REG, reload_mode[r], spill_regs[i]);
+
+ reload_reg_rtx[r] = new;
+ reload_spill_index[r] = i;
+ regno = true_regnum (new);
+
+ /* Detect when the reload reg can't hold the reload mode.
+ This used to be one `if', but Sequent compiler can't handle that. */
+ if (HARD_REGNO_MODE_OK (regno, reload_mode[r]))
+ {
+ enum machine_mode test_mode = VOIDmode;
+ if (reload_in[r])
+ test_mode = GET_MODE (reload_in[r]);
+ /* If reload_in[r] has VOIDmode, it means we will load it
+ in whatever mode the reload reg has: to wit, reload_mode[r].
+ We have already tested that for validity. */
+ /* Aside from that, we need to test that the expressions
+ to reload from or into have modes which are valid for this
+ reload register. Otherwise the reload insns would be invalid. */
+ if (! (reload_in[r] != 0 && test_mode != VOIDmode
+ && ! HARD_REGNO_MODE_OK (regno, test_mode)))
+ if (! (reload_out[r] != 0
+ && ! HARD_REGNO_MODE_OK (regno, GET_MODE (reload_out[r]))))
+ /* The reg is OK. */
+ return 1;
+ }
+
+ /* The reg is not OK. */
+ if (noerror)
+ return 0;
+
+ if (asm_noperands (PATTERN (insn)) < 0)
+ /* It's the compiler's fault. */
+ abort ();
+
+ /* It's the user's fault; the operand's mode and constraint
+ don't match. Disable this reload so we don't crash in final. */
+ error_for_asm (insn,
+ "`asm' operand constraint incompatible with operand size");
+ reload_in[r] = 0;
+ reload_out[r] = 0;
+ reload_reg_rtx[r] = 0;
+ reload_optional[r] = 1;
+ reload_secondary_p[r] = 1;
+
+ return 1;
+}
+
+/* Assign hard reg targets for the pseudo-registers we must reload
+ into hard regs for this insn.
+ Also output the instructions to copy them in and out of the hard regs.
+
+ For machines with register classes, we are responsible for
+ finding a reload reg in the proper class. */
+
+static void
+choose_reload_regs (insn, avoid_return_reg)
+ rtx insn;
+ /* This argument is currently ignored. */
+ rtx avoid_return_reg;
+{
+ register int i, j;
+ int max_group_size = 1;
+ enum reg_class group_class = NO_REGS;
+ int inheritance;
+
+ rtx save_reload_reg_rtx[MAX_RELOADS];
+ char save_reload_inherited[MAX_RELOADS];
+ rtx save_reload_inheritance_insn[MAX_RELOADS];
+ rtx save_reload_override_in[MAX_RELOADS];
+ int save_reload_spill_index[MAX_RELOADS];
+ HARD_REG_SET save_reload_reg_used;
+ HARD_REG_SET save_reload_reg_used_in_input_addr;
+ HARD_REG_SET save_reload_reg_used_in_output_addr;
+ HARD_REG_SET save_reload_reg_used_in_op_addr;
+ HARD_REG_SET save_reload_reg_used_in_input;
+ HARD_REG_SET save_reload_reg_used_in_output;
+ HARD_REG_SET save_reload_reg_used_at_all;
+
+ bzero (reload_inherited, MAX_RELOADS);
+ bzero (reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
+ bzero (reload_override_in, MAX_RELOADS * sizeof (rtx));
+
+ CLEAR_HARD_REG_SET (reload_reg_used);
+ CLEAR_HARD_REG_SET (reload_reg_used_at_all);
+ CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr);
+ CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr);
+ CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
+ CLEAR_HARD_REG_SET (reload_reg_used_in_output);
+ CLEAR_HARD_REG_SET (reload_reg_used_in_input);
+
+ /* Distinguish output-only and input-only reloads
+ because they can overlap with other things. */
+ for (j = 0; j < n_reloads; j++)
+ if (reload_when_needed[j] == RELOAD_OTHER
+ && ! reload_needed_for_multiple[j])
+ {
+ if (reload_in[j] == 0)
+ {
+ /* But earlyclobber operands must stay as RELOAD_OTHER. */
+ for (i = 0; i < n_earlyclobbers; i++)
+ if (rtx_equal_p (reload_out[j], reload_earlyclobbers[i]))
+ break;
+ if (i == n_earlyclobbers)
+ reload_when_needed[j] = RELOAD_FOR_OUTPUT;
+ }
+ if (reload_out[j] == 0)
+ reload_when_needed[j] = RELOAD_FOR_INPUT;
+
+ if (reload_secondary_reload[j] >= 0
+ && ! reload_needed_for_multiple[reload_secondary_reload[j]])
+ reload_when_needed[reload_secondary_reload[j]]
+ = reload_when_needed[j];
+ }
+
+#ifdef SMALL_REGISTER_CLASSES
+ /* Don't bother with avoiding the return reg
+ if we have no mandatory reload that could use it. */
+ if (avoid_return_reg)
+ {
+ int do_avoid = 0;
+ int regno = REGNO (avoid_return_reg);
+ int nregs
+ = HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg));
+ int r;
+
+ for (r = regno; r < regno + nregs; r++)
+ if (spill_reg_order[r] >= 0)
+ for (j = 0; j < n_reloads; j++)
+ if (!reload_optional[j] && reload_reg_rtx[j] == 0
+ && (reload_in[j] != 0 || reload_out[j] != 0
+ || reload_secondary_p[j])
+ &&
+ TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[j]], r))
+ do_avoid = 1;
+ if (!do_avoid)
+ avoid_return_reg = 0;
+ }
+#endif /* SMALL_REGISTER_CLASSES */
+
+#if 0 /* Not needed, now that we can always retry without inheritance. */
+ /* See if we have more mandatory reloads than spill regs.
+ If so, then we cannot risk optimizations that could prevent
+ reloads from sharing one spill register.
+
+ Since we will try finding a better register than reload_reg_rtx
+ unless it is equal to reload_in or reload_out, count such reloads. */
+
+ {
+ int tem = 0;
+#ifdef SMALL_REGISTER_CLASSES
+ int tem = (avoid_return_reg != 0);
+#endif
+ for (j = 0; j < n_reloads; j++)
+ if (! reload_optional[j]
+ && (reload_in[j] != 0 || reload_out[j] != 0 || reload_secondary_p[j])
+ && (reload_reg_rtx[j] == 0
+ || (! rtx_equal_p (reload_reg_rtx[j], reload_in[j])
+ && ! rtx_equal_p (reload_reg_rtx[j], reload_out[j]))))
+ tem++;
+ if (tem > n_spills)
+ must_reuse = 1;
+ }
+#endif
+
+#ifdef SMALL_REGISTER_CLASSES
+ /* Don't use the subroutine call return reg for a reload
+ if we are supposed to avoid it. */
+ if (avoid_return_reg)
+ {
+ int regno = REGNO (avoid_return_reg);
+ int nregs
+ = HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg));
+ int r;
+
+ for (r = regno; r < regno + nregs; r++)
+ if (spill_reg_order[r] >= 0)
+ SET_HARD_REG_BIT (reload_reg_used, r);
+ }
+#endif /* SMALL_REGISTER_CLASSES */
+
+ /* In order to be certain of getting the registers we need,
+ we must sort the reloads into order of increasing register class.
+ Then our grabbing of reload registers will parallel the process
+ that provided the reload registers.
+
+ Also note whether any of the reloads wants a consecutive group of regs.
+ If so, record the maximum size of the group desired and what
+ register class contains all the groups needed by this insn. */
+
+ for (j = 0; j < n_reloads; j++)
+ {
+ reload_order[j] = j;
+ reload_spill_index[j] = -1;
+
+ reload_mode[j]
+ = (reload_strict_low[j] && reload_out[j]
+ ? GET_MODE (SUBREG_REG (reload_out[j]))
+ : (reload_inmode[j] == VOIDmode
+ || (GET_MODE_SIZE (reload_outmode[j])
+ > GET_MODE_SIZE (reload_inmode[j])))
+ ? reload_outmode[j] : reload_inmode[j]);
+
+ reload_nregs[j] = CLASS_MAX_NREGS (reload_reg_class[j], reload_mode[j]);
+
+ if (reload_nregs[j] > 1)
+ {
+ max_group_size = MAX (reload_nregs[j], max_group_size);
+ group_class = reg_class_superunion[(int)reload_reg_class[j]][(int)group_class];
+ }
+
+ /* If we have already decided to use a certain register,
+ don't use it in another way. */
+ if (reload_reg_rtx[j])
+ mark_reload_reg_in_use (REGNO (reload_reg_rtx[j]),
+ reload_when_needed[j], reload_mode[j]);
+ }
+
+ if (n_reloads > 1)
+ qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
+
+ bcopy (reload_reg_rtx, save_reload_reg_rtx, sizeof reload_reg_rtx);
+ bcopy (reload_inherited, save_reload_inherited, sizeof reload_inherited);
+ bcopy (reload_inheritance_insn, save_reload_inheritance_insn,
+ sizeof reload_inheritance_insn);
+ bcopy (reload_override_in, save_reload_override_in,
+ sizeof reload_override_in);
+ bcopy (reload_spill_index, save_reload_spill_index,
+ sizeof reload_spill_index);
+ COPY_HARD_REG_SET (save_reload_reg_used, reload_reg_used);
+ COPY_HARD_REG_SET (save_reload_reg_used_at_all, reload_reg_used_at_all);
+ COPY_HARD_REG_SET (save_reload_reg_used_in_output,
+ reload_reg_used_in_output);
+ COPY_HARD_REG_SET (save_reload_reg_used_in_input,
+ reload_reg_used_in_input);
+ COPY_HARD_REG_SET (save_reload_reg_used_in_input_addr,
+ reload_reg_used_in_input_addr);
+ COPY_HARD_REG_SET (save_reload_reg_used_in_output_addr,
+ reload_reg_used_in_output_addr);
+ COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr,
+ reload_reg_used_in_op_addr);
+
+ /* Try first with inheritance, then turning it off. */
+
+ for (inheritance = 1; inheritance >= 0; inheritance--)
+ {
+ /* Process the reloads in order of preference just found.
+ Beyond this point, subregs can be found in reload_reg_rtx.
+
+ This used to look for an existing reloaded home for all
+ of the reloads, and only then perform any new reloads.
+ But that could lose if the reloads were done out of reg-class order
+ because a later reload with a looser constraint might have an old
+ home in a register needed by an earlier reload with a tighter constraint.
+
+ To solve this, we make two passes over the reloads, in the order
+ described above. In the first pass we try to inherit a reload
+ from a previous insn. If there is a later reload that needs a
+ class that is a proper subset of the class being processed, we must
+ also allocate a spill register during the first pass.
+
+ Then make a second pass over the reloads to allocate any reloads
+ that haven't been given registers yet. */
+
+ for (j = 0; j < n_reloads; j++)
+ {
+ register int r = reload_order[j];
+
+ /* Ignore reloads that got marked inoperative. */
+ if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r])
+ continue;
+
+ /* If find_reloads chose a to use reload_in or reload_out as a reload
+ register, we don't need to chose one. Otherwise, try even if it found
+ one since we might save an insn if we find the value lying around. */
+ if (reload_in[r] != 0 && reload_reg_rtx[r] != 0
+ && (rtx_equal_p (reload_in[r], reload_reg_rtx[r])
+ || rtx_equal_p (reload_out[r], reload_reg_rtx[r])))
+ continue;
+
+#if 0 /* No longer needed for correct operation.
+ It might give better code, or might not; worth an experiment? */
+ /* If this is an optional reload, we can't inherit from earlier insns
+ until we are sure that any non-optional reloads have been allocated.
+ The following code takes advantage of the fact that optional reloads
+ are at the end of reload_order. */
+ if (reload_optional[r] != 0)
+ for (i = 0; i < j; i++)
+ if ((reload_out[reload_order[i]] != 0
+ || reload_in[reload_order[i]] != 0
+ || reload_secondary_p[reload_order[i]])
+ && ! reload_optional[reload_order[i]]
+ && reload_reg_rtx[reload_order[i]] == 0)
+ allocate_reload_reg (reload_order[i], insn, 0, inheritance);
+#endif
+
+ /* First see if this pseudo is already available as reloaded
+ for a previous insn. We cannot try to inherit for reloads
+ that are smaller than the maximum number of registers needed
+ for groups unless the register we would allocate cannot be used
+ for the groups.
+
+ We could check here to see if this is a secondary reload for
+ an object that is already in a register of the desired class.
+ This would avoid the need for the secondary reload register.
+ But this is complex because we can't easily determine what
+ objects might want to be loaded via this reload. So let a register
+ be allocated here. In `emit_reload_insns' we suppress one of the
+ loads in the case described above. */
+
+ if (inheritance)
+ {
+ register int regno = -1;
+
+ if (reload_in[r] == 0)
+ ;
+ else if (GET_CODE (reload_in[r]) == REG)
+ regno = REGNO (reload_in[r]);
+ else if (GET_CODE (reload_in_reg[r]) == REG)
+ regno = REGNO (reload_in_reg[r]);
+#if 0
+ /* This won't work, since REGNO can be a pseudo reg number.
+ Also, it takes much more hair to keep track of all the things
+ that can invalidate an inherited reload of part of a pseudoreg. */
+ else if (GET_CODE (reload_in[r]) == SUBREG
+ && GET_CODE (SUBREG_REG (reload_in[r])) == REG)
+ regno = REGNO (SUBREG_REG (reload_in[r])) + SUBREG_WORD (reload_in[r]);
+#endif
+
+ if (regno >= 0 && reg_last_reload_reg[regno] != 0)
+ {
+ i = spill_reg_order[REGNO (reg_last_reload_reg[regno])];
+
+ if (reg_reloaded_contents[i] == regno
+ && HARD_REGNO_MODE_OK (spill_regs[i], reload_mode[r])
+ && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
+ spill_regs[i])
+ && (reload_nregs[r] == max_group_size
+ || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
+ spill_regs[i]))
+ && reload_reg_free_p (spill_regs[i], reload_when_needed[r])
+ && reload_reg_free_before_p (spill_regs[i],
+ reload_when_needed[r]))
+ {
+ /* If a group is needed, verify that all the subsequent
+ registers still have their values intact. */
+ int nr
+ = HARD_REGNO_NREGS (spill_regs[i], reload_mode[r]);
+ int k;
+
+ for (k = 1; k < nr; k++)
+ if (reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]]
+ != regno)
+ break;
+
+ if (k == nr)
+ {
+ /* Mark the register as in use for this part of
+ the insn. */
+ mark_reload_reg_in_use (spill_regs[i],
+ reload_when_needed[r],
+ reload_mode[r]);
+ reload_reg_rtx[r] = reg_last_reload_reg[regno];
+ reload_inherited[r] = 1;
+ reload_inheritance_insn[r] = reg_reloaded_insn[i];
+ reload_spill_index[r] = i;
+ }
+ }
+ }
+ }
+
+ /* Here's another way to see if the value is already lying around. */
+ if (inheritance
+ && reload_in[r] != 0
+ && ! reload_inherited[r]
+ && reload_out[r] == 0
+ && (CONSTANT_P (reload_in[r])
+ || GET_CODE (reload_in[r]) == PLUS
+ || GET_CODE (reload_in[r]) == REG
+ || GET_CODE (reload_in[r]) == MEM)
+ && (reload_nregs[r] == max_group_size
+ || ! reg_classes_intersect_p (reload_reg_class[r], group_class)))
+ {
+ register rtx equiv
+ = find_equiv_reg (reload_in[r], insn, reload_reg_class[r],
+ -1, 0, 0, reload_mode[r]);
+ int regno;
+
+ if (equiv != 0)
+ {
+ if (GET_CODE (equiv) == REG)
+ regno = REGNO (equiv);
+ else if (GET_CODE (equiv) == SUBREG)
+ {
+ regno = REGNO (SUBREG_REG (equiv));
+ if (regno < FIRST_PSEUDO_REGISTER)
+ regno += SUBREG_WORD (equiv);
+ }
+ else
+ abort ();
+ }
+
+ /* If we found a spill reg, reject it unless it is free
+ and of the desired class. */
+ if (equiv != 0
+ && ((spill_reg_order[regno] >= 0
+ && ! reload_reg_free_before_p (regno,
+ reload_when_needed[r]))
+ || ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
+ regno)))
+ equiv = 0;
+
+ if (equiv != 0 && TEST_HARD_REG_BIT (reload_reg_used_at_all, regno))
+ equiv = 0;
+
+ if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, reload_mode[r]))
+ equiv = 0;
+
+ /* We found a register that contains the value we need.
+ If this register is the same as an `earlyclobber' operand
+ of the current insn, just mark it as a place to reload from
+ since we can't use it as the reload register itself. */
+
+ if (equiv != 0)
+ for (i = 0; i < n_earlyclobbers; i++)
+ if (reg_overlap_mentioned_p (equiv, reload_earlyclobbers[i]))
+ {
+ reload_override_in[r] = equiv;
+ equiv = 0;
+ break;
+ }
+
+ /* JRV: If the equiv register we have found is explicitly
+ clobbered in the current insn, mark but don't use, as above. */
+
+ if (equiv != 0 && regno_clobbered_p (regno, insn))
+ {
+ reload_override_in[r] = equiv;
+ equiv = 0;
+ }
+
+ /* If we found an equivalent reg, say no code need be generated
+ to load it, and use it as our reload reg. */
+ if (equiv != 0 && regno != FRAME_POINTER_REGNUM)
+ {
+ reload_reg_rtx[r] = equiv;
+ reload_inherited[r] = 1;
+ /* If it is a spill reg,
+ mark the spill reg as in use for this insn. */
+ i = spill_reg_order[regno];
+ if (i >= 0)
+ mark_reload_reg_in_use (regno, reload_when_needed[r],
+ reload_mode[r]);
+ }
+ }
+
+ /* If we found a register to use already, or if this is an optional
+ reload, we are done. */
+ if (reload_reg_rtx[r] != 0 || reload_optional[r] != 0)
+ continue;
+
+#if 0 /* No longer needed for correct operation. Might or might not
+ give better code on the average. Want to experiment? */
+
+ /* See if there is a later reload that has a class different from our
+ class that intersects our class or that requires less register
+ than our reload. If so, we must allocate a register to this
+ reload now, since that reload might inherit a previous reload
+ and take the only available register in our class. Don't do this
+ for optional reloads since they will force all previous reloads
+ to be allocated. Also don't do this for reloads that have been
+ turned off. */
+
+ for (i = j + 1; i < n_reloads; i++)
+ {
+ int s = reload_order[i];
+
+ if ((reload_in[s] == 0 && reload_out[s] == 0 &&
+ ! reload_secondary_p[s])
+ || reload_optional[s])
+ continue;
+
+ if ((reload_reg_class[s] != reload_reg_class[r]
+ && reg_classes_intersect_p (reload_reg_class[r],
+ reload_reg_class[s]))
+ || reload_nregs[s] < reload_nregs[r])
+ break;
+ }
+
+ if (i == n_reloads)
+ continue;
+
+ allocate_reload_reg (r, insn, j == n_reloads - 1, inheritance);
+#endif
+ }
+
+ /* Now allocate reload registers for anything non-optional that
+ didn't get one yet. */
+ for (j = 0; j < n_reloads; j++)
+ {
+ register int r = reload_order[j];
+
+ /* Ignore reloads that got marked inoperative. */
+ if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r])
+ continue;
+
+ /* Skip reloads that already have a register allocated or are
+ optional. */
+ if (reload_reg_rtx[r] != 0 || reload_optional[r])
+ continue;
+
+ if (! allocate_reload_reg (r, insn, j == n_reloads - 1, inheritance))
+ break;
+ }
+
+ /* If that loop got all the way, we have won. */
+ if (j == n_reloads)
+ break;
+
+ fail:
+ /* Loop around and try without any inheritance. */
+ /* First undo everything done by the failed attempt
+ to allocate with inheritance. */
+ bcopy (save_reload_reg_rtx, reload_reg_rtx, sizeof reload_reg_rtx);
+ bcopy (save_reload_inherited, reload_inherited, sizeof reload_inherited);
+ bcopy (save_reload_inheritance_insn, reload_inheritance_insn,
+ sizeof reload_inheritance_insn);
+ bcopy (save_reload_override_in, reload_override_in,
+ sizeof reload_override_in);
+ bcopy (save_reload_spill_index, reload_spill_index,
+ sizeof reload_spill_index);
+ COPY_HARD_REG_SET (reload_reg_used, save_reload_reg_used);
+ COPY_HARD_REG_SET (reload_reg_used_at_all, save_reload_reg_used_at_all);
+ COPY_HARD_REG_SET (reload_reg_used_in_input,
+ save_reload_reg_used_in_input);
+ COPY_HARD_REG_SET (reload_reg_used_in_output,
+ save_reload_reg_used_in_output);
+ COPY_HARD_REG_SET (reload_reg_used_in_input_addr,
+ save_reload_reg_used_in_input_addr);
+ COPY_HARD_REG_SET (reload_reg_used_in_output_addr,
+ save_reload_reg_used_in_output_addr);
+ COPY_HARD_REG_SET (reload_reg_used_in_op_addr,
+ save_reload_reg_used_in_op_addr);
+ }
+
+ /* If we thought we could inherit a reload, because it seemed that
+ nothing else wanted the same reload register earlier in the insn,
+ verify that assumption, now that all reloads have been assigned. */
+
+ for (j = 0; j < n_reloads; j++)
+ {
+ register int r = reload_order[j];
+
+ if (reload_inherited[r] && reload_reg_rtx[r] != 0
+ && ! reload_reg_free_before_p (true_regnum (reload_reg_rtx[r]),
+ reload_when_needed[r]))
+ reload_inherited[r] = 0;
+
+ /* If we found a better place to reload from,
+ validate it in the same fashion, if it is a reload reg. */
+ if (reload_override_in[r]
+ && (GET_CODE (reload_override_in[r]) == REG
+ || GET_CODE (reload_override_in[r]) == SUBREG))
+ {
+ int regno = true_regnum (reload_override_in[r]);
+ if (spill_reg_order[regno] >= 0
+ && ! reload_reg_free_before_p (regno, reload_when_needed[r]))
+ reload_override_in[r] = 0;
+ }
+ }
+
+ /* Now that reload_override_in is known valid,
+ actually override reload_in. */
+ for (j = 0; j < n_reloads; j++)
+ if (reload_override_in[j])
+ reload_in[j] = reload_override_in[j];
+
+ /* If this reload won't be done because it has been cancelled or is
+ optional and not inherited, clear reload_reg_rtx so other
+ routines (such as subst_reloads) don't get confused. */
+ for (j = 0; j < n_reloads; j++)
+ if ((reload_optional[j] && ! reload_inherited[j])
+ || (reload_in[j] == 0 && reload_out[j] == 0
+ && ! reload_secondary_p[j]))
+ reload_reg_rtx[j] = 0;
+
+ /* Record which pseudos and which spill regs have output reloads. */
+ for (j = 0; j < n_reloads; j++)
+ {
+ register int r = reload_order[j];
+
+ i = reload_spill_index[r];
+
+ /* I is nonneg if this reload used one of the spill regs.
+ If reload_reg_rtx[r] is 0, this is an optional reload
+ that we opted to ignore. */
+ if (reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG
+ && reload_reg_rtx[r] != 0)
+ {
+ register int nregno = REGNO (reload_out[r]);
+ int nr = HARD_REGNO_NREGS (nregno, reload_mode[r]);
+
+ while (--nr >= 0)
+ {
+ reg_has_output_reload[nregno + nr] = 1;
+ if (i >= 0)
+ SET_HARD_REG_BIT (reg_is_output_reload, spill_regs[i] + nr);
+ }
+
+ if (reload_when_needed[r] != RELOAD_OTHER
+ && reload_when_needed[r] != RELOAD_FOR_OUTPUT)
+ abort ();
+ }
+ }
+}
+
+/* Output insns to reload values in and out of the chosen reload regs. */
+
+static void
+emit_reload_insns (insn)
+ rtx insn;
+{
+ register int j;
+ rtx following_insn = NEXT_INSN (insn);
+ rtx first_output_reload_insn = NEXT_INSN (insn);
+ rtx first_other_reload_insn = insn;
+ rtx first_operand_address_reload_insn = insn;
+ int special;
+ /* Values to be put in spill_reg_store are put here first. */
+ rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
+
+ /* Now output the instructions to copy the data into and out of the
+ reload registers. Do these in the order that the reloads were reported,
+ since reloads of base and index registers precede reloads of operands
+ and the operands may need the base and index registers reloaded. */
+
+ for (j = 0; j < n_reloads; j++)
+ {
+ register rtx old;
+ rtx oldequiv_reg = 0;
+ rtx this_reload_insn = 0;
+ rtx store_insn = 0;
+
+ old = reload_in[j];
+ if (old != 0 && ! reload_inherited[j]
+ && ! rtx_equal_p (reload_reg_rtx[j], old)
+ && reload_reg_rtx[j] != 0)
+ {
+ register rtx reloadreg = reload_reg_rtx[j];
+ rtx oldequiv = 0;
+ enum machine_mode mode;
+ rtx where;
+
+ /* Determine the mode to reload in.
+ This is very tricky because we have three to choose from.
+ There is the mode the insn operand wants (reload_inmode[J]).
+ There is the mode of the reload register RELOADREG.
+ There is the intrinsic mode of the operand, which we could find
+ by stripping some SUBREGs.
+ It turns out that RELOADREG's mode is irrelevant:
+ we can change that arbitrarily.
+
+ Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
+ then the reload reg may not support QImode moves, so use SImode.
+ If foo is in memory due to spilling a pseudo reg, this is safe,
+ because the QImode value is in the least significant part of a
+ slot big enough for a SImode. If foo is some other sort of
+ memory reference, then it is impossible to reload this case,
+ so previous passes had better make sure this never happens.
+
+ Then consider a one-word union which has SImode and one of its
+ members is a float, being fetched as (SUBREG:SF union:SI).
+ We must fetch that as SFmode because we could be loading into
+ a float-only register. In this case OLD's mode is correct.
+
+ Consider an immediate integer: it has VOIDmode. Here we need
+ to get a mode from something else.
+
+ In some cases, there is a fourth mode, the operand's
+ containing mode. If the insn specifies a containing mode for
+ this operand, it overrides all others.
+
+ I am not sure whether the algorithm here is always right,
+ but it does the right things in those cases. */
+
+ mode = GET_MODE (old);
+ if (mode == VOIDmode)
+ mode = reload_inmode[j];
+ if (reload_strict_low[j])
+ mode = GET_MODE (SUBREG_REG (reload_in[j]));
+
+#ifdef SECONDARY_INPUT_RELOAD_CLASS
+ /* If we need a secondary register for this operation, see if
+ the value is already in a register in that class. Don't
+ do this if the secondary register will be used as a scratch
+ register. */
+
+ if (reload_secondary_reload[j] >= 0
+ && reload_secondary_icode[j] == CODE_FOR_nothing)
+ oldequiv
+ = find_equiv_reg (old, insn,
+ reload_reg_class[reload_secondary_reload[j]],
+ -1, 0, 0, mode);
+#endif
+
+ /* If reloading from memory, see if there is a register
+ that already holds the same value. If so, reload from there.
+ We can pass 0 as the reload_reg_p argument because
+ any other reload has either already been emitted,
+ in which case find_equiv_reg will see the reload-insn,
+ or has yet to be emitted, in which case it doesn't matter
+ because we will use this equiv reg right away. */
+
+ if (oldequiv == 0
+ && (GET_CODE (old) == MEM
+ || (GET_CODE (old) == REG
+ && REGNO (old) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[REGNO (old)] < 0)))
+ oldequiv = find_equiv_reg (old, insn, GENERAL_REGS,
+ -1, 0, 0, mode);
+
+ if (oldequiv)
+ {
+ int regno = true_regnum (oldequiv);
+
+ /* If OLDEQUIV is a spill register, don't use it for this
+ if any other reload needs it at an earlier stage of this insn
+ or at this stage. */
+ if (spill_reg_order[regno] >= 0
+ && (! reload_reg_free_p (regno, reload_when_needed[j])
+ || ! reload_reg_free_before_p (regno,
+ reload_when_needed[j])))
+ oldequiv = 0;
+
+ /* If OLDEQUIV is not a spill register,
+ don't use it if any other reload wants it. */
+ if (spill_reg_order[regno] < 0)
+ {
+ int k;
+ for (k = 0; k < n_reloads; k++)
+ if (reload_reg_rtx[k] != 0 && k != j
+ && reg_overlap_mentioned_p (reload_reg_rtx[k], oldequiv))
+ {
+ oldequiv = 0;
+ break;
+ }
+ }
+ }
+
+ if (oldequiv == 0)
+ oldequiv = old;
+ else if (GET_CODE (oldequiv) == REG)
+ oldequiv_reg = oldequiv;
+ else if (GET_CODE (oldequiv) == SUBREG)
+ oldequiv_reg = SUBREG_REG (oldequiv);
+
+ /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
+ then load RELOADREG from OLDEQUIV. */
+
+ if (GET_MODE (reloadreg) != mode)
+ reloadreg = gen_rtx (REG, mode, REGNO (reloadreg));
+ while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
+ oldequiv = SUBREG_REG (oldequiv);
+ if (GET_MODE (oldequiv) != VOIDmode
+ && mode != GET_MODE (oldequiv))
+ oldequiv = gen_rtx (SUBREG, mode, oldequiv, 0);
+
+ /* Decide where to put reload insn for this reload. */
+ switch (reload_when_needed[j])
+ {
+ case RELOAD_FOR_INPUT:
+ case RELOAD_OTHER:
+ where = first_operand_address_reload_insn;
+ break;
+ case RELOAD_FOR_INPUT_RELOAD_ADDRESS:
+ where = first_other_reload_insn;
+ break;
+ case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS:
+ where = first_output_reload_insn;
+ break;
+ case RELOAD_FOR_OPERAND_ADDRESS:
+ where = insn;
+ }
+
+ special = 0;
+
+ /* Auto-increment addresses must be reloaded in a special way. */
+ if (GET_CODE (oldequiv) == POST_INC
+ || GET_CODE (oldequiv) == POST_DEC
+ || GET_CODE (oldequiv) == PRE_INC
+ || GET_CODE (oldequiv) == PRE_DEC)
+ {
+ /* We are not going to bother supporting the case where a
+ incremented register can't be copied directly from
+ OLDEQUIV since this seems highly unlikely. */
+ if (reload_secondary_reload[j] >= 0)
+ abort ();
+ /* Prevent normal processing of this reload. */
+ special = 1;
+ /* Output a special code sequence for this case. */
+ this_reload_insn
+ = inc_for_reload (reloadreg, oldequiv, reload_inc[j], where);
+ }
+
+ /* If we are reloading a pseudo-register that was set by the previous
+ insn, see if we can get rid of that pseudo-register entirely
+ by redirecting the previous insn into our reload register. */
+
+ else if (optimize && GET_CODE (old) == REG
+ && REGNO (old) >= FIRST_PSEUDO_REGISTER
+ && dead_or_set_p (insn, old)
+ /* This is unsafe if some other reload
+ uses the same reg first. */
+ && (reload_when_needed[j] == RELOAD_OTHER
+ || reload_when_needed[j] == RELOAD_FOR_INPUT
+ || reload_when_needed[j] == RELOAD_FOR_INPUT_RELOAD_ADDRESS))
+ {
+ rtx temp = PREV_INSN (insn);
+ while (temp && GET_CODE (temp) == NOTE)
+ temp = PREV_INSN (temp);
+ if (temp
+ && GET_CODE (temp) == INSN
+ && GET_CODE (PATTERN (temp)) == SET
+ && SET_DEST (PATTERN (temp)) == old
+ /* Make sure we can access insn_operand_constraint. */
+ && asm_noperands (PATTERN (temp)) < 0
+ /* This is unsafe if prev insn rejects our reload reg. */
+ && constraint_accepts_reg_p (insn_operand_constraint[recog_memoized (temp)][0],
+ reloadreg)
+ /* This is unsafe if operand occurs more than once in current
+ insn. Perhaps some occurrences aren't reloaded. */
+ && count_occurrences (PATTERN (insn), old) == 1
+ /* Don't risk splitting a matching pair of operands. */
+ && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
+ {
+ /* Store into the reload register instead of the pseudo. */
+ SET_DEST (PATTERN (temp)) = reloadreg;
+ /* If these are the only uses of the pseudo reg,
+ pretend for GDB it lives in the reload reg we used. */
+ if (reg_n_deaths[REGNO (old)] == 1
+ && reg_n_sets[REGNO (old)] == 1)
+ {
+ reg_renumber[REGNO (old)] = REGNO (reload_reg_rtx[j]);
+ alter_reg (REGNO (old), -1);
+ }
+ special = 1;
+ }
+ }
+
+ /* We can't do that, so output an insn to load RELOADREG.
+ Keep them in the following order:
+ all reloads for input reload addresses,
+ all reloads for ordinary input operands,
+ all reloads for addresses of non-reloaded operands,
+ the insn being reloaded,
+ all reloads for addresses of output reloads,
+ the output reloads. */
+ if (! special)
+ {
+#ifdef SECONDARY_INPUT_RELOAD_CLASS
+ rtx second_reload_reg = 0;
+ enum insn_code icode;
+
+ /* If we have a secondary reload, pick up the secondary register
+ and icode, if any. If OLDEQUIV and OLD are different,
+ recompute whether or not we still need a secondary register
+ and what the icode should be. If we still need a secondary
+ register and the class or icode is different, go back to
+ reloading from OLD if using OLDEQUIV means that we got the
+ wrong type of register. */
+
+ if (reload_secondary_reload[j] >= 0)
+ {
+ int secondary_reload = reload_secondary_reload[j];
+ second_reload_reg = reload_reg_rtx[secondary_reload];
+ icode = reload_secondary_icode[j];
+
+ if (old != oldequiv && ! rtx_equal_p (old, oldequiv))
+ {
+ enum reg_class new_class
+ = SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
+ mode, oldequiv);
+
+ if (new_class == NO_REGS)
+ second_reload_reg = 0;
+ else
+ {
+ enum insn_code new_icode;
+ enum machine_mode new_mode;
+
+ if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
+ REGNO (second_reload_reg)))
+ oldequiv = old;
+ else
+ {
+ new_icode = reload_in_optab[(int) mode];
+ if (new_icode != CODE_FOR_nothing
+ && ((insn_operand_predicate[(int) new_icode][0]
+ && ! (insn_operand_predicate[(int) new_icode][0]
+ (reloadreg, mode)))
+ || (insn_operand_predicate[(int) new_icode]
+ && ! (insn_operand_predicate[(int) new_icode][1]
+ (oldequiv, mode)))))
+ new_icode = CODE_FOR_nothing;
+
+ if (new_icode == CODE_FOR_nothing)
+ new_mode = mode;
+ else
+ new_mode = insn_operand_mode[new_icode][2];
+
+ if (GET_MODE (second_reload_reg) != new_mode)
+ {
+ if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
+ new_mode))
+ oldequiv = old;
+ else
+ second_reload_reg
+ = gen_reg_rtx (REG, new_mode,
+ REGNO (second_reload_reg));
+ }
+ }
+ }
+ }
+
+ /* If we still need a secondary reload register, check
+ to see if it is being used as a scratch or intermediate
+ register and generate code appropriately. */
+
+ if (second_reload_reg)
+ {
+ if (icode != CODE_FOR_nothing)
+ {
+ emit_insn_before (GEN_FCN (icode)
+ (reloadreg, oldequiv,
+ second_reload_reg),
+ where);
+ special = 1;
+ }
+ else
+ {
+ /* See if we need a scratch register to load the
+ intermediate register (a tertiary reload). */
+ enum insn_code tertiary_icode
+ = reload_secondary_icode[secondary_reload];
+
+ if (tertiary_icode != CODE_FOR_nothing)
+ {
+ rtx third_reload_reg
+ = reload_reg_rtx[reload_secondary_reload[secondary_reload]];
+
+ emit_insn_before ((GEN_FCN (tertiary_icode)
+ (second_reload_reg, oldequiv,
+ third_reload_reg)),
+ where);
+ }
+ else
+ {
+ gen_input_reload (second_reload_reg,
+ oldequiv, where);
+ oldequiv = second_reload_reg;
+ }
+ }
+ }
+ }
+#endif
+
+ if (! special)
+ this_reload_insn = gen_input_reload (reloadreg,
+ oldequiv, where);
+
+#if defined(SECONDARY_INPUT_RELOAD_CLASS) && defined(PRESERVE_DEATH_INFO_REGNO_P)
+ /* We may have to make a REG_DEAD note for the secondary reload
+ register in the insns we just made. Find the last insn that
+ mentioned the register. */
+ if (! special && second_reload_reg
+ && PRESERVE_DEATH_INFO_REGNO_P (REGNO (second_reload_reg)))
+ {
+ rtx prev;
+
+ for (prev = where;
+ prev != PREV_INSN (this_reload_insn);
+ prev = PREV_INSN (prev))
+ if (GET_RTX_CLASS (GET_CODE (prev) == 'i')
+ && reg_overlap_mentioned_p (second_reload_reg,
+ PATTERN (prev)))
+ {
+ REG_NOTES (prev) = gen_rtx (EXPR_LIST, REG_DEAD,
+ second_reload_reg,
+ REG_NOTES (prev));
+ break;
+ }
+ }
+#endif
+ }
+
+ /* Update where to put other reload insns. */
+ if (this_reload_insn)
+ switch (reload_when_needed[j])
+ {
+ case RELOAD_FOR_INPUT:
+ case RELOAD_OTHER:
+ if (first_other_reload_insn == first_operand_address_reload_insn)
+ first_other_reload_insn = this_reload_insn;
+ break;
+ case RELOAD_FOR_OPERAND_ADDRESS:
+ if (first_operand_address_reload_insn == insn)
+ first_operand_address_reload_insn = this_reload_insn;
+ if (first_other_reload_insn == insn)
+ first_other_reload_insn = this_reload_insn;
+ }
+
+ /* reload_inc[j] was formerly processed here. */
+ }
+
+ /* Add a note saying the input reload reg
+ dies in this insn, if anyone cares. */
+#ifdef PRESERVE_DEATH_INFO_REGNO_P
+ if (old != 0
+ && reload_reg_rtx[j] != old
+ && reload_reg_rtx[j] != 0
+ && reload_out[j] == 0
+ && ! reload_inherited[j]
+ && PRESERVE_DEATH_INFO_REGNO_P (REGNO (reload_reg_rtx[j])))
+ {
+ register rtx reloadreg = reload_reg_rtx[j];
+
+#if 0
+ /* We can't abort here because we need to support this for sched.c.
+ It's not terrible to miss a REG_DEAD note, but we should try
+ to figure out how to do this correctly. */
+ /* The code below is incorrect for address-only reloads. */
+ if (reload_when_needed[j] != RELOAD_OTHER
+ && reload_when_needed[j] != RELOAD_FOR_INPUT)
+ abort ();
+#endif
+
+ /* Add a death note to this insn, for an input reload. */
+
+ if ((reload_when_needed[j] == RELOAD_OTHER
+ || reload_when_needed[j] == RELOAD_FOR_INPUT)
+ && ! dead_or_set_p (insn, reloadreg))
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_DEAD,
+ reloadreg, REG_NOTES (insn));
+ }
+
+ /* When we inherit a reload, the last marked death of the reload reg
+ may no longer really be a death. */
+ if (reload_reg_rtx[j] != 0
+ && PRESERVE_DEATH_INFO_REGNO_P (REGNO (reload_reg_rtx[j]))
+ && reload_inherited[j])
+ {
+ /* Handle inheriting an output reload.
+ Remove the death note from the output reload insn. */
+ if (reload_spill_index[j] >= 0
+ && GET_CODE (reload_in[j]) == REG
+ && spill_reg_store[reload_spill_index[j]] != 0
+ && find_regno_note (spill_reg_store[reload_spill_index[j]],
+ REG_DEAD, REGNO (reload_reg_rtx[j])))
+ remove_death (REGNO (reload_reg_rtx[j]),
+ spill_reg_store[reload_spill_index[j]]);
+ /* Likewise for input reloads that were inherited. */
+ else if (reload_spill_index[j] >= 0
+ && GET_CODE (reload_in[j]) == REG
+ && spill_reg_store[reload_spill_index[j]] == 0
+ && reload_inheritance_insn[j] != 0
+ && find_regno_note (reload_inheritance_insn[j], REG_DEAD,
+ REGNO (reload_reg_rtx[j])))
+ remove_death (REGNO (reload_reg_rtx[j]),
+ reload_inheritance_insn[j]);
+ else
+ {
+ rtx prev;
+
+ /* We got this register from find_equiv_reg.
+ Search back for its last death note and get rid of it.
+ But don't search back too far.
+ Don't go past a place where this reg is set,
+ since a death note before that remains valid. */
+ for (prev = PREV_INSN (insn);
+ prev && GET_CODE (prev) != CODE_LABEL;
+ prev = PREV_INSN (prev))
+ if (GET_RTX_CLASS (GET_CODE (prev)) == 'i'
+ && dead_or_set_p (prev, reload_reg_rtx[j]))
+ {
+ if (find_regno_note (prev, REG_DEAD,
+ REGNO (reload_reg_rtx[j])))
+ remove_death (REGNO (reload_reg_rtx[j]), prev);
+ break;
+ }
+ }
+ }
+
+ /* We might have used find_equiv_reg above to choose an alternate
+ place from which to reload. If so, and it died, we need to remove
+ that death and move it to one of the insns we just made. */
+
+ if (oldequiv_reg != 0
+ && PRESERVE_DEATH_INFO_REGNO_P (true_regnum (oldequiv_reg)))
+ {
+ rtx prev, prev1;
+
+ for (prev = PREV_INSN (insn); prev && GET_CODE (prev) != CODE_LABEL;
+ prev = PREV_INSN (prev))
+ if (GET_RTX_CLASS (GET_CODE (prev)) == 'i'
+ && dead_or_set_p (prev, oldequiv_reg))
+ {
+ if (find_regno_note (prev, REG_DEAD, REGNO (oldequiv_reg)))
+ {
+ for (prev1 = this_reload_insn;
+ prev1; prev1 = PREV_INSN (prev1))
+ if (GET_RTX_CLASS (GET_CODE (prev1) == 'i')
+ && reg_overlap_mentioned_p (oldequiv_reg,
+ PATTERN (prev1)))
+ {
+ REG_NOTES (prev1) = gen_rtx (EXPR_LIST, REG_DEAD,
+ oldequiv_reg,
+ REG_NOTES (prev1));
+ break;
+ }
+ remove_death (REGNO (oldequiv_reg), prev);
+ }
+ break;
+ }
+ }
+#endif
+
+ /* If we are reloading a register that was recently stored in with an
+ output-reload, see if we can prove there was
+ actually no need to store the old value in it. */
+
+ if (optimize && reload_inherited[j] && reload_spill_index[j] >= 0
+ /* This is unsafe if some other reload uses the same reg first. */
+ && (reload_when_needed[j] == RELOAD_OTHER
+ || reload_when_needed[j] == RELOAD_FOR_INPUT
+ || reload_when_needed[j] == RELOAD_FOR_INPUT_RELOAD_ADDRESS)
+ && GET_CODE (reload_in[j]) == REG
+#if 0
+ /* There doesn't seem to be any reason to restrict this to pseudos
+ and doing so loses in the case where we are copying from a
+ register of the wrong class. */
+ && REGNO (reload_in[j]) >= FIRST_PSEUDO_REGISTER
+#endif
+ && spill_reg_store[reload_spill_index[j]] != 0
+ && dead_or_set_p (insn, reload_in[j])
+ /* This is unsafe if operand occurs more than once in current
+ insn. Perhaps some occurrences weren't reloaded. */
+ && count_occurrences (PATTERN (insn), reload_in[j]) == 1)
+ delete_output_reload (insn, j,
+ spill_reg_store[reload_spill_index[j]]);
+
+ /* Input-reloading is done. Now do output-reloading,
+ storing the value from the reload-register after the main insn
+ if reload_out[j] is nonzero.
+
+ ??? At some point we need to support handling output reloads of
+ JUMP_INSNs or insns that set cc0. */
+ old = reload_out[j];
+ if (old != 0
+ && reload_reg_rtx[j] != old
+ && reload_reg_rtx[j] != 0)
+ {
+ register rtx reloadreg = reload_reg_rtx[j];
+ register rtx second_reloadreg = 0;
+ rtx prev_insn = PREV_INSN (first_output_reload_insn);
+ rtx note, p;
+ enum machine_mode mode;
+ int special = 0;
+
+ /* An output operand that dies right away does need a reload,
+ but need not be copied from it. Show the new location in the
+ REG_UNUSED note. */
+ if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
+ && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
+ {
+ XEXP (note, 0) = reload_reg_rtx[j];
+ continue;
+ }
+ else if (GET_CODE (old) == SCRATCH)
+ /* If we aren't optimizing, there won't be a REG_UNUSED note,
+ but we don't want to make an output reload. */
+ continue;
+
+#if 0
+ /* Strip off of OLD any size-increasing SUBREGs such as
+ (SUBREG:SI foo:QI 0). */
+
+ while (GET_CODE (old) == SUBREG && SUBREG_WORD (old) == 0
+ && (GET_MODE_SIZE (GET_MODE (old))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (old)))))
+ old = SUBREG_REG (old);
+#endif
+
+ /* If is a JUMP_INSN, we can't support output reloads yet. */
+ if (GET_CODE (insn) == JUMP_INSN)
+ abort ();
+
+ /* Determine the mode to reload in.
+ See comments above (for input reloading). */
+
+ mode = GET_MODE (old);
+ if (mode == VOIDmode)
+ abort (); /* Should never happen for an output. */
+
+ /* A strict-low-part output operand needs to be reloaded
+ in the mode of the entire value. */
+ if (reload_strict_low[j])
+ {
+ mode = GET_MODE (SUBREG_REG (reload_out[j]));
+ /* Encapsulate OLD into that mode. */
+ /* If OLD is a subreg, then strip it, since the subreg will
+ be altered by this very reload. */
+ while (GET_CODE (old) == SUBREG && GET_MODE (old) != mode)
+ old = SUBREG_REG (old);
+ if (GET_MODE (old) != VOIDmode
+ && mode != GET_MODE (old))
+ old = gen_rtx (SUBREG, mode, old, 0);
+ }
+
+ if (GET_MODE (reloadreg) != mode)
+ reloadreg = gen_rtx (REG, mode, REGNO (reloadreg));
+
+#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
+
+ /* If we need two reload regs, set RELOADREG to the intermediate
+ one, since it will be stored into OUT. We might need a secondary
+ register only for an input reload, so check again here. */
+
+ if (reload_secondary_reload[j] >= 0
+ && (SECONDARY_OUTPUT_RELOAD_CLASS (reload_reg_class[j],
+ mode, old)
+ != NO_REGS))
+ {
+ second_reloadreg = reloadreg;
+ reloadreg = reload_reg_rtx[reload_secondary_reload[j]];
+
+ /* See if RELOADREG is to be used as a scratch register
+ or as an intermediate register. */
+ if (reload_secondary_icode[j] != CODE_FOR_nothing)
+ {
+ emit_insn_before ((GEN_FCN (reload_secondary_icode[j])
+ (old, second_reloadreg, reloadreg)),
+ first_output_reload_insn);
+ special = 1;
+ }
+ else
+ {
+ /* See if we need both a scratch and intermediate reload
+ register. */
+ int secondary_reload = reload_secondary_reload[j];
+ enum insn_code tertiary_icode
+ = reload_secondary_icode[secondary_reload];
+ rtx pat;
+
+ if (GET_MODE (reloadreg) != mode)
+ reloadreg = gen_rtx (REG, mode, REGNO (reloadreg));
+
+ if (tertiary_icode != CODE_FOR_nothing)
+ {
+ rtx third_reloadreg
+ = reload_reg_rtx[reload_secondary_reload[secondary_reload]];
+ pat = (GEN_FCN (tertiary_icode)
+ (reloadreg, second_reloadreg, third_reloadreg));
+ }
+ else
+ pat = gen_move_insn (reloadreg, second_reloadreg);
+
+ emit_insn_before (pat, first_output_reload_insn);
+ }
+ }
+#endif
+
+ /* Output the last reload insn. */
+ if (! special)
+ emit_insn_before (gen_move_insn (old, reloadreg),
+ first_output_reload_insn);
+
+#ifdef PRESERVE_DEATH_INFO_REGNO_P
+ /* If final will look at death notes for this reg,
+ put one on the last output-reload insn to use it. Similarly
+ for any secondary register. */
+ if (PRESERVE_DEATH_INFO_REGNO_P (REGNO (reloadreg)))
+ for (p = PREV_INSN (first_output_reload_insn);
+ p != prev_insn; p = PREV_INSN (p))
+ if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
+ && reg_overlap_mentioned_p (reloadreg, PATTERN (p)))
+ REG_NOTES (p) = gen_rtx (EXPR_LIST, REG_DEAD,
+ reloadreg, REG_NOTES (p));
+
+#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
+ if (! special
+ && PRESERVE_DEATH_INFO_REGNO_P (REGNO (second_reloadreg)))
+ for (p = PREV_INSN (first_output_reload_insn);
+ p != prev_insn; p = PREV_INSN (p))
+ if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
+ && reg_overlap_mentioned_p (second_reloadreg, PATTERN (p)))
+ REG_NOTES (p) = gen_rtx (EXPR_LIST, REG_DEAD,
+ second_reloadreg, REG_NOTES (p));
+#endif
+#endif
+ /* Look at all insns we emitted, just to be safe. */
+ for (p = NEXT_INSN (prev_insn); p != first_output_reload_insn;
+ p = NEXT_INSN (p))
+ if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
+ {
+ /* If this output reload doesn't come from a spill reg,
+ clear any memory of reloaded copies of the pseudo reg.
+ If this output reload comes from a spill reg,
+ reg_has_output_reload will make this do nothing. */
+ note_stores (PATTERN (p), forget_old_reloads_1);
+
+ if (reg_mentioned_p (reload_reg_rtx[j], PATTERN (p)))
+ store_insn = p;
+ }
+
+ first_output_reload_insn = NEXT_INSN (prev_insn);
+ }
+
+ if (reload_spill_index[j] >= 0)
+ new_spill_reg_store[reload_spill_index[j]] = store_insn;
+ }
+
+ /* Now update spill_reg_store for the reloads of this insn. */
+ /* Copy the elements that were updated in the loop above. */
+ for (j = 0; j < n_reloads; j++)
+ {
+ int regno = reload_spill_index[j];
+ if (regno >= 0)
+ spill_reg_store[regno] = new_spill_reg_store[regno];
+ }
+
+ /* Move death notes from INSN
+ to output-operand-address and output reload insns. */
+#ifdef PRESERVE_DEATH_INFO_REGNO_P
+ {
+ rtx insn1;
+ /* Loop over those insns, last ones first. */
+ for (insn1 = PREV_INSN (following_insn); insn1 != insn;
+ insn1 = PREV_INSN (insn1))
+ if (GET_CODE (insn1) == INSN && GET_CODE (PATTERN (insn1)) == SET)
+ {
+ rtx source = SET_SRC (PATTERN (insn1));
+ rtx dest = SET_DEST (PATTERN (insn1));
+
+ /* The note we will examine next. */
+ rtx reg_notes = REG_NOTES (insn);
+ /* The place that pointed to this note. */
+ rtx *prev_reg_note = &REG_NOTES (insn);
+
+ /* If the note is for something used in the source of this
+ reload insn, or in the output address, move the note. */
+ while (reg_notes)
+ {
+ rtx next_reg_notes = XEXP (reg_notes, 1);
+ if (REG_NOTE_KIND (reg_notes) == REG_DEAD
+ && GET_CODE (XEXP (reg_notes, 0)) == REG
+ && ((GET_CODE (dest) != REG
+ && reg_overlap_mentioned_p (XEXP (reg_notes, 0), dest))
+ || reg_overlap_mentioned_p (XEXP (reg_notes, 0), source)))
+ {
+ *prev_reg_note = next_reg_notes;
+ XEXP (reg_notes, 1) = REG_NOTES (insn1);
+ REG_NOTES (insn1) = reg_notes;
+ }
+ else
+ prev_reg_note = &XEXP (reg_notes, 1);
+
+ reg_notes = next_reg_notes;
+ }
+ }
+ }
+#endif
+
+ /* For all the spill regs newly reloaded in this instruction,
+ record what they were reloaded from, so subsequent instructions
+ can inherit the reloads. */
+
+ for (j = 0; j < n_reloads; j++)
+ {
+ register int r = reload_order[j];
+ register int i = reload_spill_index[r];
+
+ /* I is nonneg if this reload used one of the spill regs.
+ If reload_reg_rtx[r] is 0, this is an optional reload
+ that we opted to ignore. */
+ if (i >= 0 && reload_reg_rtx[r] != 0)
+ {
+ /* First, clear out memory of what used to be in this spill reg.
+ If consecutive registers are used, clear them all. */
+ int nr
+ = HARD_REGNO_NREGS (spill_regs[i], GET_MODE (reload_reg_rtx[r]));
+ int k;
+
+ for (k = 0; k < nr; k++)
+ {
+ reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]] = -1;
+ reg_reloaded_insn[spill_reg_order[spill_regs[i] + k]] = 0;
+ }
+
+ /* Maybe the spill reg contains a copy of reload_out. */
+ if (reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG)
+ {
+ register int nregno = REGNO (reload_out[r]);
+ reg_last_reload_reg[nregno] = reload_reg_rtx[r];
+ for (k = 0; k < nr; k++)
+ {
+ reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]]
+ = nregno;
+ reg_reloaded_insn[spill_reg_order[spill_regs[i] + k]] = insn;
+ }
+ }
+ /* Maybe the spill reg contains a copy of reload_in. */
+ else if (reload_out[r] == 0
+ && reload_in[r] != 0
+ && (GET_CODE (reload_in[r]) == REG
+ || GET_CODE (reload_in_reg[r]) == REG))
+ {
+ register int nregno;
+ if (GET_CODE (reload_in[r]) == REG)
+ nregno = REGNO (reload_in[r]);
+ else
+ nregno = REGNO (reload_in_reg[r]);
+
+ /* If there are two separate reloads (one in and one out)
+ for the same (hard or pseudo) reg,
+ leave reg_last_reload_reg set
+ based on the output reload.
+ Otherwise, set it from this input reload. */
+ if (!reg_has_output_reload[nregno]
+ /* But don't do so if another input reload
+ will clobber this one's value. */
+ && reload_reg_reaches_end_p (spill_regs[i],
+ reload_when_needed[r]))
+ {
+ reg_last_reload_reg[nregno] = reload_reg_rtx[r];
+ for (k = 0; k < nr; k++)
+ {
+ reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]]
+ = nregno;
+ reg_reloaded_insn[spill_reg_order[spill_regs[i] + k]]
+ = insn;
+ }
+ }
+ }
+ }
+
+ /* The following if-statement was #if 0'd in 1.34 (or before...).
+ It's reenabled in 1.35 because supposedly nothing else
+ deals with this problem. */
+
+ /* If a register gets output-reloaded from a non-spill register,
+ that invalidates any previous reloaded copy of it.
+ But forget_old_reloads_1 won't get to see it, because
+ it thinks only about the original insn. So invalidate it here. */
+ if (i < 0 && reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG)
+ {
+ register int nregno = REGNO (reload_out[r]);
+ reg_last_reload_reg[nregno] = 0;
+ }
+ }
+}
+
+/* Emit code before BEFORE_INSN to perform an input reload of IN to RELOADREG.
+ Returns last insn emitted. */
+
+rtx
+gen_input_reload (reloadreg, in, before_insn)
+ rtx reloadreg;
+ rtx in;
+ rtx before_insn;
+{
+ register rtx prev_insn = PREV_INSN (before_insn);
+
+ /* How to do this reload can get quite tricky. Normally, we are being
+ asked to reload a simple operand, such as a MEM, a constant, or a pseudo
+ register that didn't get a hard register. In that case we can just
+ call emit_move_insn.
+
+ We can also be asked to reload a PLUS that adds either two registers or
+ a register and a constant or MEM. This can occur during frame pointer
+ elimination. That case if handled by trying to emit a single insn
+ to perform the add. If it is not valid, we use a two insn sequence.
+
+ Finally, we could be called to handle an 'o' constraint by putting
+ an address into a register. In that case, we first try to do this
+ with a named pattern of "reload_load_address". If no such pattern
+ exists, we just emit a SET insn and hope for the best (it will normally
+ be valid on machines that use 'o').
+
+ This entire process is made complex because reload will never
+ process the insns we generate here and so we must ensure that
+ they will fit their constraints and also by the fact that parts of
+ IN might be being reloaded separately and replaced with spill registers.
+ Because of this, we are, in some sense, just guessing the right approach
+ here. The one listed above seems to work.
+
+ ??? At some point, this whole thing needs to be rethought. */
+
+ if (GET_CODE (in) == PLUS
+ && GET_CODE (XEXP (in, 0)) == REG
+ && (GET_CODE (XEXP (in, 1)) == REG
+ || CONSTANT_P (XEXP (in, 1))
+ || GET_CODE (XEXP (in, 1)) == MEM))
+ {
+ /* We need to compute the sum of what is either a register and a
+ constant, a register and memory, or a hard register and a pseudo
+ register and put it into the reload register. The best possible way
+ of doing this is if the machine has a three-operand ADD insn that
+ accepts the required operands.
+
+ The simplest approach is to try to generate such an insn and see if it
+ is recognized and matches its constraints. If so, it can be used.
+
+ It might be better not to actually emit the insn unless it is valid,
+ but we need to pass the insn as an operand to `recog' and it is
+ simpler to emit and then delete the insn if not valid than to
+ dummy things up. */
+
+ rtx move_operand, other_operand, insn;
+ int code;
+
+ /* Since constraint checking is strict, commutativity won't be
+ checked, so we need to do that here to avoid spurious failure
+ if the add instruction is two-address and the second operand
+ of the add is the same as the reload reg, which is frequently
+ the case. If the insn would be A = B + A, rearrange it so
+ it will be A = A + B as constrain_operands expects. */
+
+ if (GET_CODE (XEXP (in, 1)) == REG
+ && REGNO (reloadreg) == REGNO (XEXP (in, 1)))
+ in = gen_rtx (PLUS, GET_MODE (in), XEXP (in, 1), XEXP (in, 0));
+
+ insn = emit_insn_before (gen_rtx (SET, VOIDmode, reloadreg, in),
+ before_insn);
+ code = recog_memoized (insn);
+
+ if (code >= 0)
+ {
+ insn_extract (insn);
+ /* We want constrain operands to treat this insn strictly in
+ its validity determination, i.e., the way it would after reload
+ has completed. */
+ if (constrain_operands (code, 1))
+ return insn;
+ }
+
+ if (PREV_INSN (insn))
+ NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
+ if (NEXT_INSN (insn))
+ PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
+
+ /* If that failed, we must use a conservative two-insn sequence.
+ use move to copy constant, MEM, or pseudo register to the reload
+ register since "move" will be able to handle arbitrary operand, unlike
+ add which can't, in general. Then add the registers.
+
+ If there is another way to do this for a specific machine, a
+ DEFINE_PEEPHOLE should be specified that recognizes the sequence
+ we emit below. */
+
+ if (CONSTANT_P (XEXP (in, 1))
+ || (GET_CODE (XEXP (in, 1)) == REG
+ && REGNO (XEXP (in, 1)) >= FIRST_PSEUDO_REGISTER))
+ move_operand = XEXP (in, 1), other_operand = XEXP (in, 0);
+ else
+ move_operand = XEXP (in, 0), other_operand = XEXP (in, 1);
+
+ emit_insn_before (gen_move_insn (reloadreg, move_operand), before_insn);
+ emit_insn_before (gen_add2_insn (reloadreg, other_operand), before_insn);
+ }
+
+ /* If IN is a simple operand, use gen_move_insn. */
+ else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
+ emit_insn_before (gen_move_insn (reloadreg, in), before_insn);
+
+#ifdef HAVE_reload_load_address
+ else if (HAVE_reload_load_address)
+ emit_insn_before (gen_reload_load_address (reloadreg, in), before_insn);
+#endif
+
+ /* Otherwise, just write (set REGLOADREG IN) and hope for the best. */
+ else
+ emit_insn_before (gen_rtx (SET, VOIDmode, reloadreg, in), before_insn);
+
+ /* Return the first insn emitted.
+ We can not just return PREV_INSN (before_insn), because there may have
+ been multiple instructions emitted. Also note that gen_move_insn may
+ emit more than one insn itself, so we can not assume that there is one
+ insn emitted per emit_insn_before call. */
+
+ return NEXT_INSN (prev_insn);
+}
+
+/* Delete a previously made output-reload
+ whose result we now believe is not needed.
+ First we double-check.
+
+ INSN is the insn now being processed.
+ OUTPUT_RELOAD_INSN is the insn of the output reload.
+ J is the reload-number for this insn. */
+
+static void
+delete_output_reload (insn, j, output_reload_insn)
+ rtx insn;
+ int j;
+ rtx output_reload_insn;
+{
+ register rtx i1;
+
+ /* Get the raw pseudo-register referred to. */
+
+ rtx reg = reload_in[j];
+ while (GET_CODE (reg) == SUBREG)
+ reg = SUBREG_REG (reg);
+
+ /* If the pseudo-reg we are reloading is no longer referenced
+ anywhere between the store into it and here,
+ and no jumps or labels intervene, then the value can get
+ here through the reload reg alone.
+ Otherwise, give up--return. */
+ for (i1 = NEXT_INSN (output_reload_insn);
+ i1 != insn; i1 = NEXT_INSN (i1))
+ {
+ if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
+ return;
+ if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
+ && reg_mentioned_p (reg, PATTERN (i1)))
+ return;
+ }
+
+ /* If this insn will store in the pseudo again,
+ the previous store can be removed. */
+ if (reload_out[j] == reload_in[j])
+ delete_insn (output_reload_insn);
+
+ /* See if the pseudo reg has been completely replaced
+ with reload regs. If so, delete the store insn
+ and forget we had a stack slot for the pseudo. */
+ else if (reg_n_deaths[REGNO (reg)] == 1
+ && reg_basic_block[REGNO (reg)] >= 0
+ && find_regno_note (insn, REG_DEAD, REGNO (reg)))
+ {
+ rtx i2;
+
+ /* We know that it was used only between here
+ and the beginning of the current basic block.
+ (We also know that the last use before INSN was
+ the output reload we are thinking of deleting, but never mind that.)
+ Search that range; see if any ref remains. */
+ for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
+ {
+ /* Uses which just store in the pseudo don't count,
+ since if they are the only uses, they are dead. */
+ if (GET_CODE (i2) == INSN
+ && GET_CODE (PATTERN (i2)) == SET
+ && SET_DEST (PATTERN (i2)) == reg)
+ continue;
+ if (GET_CODE (i2) == CODE_LABEL
+ || GET_CODE (i2) == JUMP_INSN)
+ break;
+ if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
+ && reg_mentioned_p (reg, PATTERN (i2)))
+ /* Some other ref remains;
+ we can't do anything. */
+ return;
+ }
+
+ /* Delete the now-dead stores into this pseudo. */
+ for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
+ {
+ /* Uses which just store in the pseudo don't count,
+ since if they are the only uses, they are dead. */
+ if (GET_CODE (i2) == INSN
+ && GET_CODE (PATTERN (i2)) == SET
+ && SET_DEST (PATTERN (i2)) == reg)
+ delete_insn (i2);
+ if (GET_CODE (i2) == CODE_LABEL
+ || GET_CODE (i2) == JUMP_INSN)
+ break;
+ }
+
+ /* For the debugging info,
+ say the pseudo lives in this reload reg. */
+ reg_renumber[REGNO (reg)] = REGNO (reload_reg_rtx[j]);
+ alter_reg (REGNO (reg), -1);
+ }
+}
+
+
+/* Output reload-insns to reload VALUE into RELOADREG.
+ VALUE is a autoincrement or autodecrement RTX whose operand
+ is a register or memory location;
+ so reloading involves incrementing that location.
+
+ INC_AMOUNT is the number to increment or decrement by (always positive).
+ This cannot be deduced from VALUE.
+
+ INSN is the insn before which the new insns should be emitted.
+
+ The return value is the first of the insns emitted. */
+
+static rtx
+inc_for_reload (reloadreg, value, inc_amount, insn)
+ rtx reloadreg;
+ rtx value;
+ int inc_amount;
+ rtx insn;
+{
+ /* REG or MEM to be copied and incremented. */
+ rtx incloc = XEXP (value, 0);
+ /* Nonzero if increment after copying. */
+ int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
+
+ /* No hard register is equivalent to this register after
+ inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
+ we could inc/dec that register as well (maybe even using it for
+ the source), but I'm not sure it's worth worrying about. */
+ if (GET_CODE (incloc) == REG)
+ reg_last_reload_reg[REGNO (incloc)] = 0;
+
+ if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
+ inc_amount = - inc_amount;
+
+ /* First handle preincrement, which is simpler. */
+ if (! post)
+ {
+ /* If incrementing a register, assume we can
+ output an insn to increment it directly. */
+ if (GET_CODE (incloc) == REG &&
+ (REGNO (incloc) < FIRST_PSEUDO_REGISTER
+ || reg_renumber[REGNO (incloc)] >= 0))
+ {
+ rtx first_new
+ = emit_insn_before (gen_add2_insn (incloc,
+ gen_rtx (CONST_INT, VOIDmode,
+ inc_amount)),
+ insn);
+ emit_insn_before (gen_move_insn (reloadreg, incloc), insn);
+ return first_new;
+ }
+ else
+ /* Else we must not assume we can increment the location directly
+ (even though on many target machines we can);
+ copy it to the reload register, increment there, then save back. */
+ {
+ rtx first_new
+ = emit_insn_before (gen_move_insn (reloadreg, incloc), insn);
+ emit_insn_before (gen_add2_insn (reloadreg,
+ gen_rtx (CONST_INT, VOIDmode,
+ inc_amount)),
+ insn);
+ emit_insn_before (gen_move_insn (incloc, reloadreg), insn);
+ return first_new;
+ }
+ }
+ /* Postincrement.
+ Because this might be a jump insn or a compare, and because RELOADREG
+ may not be available after the insn in an input reload,
+ we must do the incrementation before the insn being reloaded for. */
+ else
+ {
+ /* Copy the value, then increment it. */
+ rtx first_new
+ = emit_insn_before (gen_move_insn (reloadreg, incloc), insn);
+
+ /* If incrementing a register, assume we can
+ output an insn to increment it directly. */
+ if (GET_CODE (incloc) == REG &&
+ (REGNO (incloc) < FIRST_PSEUDO_REGISTER
+ || reg_renumber[REGNO (incloc)] >= 0))
+ {
+ emit_insn_before (gen_add2_insn (incloc,
+ gen_rtx (CONST_INT, VOIDmode,
+ inc_amount)),
+ insn);
+ }
+ else
+ /* Else we must not assume we can increment INCLOC
+ (even though on many target machines we can);
+ increment the copy in the reload register,
+ save that back, then decrement the reload register
+ so it has the original value. */
+ {
+ emit_insn_before (gen_add2_insn (reloadreg,
+ gen_rtx (CONST_INT, VOIDmode,
+ inc_amount)),
+ insn);
+ emit_insn_before (gen_move_insn (incloc, reloadreg), insn);
+ emit_insn_before (gen_sub2_insn (reloadreg,
+ gen_rtx (CONST_INT, VOIDmode,
+ inc_amount)),
+ insn);
+ }
+ return first_new;
+ }
+}
+
+/* Return 1 if we are certain that the constraint-string STRING allows
+ the hard register REG. Return 0 if we can't be sure of this. */
+
+static int
+constraint_accepts_reg_p (string, reg)
+ char *string;
+ rtx reg;
+{
+ int value = 0;
+ int regno = true_regnum (reg);
+ int c;
+
+ /* Initialize for first alternative. */
+ value = 0;
+ /* Check that each alternative contains `g' or `r'. */
+ while (1)
+ switch (c = *string++)
+ {
+ case 0:
+ /* If an alternative lacks `g' or `r', we lose. */
+ return value;
+ case ',':
+ /* If an alternative lacks `g' or `r', we lose. */
+ if (value == 0)
+ return 0;
+ /* Initialize for next alternative. */
+ value = 0;
+ break;
+ case 'g':
+ case 'r':
+ /* Any general reg wins for this alternative. */
+ if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
+ value = 1;
+ break;
+ default:
+ /* Any reg in specified class wins for this alternative. */
+ {
+ int class = REG_CLASS_FROM_LETTER (c);
+
+ if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
+ value = 1;
+ }
+ }
+}
+
+/* Return the number of places FIND appears within X. */
+
+static int
+count_occurrences (x, find)
+ register rtx x, find;
+{
+ register int i, j;
+ register enum rtx_code code;
+ register char *format_ptr;
+ int count;
+
+ if (x == find)
+ return 1;
+ if (x == 0)
+ return 0;
+
+ code = GET_CODE (x);
+
+ switch (code)
+ {
+ case REG:
+ case QUEUED:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case CODE_LABEL:
+ case PC:
+ case CC0:
+ return 0;
+ }
+
+ format_ptr = GET_RTX_FORMAT (code);
+ count = 0;
+
+ for (i = 0; i < GET_RTX_LENGTH (code); i++)
+ {
+ switch (*format_ptr++)
+ {
+ case 'e':
+ count += count_occurrences (XEXP (x, i), find);
+ break;
+
+ case 'E':
+ if (XVEC (x, i) != NULL)
+ {
+ for (j = 0; j < XVECLEN (x, i); j++)
+ count += count_occurrences (XVECEXP (x, i, j), find);
+ }
+ break;
+ }
+ }
+ return count;
+}