aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/spu/spu.c
diff options
context:
space:
mode:
authorUlrich Weigand <uweigand@de.ibm.com>2019-09-03 15:08:28 +0000
committerUlrich Weigand <uweigand@gcc.gnu.org>2019-09-03 15:08:28 +0000
commit2f2aeda98f3aa24034a700e7efcb6c1a9397836f (patch)
tree5b5243531a267cc134be476ce30f7405ea5998a4 /gcc/config/spu/spu.c
parent934392185369af22fee845e4edd92c420b8c248b (diff)
downloadgcc-2f2aeda98f3aa24034a700e7efcb6c1a9397836f.zip
gcc-2f2aeda98f3aa24034a700e7efcb6c1a9397836f.tar.gz
gcc-2f2aeda98f3aa24034a700e7efcb6c1a9397836f.tar.bz2
Remove Cell Broadband Engine SPU targets
From-SVN: r275343
Diffstat (limited to 'gcc/config/spu/spu.c')
-rw-r--r--gcc/config/spu/spu.c7469
1 files changed, 0 insertions, 7469 deletions
diff --git a/gcc/config/spu/spu.c b/gcc/config/spu/spu.c
deleted file mode 100644
index 7afd43b..0000000
--- a/gcc/config/spu/spu.c
+++ /dev/null
@@ -1,7469 +0,0 @@
-/* Copyright (C) 2006-2019 Free Software Foundation, Inc.
-
- This file is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3 of the License, or (at your option)
- any later version.
-
- This file is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
-
-#define IN_TARGET_CODE 1
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "backend.h"
-#include "target.h"
-#include "rtl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "cfghooks.h"
-#include "cfgloop.h"
-#include "df.h"
-#include "memmodel.h"
-#include "tm_p.h"
-#include "stringpool.h"
-#include "attribs.h"
-#include "expmed.h"
-#include "optabs.h"
-#include "regs.h"
-#include "emit-rtl.h"
-#include "recog.h"
-#include "diagnostic-core.h"
-#include "insn-attr.h"
-#include "alias.h"
-#include "fold-const.h"
-#include "stor-layout.h"
-#include "calls.h"
-#include "varasm.h"
-#include "explow.h"
-#include "expr.h"
-#include "output.h"
-#include "cfgrtl.h"
-#include "cfgbuild.h"
-#include "langhooks.h"
-#include "reload.h"
-#include "sched-int.h"
-#include "params.h"
-#include "gimplify.h"
-#include "tm-constrs.h"
-#include "ddg.h"
-#include "dumpfile.h"
-#include "builtins.h"
-#include "rtl-iter.h"
-#include "flags.h"
-#include "toplev.h"
-
-/* This file should be included last. */
-#include "target-def.h"
-
-/* Builtin types, data and prototypes. */
-
-enum spu_builtin_type_index
-{
- SPU_BTI_END_OF_PARAMS,
-
- /* We create new type nodes for these. */
- SPU_BTI_V16QI,
- SPU_BTI_V8HI,
- SPU_BTI_V4SI,
- SPU_BTI_V2DI,
- SPU_BTI_V4SF,
- SPU_BTI_V2DF,
- SPU_BTI_UV16QI,
- SPU_BTI_UV8HI,
- SPU_BTI_UV4SI,
- SPU_BTI_UV2DI,
-
- /* A 16-byte type. (Implemented with V16QI_type_node) */
- SPU_BTI_QUADWORD,
-
- /* These all correspond to intSI_type_node */
- SPU_BTI_7,
- SPU_BTI_S7,
- SPU_BTI_U7,
- SPU_BTI_S10,
- SPU_BTI_S10_4,
- SPU_BTI_U14,
- SPU_BTI_16,
- SPU_BTI_S16,
- SPU_BTI_S16_2,
- SPU_BTI_U16,
- SPU_BTI_U16_2,
- SPU_BTI_U18,
-
- /* These correspond to the standard types */
- SPU_BTI_INTQI,
- SPU_BTI_INTHI,
- SPU_BTI_INTSI,
- SPU_BTI_INTDI,
-
- SPU_BTI_UINTQI,
- SPU_BTI_UINTHI,
- SPU_BTI_UINTSI,
- SPU_BTI_UINTDI,
-
- SPU_BTI_FLOAT,
- SPU_BTI_DOUBLE,
-
- SPU_BTI_VOID,
- SPU_BTI_PTR,
-
- SPU_BTI_MAX
-};
-
-#define V16QI_type_node (spu_builtin_types[SPU_BTI_V16QI])
-#define V8HI_type_node (spu_builtin_types[SPU_BTI_V8HI])
-#define V4SI_type_node (spu_builtin_types[SPU_BTI_V4SI])
-#define V2DI_type_node (spu_builtin_types[SPU_BTI_V2DI])
-#define V4SF_type_node (spu_builtin_types[SPU_BTI_V4SF])
-#define V2DF_type_node (spu_builtin_types[SPU_BTI_V2DF])
-#define unsigned_V16QI_type_node (spu_builtin_types[SPU_BTI_UV16QI])
-#define unsigned_V8HI_type_node (spu_builtin_types[SPU_BTI_UV8HI])
-#define unsigned_V4SI_type_node (spu_builtin_types[SPU_BTI_UV4SI])
-#define unsigned_V2DI_type_node (spu_builtin_types[SPU_BTI_UV2DI])
-
-static GTY(()) tree spu_builtin_types[SPU_BTI_MAX];
-
-struct spu_builtin_range
-{
- int low, high;
-};
-
-static struct spu_builtin_range spu_builtin_range[] = {
- {-0x40ll, 0x7fll}, /* SPU_BTI_7 */
- {-0x40ll, 0x3fll}, /* SPU_BTI_S7 */
- {0ll, 0x7fll}, /* SPU_BTI_U7 */
- {-0x200ll, 0x1ffll}, /* SPU_BTI_S10 */
- {-0x2000ll, 0x1fffll}, /* SPU_BTI_S10_4 */
- {0ll, 0x3fffll}, /* SPU_BTI_U14 */
- {-0x8000ll, 0xffffll}, /* SPU_BTI_16 */
- {-0x8000ll, 0x7fffll}, /* SPU_BTI_S16 */
- {-0x20000ll, 0x1ffffll}, /* SPU_BTI_S16_2 */
- {0ll, 0xffffll}, /* SPU_BTI_U16 */
- {0ll, 0x3ffffll}, /* SPU_BTI_U16_2 */
- {0ll, 0x3ffffll}, /* SPU_BTI_U18 */
-};
-
-
-/* Target specific attribute specifications. */
-char regs_ever_allocated[FIRST_PSEUDO_REGISTER];
-
-/* Prototypes and external defs. */
-static int get_pipe (rtx_insn *insn);
-static int spu_naked_function_p (tree func);
-static int mem_is_padded_component_ref (rtx x);
-static void fix_range (const char *);
-static rtx spu_expand_load (rtx, rtx, rtx, int);
-
-/* Which instruction set architecture to use. */
-int spu_arch;
-/* Which cpu are we tuning for. */
-int spu_tune;
-
-/* The hardware requires 8 insns between a hint and the branch it
- effects. This variable describes how many rtl instructions the
- compiler needs to see before inserting a hint, and then the compiler
- will insert enough nops to make it at least 8 insns. The default is
- for the compiler to allow up to 2 nops be emitted. The nops are
- inserted in pairs, so we round down. */
-int spu_hint_dist = (8*4) - (2*4);
-
-enum spu_immediate {
- SPU_NONE,
- SPU_IL,
- SPU_ILA,
- SPU_ILH,
- SPU_ILHU,
- SPU_ORI,
- SPU_ORHI,
- SPU_ORBI,
- SPU_IOHL
-};
-enum immediate_class
-{
- IC_POOL, /* constant pool */
- IC_IL1, /* one il* instruction */
- IC_IL2, /* both ilhu and iohl instructions */
- IC_IL1s, /* one il* instruction */
- IC_IL2s, /* both ilhu and iohl instructions */
- IC_FSMBI, /* the fsmbi instruction */
- IC_CPAT, /* one of the c*d instructions */
- IC_FSMBI2 /* fsmbi plus 1 other instruction */
-};
-
-static enum spu_immediate which_immediate_load (HOST_WIDE_INT val);
-static enum spu_immediate which_logical_immediate (HOST_WIDE_INT val);
-static int cpat_info(unsigned char *arr, int size, int *prun, int *pstart);
-static enum immediate_class classify_immediate (rtx op,
- machine_mode mode);
-
-/* Pointer mode for __ea references. */
-#define EAmode (spu_ea_model != 32 ? DImode : SImode)
-
-
-/* Define the structure for the machine field in struct function. */
-struct GTY(()) machine_function
-{
- /* Register to use for PIC accesses. */
- rtx pic_reg;
-};
-
-/* How to allocate a 'struct machine_function'. */
-static struct machine_function *
-spu_init_machine_status (void)
-{
- return ggc_cleared_alloc<machine_function> ();
-}
-
-/* Implement TARGET_OPTION_OVERRIDE. */
-static void
-spu_option_override (void)
-{
- /* Set up function hooks. */
- init_machine_status = spu_init_machine_status;
-
- /* Small loops will be unpeeled at -O3. For SPU it is more important
- to keep code small by default. */
- if (!flag_unroll_loops && !flag_peel_loops)
- maybe_set_param_value (PARAM_MAX_COMPLETELY_PEEL_TIMES, 4,
- global_options.x_param_values,
- global_options_set.x_param_values);
-
- flag_omit_frame_pointer = 1;
-
- /* Functions must be 8 byte aligned so we correctly handle dual issue */
- parse_alignment_opts ();
- if (align_functions.levels[0].get_value () < 8)
- str_align_functions = "8";
-
- spu_hint_dist = 8*4 - spu_max_nops*4;
- if (spu_hint_dist < 0)
- spu_hint_dist = 0;
-
- if (spu_fixed_range_string)
- fix_range (spu_fixed_range_string);
-
- /* Determine processor architectural level. */
- if (spu_arch_string)
- {
- if (strcmp (&spu_arch_string[0], "cell") == 0)
- spu_arch = PROCESSOR_CELL;
- else if (strcmp (&spu_arch_string[0], "celledp") == 0)
- spu_arch = PROCESSOR_CELLEDP;
- else
- error ("bad value (%s) for %<-march=%> switch", spu_arch_string);
- }
-
- /* Determine processor to tune for. */
- if (spu_tune_string)
- {
- if (strcmp (&spu_tune_string[0], "cell") == 0)
- spu_tune = PROCESSOR_CELL;
- else if (strcmp (&spu_tune_string[0], "celledp") == 0)
- spu_tune = PROCESSOR_CELLEDP;
- else
- error ("bad value (%s) for %<-mtune=%> switch", spu_tune_string);
- }
-
- /* Change defaults according to the processor architecture. */
- if (spu_arch == PROCESSOR_CELLEDP)
- {
- /* If no command line option has been otherwise specified, change
- the default to -mno-safe-hints on celledp -- only the original
- Cell/B.E. processors require this workaround. */
- if (!(target_flags_explicit & MASK_SAFE_HINTS))
- target_flags &= ~MASK_SAFE_HINTS;
- }
-
- REAL_MODE_FORMAT (SFmode) = &spu_single_format;
-}
-
-/* Implement TARGET_HARD_REGNO_NREGS. */
-
-static unsigned int
-spu_hard_regno_nregs (unsigned int, machine_mode mode)
-{
- return CEIL (GET_MODE_BITSIZE (mode), MAX_FIXED_MODE_SIZE);
-}
-
-/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
- struct attribute_spec.handler. */
-
-/* True if MODE is valid for the target. By "valid", we mean able to
- be manipulated in non-trivial ways. In particular, this means all
- the arithmetic is supported. */
-static bool
-spu_scalar_mode_supported_p (scalar_mode mode)
-{
- switch (mode)
- {
- case E_QImode:
- case E_HImode:
- case E_SImode:
- case E_SFmode:
- case E_DImode:
- case E_TImode:
- case E_DFmode:
- return true;
-
- default:
- return false;
- }
-}
-
-/* Similarly for vector modes. "Supported" here is less strict. At
- least some operations are supported; need to check optabs or builtins
- for further details. */
-static bool
-spu_vector_mode_supported_p (machine_mode mode)
-{
- switch (mode)
- {
- case E_V16QImode:
- case E_V8HImode:
- case E_V4SImode:
- case E_V2DImode:
- case E_V4SFmode:
- case E_V2DFmode:
- return true;
-
- default:
- return false;
- }
-}
-
-/* GCC assumes that in a paradoxical SUBREG the inner mode occupies the
- least significant bytes of the outer mode. This function returns
- TRUE for the SUBREG's where this is correct. */
-int
-valid_subreg (rtx op)
-{
- machine_mode om = GET_MODE (op);
- machine_mode im = GET_MODE (SUBREG_REG (op));
- return om != VOIDmode && im != VOIDmode
- && (GET_MODE_SIZE (im) == GET_MODE_SIZE (om)
- || (GET_MODE_SIZE (im) <= 4 && GET_MODE_SIZE (om) <= 4)
- || (GET_MODE_SIZE (im) >= 16 && GET_MODE_SIZE (om) >= 16));
-}
-
-/* When insv and ext[sz]v ar passed a TI SUBREG, we want to strip it off
- and adjust the start offset. */
-static rtx
-adjust_operand (rtx op, HOST_WIDE_INT * start)
-{
- machine_mode mode;
- int op_size;
- /* Strip any paradoxical SUBREG. */
- if (GET_CODE (op) == SUBREG
- && (GET_MODE_BITSIZE (GET_MODE (op))
- > GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op)))))
- {
- if (start)
- *start -=
- GET_MODE_BITSIZE (GET_MODE (op)) -
- GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op)));
- op = SUBREG_REG (op);
- }
- /* If it is smaller than SI, assure a SUBREG */
- op_size = GET_MODE_BITSIZE (GET_MODE (op));
- if (op_size < 32)
- {
- if (start)
- *start += 32 - op_size;
- op_size = 32;
- }
- /* If it is not a MODE_INT (and/or it is smaller than SI) add a SUBREG. */
- mode = int_mode_for_size (op_size, 0).require ();
- if (mode != GET_MODE (op))
- op = gen_rtx_SUBREG (mode, op, 0);
- return op;
-}
-
-void
-spu_expand_extv (rtx ops[], int unsignedp)
-{
- rtx dst = ops[0], src = ops[1];
- HOST_WIDE_INT width = INTVAL (ops[2]);
- HOST_WIDE_INT start = INTVAL (ops[3]);
- HOST_WIDE_INT align_mask;
- rtx s0, s1, mask, r0;
-
- gcc_assert (REG_P (dst) && GET_MODE (dst) == TImode);
-
- if (MEM_P (src))
- {
- /* First, determine if we need 1 TImode load or 2. We need only 1
- if the bits being extracted do not cross the alignment boundary
- as determined by the MEM and its address. */
-
- align_mask = -MEM_ALIGN (src);
- if ((start & align_mask) == ((start + width - 1) & align_mask))
- {
- /* Alignment is sufficient for 1 load. */
- s0 = gen_reg_rtx (TImode);
- r0 = spu_expand_load (s0, 0, src, start / 8);
- start &= 7;
- if (r0)
- emit_insn (gen_rotqby_ti (s0, s0, r0));
- }
- else
- {
- /* Need 2 loads. */
- s0 = gen_reg_rtx (TImode);
- s1 = gen_reg_rtx (TImode);
- r0 = spu_expand_load (s0, s1, src, start / 8);
- start &= 7;
-
- gcc_assert (start + width <= 128);
- if (r0)
- {
- rtx r1 = gen_reg_rtx (SImode);
- mask = gen_reg_rtx (TImode);
- emit_move_insn (mask, GEN_INT (-1));
- emit_insn (gen_rotqby_ti (s0, s0, r0));
- emit_insn (gen_rotqby_ti (s1, s1, r0));
- if (GET_CODE (r0) == CONST_INT)
- r1 = GEN_INT (INTVAL (r0) & 15);
- else
- emit_insn (gen_andsi3 (r1, r0, GEN_INT (15)));
- emit_insn (gen_shlqby_ti (mask, mask, r1));
- emit_insn (gen_selb (s0, s1, s0, mask));
- }
- }
-
- }
- else if (GET_CODE (src) == SUBREG)
- {
- rtx r = SUBREG_REG (src);
- gcc_assert (REG_P (r) && SCALAR_INT_MODE_P (GET_MODE (r)));
- s0 = gen_reg_rtx (TImode);
- if (GET_MODE_SIZE (GET_MODE (r)) < GET_MODE_SIZE (TImode))
- emit_insn (gen_rtx_SET (s0, gen_rtx_ZERO_EXTEND (TImode, r)));
- else
- emit_move_insn (s0, src);
- }
- else
- {
- gcc_assert (REG_P (src) && GET_MODE (src) == TImode);
- s0 = gen_reg_rtx (TImode);
- emit_move_insn (s0, src);
- }
-
- /* Now s0 is TImode and contains the bits to extract at start. */
-
- if (start)
- emit_insn (gen_rotlti3 (s0, s0, GEN_INT (start)));
-
- if (128 - width)
- s0 = expand_shift (RSHIFT_EXPR, TImode, s0, 128 - width, s0, unsignedp);
-
- emit_move_insn (dst, s0);
-}
-
-void
-spu_expand_insv (rtx ops[])
-{
- HOST_WIDE_INT width = INTVAL (ops[1]);
- HOST_WIDE_INT start = INTVAL (ops[2]);
- unsigned HOST_WIDE_INT maskbits;
- machine_mode dst_mode;
- rtx dst = ops[0], src = ops[3];
- int dst_size;
- rtx mask;
- rtx shift_reg;
- int shift;
-
-
- if (GET_CODE (ops[0]) == MEM)
- dst = gen_reg_rtx (TImode);
- else
- dst = adjust_operand (dst, &start);
- dst_mode = GET_MODE (dst);
- dst_size = GET_MODE_BITSIZE (GET_MODE (dst));
-
- if (CONSTANT_P (src))
- {
- machine_mode m =
- (width <= 32 ? SImode : width <= 64 ? DImode : TImode);
- src = force_reg (m, convert_to_mode (m, src, 0));
- }
- src = adjust_operand (src, 0);
-
- mask = gen_reg_rtx (dst_mode);
- shift_reg = gen_reg_rtx (dst_mode);
- shift = dst_size - start - width;
-
- /* It's not safe to use subreg here because the compiler assumes
- that the SUBREG_REG is right justified in the SUBREG. */
- convert_move (shift_reg, src, 1);
-
- if (shift > 0)
- {
- switch (dst_mode)
- {
- case E_SImode:
- emit_insn (gen_ashlsi3 (shift_reg, shift_reg, GEN_INT (shift)));
- break;
- case E_DImode:
- emit_insn (gen_ashldi3 (shift_reg, shift_reg, GEN_INT (shift)));
- break;
- case E_TImode:
- emit_insn (gen_ashlti3 (shift_reg, shift_reg, GEN_INT (shift)));
- break;
- default:
- abort ();
- }
- }
- else if (shift < 0)
- abort ();
-
- switch (dst_size)
- {
- case 32:
- maskbits = (~(unsigned HOST_WIDE_INT)0 << (32 - width - start));
- if (start)
- maskbits += ((unsigned HOST_WIDE_INT)1 << (32 - start));
- emit_move_insn (mask, GEN_INT (maskbits));
- break;
- case 64:
- maskbits = (~(unsigned HOST_WIDE_INT)0 << (64 - width - start));
- if (start)
- maskbits += ((unsigned HOST_WIDE_INT)1 << (64 - start));
- emit_move_insn (mask, GEN_INT (maskbits));
- break;
- case 128:
- {
- unsigned char arr[16];
- int i = start / 8;
- memset (arr, 0, sizeof (arr));
- arr[i] = 0xff >> (start & 7);
- for (i++; i <= (start + width - 1) / 8; i++)
- arr[i] = 0xff;
- arr[i - 1] &= 0xff << (7 - ((start + width - 1) & 7));
- emit_move_insn (mask, array_to_constant (TImode, arr));
- }
- break;
- default:
- abort ();
- }
- if (GET_CODE (ops[0]) == MEM)
- {
- rtx low = gen_reg_rtx (SImode);
- rtx rotl = gen_reg_rtx (SImode);
- rtx mask0 = gen_reg_rtx (TImode);
- rtx addr;
- rtx addr0;
- rtx addr1;
- rtx mem;
-
- addr = force_reg (Pmode, XEXP (ops[0], 0));
- addr0 = gen_rtx_AND (Pmode, addr, GEN_INT (-16));
- emit_insn (gen_andsi3 (low, addr, GEN_INT (15)));
- emit_insn (gen_negsi2 (rotl, low));
- emit_insn (gen_rotqby_ti (shift_reg, shift_reg, rotl));
- emit_insn (gen_rotqmby_ti (mask0, mask, rotl));
- mem = change_address (ops[0], TImode, addr0);
- set_mem_alias_set (mem, 0);
- emit_move_insn (dst, mem);
- emit_insn (gen_selb (dst, dst, shift_reg, mask0));
- if (start + width > MEM_ALIGN (ops[0]))
- {
- rtx shl = gen_reg_rtx (SImode);
- rtx mask1 = gen_reg_rtx (TImode);
- rtx dst1 = gen_reg_rtx (TImode);
- rtx mem1;
- addr1 = plus_constant (Pmode, addr, 16);
- addr1 = gen_rtx_AND (Pmode, addr1, GEN_INT (-16));
- emit_insn (gen_subsi3 (shl, GEN_INT (16), low));
- emit_insn (gen_shlqby_ti (mask1, mask, shl));
- mem1 = change_address (ops[0], TImode, addr1);
- set_mem_alias_set (mem1, 0);
- emit_move_insn (dst1, mem1);
- emit_insn (gen_selb (dst1, dst1, shift_reg, mask1));
- emit_move_insn (mem1, dst1);
- }
- emit_move_insn (mem, dst);
- }
- else
- emit_insn (gen_selb (dst, copy_rtx (dst), shift_reg, mask));
-}
-
-
-int
-spu_expand_block_move (rtx ops[])
-{
- HOST_WIDE_INT bytes, align, offset;
- rtx src, dst, sreg, dreg, target;
- int i;
- if (GET_CODE (ops[2]) != CONST_INT
- || GET_CODE (ops[3]) != CONST_INT
- || INTVAL (ops[2]) > (HOST_WIDE_INT) (MOVE_RATIO (optimize_insn_for_speed_p ()) * 8))
- return 0;
-
- bytes = INTVAL (ops[2]);
- align = INTVAL (ops[3]);
-
- if (bytes <= 0)
- return 1;
-
- dst = ops[0];
- src = ops[1];
-
- if (align == 16)
- {
- for (offset = 0; offset + 16 <= bytes; offset += 16)
- {
- dst = adjust_address (ops[0], V16QImode, offset);
- src = adjust_address (ops[1], V16QImode, offset);
- emit_move_insn (dst, src);
- }
- if (offset < bytes)
- {
- rtx mask;
- unsigned char arr[16] = { 0 };
- for (i = 0; i < bytes - offset; i++)
- arr[i] = 0xff;
- dst = adjust_address (ops[0], V16QImode, offset);
- src = adjust_address (ops[1], V16QImode, offset);
- mask = gen_reg_rtx (V16QImode);
- sreg = gen_reg_rtx (V16QImode);
- dreg = gen_reg_rtx (V16QImode);
- target = gen_reg_rtx (V16QImode);
- emit_move_insn (mask, array_to_constant (V16QImode, arr));
- emit_move_insn (dreg, dst);
- emit_move_insn (sreg, src);
- emit_insn (gen_selb (target, dreg, sreg, mask));
- emit_move_insn (dst, target);
- }
- return 1;
- }
- return 0;
-}
-
-enum spu_comp_code
-{ SPU_EQ, SPU_GT, SPU_GTU };
-
-int spu_comp_icode[12][3] = {
- {CODE_FOR_ceq_qi, CODE_FOR_cgt_qi, CODE_FOR_clgt_qi},
- {CODE_FOR_ceq_hi, CODE_FOR_cgt_hi, CODE_FOR_clgt_hi},
- {CODE_FOR_ceq_si, CODE_FOR_cgt_si, CODE_FOR_clgt_si},
- {CODE_FOR_ceq_di, CODE_FOR_cgt_di, CODE_FOR_clgt_di},
- {CODE_FOR_ceq_ti, CODE_FOR_cgt_ti, CODE_FOR_clgt_ti},
- {CODE_FOR_ceq_sf, CODE_FOR_cgt_sf, 0},
- {CODE_FOR_ceq_df, CODE_FOR_cgt_df, 0},
- {CODE_FOR_ceq_v16qi, CODE_FOR_cgt_v16qi, CODE_FOR_clgt_v16qi},
- {CODE_FOR_ceq_v8hi, CODE_FOR_cgt_v8hi, CODE_FOR_clgt_v8hi},
- {CODE_FOR_ceq_v4si, CODE_FOR_cgt_v4si, CODE_FOR_clgt_v4si},
- {CODE_FOR_ceq_v4sf, CODE_FOR_cgt_v4sf, 0},
- {CODE_FOR_ceq_v2df, CODE_FOR_cgt_v2df, 0},
-};
-
-/* Generate a compare for CODE. Return a brand-new rtx that represents
- the result of the compare. GCC can figure this out too if we don't
- provide all variations of compares, but GCC always wants to use
- WORD_MODE, we can generate better code in most cases if we do it
- ourselves. */
-void
-spu_emit_branch_or_set (int is_set, rtx cmp, rtx operands[])
-{
- int reverse_compare = 0;
- int reverse_test = 0;
- rtx compare_result, eq_result;
- rtx comp_rtx, eq_rtx;
- machine_mode comp_mode;
- machine_mode op_mode;
- enum spu_comp_code scode, eq_code;
- enum insn_code ior_code;
- enum rtx_code code = GET_CODE (cmp);
- rtx op0 = XEXP (cmp, 0);
- rtx op1 = XEXP (cmp, 1);
- int index;
- int eq_test = 0;
-
- /* When op1 is a CONST_INT change (X >= C) to (X > C-1),
- and so on, to keep the constant in operand 1. */
- if (GET_CODE (op1) == CONST_INT)
- {
- HOST_WIDE_INT val = INTVAL (op1) - 1;
- if (trunc_int_for_mode (val, GET_MODE (op0)) == val)
- switch (code)
- {
- case GE:
- op1 = GEN_INT (val);
- code = GT;
- break;
- case LT:
- op1 = GEN_INT (val);
- code = LE;
- break;
- case GEU:
- op1 = GEN_INT (val);
- code = GTU;
- break;
- case LTU:
- op1 = GEN_INT (val);
- code = LEU;
- break;
- default:
- break;
- }
- }
-
- /* However, if we generate an integer result, performing a reverse test
- would require an extra negation, so avoid that where possible. */
- if (GET_CODE (op1) == CONST_INT && is_set == 1)
- {
- HOST_WIDE_INT val = INTVAL (op1) + 1;
- if (trunc_int_for_mode (val, GET_MODE (op0)) == val)
- switch (code)
- {
- case LE:
- op1 = GEN_INT (val);
- code = LT;
- break;
- case LEU:
- op1 = GEN_INT (val);
- code = LTU;
- break;
- default:
- break;
- }
- }
-
- comp_mode = SImode;
- op_mode = GET_MODE (op0);
-
- switch (code)
- {
- case GE:
- scode = SPU_GT;
- if (HONOR_NANS (op_mode))
- {
- reverse_compare = 0;
- reverse_test = 0;
- eq_test = 1;
- eq_code = SPU_EQ;
- }
- else
- {
- reverse_compare = 1;
- reverse_test = 1;
- }
- break;
- case LE:
- scode = SPU_GT;
- if (HONOR_NANS (op_mode))
- {
- reverse_compare = 1;
- reverse_test = 0;
- eq_test = 1;
- eq_code = SPU_EQ;
- }
- else
- {
- reverse_compare = 0;
- reverse_test = 1;
- }
- break;
- case LT:
- reverse_compare = 1;
- reverse_test = 0;
- scode = SPU_GT;
- break;
- case GEU:
- reverse_compare = 1;
- reverse_test = 1;
- scode = SPU_GTU;
- break;
- case LEU:
- reverse_compare = 0;
- reverse_test = 1;
- scode = SPU_GTU;
- break;
- case LTU:
- reverse_compare = 1;
- reverse_test = 0;
- scode = SPU_GTU;
- break;
- case NE:
- reverse_compare = 0;
- reverse_test = 1;
- scode = SPU_EQ;
- break;
-
- case EQ:
- scode = SPU_EQ;
- break;
- case GT:
- scode = SPU_GT;
- break;
- case GTU:
- scode = SPU_GTU;
- break;
- default:
- scode = SPU_EQ;
- break;
- }
-
- switch (op_mode)
- {
- case E_QImode:
- index = 0;
- comp_mode = QImode;
- break;
- case E_HImode:
- index = 1;
- comp_mode = HImode;
- break;
- case E_SImode:
- index = 2;
- break;
- case E_DImode:
- index = 3;
- break;
- case E_TImode:
- index = 4;
- break;
- case E_SFmode:
- index = 5;
- break;
- case E_DFmode:
- index = 6;
- break;
- case E_V16QImode:
- index = 7;
- comp_mode = op_mode;
- break;
- case E_V8HImode:
- index = 8;
- comp_mode = op_mode;
- break;
- case E_V4SImode:
- index = 9;
- comp_mode = op_mode;
- break;
- case E_V4SFmode:
- index = 10;
- comp_mode = V4SImode;
- break;
- case E_V2DFmode:
- index = 11;
- comp_mode = V2DImode;
- break;
- case E_V2DImode:
- default:
- abort ();
- }
-
- if (GET_MODE (op1) == DFmode
- && (scode != SPU_GT && scode != SPU_EQ))
- abort ();
-
- if (is_set == 0 && op1 == const0_rtx
- && (GET_MODE (op0) == SImode
- || GET_MODE (op0) == HImode
- || GET_MODE (op0) == QImode) && scode == SPU_EQ)
- {
- /* Don't need to set a register with the result when we are
- comparing against zero and branching. */
- reverse_test = !reverse_test;
- compare_result = op0;
- }
- else
- {
- compare_result = gen_reg_rtx (comp_mode);
-
- if (reverse_compare)
- {
- rtx t = op1;
- op1 = op0;
- op0 = t;
- }
-
- if (spu_comp_icode[index][scode] == 0)
- abort ();
-
- if (!(*insn_data[spu_comp_icode[index][scode]].operand[1].predicate)
- (op0, op_mode))
- op0 = force_reg (op_mode, op0);
- if (!(*insn_data[spu_comp_icode[index][scode]].operand[2].predicate)
- (op1, op_mode))
- op1 = force_reg (op_mode, op1);
- comp_rtx = GEN_FCN (spu_comp_icode[index][scode]) (compare_result,
- op0, op1);
- if (comp_rtx == 0)
- abort ();
- emit_insn (comp_rtx);
-
- if (eq_test)
- {
- eq_result = gen_reg_rtx (comp_mode);
- eq_rtx = GEN_FCN (spu_comp_icode[index][eq_code]) (eq_result,
- op0, op1);
- if (eq_rtx == 0)
- abort ();
- emit_insn (eq_rtx);
- ior_code = optab_handler (ior_optab, comp_mode);
- gcc_assert (ior_code != CODE_FOR_nothing);
- emit_insn (GEN_FCN (ior_code)
- (compare_result, compare_result, eq_result));
- }
- }
-
- if (is_set == 0)
- {
- rtx bcomp;
- rtx loc_ref;
-
- /* We don't have branch on QI compare insns, so we convert the
- QI compare result to a HI result. */
- if (comp_mode == QImode)
- {
- rtx old_res = compare_result;
- compare_result = gen_reg_rtx (HImode);
- comp_mode = HImode;
- emit_insn (gen_extendqihi2 (compare_result, old_res));
- }
-
- if (reverse_test)
- bcomp = gen_rtx_EQ (comp_mode, compare_result, const0_rtx);
- else
- bcomp = gen_rtx_NE (comp_mode, compare_result, const0_rtx);
-
- loc_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
- emit_jump_insn (gen_rtx_SET (pc_rtx,
- gen_rtx_IF_THEN_ELSE (VOIDmode, bcomp,
- loc_ref, pc_rtx)));
- }
- else if (is_set == 2)
- {
- rtx target = operands[0];
- int compare_size = GET_MODE_BITSIZE (comp_mode);
- int target_size = GET_MODE_BITSIZE (GET_MODE (target));
- machine_mode mode = int_mode_for_size (target_size, 0).require ();
- rtx select_mask;
- rtx op_t = operands[2];
- rtx op_f = operands[3];
-
- /* The result of the comparison can be SI, HI or QI mode. Create a
- mask based on that result. */
- if (target_size > compare_size)
- {
- select_mask = gen_reg_rtx (mode);
- emit_insn (gen_extend_compare (select_mask, compare_result));
- }
- else if (target_size < compare_size)
- select_mask =
- gen_rtx_SUBREG (mode, compare_result,
- (compare_size - target_size) / BITS_PER_UNIT);
- else if (comp_mode != mode)
- select_mask = gen_rtx_SUBREG (mode, compare_result, 0);
- else
- select_mask = compare_result;
-
- if (GET_MODE (target) != GET_MODE (op_t)
- || GET_MODE (target) != GET_MODE (op_f))
- abort ();
-
- if (reverse_test)
- emit_insn (gen_selb (target, op_t, op_f, select_mask));
- else
- emit_insn (gen_selb (target, op_f, op_t, select_mask));
- }
- else
- {
- rtx target = operands[0];
- if (reverse_test)
- emit_insn (gen_rtx_SET (compare_result,
- gen_rtx_NOT (comp_mode, compare_result)));
- if (GET_MODE (target) == SImode && GET_MODE (compare_result) == HImode)
- emit_insn (gen_extendhisi2 (target, compare_result));
- else if (GET_MODE (target) == SImode
- && GET_MODE (compare_result) == QImode)
- emit_insn (gen_extend_compare (target, compare_result));
- else
- emit_move_insn (target, compare_result);
- }
-}
-
-HOST_WIDE_INT
-const_double_to_hwint (rtx x)
-{
- HOST_WIDE_INT val;
- if (GET_MODE (x) == SFmode)
- REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), val);
- else if (GET_MODE (x) == DFmode)
- {
- long l[2];
- REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), l);
- val = l[0];
- val = (val << 32) | (l[1] & 0xffffffff);
- }
- else
- abort ();
- return val;
-}
-
-rtx
-hwint_to_const_double (machine_mode mode, HOST_WIDE_INT v)
-{
- long tv[2];
- REAL_VALUE_TYPE rv;
- gcc_assert (mode == SFmode || mode == DFmode);
-
- if (mode == SFmode)
- tv[0] = (v << 32) >> 32;
- else if (mode == DFmode)
- {
- tv[1] = (v << 32) >> 32;
- tv[0] = v >> 32;
- }
- real_from_target (&rv, tv, mode);
- return const_double_from_real_value (rv, mode);
-}
-
-void
-print_operand_address (FILE * file, register rtx addr)
-{
- rtx reg;
- rtx offset;
-
- if (GET_CODE (addr) == AND
- && GET_CODE (XEXP (addr, 1)) == CONST_INT
- && INTVAL (XEXP (addr, 1)) == -16)
- addr = XEXP (addr, 0);
-
- switch (GET_CODE (addr))
- {
- case REG:
- fprintf (file, "0(%s)", reg_names[REGNO (addr)]);
- break;
-
- case PLUS:
- reg = XEXP (addr, 0);
- offset = XEXP (addr, 1);
- if (GET_CODE (offset) == REG)
- {
- fprintf (file, "%s,%s", reg_names[REGNO (reg)],
- reg_names[REGNO (offset)]);
- }
- else if (GET_CODE (offset) == CONST_INT)
- {
- fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
- INTVAL (offset), reg_names[REGNO (reg)]);
- }
- else
- abort ();
- break;
-
- case CONST:
- case LABEL_REF:
- case SYMBOL_REF:
- case CONST_INT:
- output_addr_const (file, addr);
- break;
-
- default:
- debug_rtx (addr);
- abort ();
- }
-}
-
-void
-print_operand (FILE * file, rtx x, int code)
-{
- machine_mode mode = GET_MODE (x);
- HOST_WIDE_INT val;
- unsigned char arr[16];
- int xcode = GET_CODE (x);
- int i, info;
- if (GET_MODE (x) == VOIDmode)
- switch (code)
- {
- case 'L': /* 128 bits, signed */
- case 'm': /* 128 bits, signed */
- case 'T': /* 128 bits, signed */
- case 't': /* 128 bits, signed */
- mode = TImode;
- break;
- case 'K': /* 64 bits, signed */
- case 'k': /* 64 bits, signed */
- case 'D': /* 64 bits, signed */
- case 'd': /* 64 bits, signed */
- mode = DImode;
- break;
- case 'J': /* 32 bits, signed */
- case 'j': /* 32 bits, signed */
- case 's': /* 32 bits, signed */
- case 'S': /* 32 bits, signed */
- mode = SImode;
- break;
- }
- switch (code)
- {
-
- case 'j': /* 32 bits, signed */
- case 'k': /* 64 bits, signed */
- case 'm': /* 128 bits, signed */
- if (xcode == CONST_INT
- || xcode == CONST_DOUBLE || xcode == CONST_VECTOR)
- {
- gcc_assert (logical_immediate_p (x, mode));
- constant_to_array (mode, x, arr);
- val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
- val = trunc_int_for_mode (val, SImode);
- switch (which_logical_immediate (val))
- {
- case SPU_ORI:
- break;
- case SPU_ORHI:
- fprintf (file, "h");
- break;
- case SPU_ORBI:
- fprintf (file, "b");
- break;
- default:
- gcc_unreachable();
- }
- }
- else
- gcc_unreachable();
- return;
-
- case 'J': /* 32 bits, signed */
- case 'K': /* 64 bits, signed */
- case 'L': /* 128 bits, signed */
- if (xcode == CONST_INT
- || xcode == CONST_DOUBLE || xcode == CONST_VECTOR)
- {
- gcc_assert (logical_immediate_p (x, mode)
- || iohl_immediate_p (x, mode));
- constant_to_array (mode, x, arr);
- val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
- val = trunc_int_for_mode (val, SImode);
- switch (which_logical_immediate (val))
- {
- case SPU_ORI:
- case SPU_IOHL:
- break;
- case SPU_ORHI:
- val = trunc_int_for_mode (val, HImode);
- break;
- case SPU_ORBI:
- val = trunc_int_for_mode (val, QImode);
- break;
- default:
- gcc_unreachable();
- }
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, val);
- }
- else
- gcc_unreachable();
- return;
-
- case 't': /* 128 bits, signed */
- case 'd': /* 64 bits, signed */
- case 's': /* 32 bits, signed */
- if (CONSTANT_P (x))
- {
- enum immediate_class c = classify_immediate (x, mode);
- switch (c)
- {
- case IC_IL1:
- constant_to_array (mode, x, arr);
- val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
- val = trunc_int_for_mode (val, SImode);
- switch (which_immediate_load (val))
- {
- case SPU_IL:
- break;
- case SPU_ILA:
- fprintf (file, "a");
- break;
- case SPU_ILH:
- fprintf (file, "h");
- break;
- case SPU_ILHU:
- fprintf (file, "hu");
- break;
- default:
- gcc_unreachable ();
- }
- break;
- case IC_CPAT:
- constant_to_array (mode, x, arr);
- cpat_info (arr, GET_MODE_SIZE (mode), &info, 0);
- if (info == 1)
- fprintf (file, "b");
- else if (info == 2)
- fprintf (file, "h");
- else if (info == 4)
- fprintf (file, "w");
- else if (info == 8)
- fprintf (file, "d");
- break;
- case IC_IL1s:
- if (xcode == CONST_VECTOR)
- {
- x = CONST_VECTOR_ELT (x, 0);
- xcode = GET_CODE (x);
- }
- if (xcode == SYMBOL_REF || xcode == LABEL_REF || xcode == CONST)
- fprintf (file, "a");
- else if (xcode == HIGH)
- fprintf (file, "hu");
- break;
- case IC_FSMBI:
- case IC_FSMBI2:
- case IC_IL2:
- case IC_IL2s:
- case IC_POOL:
- abort ();
- }
- }
- else
- gcc_unreachable ();
- return;
-
- case 'T': /* 128 bits, signed */
- case 'D': /* 64 bits, signed */
- case 'S': /* 32 bits, signed */
- if (CONSTANT_P (x))
- {
- enum immediate_class c = classify_immediate (x, mode);
- switch (c)
- {
- case IC_IL1:
- constant_to_array (mode, x, arr);
- val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
- val = trunc_int_for_mode (val, SImode);
- switch (which_immediate_load (val))
- {
- case SPU_IL:
- case SPU_ILA:
- break;
- case SPU_ILH:
- case SPU_ILHU:
- val = trunc_int_for_mode (((arr[0] << 8) | arr[1]), HImode);
- break;
- default:
- gcc_unreachable ();
- }
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, val);
- break;
- case IC_FSMBI:
- constant_to_array (mode, x, arr);
- val = 0;
- for (i = 0; i < 16; i++)
- {
- val <<= 1;
- val |= arr[i] & 1;
- }
- print_operand (file, GEN_INT (val), 0);
- break;
- case IC_CPAT:
- constant_to_array (mode, x, arr);
- cpat_info (arr, GET_MODE_SIZE (mode), 0, &info);
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)info);
- break;
- case IC_IL1s:
- if (xcode == HIGH)
- x = XEXP (x, 0);
- if (GET_CODE (x) == CONST_VECTOR)
- x = CONST_VECTOR_ELT (x, 0);
- output_addr_const (file, x);
- if (xcode == HIGH)
- fprintf (file, "@h");
- break;
- case IC_IL2:
- case IC_IL2s:
- case IC_FSMBI2:
- case IC_POOL:
- abort ();
- }
- }
- else
- gcc_unreachable ();
- return;
-
- case 'C':
- if (xcode == CONST_INT)
- {
- /* Only 4 least significant bits are relevant for generate
- control word instructions. */
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 15);
- return;
- }
- break;
-
- case 'M': /* print code for c*d */
- if (GET_CODE (x) == CONST_INT)
- switch (INTVAL (x))
- {
- case 1:
- fprintf (file, "b");
- break;
- case 2:
- fprintf (file, "h");
- break;
- case 4:
- fprintf (file, "w");
- break;
- case 8:
- fprintf (file, "d");
- break;
- default:
- gcc_unreachable();
- }
- else
- gcc_unreachable();
- return;
-
- case 'N': /* Negate the operand */
- if (xcode == CONST_INT)
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, -INTVAL (x));
- else if (xcode == CONST_VECTOR)
- fprintf (file, HOST_WIDE_INT_PRINT_DEC,
- -INTVAL (CONST_VECTOR_ELT (x, 0)));
- return;
-
- case 'I': /* enable/disable interrupts */
- if (xcode == CONST_INT)
- fprintf (file, "%s", INTVAL (x) == 0 ? "d" : "e");
- return;
-
- case 'b': /* branch modifiers */
- if (xcode == REG)
- fprintf (file, "%s", GET_MODE (x) == HImode ? "h" : "");
- else if (COMPARISON_P (x))
- fprintf (file, "%s", xcode == NE ? "n" : "");
- return;
-
- case 'i': /* indirect call */
- if (xcode == MEM)
- {
- if (GET_CODE (XEXP (x, 0)) == REG)
- /* Used in indirect function calls. */
- fprintf (file, "%s", reg_names[REGNO (XEXP (x, 0))]);
- else
- output_address (GET_MODE (x), XEXP (x, 0));
- }
- return;
-
- case 'p': /* load/store */
- if (xcode == MEM)
- {
- x = XEXP (x, 0);
- xcode = GET_CODE (x);
- }
- if (xcode == AND)
- {
- x = XEXP (x, 0);
- xcode = GET_CODE (x);
- }
- if (xcode == REG)
- fprintf (file, "d");
- else if (xcode == CONST_INT)
- fprintf (file, "a");
- else if (xcode == CONST || xcode == SYMBOL_REF || xcode == LABEL_REF)
- fprintf (file, "r");
- else if (xcode == PLUS || xcode == LO_SUM)
- {
- if (GET_CODE (XEXP (x, 1)) == REG)
- fprintf (file, "x");
- else
- fprintf (file, "d");
- }
- return;
-
- case 'e':
- val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
- val &= 0x7;
- output_addr_const (file, GEN_INT (val));
- return;
-
- case 'f':
- val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
- val &= 0x1f;
- output_addr_const (file, GEN_INT (val));
- return;
-
- case 'g':
- val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
- val &= 0x3f;
- output_addr_const (file, GEN_INT (val));
- return;
-
- case 'h':
- val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
- val = (val >> 3) & 0x1f;
- output_addr_const (file, GEN_INT (val));
- return;
-
- case 'E':
- val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
- val = -val;
- val &= 0x7;
- output_addr_const (file, GEN_INT (val));
- return;
-
- case 'F':
- val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
- val = -val;
- val &= 0x1f;
- output_addr_const (file, GEN_INT (val));
- return;
-
- case 'G':
- val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
- val = -val;
- val &= 0x3f;
- output_addr_const (file, GEN_INT (val));
- return;
-
- case 'H':
- val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
- val = -(val & -8ll);
- val = (val >> 3) & 0x1f;
- output_addr_const (file, GEN_INT (val));
- return;
-
- case 'v':
- case 'w':
- constant_to_array (mode, x, arr);
- val = (((arr[0] << 1) + (arr[1] >> 7)) & 0xff) - 127;
- output_addr_const (file, GEN_INT (code == 'w' ? -val : val));
- return;
-
- case 0:
- if (xcode == REG)
- fprintf (file, "%s", reg_names[REGNO (x)]);
- else if (xcode == MEM)
- output_address (GET_MODE (x), XEXP (x, 0));
- else if (xcode == CONST_VECTOR)
- print_operand (file, CONST_VECTOR_ELT (x, 0), 0);
- else
- output_addr_const (file, x);
- return;
-
- /* unused letters
- o qr u yz
- AB OPQR UVWXYZ */
- default:
- output_operand_lossage ("invalid %%xn code");
- }
- gcc_unreachable ();
-}
-
-/* For PIC mode we've reserved PIC_OFFSET_TABLE_REGNUM, which is a
- caller saved register. For leaf functions it is more efficient to
- use a volatile register because we won't need to save and restore the
- pic register. This routine is only valid after register allocation
- is completed, so we can pick an unused register. */
-static rtx
-get_pic_reg (void)
-{
- if (!reload_completed && !reload_in_progress)
- abort ();
-
- /* If we've already made the decision, we need to keep with it. Once we've
- decided to use LAST_ARG_REGNUM, future calls to df_regs_ever_live_p may
- return true since the register is now live; this should not cause us to
- "switch back" to using pic_offset_table_rtx. */
- if (!cfun->machine->pic_reg)
- {
- if (crtl->is_leaf && !df_regs_ever_live_p (LAST_ARG_REGNUM))
- cfun->machine->pic_reg = gen_rtx_REG (SImode, LAST_ARG_REGNUM);
- else
- cfun->machine->pic_reg = pic_offset_table_rtx;
- }
-
- return cfun->machine->pic_reg;
-}
-
-/* Split constant addresses to handle cases that are too large.
- Add in the pic register when in PIC mode.
- Split immediates that require more than 1 instruction. */
-int
-spu_split_immediate (rtx * ops)
-{
- machine_mode mode = GET_MODE (ops[0]);
- enum immediate_class c = classify_immediate (ops[1], mode);
-
- switch (c)
- {
- case IC_IL2:
- {
- unsigned char arrhi[16];
- unsigned char arrlo[16];
- rtx to, temp, hi, lo;
- int i;
- /* We need to do reals as ints because the constant used in the
- IOR might not be a legitimate real constant. */
- scalar_int_mode imode = int_mode_for_mode (mode).require ();
- constant_to_array (mode, ops[1], arrhi);
- if (imode != mode)
- to = simplify_gen_subreg (imode, ops[0], mode, 0);
- else
- to = ops[0];
- temp = !can_create_pseudo_p () ? to : gen_reg_rtx (imode);
- for (i = 0; i < 16; i += 4)
- {
- arrlo[i + 2] = arrhi[i + 2];
- arrlo[i + 3] = arrhi[i + 3];
- arrlo[i + 0] = arrlo[i + 1] = 0;
- arrhi[i + 2] = arrhi[i + 3] = 0;
- }
- hi = array_to_constant (imode, arrhi);
- lo = array_to_constant (imode, arrlo);
- emit_move_insn (temp, hi);
- emit_insn (gen_rtx_SET (to, gen_rtx_IOR (imode, temp, lo)));
- return 1;
- }
- case IC_FSMBI2:
- {
- unsigned char arr_fsmbi[16];
- unsigned char arr_andbi[16];
- rtx to, reg_fsmbi, reg_and;
- int i;
- /* We need to do reals as ints because the constant used in the
- * AND might not be a legitimate real constant. */
- scalar_int_mode imode = int_mode_for_mode (mode).require ();
- constant_to_array (mode, ops[1], arr_fsmbi);
- if (imode != mode)
- to = simplify_gen_subreg(imode, ops[0], GET_MODE (ops[0]), 0);
- else
- to = ops[0];
- for (i = 0; i < 16; i++)
- if (arr_fsmbi[i] != 0)
- {
- arr_andbi[0] = arr_fsmbi[i];
- arr_fsmbi[i] = 0xff;
- }
- for (i = 1; i < 16; i++)
- arr_andbi[i] = arr_andbi[0];
- reg_fsmbi = array_to_constant (imode, arr_fsmbi);
- reg_and = array_to_constant (imode, arr_andbi);
- emit_move_insn (to, reg_fsmbi);
- emit_insn (gen_rtx_SET (to, gen_rtx_AND (imode, to, reg_and)));
- return 1;
- }
- case IC_POOL:
- if (reload_in_progress || reload_completed)
- {
- rtx mem = force_const_mem (mode, ops[1]);
- if (TARGET_LARGE_MEM)
- {
- rtx addr = gen_rtx_REG (Pmode, REGNO (ops[0]));
- emit_move_insn (addr, XEXP (mem, 0));
- mem = replace_equiv_address (mem, addr);
- }
- emit_move_insn (ops[0], mem);
- return 1;
- }
- break;
- case IC_IL1s:
- case IC_IL2s:
- if (reload_completed && GET_CODE (ops[1]) != HIGH)
- {
- if (c == IC_IL2s)
- {
- emit_move_insn (ops[0], gen_rtx_HIGH (mode, ops[1]));
- emit_move_insn (ops[0], gen_rtx_LO_SUM (mode, ops[0], ops[1]));
- }
- else if (flag_pic)
- emit_insn (gen_pic (ops[0], ops[1]));
- if (flag_pic)
- {
- rtx pic_reg = get_pic_reg ();
- emit_insn (gen_addsi3 (ops[0], ops[0], pic_reg));
- }
- return flag_pic || c == IC_IL2s;
- }
- break;
- case IC_IL1:
- case IC_FSMBI:
- case IC_CPAT:
- break;
- }
- return 0;
-}
-
-/* SAVING is TRUE when we are generating the actual load and store
- instructions for REGNO. When determining the size of the stack
- needed for saving register we must allocate enough space for the
- worst case, because we don't always have the information early enough
- to not allocate it. But we can at least eliminate the actual loads
- and stores during the prologue/epilogue. */
-static int
-need_to_save_reg (int regno, int saving)
-{
- if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
- return 1;
- if (flag_pic
- && regno == PIC_OFFSET_TABLE_REGNUM
- && (!saving || cfun->machine->pic_reg == pic_offset_table_rtx))
- return 1;
- return 0;
-}
-
-/* This function is only correct starting with local register
- allocation */
-int
-spu_saved_regs_size (void)
-{
- int reg_save_size = 0;
- int regno;
-
- for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; --regno)
- if (need_to_save_reg (regno, 0))
- reg_save_size += 0x10;
- return reg_save_size;
-}
-
-static rtx_insn *
-frame_emit_store (int regno, rtx addr, HOST_WIDE_INT offset)
-{
- rtx reg = gen_rtx_REG (V4SImode, regno);
- rtx mem =
- gen_frame_mem (V4SImode, gen_rtx_PLUS (Pmode, addr, GEN_INT (offset)));
- return emit_insn (gen_movv4si (mem, reg));
-}
-
-static rtx_insn *
-frame_emit_load (int regno, rtx addr, HOST_WIDE_INT offset)
-{
- rtx reg = gen_rtx_REG (V4SImode, regno);
- rtx mem =
- gen_frame_mem (V4SImode, gen_rtx_PLUS (Pmode, addr, GEN_INT (offset)));
- return emit_insn (gen_movv4si (reg, mem));
-}
-
-/* This happens after reload, so we need to expand it. */
-static rtx_insn *
-frame_emit_add_imm (rtx dst, rtx src, HOST_WIDE_INT imm, rtx scratch)
-{
- rtx_insn *insn;
- if (satisfies_constraint_K (GEN_INT (imm)))
- {
- insn = emit_insn (gen_addsi3 (dst, src, GEN_INT (imm)));
- }
- else
- {
- emit_insn (gen_movsi (scratch, gen_int_mode (imm, SImode)));
- insn = emit_insn (gen_addsi3 (dst, src, scratch));
- if (REGNO (src) == REGNO (scratch))
- abort ();
- }
- return insn;
-}
-
-/* Return nonzero if this function is known to have a null epilogue. */
-
-int
-direct_return (void)
-{
- if (reload_completed)
- {
- if (cfun->static_chain_decl == 0
- && (spu_saved_regs_size ()
- + get_frame_size ()
- + crtl->outgoing_args_size
- + crtl->args.pretend_args_size == 0)
- && crtl->is_leaf)
- return 1;
- }
- return 0;
-}
-
-/*
- The stack frame looks like this:
- +-------------+
- | incoming |
- | args |
- AP -> +-------------+
- | $lr save |
- +-------------+
- prev SP | back chain |
- +-------------+
- | var args |
- | reg save | crtl->args.pretend_args_size bytes
- +-------------+
- | ... |
- | saved regs | spu_saved_regs_size() bytes
- FP -> +-------------+
- | ... |
- | vars | get_frame_size() bytes
- HFP -> +-------------+
- | ... |
- | outgoing |
- | args | crtl->outgoing_args_size bytes
- +-------------+
- | $lr of next |
- | frame |
- +-------------+
- | back chain |
- SP -> +-------------+
-
-*/
-void
-spu_expand_prologue (void)
-{
- HOST_WIDE_INT size = get_frame_size (), offset, regno;
- HOST_WIDE_INT total_size;
- HOST_WIDE_INT saved_regs_size;
- rtx sp_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
- rtx scratch_reg_0, scratch_reg_1;
- rtx_insn *insn;
- rtx real;
-
- if (flag_pic && optimize == 0 && !cfun->machine->pic_reg)
- cfun->machine->pic_reg = pic_offset_table_rtx;
-
- if (spu_naked_function_p (current_function_decl))
- return;
-
- scratch_reg_0 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 1);
- scratch_reg_1 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 2);
-
- saved_regs_size = spu_saved_regs_size ();
- total_size = size + saved_regs_size
- + crtl->outgoing_args_size
- + crtl->args.pretend_args_size;
-
- if (!crtl->is_leaf
- || cfun->calls_alloca || total_size > 0)
- total_size += STACK_POINTER_OFFSET;
-
- /* Save this first because code after this might use the link
- register as a scratch register. */
- if (!crtl->is_leaf)
- {
- insn = frame_emit_store (LINK_REGISTER_REGNUM, sp_reg, 16);
- RTX_FRAME_RELATED_P (insn) = 1;
- }
-
- if (total_size > 0)
- {
- offset = -crtl->args.pretend_args_size;
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
- if (need_to_save_reg (regno, 1))
- {
- offset -= 16;
- insn = frame_emit_store (regno, sp_reg, offset);
- RTX_FRAME_RELATED_P (insn) = 1;
- }
- }
-
- if (flag_pic && cfun->machine->pic_reg)
- {
- rtx pic_reg = cfun->machine->pic_reg;
- insn = emit_insn (gen_load_pic_offset (pic_reg, scratch_reg_0));
- insn = emit_insn (gen_subsi3 (pic_reg, pic_reg, scratch_reg_0));
- }
-
- if (total_size > 0)
- {
- if (flag_stack_check || flag_stack_clash_protection)
- {
- /* We compare against total_size-1 because
- ($sp >= total_size) <=> ($sp > total_size-1) */
- rtx scratch_v4si = gen_rtx_REG (V4SImode, REGNO (scratch_reg_0));
- rtx sp_v4si = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);
- rtx size_v4si = spu_const (V4SImode, total_size - 1);
- if (!satisfies_constraint_K (GEN_INT (total_size - 1)))
- {
- emit_move_insn (scratch_v4si, size_v4si);
- size_v4si = scratch_v4si;
- }
- emit_insn (gen_cgt_v4si (scratch_v4si, sp_v4si, size_v4si));
- emit_insn (gen_vec_extractv4sisi
- (scratch_reg_0, scratch_v4si, GEN_INT (1)));
- emit_insn (gen_spu_heq (scratch_reg_0, GEN_INT (0)));
- }
-
- /* Adjust the stack pointer, and make sure scratch_reg_0 contains
- the value of the previous $sp because we save it as the back
- chain. */
- if (total_size <= 2000)
- {
- /* In this case we save the back chain first. */
- insn = frame_emit_store (STACK_POINTER_REGNUM, sp_reg, -total_size);
- insn =
- frame_emit_add_imm (sp_reg, sp_reg, -total_size, scratch_reg_0);
- }
- else
- {
- insn = emit_move_insn (scratch_reg_0, sp_reg);
- insn =
- frame_emit_add_imm (sp_reg, sp_reg, -total_size, scratch_reg_1);
- }
- RTX_FRAME_RELATED_P (insn) = 1;
- real = gen_addsi3 (sp_reg, sp_reg, GEN_INT (-total_size));
- add_reg_note (insn, REG_FRAME_RELATED_EXPR, real);
-
- if (total_size > 2000)
- {
- /* Save the back chain ptr */
- insn = frame_emit_store (REGNO (scratch_reg_0), sp_reg, 0);
- }
-
- if (frame_pointer_needed)
- {
- rtx fp_reg = gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
- HOST_WIDE_INT fp_offset = STACK_POINTER_OFFSET
- + crtl->outgoing_args_size;
- /* Set the new frame_pointer */
- insn = frame_emit_add_imm (fp_reg, sp_reg, fp_offset, scratch_reg_0);
- RTX_FRAME_RELATED_P (insn) = 1;
- real = gen_addsi3 (fp_reg, sp_reg, GEN_INT (fp_offset));
- add_reg_note (insn, REG_FRAME_RELATED_EXPR, real);
- REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
- }
- }
-
- if (flag_stack_usage_info)
- current_function_static_stack_size = total_size;
-}
-
-void
-spu_expand_epilogue (bool sibcall_p)
-{
- int size = get_frame_size (), offset, regno;
- HOST_WIDE_INT saved_regs_size, total_size;
- rtx sp_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
- rtx scratch_reg_0;
-
- if (spu_naked_function_p (current_function_decl))
- return;
-
- scratch_reg_0 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 1);
-
- saved_regs_size = spu_saved_regs_size ();
- total_size = size + saved_regs_size
- + crtl->outgoing_args_size
- + crtl->args.pretend_args_size;
-
- if (!crtl->is_leaf
- || cfun->calls_alloca || total_size > 0)
- total_size += STACK_POINTER_OFFSET;
-
- if (total_size > 0)
- {
- if (cfun->calls_alloca)
- frame_emit_load (STACK_POINTER_REGNUM, sp_reg, 0);
- else
- frame_emit_add_imm (sp_reg, sp_reg, total_size, scratch_reg_0);
-
-
- if (saved_regs_size > 0)
- {
- offset = -crtl->args.pretend_args_size;
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
- if (need_to_save_reg (regno, 1))
- {
- offset -= 0x10;
- frame_emit_load (regno, sp_reg, offset);
- }
- }
- }
-
- if (!crtl->is_leaf)
- frame_emit_load (LINK_REGISTER_REGNUM, sp_reg, 16);
-
- if (!sibcall_p)
- {
- emit_use (gen_rtx_REG (SImode, LINK_REGISTER_REGNUM));
- emit_jump_insn (gen__return ());
- }
-}
-
-rtx
-spu_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
-{
- if (count != 0)
- return 0;
- /* This is inefficient because it ends up copying to a save-register
- which then gets saved even though $lr has already been saved. But
- it does generate better code for leaf functions and we don't need
- to use RETURN_ADDRESS_POINTER_REGNUM to get it working. It's only
- used for __builtin_return_address anyway, so maybe we don't care if
- it's inefficient. */
- return get_hard_reg_initial_val (Pmode, LINK_REGISTER_REGNUM);
-}
-
-
-/* Given VAL, generate a constant appropriate for MODE.
- If MODE is a vector mode, every element will be VAL.
- For TImode, VAL will be zero extended to 128 bits. */
-rtx
-spu_const (machine_mode mode, HOST_WIDE_INT val)
-{
- rtx inner;
-
- gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
- || GET_MODE_CLASS (mode) == MODE_FLOAT
- || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
- || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
-
- if (GET_MODE_CLASS (mode) == MODE_INT)
- return immed_double_const (val, 0, mode);
-
- /* val is the bit representation of the float */
- if (GET_MODE_CLASS (mode) == MODE_FLOAT)
- return hwint_to_const_double (mode, val);
-
- if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
- inner = immed_double_const (val, 0, GET_MODE_INNER (mode));
- else
- inner = hwint_to_const_double (GET_MODE_INNER (mode), val);
-
- return gen_const_vec_duplicate (mode, inner);
-}
-
-/* Create a MODE vector constant from 4 ints. */
-rtx
-spu_const_from_ints(machine_mode mode, int a, int b, int c, int d)
-{
- unsigned char arr[16];
- arr[0] = (a >> 24) & 0xff;
- arr[1] = (a >> 16) & 0xff;
- arr[2] = (a >> 8) & 0xff;
- arr[3] = (a >> 0) & 0xff;
- arr[4] = (b >> 24) & 0xff;
- arr[5] = (b >> 16) & 0xff;
- arr[6] = (b >> 8) & 0xff;
- arr[7] = (b >> 0) & 0xff;
- arr[8] = (c >> 24) & 0xff;
- arr[9] = (c >> 16) & 0xff;
- arr[10] = (c >> 8) & 0xff;
- arr[11] = (c >> 0) & 0xff;
- arr[12] = (d >> 24) & 0xff;
- arr[13] = (d >> 16) & 0xff;
- arr[14] = (d >> 8) & 0xff;
- arr[15] = (d >> 0) & 0xff;
- return array_to_constant(mode, arr);
-}
-
-/* branch hint stuff */
-
-/* An array of these is used to propagate hints to predecessor blocks. */
-struct spu_bb_info
-{
- rtx_insn *prop_jump; /* propagated from another block */
- int bb_index; /* the original block. */
-};
-static struct spu_bb_info *spu_bb_info;
-
-#define STOP_HINT_P(INSN) \
- (CALL_P(INSN) \
- || INSN_CODE(INSN) == CODE_FOR_divmodsi4 \
- || INSN_CODE(INSN) == CODE_FOR_udivmodsi4)
-
-/* 1 when RTX is a hinted branch or its target. We keep track of
- what has been hinted so the safe-hint code can test it easily. */
-#define HINTED_P(RTX) \
- (RTL_FLAG_CHECK3("HINTED_P", (RTX), CODE_LABEL, JUMP_INSN, CALL_INSN)->unchanging)
-
-/* 1 when RTX is an insn that must be scheduled on an even boundary. */
-#define SCHED_ON_EVEN_P(RTX) \
- (RTL_FLAG_CHECK2("SCHED_ON_EVEN_P", (RTX), JUMP_INSN, CALL_INSN)->in_struct)
-
-/* Emit a nop for INSN such that the two will dual issue. This assumes
- INSN is 8-byte aligned. When INSN is inline asm we emit an lnop.
- We check for TImode to handle a MULTI1 insn which has dual issued its
- first instruction. get_pipe returns -1 for MULTI0 or inline asm. */
-static void
-emit_nop_for_insn (rtx_insn *insn)
-{
- int p;
- rtx_insn *new_insn;
-
- /* We need to handle JUMP_TABLE_DATA separately. */
- if (JUMP_TABLE_DATA_P (insn))
- {
- new_insn = emit_insn_after (gen_lnop(), insn);
- recog_memoized (new_insn);
- INSN_LOCATION (new_insn) = UNKNOWN_LOCATION;
- return;
- }
-
- p = get_pipe (insn);
- if ((CALL_P (insn) || JUMP_P (insn)) && SCHED_ON_EVEN_P (insn))
- new_insn = emit_insn_after (gen_lnop (), insn);
- else if (p == 1 && GET_MODE (insn) == TImode)
- {
- new_insn = emit_insn_before (gen_nopn (GEN_INT (127)), insn);
- PUT_MODE (new_insn, TImode);
- PUT_MODE (insn, VOIDmode);
- }
- else
- new_insn = emit_insn_after (gen_lnop (), insn);
- recog_memoized (new_insn);
- INSN_LOCATION (new_insn) = INSN_LOCATION (insn);
-}
-
-/* Insert nops in basic blocks to meet dual issue alignment
- requirements. Also make sure hbrp and hint instructions are at least
- one cycle apart, possibly inserting a nop. */
-static void
-pad_bb(void)
-{
- rtx_insn *insn, *next_insn, *prev_insn, *hbr_insn = 0;
- int length;
- int addr;
-
- /* This sets up INSN_ADDRESSES. */
- shorten_branches (get_insns ());
-
- /* Keep track of length added by nops. */
- length = 0;
-
- prev_insn = 0;
- insn = get_insns ();
- if (!active_insn_p (insn))
- insn = next_active_insn (insn);
- for (; insn; insn = next_insn)
- {
- next_insn = next_active_insn (insn);
- if (INSN_P (insn)
- && (INSN_CODE (insn) == CODE_FOR_iprefetch
- || INSN_CODE (insn) == CODE_FOR_hbr))
- {
- if (hbr_insn)
- {
- int a0 = INSN_ADDRESSES (INSN_UID (hbr_insn));
- int a1 = INSN_ADDRESSES (INSN_UID (insn));
- if ((a1 - a0 == 8 && GET_MODE (insn) != TImode)
- || (a1 - a0 == 4))
- {
- prev_insn = emit_insn_before (gen_lnop (), insn);
- PUT_MODE (prev_insn, GET_MODE (insn));
- PUT_MODE (insn, TImode);
- INSN_LOCATION (prev_insn) = INSN_LOCATION (insn);
- length += 4;
- }
- }
- hbr_insn = insn;
- }
- if (INSN_P (insn) && INSN_CODE (insn) == CODE_FOR_blockage && next_insn)
- {
- if (GET_MODE (insn) == TImode)
- PUT_MODE (next_insn, TImode);
- insn = next_insn;
- next_insn = next_active_insn (insn);
- }
- addr = INSN_ADDRESSES (INSN_UID (insn));
- if ((CALL_P (insn) || JUMP_P (insn)) && SCHED_ON_EVEN_P (insn))
- {
- if (((addr + length) & 7) != 0)
- {
- emit_nop_for_insn (prev_insn);
- length += 4;
- }
- }
- else if (GET_MODE (insn) == TImode
- && ((next_insn && GET_MODE (next_insn) != TImode)
- || get_attr_type (insn) == TYPE_MULTI0)
- && ((addr + length) & 7) != 0)
- {
- /* prev_insn will always be set because the first insn is
- always 8-byte aligned. */
- emit_nop_for_insn (prev_insn);
- length += 4;
- }
- prev_insn = insn;
- }
-}
-
-
-/* Routines for branch hints. */
-
-static void
-spu_emit_branch_hint (rtx_insn *before, rtx_insn *branch, rtx target,
- int distance, sbitmap blocks)
-{
- rtx_insn *hint;
- rtx_insn *insn;
- rtx_jump_table_data *table;
-
- if (before == 0 || branch == 0 || target == 0)
- return;
-
- /* While scheduling we require hints to be no further than 600, so
- we need to enforce that here too */
- if (distance > 600)
- return;
-
- /* If we have a Basic block note, emit it after the basic block note. */
- if (NOTE_INSN_BASIC_BLOCK_P (before))
- before = NEXT_INSN (before);
-
- rtx_code_label *branch_label = gen_label_rtx ();
- LABEL_NUSES (branch_label)++;
- LABEL_PRESERVE_P (branch_label) = 1;
- insn = emit_label_before (branch_label, branch);
- rtx branch_label_ref = gen_rtx_LABEL_REF (VOIDmode, branch_label);
- bitmap_set_bit (blocks, BLOCK_FOR_INSN (branch)->index);
-
- hint = emit_insn_before (gen_hbr (branch_label_ref, target), before);
- recog_memoized (hint);
- INSN_LOCATION (hint) = INSN_LOCATION (branch);
- HINTED_P (branch) = 1;
-
- if (GET_CODE (target) == LABEL_REF)
- HINTED_P (XEXP (target, 0)) = 1;
- else if (tablejump_p (branch, 0, &table))
- {
- rtvec vec;
- int j;
- if (GET_CODE (PATTERN (table)) == ADDR_VEC)
- vec = XVEC (PATTERN (table), 0);
- else
- vec = XVEC (PATTERN (table), 1);
- for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
- HINTED_P (XEXP (RTVEC_ELT (vec, j), 0)) = 1;
- }
-
- if (distance >= 588)
- {
- /* Make sure the hint isn't scheduled any earlier than this point,
- which could make it too far for the branch offest to fit */
- insn = emit_insn_before (gen_blockage (), hint);
- recog_memoized (insn);
- INSN_LOCATION (insn) = INSN_LOCATION (hint);
- }
- else if (distance <= 8 * 4)
- {
- /* To guarantee at least 8 insns between the hint and branch we
- insert nops. */
- int d;
- for (d = distance; d < 8 * 4; d += 4)
- {
- insn =
- emit_insn_after (gen_nopn_nv (gen_rtx_REG (SImode, 127)), hint);
- recog_memoized (insn);
- INSN_LOCATION (insn) = INSN_LOCATION (hint);
- }
-
- /* Make sure any nops inserted aren't scheduled before the hint. */
- insn = emit_insn_after (gen_blockage (), hint);
- recog_memoized (insn);
- INSN_LOCATION (insn) = INSN_LOCATION (hint);
-
- /* Make sure any nops inserted aren't scheduled after the call. */
- if (CALL_P (branch) && distance < 8 * 4)
- {
- insn = emit_insn_before (gen_blockage (), branch);
- recog_memoized (insn);
- INSN_LOCATION (insn) = INSN_LOCATION (branch);
- }
- }
-}
-
-/* Returns 0 if we don't want a hint for this branch. Otherwise return
- the rtx for the branch target. */
-static rtx
-get_branch_target (rtx_insn *branch)
-{
- if (JUMP_P (branch))
- {
- rtx set, src;
-
- /* Return statements */
- if (GET_CODE (PATTERN (branch)) == RETURN)
- return gen_rtx_REG (SImode, LINK_REGISTER_REGNUM);
-
- /* ASM GOTOs. */
- if (extract_asm_operands (PATTERN (branch)) != NULL)
- return NULL;
-
- set = single_set (branch);
- src = SET_SRC (set);
- if (GET_CODE (SET_DEST (set)) != PC)
- abort ();
-
- if (GET_CODE (src) == IF_THEN_ELSE)
- {
- rtx lab = 0;
- rtx note = find_reg_note (branch, REG_BR_PROB, 0);
- if (note)
- {
- /* If the more probable case is not a fall through, then
- try a branch hint. */
- int prob = profile_probability::from_reg_br_prob_note
- (XINT (note, 0)).to_reg_br_prob_base ();
- if (prob > (REG_BR_PROB_BASE * 6 / 10)
- && GET_CODE (XEXP (src, 1)) != PC)
- lab = XEXP (src, 1);
- else if (prob < (REG_BR_PROB_BASE * 4 / 10)
- && GET_CODE (XEXP (src, 2)) != PC)
- lab = XEXP (src, 2);
- }
- if (lab)
- {
- if (GET_CODE (lab) == RETURN)
- return gen_rtx_REG (SImode, LINK_REGISTER_REGNUM);
- return lab;
- }
- return 0;
- }
-
- return src;
- }
- else if (CALL_P (branch))
- {
- rtx call;
- /* All of our call patterns are in a PARALLEL and the CALL is
- the first pattern in the PARALLEL. */
- if (GET_CODE (PATTERN (branch)) != PARALLEL)
- abort ();
- call = XVECEXP (PATTERN (branch), 0, 0);
- if (GET_CODE (call) == SET)
- call = SET_SRC (call);
- if (GET_CODE (call) != CALL)
- abort ();
- return XEXP (XEXP (call, 0), 0);
- }
- return 0;
-}
-
-/* The special $hbr register is used to prevent the insn scheduler from
- moving hbr insns across instructions which invalidate them. It
- should only be used in a clobber, and this function searches for
- insns which clobber it. */
-static bool
-insn_clobbers_hbr (rtx_insn *insn)
-{
- if (INSN_P (insn)
- && GET_CODE (PATTERN (insn)) == PARALLEL)
- {
- rtx parallel = PATTERN (insn);
- rtx clobber;
- int j;
- for (j = XVECLEN (parallel, 0) - 1; j >= 0; j--)
- {
- clobber = XVECEXP (parallel, 0, j);
- if (GET_CODE (clobber) == CLOBBER
- && GET_CODE (XEXP (clobber, 0)) == REG
- && REGNO (XEXP (clobber, 0)) == HBR_REGNUM)
- return 1;
- }
- }
- return 0;
-}
-
-/* Search up to 32 insns starting at FIRST:
- - at any kind of hinted branch, just return
- - at any unconditional branch in the first 15 insns, just return
- - at a call or indirect branch, after the first 15 insns, force it to
- an even address and return
- - at any unconditional branch, after the first 15 insns, force it to
- an even address.
- At then end of the search, insert an hbrp within 4 insns of FIRST,
- and an hbrp within 16 instructions of FIRST.
- */
-static void
-insert_hbrp_for_ilb_runout (rtx_insn *first)
-{
- rtx_insn *insn, *before_4 = 0, *before_16 = 0;
- int addr = 0, length, first_addr = -1;
- int hbrp_addr0 = 128 * 4, hbrp_addr1 = 128 * 4;
- int insert_lnop_after = 0;
- for (insn = first; insn; insn = NEXT_INSN (insn))
- if (INSN_P (insn))
- {
- if (first_addr == -1)
- first_addr = INSN_ADDRESSES (INSN_UID (insn));
- addr = INSN_ADDRESSES (INSN_UID (insn)) - first_addr;
- length = get_attr_length (insn);
-
- if (before_4 == 0 && addr + length >= 4 * 4)
- before_4 = insn;
- /* We test for 14 instructions because the first hbrp will add
- up to 2 instructions. */
- if (before_16 == 0 && addr + length >= 14 * 4)
- before_16 = insn;
-
- if (INSN_CODE (insn) == CODE_FOR_hbr)
- {
- /* Make sure an hbrp is at least 2 cycles away from a hint.
- Insert an lnop after the hbrp when necessary. */
- if (before_4 == 0 && addr > 0)
- {
- before_4 = insn;
- insert_lnop_after |= 1;
- }
- else if (before_4 && addr <= 4 * 4)
- insert_lnop_after |= 1;
- if (before_16 == 0 && addr > 10 * 4)
- {
- before_16 = insn;
- insert_lnop_after |= 2;
- }
- else if (before_16 && addr <= 14 * 4)
- insert_lnop_after |= 2;
- }
-
- if (INSN_CODE (insn) == CODE_FOR_iprefetch)
- {
- if (addr < hbrp_addr0)
- hbrp_addr0 = addr;
- else if (addr < hbrp_addr1)
- hbrp_addr1 = addr;
- }
-
- if (CALL_P (insn) || JUMP_P (insn))
- {
- if (HINTED_P (insn))
- return;
-
- /* Any branch after the first 15 insns should be on an even
- address to avoid a special case branch. There might be
- some nops and/or hbrps inserted, so we test after 10
- insns. */
- if (addr > 10 * 4)
- SCHED_ON_EVEN_P (insn) = 1;
- }
-
- if (CALL_P (insn) || tablejump_p (insn, 0, 0))
- return;
-
-
- if (addr + length >= 32 * 4)
- {
- gcc_assert (before_4 && before_16);
- if (hbrp_addr0 > 4 * 4)
- {
- insn =
- emit_insn_before (gen_iprefetch (GEN_INT (1)), before_4);
- recog_memoized (insn);
- INSN_LOCATION (insn) = INSN_LOCATION (before_4);
- INSN_ADDRESSES_NEW (insn,
- INSN_ADDRESSES (INSN_UID (before_4)));
- PUT_MODE (insn, GET_MODE (before_4));
- PUT_MODE (before_4, TImode);
- if (insert_lnop_after & 1)
- {
- insn = emit_insn_before (gen_lnop (), before_4);
- recog_memoized (insn);
- INSN_LOCATION (insn) = INSN_LOCATION (before_4);
- INSN_ADDRESSES_NEW (insn,
- INSN_ADDRESSES (INSN_UID (before_4)));
- PUT_MODE (insn, TImode);
- }
- }
- if ((hbrp_addr0 <= 4 * 4 || hbrp_addr0 > 16 * 4)
- && hbrp_addr1 > 16 * 4)
- {
- insn =
- emit_insn_before (gen_iprefetch (GEN_INT (2)), before_16);
- recog_memoized (insn);
- INSN_LOCATION (insn) = INSN_LOCATION (before_16);
- INSN_ADDRESSES_NEW (insn,
- INSN_ADDRESSES (INSN_UID (before_16)));
- PUT_MODE (insn, GET_MODE (before_16));
- PUT_MODE (before_16, TImode);
- if (insert_lnop_after & 2)
- {
- insn = emit_insn_before (gen_lnop (), before_16);
- recog_memoized (insn);
- INSN_LOCATION (insn) = INSN_LOCATION (before_16);
- INSN_ADDRESSES_NEW (insn,
- INSN_ADDRESSES (INSN_UID
- (before_16)));
- PUT_MODE (insn, TImode);
- }
- }
- return;
- }
- }
- else if (BARRIER_P (insn))
- return;
-
-}
-
-/* The SPU might hang when it executes 48 inline instructions after a
- hinted branch jumps to its hinted target. The beginning of a
- function and the return from a call might have been hinted, and
- must be handled as well. To prevent a hang we insert 2 hbrps. The
- first should be within 6 insns of the branch target. The second
- should be within 22 insns of the branch target. When determining
- if hbrps are necessary, we look for only 32 inline instructions,
- because up to 12 nops and 4 hbrps could be inserted. Similarily,
- when inserting new hbrps, we insert them within 4 and 16 insns of
- the target. */
-static void
-insert_hbrp (void)
-{
- rtx_insn *insn;
- if (TARGET_SAFE_HINTS)
- {
- shorten_branches (get_insns ());
- /* Insert hbrp at beginning of function */
- insn = next_active_insn (get_insns ());
- if (insn)
- insert_hbrp_for_ilb_runout (insn);
- /* Insert hbrp after hinted targets. */
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- if ((LABEL_P (insn) && HINTED_P (insn)) || CALL_P (insn))
- insert_hbrp_for_ilb_runout (next_active_insn (insn));
- }
-}
-
-static int in_spu_reorg;
-
-static void
-spu_var_tracking (void)
-{
- if (flag_var_tracking)
- {
- df_analyze ();
- timevar_push (TV_VAR_TRACKING);
- variable_tracking_main ();
- timevar_pop (TV_VAR_TRACKING);
- df_finish_pass (false);
- }
-}
-
-/* Insert branch hints. There are no branch optimizations after this
- pass, so it's safe to set our branch hints now. */
-static void
-spu_machine_dependent_reorg (void)
-{
- sbitmap blocks;
- basic_block bb;
- rtx_insn *branch, *insn;
- rtx branch_target = 0;
- int branch_addr = 0, insn_addr, required_dist = 0;
- int i;
- unsigned int j;
-
- if (!TARGET_BRANCH_HINTS || optimize == 0)
- {
- /* We still do it for unoptimized code because an external
- function might have hinted a call or return. */
- compute_bb_for_insn ();
- insert_hbrp ();
- pad_bb ();
- spu_var_tracking ();
- free_bb_for_insn ();
- return;
- }
-
- blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
- bitmap_clear (blocks);
-
- in_spu_reorg = 1;
- compute_bb_for_insn ();
-
- /* (Re-)discover loops so that bb->loop_father can be used
- in the analysis below. */
- loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
-
- compact_blocks ();
-
- spu_bb_info =
- (struct spu_bb_info *) xcalloc (n_basic_blocks_for_fn (cfun),
- sizeof (struct spu_bb_info));
-
- /* We need exact insn addresses and lengths. */
- shorten_branches (get_insns ());
-
- for (i = n_basic_blocks_for_fn (cfun) - 1; i >= 0; i--)
- {
- bb = BASIC_BLOCK_FOR_FN (cfun, i);
- branch = 0;
- if (spu_bb_info[i].prop_jump)
- {
- branch = spu_bb_info[i].prop_jump;
- branch_target = get_branch_target (branch);
- branch_addr = INSN_ADDRESSES (INSN_UID (branch));
- required_dist = spu_hint_dist;
- }
- /* Search from end of a block to beginning. In this loop, find
- jumps which need a branch and emit them only when:
- - it's an indirect branch and we're at the insn which sets
- the register
- - we're at an insn that will invalidate the hint. e.g., a
- call, another hint insn, inline asm that clobbers $hbr, and
- some inlined operations (divmodsi4). Don't consider jumps
- because they are only at the end of a block and are
- considered when we are deciding whether to propagate
- - we're getting too far away from the branch. The hbr insns
- only have a signed 10 bit offset
- We go back as far as possible so the branch will be considered
- for propagation when we get to the beginning of the block. */
- for (insn = BB_END (bb); insn; insn = PREV_INSN (insn))
- {
- if (INSN_P (insn))
- {
- insn_addr = INSN_ADDRESSES (INSN_UID (insn));
- if (branch
- && ((GET_CODE (branch_target) == REG
- && set_of (branch_target, insn) != NULL_RTX)
- || insn_clobbers_hbr (insn)
- || branch_addr - insn_addr > 600))
- {
- rtx_insn *next = NEXT_INSN (insn);
- int next_addr = INSN_ADDRESSES (INSN_UID (next));
- if (insn != BB_END (bb)
- && branch_addr - next_addr >= required_dist)
- {
- if (dump_file)
- fprintf (dump_file,
- "hint for %i in block %i before %i\n",
- INSN_UID (branch), bb->index,
- INSN_UID (next));
- spu_emit_branch_hint (next, branch, branch_target,
- branch_addr - next_addr, blocks);
- }
- branch = 0;
- }
-
- /* JUMP_P will only be true at the end of a block. When
- branch is already set it means we've previously decided
- to propagate a hint for that branch into this block. */
- if (CALL_P (insn) || (JUMP_P (insn) && !branch))
- {
- branch = 0;
- if ((branch_target = get_branch_target (insn)))
- {
- branch = insn;
- branch_addr = insn_addr;
- required_dist = spu_hint_dist;
- }
- }
- }
- if (insn == BB_HEAD (bb))
- break;
- }
-
- if (branch)
- {
- /* If we haven't emitted a hint for this branch yet, it might
- be profitable to emit it in one of the predecessor blocks,
- especially for loops. */
- rtx_insn *bbend;
- basic_block prev = 0, prop = 0, prev2 = 0;
- int loop_exit = 0, simple_loop = 0;
- int next_addr = INSN_ADDRESSES (INSN_UID (NEXT_INSN (insn)));
-
- for (j = 0; j < EDGE_COUNT (bb->preds); j++)
- if (EDGE_PRED (bb, j)->flags & EDGE_FALLTHRU)
- prev = EDGE_PRED (bb, j)->src;
- else
- prev2 = EDGE_PRED (bb, j)->src;
-
- for (j = 0; j < EDGE_COUNT (bb->succs); j++)
- if (EDGE_SUCC (bb, j)->flags & EDGE_LOOP_EXIT)
- loop_exit = 1;
- else if (EDGE_SUCC (bb, j)->dest == bb)
- simple_loop = 1;
-
- /* If this branch is a loop exit then propagate to previous
- fallthru block. This catches the cases when it is a simple
- loop or when there is an initial branch into the loop. */
- if (prev && (loop_exit || simple_loop)
- && bb_loop_depth (prev) <= bb_loop_depth (bb))
- prop = prev;
-
- /* If there is only one adjacent predecessor. Don't propagate
- outside this loop. */
- else if (prev && single_pred_p (bb)
- && prev->loop_father == bb->loop_father)
- prop = prev;
-
- /* If this is the JOIN block of a simple IF-THEN then
- propagate the hint to the HEADER block. */
- else if (prev && prev2
- && EDGE_COUNT (bb->preds) == 2
- && EDGE_COUNT (prev->preds) == 1
- && EDGE_PRED (prev, 0)->src == prev2
- && prev2->loop_father == bb->loop_father
- && GET_CODE (branch_target) != REG)
- prop = prev;
-
- /* Don't propagate when:
- - this is a simple loop and the hint would be too far
- - this is not a simple loop and there are 16 insns in
- this block already
- - the predecessor block ends in a branch that will be
- hinted
- - the predecessor block ends in an insn that invalidates
- the hint */
- if (prop
- && prop->index >= 0
- && (bbend = BB_END (prop))
- && branch_addr - INSN_ADDRESSES (INSN_UID (bbend)) <
- (simple_loop ? 600 : 16 * 4) && get_branch_target (bbend) == 0
- && (JUMP_P (bbend) || !insn_clobbers_hbr (bbend)))
- {
- if (dump_file)
- fprintf (dump_file, "propagate from %i to %i (loop depth %i) "
- "for %i (loop_exit %i simple_loop %i dist %i)\n",
- bb->index, prop->index, bb_loop_depth (bb),
- INSN_UID (branch), loop_exit, simple_loop,
- branch_addr - INSN_ADDRESSES (INSN_UID (bbend)));
-
- spu_bb_info[prop->index].prop_jump = branch;
- spu_bb_info[prop->index].bb_index = i;
- }
- else if (branch_addr - next_addr >= required_dist)
- {
- if (dump_file)
- fprintf (dump_file, "hint for %i in block %i before %i\n",
- INSN_UID (branch), bb->index,
- INSN_UID (NEXT_INSN (insn)));
- spu_emit_branch_hint (NEXT_INSN (insn), branch, branch_target,
- branch_addr - next_addr, blocks);
- }
- branch = 0;
- }
- }
- free (spu_bb_info);
-
- if (!bitmap_empty_p (blocks))
- find_many_sub_basic_blocks (blocks);
-
- /* We have to schedule to make sure alignment is ok. */
- FOR_EACH_BB_FN (bb, cfun) bb->flags &= ~BB_DISABLE_SCHEDULE;
-
- /* The hints need to be scheduled, so call it again. */
- schedule_insns ();
- df_finish_pass (true);
-
- insert_hbrp ();
-
- pad_bb ();
-
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- if (NONJUMP_INSN_P (insn) && INSN_CODE (insn) == CODE_FOR_hbr)
- {
- /* Adjust the LABEL_REF in a hint when we have inserted a nop
- between its branch label and the branch . We don't move the
- label because GCC expects it at the beginning of the block. */
- rtx unspec = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
- rtx label_ref = XVECEXP (unspec, 0, 0);
- rtx_insn *label = as_a <rtx_insn *> (XEXP (label_ref, 0));
- rtx_insn *branch;
- int offset = 0;
- for (branch = NEXT_INSN (label);
- !JUMP_P (branch) && !CALL_P (branch);
- branch = NEXT_INSN (branch))
- if (NONJUMP_INSN_P (branch))
- offset += get_attr_length (branch);
- if (offset > 0)
- XVECEXP (unspec, 0, 0) = plus_constant (Pmode, label_ref, offset);
- }
-
- spu_var_tracking ();
-
- loop_optimizer_finalize ();
-
- free_bb_for_insn ();
-
- in_spu_reorg = 0;
-}
-
-
-/* Insn scheduling routines, primarily for dual issue. */
-static int
-spu_sched_issue_rate (void)
-{
- return 2;
-}
-
-static int
-uses_ls_unit(rtx_insn *insn)
-{
- rtx set = single_set (insn);
- if (set != 0
- && (GET_CODE (SET_DEST (set)) == MEM
- || GET_CODE (SET_SRC (set)) == MEM))
- return 1;
- return 0;
-}
-
-static int
-get_pipe (rtx_insn *insn)
-{
- enum attr_type t;
- /* Handle inline asm */
- if (INSN_CODE (insn) == -1)
- return -1;
- t = get_attr_type (insn);
- switch (t)
- {
- case TYPE_CONVERT:
- return -2;
- case TYPE_MULTI0:
- return -1;
-
- case TYPE_FX2:
- case TYPE_FX3:
- case TYPE_SPR:
- case TYPE_NOP:
- case TYPE_FXB:
- case TYPE_FPD:
- case TYPE_FP6:
- case TYPE_FP7:
- return 0;
-
- case TYPE_LNOP:
- case TYPE_SHUF:
- case TYPE_LOAD:
- case TYPE_STORE:
- case TYPE_BR:
- case TYPE_MULTI1:
- case TYPE_HBR:
- case TYPE_IPREFETCH:
- return 1;
- default:
- abort ();
- }
-}
-
-
-/* haifa-sched.c has a static variable that keeps track of the current
- cycle. It is passed to spu_sched_reorder, and we record it here for
- use by spu_sched_variable_issue. It won't be accurate if the
- scheduler updates it's clock_var between the two calls. */
-static int clock_var;
-
-/* This is used to keep track of insn alignment. Set to 0 at the
- beginning of each block and increased by the "length" attr of each
- insn scheduled. */
-static int spu_sched_length;
-
-/* Record when we've issued pipe0 and pipe1 insns so we can reorder the
- ready list appropriately in spu_sched_reorder(). */
-static int pipe0_clock;
-static int pipe1_clock;
-
-static int prev_clock_var;
-
-static int prev_priority;
-
-/* The SPU needs to load the next ilb sometime during the execution of
- the previous ilb. There is a potential conflict if every cycle has a
- load or store. To avoid the conflict we make sure the load/store
- unit is free for at least one cycle during the execution of insns in
- the previous ilb. */
-static int spu_ls_first;
-static int prev_ls_clock;
-
-static void
-spu_sched_init_global (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
- int max_ready ATTRIBUTE_UNUSED)
-{
- spu_sched_length = 0;
-}
-
-static void
-spu_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
- int max_ready ATTRIBUTE_UNUSED)
-{
- if (align_labels.levels[0].get_value () > 4
- || align_loops.levels[0].get_value () > 4
- || align_jumps.levels[0].get_value () > 4)
- {
- /* When any block might be at least 8-byte aligned, assume they
- will all be at least 8-byte aligned to make sure dual issue
- works out correctly. */
- spu_sched_length = 0;
- }
- spu_ls_first = INT_MAX;
- clock_var = -1;
- prev_ls_clock = -1;
- pipe0_clock = -1;
- pipe1_clock = -1;
- prev_clock_var = -1;
- prev_priority = -1;
-}
-
-static int
-spu_sched_variable_issue (FILE *file ATTRIBUTE_UNUSED,
- int verbose ATTRIBUTE_UNUSED,
- rtx_insn *insn, int more)
-{
- int len;
- int p;
- if (GET_CODE (PATTERN (insn)) == USE
- || GET_CODE (PATTERN (insn)) == CLOBBER
- || (len = get_attr_length (insn)) == 0)
- return more;
-
- spu_sched_length += len;
-
- /* Reset on inline asm */
- if (INSN_CODE (insn) == -1)
- {
- spu_ls_first = INT_MAX;
- pipe0_clock = -1;
- pipe1_clock = -1;
- return 0;
- }
- p = get_pipe (insn);
- if (p == 0)
- pipe0_clock = clock_var;
- else
- pipe1_clock = clock_var;
-
- if (in_spu_reorg)
- {
- if (clock_var - prev_ls_clock > 1
- || INSN_CODE (insn) == CODE_FOR_iprefetch)
- spu_ls_first = INT_MAX;
- if (uses_ls_unit (insn))
- {
- if (spu_ls_first == INT_MAX)
- spu_ls_first = spu_sched_length;
- prev_ls_clock = clock_var;
- }
-
- /* The scheduler hasn't inserted the nop, but we will later on.
- Include those nops in spu_sched_length. */
- if (prev_clock_var == clock_var && (spu_sched_length & 7))
- spu_sched_length += 4;
- prev_clock_var = clock_var;
-
- /* more is -1 when called from spu_sched_reorder for new insns
- that don't have INSN_PRIORITY */
- if (more >= 0)
- prev_priority = INSN_PRIORITY (insn);
- }
-
- /* Always try issuing more insns. spu_sched_reorder will decide
- when the cycle should be advanced. */
- return 1;
-}
-
-/* This function is called for both TARGET_SCHED_REORDER and
- TARGET_SCHED_REORDER2. */
-static int
-spu_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
- rtx_insn **ready, int *nreadyp, int clock)
-{
- int i, nready = *nreadyp;
- int pipe_0, pipe_1, pipe_hbrp, pipe_ls, schedule_i;
- rtx_insn *insn;
-
- clock_var = clock;
-
- if (nready <= 0 || pipe1_clock >= clock)
- return 0;
-
- /* Find any rtl insns that don't generate assembly insns and schedule
- them first. */
- for (i = nready - 1; i >= 0; i--)
- {
- insn = ready[i];
- if (INSN_CODE (insn) == -1
- || INSN_CODE (insn) == CODE_FOR_blockage
- || (INSN_P (insn) && get_attr_length (insn) == 0))
- {
- ready[i] = ready[nready - 1];
- ready[nready - 1] = insn;
- return 1;
- }
- }
-
- pipe_0 = pipe_1 = pipe_hbrp = pipe_ls = schedule_i = -1;
- for (i = 0; i < nready; i++)
- if (INSN_CODE (ready[i]) != -1)
- {
- insn = ready[i];
- switch (get_attr_type (insn))
- {
- default:
- case TYPE_MULTI0:
- case TYPE_CONVERT:
- case TYPE_FX2:
- case TYPE_FX3:
- case TYPE_SPR:
- case TYPE_NOP:
- case TYPE_FXB:
- case TYPE_FPD:
- case TYPE_FP6:
- case TYPE_FP7:
- pipe_0 = i;
- break;
- case TYPE_LOAD:
- case TYPE_STORE:
- pipe_ls = i;
- /* FALLTHRU */
- case TYPE_LNOP:
- case TYPE_SHUF:
- case TYPE_BR:
- case TYPE_MULTI1:
- case TYPE_HBR:
- pipe_1 = i;
- break;
- case TYPE_IPREFETCH:
- pipe_hbrp = i;
- break;
- }
- }
-
- /* In the first scheduling phase, schedule loads and stores together
- to increase the chance they will get merged during postreload CSE. */
- if (!reload_completed && pipe_ls >= 0)
- {
- insn = ready[pipe_ls];
- ready[pipe_ls] = ready[nready - 1];
- ready[nready - 1] = insn;
- return 1;
- }
-
- /* If there is an hbrp ready, prefer it over other pipe 1 insns. */
- if (pipe_hbrp >= 0)
- pipe_1 = pipe_hbrp;
-
- /* When we have loads/stores in every cycle of the last 15 insns and
- we are about to schedule another load/store, emit an hbrp insn
- instead. */
- if (in_spu_reorg
- && spu_sched_length - spu_ls_first >= 4 * 15
- && !(pipe0_clock < clock && pipe_0 >= 0) && pipe_1 == pipe_ls)
- {
- insn = sched_emit_insn (gen_iprefetch (GEN_INT (3)));
- recog_memoized (insn);
- if (pipe0_clock < clock)
- PUT_MODE (insn, TImode);
- spu_sched_variable_issue (file, verbose, insn, -1);
- return 0;
- }
-
- /* In general, we want to emit nops to increase dual issue, but dual
- issue isn't faster when one of the insns could be scheduled later
- without effecting the critical path. We look at INSN_PRIORITY to
- make a good guess, but it isn't perfect so -mdual-nops=n can be
- used to effect it. */
- if (in_spu_reorg && spu_dual_nops < 10)
- {
- /* When we are at an even address and we are not issuing nops to
- improve scheduling then we need to advance the cycle. */
- if ((spu_sched_length & 7) == 0 && prev_clock_var == clock
- && (spu_dual_nops == 0
- || (pipe_1 != -1
- && prev_priority >
- INSN_PRIORITY (ready[pipe_1]) + spu_dual_nops)))
- return 0;
-
- /* When at an odd address, schedule the highest priority insn
- without considering pipeline. */
- if ((spu_sched_length & 7) == 4 && prev_clock_var != clock
- && (spu_dual_nops == 0
- || (prev_priority >
- INSN_PRIORITY (ready[nready - 1]) + spu_dual_nops)))
- return 1;
- }
-
-
- /* We haven't issued a pipe0 insn yet this cycle, if there is a
- pipe0 insn in the ready list, schedule it. */
- if (pipe0_clock < clock && pipe_0 >= 0)
- schedule_i = pipe_0;
-
- /* Either we've scheduled a pipe0 insn already or there is no pipe0
- insn to schedule. Put a pipe1 insn at the front of the ready list. */
- else
- schedule_i = pipe_1;
-
- if (schedule_i > -1)
- {
- insn = ready[schedule_i];
- ready[schedule_i] = ready[nready - 1];
- ready[nready - 1] = insn;
- return 1;
- }
- return 0;
-}
-
-/* INSN is dependent on DEP_INSN. */
-static int
-spu_sched_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn,
- int cost, unsigned int)
-{
- rtx set;
-
- /* The blockage pattern is used to prevent instructions from being
- moved across it and has no cost. */
- if (INSN_CODE (insn) == CODE_FOR_blockage
- || INSN_CODE (dep_insn) == CODE_FOR_blockage)
- return 0;
-
- if ((INSN_P (insn) && get_attr_length (insn) == 0)
- || (INSN_P (dep_insn) && get_attr_length (dep_insn) == 0))
- return 0;
-
- /* Make sure hbrps are spread out. */
- if (INSN_CODE (insn) == CODE_FOR_iprefetch
- && INSN_CODE (dep_insn) == CODE_FOR_iprefetch)
- return 8;
-
- /* Make sure hints and hbrps are 2 cycles apart. */
- if ((INSN_CODE (insn) == CODE_FOR_iprefetch
- || INSN_CODE (insn) == CODE_FOR_hbr)
- && (INSN_CODE (dep_insn) == CODE_FOR_iprefetch
- || INSN_CODE (dep_insn) == CODE_FOR_hbr))
- return 2;
-
- /* An hbrp has no real dependency on other insns. */
- if (INSN_CODE (insn) == CODE_FOR_iprefetch
- || INSN_CODE (dep_insn) == CODE_FOR_iprefetch)
- return 0;
-
- /* Assuming that it is unlikely an argument register will be used in
- the first cycle of the called function, we reduce the cost for
- slightly better scheduling of dep_insn. When not hinted, the
- mispredicted branch would hide the cost as well. */
- if (CALL_P (insn))
- {
- rtx target = get_branch_target (insn);
- if (GET_CODE (target) != REG || !set_of (target, insn))
- return cost - 2;
- return cost;
- }
-
- /* And when returning from a function, let's assume the return values
- are completed sooner too. */
- if (CALL_P (dep_insn))
- return cost - 2;
-
- /* Make sure an instruction that loads from the back chain is schedule
- away from the return instruction so a hint is more likely to get
- issued. */
- if (INSN_CODE (insn) == CODE_FOR__return
- && (set = single_set (dep_insn))
- && GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) == LINK_REGISTER_REGNUM)
- return 20;
-
- /* The dfa scheduler sets cost to 0 for all anti-dependencies and the
- scheduler makes every insn in a block anti-dependent on the final
- jump_insn. We adjust here so higher cost insns will get scheduled
- earlier. */
- if (JUMP_P (insn) && dep_type == REG_DEP_ANTI)
- return insn_sched_cost (dep_insn) - 3;
-
- return cost;
-}
-
-/* Create a CONST_DOUBLE from a string. */
-rtx
-spu_float_const (const char *string, machine_mode mode)
-{
- REAL_VALUE_TYPE value;
- value = REAL_VALUE_ATOF (string, mode);
- return const_double_from_real_value (value, mode);
-}
-
-int
-spu_constant_address_p (rtx x)
-{
- return (GET_CODE (x) == LABEL_REF || GET_CODE (x) == SYMBOL_REF
- || GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST
- || GET_CODE (x) == HIGH);
-}
-
-static enum spu_immediate
-which_immediate_load (HOST_WIDE_INT val)
-{
- gcc_assert (val == trunc_int_for_mode (val, SImode));
-
- if (val >= -0x8000 && val <= 0x7fff)
- return SPU_IL;
- if (val >= 0 && val <= 0x3ffff)
- return SPU_ILA;
- if ((val & 0xffff) == ((val >> 16) & 0xffff))
- return SPU_ILH;
- if ((val & 0xffff) == 0)
- return SPU_ILHU;
-
- return SPU_NONE;
-}
-
-/* Return true when OP can be loaded by one of the il instructions, or
- when flow2 is not completed and OP can be loaded using ilhu and iohl. */
-int
-immediate_load_p (rtx op, machine_mode mode)
-{
- if (CONSTANT_P (op))
- {
- enum immediate_class c = classify_immediate (op, mode);
- return c == IC_IL1 || c == IC_IL1s
- || (!epilogue_completed && (c == IC_IL2 || c == IC_IL2s));
- }
- return 0;
-}
-
-/* Return true if the first SIZE bytes of arr is a constant that can be
- generated with cbd, chd, cwd or cdd. When non-NULL, PRUN and PSTART
- represent the size and offset of the instruction to use. */
-static int
-cpat_info(unsigned char *arr, int size, int *prun, int *pstart)
-{
- int cpat, run, i, start;
- cpat = 1;
- run = 0;
- start = -1;
- for (i = 0; i < size && cpat; i++)
- if (arr[i] != i+16)
- {
- if (!run)
- {
- start = i;
- if (arr[i] == 3)
- run = 1;
- else if (arr[i] == 2 && arr[i+1] == 3)
- run = 2;
- else if (arr[i] == 0)
- {
- while (arr[i+run] == run && i+run < 16)
- run++;
- if (run != 4 && run != 8)
- cpat = 0;
- }
- else
- cpat = 0;
- if ((i & (run-1)) != 0)
- cpat = 0;
- i += run;
- }
- else
- cpat = 0;
- }
- if (cpat && (run || size < 16))
- {
- if (run == 0)
- run = 1;
- if (prun)
- *prun = run;
- if (pstart)
- *pstart = start == -1 ? 16-run : start;
- return 1;
- }
- return 0;
-}
-
-/* OP is a CONSTANT_P. Determine what instructions can be used to load
- it into a register. MODE is only valid when OP is a CONST_INT. */
-static enum immediate_class
-classify_immediate (rtx op, machine_mode mode)
-{
- HOST_WIDE_INT val;
- unsigned char arr[16];
- int i, j, repeated, fsmbi, repeat;
-
- gcc_assert (CONSTANT_P (op));
-
- if (GET_MODE (op) != VOIDmode)
- mode = GET_MODE (op);
-
- /* A V4SI const_vector with all identical symbols is ok. */
- if (!flag_pic
- && mode == V4SImode
- && GET_CODE (op) == CONST_VECTOR
- && GET_CODE (CONST_VECTOR_ELT (op, 0)) != CONST_INT
- && GET_CODE (CONST_VECTOR_ELT (op, 0)) != CONST_DOUBLE)
- op = unwrap_const_vec_duplicate (op);
-
- switch (GET_CODE (op))
- {
- case SYMBOL_REF:
- case LABEL_REF:
- return TARGET_LARGE_MEM ? IC_IL2s : IC_IL1s;
-
- case CONST:
- /* We can never know if the resulting address fits in 18 bits and can be
- loaded with ila. For now, assume the address will not overflow if
- the displacement is "small" (fits 'K' constraint). */
- if (!TARGET_LARGE_MEM && GET_CODE (XEXP (op, 0)) == PLUS)
- {
- rtx sym = XEXP (XEXP (op, 0), 0);
- rtx cst = XEXP (XEXP (op, 0), 1);
-
- if (GET_CODE (sym) == SYMBOL_REF
- && GET_CODE (cst) == CONST_INT
- && satisfies_constraint_K (cst))
- return IC_IL1s;
- }
- return IC_IL2s;
-
- case HIGH:
- return IC_IL1s;
-
- case CONST_VECTOR:
- for (i = 0; i < GET_MODE_NUNITS (mode); i++)
- if (GET_CODE (CONST_VECTOR_ELT (op, i)) != CONST_INT
- && GET_CODE (CONST_VECTOR_ELT (op, i)) != CONST_DOUBLE)
- return IC_POOL;
- /* Fall through. */
-
- case CONST_INT:
- case CONST_DOUBLE:
- constant_to_array (mode, op, arr);
-
- /* Check that each 4-byte slot is identical. */
- repeated = 1;
- for (i = 4; i < 16; i += 4)
- for (j = 0; j < 4; j++)
- if (arr[j] != arr[i + j])
- repeated = 0;
-
- if (repeated)
- {
- val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
- val = trunc_int_for_mode (val, SImode);
-
- if (which_immediate_load (val) != SPU_NONE)
- return IC_IL1;
- }
-
- /* Any mode of 2 bytes or smaller can be loaded with an il
- instruction. */
- gcc_assert (GET_MODE_SIZE (mode) > 2);
-
- fsmbi = 1;
- repeat = 0;
- for (i = 0; i < 16 && fsmbi; i++)
- if (arr[i] != 0 && repeat == 0)
- repeat = arr[i];
- else if (arr[i] != 0 && arr[i] != repeat)
- fsmbi = 0;
- if (fsmbi)
- return repeat == 0xff ? IC_FSMBI : IC_FSMBI2;
-
- if (cpat_info (arr, GET_MODE_SIZE (mode), 0, 0))
- return IC_CPAT;
-
- if (repeated)
- return IC_IL2;
-
- return IC_POOL;
- default:
- break;
- }
- gcc_unreachable ();
-}
-
-static enum spu_immediate
-which_logical_immediate (HOST_WIDE_INT val)
-{
- gcc_assert (val == trunc_int_for_mode (val, SImode));
-
- if (val >= -0x200 && val <= 0x1ff)
- return SPU_ORI;
- if (val >= 0 && val <= 0xffff)
- return SPU_IOHL;
- if ((val & 0xffff) == ((val >> 16) & 0xffff))
- {
- val = trunc_int_for_mode (val, HImode);
- if (val >= -0x200 && val <= 0x1ff)
- return SPU_ORHI;
- if ((val & 0xff) == ((val >> 8) & 0xff))
- {
- val = trunc_int_for_mode (val, QImode);
- if (val >= -0x200 && val <= 0x1ff)
- return SPU_ORBI;
- }
- }
- return SPU_NONE;
-}
-
-/* Return TRUE when X, a CONST_VECTOR, only contains CONST_INTs or
- CONST_DOUBLEs. */
-static int
-const_vector_immediate_p (rtx x)
-{
- int i;
- gcc_assert (GET_CODE (x) == CONST_VECTOR);
- for (i = 0; i < GET_MODE_NUNITS (GET_MODE (x)); i++)
- if (GET_CODE (CONST_VECTOR_ELT (x, i)) != CONST_INT
- && GET_CODE (CONST_VECTOR_ELT (x, i)) != CONST_DOUBLE)
- return 0;
- return 1;
-}
-
-int
-logical_immediate_p (rtx op, machine_mode mode)
-{
- HOST_WIDE_INT val;
- unsigned char arr[16];
- int i, j;
-
- gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
- || GET_CODE (op) == CONST_VECTOR);
-
- if (GET_CODE (op) == CONST_VECTOR
- && !const_vector_immediate_p (op))
- return 0;
-
- if (GET_MODE (op) != VOIDmode)
- mode = GET_MODE (op);
-
- constant_to_array (mode, op, arr);
-
- /* Check that bytes are repeated. */
- for (i = 4; i < 16; i += 4)
- for (j = 0; j < 4; j++)
- if (arr[j] != arr[i + j])
- return 0;
-
- val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
- val = trunc_int_for_mode (val, SImode);
-
- i = which_logical_immediate (val);
- return i != SPU_NONE && i != SPU_IOHL;
-}
-
-int
-iohl_immediate_p (rtx op, machine_mode mode)
-{
- HOST_WIDE_INT val;
- unsigned char arr[16];
- int i, j;
-
- gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
- || GET_CODE (op) == CONST_VECTOR);
-
- if (GET_CODE (op) == CONST_VECTOR
- && !const_vector_immediate_p (op))
- return 0;
-
- if (GET_MODE (op) != VOIDmode)
- mode = GET_MODE (op);
-
- constant_to_array (mode, op, arr);
-
- /* Check that bytes are repeated. */
- for (i = 4; i < 16; i += 4)
- for (j = 0; j < 4; j++)
- if (arr[j] != arr[i + j])
- return 0;
-
- val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
- val = trunc_int_for_mode (val, SImode);
-
- return val >= 0 && val <= 0xffff;
-}
-
-int
-arith_immediate_p (rtx op, machine_mode mode,
- HOST_WIDE_INT low, HOST_WIDE_INT high)
-{
- HOST_WIDE_INT val;
- unsigned char arr[16];
- int bytes, i, j;
-
- gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
- || GET_CODE (op) == CONST_VECTOR);
-
- if (GET_CODE (op) == CONST_VECTOR
- && !const_vector_immediate_p (op))
- return 0;
-
- if (GET_MODE (op) != VOIDmode)
- mode = GET_MODE (op);
-
- constant_to_array (mode, op, arr);
-
- bytes = GET_MODE_UNIT_SIZE (mode);
- mode = int_mode_for_mode (GET_MODE_INNER (mode)).require ();
-
- /* Check that bytes are repeated. */
- for (i = bytes; i < 16; i += bytes)
- for (j = 0; j < bytes; j++)
- if (arr[j] != arr[i + j])
- return 0;
-
- val = arr[0];
- for (j = 1; j < bytes; j++)
- val = (val << 8) | arr[j];
-
- val = trunc_int_for_mode (val, mode);
-
- return val >= low && val <= high;
-}
-
-/* TRUE when op is an immediate and an exact power of 2, and given that
- OP is 2^scale, scale >= LOW && scale <= HIGH. When OP is a vector,
- all entries must be the same. */
-bool
-exp2_immediate_p (rtx op, machine_mode mode, int low, int high)
-{
- machine_mode int_mode;
- HOST_WIDE_INT val;
- unsigned char arr[16];
- int bytes, i, j;
-
- gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
- || GET_CODE (op) == CONST_VECTOR);
-
- if (GET_CODE (op) == CONST_VECTOR
- && !const_vector_immediate_p (op))
- return 0;
-
- if (GET_MODE (op) != VOIDmode)
- mode = GET_MODE (op);
-
- constant_to_array (mode, op, arr);
-
- mode = GET_MODE_INNER (mode);
-
- bytes = GET_MODE_SIZE (mode);
- int_mode = int_mode_for_mode (mode).require ();
-
- /* Check that bytes are repeated. */
- for (i = bytes; i < 16; i += bytes)
- for (j = 0; j < bytes; j++)
- if (arr[j] != arr[i + j])
- return 0;
-
- val = arr[0];
- for (j = 1; j < bytes; j++)
- val = (val << 8) | arr[j];
-
- val = trunc_int_for_mode (val, int_mode);
-
- /* Currently, we only handle SFmode */
- gcc_assert (mode == SFmode);
- if (mode == SFmode)
- {
- int exp = (val >> 23) - 127;
- return val > 0 && (val & 0x007fffff) == 0
- && exp >= low && exp <= high;
- }
- return FALSE;
-}
-
-/* Return true if X is a SYMBOL_REF to an __ea qualified variable. */
-
-static bool
-ea_symbol_ref_p (const_rtx x)
-{
- tree decl;
-
- if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS)
- {
- rtx plus = XEXP (x, 0);
- rtx op0 = XEXP (plus, 0);
- rtx op1 = XEXP (plus, 1);
- if (GET_CODE (op1) == CONST_INT)
- x = op0;
- }
-
- return (GET_CODE (x) == SYMBOL_REF
- && (decl = SYMBOL_REF_DECL (x)) != 0
- && TREE_CODE (decl) == VAR_DECL
- && TYPE_ADDR_SPACE (TREE_TYPE (decl)));
-}
-
-/* We accept:
- - any 32-bit constant (SImode, SFmode)
- - any constant that can be generated with fsmbi (any mode)
- - a 64-bit constant where the high and low bits are identical
- (DImode, DFmode)
- - a 128-bit constant where the four 32-bit words match. */
-bool
-spu_legitimate_constant_p (machine_mode mode, rtx x)
-{
- subrtx_iterator::array_type array;
- if (GET_CODE (x) == HIGH)
- x = XEXP (x, 0);
-
- /* Reject any __ea qualified reference. These can't appear in
- instructions but must be forced to the constant pool. */
- FOR_EACH_SUBRTX (iter, array, x, ALL)
- if (ea_symbol_ref_p (*iter))
- return 0;
-
- /* V4SI with all identical symbols is valid. */
- if (!flag_pic
- && mode == V4SImode
- && (GET_CODE (CONST_VECTOR_ELT (x, 0)) == SYMBOL_REF
- || GET_CODE (CONST_VECTOR_ELT (x, 0)) == LABEL_REF
- || GET_CODE (CONST_VECTOR_ELT (x, 0)) == CONST))
- return const_vec_duplicate_p (x);
-
- if (GET_CODE (x) == CONST_VECTOR
- && !const_vector_immediate_p (x))
- return 0;
- return 1;
-}
-
-/* Valid address are:
- - symbol_ref, label_ref, const
- - reg
- - reg + const_int, where const_int is 16 byte aligned
- - reg + reg, alignment doesn't matter
- The alignment matters in the reg+const case because lqd and stqd
- ignore the 4 least significant bits of the const. We only care about
- 16 byte modes because the expand phase will change all smaller MEM
- references to TImode. */
-static bool
-spu_legitimate_address_p (machine_mode mode,
- rtx x, bool reg_ok_strict)
-{
- int aligned = GET_MODE_SIZE (mode) >= 16;
- if (aligned
- && GET_CODE (x) == AND
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) == (HOST_WIDE_INT) - 16)
- x = XEXP (x, 0);
- switch (GET_CODE (x))
- {
- case LABEL_REF:
- return !TARGET_LARGE_MEM;
-
- case SYMBOL_REF:
- case CONST:
- /* Keep __ea references until reload so that spu_expand_mov can see them
- in MEMs. */
- if (ea_symbol_ref_p (x))
- return !reload_in_progress && !reload_completed;
- return !TARGET_LARGE_MEM;
-
- case CONST_INT:
- return INTVAL (x) >= 0 && INTVAL (x) <= 0x3ffff;
-
- case SUBREG:
- x = XEXP (x, 0);
- if (!REG_P (x))
- return 0;
- /* FALLTHRU */
-
- case REG:
- return INT_REG_OK_FOR_BASE_P (x, reg_ok_strict);
-
- case PLUS:
- case LO_SUM:
- {
- rtx op0 = XEXP (x, 0);
- rtx op1 = XEXP (x, 1);
- if (GET_CODE (op0) == SUBREG)
- op0 = XEXP (op0, 0);
- if (GET_CODE (op1) == SUBREG)
- op1 = XEXP (op1, 0);
- if (GET_CODE (op0) == REG
- && INT_REG_OK_FOR_BASE_P (op0, reg_ok_strict)
- && GET_CODE (op1) == CONST_INT
- && ((INTVAL (op1) >= -0x2000 && INTVAL (op1) <= 0x1fff)
- /* If virtual registers are involved, the displacement will
- change later on anyway, so checking would be premature.
- Reload will make sure the final displacement after
- register elimination is OK. */
- || op0 == arg_pointer_rtx
- || op0 == frame_pointer_rtx
- || op0 == virtual_stack_vars_rtx)
- && (!aligned || (INTVAL (op1) & 15) == 0))
- return TRUE;
- if (GET_CODE (op0) == REG
- && INT_REG_OK_FOR_BASE_P (op0, reg_ok_strict)
- && GET_CODE (op1) == REG
- && INT_REG_OK_FOR_INDEX_P (op1, reg_ok_strict))
- return TRUE;
- }
- break;
-
- default:
- break;
- }
- return FALSE;
-}
-
-/* Like spu_legitimate_address_p, except with named addresses. */
-static bool
-spu_addr_space_legitimate_address_p (machine_mode mode, rtx x,
- bool reg_ok_strict, addr_space_t as)
-{
- if (as == ADDR_SPACE_EA)
- return (REG_P (x) && (GET_MODE (x) == EAmode));
-
- else if (as != ADDR_SPACE_GENERIC)
- gcc_unreachable ();
-
- return spu_legitimate_address_p (mode, x, reg_ok_strict);
-}
-
-/* When the address is reg + const_int, force the const_int into a
- register. */
-static rtx
-spu_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
- machine_mode mode ATTRIBUTE_UNUSED)
-{
- rtx op0, op1;
- /* Make sure both operands are registers. */
- if (GET_CODE (x) == PLUS)
- {
- op0 = XEXP (x, 0);
- op1 = XEXP (x, 1);
- if (ALIGNED_SYMBOL_REF_P (op0))
- {
- op0 = force_reg (Pmode, op0);
- mark_reg_pointer (op0, 128);
- }
- else if (GET_CODE (op0) != REG)
- op0 = force_reg (Pmode, op0);
- if (ALIGNED_SYMBOL_REF_P (op1))
- {
- op1 = force_reg (Pmode, op1);
- mark_reg_pointer (op1, 128);
- }
- else if (GET_CODE (op1) != REG)
- op1 = force_reg (Pmode, op1);
- x = gen_rtx_PLUS (Pmode, op0, op1);
- }
- return x;
-}
-
-/* Like spu_legitimate_address, except with named address support. */
-static rtx
-spu_addr_space_legitimize_address (rtx x, rtx oldx, machine_mode mode,
- addr_space_t as)
-{
- if (as != ADDR_SPACE_GENERIC)
- return x;
-
- return spu_legitimize_address (x, oldx, mode);
-}
-
-/* Reload reg + const_int for out-of-range displacements. */
-rtx
-spu_legitimize_reload_address (rtx ad, machine_mode mode ATTRIBUTE_UNUSED,
- int opnum, int type)
-{
- bool removed_and = false;
-
- if (GET_CODE (ad) == AND
- && CONST_INT_P (XEXP (ad, 1))
- && INTVAL (XEXP (ad, 1)) == (HOST_WIDE_INT) - 16)
- {
- ad = XEXP (ad, 0);
- removed_and = true;
- }
-
- if (GET_CODE (ad) == PLUS
- && REG_P (XEXP (ad, 0))
- && CONST_INT_P (XEXP (ad, 1))
- && !(INTVAL (XEXP (ad, 1)) >= -0x2000
- && INTVAL (XEXP (ad, 1)) <= 0x1fff))
- {
- /* Unshare the sum. */
- ad = copy_rtx (ad);
-
- /* Reload the displacement. */
- push_reload (XEXP (ad, 1), NULL_RTX, &XEXP (ad, 1), NULL,
- BASE_REG_CLASS, GET_MODE (ad), VOIDmode, 0, 0,
- opnum, (enum reload_type) type);
-
- /* Add back AND for alignment if we stripped it. */
- if (removed_and)
- ad = gen_rtx_AND (GET_MODE (ad), ad, GEN_INT (-16));
-
- return ad;
- }
-
- return NULL_RTX;
-}
-
-/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
- struct attribute_spec.handler. */
-static tree
-spu_handle_fndecl_attribute (tree * node,
- tree name,
- tree args ATTRIBUTE_UNUSED,
- int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
-{
- if (TREE_CODE (*node) != FUNCTION_DECL)
- {
- warning (0, "%qE attribute only applies to functions",
- name);
- *no_add_attrs = true;
- }
-
- return NULL_TREE;
-}
-
-/* Handle the "vector" attribute. */
-static tree
-spu_handle_vector_attribute (tree * node, tree name,
- tree args ATTRIBUTE_UNUSED,
- int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
-{
- tree type = *node, result = NULL_TREE;
- machine_mode mode;
- int unsigned_p;
-
- while (POINTER_TYPE_P (type)
- || TREE_CODE (type) == FUNCTION_TYPE
- || TREE_CODE (type) == METHOD_TYPE || TREE_CODE (type) == ARRAY_TYPE)
- type = TREE_TYPE (type);
-
- mode = TYPE_MODE (type);
-
- unsigned_p = TYPE_UNSIGNED (type);
- switch (mode)
- {
- case E_DImode:
- result = (unsigned_p ? unsigned_V2DI_type_node : V2DI_type_node);
- break;
- case E_SImode:
- result = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
- break;
- case E_HImode:
- result = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
- break;
- case E_QImode:
- result = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
- break;
- case E_SFmode:
- result = V4SF_type_node;
- break;
- case E_DFmode:
- result = V2DF_type_node;
- break;
- default:
- break;
- }
-
- /* Propagate qualifiers attached to the element type
- onto the vector type. */
- if (result && result != type && TYPE_QUALS (type))
- result = build_qualified_type (result, TYPE_QUALS (type));
-
- *no_add_attrs = true; /* No need to hang on to the attribute. */
-
- if (!result)
- warning (0, "%qE attribute ignored", name);
- else
- *node = lang_hooks.types.reconstruct_complex_type (*node, result);
-
- return NULL_TREE;
-}
-
-/* Return nonzero if FUNC is a naked function. */
-static int
-spu_naked_function_p (tree func)
-{
- tree a;
-
- if (TREE_CODE (func) != FUNCTION_DECL)
- abort ();
-
- a = lookup_attribute ("naked", DECL_ATTRIBUTES (func));
- return a != NULL_TREE;
-}
-
-int
-spu_initial_elimination_offset (int from, int to)
-{
- int saved_regs_size = spu_saved_regs_size ();
- int sp_offset = 0;
- if (!crtl->is_leaf || crtl->outgoing_args_size
- || get_frame_size () || saved_regs_size)
- sp_offset = STACK_POINTER_OFFSET;
- if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
- return get_frame_size () + crtl->outgoing_args_size + sp_offset;
- else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
- return get_frame_size ();
- else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
- return sp_offset + crtl->outgoing_args_size
- + get_frame_size () + saved_regs_size + STACK_POINTER_OFFSET;
- else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
- return get_frame_size () + saved_regs_size + sp_offset;
- else
- gcc_unreachable ();
-}
-
-rtx
-spu_function_value (const_tree type, const_tree func ATTRIBUTE_UNUSED)
-{
- machine_mode mode = TYPE_MODE (type);
- int byte_size = ((mode == BLKmode)
- ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
-
- /* Make sure small structs are left justified in a register. */
- if ((mode == BLKmode || (type && AGGREGATE_TYPE_P (type)))
- && byte_size <= UNITS_PER_WORD * MAX_REGISTER_RETURN && byte_size > 0)
- {
- machine_mode smode;
- rtvec v;
- int i;
- int nregs = (byte_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
- int n = byte_size / UNITS_PER_WORD;
- v = rtvec_alloc (nregs);
- for (i = 0; i < n; i++)
- {
- RTVEC_ELT (v, i) = gen_rtx_EXPR_LIST (VOIDmode,
- gen_rtx_REG (TImode,
- FIRST_RETURN_REGNUM
- + i),
- GEN_INT (UNITS_PER_WORD * i));
- byte_size -= UNITS_PER_WORD;
- }
-
- if (n < nregs)
- {
- if (byte_size < 4)
- byte_size = 4;
- smode = smallest_int_mode_for_size (byte_size * BITS_PER_UNIT);
- RTVEC_ELT (v, n) =
- gen_rtx_EXPR_LIST (VOIDmode,
- gen_rtx_REG (smode, FIRST_RETURN_REGNUM + n),
- GEN_INT (UNITS_PER_WORD * n));
- }
- return gen_rtx_PARALLEL (mode, v);
- }
- return gen_rtx_REG (mode, FIRST_RETURN_REGNUM);
-}
-
-static rtx
-spu_function_arg (cumulative_args_t cum_v, const function_arg_info &arg)
-{
- CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
- int byte_size;
-
- if (*cum >= MAX_REGISTER_ARGS)
- return 0;
-
- byte_size = arg.promoted_size_in_bytes ();
-
- /* The ABI does not allow parameters to be passed partially in
- reg and partially in stack. */
- if ((*cum + (byte_size + 15) / 16) > MAX_REGISTER_ARGS)
- return 0;
-
- /* Make sure small structs are left justified in a register. */
- if ((arg.mode == BLKmode || arg.aggregate_type_p ())
- && byte_size < UNITS_PER_WORD && byte_size > 0)
- {
- machine_mode smode;
- rtx gr_reg;
- if (byte_size < 4)
- byte_size = 4;
- smode = smallest_int_mode_for_size (byte_size * BITS_PER_UNIT);
- gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
- gen_rtx_REG (smode, FIRST_ARG_REGNUM + *cum),
- const0_rtx);
- return gen_rtx_PARALLEL (arg.mode, gen_rtvec (1, gr_reg));
- }
- else
- return gen_rtx_REG (arg.mode, FIRST_ARG_REGNUM + *cum);
-}
-
-static void
-spu_function_arg_advance (cumulative_args_t cum_v,
- const function_arg_info &arg)
-{
- CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
-
- *cum += (arg.type && TREE_CODE (TYPE_SIZE (arg.type)) != INTEGER_CST
- ? 1
- : arg.mode == BLKmode
- ? ((int_size_in_bytes (arg.type) + 15) / 16)
- : arg.mode == VOIDmode
- ? 1
- : spu_hard_regno_nregs (FIRST_ARG_REGNUM, arg.mode));
-}
-
-/* Implement TARGET_FUNCTION_ARG_OFFSET. The SPU ABI wants 32/64-bit
- types at offset 0 in the quad-word on the stack. 8/16-bit types
- should be at offsets 3/2 respectively. */
-
-static HOST_WIDE_INT
-spu_function_arg_offset (machine_mode mode, const_tree type)
-{
- if (type && INTEGRAL_TYPE_P (type) && GET_MODE_SIZE (mode) < 4)
- return 4 - GET_MODE_SIZE (mode);
- return 0;
-}
-
-/* Implement TARGET_FUNCTION_ARG_PADDING. */
-
-static pad_direction
-spu_function_arg_padding (machine_mode, const_tree)
-{
- return PAD_UPWARD;
-}
-
-/* Variable sized types are passed by reference. */
-static bool
-spu_pass_by_reference (cumulative_args_t, const function_arg_info &arg)
-{
- return arg.type && TREE_CODE (TYPE_SIZE (arg.type)) != INTEGER_CST;
-}
-
-
-/* Var args. */
-
-/* Create and return the va_list datatype.
-
- On SPU, va_list is an array type equivalent to
-
- typedef struct __va_list_tag
- {
- void *__args __attribute__((__aligned(16)));
- void *__skip __attribute__((__aligned(16)));
-
- } va_list[1];
-
- where __args points to the arg that will be returned by the next
- va_arg(), and __skip points to the previous stack frame such that
- when __args == __skip we should advance __args by 32 bytes. */
-static tree
-spu_build_builtin_va_list (void)
-{
- tree f_args, f_skip, record, type_decl;
- bool owp;
-
- record = (*lang_hooks.types.make_type) (RECORD_TYPE);
-
- type_decl =
- build_decl (BUILTINS_LOCATION,
- TYPE_DECL, get_identifier ("__va_list_tag"), record);
-
- f_args = build_decl (BUILTINS_LOCATION,
- FIELD_DECL, get_identifier ("__args"), ptr_type_node);
- f_skip = build_decl (BUILTINS_LOCATION,
- FIELD_DECL, get_identifier ("__skip"), ptr_type_node);
-
- DECL_FIELD_CONTEXT (f_args) = record;
- SET_DECL_ALIGN (f_args, 128);
- DECL_USER_ALIGN (f_args) = 1;
-
- DECL_FIELD_CONTEXT (f_skip) = record;
- SET_DECL_ALIGN (f_skip, 128);
- DECL_USER_ALIGN (f_skip) = 1;
-
- TYPE_STUB_DECL (record) = type_decl;
- TYPE_NAME (record) = type_decl;
- TYPE_FIELDS (record) = f_args;
- DECL_CHAIN (f_args) = f_skip;
-
- /* We know this is being padded and we want it too. It is an internal
- type so hide the warnings from the user. */
- owp = warn_padded;
- warn_padded = false;
-
- layout_type (record);
-
- warn_padded = owp;
-
- /* The correct type is an array type of one element. */
- return build_array_type (record, build_index_type (size_zero_node));
-}
-
-/* Implement va_start by filling the va_list structure VALIST.
- NEXTARG points to the first anonymous stack argument.
-
- The following global variables are used to initialize
- the va_list structure:
-
- crtl->args.info;
- the CUMULATIVE_ARGS for this function
-
- crtl->args.arg_offset_rtx:
- holds the offset of the first anonymous stack argument
- (relative to the virtual arg pointer). */
-
-static void
-spu_va_start (tree valist, rtx nextarg)
-{
- tree f_args, f_skip;
- tree args, skip, t;
-
- f_args = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
- f_skip = DECL_CHAIN (f_args);
-
- valist = build_simple_mem_ref (valist);
- args =
- build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE);
- skip =
- build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE);
-
- /* Find the __args area. */
- t = make_tree (TREE_TYPE (args), nextarg);
- if (crtl->args.pretend_args_size > 0)
- t = fold_build_pointer_plus_hwi (t, -STACK_POINTER_OFFSET);
- t = build2 (MODIFY_EXPR, TREE_TYPE (args), args, t);
- TREE_SIDE_EFFECTS (t) = 1;
- expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
-
- /* Find the __skip area. */
- t = make_tree (TREE_TYPE (skip), virtual_incoming_args_rtx);
- t = fold_build_pointer_plus_hwi (t, (crtl->args.pretend_args_size
- - STACK_POINTER_OFFSET));
- t = build2 (MODIFY_EXPR, TREE_TYPE (skip), skip, t);
- TREE_SIDE_EFFECTS (t) = 1;
- expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
-}
-
-/* Gimplify va_arg by updating the va_list structure
- VALIST as required to retrieve an argument of type
- TYPE, and returning that argument.
-
- ret = va_arg(VALIST, TYPE);
-
- generates code equivalent to:
-
- paddedsize = (sizeof(TYPE) + 15) & -16;
- if (VALIST.__args + paddedsize > VALIST.__skip
- && VALIST.__args <= VALIST.__skip)
- addr = VALIST.__skip + 32;
- else
- addr = VALIST.__args;
- VALIST.__args = addr + paddedsize;
- ret = *(TYPE *)addr;
- */
-static tree
-spu_gimplify_va_arg_expr (tree valist, tree type, gimple_seq * pre_p,
- gimple_seq * post_p ATTRIBUTE_UNUSED)
-{
- tree f_args, f_skip;
- tree args, skip;
- HOST_WIDE_INT size, rsize;
- tree addr, tmp;
- bool pass_by_reference_p;
-
- f_args = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
- f_skip = DECL_CHAIN (f_args);
-
- args =
- build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE);
- skip =
- build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE);
-
- addr = create_tmp_var (ptr_type_node, "va_arg");
-
- /* if an object is dynamically sized, a pointer to it is passed
- instead of the object itself. */
- pass_by_reference_p = pass_va_arg_by_reference (type);
- if (pass_by_reference_p)
- type = build_pointer_type (type);
- size = int_size_in_bytes (type);
- rsize = ((size + UNITS_PER_WORD - 1) / UNITS_PER_WORD) * UNITS_PER_WORD;
-
- /* build conditional expression to calculate addr. The expression
- will be gimplified later. */
- tmp = fold_build_pointer_plus_hwi (unshare_expr (args), rsize);
- tmp = build2 (TRUTH_AND_EXPR, boolean_type_node,
- build2 (GT_EXPR, boolean_type_node, tmp, unshare_expr (skip)),
- build2 (LE_EXPR, boolean_type_node, unshare_expr (args),
- unshare_expr (skip)));
-
- tmp = build3 (COND_EXPR, ptr_type_node, tmp,
- fold_build_pointer_plus_hwi (unshare_expr (skip), 32),
- unshare_expr (args));
-
- gimplify_assign (addr, tmp, pre_p);
-
- /* update VALIST.__args */
- tmp = fold_build_pointer_plus_hwi (addr, rsize);
- gimplify_assign (unshare_expr (args), tmp, pre_p);
-
- addr = fold_convert (build_pointer_type_for_mode (type, ptr_mode, true),
- addr);
-
- if (pass_by_reference_p)
- addr = build_va_arg_indirect_ref (addr);
-
- return build_va_arg_indirect_ref (addr);
-}
-
-/* Save parameter registers starting with the register that corresponds
- to the first unnamed parameters. If the first unnamed parameter is
- in the stack then save no registers. Set pretend_args_size to the
- amount of space needed to save the registers. */
-static void
-spu_setup_incoming_varargs (cumulative_args_t cum,
- const function_arg_info &arg,
- int *pretend_size, int no_rtl)
-{
- if (!no_rtl)
- {
- rtx tmp;
- int regno;
- int offset;
- int ncum = *get_cumulative_args (cum);
-
- /* cum currently points to the last named argument, we want to
- start at the next argument. */
- spu_function_arg_advance (pack_cumulative_args (&ncum), arg);
-
- offset = -STACK_POINTER_OFFSET;
- for (regno = ncum; regno < MAX_REGISTER_ARGS; regno++)
- {
- tmp = gen_frame_mem (V4SImode,
- plus_constant (Pmode, virtual_incoming_args_rtx,
- offset));
- emit_move_insn (tmp,
- gen_rtx_REG (V4SImode, FIRST_ARG_REGNUM + regno));
- offset += 16;
- }
- *pretend_size = offset + STACK_POINTER_OFFSET;
- }
-}
-
-static void
-spu_conditional_register_usage (void)
-{
- if (flag_pic)
- {
- fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
- call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
- }
-}
-
-/* This is called any time we inspect the alignment of a register for
- addresses. */
-static int
-reg_aligned_for_addr (rtx x)
-{
- int regno =
- REGNO (x) < FIRST_PSEUDO_REGISTER ? ORIGINAL_REGNO (x) : REGNO (x);
- return REGNO_POINTER_ALIGN (regno) >= 128;
-}
-
-/* Encode symbol attributes (local vs. global, tls model) of a SYMBOL_REF
- into its SYMBOL_REF_FLAGS. */
-static void
-spu_encode_section_info (tree decl, rtx rtl, int first)
-{
- default_encode_section_info (decl, rtl, first);
-
- /* If a variable has a forced alignment to < 16 bytes, mark it with
- SYMBOL_FLAG_ALIGN1. */
- if (TREE_CODE (decl) == VAR_DECL
- && DECL_USER_ALIGN (decl) && DECL_ALIGN (decl) < 128)
- SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_ALIGN1;
-}
-
-/* Return TRUE if we are certain the mem refers to a complete object
- which is both 16-byte aligned and padded to a 16-byte boundary. This
- would make it safe to store with a single instruction.
- We guarantee the alignment and padding for static objects by aligning
- all of them to 16-bytes. (DATA_ALIGNMENT and TARGET_CONSTANT_ALIGNMENT.)
- FIXME: We currently cannot guarantee this for objects on the stack
- because assign_parm_setup_stack calls assign_stack_local with the
- alignment of the parameter mode and in that case the alignment never
- gets adjusted by LOCAL_ALIGNMENT. */
-static int
-store_with_one_insn_p (rtx mem)
-{
- machine_mode mode = GET_MODE (mem);
- rtx addr = XEXP (mem, 0);
- if (mode == BLKmode)
- return 0;
- if (GET_MODE_SIZE (mode) >= 16)
- return 1;
- /* Only static objects. */
- if (GET_CODE (addr) == SYMBOL_REF)
- {
- /* We use the associated declaration to make sure the access is
- referring to the whole object.
- We check both MEM_EXPR and SYMBOL_REF_DECL. I'm not sure
- if it is necessary. Will there be cases where one exists, and
- the other does not? Will there be cases where both exist, but
- have different types? */
- tree decl = MEM_EXPR (mem);
- if (decl
- && TREE_CODE (decl) == VAR_DECL
- && GET_MODE (mem) == TYPE_MODE (TREE_TYPE (decl)))
- return 1;
- decl = SYMBOL_REF_DECL (addr);
- if (decl
- && TREE_CODE (decl) == VAR_DECL
- && GET_MODE (mem) == TYPE_MODE (TREE_TYPE (decl)))
- return 1;
- }
- return 0;
-}
-
-/* Return 1 when the address is not valid for a simple load and store as
- required by the '_mov*' patterns. We could make this less strict
- for loads, but we prefer mem's to look the same so they are more
- likely to be merged. */
-static int
-address_needs_split (rtx mem)
-{
- if (GET_MODE_SIZE (GET_MODE (mem)) < 16
- && (GET_MODE_SIZE (GET_MODE (mem)) < 4
- || !(store_with_one_insn_p (mem)
- || mem_is_padded_component_ref (mem))))
- return 1;
-
- return 0;
-}
-
-static GTY(()) rtx cache_fetch; /* __cache_fetch function */
-static GTY(()) rtx cache_fetch_dirty; /* __cache_fetch_dirty function */
-static alias_set_type ea_alias_set = -1; /* alias set for __ea memory */
-
-/* MEM is known to be an __ea qualified memory access. Emit a call to
- fetch the ppu memory to local store, and return its address in local
- store. */
-
-static void
-ea_load_store (rtx mem, bool is_store, rtx ea_addr, rtx data_addr)
-{
- if (is_store)
- {
- rtx ndirty = GEN_INT (GET_MODE_SIZE (GET_MODE (mem)));
- if (!cache_fetch_dirty)
- cache_fetch_dirty = init_one_libfunc ("__cache_fetch_dirty");
- emit_library_call_value (cache_fetch_dirty, data_addr, LCT_NORMAL, Pmode,
- ea_addr, EAmode, ndirty, SImode);
- }
- else
- {
- if (!cache_fetch)
- cache_fetch = init_one_libfunc ("__cache_fetch");
- emit_library_call_value (cache_fetch, data_addr, LCT_NORMAL, Pmode,
- ea_addr, EAmode);
- }
-}
-
-/* Like ea_load_store, but do the cache tag comparison and, for stores,
- dirty bit marking, inline.
-
- The cache control data structure is an array of
-
- struct __cache_tag_array
- {
- unsigned int tag_lo[4];
- unsigned int tag_hi[4];
- void *data_pointer[4];
- int reserved[4];
- vector unsigned short dirty_bits[4];
- } */
-
-static void
-ea_load_store_inline (rtx mem, bool is_store, rtx ea_addr, rtx data_addr)
-{
- rtx ea_addr_si;
- HOST_WIDE_INT v;
- rtx tag_size_sym = gen_rtx_SYMBOL_REF (Pmode, "__cache_tag_array_size");
- rtx tag_arr_sym = gen_rtx_SYMBOL_REF (Pmode, "__cache_tag_array");
- rtx index_mask = gen_reg_rtx (SImode);
- rtx tag_arr = gen_reg_rtx (Pmode);
- rtx splat_mask = gen_reg_rtx (TImode);
- rtx splat = gen_reg_rtx (V4SImode);
- rtx splat_hi = NULL_RTX;
- rtx tag_index = gen_reg_rtx (Pmode);
- rtx block_off = gen_reg_rtx (SImode);
- rtx tag_addr = gen_reg_rtx (Pmode);
- rtx tag = gen_reg_rtx (V4SImode);
- rtx cache_tag = gen_reg_rtx (V4SImode);
- rtx cache_tag_hi = NULL_RTX;
- rtx cache_ptrs = gen_reg_rtx (TImode);
- rtx cache_ptrs_si = gen_reg_rtx (SImode);
- rtx tag_equal = gen_reg_rtx (V4SImode);
- rtx tag_equal_hi = NULL_RTX;
- rtx tag_eq_pack = gen_reg_rtx (V4SImode);
- rtx tag_eq_pack_si = gen_reg_rtx (SImode);
- rtx eq_index = gen_reg_rtx (SImode);
- rtx bcomp, hit_label, hit_ref, cont_label;
- rtx_insn *insn;
-
- if (spu_ea_model != 32)
- {
- splat_hi = gen_reg_rtx (V4SImode);
- cache_tag_hi = gen_reg_rtx (V4SImode);
- tag_equal_hi = gen_reg_rtx (V4SImode);
- }
-
- emit_move_insn (index_mask, plus_constant (Pmode, tag_size_sym, -128));
- emit_move_insn (tag_arr, tag_arr_sym);
- v = 0x0001020300010203LL;
- emit_move_insn (splat_mask, immed_double_const (v, v, TImode));
- ea_addr_si = ea_addr;
- if (spu_ea_model != 32)
- ea_addr_si = convert_to_mode (SImode, ea_addr, 1);
-
- /* tag_index = ea_addr & (tag_array_size - 128) */
- emit_insn (gen_andsi3 (tag_index, ea_addr_si, index_mask));
-
- /* splat ea_addr to all 4 slots. */
- emit_insn (gen_shufb (splat, ea_addr_si, ea_addr_si, splat_mask));
- /* Similarly for high 32 bits of ea_addr. */
- if (spu_ea_model != 32)
- emit_insn (gen_shufb (splat_hi, ea_addr, ea_addr, splat_mask));
-
- /* block_off = ea_addr & 127 */
- emit_insn (gen_andsi3 (block_off, ea_addr_si, spu_const (SImode, 127)));
-
- /* tag_addr = tag_arr + tag_index */
- emit_insn (gen_addsi3 (tag_addr, tag_arr, tag_index));
-
- /* Read cache tags. */
- emit_move_insn (cache_tag, gen_rtx_MEM (V4SImode, tag_addr));
- if (spu_ea_model != 32)
- emit_move_insn (cache_tag_hi, gen_rtx_MEM (V4SImode,
- plus_constant (Pmode,
- tag_addr, 16)));
-
- /* tag = ea_addr & -128 */
- emit_insn (gen_andv4si3 (tag, splat, spu_const (V4SImode, -128)));
-
- /* Read all four cache data pointers. */
- emit_move_insn (cache_ptrs, gen_rtx_MEM (TImode,
- plus_constant (Pmode,
- tag_addr, 32)));
-
- /* Compare tags. */
- emit_insn (gen_ceq_v4si (tag_equal, tag, cache_tag));
- if (spu_ea_model != 32)
- {
- emit_insn (gen_ceq_v4si (tag_equal_hi, splat_hi, cache_tag_hi));
- emit_insn (gen_andv4si3 (tag_equal, tag_equal, tag_equal_hi));
- }
-
- /* At most one of the tags compare equal, so tag_equal has one
- 32-bit slot set to all 1's, with the other slots all zero.
- gbb picks off low bit from each byte in the 128-bit registers,
- so tag_eq_pack is one of 0xf000, 0x0f00, 0x00f0, 0x000f, assuming
- we have a hit. */
- emit_insn (gen_spu_gbb (tag_eq_pack, spu_gen_subreg (V16QImode, tag_equal)));
- emit_insn (gen_spu_convert (tag_eq_pack_si, tag_eq_pack));
-
- /* So counting leading zeros will set eq_index to 16, 20, 24 or 28. */
- emit_insn (gen_clzsi2 (eq_index, tag_eq_pack_si));
-
- /* Allowing us to rotate the corresponding cache data pointer to slot0.
- (rotating eq_index mod 16 bytes). */
- emit_insn (gen_rotqby_ti (cache_ptrs, cache_ptrs, eq_index));
- emit_insn (gen_spu_convert (cache_ptrs_si, cache_ptrs));
-
- /* Add block offset to form final data address. */
- emit_insn (gen_addsi3 (data_addr, cache_ptrs_si, block_off));
-
- /* Check that we did hit. */
- hit_label = gen_label_rtx ();
- hit_ref = gen_rtx_LABEL_REF (VOIDmode, hit_label);
- bcomp = gen_rtx_NE (SImode, tag_eq_pack_si, const0_rtx);
- insn = emit_jump_insn (gen_rtx_SET (pc_rtx,
- gen_rtx_IF_THEN_ELSE (VOIDmode, bcomp,
- hit_ref, pc_rtx)));
- /* Say that this branch is very likely to happen. */
- add_reg_br_prob_note (insn, profile_probability::very_likely ());
-
- ea_load_store (mem, is_store, ea_addr, data_addr);
- cont_label = gen_label_rtx ();
- emit_jump_insn (gen_jump (cont_label));
- emit_barrier ();
-
- emit_label (hit_label);
-
- if (is_store)
- {
- HOST_WIDE_INT v_hi;
- rtx dirty_bits = gen_reg_rtx (TImode);
- rtx dirty_off = gen_reg_rtx (SImode);
- rtx dirty_128 = gen_reg_rtx (TImode);
- rtx neg_block_off = gen_reg_rtx (SImode);
-
- /* Set up mask with one dirty bit per byte of the mem we are
- writing, starting from top bit. */
- v_hi = v = -1;
- v <<= (128 - GET_MODE_SIZE (GET_MODE (mem))) & 63;
- if ((128 - GET_MODE_SIZE (GET_MODE (mem))) >= 64)
- {
- v_hi = v;
- v = 0;
- }
- emit_move_insn (dirty_bits, immed_double_const (v, v_hi, TImode));
-
- /* Form index into cache dirty_bits. eq_index is one of
- 0x10, 0x14, 0x18 or 0x1c. Multiplying by 4 gives us
- 0x40, 0x50, 0x60 or 0x70 which just happens to be the
- offset to each of the four dirty_bits elements. */
- emit_insn (gen_ashlsi3 (dirty_off, eq_index, spu_const (SImode, 2)));
-
- emit_insn (gen_spu_lqx (dirty_128, tag_addr, dirty_off));
-
- /* Rotate bit mask to proper bit. */
- emit_insn (gen_negsi2 (neg_block_off, block_off));
- emit_insn (gen_rotqbybi_ti (dirty_bits, dirty_bits, neg_block_off));
- emit_insn (gen_rotqbi_ti (dirty_bits, dirty_bits, neg_block_off));
-
- /* Or in the new dirty bits. */
- emit_insn (gen_iorti3 (dirty_128, dirty_bits, dirty_128));
-
- /* Store. */
- emit_insn (gen_spu_stqx (dirty_128, tag_addr, dirty_off));
- }
-
- emit_label (cont_label);
-}
-
-static rtx
-expand_ea_mem (rtx mem, bool is_store)
-{
- rtx ea_addr;
- rtx data_addr = gen_reg_rtx (Pmode);
- rtx new_mem;
-
- ea_addr = force_reg (EAmode, XEXP (mem, 0));
- if (optimize_size || optimize == 0)
- ea_load_store (mem, is_store, ea_addr, data_addr);
- else
- ea_load_store_inline (mem, is_store, ea_addr, data_addr);
-
- if (ea_alias_set == -1)
- ea_alias_set = new_alias_set ();
-
- /* We generate a new MEM RTX to refer to the copy of the data
- in the cache. We do not copy memory attributes (except the
- alignment) from the original MEM, as they may no longer apply
- to the cache copy. */
- new_mem = gen_rtx_MEM (GET_MODE (mem), data_addr);
- set_mem_alias_set (new_mem, ea_alias_set);
- set_mem_align (new_mem, MIN (MEM_ALIGN (mem), 128 * 8));
-
- return new_mem;
-}
-
-int
-spu_expand_mov (rtx * ops, machine_mode mode)
-{
- if (GET_CODE (ops[0]) == SUBREG && !valid_subreg (ops[0]))
- {
- /* Perform the move in the destination SUBREG's inner mode. */
- ops[0] = SUBREG_REG (ops[0]);
- mode = GET_MODE (ops[0]);
- ops[1] = gen_lowpart_common (mode, ops[1]);
- gcc_assert (ops[1]);
- }
-
- if (GET_CODE (ops[1]) == SUBREG && !valid_subreg (ops[1]))
- {
- rtx from = SUBREG_REG (ops[1]);
- scalar_int_mode imode = int_mode_for_mode (GET_MODE (from)).require ();
-
- gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
- && GET_MODE_CLASS (imode) == MODE_INT
- && subreg_lowpart_p (ops[1]));
-
- if (GET_MODE_SIZE (imode) < 4)
- imode = SImode;
- if (imode != GET_MODE (from))
- from = gen_rtx_SUBREG (imode, from, 0);
-
- if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (imode))
- {
- enum insn_code icode = convert_optab_handler (trunc_optab,
- mode, imode);
- emit_insn (GEN_FCN (icode) (ops[0], from));
- }
- else
- emit_insn (gen_extend_insn (ops[0], from, mode, imode, 1));
- return 1;
- }
-
- /* At least one of the operands needs to be a register. */
- if ((reload_in_progress | reload_completed) == 0
- && !register_operand (ops[0], mode) && !register_operand (ops[1], mode))
- {
- rtx temp = force_reg (mode, ops[1]);
- emit_move_insn (ops[0], temp);
- return 1;
- }
- if (reload_in_progress || reload_completed)
- {
- if (CONSTANT_P (ops[1]))
- return spu_split_immediate (ops);
- return 0;
- }
-
- /* Catch the SImode immediates greater than 0x7fffffff, and sign
- extend them. */
- if (GET_CODE (ops[1]) == CONST_INT)
- {
- HOST_WIDE_INT val = trunc_int_for_mode (INTVAL (ops[1]), mode);
- if (val != INTVAL (ops[1]))
- {
- emit_move_insn (ops[0], GEN_INT (val));
- return 1;
- }
- }
- if (MEM_P (ops[0]))
- {
- if (MEM_ADDR_SPACE (ops[0]))
- ops[0] = expand_ea_mem (ops[0], true);
- return spu_split_store (ops);
- }
- if (MEM_P (ops[1]))
- {
- if (MEM_ADDR_SPACE (ops[1]))
- ops[1] = expand_ea_mem (ops[1], false);
- return spu_split_load (ops);
- }
-
- return 0;
-}
-
-static void
-spu_convert_move (rtx dst, rtx src)
-{
- machine_mode mode = GET_MODE (dst);
- machine_mode int_mode = int_mode_for_mode (mode).require ();
- rtx reg;
- gcc_assert (GET_MODE (src) == TImode);
- reg = int_mode != mode ? gen_reg_rtx (int_mode) : dst;
- emit_insn (gen_rtx_SET (reg,
- gen_rtx_TRUNCATE (int_mode,
- gen_rtx_LSHIFTRT (TImode, src,
- GEN_INT (int_mode == DImode ? 64 : 96)))));
- if (int_mode != mode)
- {
- reg = simplify_gen_subreg (mode, reg, int_mode, 0);
- emit_move_insn (dst, reg);
- }
-}
-
-/* Load TImode values into DST0 and DST1 (when it is non-NULL) using
- the address from SRC and SRC+16. Return a REG or CONST_INT that
- specifies how many bytes to rotate the loaded registers, plus any
- extra from EXTRA_ROTQBY. The address and rotate amounts are
- normalized to improve merging of loads and rotate computations. */
-static rtx
-spu_expand_load (rtx dst0, rtx dst1, rtx src, int extra_rotby)
-{
- rtx addr = XEXP (src, 0);
- rtx p0, p1, rot, addr0, addr1;
- int rot_amt;
-
- rot = 0;
- rot_amt = 0;
-
- if (MEM_ALIGN (src) >= 128)
- /* Address is already aligned; simply perform a TImode load. */ ;
- else if (GET_CODE (addr) == PLUS)
- {
- /* 8 cases:
- aligned reg + aligned reg => lqx
- aligned reg + unaligned reg => lqx, rotqby
- aligned reg + aligned const => lqd
- aligned reg + unaligned const => lqd, rotqbyi
- unaligned reg + aligned reg => lqx, rotqby
- unaligned reg + unaligned reg => lqx, a, rotqby (1 scratch)
- unaligned reg + aligned const => lqd, rotqby
- unaligned reg + unaligned const -> not allowed by legitimate address
- */
- p0 = XEXP (addr, 0);
- p1 = XEXP (addr, 1);
- if (!reg_aligned_for_addr (p0))
- {
- if (REG_P (p1) && !reg_aligned_for_addr (p1))
- {
- rot = gen_reg_rtx (SImode);
- emit_insn (gen_addsi3 (rot, p0, p1));
- }
- else if (GET_CODE (p1) == CONST_INT && (INTVAL (p1) & 15))
- {
- if (INTVAL (p1) > 0
- && REG_POINTER (p0)
- && INTVAL (p1) * BITS_PER_UNIT
- < REGNO_POINTER_ALIGN (REGNO (p0)))
- {
- rot = gen_reg_rtx (SImode);
- emit_insn (gen_addsi3 (rot, p0, p1));
- addr = p0;
- }
- else
- {
- rtx x = gen_reg_rtx (SImode);
- emit_move_insn (x, p1);
- if (!spu_arith_operand (p1, SImode))
- p1 = x;
- rot = gen_reg_rtx (SImode);
- emit_insn (gen_addsi3 (rot, p0, p1));
- addr = gen_rtx_PLUS (Pmode, p0, x);
- }
- }
- else
- rot = p0;
- }
- else
- {
- if (GET_CODE (p1) == CONST_INT && (INTVAL (p1) & 15))
- {
- rot_amt = INTVAL (p1) & 15;
- if (INTVAL (p1) & -16)
- {
- p1 = GEN_INT (INTVAL (p1) & -16);
- addr = gen_rtx_PLUS (SImode, p0, p1);
- }
- else
- addr = p0;
- }
- else if (REG_P (p1) && !reg_aligned_for_addr (p1))
- rot = p1;
- }
- }
- else if (REG_P (addr))
- {
- if (!reg_aligned_for_addr (addr))
- rot = addr;
- }
- else if (GET_CODE (addr) == CONST)
- {
- if (GET_CODE (XEXP (addr, 0)) == PLUS
- && ALIGNED_SYMBOL_REF_P (XEXP (XEXP (addr, 0), 0))
- && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
- {
- rot_amt = INTVAL (XEXP (XEXP (addr, 0), 1));
- if (rot_amt & -16)
- addr = gen_rtx_CONST (Pmode,
- gen_rtx_PLUS (Pmode,
- XEXP (XEXP (addr, 0), 0),
- GEN_INT (rot_amt & -16)));
- else
- addr = XEXP (XEXP (addr, 0), 0);
- }
- else
- {
- rot = gen_reg_rtx (Pmode);
- emit_move_insn (rot, addr);
- }
- }
- else if (GET_CODE (addr) == CONST_INT)
- {
- rot_amt = INTVAL (addr);
- addr = GEN_INT (rot_amt & -16);
- }
- else if (!ALIGNED_SYMBOL_REF_P (addr))
- {
- rot = gen_reg_rtx (Pmode);
- emit_move_insn (rot, addr);
- }
-
- rot_amt += extra_rotby;
-
- rot_amt &= 15;
-
- if (rot && rot_amt)
- {
- rtx x = gen_reg_rtx (SImode);
- emit_insn (gen_addsi3 (x, rot, GEN_INT (rot_amt)));
- rot = x;
- rot_amt = 0;
- }
- if (!rot && rot_amt)
- rot = GEN_INT (rot_amt);
-
- addr0 = copy_rtx (addr);
- addr0 = gen_rtx_AND (SImode, copy_rtx (addr), GEN_INT (-16));
- emit_insn (gen__movti (dst0, change_address (src, TImode, addr0)));
-
- if (dst1)
- {
- addr1 = plus_constant (SImode, copy_rtx (addr), 16);
- addr1 = gen_rtx_AND (SImode, addr1, GEN_INT (-16));
- emit_insn (gen__movti (dst1, change_address (src, TImode, addr1)));
- }
-
- return rot;
-}
-
-int
-spu_split_load (rtx * ops)
-{
- machine_mode mode = GET_MODE (ops[0]);
- rtx addr, load, rot;
- int rot_amt;
-
- if (GET_MODE_SIZE (mode) >= 16)
- return 0;
-
- addr = XEXP (ops[1], 0);
- gcc_assert (GET_CODE (addr) != AND);
-
- if (!address_needs_split (ops[1]))
- {
- ops[1] = change_address (ops[1], TImode, addr);
- load = gen_reg_rtx (TImode);
- emit_insn (gen__movti (load, ops[1]));
- spu_convert_move (ops[0], load);
- return 1;
- }
-
- rot_amt = GET_MODE_SIZE (mode) < 4 ? GET_MODE_SIZE (mode) - 4 : 0;
-
- load = gen_reg_rtx (TImode);
- rot = spu_expand_load (load, 0, ops[1], rot_amt);
-
- if (rot)
- emit_insn (gen_rotqby_ti (load, load, rot));
-
- spu_convert_move (ops[0], load);
- return 1;
-}
-
-int
-spu_split_store (rtx * ops)
-{
- machine_mode mode = GET_MODE (ops[0]);
- rtx reg;
- rtx addr, p0, p1, p1_lo, smem;
- int aform;
- int scalar;
-
- if (GET_MODE_SIZE (mode) >= 16)
- return 0;
-
- addr = XEXP (ops[0], 0);
- gcc_assert (GET_CODE (addr) != AND);
-
- if (!address_needs_split (ops[0]))
- {
- reg = gen_reg_rtx (TImode);
- emit_insn (gen_spu_convert (reg, ops[1]));
- ops[0] = change_address (ops[0], TImode, addr);
- emit_move_insn (ops[0], reg);
- return 1;
- }
-
- if (GET_CODE (addr) == PLUS)
- {
- /* 8 cases:
- aligned reg + aligned reg => lqx, c?x, shuf, stqx
- aligned reg + unaligned reg => lqx, c?x, shuf, stqx
- aligned reg + aligned const => lqd, c?d, shuf, stqx
- aligned reg + unaligned const => lqd, c?d, shuf, stqx
- unaligned reg + aligned reg => lqx, c?x, shuf, stqx
- unaligned reg + unaligned reg => lqx, c?x, shuf, stqx
- unaligned reg + aligned const => lqd, c?d, shuf, stqx
- unaligned reg + unaligned const -> lqx, c?d, shuf, stqx
- */
- aform = 0;
- p0 = XEXP (addr, 0);
- p1 = p1_lo = XEXP (addr, 1);
- if (REG_P (p0) && GET_CODE (p1) == CONST_INT)
- {
- p1_lo = GEN_INT (INTVAL (p1) & 15);
- if (reg_aligned_for_addr (p0))
- {
- p1 = GEN_INT (INTVAL (p1) & -16);
- if (p1 == const0_rtx)
- addr = p0;
- else
- addr = gen_rtx_PLUS (SImode, p0, p1);
- }
- else
- {
- rtx x = gen_reg_rtx (SImode);
- emit_move_insn (x, p1);
- addr = gen_rtx_PLUS (SImode, p0, x);
- }
- }
- }
- else if (REG_P (addr))
- {
- aform = 0;
- p0 = addr;
- p1 = p1_lo = const0_rtx;
- }
- else
- {
- aform = 1;
- p0 = gen_rtx_REG (SImode, STACK_POINTER_REGNUM);
- p1 = 0; /* aform doesn't use p1 */
- p1_lo = addr;
- if (ALIGNED_SYMBOL_REF_P (addr))
- p1_lo = const0_rtx;
- else if (GET_CODE (addr) == CONST
- && GET_CODE (XEXP (addr, 0)) == PLUS
- && ALIGNED_SYMBOL_REF_P (XEXP (XEXP (addr, 0), 0))
- && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
- {
- HOST_WIDE_INT v = INTVAL (XEXP (XEXP (addr, 0), 1));
- if ((v & -16) != 0)
- addr = gen_rtx_CONST (Pmode,
- gen_rtx_PLUS (Pmode,
- XEXP (XEXP (addr, 0), 0),
- GEN_INT (v & -16)));
- else
- addr = XEXP (XEXP (addr, 0), 0);
- p1_lo = GEN_INT (v & 15);
- }
- else if (GET_CODE (addr) == CONST_INT)
- {
- p1_lo = GEN_INT (INTVAL (addr) & 15);
- addr = GEN_INT (INTVAL (addr) & -16);
- }
- else
- {
- p1_lo = gen_reg_rtx (SImode);
- emit_move_insn (p1_lo, addr);
- }
- }
-
- gcc_assert (aform == 0 || aform == 1);
- reg = gen_reg_rtx (TImode);
-
- scalar = store_with_one_insn_p (ops[0]);
- if (!scalar)
- {
- /* We could copy the flags from the ops[0] MEM to mem here,
- We don't because we want this load to be optimized away if
- possible, and copying the flags will prevent that in certain
- cases, e.g. consider the volatile flag. */
-
- rtx pat = gen_reg_rtx (TImode);
- rtx lmem = change_address (ops[0], TImode, copy_rtx (addr));
- set_mem_alias_set (lmem, 0);
- emit_insn (gen_movti (reg, lmem));
-
- if (!p0 || reg_aligned_for_addr (p0))
- p0 = stack_pointer_rtx;
- if (!p1_lo)
- p1_lo = const0_rtx;
-
- emit_insn (gen_cpat (pat, p0, p1_lo, GEN_INT (GET_MODE_SIZE (mode))));
- emit_insn (gen_shufb (reg, ops[1], reg, pat));
- }
- else
- {
- if (GET_CODE (ops[1]) == REG)
- emit_insn (gen_spu_convert (reg, ops[1]));
- else if (GET_CODE (ops[1]) == SUBREG)
- emit_insn (gen_spu_convert (reg, SUBREG_REG (ops[1])));
- else
- abort ();
- }
-
- if (GET_MODE_SIZE (mode) < 4 && scalar)
- emit_insn (gen_ashlti3
- (reg, reg, GEN_INT (32 - GET_MODE_BITSIZE (mode))));
-
- smem = change_address (ops[0], TImode, copy_rtx (addr));
- /* We can't use the previous alias set because the memory has changed
- size and can potentially overlap objects of other types. */
- set_mem_alias_set (smem, 0);
-
- emit_insn (gen_movti (smem, reg));
- return 1;
-}
-
-/* Return TRUE if X is MEM which is a struct member reference
- and the member can safely be loaded and stored with a single
- instruction because it is padded. */
-static int
-mem_is_padded_component_ref (rtx x)
-{
- tree t = MEM_EXPR (x);
- tree r;
- if (!t || TREE_CODE (t) != COMPONENT_REF)
- return 0;
- t = TREE_OPERAND (t, 1);
- if (!t || TREE_CODE (t) != FIELD_DECL
- || DECL_ALIGN (t) < 128 || AGGREGATE_TYPE_P (TREE_TYPE (t)))
- return 0;
- /* Only do this for RECORD_TYPEs, not UNION_TYPEs. */
- r = DECL_FIELD_CONTEXT (t);
- if (!r || TREE_CODE (r) != RECORD_TYPE)
- return 0;
- /* Make sure they are the same mode */
- if (GET_MODE (x) != TYPE_MODE (TREE_TYPE (t)))
- return 0;
- /* If there are no following fields then the field alignment assures
- the structure is padded to the alignment which means this field is
- padded too. */
- if (TREE_CHAIN (t) == 0)
- return 1;
- /* If the following field is also aligned then this field will be
- padded. */
- t = TREE_CHAIN (t);
- if (TREE_CODE (t) == FIELD_DECL && DECL_ALIGN (t) >= 128)
- return 1;
- return 0;
-}
-
-/* Parse the -mfixed-range= option string. */
-static void
-fix_range (const char *const_str)
-{
- int i, first, last;
- char *str, *dash, *comma;
-
- /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
- REG2 are either register names or register numbers. The effect
- of this option is to mark the registers in the range from REG1 to
- REG2 as ``fixed'' so they won't be used by the compiler. */
-
- i = strlen (const_str);
- str = (char *) alloca (i + 1);
- memcpy (str, const_str, i + 1);
-
- while (1)
- {
- dash = strchr (str, '-');
- if (!dash)
- {
- warning (0, "value of %<-mfixed-range%> must have form REG1-REG2");
- return;
- }
- *dash = '\0';
- comma = strchr (dash + 1, ',');
- if (comma)
- *comma = '\0';
-
- first = decode_reg_name (str);
- if (first < 0)
- {
- warning (0, "unknown register name: %s", str);
- return;
- }
-
- last = decode_reg_name (dash + 1);
- if (last < 0)
- {
- warning (0, "unknown register name: %s", dash + 1);
- return;
- }
-
- *dash = '-';
-
- if (first > last)
- {
- warning (0, "%s-%s is an empty range", str, dash + 1);
- return;
- }
-
- for (i = first; i <= last; ++i)
- fixed_regs[i] = call_used_regs[i] = 1;
-
- if (!comma)
- break;
-
- *comma = ',';
- str = comma + 1;
- }
-}
-
-/* Return TRUE if x is a CONST_INT, CONST_DOUBLE or CONST_VECTOR that
- can be generated using the fsmbi instruction. */
-int
-fsmbi_const_p (rtx x)
-{
- if (CONSTANT_P (x))
- {
- /* We can always choose TImode for CONST_INT because the high bits
- of an SImode will always be all 1s, i.e., valid for fsmbi. */
- enum immediate_class c = classify_immediate (x, TImode);
- return c == IC_FSMBI || (!epilogue_completed && c == IC_FSMBI2);
- }
- return 0;
-}
-
-/* Return TRUE if x is a CONST_INT, CONST_DOUBLE or CONST_VECTOR that
- can be generated using the cbd, chd, cwd or cdd instruction. */
-int
-cpat_const_p (rtx x, machine_mode mode)
-{
- if (CONSTANT_P (x))
- {
- enum immediate_class c = classify_immediate (x, mode);
- return c == IC_CPAT;
- }
- return 0;
-}
-
-rtx
-gen_cpat_const (rtx * ops)
-{
- unsigned char dst[16];
- int i, offset, shift, isize;
- if (GET_CODE (ops[3]) != CONST_INT
- || GET_CODE (ops[2]) != CONST_INT
- || (GET_CODE (ops[1]) != CONST_INT
- && GET_CODE (ops[1]) != REG))
- return 0;
- if (GET_CODE (ops[1]) == REG
- && (!REG_POINTER (ops[1])
- || REGNO_POINTER_ALIGN (ORIGINAL_REGNO (ops[1])) < 128))
- return 0;
-
- for (i = 0; i < 16; i++)
- dst[i] = i + 16;
- isize = INTVAL (ops[3]);
- if (isize == 1)
- shift = 3;
- else if (isize == 2)
- shift = 2;
- else
- shift = 0;
- offset = (INTVAL (ops[2]) +
- (GET_CODE (ops[1]) ==
- CONST_INT ? INTVAL (ops[1]) : 0)) & 15;
- for (i = 0; i < isize; i++)
- dst[offset + i] = i + shift;
- return array_to_constant (TImode, dst);
-}
-
-/* Convert a CONST_INT, CONST_DOUBLE, or CONST_VECTOR into a 16 byte
- array. Use MODE for CONST_INT's. When the constant's mode is smaller
- than 16 bytes, the value is repeated across the rest of the array. */
-void
-constant_to_array (machine_mode mode, rtx x, unsigned char arr[16])
-{
- HOST_WIDE_INT val;
- int i, j, first;
-
- memset (arr, 0, 16);
- mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : mode;
- if (GET_CODE (x) == CONST_INT
- || (GET_CODE (x) == CONST_DOUBLE
- && (mode == SFmode || mode == DFmode)))
- {
- gcc_assert (mode != VOIDmode && mode != BLKmode);
-
- if (GET_CODE (x) == CONST_DOUBLE)
- val = const_double_to_hwint (x);
- else
- val = INTVAL (x);
- first = GET_MODE_SIZE (mode) - 1;
- for (i = first; i >= 0; i--)
- {
- arr[i] = val & 0xff;
- val >>= 8;
- }
- /* Splat the constant across the whole array. */
- for (j = 0, i = first + 1; i < 16; i++)
- {
- arr[i] = arr[j];
- j = (j == first) ? 0 : j + 1;
- }
- }
- else if (GET_CODE (x) == CONST_DOUBLE)
- {
- val = CONST_DOUBLE_LOW (x);
- for (i = 15; i >= 8; i--)
- {
- arr[i] = val & 0xff;
- val >>= 8;
- }
- val = CONST_DOUBLE_HIGH (x);
- for (i = 7; i >= 0; i--)
- {
- arr[i] = val & 0xff;
- val >>= 8;
- }
- }
- else if (GET_CODE (x) == CONST_VECTOR)
- {
- int units;
- rtx elt;
- mode = GET_MODE_INNER (mode);
- units = CONST_VECTOR_NUNITS (x);
- for (i = 0; i < units; i++)
- {
- elt = CONST_VECTOR_ELT (x, i);
- if (GET_CODE (elt) == CONST_INT || GET_CODE (elt) == CONST_DOUBLE)
- {
- if (GET_CODE (elt) == CONST_DOUBLE)
- val = const_double_to_hwint (elt);
- else
- val = INTVAL (elt);
- first = GET_MODE_SIZE (mode) - 1;
- if (first + i * GET_MODE_SIZE (mode) > 16)
- abort ();
- for (j = first; j >= 0; j--)
- {
- arr[j + i * GET_MODE_SIZE (mode)] = val & 0xff;
- val >>= 8;
- }
- }
- }
- }
- else
- gcc_unreachable();
-}
-
-/* Convert a 16 byte array to a constant of mode MODE. When MODE is
- smaller than 16 bytes, use the bytes that would represent that value
- in a register, e.g., for QImode return the value of arr[3]. */
-rtx
-array_to_constant (machine_mode mode, const unsigned char arr[16])
-{
- machine_mode inner_mode;
- rtvec v;
- int units, size, i, j, k;
- HOST_WIDE_INT val;
-
- if (GET_MODE_CLASS (mode) == MODE_INT
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
- {
- j = GET_MODE_SIZE (mode);
- i = j < 4 ? 4 - j : 0;
- for (val = 0; i < j; i++)
- val = (val << 8) | arr[i];
- val = trunc_int_for_mode (val, mode);
- return GEN_INT (val);
- }
-
- if (mode == TImode)
- {
- HOST_WIDE_INT high;
- for (i = high = 0; i < 8; i++)
- high = (high << 8) | arr[i];
- for (i = 8, val = 0; i < 16; i++)
- val = (val << 8) | arr[i];
- return immed_double_const (val, high, TImode);
- }
- if (mode == SFmode)
- {
- val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
- val = trunc_int_for_mode (val, SImode);
- return hwint_to_const_double (SFmode, val);
- }
- if (mode == DFmode)
- {
- for (i = 0, val = 0; i < 8; i++)
- val = (val << 8) | arr[i];
- return hwint_to_const_double (DFmode, val);
- }
-
- if (!VECTOR_MODE_P (mode))
- abort ();
-
- units = GET_MODE_NUNITS (mode);
- size = GET_MODE_UNIT_SIZE (mode);
- inner_mode = GET_MODE_INNER (mode);
- v = rtvec_alloc (units);
-
- for (k = i = 0; i < units; ++i)
- {
- val = 0;
- for (j = 0; j < size; j++, k++)
- val = (val << 8) | arr[k];
-
- if (GET_MODE_CLASS (inner_mode) == MODE_FLOAT)
- RTVEC_ELT (v, i) = hwint_to_const_double (inner_mode, val);
- else
- RTVEC_ELT (v, i) = GEN_INT (trunc_int_for_mode (val, inner_mode));
- }
- if (k > 16)
- abort ();
-
- return gen_rtx_CONST_VECTOR (mode, v);
-}
-
-static void
-reloc_diagnostic (rtx x)
-{
- tree decl = 0;
- if (!flag_pic || !(TARGET_WARN_RELOC || TARGET_ERROR_RELOC))
- return;
-
- if (GET_CODE (x) == SYMBOL_REF)
- decl = SYMBOL_REF_DECL (x);
- else if (GET_CODE (x) == CONST
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
- decl = SYMBOL_REF_DECL (XEXP (XEXP (x, 0), 0));
-
- /* SYMBOL_REF_DECL is not necessarily a DECL. */
- if (decl && !DECL_P (decl))
- decl = 0;
-
- /* The decl could be a string constant. */
- if (decl && DECL_P (decl))
- {
- location_t loc;
- /* We use last_assemble_variable_decl to get line information. It's
- not always going to be right and might not even be close, but will
- be right for the more common cases. */
- if (!last_assemble_variable_decl || in_section == ctors_section)
- loc = DECL_SOURCE_LOCATION (decl);
- else
- loc = DECL_SOURCE_LOCATION (last_assemble_variable_decl);
-
- if (TARGET_WARN_RELOC)
- warning_at (loc, 0,
- "creating run-time relocation for %qD", decl);
- else
- error_at (loc,
- "creating run-time relocation for %qD", decl);
- }
- else
- {
- if (TARGET_WARN_RELOC)
- warning_at (input_location, 0, "creating run-time relocation");
- else
- error_at (input_location, "creating run-time relocation");
- }
-}
-
-/* Hook into assemble_integer so we can generate an error for run-time
- relocations. The SPU ABI disallows them. */
-static bool
-spu_assemble_integer (rtx x, unsigned int size, int aligned_p)
-{
- /* By default run-time relocations aren't supported, but we allow them
- in case users support it in their own run-time loader. And we provide
- a warning for those users that don't. */
- if ((GET_CODE (x) == SYMBOL_REF)
- || GET_CODE (x) == LABEL_REF || GET_CODE (x) == CONST)
- reloc_diagnostic (x);
-
- return default_assemble_integer (x, size, aligned_p);
-}
-
-static void
-spu_asm_globalize_label (FILE * file, const char *name)
-{
- fputs ("\t.global\t", file);
- assemble_name (file, name);
- fputs ("\n", file);
-}
-
-static bool
-spu_rtx_costs (rtx x, machine_mode mode, int outer_code ATTRIBUTE_UNUSED,
- int opno ATTRIBUTE_UNUSED, int *total,
- bool speed ATTRIBUTE_UNUSED)
-{
- int code = GET_CODE (x);
- int cost = COSTS_N_INSNS (2);
-
- /* Folding to a CONST_VECTOR will use extra space but there might
- be only a small savings in cycles. We'd like to use a CONST_VECTOR
- only if it allows us to fold away multiple insns. Changing the cost
- of a CONST_VECTOR here (or in CONST_COSTS) doesn't help though
- because this cost will only be compared against a single insn.
- if (code == CONST_VECTOR)
- return spu_legitimate_constant_p (mode, x) ? cost : COSTS_N_INSNS (6);
- */
-
- /* Use defaults for float operations. Not accurate but good enough. */
- if (mode == DFmode)
- {
- *total = COSTS_N_INSNS (13);
- return true;
- }
- if (mode == SFmode)
- {
- *total = COSTS_N_INSNS (6);
- return true;
- }
- switch (code)
- {
- case CONST_INT:
- if (satisfies_constraint_K (x))
- *total = 0;
- else if (INTVAL (x) >= -0x80000000ll && INTVAL (x) <= 0xffffffffll)
- *total = COSTS_N_INSNS (1);
- else
- *total = COSTS_N_INSNS (3);
- return true;
-
- case CONST:
- *total = COSTS_N_INSNS (3);
- return true;
-
- case LABEL_REF:
- case SYMBOL_REF:
- *total = COSTS_N_INSNS (0);
- return true;
-
- case CONST_DOUBLE:
- *total = COSTS_N_INSNS (5);
- return true;
-
- case FLOAT_EXTEND:
- case FLOAT_TRUNCATE:
- case FLOAT:
- case UNSIGNED_FLOAT:
- case FIX:
- case UNSIGNED_FIX:
- *total = COSTS_N_INSNS (7);
- return true;
-
- case PLUS:
- if (mode == TImode)
- {
- *total = COSTS_N_INSNS (9);
- return true;
- }
- break;
-
- case MULT:
- cost =
- GET_CODE (XEXP (x, 0)) ==
- REG ? COSTS_N_INSNS (12) : COSTS_N_INSNS (7);
- if (mode == SImode && GET_CODE (XEXP (x, 0)) == REG)
- {
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
- cost = COSTS_N_INSNS (14);
- if ((val & 0xffff) == 0)
- cost = COSTS_N_INSNS (9);
- else if (val > 0 && val < 0x10000)
- cost = COSTS_N_INSNS (11);
- }
- }
- *total = cost;
- return true;
- case DIV:
- case UDIV:
- case MOD:
- case UMOD:
- *total = COSTS_N_INSNS (20);
- return true;
- case ROTATE:
- case ROTATERT:
- case ASHIFT:
- case ASHIFTRT:
- case LSHIFTRT:
- *total = COSTS_N_INSNS (4);
- return true;
- case UNSPEC:
- if (XINT (x, 1) == UNSPEC_CONVERT)
- *total = COSTS_N_INSNS (0);
- else
- *total = COSTS_N_INSNS (4);
- return true;
- }
- /* Scale cost by mode size. Except when initializing (cfun->decl == 0). */
- if (GET_MODE_CLASS (mode) == MODE_INT
- && GET_MODE_SIZE (mode) > GET_MODE_SIZE (SImode) && cfun && cfun->decl)
- cost = cost * (GET_MODE_SIZE (mode) / GET_MODE_SIZE (SImode))
- * (GET_MODE_SIZE (mode) / GET_MODE_SIZE (SImode));
- *total = cost;
- return true;
-}
-
-static scalar_int_mode
-spu_unwind_word_mode (void)
-{
- return SImode;
-}
-
-/* Decide whether we can make a sibling call to a function. DECL is the
- declaration of the function being targeted by the call and EXP is the
- CALL_EXPR representing the call. */
-static bool
-spu_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
-{
- return decl && !TARGET_LARGE_MEM;
-}
-
-/* We need to correctly update the back chain pointer and the Available
- Stack Size (which is in the second slot of the sp register.) */
-void
-spu_allocate_stack (rtx op0, rtx op1)
-{
- HOST_WIDE_INT v;
- rtx chain = gen_reg_rtx (V4SImode);
- rtx stack_bot = gen_frame_mem (V4SImode, stack_pointer_rtx);
- rtx sp = gen_reg_rtx (V4SImode);
- rtx splatted = gen_reg_rtx (V4SImode);
- rtx pat = gen_reg_rtx (TImode);
-
- /* copy the back chain so we can save it back again. */
- emit_move_insn (chain, stack_bot);
-
- op1 = force_reg (SImode, op1);
-
- v = 0x1020300010203ll;
- emit_move_insn (pat, immed_double_const (v, v, TImode));
- emit_insn (gen_shufb (splatted, op1, op1, pat));
-
- emit_insn (gen_spu_convert (sp, stack_pointer_rtx));
- emit_insn (gen_subv4si3 (sp, sp, splatted));
-
- if (flag_stack_check || flag_stack_clash_protection)
- {
- rtx avail = gen_reg_rtx(SImode);
- rtx result = gen_reg_rtx(SImode);
- emit_insn (gen_vec_extractv4sisi (avail, sp, GEN_INT (1)));
- emit_insn (gen_cgt_si(result, avail, GEN_INT (-1)));
- emit_insn (gen_spu_heq (result, GEN_INT(0) ));
- }
-
- emit_insn (gen_spu_convert (stack_pointer_rtx, sp));
-
- emit_move_insn (stack_bot, chain);
-
- emit_move_insn (op0, virtual_stack_dynamic_rtx);
-}
-
-void
-spu_restore_stack_nonlocal (rtx op0 ATTRIBUTE_UNUSED, rtx op1)
-{
- static unsigned char arr[16] =
- { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 };
- rtx temp = gen_reg_rtx (SImode);
- rtx temp2 = gen_reg_rtx (SImode);
- rtx temp3 = gen_reg_rtx (V4SImode);
- rtx temp4 = gen_reg_rtx (V4SImode);
- rtx pat = gen_reg_rtx (TImode);
- rtx sp = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);
-
- /* Restore the backchain from the first word, sp from the second. */
- emit_move_insn (temp2, adjust_address_nv (op1, SImode, 0));
- emit_move_insn (temp, adjust_address_nv (op1, SImode, 4));
-
- emit_move_insn (pat, array_to_constant (TImode, arr));
-
- /* Compute Available Stack Size for sp */
- emit_insn (gen_subsi3 (temp, temp, stack_pointer_rtx));
- emit_insn (gen_shufb (temp3, temp, temp, pat));
-
- /* Compute Available Stack Size for back chain */
- emit_insn (gen_subsi3 (temp2, temp2, stack_pointer_rtx));
- emit_insn (gen_shufb (temp4, temp2, temp2, pat));
- emit_insn (gen_addv4si3 (temp4, sp, temp4));
-
- emit_insn (gen_addv4si3 (sp, sp, temp3));
- emit_move_insn (gen_frame_mem (V4SImode, stack_pointer_rtx), temp4);
-}
-
-static void
-spu_init_libfuncs (void)
-{
- set_optab_libfunc (smul_optab, DImode, "__muldi3");
- set_optab_libfunc (sdiv_optab, DImode, "__divdi3");
- set_optab_libfunc (smod_optab, DImode, "__moddi3");
- set_optab_libfunc (udiv_optab, DImode, "__udivdi3");
- set_optab_libfunc (umod_optab, DImode, "__umoddi3");
- set_optab_libfunc (udivmod_optab, DImode, "__udivmoddi4");
- set_optab_libfunc (ffs_optab, DImode, "__ffsdi2");
- set_optab_libfunc (clz_optab, DImode, "__clzdi2");
- set_optab_libfunc (ctz_optab, DImode, "__ctzdi2");
- set_optab_libfunc (clrsb_optab, DImode, "__clrsbdi2");
- set_optab_libfunc (popcount_optab, DImode, "__popcountdi2");
- set_optab_libfunc (parity_optab, DImode, "__paritydi2");
-
- set_conv_libfunc (ufloat_optab, DFmode, SImode, "__float_unssidf");
- set_conv_libfunc (ufloat_optab, DFmode, DImode, "__float_unsdidf");
-
- set_optab_libfunc (addv_optab, SImode, "__addvsi3");
- set_optab_libfunc (subv_optab, SImode, "__subvsi3");
- set_optab_libfunc (smulv_optab, SImode, "__mulvsi3");
- set_optab_libfunc (sdivv_optab, SImode, "__divvsi3");
- set_optab_libfunc (negv_optab, SImode, "__negvsi2");
- set_optab_libfunc (absv_optab, SImode, "__absvsi2");
- set_optab_libfunc (addv_optab, DImode, "__addvdi3");
- set_optab_libfunc (subv_optab, DImode, "__subvdi3");
- set_optab_libfunc (smulv_optab, DImode, "__mulvdi3");
- set_optab_libfunc (sdivv_optab, DImode, "__divvdi3");
- set_optab_libfunc (negv_optab, DImode, "__negvdi2");
- set_optab_libfunc (absv_optab, DImode, "__absvdi2");
-
- set_optab_libfunc (smul_optab, TImode, "__multi3");
- set_optab_libfunc (sdiv_optab, TImode, "__divti3");
- set_optab_libfunc (smod_optab, TImode, "__modti3");
- set_optab_libfunc (udiv_optab, TImode, "__udivti3");
- set_optab_libfunc (umod_optab, TImode, "__umodti3");
- set_optab_libfunc (udivmod_optab, TImode, "__udivmodti4");
-}
-
-/* Make a subreg, stripping any existing subreg. We could possibly just
- call simplify_subreg, but in this case we know what we want. */
-rtx
-spu_gen_subreg (machine_mode mode, rtx x)
-{
- if (GET_CODE (x) == SUBREG)
- x = SUBREG_REG (x);
- if (GET_MODE (x) == mode)
- return x;
- return gen_rtx_SUBREG (mode, x, 0);
-}
-
-static bool
-spu_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
-{
- return (TYPE_MODE (type) == BLKmode
- && ((type) == 0
- || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
- || int_size_in_bytes (type) >
- (MAX_REGISTER_RETURN * UNITS_PER_WORD)));
-}
-
-/* Create the built-in types and functions */
-
-enum spu_function_code
-{
-#define DEF_BUILTIN(fcode, icode, name, type, params) fcode,
-#include "spu-builtins.def"
-#undef DEF_BUILTIN
- NUM_SPU_BUILTINS
-};
-
-extern GTY(()) struct spu_builtin_description spu_builtins[NUM_SPU_BUILTINS];
-
-struct spu_builtin_description spu_builtins[] = {
-#define DEF_BUILTIN(fcode, icode, name, type, params) \
- {fcode, icode, name, type, params},
-#include "spu-builtins.def"
-#undef DEF_BUILTIN
-};
-
-static GTY(()) tree spu_builtin_decls[NUM_SPU_BUILTINS];
-
-/* Returns the spu builtin decl for CODE. */
-
-static tree
-spu_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
-{
- if (code >= NUM_SPU_BUILTINS)
- return error_mark_node;
-
- return spu_builtin_decls[code];
-}
-
-
-static void
-spu_init_builtins (void)
-{
- struct spu_builtin_description *d;
- unsigned int i;
-
- V16QI_type_node = build_vector_type (intQI_type_node, 16);
- V8HI_type_node = build_vector_type (intHI_type_node, 8);
- V4SI_type_node = build_vector_type (intSI_type_node, 4);
- V2DI_type_node = build_vector_type (intDI_type_node, 2);
- V4SF_type_node = build_vector_type (float_type_node, 4);
- V2DF_type_node = build_vector_type (double_type_node, 2);
-
- unsigned_V16QI_type_node = build_vector_type (unsigned_intQI_type_node, 16);
- unsigned_V8HI_type_node = build_vector_type (unsigned_intHI_type_node, 8);
- unsigned_V4SI_type_node = build_vector_type (unsigned_intSI_type_node, 4);
- unsigned_V2DI_type_node = build_vector_type (unsigned_intDI_type_node, 2);
-
- spu_builtin_types[SPU_BTI_QUADWORD] = V16QI_type_node;
-
- spu_builtin_types[SPU_BTI_7] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_S7] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_U7] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_S10] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_S10_4] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_U14] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_16] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_S16] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_S16_2] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_U16] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_U16_2] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_U18] = global_trees[TI_INTSI_TYPE];
-
- spu_builtin_types[SPU_BTI_INTQI] = global_trees[TI_INTQI_TYPE];
- spu_builtin_types[SPU_BTI_INTHI] = global_trees[TI_INTHI_TYPE];
- spu_builtin_types[SPU_BTI_INTSI] = global_trees[TI_INTSI_TYPE];
- spu_builtin_types[SPU_BTI_INTDI] = global_trees[TI_INTDI_TYPE];
- spu_builtin_types[SPU_BTI_UINTQI] = global_trees[TI_UINTQI_TYPE];
- spu_builtin_types[SPU_BTI_UINTHI] = global_trees[TI_UINTHI_TYPE];
- spu_builtin_types[SPU_BTI_UINTSI] = global_trees[TI_UINTSI_TYPE];
- spu_builtin_types[SPU_BTI_UINTDI] = global_trees[TI_UINTDI_TYPE];
-
- spu_builtin_types[SPU_BTI_FLOAT] = global_trees[TI_FLOAT_TYPE];
- spu_builtin_types[SPU_BTI_DOUBLE] = global_trees[TI_DOUBLE_TYPE];
-
- spu_builtin_types[SPU_BTI_VOID] = global_trees[TI_VOID_TYPE];
-
- spu_builtin_types[SPU_BTI_PTR] =
- build_pointer_type (build_qualified_type
- (void_type_node,
- TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE));
-
- /* For each builtin we build a new prototype. The tree code will make
- sure nodes are shared. */
- for (i = 0, d = spu_builtins; i < NUM_SPU_BUILTINS; i++, d++)
- {
- tree p;
- char name[64]; /* build_function will make a copy. */
- int parm;
-
- if (d->name == 0)
- continue;
-
- /* Find last parm. */
- for (parm = 1; d->parm[parm] != SPU_BTI_END_OF_PARAMS; parm++)
- ;
-
- p = void_list_node;
- while (parm > 1)
- p = tree_cons (NULL_TREE, spu_builtin_types[d->parm[--parm]], p);
-
- p = build_function_type (spu_builtin_types[d->parm[0]], p);
-
- sprintf (name, "__builtin_%s", d->name);
- spu_builtin_decls[i] =
- add_builtin_function (name, p, i, BUILT_IN_MD, NULL, NULL_TREE);
- if (d->fcode == SPU_MASK_FOR_LOAD)
- TREE_READONLY (spu_builtin_decls[i]) = 1;
-
- /* These builtins don't throw. */
- TREE_NOTHROW (spu_builtin_decls[i]) = 1;
- }
-}
-
-void
-spu_restore_stack_block (rtx op0 ATTRIBUTE_UNUSED, rtx op1)
-{
- static unsigned char arr[16] =
- { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 };
-
- rtx temp = gen_reg_rtx (Pmode);
- rtx temp2 = gen_reg_rtx (V4SImode);
- rtx temp3 = gen_reg_rtx (V4SImode);
- rtx pat = gen_reg_rtx (TImode);
- rtx sp = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);
-
- emit_move_insn (pat, array_to_constant (TImode, arr));
-
- /* Restore the sp. */
- emit_move_insn (temp, op1);
- emit_move_insn (temp2, gen_frame_mem (V4SImode, stack_pointer_rtx));
-
- /* Compute available stack size for sp. */
- emit_insn (gen_subsi3 (temp, temp, stack_pointer_rtx));
- emit_insn (gen_shufb (temp3, temp, temp, pat));
-
- emit_insn (gen_addv4si3 (sp, sp, temp3));
- emit_move_insn (gen_frame_mem (V4SImode, stack_pointer_rtx), temp2);
-}
-
-int
-spu_safe_dma (HOST_WIDE_INT channel)
-{
- return TARGET_SAFE_DMA && channel >= 21 && channel <= 27;
-}
-
-void
-spu_builtin_splats (rtx ops[])
-{
- machine_mode mode = GET_MODE (ops[0]);
- if (GET_CODE (ops[1]) == CONST_INT || GET_CODE (ops[1]) == CONST_DOUBLE)
- {
- unsigned char arr[16];
- constant_to_array (GET_MODE_INNER (mode), ops[1], arr);
- emit_move_insn (ops[0], array_to_constant (mode, arr));
- }
- else
- {
- rtx reg = gen_reg_rtx (TImode);
- rtx shuf;
- if (GET_CODE (ops[1]) != REG
- && GET_CODE (ops[1]) != SUBREG)
- ops[1] = force_reg (GET_MODE_INNER (mode), ops[1]);
- switch (mode)
- {
- case E_V2DImode:
- case E_V2DFmode:
- shuf =
- immed_double_const (0x0001020304050607ll, 0x1011121314151617ll,
- TImode);
- break;
- case E_V4SImode:
- case E_V4SFmode:
- shuf =
- immed_double_const (0x0001020300010203ll, 0x0001020300010203ll,
- TImode);
- break;
- case E_V8HImode:
- shuf =
- immed_double_const (0x0203020302030203ll, 0x0203020302030203ll,
- TImode);
- break;
- case E_V16QImode:
- shuf =
- immed_double_const (0x0303030303030303ll, 0x0303030303030303ll,
- TImode);
- break;
- default:
- abort ();
- }
- emit_move_insn (reg, shuf);
- emit_insn (gen_shufb (ops[0], ops[1], ops[1], reg));
- }
-}
-
-void
-spu_builtin_extract (rtx ops[])
-{
- machine_mode mode;
- rtx rot, from, tmp;
-
- mode = GET_MODE (ops[1]);
-
- if (GET_CODE (ops[2]) == CONST_INT)
- {
- switch (mode)
- {
- case E_V16QImode:
- emit_insn (gen_vec_extractv16qiqi (ops[0], ops[1], ops[2]));
- break;
- case E_V8HImode:
- emit_insn (gen_vec_extractv8hihi (ops[0], ops[1], ops[2]));
- break;
- case E_V4SFmode:
- emit_insn (gen_vec_extractv4sfsf (ops[0], ops[1], ops[2]));
- break;
- case E_V4SImode:
- emit_insn (gen_vec_extractv4sisi (ops[0], ops[1], ops[2]));
- break;
- case E_V2DImode:
- emit_insn (gen_vec_extractv2didi (ops[0], ops[1], ops[2]));
- break;
- case E_V2DFmode:
- emit_insn (gen_vec_extractv2dfdf (ops[0], ops[1], ops[2]));
- break;
- default:
- abort ();
- }
- return;
- }
-
- from = spu_gen_subreg (TImode, ops[1]);
- rot = gen_reg_rtx (TImode);
- tmp = gen_reg_rtx (SImode);
-
- switch (mode)
- {
- case E_V16QImode:
- emit_insn (gen_addsi3 (tmp, ops[2], GEN_INT (-3)));
- break;
- case E_V8HImode:
- emit_insn (gen_addsi3 (tmp, ops[2], ops[2]));
- emit_insn (gen_addsi3 (tmp, tmp, GEN_INT (-2)));
- break;
- case E_V4SFmode:
- case E_V4SImode:
- emit_insn (gen_ashlsi3 (tmp, ops[2], GEN_INT (2)));
- break;
- case E_V2DImode:
- case E_V2DFmode:
- emit_insn (gen_ashlsi3 (tmp, ops[2], GEN_INT (3)));
- break;
- default:
- abort ();
- }
- emit_insn (gen_rotqby_ti (rot, from, tmp));
-
- emit_insn (gen_spu_convert (ops[0], rot));
-}
-
-void
-spu_builtin_insert (rtx ops[])
-{
- machine_mode mode = GET_MODE (ops[0]);
- machine_mode imode = GET_MODE_INNER (mode);
- rtx mask = gen_reg_rtx (TImode);
- rtx offset;
-
- if (GET_CODE (ops[3]) == CONST_INT)
- offset = GEN_INT (INTVAL (ops[3]) * GET_MODE_SIZE (imode));
- else
- {
- offset = gen_reg_rtx (SImode);
- emit_insn (gen_mulsi3
- (offset, ops[3], GEN_INT (GET_MODE_SIZE (imode))));
- }
- emit_insn (gen_cpat
- (mask, stack_pointer_rtx, offset,
- GEN_INT (GET_MODE_SIZE (imode))));
- emit_insn (gen_shufb (ops[0], ops[1], ops[2], mask));
-}
-
-void
-spu_builtin_promote (rtx ops[])
-{
- machine_mode mode, imode;
- rtx rot, from, offset;
- HOST_WIDE_INT pos;
-
- mode = GET_MODE (ops[0]);
- imode = GET_MODE_INNER (mode);
-
- from = gen_reg_rtx (TImode);
- rot = spu_gen_subreg (TImode, ops[0]);
-
- emit_insn (gen_spu_convert (from, ops[1]));
-
- if (GET_CODE (ops[2]) == CONST_INT)
- {
- pos = -GET_MODE_SIZE (imode) * INTVAL (ops[2]);
- if (GET_MODE_SIZE (imode) < 4)
- pos += 4 - GET_MODE_SIZE (imode);
- offset = GEN_INT (pos & 15);
- }
- else
- {
- offset = gen_reg_rtx (SImode);
- switch (mode)
- {
- case E_V16QImode:
- emit_insn (gen_subsi3 (offset, GEN_INT (3), ops[2]));
- break;
- case E_V8HImode:
- emit_insn (gen_subsi3 (offset, GEN_INT (1), ops[2]));
- emit_insn (gen_addsi3 (offset, offset, offset));
- break;
- case E_V4SFmode:
- case E_V4SImode:
- emit_insn (gen_subsi3 (offset, GEN_INT (0), ops[2]));
- emit_insn (gen_ashlsi3 (offset, offset, GEN_INT (2)));
- break;
- case E_V2DImode:
- case E_V2DFmode:
- emit_insn (gen_ashlsi3 (offset, ops[2], GEN_INT (3)));
- break;
- default:
- abort ();
- }
- }
- emit_insn (gen_rotqby_ti (rot, from, offset));
-}
-
-static void
-spu_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
-{
- rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
- rtx shuf = gen_reg_rtx (V4SImode);
- rtx insn = gen_reg_rtx (V4SImode);
- rtx shufc;
- rtx insnc;
- rtx mem;
-
- fnaddr = force_reg (SImode, fnaddr);
- cxt = force_reg (SImode, cxt);
-
- if (TARGET_LARGE_MEM)
- {
- rtx rotl = gen_reg_rtx (V4SImode);
- rtx mask = gen_reg_rtx (V4SImode);
- rtx bi = gen_reg_rtx (SImode);
- static unsigned char const shufa[16] = {
- 2, 3, 0, 1, 18, 19, 16, 17,
- 0, 1, 2, 3, 16, 17, 18, 19
- };
- static unsigned char const insna[16] = {
- 0x41, 0, 0, 79,
- 0x41, 0, 0, STATIC_CHAIN_REGNUM,
- 0x60, 0x80, 0, 79,
- 0x60, 0x80, 0, STATIC_CHAIN_REGNUM
- };
-
- shufc = force_reg (TImode, array_to_constant (TImode, shufa));
- insnc = force_reg (V4SImode, array_to_constant (V4SImode, insna));
-
- emit_insn (gen_shufb (shuf, fnaddr, cxt, shufc));
- emit_insn (gen_vrotlv4si3 (rotl, shuf, spu_const (V4SImode, 7)));
- emit_insn (gen_movv4si (mask, spu_const (V4SImode, 0xffff << 7)));
- emit_insn (gen_selb (insn, insnc, rotl, mask));
-
- mem = adjust_address (m_tramp, V4SImode, 0);
- emit_move_insn (mem, insn);
-
- emit_move_insn (bi, GEN_INT (0x35000000 + (79 << 7)));
- mem = adjust_address (m_tramp, Pmode, 16);
- emit_move_insn (mem, bi);
- }
- else
- {
- rtx scxt = gen_reg_rtx (SImode);
- rtx sfnaddr = gen_reg_rtx (SImode);
- static unsigned char const insna[16] = {
- 0x42, 0, 0, STATIC_CHAIN_REGNUM,
- 0x30, 0, 0, 0,
- 0, 0, 0, 0,
- 0, 0, 0, 0
- };
-
- shufc = gen_reg_rtx (TImode);
- insnc = force_reg (V4SImode, array_to_constant (V4SImode, insna));
-
- /* By or'ing all of cxt with the ila opcode we are assuming cxt
- fits 18 bits and the last 4 are zeros. This will be true if
- the stack pointer is initialized to 0x3fff0 at program start,
- otherwise the ila instruction will be garbage. */
-
- emit_insn (gen_ashlsi3 (scxt, cxt, GEN_INT (7)));
- emit_insn (gen_ashlsi3 (sfnaddr, fnaddr, GEN_INT (5)));
- emit_insn (gen_cpat
- (shufc, stack_pointer_rtx, GEN_INT (4), GEN_INT (4)));
- emit_insn (gen_shufb (shuf, sfnaddr, scxt, shufc));
- emit_insn (gen_iorv4si3 (insn, insnc, shuf));
-
- mem = adjust_address (m_tramp, V4SImode, 0);
- emit_move_insn (mem, insn);
- }
- emit_insn (gen_sync ());
-}
-
-static bool
-spu_warn_func_return (tree decl)
-{
- /* Naked functions are implemented entirely in assembly, including the
- return sequence, so suppress warnings about this. */
- return !spu_naked_function_p (decl);
-}
-
-void
-spu_expand_sign_extend (rtx ops[])
-{
- unsigned char arr[16];
- rtx pat = gen_reg_rtx (TImode);
- rtx sign, c;
- int i, last;
- last = GET_MODE (ops[0]) == DImode ? 7 : 15;
- if (GET_MODE (ops[1]) == QImode)
- {
- sign = gen_reg_rtx (HImode);
- emit_insn (gen_extendqihi2 (sign, ops[1]));
- for (i = 0; i < 16; i++)
- arr[i] = 0x12;
- arr[last] = 0x13;
- }
- else
- {
- for (i = 0; i < 16; i++)
- arr[i] = 0x10;
- switch (GET_MODE (ops[1]))
- {
- case E_HImode:
- sign = gen_reg_rtx (SImode);
- emit_insn (gen_extendhisi2 (sign, ops[1]));
- arr[last] = 0x03;
- arr[last - 1] = 0x02;
- break;
- case E_SImode:
- sign = gen_reg_rtx (SImode);
- emit_insn (gen_ashrsi3 (sign, ops[1], GEN_INT (31)));
- for (i = 0; i < 4; i++)
- arr[last - i] = 3 - i;
- break;
- case E_DImode:
- sign = gen_reg_rtx (SImode);
- c = gen_reg_rtx (SImode);
- emit_insn (gen_spu_convert (c, ops[1]));
- emit_insn (gen_ashrsi3 (sign, c, GEN_INT (31)));
- for (i = 0; i < 8; i++)
- arr[last - i] = 7 - i;
- break;
- default:
- abort ();
- }
- }
- emit_move_insn (pat, array_to_constant (TImode, arr));
- emit_insn (gen_shufb (ops[0], ops[1], sign, pat));
-}
-
-/* expand vector initialization. If there are any constant parts,
- load constant parts first. Then load any non-constant parts. */
-void
-spu_expand_vector_init (rtx target, rtx vals)
-{
- machine_mode mode = GET_MODE (target);
- int n_elts = GET_MODE_NUNITS (mode);
- int n_var = 0;
- bool all_same = true;
- rtx first, x = NULL_RTX, first_constant = NULL_RTX;
- int i;
-
- first = XVECEXP (vals, 0, 0);
- for (i = 0; i < n_elts; ++i)
- {
- x = XVECEXP (vals, 0, i);
- if (!(CONST_INT_P (x)
- || GET_CODE (x) == CONST_DOUBLE
- || GET_CODE (x) == CONST_FIXED))
- ++n_var;
- else
- {
- if (first_constant == NULL_RTX)
- first_constant = x;
- }
- if (i > 0 && !rtx_equal_p (x, first))
- all_same = false;
- }
-
- /* if all elements are the same, use splats to repeat elements */
- if (all_same)
- {
- if (!CONSTANT_P (first)
- && !register_operand (first, GET_MODE (x)))
- first = force_reg (GET_MODE (first), first);
- emit_insn (gen_spu_splats (target, first));
- return;
- }
-
- /* load constant parts */
- if (n_var != n_elts)
- {
- if (n_var == 0)
- {
- emit_move_insn (target,
- gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
- }
- else
- {
- rtx constant_parts_rtx = copy_rtx (vals);
-
- gcc_assert (first_constant != NULL_RTX);
- /* fill empty slots with the first constant, this increases
- our chance of using splats in the recursive call below. */
- for (i = 0; i < n_elts; ++i)
- {
- x = XVECEXP (constant_parts_rtx, 0, i);
- if (!(CONST_INT_P (x)
- || GET_CODE (x) == CONST_DOUBLE
- || GET_CODE (x) == CONST_FIXED))
- XVECEXP (constant_parts_rtx, 0, i) = first_constant;
- }
-
- spu_expand_vector_init (target, constant_parts_rtx);
- }
- }
-
- /* load variable parts */
- if (n_var != 0)
- {
- rtx insert_operands[4];
-
- insert_operands[0] = target;
- insert_operands[2] = target;
- for (i = 0; i < n_elts; ++i)
- {
- x = XVECEXP (vals, 0, i);
- if (!(CONST_INT_P (x)
- || GET_CODE (x) == CONST_DOUBLE
- || GET_CODE (x) == CONST_FIXED))
- {
- if (!register_operand (x, GET_MODE (x)))
- x = force_reg (GET_MODE (x), x);
- insert_operands[1] = x;
- insert_operands[3] = GEN_INT (i);
- spu_builtin_insert (insert_operands);
- }
- }
- }
-}
-
-/* Return insn index for the vector compare instruction for given CODE,
- and DEST_MODE, OP_MODE. Return -1 if valid insn is not available. */
-
-static int
-get_vec_cmp_insn (enum rtx_code code,
- machine_mode dest_mode,
- machine_mode op_mode)
-
-{
- switch (code)
- {
- case EQ:
- if (dest_mode == V16QImode && op_mode == V16QImode)
- return CODE_FOR_ceq_v16qi;
- if (dest_mode == V8HImode && op_mode == V8HImode)
- return CODE_FOR_ceq_v8hi;
- if (dest_mode == V4SImode && op_mode == V4SImode)
- return CODE_FOR_ceq_v4si;
- if (dest_mode == V4SImode && op_mode == V4SFmode)
- return CODE_FOR_ceq_v4sf;
- if (dest_mode == V2DImode && op_mode == V2DFmode)
- return CODE_FOR_ceq_v2df;
- break;
- case GT:
- if (dest_mode == V16QImode && op_mode == V16QImode)
- return CODE_FOR_cgt_v16qi;
- if (dest_mode == V8HImode && op_mode == V8HImode)
- return CODE_FOR_cgt_v8hi;
- if (dest_mode == V4SImode && op_mode == V4SImode)
- return CODE_FOR_cgt_v4si;
- if (dest_mode == V4SImode && op_mode == V4SFmode)
- return CODE_FOR_cgt_v4sf;
- if (dest_mode == V2DImode && op_mode == V2DFmode)
- return CODE_FOR_cgt_v2df;
- break;
- case GTU:
- if (dest_mode == V16QImode && op_mode == V16QImode)
- return CODE_FOR_clgt_v16qi;
- if (dest_mode == V8HImode && op_mode == V8HImode)
- return CODE_FOR_clgt_v8hi;
- if (dest_mode == V4SImode && op_mode == V4SImode)
- return CODE_FOR_clgt_v4si;
- break;
- default:
- break;
- }
- return -1;
-}
-
-/* Emit vector compare for operands OP0 and OP1 using code RCODE.
- DMODE is expected destination mode. This is a recursive function. */
-
-static rtx
-spu_emit_vector_compare (enum rtx_code rcode,
- rtx op0, rtx op1,
- machine_mode dmode)
-{
- int vec_cmp_insn;
- rtx mask;
- machine_mode dest_mode;
- machine_mode op_mode = GET_MODE (op1);
-
- gcc_assert (GET_MODE (op0) == GET_MODE (op1));
-
- /* Floating point vector compare instructions uses destination V4SImode.
- Double floating point vector compare instructions uses destination V2DImode.
- Move destination to appropriate mode later. */
- if (dmode == V4SFmode)
- dest_mode = V4SImode;
- else if (dmode == V2DFmode)
- dest_mode = V2DImode;
- else
- dest_mode = dmode;
-
- mask = gen_reg_rtx (dest_mode);
- vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
-
- if (vec_cmp_insn == -1)
- {
- bool swap_operands = false;
- bool try_again = false;
- switch (rcode)
- {
- case LT:
- rcode = GT;
- swap_operands = true;
- try_again = true;
- break;
- case LTU:
- rcode = GTU;
- swap_operands = true;
- try_again = true;
- break;
- case NE:
- case UNEQ:
- case UNLE:
- case UNLT:
- case UNGE:
- case UNGT:
- case UNORDERED:
- /* Treat A != B as ~(A==B). */
- {
- enum rtx_code rev_code;
- enum insn_code nor_code;
- rtx rev_mask;
-
- rev_code = reverse_condition_maybe_unordered (rcode);
- rev_mask = spu_emit_vector_compare (rev_code, op0, op1, dest_mode);
-
- nor_code = optab_handler (one_cmpl_optab, dest_mode);
- gcc_assert (nor_code != CODE_FOR_nothing);
- emit_insn (GEN_FCN (nor_code) (mask, rev_mask));
- if (dmode != dest_mode)
- {
- rtx temp = gen_reg_rtx (dest_mode);
- convert_move (temp, mask, 0);
- return temp;
- }
- return mask;
- }
- break;
- case GE:
- case GEU:
- case LE:
- case LEU:
- /* Try GT/GTU/LT/LTU OR EQ */
- {
- rtx c_rtx, eq_rtx;
- enum insn_code ior_code;
- enum rtx_code new_code;
-
- switch (rcode)
- {
- case GE: new_code = GT; break;
- case GEU: new_code = GTU; break;
- case LE: new_code = LT; break;
- case LEU: new_code = LTU; break;
- default:
- gcc_unreachable ();
- }
-
- c_rtx = spu_emit_vector_compare (new_code, op0, op1, dest_mode);
- eq_rtx = spu_emit_vector_compare (EQ, op0, op1, dest_mode);
-
- ior_code = optab_handler (ior_optab, dest_mode);
- gcc_assert (ior_code != CODE_FOR_nothing);
- emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
- if (dmode != dest_mode)
- {
- rtx temp = gen_reg_rtx (dest_mode);
- convert_move (temp, mask, 0);
- return temp;
- }
- return mask;
- }
- break;
- case LTGT:
- /* Try LT OR GT */
- {
- rtx lt_rtx, gt_rtx;
- enum insn_code ior_code;
-
- lt_rtx = spu_emit_vector_compare (LT, op0, op1, dest_mode);
- gt_rtx = spu_emit_vector_compare (GT, op0, op1, dest_mode);
-
- ior_code = optab_handler (ior_optab, dest_mode);
- gcc_assert (ior_code != CODE_FOR_nothing);
- emit_insn (GEN_FCN (ior_code) (mask, lt_rtx, gt_rtx));
- if (dmode != dest_mode)
- {
- rtx temp = gen_reg_rtx (dest_mode);
- convert_move (temp, mask, 0);
- return temp;
- }
- return mask;
- }
- break;
- case ORDERED:
- /* Implement as (A==A) & (B==B) */
- {
- rtx a_rtx, b_rtx;
- enum insn_code and_code;
-
- a_rtx = spu_emit_vector_compare (EQ, op0, op0, dest_mode);
- b_rtx = spu_emit_vector_compare (EQ, op1, op1, dest_mode);
-
- and_code = optab_handler (and_optab, dest_mode);
- gcc_assert (and_code != CODE_FOR_nothing);
- emit_insn (GEN_FCN (and_code) (mask, a_rtx, b_rtx));
- if (dmode != dest_mode)
- {
- rtx temp = gen_reg_rtx (dest_mode);
- convert_move (temp, mask, 0);
- return temp;
- }
- return mask;
- }
- break;
- default:
- gcc_unreachable ();
- }
-
- /* You only get two chances. */
- if (try_again)
- vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
-
- gcc_assert (vec_cmp_insn != -1);
-
- if (swap_operands)
- {
- rtx tmp;
- tmp = op0;
- op0 = op1;
- op1 = tmp;
- }
- }
-
- emit_insn (GEN_FCN (vec_cmp_insn) (mask, op0, op1));
- if (dmode != dest_mode)
- {
- rtx temp = gen_reg_rtx (dest_mode);
- convert_move (temp, mask, 0);
- return temp;
- }
- return mask;
-}
-
-
-/* Emit vector conditional expression.
- DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
- CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
-
-int
-spu_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
- rtx cond, rtx cc_op0, rtx cc_op1)
-{
- machine_mode dest_mode = GET_MODE (dest);
- enum rtx_code rcode = GET_CODE (cond);
- rtx mask;
-
- /* Get the vector mask for the given relational operations. */
- mask = spu_emit_vector_compare (rcode, cc_op0, cc_op1, dest_mode);
-
- emit_insn(gen_selb (dest, op2, op1, mask));
-
- return 1;
-}
-
-static rtx
-spu_force_reg (machine_mode mode, rtx op)
-{
- rtx x, r;
- if (GET_MODE (op) == VOIDmode || GET_MODE (op) == BLKmode)
- {
- if ((SCALAR_INT_MODE_P (mode) && GET_CODE (op) == CONST_INT)
- || GET_MODE (op) == BLKmode)
- return force_reg (mode, convert_to_mode (mode, op, 0));
- abort ();
- }
-
- r = force_reg (GET_MODE (op), op);
- if (GET_MODE_SIZE (GET_MODE (op)) == GET_MODE_SIZE (mode))
- {
- x = simplify_gen_subreg (mode, r, GET_MODE (op), 0);
- if (x)
- return x;
- }
-
- x = gen_reg_rtx (mode);
- emit_insn (gen_spu_convert (x, r));
- return x;
-}
-
-static void
-spu_check_builtin_parm (struct spu_builtin_description *d, rtx op, int p)
-{
- HOST_WIDE_INT v = 0;
- int lsbits;
- /* Check the range of immediate operands. */
- if (p >= SPU_BTI_7 && p <= SPU_BTI_U18)
- {
- int range = p - SPU_BTI_7;
-
- if (!CONSTANT_P (op))
- error ("%s expects an integer literal in the range [%d, %d]",
- d->name,
- spu_builtin_range[range].low, spu_builtin_range[range].high);
-
- if (GET_CODE (op) == CONST
- && (GET_CODE (XEXP (op, 0)) == PLUS
- || GET_CODE (XEXP (op, 0)) == MINUS))
- {
- v = INTVAL (XEXP (XEXP (op, 0), 1));
- op = XEXP (XEXP (op, 0), 0);
- }
- else if (GET_CODE (op) == CONST_INT)
- v = INTVAL (op);
- else if (GET_CODE (op) == CONST_VECTOR
- && GET_CODE (CONST_VECTOR_ELT (op, 0)) == CONST_INT)
- v = INTVAL (CONST_VECTOR_ELT (op, 0));
-
- /* The default for v is 0 which is valid in every range. */
- if (v < spu_builtin_range[range].low
- || v > spu_builtin_range[range].high)
- error ("%s expects an integer literal in the range [%d, %d]. (%wd)",
- d->name,
- spu_builtin_range[range].low, spu_builtin_range[range].high,
- v);
-
- switch (p)
- {
- case SPU_BTI_S10_4:
- lsbits = 4;
- break;
- case SPU_BTI_U16_2:
- /* This is only used in lqa, and stqa. Even though the insns
- encode 16 bits of the address (all but the 2 least
- significant), only 14 bits are used because it is masked to
- be 16 byte aligned. */
- lsbits = 4;
- break;
- case SPU_BTI_S16_2:
- /* This is used for lqr and stqr. */
- lsbits = 2;
- break;
- default:
- lsbits = 0;
- }
-
- if (GET_CODE (op) == LABEL_REF
- || (GET_CODE (op) == SYMBOL_REF
- && SYMBOL_REF_FUNCTION_P (op))
- || (v & ((1 << lsbits) - 1)) != 0)
- warning (0, "%d least significant bits of %s are ignored", lsbits,
- d->name);
- }
-}
-
-
-static int
-expand_builtin_args (struct spu_builtin_description *d, tree exp,
- rtx target, rtx ops[])
-{
- enum insn_code icode = (enum insn_code) d->icode;
- int i = 0, a;
-
- /* Expand the arguments into rtl. */
-
- if (d->parm[0] != SPU_BTI_VOID)
- ops[i++] = target;
-
- for (a = 0; d->parm[a+1] != SPU_BTI_END_OF_PARAMS; i++, a++)
- {
- tree arg = CALL_EXPR_ARG (exp, a);
- if (arg == 0)
- abort ();
- ops[i] = expand_expr (arg, NULL_RTX, VOIDmode, EXPAND_NORMAL);
- }
-
- gcc_assert (i == insn_data[icode].n_generator_args);
- return i;
-}
-
-static rtx
-spu_expand_builtin_1 (struct spu_builtin_description *d,
- tree exp, rtx target)
-{
- rtx pat;
- rtx ops[8];
- enum insn_code icode = (enum insn_code) d->icode;
- machine_mode mode, tmode;
- int i, p;
- int n_operands;
- tree return_type;
-
- /* Set up ops[] with values from arglist. */
- n_operands = expand_builtin_args (d, exp, target, ops);
-
- /* Handle the target operand which must be operand 0. */
- i = 0;
- if (d->parm[0] != SPU_BTI_VOID)
- {
-
- /* We prefer the mode specified for the match_operand otherwise
- use the mode from the builtin function prototype. */
- tmode = insn_data[d->icode].operand[0].mode;
- if (tmode == VOIDmode)
- tmode = TYPE_MODE (spu_builtin_types[d->parm[0]]);
-
- /* Try to use target because not using it can lead to extra copies
- and when we are using all of the registers extra copies leads
- to extra spills. */
- if (target && GET_CODE (target) == REG && GET_MODE (target) == tmode)
- ops[0] = target;
- else
- target = ops[0] = gen_reg_rtx (tmode);
-
- if (!(*insn_data[icode].operand[0].predicate) (ops[0], tmode))
- abort ();
-
- i++;
- }
-
- if (d->fcode == SPU_MASK_FOR_LOAD)
- {
- machine_mode mode = insn_data[icode].operand[1].mode;
- tree arg;
- rtx addr, op, pat;
-
- /* get addr */
- arg = CALL_EXPR_ARG (exp, 0);
- gcc_assert (POINTER_TYPE_P (TREE_TYPE (arg)));
- op = expand_expr (arg, NULL_RTX, Pmode, EXPAND_NORMAL);
- addr = memory_address (mode, op);
-
- /* negate addr */
- op = gen_reg_rtx (GET_MODE (addr));
- emit_insn (gen_rtx_SET (op, gen_rtx_NEG (GET_MODE (addr), addr)));
- op = gen_rtx_MEM (mode, op);
-
- pat = GEN_FCN (icode) (target, op);
- if (!pat)
- return 0;
- emit_insn (pat);
- return target;
- }
-
- /* Ignore align_hint, but still expand it's args in case they have
- side effects. */
- if (icode == CODE_FOR_spu_align_hint)
- return 0;
-
- /* Handle the rest of the operands. */
- for (p = 1; i < n_operands; i++, p++)
- {
- if (insn_data[d->icode].operand[i].mode != VOIDmode)
- mode = insn_data[d->icode].operand[i].mode;
- else
- mode = TYPE_MODE (spu_builtin_types[d->parm[i]]);
-
- /* mode can be VOIDmode here for labels */
-
- /* For specific intrinsics with an immediate operand, e.g.,
- si_ai(), we sometimes need to convert the scalar argument to a
- vector argument by splatting the scalar. */
- if (VECTOR_MODE_P (mode)
- && (GET_CODE (ops[i]) == CONST_INT
- || GET_MODE_CLASS (GET_MODE (ops[i])) == MODE_INT
- || GET_MODE_CLASS (GET_MODE (ops[i])) == MODE_FLOAT))
- {
- if (GET_CODE (ops[i]) == CONST_INT)
- ops[i] = spu_const (mode, INTVAL (ops[i]));
- else
- {
- rtx reg = gen_reg_rtx (mode);
- machine_mode imode = GET_MODE_INNER (mode);
- if (!spu_nonmem_operand (ops[i], GET_MODE (ops[i])))
- ops[i] = force_reg (GET_MODE (ops[i]), ops[i]);
- if (imode != GET_MODE (ops[i]))
- ops[i] = convert_to_mode (imode, ops[i],
- TYPE_UNSIGNED (spu_builtin_types
- [d->parm[i]]));
- emit_insn (gen_spu_splats (reg, ops[i]));
- ops[i] = reg;
- }
- }
-
- spu_check_builtin_parm (d, ops[i], d->parm[p]);
-
- if (!(*insn_data[icode].operand[i].predicate) (ops[i], mode))
- ops[i] = spu_force_reg (mode, ops[i]);
- }
-
- switch (n_operands)
- {
- case 0:
- pat = GEN_FCN (icode) (0);
- break;
- case 1:
- pat = GEN_FCN (icode) (ops[0]);
- break;
- case 2:
- pat = GEN_FCN (icode) (ops[0], ops[1]);
- break;
- case 3:
- pat = GEN_FCN (icode) (ops[0], ops[1], ops[2]);
- break;
- case 4:
- pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]);
- break;
- case 5:
- pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3], ops[4]);
- break;
- case 6:
- pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3], ops[4], ops[5]);
- break;
- default:
- abort ();
- }
-
- if (!pat)
- abort ();
-
- if (d->type == B_CALL || d->type == B_BISLED)
- emit_call_insn (pat);
- else if (d->type == B_JUMP)
- {
- emit_jump_insn (pat);
- emit_barrier ();
- }
- else
- emit_insn (pat);
-
- return_type = spu_builtin_types[d->parm[0]];
- if (d->parm[0] != SPU_BTI_VOID
- && GET_MODE (target) != TYPE_MODE (return_type))
- {
- /* target is the return value. It should always be the mode of
- the builtin function prototype. */
- target = spu_force_reg (TYPE_MODE (return_type), target);
- }
-
- return target;
-}
-
-rtx
-spu_expand_builtin (tree exp,
- rtx target,
- rtx subtarget ATTRIBUTE_UNUSED,
- machine_mode mode ATTRIBUTE_UNUSED,
- int ignore ATTRIBUTE_UNUSED)
-{
- tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
- unsigned int fcode = DECL_MD_FUNCTION_CODE (fndecl);
- struct spu_builtin_description *d;
-
- if (fcode < NUM_SPU_BUILTINS)
- {
- d = &spu_builtins[fcode];
-
- return spu_expand_builtin_1 (d, exp, target);
- }
- abort ();
-}
-
-/* Implement targetm.vectorize.builtin_mask_for_load. */
-static tree
-spu_builtin_mask_for_load (void)
-{
- return spu_builtin_decls[SPU_MASK_FOR_LOAD];
-}
-
-/* Implement targetm.vectorize.builtin_vectorization_cost. */
-static int
-spu_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
- tree vectype,
- int misalign ATTRIBUTE_UNUSED)
-{
- unsigned elements;
-
- switch (type_of_cost)
- {
- case scalar_stmt:
- case vector_stmt:
- case vector_load:
- case vector_store:
- case vec_to_scalar:
- case scalar_to_vec:
- case cond_branch_not_taken:
- case vec_perm:
- case vec_promote_demote:
- return 1;
-
- case scalar_store:
- return 10;
-
- case scalar_load:
- /* Load + rotate. */
- return 2;
-
- case unaligned_load:
- case vector_gather_load:
- case vector_scatter_store:
- return 2;
-
- case cond_branch_taken:
- return 6;
-
- case vec_construct:
- elements = TYPE_VECTOR_SUBPARTS (vectype);
- return elements / 2 + 1;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Implement targetm.vectorize.init_cost. */
-
-static void *
-spu_init_cost (struct loop *loop_info ATTRIBUTE_UNUSED)
-{
- unsigned *cost = XNEWVEC (unsigned, 3);
- cost[vect_prologue] = cost[vect_body] = cost[vect_epilogue] = 0;
- return cost;
-}
-
-/* Implement targetm.vectorize.add_stmt_cost. */
-
-static unsigned
-spu_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
- struct _stmt_vec_info *stmt_info, int misalign,
- enum vect_cost_model_location where)
-{
- unsigned *cost = (unsigned *) data;
- unsigned retval = 0;
-
- if (flag_vect_cost_model)
- {
- tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
- int stmt_cost = spu_builtin_vectorization_cost (kind, vectype, misalign);
-
- /* Statements in an inner loop relative to the loop being
- vectorized are weighted more heavily. The value here is
- arbitrary and could potentially be improved with analysis. */
- if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info))
- count *= 50; /* FIXME. */
-
- retval = (unsigned) (count * stmt_cost);
- cost[where] += retval;
- }
-
- return retval;
-}
-
-/* Implement targetm.vectorize.finish_cost. */
-
-static void
-spu_finish_cost (void *data, unsigned *prologue_cost,
- unsigned *body_cost, unsigned *epilogue_cost)
-{
- unsigned *cost = (unsigned *) data;
- *prologue_cost = cost[vect_prologue];
- *body_cost = cost[vect_body];
- *epilogue_cost = cost[vect_epilogue];
-}
-
-/* Implement targetm.vectorize.destroy_cost_data. */
-
-static void
-spu_destroy_cost_data (void *data)
-{
- free (data);
-}
-
-/* Return true iff, data reference of TYPE can reach vector alignment (16)
- after applying N number of iterations. This routine does not determine
- how may iterations are required to reach desired alignment. */
-
-static bool
-spu_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
-{
- if (is_packed)
- return false;
-
- /* All other types are naturally aligned. */
- return true;
-}
-
-/* Return the appropriate mode for a named address pointer. */
-static scalar_int_mode
-spu_addr_space_pointer_mode (addr_space_t addrspace)
-{
- switch (addrspace)
- {
- case ADDR_SPACE_GENERIC:
- return ptr_mode;
- case ADDR_SPACE_EA:
- return EAmode;
- default:
- gcc_unreachable ();
- }
-}
-
-/* Return the appropriate mode for a named address address. */
-static scalar_int_mode
-spu_addr_space_address_mode (addr_space_t addrspace)
-{
- switch (addrspace)
- {
- case ADDR_SPACE_GENERIC:
- return Pmode;
- case ADDR_SPACE_EA:
- return EAmode;
- default:
- gcc_unreachable ();
- }
-}
-
-/* Determine if one named address space is a subset of another. */
-
-static bool
-spu_addr_space_subset_p (addr_space_t subset, addr_space_t superset)
-{
- gcc_assert (subset == ADDR_SPACE_GENERIC || subset == ADDR_SPACE_EA);
- gcc_assert (superset == ADDR_SPACE_GENERIC || superset == ADDR_SPACE_EA);
-
- if (subset == superset)
- return true;
-
- /* If we have -mno-address-space-conversion, treat __ea and generic as not
- being subsets but instead as disjoint address spaces. */
- else if (!TARGET_ADDRESS_SPACE_CONVERSION)
- return false;
-
- else
- return (subset == ADDR_SPACE_GENERIC && superset == ADDR_SPACE_EA);
-}
-
-/* Convert from one address space to another. */
-static rtx
-spu_addr_space_convert (rtx op, tree from_type, tree to_type)
-{
- addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (from_type));
- addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (to_type));
-
- gcc_assert (from_as == ADDR_SPACE_GENERIC || from_as == ADDR_SPACE_EA);
- gcc_assert (to_as == ADDR_SPACE_GENERIC || to_as == ADDR_SPACE_EA);
-
- if (to_as == ADDR_SPACE_GENERIC && from_as == ADDR_SPACE_EA)
- {
- rtx result, ls;
-
- ls = gen_const_mem (DImode,
- gen_rtx_SYMBOL_REF (Pmode, "__ea_local_store"));
- set_mem_align (ls, 128);
-
- result = gen_reg_rtx (Pmode);
- ls = force_reg (Pmode, convert_modes (Pmode, DImode, ls, 1));
- op = force_reg (Pmode, convert_modes (Pmode, EAmode, op, 1));
- ls = emit_conditional_move (ls, NE, op, const0_rtx, Pmode,
- ls, const0_rtx, Pmode, 1);
-
- emit_insn (gen_subsi3 (result, op, ls));
-
- return result;
- }
-
- else if (to_as == ADDR_SPACE_EA && from_as == ADDR_SPACE_GENERIC)
- {
- rtx result, ls;
-
- ls = gen_const_mem (DImode,
- gen_rtx_SYMBOL_REF (Pmode, "__ea_local_store"));
- set_mem_align (ls, 128);
-
- result = gen_reg_rtx (EAmode);
- ls = force_reg (EAmode, convert_modes (EAmode, DImode, ls, 1));
- op = force_reg (Pmode, op);
- ls = emit_conditional_move (ls, NE, op, const0_rtx, Pmode,
- ls, const0_rtx, EAmode, 1);
- op = force_reg (EAmode, convert_modes (EAmode, Pmode, op, 1));
-
- if (EAmode == SImode)
- emit_insn (gen_addsi3 (result, op, ls));
- else
- emit_insn (gen_adddi3 (result, op, ls));
-
- return result;
- }
-
- else
- gcc_unreachable ();
-}
-
-
-/* Count the total number of instructions in each pipe and return the
- maximum, which is used as the Minimum Iteration Interval (MII)
- in the modulo scheduler. get_pipe() will return -2, -1, 0, or 1.
- -2 are instructions that can go in pipe0 or pipe1. */
-static int
-spu_sms_res_mii (struct ddg *g)
-{
- int i;
- unsigned t[4] = {0, 0, 0, 0};
-
- for (i = 0; i < g->num_nodes; i++)
- {
- rtx_insn *insn = g->nodes[i].insn;
- int p = get_pipe (insn) + 2;
-
- gcc_assert (p >= 0);
- gcc_assert (p < 4);
-
- t[p]++;
- if (dump_file && INSN_P (insn))
- fprintf (dump_file, "i%d %s %d %d\n",
- INSN_UID (insn),
- insn_data[INSN_CODE(insn)].name,
- p, t[p]);
- }
- if (dump_file)
- fprintf (dump_file, "%d %d %d %d\n", t[0], t[1], t[2], t[3]);
-
- return MAX ((t[0] + t[2] + t[3] + 1) / 2, MAX (t[2], t[3]));
-}
-
-
-void
-spu_init_expanders (void)
-{
- if (cfun)
- {
- rtx r0, r1;
- /* HARD_FRAME_REGISTER is only 128 bit aligned when
- frame_pointer_needed is true. We don't know that until we're
- expanding the prologue. */
- REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = 8;
-
- /* A number of passes use LAST_VIRTUAL_REGISTER+1 and
- LAST_VIRTUAL_REGISTER+2 to test the back-end. We want them
- to be treated as aligned, so generate them here. */
- r0 = gen_reg_rtx (SImode);
- r1 = gen_reg_rtx (SImode);
- mark_reg_pointer (r0, 128);
- mark_reg_pointer (r1, 128);
- gcc_assert (REGNO (r0) == LAST_VIRTUAL_REGISTER + 1
- && REGNO (r1) == LAST_VIRTUAL_REGISTER + 2);
- }
-}
-
-static scalar_int_mode
-spu_libgcc_cmp_return_mode (void)
-{
-
-/* For SPU word mode is TI mode so it is better to use SImode
- for compare returns. */
- return SImode;
-}
-
-static scalar_int_mode
-spu_libgcc_shift_count_mode (void)
-{
-/* For SPU word mode is TI mode so it is better to use SImode
- for shift counts. */
- return SImode;
-}
-
-/* Implement targetm.section_type_flags. */
-static unsigned int
-spu_section_type_flags (tree decl, const char *name, int reloc)
-{
- /* .toe needs to have type @nobits. */
- if (strcmp (name, ".toe") == 0)
- return SECTION_BSS;
- /* Don't load _ea into the current address space. */
- if (strcmp (name, "._ea") == 0)
- return SECTION_WRITE | SECTION_DEBUG;
- return default_section_type_flags (decl, name, reloc);
-}
-
-/* Implement targetm.select_section. */
-static section *
-spu_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align)
-{
- /* Variables and constants defined in the __ea address space
- go into a special section named "._ea". */
- if (TREE_TYPE (decl) != error_mark_node
- && TYPE_ADDR_SPACE (TREE_TYPE (decl)) == ADDR_SPACE_EA)
- {
- /* We might get called with string constants, but get_named_section
- doesn't like them as they are not DECLs. Also, we need to set
- flags in that case. */
- if (!DECL_P (decl))
- return get_section ("._ea", SECTION_WRITE | SECTION_DEBUG, NULL);
-
- return get_named_section (decl, "._ea", reloc);
- }
-
- return default_elf_select_section (decl, reloc, align);
-}
-
-/* Implement targetm.unique_section. */
-static void
-spu_unique_section (tree decl, int reloc)
-{
- /* We don't support unique section names in the __ea address
- space for now. */
- if (TREE_TYPE (decl) != error_mark_node
- && TYPE_ADDR_SPACE (TREE_TYPE (decl)) != 0)
- return;
-
- default_unique_section (decl, reloc);
-}
-
-/* Generate a constant or register which contains 2^SCALE. We assume
- the result is valid for MODE. Currently, MODE must be V4SFmode and
- SCALE must be SImode. */
-rtx
-spu_gen_exp2 (machine_mode mode, rtx scale)
-{
- gcc_assert (mode == V4SFmode);
- gcc_assert (GET_MODE (scale) == SImode || GET_CODE (scale) == CONST_INT);
- if (GET_CODE (scale) != CONST_INT)
- {
- /* unsigned int exp = (127 + scale) << 23;
- __vector float m = (__vector float) spu_splats (exp); */
- rtx reg = force_reg (SImode, scale);
- rtx exp = gen_reg_rtx (SImode);
- rtx mul = gen_reg_rtx (mode);
- emit_insn (gen_addsi3 (exp, reg, GEN_INT (127)));
- emit_insn (gen_ashlsi3 (exp, exp, GEN_INT (23)));
- emit_insn (gen_spu_splats (mul, gen_rtx_SUBREG (GET_MODE_INNER (mode), exp, 0)));
- return mul;
- }
- else
- {
- HOST_WIDE_INT exp = 127 + INTVAL (scale);
- unsigned char arr[16];
- arr[0] = arr[4] = arr[8] = arr[12] = exp >> 1;
- arr[1] = arr[5] = arr[9] = arr[13] = exp << 7;
- arr[2] = arr[6] = arr[10] = arr[14] = 0;
- arr[3] = arr[7] = arr[11] = arr[15] = 0;
- return array_to_constant (mode, arr);
- }
-}
-
-/* After reload, just change the convert into a move instruction
- or a dead instruction. */
-void
-spu_split_convert (rtx ops[])
-{
- if (REGNO (ops[0]) == REGNO (ops[1]))
- emit_note (NOTE_INSN_DELETED);
- else
- {
- /* Use TImode always as this might help hard reg copyprop. */
- rtx op0 = gen_rtx_REG (TImode, REGNO (ops[0]));
- rtx op1 = gen_rtx_REG (TImode, REGNO (ops[1]));
- emit_insn (gen_move_insn (op0, op1));
- }
-}
-
-void
-spu_function_profiler (FILE * file, int labelno ATTRIBUTE_UNUSED)
-{
- fprintf (file, "# profile\n");
- fprintf (file, "brsl $75, _mcount\n");
-}
-
-/* Implement targetm.ref_may_alias_errno. */
-static bool
-spu_ref_may_alias_errno (ao_ref *ref)
-{
- tree base = ao_ref_base (ref);
-
- /* With SPU newlib, errno is defined as something like
- _impure_data._errno
- The default implementation of this target macro does not
- recognize such expressions, so special-code for it here. */
-
- if (TREE_CODE (base) == VAR_DECL
- && !TREE_STATIC (base)
- && DECL_EXTERNAL (base)
- && TREE_CODE (TREE_TYPE (base)) == RECORD_TYPE
- && strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (base)),
- "_impure_data") == 0
- /* _errno is the first member of _impure_data. */
- && ref->offset == 0)
- return true;
-
- return default_ref_may_alias_errno (ref);
-}
-
-/* Output thunk to FILE that implements a C++ virtual function call (with
- multiple inheritance) to FUNCTION. The thunk adjusts the this pointer
- by DELTA, and unless VCALL_OFFSET is zero, applies an additional adjustment
- stored at VCALL_OFFSET in the vtable whose address is located at offset 0
- relative to the resulting this pointer. */
-
-static void
-spu_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
- HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
- tree function)
-{
- const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk));
- rtx op[8];
-
- assemble_start_function (thunk, fnname);
- /* Make sure unwind info is emitted for the thunk if needed. */
- final_start_function (emit_barrier (), file, 1);
-
- /* Operand 0 is the target function. */
- op[0] = XEXP (DECL_RTL (function), 0);
-
- /* Operand 1 is the 'this' pointer. */
- if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
- op[1] = gen_rtx_REG (Pmode, FIRST_ARG_REGNUM + 1);
- else
- op[1] = gen_rtx_REG (Pmode, FIRST_ARG_REGNUM);
-
- /* Operands 2/3 are the low/high halfwords of delta. */
- op[2] = GEN_INT (trunc_int_for_mode (delta, HImode));
- op[3] = GEN_INT (trunc_int_for_mode (delta >> 16, HImode));
-
- /* Operands 4/5 are the low/high halfwords of vcall_offset. */
- op[4] = GEN_INT (trunc_int_for_mode (vcall_offset, HImode));
- op[5] = GEN_INT (trunc_int_for_mode (vcall_offset >> 16, HImode));
-
- /* Operands 6/7 are temporary registers. */
- op[6] = gen_rtx_REG (Pmode, 79);
- op[7] = gen_rtx_REG (Pmode, 78);
-
- /* Add DELTA to this pointer. */
- if (delta)
- {
- if (delta >= -0x200 && delta < 0x200)
- output_asm_insn ("ai\t%1,%1,%2", op);
- else if (delta >= -0x8000 && delta < 0x8000)
- {
- output_asm_insn ("il\t%6,%2", op);
- output_asm_insn ("a\t%1,%1,%6", op);
- }
- else
- {
- output_asm_insn ("ilhu\t%6,%3", op);
- output_asm_insn ("iohl\t%6,%2", op);
- output_asm_insn ("a\t%1,%1,%6", op);
- }
- }
-
- /* Perform vcall adjustment. */
- if (vcall_offset)
- {
- output_asm_insn ("lqd\t%7,0(%1)", op);
- output_asm_insn ("rotqby\t%7,%7,%1", op);
-
- if (vcall_offset >= -0x200 && vcall_offset < 0x200)
- output_asm_insn ("ai\t%7,%7,%4", op);
- else if (vcall_offset >= -0x8000 && vcall_offset < 0x8000)
- {
- output_asm_insn ("il\t%6,%4", op);
- output_asm_insn ("a\t%7,%7,%6", op);
- }
- else
- {
- output_asm_insn ("ilhu\t%6,%5", op);
- output_asm_insn ("iohl\t%6,%4", op);
- output_asm_insn ("a\t%7,%7,%6", op);
- }
-
- output_asm_insn ("lqd\t%6,0(%7)", op);
- output_asm_insn ("rotqby\t%6,%6,%7", op);
- output_asm_insn ("a\t%1,%1,%6", op);
- }
-
- /* Jump to target. */
- output_asm_insn ("br\t%0", op);
-
- final_end_function ();
- assemble_end_function (thunk, fnname);
-}
-
-/* Canonicalize a comparison from one we don't have to one we do have. */
-static void
-spu_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
- bool op0_preserve_value)
-{
- if (!op0_preserve_value
- && (*code == LE || *code == LT || *code == LEU || *code == LTU))
- {
- rtx tem = *op0;
- *op0 = *op1;
- *op1 = tem;
- *code = (int)swap_condition ((enum rtx_code)*code);
- }
-}
-
-/* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
- to perform. MEM is the memory on which to operate. VAL is the second
- operand of the binary operator. BEFORE and AFTER are optional locations to
- return the value of MEM either before of after the operation. */
-void
-spu_expand_atomic_op (enum rtx_code code, rtx mem, rtx val,
- rtx orig_before, rtx orig_after)
-{
- machine_mode mode = GET_MODE (mem);
- rtx before = orig_before, after = orig_after;
-
- if (before == NULL_RTX)
- before = gen_reg_rtx (mode);
-
- emit_move_insn (before, mem);
-
- if (code == MULT) /* NAND operation */
- {
- rtx x = expand_simple_binop (mode, AND, before, val,
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
- after = expand_simple_unop (mode, NOT, x, after, 1);
- }
- else
- {
- after = expand_simple_binop (mode, code, before, val,
- after, 1, OPTAB_LIB_WIDEN);
- }
-
- emit_move_insn (mem, after);
-
- if (orig_after && after != orig_after)
- emit_move_insn (orig_after, after);
-}
-
-/* Implement TARGET_MODES_TIEABLE_P. */
-
-static bool
-spu_modes_tieable_p (machine_mode mode1, machine_mode mode2)
-{
- return (GET_MODE_BITSIZE (mode1) <= MAX_FIXED_MODE_SIZE
- && GET_MODE_BITSIZE (mode2) <= MAX_FIXED_MODE_SIZE);
-}
-
-/* Implement TARGET_CAN_CHANGE_MODE_CLASS. GCC assumes that modes are
- in the lowpart of a register, which is only true for SPU. */
-
-static bool
-spu_can_change_mode_class (machine_mode from, machine_mode to, reg_class_t)
-{
- return (GET_MODE_SIZE (from) == GET_MODE_SIZE (to)
- || (GET_MODE_SIZE (from) <= 4 && GET_MODE_SIZE (to) <= 4)
- || (GET_MODE_SIZE (from) >= 16 && GET_MODE_SIZE (to) >= 16));
-}
-
-/* Implement TARGET_TRULY_NOOP_TRUNCATION. */
-
-static bool
-spu_truly_noop_truncation (poly_uint64 outprec, poly_uint64 inprec)
-{
- return inprec <= 32 && outprec <= inprec;
-}
-
-/* Implement TARGET_STATIC_RTX_ALIGNMENT.
-
- Make all static objects 16-byte aligned. This allows us to assume
- they are also padded to 16 bytes, which means we can use a single
- load or store instruction to access them. */
-
-static HOST_WIDE_INT
-spu_static_rtx_alignment (machine_mode mode)
-{
- return MAX (GET_MODE_ALIGNMENT (mode), 128);
-}
-
-/* Implement TARGET_CONSTANT_ALIGNMENT.
-
- Make all static objects 16-byte aligned. This allows us to assume
- they are also padded to 16 bytes, which means we can use a single
- load or store instruction to access them. */
-
-static HOST_WIDE_INT
-spu_constant_alignment (const_tree, HOST_WIDE_INT align)
-{
- return MAX (align, 128);
-}
-
-/* Table of machine attributes. */
-static const struct attribute_spec spu_attribute_table[] =
-{
- /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
- affects_type_identity, handler, exclude } */
- { "naked", 0, 0, true, false, false, false,
- spu_handle_fndecl_attribute, NULL },
- { "spu_vector", 0, 0, false, true, false, false,
- spu_handle_vector_attribute, NULL },
- { NULL, 0, 0, false, false, false, false, NULL, NULL }
-};
-
-/* TARGET overrides. */
-
-#undef TARGET_LRA_P
-#define TARGET_LRA_P hook_bool_void_false
-
-#undef TARGET_ADDR_SPACE_POINTER_MODE
-#define TARGET_ADDR_SPACE_POINTER_MODE spu_addr_space_pointer_mode
-
-#undef TARGET_ADDR_SPACE_ADDRESS_MODE
-#define TARGET_ADDR_SPACE_ADDRESS_MODE spu_addr_space_address_mode
-
-#undef TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
-#define TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P \
- spu_addr_space_legitimate_address_p
-
-#undef TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS
-#define TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS spu_addr_space_legitimize_address
-
-#undef TARGET_ADDR_SPACE_SUBSET_P
-#define TARGET_ADDR_SPACE_SUBSET_P spu_addr_space_subset_p
-
-#undef TARGET_ADDR_SPACE_CONVERT
-#define TARGET_ADDR_SPACE_CONVERT spu_addr_space_convert
-
-#undef TARGET_INIT_BUILTINS
-#define TARGET_INIT_BUILTINS spu_init_builtins
-#undef TARGET_BUILTIN_DECL
-#define TARGET_BUILTIN_DECL spu_builtin_decl
-
-#undef TARGET_EXPAND_BUILTIN
-#define TARGET_EXPAND_BUILTIN spu_expand_builtin
-
-#undef TARGET_UNWIND_WORD_MODE
-#define TARGET_UNWIND_WORD_MODE spu_unwind_word_mode
-
-#undef TARGET_LEGITIMIZE_ADDRESS
-#define TARGET_LEGITIMIZE_ADDRESS spu_legitimize_address
-
-/* The current assembler doesn't like .4byte foo@ppu, so use the normal .long
- and .quad for the debugger. When it is known that the assembler is fixed,
- these can be removed. */
-#undef TARGET_ASM_UNALIGNED_SI_OP
-#define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
-
-#undef TARGET_ASM_ALIGNED_DI_OP
-#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
-
-/* The .8byte directive doesn't seem to work well for a 32 bit
- architecture. */
-#undef TARGET_ASM_UNALIGNED_DI_OP
-#define TARGET_ASM_UNALIGNED_DI_OP NULL
-
-#undef TARGET_RTX_COSTS
-#define TARGET_RTX_COSTS spu_rtx_costs
-
-#undef TARGET_ADDRESS_COST
-#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
-
-#undef TARGET_SCHED_ISSUE_RATE
-#define TARGET_SCHED_ISSUE_RATE spu_sched_issue_rate
-
-#undef TARGET_SCHED_INIT_GLOBAL
-#define TARGET_SCHED_INIT_GLOBAL spu_sched_init_global
-
-#undef TARGET_SCHED_INIT
-#define TARGET_SCHED_INIT spu_sched_init
-
-#undef TARGET_SCHED_VARIABLE_ISSUE
-#define TARGET_SCHED_VARIABLE_ISSUE spu_sched_variable_issue
-
-#undef TARGET_SCHED_REORDER
-#define TARGET_SCHED_REORDER spu_sched_reorder
-
-#undef TARGET_SCHED_REORDER2
-#define TARGET_SCHED_REORDER2 spu_sched_reorder
-
-#undef TARGET_SCHED_ADJUST_COST
-#define TARGET_SCHED_ADJUST_COST spu_sched_adjust_cost
-
-#undef TARGET_ATTRIBUTE_TABLE
-#define TARGET_ATTRIBUTE_TABLE spu_attribute_table
-
-#undef TARGET_ASM_INTEGER
-#define TARGET_ASM_INTEGER spu_assemble_integer
-
-#undef TARGET_SCALAR_MODE_SUPPORTED_P
-#define TARGET_SCALAR_MODE_SUPPORTED_P spu_scalar_mode_supported_p
-
-#undef TARGET_VECTOR_MODE_SUPPORTED_P
-#define TARGET_VECTOR_MODE_SUPPORTED_P spu_vector_mode_supported_p
-
-#undef TARGET_FUNCTION_OK_FOR_SIBCALL
-#define TARGET_FUNCTION_OK_FOR_SIBCALL spu_function_ok_for_sibcall
-
-#undef TARGET_ASM_GLOBALIZE_LABEL
-#define TARGET_ASM_GLOBALIZE_LABEL spu_asm_globalize_label
-
-#undef TARGET_PASS_BY_REFERENCE
-#define TARGET_PASS_BY_REFERENCE spu_pass_by_reference
-
-#undef TARGET_FUNCTION_ARG
-#define TARGET_FUNCTION_ARG spu_function_arg
-
-#undef TARGET_FUNCTION_ARG_ADVANCE
-#define TARGET_FUNCTION_ARG_ADVANCE spu_function_arg_advance
-
-#undef TARGET_FUNCTION_ARG_OFFSET
-#define TARGET_FUNCTION_ARG_OFFSET spu_function_arg_offset
-
-#undef TARGET_FUNCTION_ARG_PADDING
-#define TARGET_FUNCTION_ARG_PADDING spu_function_arg_padding
-
-#undef TARGET_MUST_PASS_IN_STACK
-#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
-
-#undef TARGET_BUILD_BUILTIN_VA_LIST
-#define TARGET_BUILD_BUILTIN_VA_LIST spu_build_builtin_va_list
-
-#undef TARGET_EXPAND_BUILTIN_VA_START
-#define TARGET_EXPAND_BUILTIN_VA_START spu_va_start
-
-#undef TARGET_SETUP_INCOMING_VARARGS
-#define TARGET_SETUP_INCOMING_VARARGS spu_setup_incoming_varargs
-
-#undef TARGET_MACHINE_DEPENDENT_REORG
-#define TARGET_MACHINE_DEPENDENT_REORG spu_machine_dependent_reorg
-
-#undef TARGET_GIMPLIFY_VA_ARG_EXPR
-#define TARGET_GIMPLIFY_VA_ARG_EXPR spu_gimplify_va_arg_expr
-
-#undef TARGET_INIT_LIBFUNCS
-#define TARGET_INIT_LIBFUNCS spu_init_libfuncs
-
-#undef TARGET_RETURN_IN_MEMORY
-#define TARGET_RETURN_IN_MEMORY spu_return_in_memory
-
-#undef TARGET_ENCODE_SECTION_INFO
-#define TARGET_ENCODE_SECTION_INFO spu_encode_section_info
-
-#undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
-#define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD spu_builtin_mask_for_load
-
-#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
-#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST spu_builtin_vectorization_cost
-
-#undef TARGET_VECTORIZE_INIT_COST
-#define TARGET_VECTORIZE_INIT_COST spu_init_cost
-
-#undef TARGET_VECTORIZE_ADD_STMT_COST
-#define TARGET_VECTORIZE_ADD_STMT_COST spu_add_stmt_cost
-
-#undef TARGET_VECTORIZE_FINISH_COST
-#define TARGET_VECTORIZE_FINISH_COST spu_finish_cost
-
-#undef TARGET_VECTORIZE_DESTROY_COST_DATA
-#define TARGET_VECTORIZE_DESTROY_COST_DATA spu_destroy_cost_data
-
-#undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
-#define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE spu_vector_alignment_reachable
-
-#undef TARGET_LIBGCC_CMP_RETURN_MODE
-#define TARGET_LIBGCC_CMP_RETURN_MODE spu_libgcc_cmp_return_mode
-
-#undef TARGET_LIBGCC_SHIFT_COUNT_MODE
-#define TARGET_LIBGCC_SHIFT_COUNT_MODE spu_libgcc_shift_count_mode
-
-#undef TARGET_SCHED_SMS_RES_MII
-#define TARGET_SCHED_SMS_RES_MII spu_sms_res_mii
-
-#undef TARGET_SECTION_TYPE_FLAGS
-#define TARGET_SECTION_TYPE_FLAGS spu_section_type_flags
-
-#undef TARGET_ASM_SELECT_SECTION
-#define TARGET_ASM_SELECT_SECTION spu_select_section
-
-#undef TARGET_ASM_UNIQUE_SECTION
-#define TARGET_ASM_UNIQUE_SECTION spu_unique_section
-
-#undef TARGET_LEGITIMATE_ADDRESS_P
-#define TARGET_LEGITIMATE_ADDRESS_P spu_legitimate_address_p
-
-#undef TARGET_LEGITIMATE_CONSTANT_P
-#define TARGET_LEGITIMATE_CONSTANT_P spu_legitimate_constant_p
-
-#undef TARGET_TRAMPOLINE_INIT
-#define TARGET_TRAMPOLINE_INIT spu_trampoline_init
-
-#undef TARGET_WARN_FUNC_RETURN
-#define TARGET_WARN_FUNC_RETURN spu_warn_func_return
-
-#undef TARGET_OPTION_OVERRIDE
-#define TARGET_OPTION_OVERRIDE spu_option_override
-
-#undef TARGET_CONDITIONAL_REGISTER_USAGE
-#define TARGET_CONDITIONAL_REGISTER_USAGE spu_conditional_register_usage
-
-#undef TARGET_REF_MAY_ALIAS_ERRNO
-#define TARGET_REF_MAY_ALIAS_ERRNO spu_ref_may_alias_errno
-
-#undef TARGET_ASM_OUTPUT_MI_THUNK
-#define TARGET_ASM_OUTPUT_MI_THUNK spu_output_mi_thunk
-#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
-#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
-
-/* Variable tracking should be run after all optimizations which
- change order of insns. It also needs a valid CFG. */
-#undef TARGET_DELAY_VARTRACK
-#define TARGET_DELAY_VARTRACK true
-
-#undef TARGET_CANONICALIZE_COMPARISON
-#define TARGET_CANONICALIZE_COMPARISON spu_canonicalize_comparison
-
-#undef TARGET_CAN_USE_DOLOOP_P
-#define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost
-
-#undef TARGET_MODES_TIEABLE_P
-#define TARGET_MODES_TIEABLE_P spu_modes_tieable_p
-
-#undef TARGET_HARD_REGNO_NREGS
-#define TARGET_HARD_REGNO_NREGS spu_hard_regno_nregs
-
-#undef TARGET_CAN_CHANGE_MODE_CLASS
-#define TARGET_CAN_CHANGE_MODE_CLASS spu_can_change_mode_class
-
-#undef TARGET_TRULY_NOOP_TRUNCATION
-#define TARGET_TRULY_NOOP_TRUNCATION spu_truly_noop_truncation
-
-#undef TARGET_STATIC_RTX_ALIGNMENT
-#define TARGET_STATIC_RTX_ALIGNMENT spu_static_rtx_alignment
-#undef TARGET_CONSTANT_ALIGNMENT
-#define TARGET_CONSTANT_ALIGNMENT spu_constant_alignment
-
-#undef TARGET_HAVE_SPECULATION_SAFE_VALUE
-#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
-
-struct gcc_target targetm = TARGET_INITIALIZER;
-
-#include "gt-spu.h"