aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/romp
diff options
context:
space:
mode:
authorRichard Kenner <kenner@gcc.gnu.org>1992-01-18 08:39:29 -0500
committerRichard Kenner <kenner@gcc.gnu.org>1992-01-18 08:39:29 -0500
commitb124ac047273369cc07052260cdd163677e09de3 (patch)
tree596116dd0ea01decf4a46ef63457e0d61191aa6e /gcc/config/romp
parentee1456320273bf7761b81c4daa2c6acc3187d446 (diff)
downloadgcc-b124ac047273369cc07052260cdd163677e09de3.zip
gcc-b124ac047273369cc07052260cdd163677e09de3.tar.gz
gcc-b124ac047273369cc07052260cdd163677e09de3.tar.bz2
Initial revision
From-SVN: r214
Diffstat (limited to 'gcc/config/romp')
-rw-r--r--gcc/config/romp/romp.h1595
-rw-r--r--gcc/config/romp/romp.md2728
2 files changed, 4323 insertions, 0 deletions
diff --git a/gcc/config/romp/romp.h b/gcc/config/romp/romp.h
new file mode 100644
index 0000000..6904cc5
--- /dev/null
+++ b/gcc/config/romp/romp.h
@@ -0,0 +1,1595 @@
+/* Definitions of target machine for GNU compiler, for ROMP chip.
+ Copyright (C) 1989, 1991 Free Software Foundation, Inc.
+ Contributed by Richard Kenner (kenner@nyu.edu)
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+
+/* Names to predefine in the preprocessor for this target machine. */
+
+#define CPP_PREDEFINES "-Dibm032 -Dunix"
+
+/* Print subsidiary information on the compiler version in use. */
+#define TARGET_VERSION ;
+
+/* Add -lfp_p when running with -p or -pg. */
+#define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
+
+/* Run-time compilation parameters selecting different hardware subsets. */
+
+/* Flag to generate all multiplies as an in-line sequence of multiply-step
+ insns instead of calling a library routine. */
+#define TARGET_IN_LINE_MUL (target_flags & 1)
+
+/* Flag to generate padded floating-point data blocks. Otherwise, we generate
+ them the minimum size. This trades off execution speed against size. */
+#define TARGET_FULL_FP_BLOCKS (target_flags & 2)
+
+/* Flag to pass and return floating point values in floating point registers.
+ Since this violates the linkage convention, we feel free to destroy fr2
+ and fr3 on function calls.
+ fr1-fr3 are used to pass the arguments. */
+#define TARGET_FP_REGS (target_flags & 4)
+
+/* Flag to return structures of more than one word in memory. This is for
+ compatibility with the MetaWare HighC (hc) compiler. */
+#define TARGET_HC_STRUCT_RETURN (target_flags & 010)
+
+extern int target_flags;
+
+/* Macro to define tables used to set the flags.
+ This is a list in braces of pairs in braces,
+ each pair being { "NAME", VALUE }
+ where VALUE is the bits to set or minus the bits to clear.
+ An empty string NAME is used to identify the default VALUE. */
+
+#define TARGET_SWITCHES \
+ { {"in-line-mul", 1}, \
+ {"call-lib-mul", -1}, \
+ {"full-fp-blocks", 2}, \
+ {"minimum-fp-blocks", -2}, \
+ {"fp-arg-in-fpregs", 4}, \
+ {"fp-arg-in-gregs", -4}, \
+ {"hc-struct-return", 010}, \
+ {"nohc-struct-return", - 010}, \
+ { "", TARGET_DEFAULT}}
+
+#define TARGET_DEFAULT 3
+
+/* Define this to change the optimizations peformed by default. */
+
+#define OPTIMIZATION_OPTIONS(LEVEL)
+
+/* Define this to modify the options specified by the user.
+
+ On the ROMP, we turn on various flags if optimization is selected.
+ More get turned on if debugging is off. */
+
+#define OVERRIDE_OPTIONS \
+{ \
+ if (optimize) \
+ { \
+ flag_force_addr = 1; \
+ flag_force_mem = 1; \
+ if (write_symbols == NO_DEBUG) \
+ flag_omit_frame_pointer = 1; \
+ } \
+}
+
+/* target machine storage layout */
+
+/* Define this if most significant bit is lowest numbered
+ in instructions that operate on numbered bit-fields. */
+/* That is true on ROMP. */
+#define BITS_BIG_ENDIAN 1
+
+/* Define this if most significant byte of a word is the lowest numbered. */
+/* That is true on ROMP. */
+#define BYTES_BIG_ENDIAN 1
+
+/* Define this if most significant word of a multiword number is lowest
+ numbered.
+
+ For ROMP we can decide arbitrarily since there are no machine instructions
+ for them. Might as well be consistent with bits and bytes. */
+#define WORDS_BIG_ENDIAN 1
+
+/* number of bits in an addressible storage unit */
+#define BITS_PER_UNIT 8
+
+/* Width in bits of a "word", which is the contents of a machine register.
+ Note that this is not necessarily the width of data type `int';
+ if using 16-bit ints on a 68000, this would still be 32.
+ But on a machine with 16-bit registers, this would be 16. */
+#define BITS_PER_WORD 32
+
+/* Width of a word, in units (bytes). */
+#define UNITS_PER_WORD 4
+
+/* Width in bits of a pointer.
+ See also the macro `Pmode' defined below. */
+#define POINTER_SIZE 32
+
+/* Allocation boundary (in *bits*) for storing arguments in argument list. */
+#define PARM_BOUNDARY 32
+
+/* Boundary (in *bits*) on which stack pointer should be aligned. */
+#define STACK_BOUNDARY 32
+
+/* Allocation boundary (in *bits*) for the code of a function. */
+#define FUNCTION_BOUNDARY 16
+
+/* No data type wants to be aligned rounder than this. */
+#define BIGGEST_ALIGNMENT 32
+
+/* Alignment of field after `int : 0' in a structure. */
+#define EMPTY_FIELD_BOUNDARY 32
+
+/* Every structure's size must be a multiple of this. */
+#define STRUCTURE_SIZE_BOUNDARY 8
+
+/* A bitfield declared as `int' forces `int' alignment for the struct. */
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+/* Make strings word-aligned so strcpy from constants will be faster. */
+#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
+ (TREE_CODE (EXP) == STRING_CST \
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
+
+/* Make arrays of chars word-aligned for the same reasons. */
+#define DATA_ALIGNMENT(TYPE, ALIGN) \
+ (TREE_CODE (TYPE) == ARRAY_TYPE \
+ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
+
+/* Define this if move instructions will actually fail to work
+ when given unaligned data. */
+#define STRICT_ALIGNMENT
+
+/* Standard register usage. */
+
+/* Number of actual hardware registers.
+ The hardware registers are assigned numbers for the compiler
+ from 0 to just below FIRST_PSEUDO_REGISTER.
+ All registers that the compiler knows about must be given numbers,
+ even those that are not normally considered general registers.
+
+ ROMP has 16 fullword registers and 8 floating point registers.
+
+ In addition, the difference between the frame and argument pointers is
+ a function of the number of registers saved, so we need to have a register
+ to use for AP that will later be eliminated in favor of sp or fp. This is
+ a normal register, but it is fixed. */
+
+#define FIRST_PSEUDO_REGISTER 25
+
+/* 1 for registers that have pervasive standard uses
+ and are not available for the register allocator.
+
+ On ROMP, r1 is used for the stack and r14 is used for a
+ data area pointer.
+
+ HACK WARNING: On the RT, there is a bug in code generation for
+ the MC68881 when the first and third operands are the same floating-point
+ register. See the definition of the FINAL_PRESCAN_INSN macro for details.
+ Here we need to reserve fr0 for this purpose. */
+#define FIXED_REGISTERS \
+ {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 1, \
+ 1, 0, 0, 0, 0, 0, 0, 0}
+
+/* 1 for registers not available across function calls.
+ These must include the FIXED_REGISTERS and also any
+ registers that can be used without being saved.
+ The latter must include the registers where values are returned
+ and the register where structure-value addresses are passed.
+ Aside from that, you can include as many other registers as you like. */
+#define CALL_USED_REGISTERS \
+ {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 1, \
+ 1, 1, 0, 0, 0, 0, 0, 0}
+
+/* List the order in which to allocate registers. Each register must be
+ listed once, even those in FIXED_REGISTERS.
+
+ We allocate in the following order:
+ fr0, fr1 (not saved)
+ fr2 ... fr6
+ fr7 (more expensive for some FPA's)
+ r0 (not saved and won't conflict with parameter register)
+ r4, r3, r2 (not saved, highest used first to make less conflict)
+ r5 (not saved, but forces r6 to be saved if DI/DFmode)
+ r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save)
+ r1, ap */
+
+#define REG_ALLOC_ORDER \
+ {17, 18, \
+ 19, 20, 21, 22, 23, \
+ 24, \
+ 0, \
+ 4, 3, 2, \
+ 5, \
+ 15, 14, 13, 12, 11, 10, \
+ 9, 8, 7, 6, \
+ 1, 16}
+
+/* True if register is floating-point. */
+#define FP_REGNO_P(N) ((N) >= 17)
+
+/* Return number of consecutive hard regs needed starting at reg REGNO
+ to hold something of mode MODE.
+ This is ordinarily the length in words of a value of mode MODE
+ but can be less for certain modes in special long registers.
+
+ On ROMP, ordinary registers hold 32 bits worth;
+ a single floating point register is always enough for
+ anything that can be stored in them at all. */
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+ (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \
+ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
+
+/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
+ On ROMP, the cpu registers can hold any mode but the float registers
+ can hold only floating point. */
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
+ (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \
+ || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
+
+/* Value is 1 if it is a good idea to tie two pseudo registers
+ when one has mode MODE1 and one has mode MODE2.
+ If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
+ for any hard reg, then this must be 0 for correct output. */
+#define MODES_TIEABLE_P(MODE1, MODE2) \
+ ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
+ || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
+ == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
+ || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
+
+/* A C expression returning the cost of moving data from a register of class
+ CLASS1 to one of CLASS2.
+
+ On the ROMP, access to floating-point registers is expensive (even between
+ two FP regs.) */
+#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
+ (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS))
+
+/* Specify the registers used for certain standard purposes.
+ The values of these macros are register numbers. */
+
+/* ROMP pc isn't overloaded on a register that the compiler knows about. */
+/* #define PC_REGNUM */
+
+/* Register to use for pushing function arguments. */
+#define STACK_POINTER_REGNUM 1
+
+/* Base register for access to local variables of the function. */
+#define FRAME_POINTER_REGNUM 13
+
+/* Value should be nonzero if functions must have frame pointers.
+ Zero means the frame pointer need not be set up (and parms
+ may be accessed via the stack pointer) in functions that seem suitable.
+ This is computed in `reload', in reload1.c. */
+#define FRAME_POINTER_REQUIRED 0
+
+/* Base register for access to arguments of the function. */
+#define ARG_POINTER_REGNUM 16
+
+/* Place to put static chain when calling a function that requires it. */
+#define STATIC_CHAIN \
+ gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
+ gen_rtx (CONST_INT, VOIDmode, -36)))
+
+/* Place where static chain is found upon entry to routine. */
+#define STATIC_CHAIN_INCOMING \
+ gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, arg_pointer_rtx, \
+ gen_rtx (CONST_INT, VOIDmode, -20)))
+
+/* Place that structure value return address is placed.
+
+ On the ROMP, it is passed as an extra parameter. */
+#define STRUCT_VALUE 0
+
+/* Define the classes of registers for register constraints in the
+ machine description. Also define ranges of constants.
+
+ One of the classes must always be named ALL_REGS and include all hard regs.
+ If there is more than one class, another class must be named NO_REGS
+ and contain no registers.
+
+ The name GENERAL_REGS must be the name of a class (or an alias for
+ another name such as ALL_REGS). This is the class of registers
+ that is allowed by "g" or "r" in a register constraint.
+ Also, registers outside this class are allocated only when
+ instructions express preferences for them.
+
+ The classes must be numbered in nondecreasing order; that is,
+ a larger-numbered class must never be contained completely
+ in a smaller-numbered class.
+
+ For any two classes, it is very desirable that there be another
+ class that represents their union. */
+
+/* The ROMP has two types of registers, general and floating-point.
+
+ However, r0 is special in that it cannot be used as a base register.
+ So make a class for registers valid as base registers.
+
+ For floating-point support, add classes that just consist of r0 and
+ r15, respectively. */
+
+enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS,
+ FP_REGS, ALL_REGS, LIM_REG_CLASSES };
+
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
+
+/* Give names of register classes as strings for dump file. */
+
+#define REG_CLASS_NAMES \
+ {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \
+ "FP_REGS", "ALL_REGS" }
+
+/* Define which registers fit in which classes.
+ This is an initializer for a vector of HARD_REG_SET
+ of length N_REG_CLASSES. */
+
+#define REG_CLASS_CONTENTS {0, 0x00001, 0x08000, 0x1fffe, 0x1ffff, \
+ 0x1fe0000, 0x1ffffff }
+
+/* The same information, inverted:
+ Return the class number of the smallest class containing
+ reg number REGNO. This could be a conditional expression
+ or could index an array. */
+
+#define REGNO_REG_CLASS(REGNO) \
+ ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS)
+
+/* The class value for index registers, and the one for base regs. */
+#define INDEX_REG_CLASS BASE_REGS
+#define BASE_REG_CLASS BASE_REGS
+
+/* Get reg_class from a letter such as appears in the machine description. */
+
+#define REG_CLASS_FROM_LETTER(C) \
+ ((C) == 'f' ? FP_REGS \
+ : (C) == 'b' ? BASE_REGS \
+ : (C) == 'z' ? R0_REGS \
+ : (C) == 't' ? R15_REGS \
+ : NO_REGS)
+
+/* The letters I, J, K, L, M, N, and P in a register constraint string
+ can be used to stand for particular ranges of immediate operands.
+ This macro defines what the ranges are.
+ C is the letter, and VALUE is a constant value.
+ Return 1 if VALUE is in the range specified by C.
+
+ `I' is constants less than 16
+ `J' is negative constants greater than -16
+ `K' is the range for a normal D insn.
+ `L' is a constant with only the low-order 16 bits set
+ `M' is a constant with only the high-order 16 bits set
+ `N' is a single-bit constant
+ `O' is a constant with either the high-order or low-order 16 bits all ones
+ `P' is the complement of a single-bit constant
+ */
+
+#define CONST_OK_FOR_LETTER_P(VALUE, C) \
+ ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \
+ : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \
+ : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
+ : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \
+ : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \
+ : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
+ : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \
+ || ((VALUE) & 0xffff0000) == 0xffff0000 \
+ : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \
+ : 0)
+
+/* Similar, but for floating constants, and defining letters G and H.
+ Here VALUE is the CONST_DOUBLE rtx itself.
+ No floating-point constants on ROMP. */
+
+#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
+
+/* Optional extra constraints for this machine.
+
+ For the ROMP, `Q' means that this is a memory operand but not a symbolic
+ memory operand. Note that an unassigned pseudo register is such a
+ memory operand. If register allocation has not been done, we reject
+ pseudos, since we assume (hope) that they will get hard registers.
+
+ `R' means that this is a constant pool reference to the current function.
+ This is just r14 and so can be treated as a register. We bother with this
+ just in move insns as that is the only place it is likely to occur.
+
+ `S' means that this is the address of a constant pool location. This is
+ equal to r14 plus a constant. We also only check for this in move insns. */
+
+#define EXTRA_CONSTRAINT(OP, C) \
+ ((C) == 'Q' ? \
+ ((GET_CODE (OP) == REG \
+ && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
+ && reg_renumber != 0 \
+ && reg_renumber[REGNO (OP)] < 0) \
+ || (memory_operand (OP, VOIDmode) \
+ && ! symbolic_memory_operand (OP, VOIDmode))) \
+ : (C) == 'R' ? current_function_operand (OP, VOIDmode) \
+ : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \
+ : 0)
+
+/* Given an rtx X being reloaded into a reg required to be
+ in class CLASS, return the class of reg to actually use.
+ In general this is just CLASS; but on some machines
+ in some cases it is preferable to use a more restrictive class.
+
+ For the ROMP, if X is a memory reference that involves a symbol,
+ we must use a BASE_REGS register instead of GENERAL_REGS
+ to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF
+ to be valid, so we assume that this is the case.
+
+ Also, if X is an integer class, ensure that floating-point registers
+ aren't used. */
+
+#define PREFERRED_RELOAD_CLASS(X,CLASS) \
+ ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
+ ? GENERAL_REGS : \
+ (CLASS) != GENERAL_REGS ? (CLASS) : \
+ GET_CODE (X) != MEM ? GENERAL_REGS : \
+ GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \
+ GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \
+ GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \
+ GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \
+ GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \
+ GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \
+ GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \
+ GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS)
+
+/* Return the register class of a scratch register needed to store into
+ OUT from a register of class CLASS in MODE.
+
+ On the ROMP, we cannot store into a symbolic memory address from an
+ integer register; we need a BASE_REGS register as a scratch to do it. */
+
+#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
+ (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \
+ ? BASE_REGS : NO_REGS)
+
+/* Return the maximum number of consecutive registers
+ needed to represent mode MODE in a register of class CLASS.
+
+ On ROMP, this is the size of MODE in words,
+ except in the FP regs, where a single reg is always enough. */
+#define CLASS_MAX_NREGS(CLASS, MODE) \
+ ((CLASS) == FP_REGS ? 1 \
+ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
+
+/* Stack layout; function entry, exit and calling. */
+
+/* Define this if pushing a word on the stack
+ makes the stack pointer a smaller address. */
+#define STACK_GROWS_DOWNWARD
+
+/* Define this if the nominal address of the stack frame
+ is at the high-address end of the local variables;
+ that is, each additional local variable allocated
+ goes at a more negative offset in the frame. */
+#define FRAME_GROWS_DOWNWARD
+
+/* Offset within stack frame to start allocating local variables at.
+ If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
+ first local allocated. Otherwise, it is the offset to the BEGINNING
+ of the first local allocated.
+ On the ROMP, if we set the frame pointer to 15 words below the highest
+ address of the highest local variable, the first 16 words will be
+ addressable via D-short insns. */
+#define STARTING_FRAME_OFFSET 64
+
+/* If we generate an insn to push BYTES bytes,
+ this says how many the stack pointer really advances by.
+ On ROMP, don't define this because there are no push insns. */
+/* #define PUSH_ROUNDING(BYTES) */
+
+/* Offset of first parameter from the argument pointer register value.
+ On the ROMP, we define the argument pointer to the start of the argument
+ area. */
+#define FIRST_PARM_OFFSET(FNDECL) 0
+
+/* Define this if stack space is still allocated for a parameter passed
+ in a register. The value is the number of bytes. */
+#define REG_PARM_STACK_SPACE(FNDECL) 16
+
+/* This is the difference between the logical top of stack and the actual sp.
+
+ For the ROMP, sp points past the words allocated for the first four outgoing
+ arguments (they are part of the callee's frame). */
+#define STACK_POINTER_OFFSET -16
+
+/* Define this if the maximum size of all the outgoing args is to be
+ accumulated and pushed during the prologue. The amount can be
+ found in the variable current_function_outgoing_args_size. */
+#define ACCUMULATE_OUTGOING_ARGS
+
+/* Value is the number of bytes of arguments automatically
+ popped when returning from a subroutine call.
+ FUNTYPE is the data type of the function (as a tree),
+ or for a library call it is an identifier node for the subroutine name.
+ SIZE is the number of bytes of arguments passed on the stack. */
+
+#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
+
+/* Define how to find the value returned by a function.
+ VALTYPE is the data type of the value (as a tree).
+ If the precise function being called is known, FUNC is its FUNCTION_DECL;
+ otherwise, FUNC is 0.
+
+ On ROMP the value is found in r2, unless the machine specific option
+ fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */
+
+#define FUNCTION_VALUE(VALTYPE, FUNC) \
+ gen_rtx (REG, TYPE_MODE (VALTYPE), \
+ (TARGET_FP_REGS && \
+ GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) ? 18 : 2)
+
+/* Define how to find the value returned by a library function
+ assuming the value has mode MODE. */
+
+#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 2)
+
+/* The definition of this macro implies that there are cases where
+ a scalar value cannot be returned in registers.
+
+ For the ROMP, if compatibility with HC is required, anything of
+ type DImode is returned in memory. */
+
+#define RETURN_IN_MEMORY(type) \
+ (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode)
+
+/* 1 if N is a possible register number for a function value
+ as seen by the caller.
+
+ On ROMP, r2 is the only register thus used unless fp values are to be
+ returned in fp regs, in which case fr1 is also used. */
+
+#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS))
+
+/* 1 if N is a possible register number for function argument passing.
+ On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */
+
+#define FUNCTION_ARG_REGNO_P(N) \
+ (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21))
+
+/* Define a data type for recording info about an argument list
+ during the scan of that argument list. This data type should
+ hold all necessary information about the function itself
+ and about the args processed so far, enough to enable macros
+ such as FUNCTION_ARG to determine where the next arg should go.
+
+ On the ROMP, this is a structure. The first word is the number of
+ words of (integer only if -mfp-arg-in-fpregs is specified) arguments
+ scanned so far (including the invisible argument, if any, which holds
+ the structure-value-address). The second word hold the corresponding
+ value for floating-point arguments, except that both single and double
+ count as one register. */
+
+struct rt_cargs {int gregs, fregs; };
+#define CUMULATIVE_ARGS struct rt_cargs
+
+#define USE_FP_REG(MODE,CUM) \
+ (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \
+ && (CUM).fregs < 3)
+
+/* Define intermediate macro to compute the size (in registers) of an argument
+ for the ROMP. */
+
+#define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \
+(! (NAMED) ? 0 \
+ : (MODE) != BLKmode \
+ ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
+ : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
+
+/* Initialize a variable CUM of type CUMULATIVE_ARGS
+ for a call to a function whose data type is FNTYPE.
+ For a library call, FNTYPE is 0.
+
+ On ROMP, the offset normally starts at 0, but starts at 4 bytes
+ when the function gets a structure-value-address as an
+ invisible first argument. */
+
+#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
+ (CUM).gregs = 0, \
+ (CUM).fregs = 0
+
+/* Update the data in CUM to advance over an argument
+ of mode MODE and data type TYPE.
+ (TYPE is null for libcalls where that information may not be available.) */
+
+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
+{ if (NAMED) \
+ { \
+ if (USE_FP_REG(MODE, CUM)) \
+ (CUM).fregs++; \
+ else \
+ (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \
+ } \
+}
+
+/* Determine where to put an argument to a function.
+ Value is zero to push the argument on the stack,
+ or a hard register in which to store the argument.
+
+ MODE is the argument's machine mode.
+ TYPE is the data type of the argument (as a tree).
+ This is null for libcalls where that information may
+ not be available.
+ CUM is a variable of type CUMULATIVE_ARGS which gives info about
+ the preceding args and about the function being called.
+ NAMED is nonzero if this argument is a named parameter
+ (otherwise it is an extra parameter matching an ellipsis).
+
+ On ROMP the first four words of args are normally in registers
+ and the rest are pushed. */
+
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
+ (! (NAMED) ? 0 \
+ : USE_FP_REG(MODE,CUM) ? gen_rtx(REG, (MODE),(CUM.fregs) + 17) \
+ : (CUM).gregs < 4 ? gen_rtx(REG, (MODE), 2 + (CUM).gregs) : 0)
+
+/* For an arg passed partly in registers and partly in memory,
+ this is the number of registers used.
+ For args passed entirely in registers or entirely in memory, zero. */
+
+#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
+ (! (NAMED) ? 0 \
+ : USE_FP_REG(MODE,CUM) ? 0 \
+ : (((CUM).gregs < 4 \
+ && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \
+ ? 4 - (CUM).gregs : 0))
+
+/* Perform any needed actions needed for a function that is receiving a
+ variable number of arguments.
+
+ CUM is as above.
+
+ MODE and TYPE are the mode and type of the current parameter.
+
+ PRETEND_SIZE is a variable that should be set to the amount of stack
+ that must be pushed by the prolog to pretend that our caller pushed
+ it.
+
+ Normally, this macro will push all remaining incoming registers on the
+ stack and set PRETEND_SIZE to the length of the registers pushed. */
+
+#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
+{ if (TARGET_FP_REGS) \
+ error ("can't have varargs with -mfp-arg-in-fp-regs"); \
+ else if ((CUM).gregs < 4) \
+ { \
+ int first_reg_offset = (CUM).gregs; \
+ \
+ if (MUST_PASS_IN_STACK (MODE, TYPE)) \
+ first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
+ \
+ if (first_reg_offset > 4) \
+ first_reg_offset = 4; \
+ \
+ if (! NO_RTL && first_reg_offset != 4) \
+ move_block_from_reg \
+ (2 + first_reg_offset, \
+ gen_rtx (MEM, BLKmode, \
+ plus_constant (virtual_incoming_args_rtx, \
+ first_reg_offset * 4)), \
+ 4 - first_reg_offset); \
+ PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \
+ } \
+}
+
+/* This macro produces the initial definition of a function name.
+ On the ROMP, we need to place an extra '.' in the function name. */
+
+#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
+{ if (TREE_PUBLIC(DECL)) \
+ fprintf (FILE, "\t.globl _.%s\n", NAME); \
+ fprintf (FILE, "_.%s:\n", NAME); \
+}
+
+/* This macro is used to output the start of the data area.
+
+ On the ROMP, the _name is a pointer to the data area. At that
+ location is the address of _.name, which is really the name of
+ the function. We need to set all this up here.
+
+ The global declaration of the data area, if needed, is done in
+ `assemble_function', where it thinks it is globalizing the function
+ itself. */
+
+#define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \
+{ extern int data_offset; \
+ data_section (); \
+ fprintf (FILE, "\t.align 2\n"); \
+ ASM_OUTPUT_LABEL (FILE, NAME); \
+ fprintf (FILE, "\t.long _.%s, 0, ", NAME); \
+ if (current_function_calls_alloca) \
+ fprintf (FILE, "0x%x\n", \
+ 0xf6900000 + current_function_outgoing_args_size); \
+ else \
+ fprintf (FILE, "0\n"); \
+ data_offset = ((SIZE) + 12 + 3) / 4; \
+}
+
+/* Select section for constant in constant pool.
+
+ On ROMP, all constants are in the data area. */
+
+#define SELECT_RTX_SECTION(MODE, X) data_section ()
+
+/* This macro generates the assembly code for function entry.
+ FILE is a stdio stream to output the code to.
+ SIZE is an int: how many units of temporary storage to allocate.
+ Refer to the array `regs_ever_live' to determine which registers
+ to save; `regs_ever_live[I]' is nonzero if register number I
+ is ever used in the function. This macro is responsible for
+ knowing which registers should not be saved even if used. */
+
+#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
+
+/* Output assembler code to FILE to increment profiler label # LABELNO
+ for profiling a function entry. */
+
+#define FUNCTION_PROFILER(FILE, LABELNO) \
+ fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n");
+
+/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
+ the stack pointer does not matter. The value is tested only in
+ functions that have frame pointers.
+ No definition is equivalent to always zero. */
+/* #define EXIT_IGNORE_STACK 1 */
+
+/* This macro generates the assembly code for function exit,
+ on machines that need it. If FUNCTION_EPILOGUE is not defined
+ then individual return instructions are generated for each
+ return statement. Args are same as for FUNCTION_PROLOGUE.
+
+ The function epilogue should not depend on the current stack pointer!
+ It should use the frame pointer only. This is mandatory because
+ of alloca; we also take advantage of it to omit stack adjustments
+ before returning. */
+
+#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
+
+/* Output assembler code for a block containing the constant parts
+ of a trampoline, leaving space for the variable parts.
+
+ The trampoline should set the static chain pointer to value placed
+ into the trampoline and should branch to the specified routine.
+
+ On the ROMP, we have a problem. There are no free registers to use
+ to construct the static chain and function addresses. Hence we use
+ the following kludge: r15 (the return address) is first saved in mq.
+ Then we use r15 to form the function address. We then branch to the
+ function and restore r15 in the delay slot. This makes it appear that
+ the function was called directly from the caller.
+
+ (Note that the function address built is actually that of the data block.
+ This is passed in r0 and the actual routine address is loaded into r15.)
+
+ In addition, note that the address of the "called function", in this case
+ the trampoline, is actually the address of the data area. So we need to
+ make a fake data area that will contain the address of the trampoline.
+ Note that this must be defined as two half-words, since the trampoline
+ template (as opposed to the trampoline on the stack) is only half-word
+ aligned. */
+
+#define TRAMPOLINE_TEMPLATE(FILE) \
+{ \
+ fprintf (FILE, "\t.short 0,0\n"); \
+ fprintf (FILE, "\tcau r0,0(r0)\n"); \
+ fprintf (FILE, "\toil r0,r0,0\n"); \
+ fprintf (FILE, "\tmts r10,r15\n"); \
+ fprintf (FILE, "\tst r0,-36(r1)\n"); \
+ fprintf (FILE, "\tcau r15,0(r0)\n"); \
+ fprintf (FILE, "\toil r15,r15,0\n"); \
+ fprintf (FILE, "\tcas r0,r15,r0\n"); \
+ fprintf (FILE, "\tls r15,0(r15)\n"); \
+ fprintf (FILE, "\tbrx r15\n"); \
+ fprintf (FILE, "\tmfs r10,r15\n"); \
+}
+
+/* Length in units of the trampoline for entering a nested function. */
+
+#define TRAMPOLINE_SIZE 36
+
+/* Emit RTL insns to initialize the variable parts of a trampoline.
+ FNADDR is an RTX for the address of the function's pure code.
+ CXT is an RTX for the static chain value for the function.
+
+ On the RT, the static chain and function addresses are written in
+ two 16-bit sections.
+
+ We also need to write the address of the first instruction in
+ the trampoline into the first word of the trampoline to simulate a
+ data area. */
+
+#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
+{ \
+ rtx _addr, _temp; \
+ rtx _val; \
+ \
+ _temp = expand_binop (SImode, add_optab, ADDR, \
+ gen_rtx (CONST_INT, VOIDmode, 4), \
+ 0, 1, OPTAB_LIB_WIDEN); \
+ emit_move_insn (gen_rtx (MEM, SImode, \
+ memory_address (SImode, ADDR)), _temp); \
+ \
+ _val = force_reg (SImode, CXT); \
+ _addr = memory_address (HImode, plus_constant (ADDR, 10)); \
+ emit_move_insn (gen_rtx (MEM, HImode, _addr), \
+ gen_lowpart (HImode, _val)); \
+ _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
+ build_int_2 (16, 0), 0, 1); \
+ _addr = memory_address (HImode, plus_constant (ADDR, 6)); \
+ emit_move_insn (gen_rtx (MEM, HImode, _addr), \
+ gen_lowpart (HImode, _temp)); \
+ \
+ _val = force_reg (SImode, FNADDR); \
+ _addr = memory_address (HImode, plus_constant (ADDR, 24)); \
+ emit_move_insn (gen_rtx (MEM, HImode, _addr), \
+ gen_lowpart (HImode, _val)); \
+ _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
+ build_int_2 (16, 0), 0, 1); \
+ _addr = memory_address (HImode, plus_constant (ADDR, 20)); \
+ emit_move_insn (gen_rtx (MEM, HImode, _addr), \
+ gen_lowpart (HImode, _temp)); \
+ \
+}
+
+/* Definitions for register eliminations.
+
+ We have two registers that can be eliminated on the ROMP. First, the
+ frame pointer register can often be eliminated in favor of the stack
+ pointer register. Secondly, the argument pointer register can always be
+ eliminated; it is replaced with either the stack or frame pointer.
+
+ In addition, we use the elimination mechanism to see if r14 is needed.
+ Initially we assume that it isn't. If it is, we spill it. This is done
+ by making it an eliminable register. It doesn't matter what we replace
+ it with, since it will never occur in the rtl at this point. */
+
+/* This is an array of structures. Each structure initializes one pair
+ of eliminable registers. The "from" register number is given first,
+ followed by "to". Eliminations of the same "from" register are listed
+ in order of preference. */
+#define ELIMINABLE_REGS \
+{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
+ { 14, 0}}
+
+/* Given FROM and TO register numbers, say whether this elimination is allowed.
+ Frame pointer elimination is automatically handled.
+
+ For the ROMP, if frame pointer elimination is being done, we would like to
+ convert ap into fp, not sp.
+
+ We need r14 if various conditions (tested in romp_using_r14) are true.
+
+ All other eliminations are valid. */
+#define CAN_ELIMINATE(FROM, TO) \
+ ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
+ ? ! frame_pointer_needed \
+ : (FROM) == 14 ? ! romp_using_r14 () \
+ : 1)
+
+/* Define the offset between two registers, one to be eliminated, and the other
+ its replacement, at the start of a routine. */
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
+{ if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
+ { \
+ if (romp_pushes_stack ()) \
+ (OFFSET) = ((get_frame_size () - 64) \
+ + current_function_outgoing_args_size); \
+ else \
+ (OFFSET) = - (romp_sa_size () + 64); \
+ } \
+ else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
+ (OFFSET) = romp_sa_size () - 16 + 64; \
+ else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
+ { \
+ if (romp_pushes_stack ()) \
+ (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \
+ + current_function_outgoing_args_size); \
+ else \
+ (OFFSET) = -16; \
+ } \
+ else if ((FROM) == 14) \
+ (OFFSET) = 0; \
+ else \
+ abort (); \
+}
+
+/* Addressing modes, and classification of registers for them. */
+
+/* #define HAVE_POST_INCREMENT */
+/* #define HAVE_POST_DECREMENT */
+
+/* #define HAVE_PRE_DECREMENT */
+/* #define HAVE_PRE_INCREMENT */
+
+/* Macros to check register numbers against specific register classes. */
+
+/* These assume that REGNO is a hard or pseudo reg number.
+ They give nonzero only if REGNO is a hard reg of the suitable class
+ or a pseudo reg currently allocated to a suitable hard reg.
+ Since they use reg_renumber, they are safe only once reg_renumber
+ has been allocated, which happens in local-alloc.c. */
+
+#define REGNO_OK_FOR_INDEX_P(REGNO) 0
+#define REGNO_OK_FOR_BASE_P(REGNO) \
+((REGNO) < FIRST_PSEUDO_REGISTER \
+ ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \
+ : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \
+ && reg_renumber[REGNO] != 16))
+
+/* Maximum number of registers that can appear in a valid memory address. */
+
+#define MAX_REGS_PER_ADDRESS 1
+
+/* Recognize any constant value that is a valid address. */
+
+#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
+
+/* Nonzero if the constant value X is a legitimate general operand.
+ It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
+
+ On the ROMP, there is a bit of a hack here. Basically, we wish to
+ only issue instructions that are not `as' macros. However, in the
+ case of `get', `load', and `store', if the operand is a relocatable
+ symbol (possibly +/- an integer), there is no way to express the
+ resulting split-relocation except with the macro. Therefore, allow
+ either a constant valid in a normal (sign-extended) D-format insn or
+ a relocatable expression.
+
+ Also, for DFmode and DImode, we must ensure that both words are
+ addressable.
+
+ We define two macros: The first is given an offset (0 or 4) and indicates
+ that the operand is a CONST_INT that is valid for that offset. The second
+ indicates a valid non-CONST_INT constant. */
+
+#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
+ (GET_CODE (X) == CONST_INT \
+ && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
+
+#define LEGITIMATE_ADDRESS_CONSTANT_P(X) \
+ (GET_CODE (X) == SYMBOL_REF \
+ || GET_CODE (X) == LABEL_REF \
+ || (GET_CODE (X) == CONST \
+ && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
+ || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \
+ && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))
+
+/* Include all constant integers and constant double, but exclude
+ SYMBOL_REFs that are to be obtained from the data area (see below). */
+#define LEGITIMATE_CONSTANT_P(X) \
+ ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \
+ || GET_CODE (X) == CONST_INT \
+ || GET_CODE (X) == CONST_DOUBLE) \
+ && ! (GET_CODE (X) == SYMBOL_REF && (X)->integrated))
+
+/* For no good reason, we do the same as the other RT compilers and load
+ the addresses of data areas for a function from our data area. That means
+ that we need to mark such SYMBOL_REFs. We do so here. */
+#define ENCODE_SEGMENT_INFO(DECL) \
+ if (TREE_CODE (TREE_TYPE (DECL)) == FUNCTION_TYPE) \
+ XEXP (DECL_RTL (DECL), 0)->integrated = 1;
+
+/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
+ and check its validity for a certain class.
+ We have two alternate definitions for each of them.
+ The usual definition accepts all pseudo regs; the other rejects
+ them unless they have been allocated suitable hard regs.
+ The symbol REG_OK_STRICT causes the latter definition to be used.
+
+ Most source files want to accept pseudo regs in the hope that
+ they will get allocated to the class that the insn wants them to be in.
+ Source files for reload pass need to be strict.
+ After reload, it makes no difference, since pseudo regs have
+ been eliminated by then. */
+
+#ifndef REG_OK_STRICT
+
+/* Nonzero if X is a hard reg that can be used as an index
+ or if it is a pseudo reg. */
+#define REG_OK_FOR_INDEX_P(X) 0
+/* Nonzero if X is a hard reg that can be used as a base reg
+ or if it is a pseudo reg. */
+#define REG_OK_FOR_BASE_P(X) \
+ (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
+
+#else
+
+/* Nonzero if X is a hard reg that can be used as an index. */
+#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
+/* Nonzero if X is a hard reg that can be used as a base reg. */
+#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
+
+#endif
+
+/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
+ that is a valid memory address for an instruction.
+ The MODE argument is the machine mode for the MEM expression
+ that wants to use this address.
+
+ On the ROMP, a legitimate address is either a legitimate constant,
+ a register plus a legitimate constant, or a register. See the
+ discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
+{ if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
+ goto ADDR; \
+ if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \
+ goto ADDR; \
+ if (GET_CODE (X) == PLUS \
+ && GET_CODE (XEXP (X, 0)) == REG \
+ && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
+ && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \
+ goto ADDR; \
+ if (GET_CODE (X) == PLUS \
+ && GET_CODE (XEXP (X, 0)) == REG \
+ && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
+ && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
+ && (((MODE) != DFmode && (MODE) != DImode) \
+ || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \
+ goto ADDR; \
+}
+
+/* Try machine-dependent ways of modifying an illegitimate address
+ to be legitimate. If we find one, return the new, valid address.
+ This macro is used in only one place: `memory_address' in explow.c.
+
+ OLDX is the address as it was before break_out_memory_refs was called.
+ In some cases it is useful to look at this to decide what needs to be done.
+
+ MODE and WIN are passed so that this macro can use
+ GO_IF_LEGITIMATE_ADDRESS.
+
+ It is always safe for this macro to do nothing. It exists to recognize
+ opportunities to optimize the output.
+
+ On ROMP, check for the sum of a register with a constant
+ integer that is out of range. If so, generate code to add the
+ constant with the low-order 16 bits masked to the register and force
+ this result into another register (this can be done with `cau').
+ Then generate an address of REG+(CONST&0xffff), allowing for the
+ possibility of bit 16 being a one.
+
+ If the register is not OK for a base register, abort. */
+
+#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
+{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
+ && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
+ { int high_int, low_int; \
+ if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \
+ abort (); \
+ high_int = INTVAL (XEXP (X, 1)) >> 16; \
+ low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
+ if (low_int & 0x8000) \
+ high_int += 1, low_int |= 0xffff0000; \
+ (X) = gen_rtx (PLUS, SImode, \
+ force_operand \
+ (gen_rtx (PLUS, SImode, XEXP (X, 0), \
+ gen_rtx (CONST_INT, VOIDmode, \
+ high_int << 16)), 0),\
+ gen_rtx (CONST_INT, VOIDmode, low_int)); \
+ } \
+}
+
+/* Go to LABEL if ADDR (a legitimate address expression)
+ has an effect that depends on the machine mode it is used for.
+
+ On the ROMP this is true only if the address is valid with a zero offset
+ but not with an offset of four (this means it cannot be used as an
+ address for DImode or DFmode). Since we know it is valid, we just check
+ for an address that is not valid with an offset of four. */
+
+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
+{ if (GET_CODE (ADDR) == PLUS \
+ && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \
+ && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
+ goto LABEL; \
+}
+
+/* Define this if some processing needs to be done immediately before
+ emitting code for an insn.
+
+ This is used on the ROMP, to compensate for a bug in the floating-point
+ code. When a floating-point operation is done with the first and third
+ operands both the same floating-point register, it will generate bad code
+ for the MC68881. So we must detect this. If it occurs, we patch the
+ first operand to be fr0 and insert a move insn to move it to the desired
+ destination. */
+#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
+ { rtx op0, op1, op2, operation, tem; \
+ if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \
+ { \
+ op0 = OPERANDS[0]; \
+ operation = OPERANDS[1]; \
+ if (float_conversion (operation, VOIDmode)) \
+ operation = XEXP (operation, 0); \
+ if (float_binary (operation, VOIDmode)) \
+ { \
+ op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \
+ if (float_conversion (op1, VOIDmode)) \
+ op1 = XEXP (op1, 0); \
+ if (float_conversion (op2, VOIDmode)) \
+ op2 = XEXP (op2, 0); \
+ if (rtx_equal_p (op0, op2) \
+ && (GET_CODE (operation) == PLUS \
+ || GET_CODE (operation) == MULT)) \
+ tem = op1, op1 = op2, op2 = tem; \
+ if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \
+ && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \
+ && REGNO (op0) == REGNO (op2)) \
+ { \
+ tem = gen_rtx (REG, GET_MODE (op0), 17); \
+ emit_insn_after (gen_move_insn (op0, tem), INSN); \
+ SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \
+ OPERANDS[0] = tem; \
+ } \
+ } \
+ } \
+ }
+
+/* Specify the machine mode that this machine uses
+ for the index in the tablejump instruction. */
+#define CASE_VECTOR_MODE SImode
+
+/* Define this if the tablejump instruction expects the table
+ to contain offsets from the address of the table.
+ Do not define this if the table should contain absolute addresses. */
+/* #define CASE_VECTOR_PC_RELATIVE */
+
+/* Specify the tree operation to be used to convert reals to integers. */
+#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
+
+/* This is the kind of divide that is easiest to do in the general case. */
+#define EASY_DIV_EXPR TRUNC_DIV_EXPR
+
+/* Define this as 1 if `char' should by default be signed; else as 0. */
+#define DEFAULT_SIGNED_CHAR 0
+
+/* This flag, if defined, says the same insns that convert to a signed fixnum
+ also convert validly to an unsigned one.
+
+ We actually lie a bit here as overflow conditions are different. But
+ they aren't being checked anyway. */
+
+#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
+
+/* Max number of bytes we can move from memory to memory
+ in one reasonably fast instruction. */
+#define MOVE_MAX 4
+
+/* Nonzero if access to memory by bytes is no faster than for words.
+ Also non-zero if doing byte operations (specifically shifts) in registers
+ is undesirable. */
+#define SLOW_BYTE_ACCESS 1
+
+/* Define if normal loads of shorter-than-word items from memory clears
+ the rest of the bigs in the register. */
+#define BYTE_LOADS_ZERO_EXTEND
+
+/* This is BSD, so it wants DBX format. */
+#define DBX_DEBUGGING_INFO
+
+/* We don't have GAS for the RT yet, so don't write out special
+ .stabs in cc1plus. */
+
+#define FASCIST_ASSEMBLER
+
+/* Do not break .stabs pseudos into continuations. */
+#define DBX_CONTIN_LENGTH 0
+
+/* Don't try to use the `x' type-cross-reference character in DBX data.
+ Also has the consequence of putting each struct, union or enum
+ into a separate .stabs, containing only cross-refs to the others. */
+#define DBX_NO_XREFS
+
+/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
+ is done just by pretending it is already truncated. */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* Specify the machine mode that pointers have.
+ After generation of rtl, the compiler makes no further distinction
+ between pointers and any other objects of this machine mode. */
+#define Pmode SImode
+
+/* Mode of a function address in a call instruction (for indexing purposes).
+
+ Doesn't matter on ROMP. */
+#define FUNCTION_MODE SImode
+
+/* Define this if addresses of constant functions
+ shouldn't be put through pseudo regs where they can be cse'd.
+ Desirable on machines where ordinary constants are expensive
+ but a CALL with constant address is cheap. */
+#define NO_FUNCTION_CSE
+
+/* Define this if shift instructions ignore all but the low-order
+ few bits. */
+#define SHIFT_COUNT_TRUNCATED
+
+/* Compute the cost of computing a constant rtl expression RTX
+ whose rtx-code is CODE. The body of this macro is a portion
+ of a switch statement. If the code is computed here,
+ return it with a return statement. Otherwise, break from the switch. */
+
+#define CONST_COSTS(RTX,CODE) \
+ case CONST_INT: \
+ return 0; \
+ case CONST: \
+ case LABEL_REF: \
+ case SYMBOL_REF: \
+ case CONST_DOUBLE: \
+ return COSTS_N_INSNS (2);
+
+/* Provide the costs of a rtl expression. This is in the body of a
+ switch on CODE.
+
+ References to our own data area are really references to r14, so they
+ are very cheap. Multiples and divides are very expensive. */
+
+#define RTX_COSTS(X,CODE) \
+ case MEM: \
+ return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2); \
+ case MULT: \
+ return TARGET_IN_LINE_MUL ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25); \
+ case DIV: \
+ case UDIV: \
+ case MOD: \
+ case UMOD: \
+ return COSTS_N_INSNS (45);
+
+/* Compute the cost of an address. This is meant to approximate the size
+ and/or execution delay of an insn using that address. If the cost is
+ approximated by the RTL complexity, including CONST_COSTS above, as
+ is usually the case for CISC machines, this macro should not be defined.
+ For aggressively RISCy machines, only one insn format is allowed, so
+ this macro should be a constant. The value of this macro only matters
+ for valid addresses.
+
+ For the ROMP, everything is cost 0 except for addresses involving
+ symbolic constants, which are cost 1. */
+
+#define ADDRESS_COST(RTX) \
+ ((GET_CODE (RTX) == SYMBOL_REF \
+ && ! CONSTANT_POOL_ADDRESS_P (RTX)) \
+ || GET_CODE (RTX) == LABEL_REF \
+ || (GET_CODE (RTX) == CONST \
+ && ! constant_pool_address_operand (RTX, Pmode)) \
+ || (GET_CODE (RTX) == PLUS \
+ && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF \
+ && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \
+ || GET_CODE (XEXP (RTX, 1)) == LABEL_REF \
+ || GET_CODE (XEXP (RTX, 1)) == CONST)))
+
+/* Adjust the length of an INSN. LENGTH is the currently-computed length and
+ should be adjusted to reflect any required changes. This macro is used when
+ there is some systematic length adjustment required that would be difficult
+ to express in the length attribute.
+
+ On the ROMP, there are two adjustments: First, a 2-byte insn in the delay
+ slot of a CALL (including floating-point operations) actually takes four
+ bytes. Second, we have to make the worst-case alignment assumption for
+ address vectors. */
+
+#define ADJUST_INSN_LENGTH(X,LENGTH) \
+ if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \
+ && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \
+ && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \
+ (LENGTH) += 2; \
+ else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \
+ (LENGTH) += 2;
+
+/* Tell final.c how to eliminate redundant test instructions. */
+
+/* Here we define machine-dependent flags and fields in cc_status
+ (see `conditions.h'). */
+
+/* Set if condition code (really not-Z) is stored in `test bit'. */
+#define CC_IN_TB 01000
+
+/* Set if condition code is set by an unsigned compare. */
+#define CC_UNSIGNED 02000
+
+/* Store in cc_status the expressions
+ that the condition codes will describe
+ after execution of an instruction whose pattern is EXP.
+ Do not alter them if the instruction would not alter the cc's. */
+
+#define NOTICE_UPDATE_CC(BODY,INSN) \
+ update_cc (BODY, INSN)
+
+/* Control the assembler format that we output. */
+
+/* Output at beginning of assembler file. */
+
+#define ASM_FILE_START(FILE) \
+{ extern char *version_string; \
+ fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \
+ fprintf (FILE, "\t.globl .oVgcc%s\n\t.set .oVgcc%s,0\n", \
+ version_string, version_string); \
+}
+
+/* Output to assembler file text saying following lines
+ may contain character constants, extra white space, comments, etc. */
+
+#define ASM_APP_ON ""
+
+/* Output to assembler file text saying following lines
+ no longer contain unusual constructs. */
+
+#define ASM_APP_OFF ""
+
+/* Output before instructions and read-only data. */
+
+#define TEXT_SECTION_ASM_OP "\t.text"
+
+/* Output before writable data. */
+
+#define DATA_SECTION_ASM_OP "\t.data"
+
+/* How to refer to registers in assembler output.
+ This sequence is indexed by compiler's hard-register-number (see above). */
+
+#define REGISTER_NAMES \
+{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
+ "r10", "r11", "r12", "r13", "r14", "r15", "ap", \
+ "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" }
+
+/* How to renumber registers for dbx and gdb. */
+
+#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
+
+/* This is how to output the definition of a user-level label named NAME,
+ such as the label on a static function or variable NAME. */
+
+#define ASM_OUTPUT_LABEL(FILE,NAME) \
+ do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
+
+/* This is how to output a command to make the user-level label named NAME
+ defined for reference from other files. */
+
+#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
+ do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
+
+/* This is how to output a reference to a user-level label named NAME.
+ `assemble_name' uses this. */
+
+#define ASM_OUTPUT_LABELREF(FILE,NAME) \
+ fprintf (FILE, "_%s", NAME)
+
+/* This is how to output an internal numbered label where
+ PREFIX is the class of label and NUM is the number within the class. */
+
+#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
+ fprintf (FILE, "%s%d:\n", PREFIX, NUM)
+
+/* This is how to output a label for a jump table. Arguments are the same as
+ for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
+ passed. */
+
+#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
+{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
+
+/* This is how to store into the string LABEL
+ the symbol_ref name of an internal numbered label where
+ PREFIX is the class of label and NUM is the number within the class.
+ This is suitable for output with `assemble_name'. */
+
+#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
+ sprintf (LABEL, "*%s%d", PREFIX, NUM)
+
+/* This is how to output an assembler line defining a `double' constant. */
+
+#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
+ fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
+
+/* This is how to output an assembler line defining a `float' constant.
+
+ WARNING: Believe it or not, the ROMP assembler has a bug in its
+ handling of single-precision floating-point values making it impossible
+ to output such values in the expected way. Therefore, it must be output
+ in hex. THIS WILL NOT WORK IF CROSS-COMPILING FROM A MACHINE THAT DOES
+ NOT USE IEEE-FORMAT FLOATING-POINT, but there is nothing that can be done
+ about it short of fixing the assembler. */
+
+#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
+ do { union { int i; float f; } u_i_f; \
+ u_i_f.f = (VALUE); \
+ fprintf (FILE, "\t.long 0x%x\n", u_i_f.i);\
+ } while (0)
+
+/* This is how to output an assembler line defining an `int' constant. */
+
+#define ASM_OUTPUT_INT(FILE,VALUE) \
+( fprintf (FILE, "\t.long "), \
+ output_addr_const (FILE, (VALUE)), \
+ fprintf (FILE, "\n"))
+
+/* Likewise for `char' and `short' constants. */
+
+#define ASM_OUTPUT_SHORT(FILE,VALUE) \
+( fprintf (FILE, "\t.short "), \
+ output_addr_const (FILE, (VALUE)), \
+ fprintf (FILE, "\n"))
+
+#define ASM_OUTPUT_CHAR(FILE,VALUE) \
+( fprintf (FILE, "\t.byte "), \
+ output_addr_const (FILE, (VALUE)), \
+ fprintf (FILE, "\n"))
+
+/* This is how to output an assembler line for a numeric constant byte. */
+
+#define ASM_OUTPUT_BYTE(FILE,VALUE) \
+ fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
+
+/* This is how to output code to push a register on the stack.
+ It need not be very fast code. */
+
+#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
+ fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO])
+
+/* This is how to output an insn to pop a register from the stack.
+ It need not be very fast code. */
+
+#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
+ fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO])
+
+/* This is how to output an element of a case-vector that is absolute. */
+
+#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
+ fprintf (FILE, "\t.long L%d\n", VALUE)
+
+/* This is how to output an element of a case-vector that is relative.
+ (ROMP does not use such vectors,
+ but we must define this macro anyway.) */
+
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
+
+/* This is how to output an assembler line
+ that says to advance the location counter
+ to a multiple of 2**LOG bytes. */
+
+#define ASM_OUTPUT_ALIGN(FILE,LOG) \
+ if ((LOG) != 0) \
+ fprintf (FILE, "\t.align %d\n", (LOG))
+
+#define ASM_OUTPUT_SKIP(FILE,SIZE) \
+ fprintf (FILE, "\t.space %d\n", (SIZE))
+
+/* This says how to output an assembler line
+ to define a global common symbol. */
+
+#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
+( fputs (".comm ", (FILE)), \
+ assemble_name ((FILE), (NAME)), \
+ fprintf ((FILE), ",%d\n", (SIZE)))
+
+/* This says how to output an assembler line
+ to define a local common symbol. */
+
+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
+( fputs (".lcomm ", (FILE)), \
+ assemble_name ((FILE), (NAME)), \
+ fprintf ((FILE), ",%d\n", (SIZE)))
+
+/* Store in OUTPUT a string (made with alloca) containing
+ an assembler-name for a local static variable named NAME.
+ LABELNO is an integer which is different for each call. */
+
+#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
+( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
+ sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
+
+/* Define the parentheses used to group arithmetic operations
+ in assembler code. */
+
+#define ASM_OPEN_PAREN "("
+#define ASM_CLOSE_PAREN ")"
+
+/* Define results of standard character escape sequences. */
+#define TARGET_BELL 007
+#define TARGET_BS 010
+#define TARGET_TAB 011
+#define TARGET_NEWLINE 012
+#define TARGET_VT 013
+#define TARGET_FF 014
+#define TARGET_CR 015
+
+/* Print operand X (an rtx) in assembler syntax to file FILE.
+ CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
+ For `%' followed by punctuation, CODE is the punctuation and X is null. */
+
+#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
+
+/* Define which CODE values are valid. */
+
+#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
+ ((CODE) == '.' || (CODE) == '#')
+
+/* Print a memory address as an operand to reference that memory location. */
+
+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
+{ register rtx addr = ADDR; \
+ register rtx base = 0, offset = addr; \
+ if (GET_CODE (addr) == REG) \
+ base = addr, offset = const0_rtx; \
+ else if (GET_CODE (addr) == PLUS \
+ && GET_CODE (XEXP (addr, 0)) == REG) \
+ base = XEXP (addr, 0), offset = XEXP (addr, 1); \
+ else if (GET_CODE (addr) == SYMBOL_REF \
+ && CONSTANT_POOL_ADDRESS_P (addr)) \
+ { \
+ offset = gen_rtx (CONST_INT, VOIDmode, get_pool_offset (addr) + 12); \
+ base = gen_rtx (REG, SImode, 14); \
+ } \
+ else if (GET_CODE (addr) == CONST \
+ && GET_CODE (XEXP (addr, 0)) == PLUS \
+ && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \
+ && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \
+ && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \
+ { \
+ offset = plus_constant (XEXP (XEXP (addr, 0), 1), \
+ (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \
+ + 12)); \
+ base = gen_rtx (REG, SImode, 14); \
+ } \
+ output_addr_const (FILE, offset); \
+ if (base) \
+ fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \
+}
+
+/* Define the codes that are matched by predicates in aux-output.c. */
+
+#define PREDICATE_CODES \
+ {"zero_memory_operand", {SUBREG, MEM}}, \
+ {"short_memory_operand", {SUBREG, MEM}}, \
+ {"symbolic_memory_operand", {SUBREG, MEM}}, \
+ {"current_function_operand", {MEM}}, \
+ {"constant_pool_address_operand", {SUBREG, CONST}}, \
+ {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \
+ {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \
+ {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
+ {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \
+ {"short_cint_operand", {CONST_INT}}, \
+ {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \
+ {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \
+ PLUS, CONST, CONST_INT}}, \
+ {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \
+ {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \
+ {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
+ {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \
+ SYMBOL_REF, CONST_DOUBLE}}, \
+ {"reg_0_operand", {REG}}, \
+ {"reg_15_operand", {REG}}, \
+ {"float_binary", {PLUS, MINUS, MULT, DIV}}, \
+ {"float_unary", {NEG, ABS}}, \
+ {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}},
+
+/* Define functions defined in aux-output.c and used in templates. */
+
+extern char *output_in_line_mul ();
+extern char *output_fpop ();
diff --git a/gcc/config/romp/romp.md b/gcc/config/romp/romp.md
new file mode 100644
index 0000000..6d732fe
--- /dev/null
+++ b/gcc/config/romp/romp.md
@@ -0,0 +1,2728 @@
+;;- Machine description for ROMP chip for GNU C compiler
+;; Copyright (C) 1988, 1991 Free Software Foundation, Inc.
+;; Contributed by Richard Kenner (kenner@nyu.edu)
+
+;; This file is part of GNU CC.
+
+;; GNU CC is free software; you can redistribute it and/or modify
+;; it under the terms of the GNU General Public License as published by
+;; the Free Software Foundation; either version 2, or (at your option)
+;; any later version.
+
+;; GNU CC is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+;; GNU General Public License for more details.
+
+;; You should have received a copy of the GNU General Public License
+;; along with GNU CC; see the file COPYING. If not, write to
+;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+
+
+;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
+
+;; Define the attributes for the ROMP.
+
+;; Insn type. Used to default other attribute values.
+
+(define_attr "type"
+ "branch,return,fp,load,loadz,store,call,address,arith,compare,multi,misc"
+ (const_string "arith"))
+
+;; Length in bytes.
+
+(define_attr "length" ""
+ (cond [(eq_attr "type" "branch")
+ (if_then_else (and (ge (minus (pc) (match_dup 0))
+ (const_int -256))
+ (le (minus (pc) (match_dup 0))
+ (const_int 254)))
+ (const_int 2)
+ (const_int 4))
+ (eq_attr "type" "return") (const_int 2)
+ (eq_attr "type" "fp") (const_int 10)
+ (eq_attr "type" "call") (const_int 4)
+ (eq_attr "type" "load")
+ (cond [(match_operand 1 "short_memory_operand" "") (const_int 2)
+ (match_operand 1 "symbolic_memory_operand" "") (const_int 8)]
+ (const_int 4))
+ (eq_attr "type" "loadz")
+ (cond [(match_operand 1 "zero_memory_operand" "") (const_int 2)
+ (match_operand 1 "symbolic_memory_operand" "") (const_int 8)]
+ (const_string "4"))
+ (eq_attr "type" "store")
+ (cond [(match_operand 0 "short_memory_operand" "") (const_int 2)
+ (match_operand 0 "symbolic_memory_operand" "") (const_int 8)]
+ (const_int 4))]
+ (const_int 4)))
+
+;; Whether insn can be placed in a delay slot.
+
+(define_attr "in_delay_slot" "yes,no"
+ (cond [(eq_attr "length" "8,10,38") (const_string "no")
+ (eq_attr "type" "branch,return,call,multi") (const_string "no")]
+ (const_string "yes")))
+
+;; Whether insn needs a delay slot.
+(define_attr "needs_delay_slot" "yes,no"
+ (if_then_else (eq_attr "type" "branch,return,call")
+ (const_string "yes") (const_string "no")))
+
+;; What insn does to the condition code.
+
+(define_attr "cc"
+ "clobber,none,sets,change0,copy1to0,compare,tbit"
+ (cond [(eq_attr "type" "load,loadz") (const_string "change0")
+ (eq_attr "type" "store") (const_string "none")
+ (eq_attr "type" "fp,call") (const_string "clobber")
+ (eq_attr "type" "branch,return") (const_string "none")
+ (eq_attr "type" "address") (const_string "change0")
+ (eq_attr "type" "compare") (const_string "compare")
+ (eq_attr "type" "arith") (const_string "sets")]
+ (const_string "clobber")))
+
+;; Define attributes for `asm' insns.
+
+(define_asm_attributes [(set_attr "type" "misc")
+ (set_attr "length" "8")
+ (set_attr "in_delay_slot" "no")
+ (set_attr "cc" "clobber")])
+
+;; Define the delay slot requirements for branches and calls. We don't have
+;; any annulled insns.
+;;
+(define_delay (eq_attr "needs_delay_slot" "yes")
+ [(eq_attr "in_delay_slot" "yes") (nil) (nil)])
+
+;; We cannot give a floating-point comparison a delay slot, even though it
+;; could make use of it. This is because it would confuse next_cc0_user
+;; to do so. Other fp insns can't get a delay slow because they set their
+;; result and use their input after the delay slot insn is executed. This
+;; isn't what reorg.c expects.
+
+;; Define load & store delays. These were obtained by measurements done by
+;; jfc@athena.mit.edu.
+;;
+;; In general, the memory unit can support at most two simultaneous operations.
+;;
+;; Loads take 5 cycles to return the data and can be pipelined up to the
+;; limit of two simultaneous operations.
+(define_function_unit "memory" 1 2 (eq_attr "type" "load,loadz") 5 0)
+
+;; Stores do not return data, but tie up the memory unit for 2 cycles if the
+;; next insn is also a store.
+(define_function_unit "memory" 1 2 (eq_attr "type" "store") 1 2
+ [(eq_attr "type" "store")])
+
+;; Move word instructions.
+;;
+;; If destination is memory but source is not register, force source to
+;; register.
+;;
+;; If source is a constant that is too large to load in a single insn, build
+;; it in two pieces.
+;;
+;; If destination is memory and source is a register, a temporary register
+;; will be needed. In that case, make a PARALLEL of the SET and a
+;; CLOBBER of a SCRATCH to allocate the required temporary.
+;;
+;; This temporary is ACTUALLY only needed when the destination is a
+;; relocatable expression. For generating RTL, however, we always
+;; place the CLOBBER. In insns where it is not needed, the SCRATCH will
+;; not be allocated to a register.
+;;
+;; Also, avoid creating pseudo-registers or SCRATCH rtx's during reload as
+;; they will not be correctly handled. We never need pseudos for that
+;; case anyway.
+;;
+;; We do not use DEFINE_SPLIT for loading constants because the number
+;; of cases in the resulting unsplit insn would be too high to deal
+;; with practically.
+(define_expand "movsi"
+ [(set (match_operand:SI 0 "general_operand" "")
+ (match_operand:SI 1 "general_operand" ""))]
+ ""
+ "
+{ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+
+ if (GET_CODE (op1) == REG && REGNO (op1) == 16)
+ DONE;
+
+ if (GET_CODE (op0) == REG && REGNO (op0) == 16)
+ DONE;
+
+ if (GET_CODE (op0) == MEM && ! reload_in_progress)
+ {
+ emit_insn (gen_storesi (operands[0], force_reg (SImode, operands[1])));
+ DONE;
+ }
+ else if (GET_CODE (op1) == CONST_INT)
+ {
+ int const_val = INTVAL (op1);
+
+ /* Try a number of cases to see how to best load the constant. */
+ if ((const_val & 0xffff) == 0
+ || (const_val & 0xffff0000) == 0
+ || (unsigned) (const_val + 0x8000) < 0x10000)
+ /* Can do this in one insn, so generate it. */
+ ;
+ else if (((- const_val) & 0xffff) == 0
+ || ((- const_val) & 0xffff0000) == 0
+ || (unsigned) ((- const_val) + 0x8000) < 0x10000)
+ {
+ /* Can do this by loading the negative constant and then negating. */
+ emit_move_insn (operands[0],
+ gen_rtx (CONST_INT, VOIDmode, - const_val));
+ emit_insn (gen_negsi2 (operands[0], operands[0]));
+ DONE;
+ }
+ else
+ /* Do this the long way. */
+ {
+ unsigned int high_part = const_val & 0xffff0000;
+ unsigned int low_part = const_val & 0xffff;
+ int i;
+
+ if (low_part >= 0x10 && exact_log2 (low_part) >= 0)
+ i = high_part, high_part = low_part, low_part = i;
+
+ emit_move_insn (operands[0],
+ gen_rtx (CONST_INT, VOIDmode, low_part));
+ emit_insn (gen_iorsi3 (operands[0], operands[0],
+ gen_rtx (CONST_INT, VOIDmode, high_part)));
+ DONE;
+ }
+ }
+}")
+
+;; Move from a symbolic memory location to a register is special. In this
+;; case, we know in advance that the register cannot be r0, so we can improve
+;; register allocation by treating it separately.
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=b")
+ (match_operand:SI 1 "symbolic_memory_operand" "m"))]
+ ""
+ "load %0,%1"
+ [(set_attr "type" "load")])
+
+;; Generic single-word move insn. We avoid the case where the destination is
+;; a symbolic address, as that needs a temporary register.
+
+(define_insn ""
+ [(set (match_operand:SI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,r,r,r,r,r,b,Q")
+ (match_operand:SI 1 "romp_operand" "rR,I,K,L,M,S,s,Q,m,r"))]
+ "register_operand (operands[0], SImode)
+ || register_operand (operands[1], SImode)"
+ "@
+ cas %0,%1,r0
+ lis %0,%1
+ cal %0,%1(r0)
+ cal16 %0,%1(r0)
+ cau %0,%H1(r0)
+ ail %0,r14,%C1
+ get %0,$%1
+ l%M1 %0,%1
+ load %0,%1
+ st%M0 %1,%0"
+ [(set_attr "type" "address,address,address,address,address,arith,misc,load,load,store")
+ (set_attr "length" "2,2,4,4,4,4,8,*,*,*")])
+
+(define_insn "storesi"
+ [(set (match_operand:SI 0 "memory_operand" "=Q,m")
+ (match_operand:SI 1 "register_operand" "r,r"))
+ (clobber (match_scratch:SI 2 "=X,&b"))]
+ ""
+ "@
+ st%M0 %1,%0
+ store %1,%0,%2"
+ [(set_attr "type" "store")])
+
+;; This pattern is used by reload when we store into a symbolic address. It
+;; provides the temporary register required. This pattern is only used
+;; when SECONDARY_OUTPUT_RELOAD_CLASS returns something other than
+;; NO_REGS, so we need not have any predicates here.
+
+(define_expand "reload_outsi"
+ [(set (match_operand:SI 0 "symbolic_memory_operand" "=m")
+ (match_operand:SI 1 "" "r"))
+ (match_operand:SI 2 "" "=&b")]
+ ""
+ "")
+
+;; Now do the same for the QI move instructions.
+(define_expand "movqi"
+ [(set (match_operand:QI 0 "general_operand" "")
+ (match_operand:QI 1 "general_operand" ""))]
+ ""
+ "
+{ rtx op0 = operands[0];
+
+ if (GET_CODE (op0) == MEM && ! reload_in_progress)
+ {
+ emit_insn (gen_storeqi (operands[0], force_reg (QImode, operands[1])));
+ DONE;
+ }
+}")
+
+(define_insn ""
+ [(set (match_operand:QI 0 "register_operand" "=b")
+ (match_operand:QI 1 "symbolic_memory_operand" "m"))]
+ ""
+ "loadc %0,%1"
+ [(set_attr "type" "load")])
+
+(define_insn ""
+ [(set (match_operand:QI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,r,r,b,Q")
+ (match_operand:QI 1 "romp_operand" "r,I,n,s,Q,m,r"))]
+ "register_operand (operands[0], QImode)
+ || register_operand (operands[1], QImode)"
+ "@
+ cas %0,%1,r0
+ lis %0,%1
+ cal %0,%L1(r0)
+ get %0,$%1
+ lc%M1 %0,%1
+ loadc %0,%1
+ stc%M0 %1,%0"
+ [(set_attr "type" "address,address,address,misc,load,load,store")
+ (set_attr "length" "2,2,4,8,*,*,*")])
+
+(define_insn "storeqi"
+ [(set (match_operand:QI 0 "memory_operand" "=Q,m")
+ (match_operand:QI 1 "register_operand" "r,r"))
+ (clobber (match_scratch:SI 2 "=X,&b"))]
+ ""
+ "@
+ stc%M0 %1,%0
+ storec %1,%0,%2"
+ [(set_attr "type" "store")])
+
+(define_expand "reload_outqi"
+ [(set (match_operand:QI 0 "symbolic_memory_operand" "=m")
+ (match_operand:QI 1 "" "r"))
+ (match_operand:SI 2 "" "=&b")]
+ ""
+ "")
+
+;; Finally, the HI instructions.
+(define_expand "movhi"
+ [(set (match_operand:HI 0 "general_operand" "")
+ (match_operand:HI 1 "general_operand" ""))]
+ ""
+ "
+{ rtx op0 = operands[0];
+
+ if (GET_CODE (op0) == MEM && ! reload_in_progress)
+ {
+ emit_insn (gen_storehi (operands[0], force_reg (HImode, operands[1])));
+ DONE;
+ }
+}")
+
+(define_insn ""
+ [(set (match_operand:HI 0 "register_operand" "=b")
+ (match_operand:HI 1 "symbolic_memory_operand" "m"))]
+ ""
+ "loadha %0,%1"
+ [(set_attr "type" "load")])
+
+(define_insn ""
+ [(set (match_operand:HI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,r,r,b,Q")
+ (match_operand:HI 1 "romp_operand" "r,I,n,s,Q,m,r"))]
+ "register_operand (operands[0], HImode)
+ || register_operand (operands[1], HImode)"
+ "@
+ cas %0,%1,r0
+ lis %0,%1
+ cal %0,%L1(r0)
+ get %0,$%1
+ lh%N1 %0,%1
+ loadh %0,%1
+ sth%M0 %1,%0"
+ [(set_attr "type" "address,address,address,misc,loadz,loadz,store")
+ (set_attr "length" "2,2,4,8,*,*,*")])
+
+(define_insn "storehi"
+ [(set (match_operand:HI 0 "memory_operand" "=Q,m")
+ (match_operand:HI 1 "register_operand" "r,r"))
+ (clobber (match_scratch:SI 2 "=X,&b"))]
+ ""
+ "@
+ sth%M0 %1,%0
+ storeh %1,%0,%2"
+ [(set_attr "type" "store")])
+
+(define_expand "reload_outhi"
+ [(set (match_operand:HI 0 "symbolic_memory_operand" "=m")
+ (match_operand:HI 1 "" "r"))
+ (match_operand:SI 2 "" "=&b")]
+ ""
+ "")
+
+;; For DI move, if we have a constant, break the operation apart into
+;; two SImode moves because the optimizer may be able to do a better job
+;; with the resulting code.
+;;
+;; For memory stores, make the required pseudo for a temporary in case we
+;; are storing into an absolute address.
+;;
+;; We need to be careful about the cases where the output is a register that is
+;; the second register of the input.
+
+(define_expand "movdi"
+ [(set (match_operand:DI 0 "general_operand" "")
+ (match_operand:DI 1 "general_operand" ""))]
+ ""
+ "
+{ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+
+ if (CONSTANT_P (op1))
+ {
+ rtx insns;
+
+ start_sequence ();
+ emit_move_insn (operand_subword (op0, 0, 1, DImode),
+ operand_subword (op1, 0, 1, DImode));
+ emit_move_insn (operand_subword (op0, 1, 1, DImode),
+ operand_subword (op1, 1, 1, DImode));
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_no_conflict_block (insns, op0, op1, 0, op1);
+ DONE;
+ }
+
+ if (GET_CODE (op0) == MEM && ! reload_in_progress)
+ {
+ emit_insn (gen_storedi (operands[0], force_reg (DImode, operands[1])));
+ DONE;
+ }
+}")
+
+(define_insn ""
+ [(set (match_operand:DI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,Q")
+ (match_operand:DI 1 "reg_or_mem_operand" "r,Q,m,r"))]
+ "register_operand (operands[0], DImode)
+ || register_operand (operands[1], DImode)"
+ "*
+{
+ switch (which_alternative)
+ {
+ case 0:
+ if (REGNO (operands[0]) == REGNO (operands[1]) + 1)
+ return \"cas %O0,%O1,r0\;cas %0,%1,r0\";
+ else
+ return \"cas %0,%1,r0\;cas %O0,%O1,r0\";
+ case 1:
+ /* Here we must see which word to load first. We default to the
+ low-order word unless it occurs in the address. */
+ if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
+ operands[1], 0))
+ return \"l%M1 %O0,%O1\;l%M1 %0,%1\";
+ else
+ return \"l%M1 %0,%1\;l%M1 %O0,%O1\";
+ case 2:
+ return \"get %O0,$%1\;ls %0,0(%O0)\;ls %O0,4(%O0)\";
+ case 3:
+ return \"st%M0 %1,%0\;st%M0 %O1,%O0\";
+ }
+}"
+ [(set_attr "type" "multi")
+ (set_attr "cc" "change0,change0,change0,none")
+ (set_attr "length" "4,12,8,8")])
+
+(define_insn "storedi"
+ [(set (match_operand:DI 0 "memory_operand" "=Q,m")
+ (match_operand:DI 1 "register_operand" "r,r"))
+ (clobber (match_scratch:SI 2 "=X,&b"))]
+ ""
+ "@
+ st%M0 %1,%0\;st%M0 %O1,%O0
+ get %2,$%0\;sts %1,0(%2)\;sts %O1,4(%2)"
+ [(set_attr "type" "multi,multi")
+ (set_attr "cc" "none,none")
+ (set_attr "length" "8,12")])
+
+(define_expand "reload_outdi"
+ [(set (match_operand:DI 0 "symbolic_memory_operand" "=m")
+ (match_operand:DI 1 "" "r"))
+ (match_operand:SI 2 "" "=&b")]
+ ""
+ "")
+
+;; Split symbolic memory operands differently. We first load the address
+;; into a register and then do the two loads or stores. We can only do
+;; this if operand_subword won't produce a SUBREG, which is only when
+;; operands[0] is a hard register. Thus, these won't be used during the
+;; first insn scheduling pass.
+(define_split
+ [(set (match_operand:DI 0 "register_operand" "")
+ (match_operand:DI 1 "symbolic_memory_operand" ""))]
+ "GET_CODE (operands[0]) == REG
+ && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER"
+ [(set (match_dup 2) (match_dup 3))
+ (set (match_dup 4) (match_dup 5))
+ (set (match_dup 6) (match_dup 7))]
+ "
+{ operands[2] = operand_subword (operands[0], 1, 0, DImode);
+ operands[3] = XEXP (operands[1], 0);
+ operands[4] = operand_subword (operands[0], 0, 0, DImode);
+ operands[5] = gen_rtx (MEM, SImode, operands[2]);
+ operands[6] = operands[2];
+ operands[7] = gen_rtx (MEM, SImode,
+ gen_rtx (PLUS, SImode, operands[2],
+ gen_rtx (CONST_INT, VOIDmode, 4)));
+
+ if (operands[2] == 0 || operands[4] == 0)
+ FAIL;
+}")
+
+(define_split
+ [(set (match_operand:DI 0 "symbolic_memory_operand" "")
+ (match_operand:DI 1 "register_operand" ""))
+ (clobber (match_operand:SI 2 "register_operand" ""))]
+ "GET_CODE (operands[0]) == REG
+ && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER"
+ [(set (match_dup 2) (match_dup 3))
+ (set (match_dup 4) (match_dup 5))
+ (set (match_dup 6) (match_dup 7))]
+ "
+{ operands[3] = XEXP (operands[0], 0);
+ operands[4] = gen_rtx (MEM, SImode, operands[2]);
+ operands[5] = operand_subword (operands[1], 0, 0, DImode);
+ operands[6] = gen_rtx (MEM, SImode,
+ gen_rtx (PLUS, SImode, operands[2],
+ gen_rtx (CONST_INT, VOIDmode, 4)));
+ operands[7] = operand_subword (operands[1], 1, 0, DImode);
+
+ if (operands[5] == 0 || operands[7] == 0)
+ FAIL;
+}")
+
+;; If the output is a register and the input is memory, we have to be careful
+;; and see which word needs to be loaded first.
+;;
+;; Note that this case doesn't have a CLOBBER. Therefore, we must either
+;; be after reload or operand[0] must not be a MEM. So we don't need a
+;; CLOBBER on the new insns either.
+;;
+;; Due to a bug in sched.c, we do not want to split this insn if both
+;; operands are registers and they overlap unless reload has completed.
+(define_split
+ [(set (match_operand:DI 0 "general_operand" "")
+ (match_operand:DI 1 "general_operand" ""))]
+ "! symbolic_memory_operand (operands[0], DImode)
+ && ! symbolic_memory_operand (operands[1], DImode)
+ && ! (GET_CODE (operands[0]) == REG
+ && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER)
+ && ! (GET_CODE (operands[1]) == REG
+ && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)
+ && ! (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG
+ && ! reload_completed
+ && reg_overlap_mentioned_p (operands[0], operands[1]))"
+ [(set (match_dup 2) (match_dup 3))
+ (set (match_dup 4) (match_dup 5))]
+ "
+{ if (GET_CODE (operands[0]) != REG
+ || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
+ operands[1], 0))
+ {
+ operands[2] = operand_subword (operands[0], 0, 0, DImode);
+ operands[3] = operand_subword (operands[1], 0, 0, DImode);
+ operands[4] = operand_subword (operands[0], 1, 0, DImode);
+ operands[5] = operand_subword (operands[1], 1, 0, DImode);
+ }
+ else
+ {
+ operands[2] = operand_subword (operands[0], 1, 0, DImode);
+ operands[3] = operand_subword (operands[1], 1, 0, DImode);
+ operands[4] = operand_subword (operands[0], 0, 0, DImode);
+ operands[5] = operand_subword (operands[1], 0, 0, DImode);
+ }
+
+ if (operands[2] == 0 || operands[3] == 0
+ || operands[4] == 0 || operands[5] == 0)
+ FAIL;
+}")
+
+(define_split
+ [(set (match_operand:DI 0 "general_operand" "")
+ (match_operand:DI 1 "general_operand" ""))
+ (clobber (match_operand:SI 6 "register_operand" ""))]
+ "! symbolic_memory_operand (operands[0], DImode)
+ && ! symbolic_memory_operand (operands[1], DImode)
+ && ! (GET_CODE (operands[0]) == REG
+ && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER)
+ && ! (GET_CODE (operands[1]) == REG
+ && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)"
+ [(parallel [(set (match_dup 2) (match_dup 3))
+ (clobber (match_dup 7))])
+ (parallel [(set (match_dup 4) (match_dup 5))
+ (clobber (match_dup 8))])]
+ "
+{ if (GET_CODE (operands[0]) != REG
+ || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
+ operands[1], 0))
+ {
+ operands[2] = operand_subword (operands[0], 0, 0, DImode);
+ operands[3] = operand_subword (operands[1], 0, 0, DImode);
+ operands[4] = operand_subword (operands[0], 1, 0, DImode);
+ operands[5] = operand_subword (operands[1], 1, 0, DImode);
+ }
+ else
+ {
+ operands[2] = operand_subword (operands[0], 1, 0, DImode);
+ operands[3] = operand_subword (operands[1], 1, 0, DImode);
+ operands[4] = operand_subword (operands[0], 0, 0, DImode);
+ operands[5] = operand_subword (operands[1], 0, 0, DImode);
+ }
+
+ if (operands[2] == 0 || operands[3] == 0
+ || operands[4] == 0 || operands[5] == 0)
+ FAIL;
+
+ /* We must be sure to make two different SCRATCH operands, since they
+ are not allowed to be shared. After reload, however, we only have
+ a SCRATCH if we won't use the operand, so it is allowed to share it
+ then. */
+ if (reload_completed || GET_CODE (operands[6]) != SCRATCH)
+ operands[7] = operands[8] = operands[6];
+ else
+ {
+ operands[7] = gen_rtx (SCRATCH, SImode);
+ operands[8] = gen_rtx (SCRATCH, SImode);
+ }
+}")
+
+;; Define move insns for SF, and DF.
+;;
+;; For register-register copies or a copy of something to itself, emit a
+;; single SET insn since it will likely be optimized away.
+;;
+;; Otherwise, emit a floating-point move operation unless both input and
+;; output are either constant, memory, or a non-floating-point hard register.
+(define_expand "movdf"
+ [(parallel [(set (match_operand:DF 0 "general_operand" "")
+ (match_operand:DF 1 "general_operand" ""))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "
+{ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+
+ if (op0 == op1)
+ {
+ emit_insn (gen_rtx (SET, VOIDmode, op0, op1));
+ DONE;
+ }
+
+ if ((GET_CODE (op0) == MEM
+ || (GET_CODE (op0) == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER
+ && ! FP_REGNO_P (REGNO (op0))))
+ && (GET_CODE (op1) == MEM
+ || GET_CODE (op1) == CONST_DOUBLE
+ || (GET_CODE (op1) == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER
+ && ! FP_REGNO_P (REGNO (op1)) && ! rtx_equal_p (op0, op1))))
+ {
+ rtx insns;
+
+ if (GET_CODE (op1) == CONST_DOUBLE)
+ op1 = force_const_mem (DFmode, op1);
+
+ start_sequence ();
+ if (GET_CODE (operands[0]) != REG
+ || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
+ operands[1]), 0)
+ {
+ emit_move_insn (operand_subword (op0, 0, 1, DFmode),
+ operand_subword_force (op1, 0, DFmode));
+ emit_move_insn (operand_subword (op0, 1, 1, DFmode),
+ operand_subword_force (op1, 1, DFmode));
+ }
+ else
+ {
+ emit_move_insn (operand_subword (op0, 1, 1, DFmode),
+ operand_subword_force (op1, 1, DFmode));
+ emit_move_insn (operand_subword (op0, 0, 1, DFmode),
+ operand_subword_force (op1, 0, DFmode));
+ }
+
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_no_conflict_block (insns, op0, op1, 0, op1);
+ DONE;
+ }
+}")
+
+(define_expand "movsf"
+ [(parallel [(set (match_operand:SF 0 "general_operand" "")
+ (match_operand:SF 1 "general_operand" ""))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "
+{ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+
+ if (op0 == op1)
+ {
+ emit_insn (gen_rtx (SET, VOIDmode, op0, op1));
+ DONE;
+ }
+
+ if ((GET_CODE (op0) == MEM
+ || (GET_CODE (op0) == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER
+ && ! FP_REGNO_P (REGNO (op0))))
+ && (GET_CODE (op1) == MEM
+ || GET_CODE (op1) == CONST_DOUBLE
+ || (GET_CODE (op1) == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER
+ && ! FP_REGNO_P (REGNO (op1)))))
+ {
+ rtx last;
+
+ if (GET_CODE (op1) == CONST_DOUBLE)
+ op1 = force_const_mem (SFmode, op1);
+
+ last = emit_move_insn (operand_subword (op0, 0, 1, SFmode),
+ operand_subword_force (op1, 0, SFmode));
+
+ REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, op1, REG_NOTES (last));
+ DONE;
+ }
+}")
+
+;; Define the move insns for SF and DF. Check for all general regs
+;; in the FP insns and make them non-FP if so. Do the same if the input and
+;; output are the same (the insn will be deleted in this case and we don't
+;; want to think there are FP insns when there might not be).
+(define_insn ""
+ [(set (match_operand:SF 0 "general_operand" "=*frg")
+ (match_dup 0))]
+ ""
+ "nopr r0"
+ [(set_attr "type" "address")
+ (set_attr "length" "2")])
+
+(define_insn ""
+ [(set (match_operand:SF 0 "general_operand" "=r,*fr,r,r,Q,m,frg")
+ (match_operand:SF 1 "general_operand" "r,0,Q,m,r,r,frg"))
+ (clobber (match_operand:SI 2 "reg_0_operand" "=&z,z,z,z,z,z,z"))
+ (clobber (match_operand:SI 3 "reg_15_operand" "=&t,t,t,t,t,t,t"))]
+ ""
+ "*
+{ switch (which_alternative)
+ {
+ case 0:
+ return \"cas %0,%1,r0\";
+ case 1:
+ return \"nopr r0\";
+ case 2:
+ return \"l%M1 %0,%1\";
+ case 3:
+ return \"load %0,%1\";
+ case 4:
+ return \"st%M0 %1,%0\";
+ case 5:
+ return \"store %1,%0,%3\";
+ default:
+ return output_fpop (SET, operands[0], operands[1], 0, insn);
+ }
+}"
+ [(set_attr "type" "address,address,load,load,store,store,fp")
+ (set_attr "length" "2,2,*,*,*,*,*")])
+
+(define_insn ""
+ [(set (match_operand:DF 0 "general_operand" "=*frg")
+ (match_dup 0))]
+ ""
+ "nopr r0"
+ [(set_attr "type" "address")
+ (set_attr "length" "2")])
+
+(define_insn ""
+ [(set (match_operand:DF 0 "general_operand" "=r,*fr,r,r,Q,m,frg")
+ (match_operand:DF 1 "general_operand" "r,0,Q,m,r,r,*frg"))
+ (clobber (match_operand:SI 2 "reg_0_operand" "=&z,z,z,z,z,z,z"))
+ (clobber (match_operand:SI 3 "reg_15_operand" "=&t,t,t,t,t,t,t"))]
+ ""
+ "*
+{ switch (which_alternative)
+ {
+ case 0:
+ if (REGNO (operands[0]) == REGNO (operands[1]) + 1)
+ return \"cas %O0,%O1,r0\;cas %0,%1,r0\";
+ else
+ return \"cas %0,%1,r0\;cas %O0,%O1,r0\";
+ case 1:
+ return \"nopr r0\";
+ case 2:
+ /* Here we must see which word to load first. We default to the
+ low-order word unless it occurs in the address. */
+ if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
+ operands[1], 0))
+ return \"l%M1 %O0,%O1\;l%M1 %0,%1\";
+ else
+ return \"l%M1 %0,%1\;l%M1 %O0,%O1\";
+ case 3:
+ return \"get %3,$%1\;ls %0,0(%3)\;ls %O0,4(%3)\";
+ case 4:
+ return \"st%M0 %1,%0\;st%M0 %O1,%O0\";
+ case 5:
+ return \"get %3,$%0\;sts %1,0(%3)\;sts %O1,4(%3)\";
+ default:
+ return output_fpop (SET, operands[0], operands[1], 0, insn);
+ }
+}"
+ [(set_attr "type" "address,multi,multi,multi,multi,multi,fp")
+ (set_attr "length" "2,4,*,*,*,*,*")])
+
+;; Split all the above cases that involve multiple insns and no floating-point
+;; data block. If before reload, we can make a SCRATCH. Otherwise, use
+;; register 15.
+
+(define_split
+ [(set (match_operand:DF 0 "register_operand" "")
+ (match_operand:DF 1 "symbolic_memory_operand" ""))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))]
+ "GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 16"
+ [(set (reg:SI 15) (match_dup 2))
+ (set (match_dup 3) (match_dup 4))
+ (set (match_dup 5) (match_dup 6))]
+ "
+{ operands[2] = XEXP (operands[1], 0);
+ operands[3] = operand_subword (operands[0], 0, 0, DFmode);
+ operands[4] = gen_rtx (MEM, SImode, gen_rtx (REG, SImode, 15));
+ operands[5] = operand_subword (operands[0], 0, 1, DFmode);
+ operands[6] = gen_rtx (MEM, SImode,
+ gen_rtx (PLUS, SImode, gen_rtx (REG, SImode, 15),
+ gen_rtx (CONST_INT, VOIDmode, 4)));
+
+ if (operands[3] == 0 || operands[5] == 0)
+ FAIL;
+}")
+
+(define_split
+ [(set (match_operand:DF 0 "symbolic_memory_operand" "")
+ (match_operand:DF 1 "register_operand" ""))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))]
+ "GET_CODE (operands[1]) == REG && REGNO (operands[1]) < 16"
+ [(set (reg:SI 15) (match_dup 2))
+ (set (match_dup 3) (match_dup 4))
+ (set (match_dup 5) (match_dup 6))]
+ "
+{ operands[2] = XEXP (operands[0], 0);
+ operands[3] = gen_rtx (MEM, SImode, gen_rtx (REG, SImode, 15));
+ operands[4] = operand_subword (operands[1], 0, 0, DFmode);
+ operands[5] = gen_rtx (MEM, SImode,
+ gen_rtx (PLUS, SImode, gen_rtx (REG, SImode, 15),
+ gen_rtx (CONST_INT, VOIDmode, 4)));
+ operands[6] = operand_subword (operands[1], 1, 0, DFmode);
+
+ if (operands[4] == 0 || operands[6] == 0)
+ FAIL;
+}")
+
+;; If the output is a register and the input is memory, we have to be careful
+;; and see which word needs to be loaded first. We also cannot to the
+;; split if the input is a constant because it would result in invalid
+;; insns. When the output is a MEM, we must put a CLOBBER on each of the
+;; resulting insn, when it is not a MEM, we must not.
+(define_split
+ [(set (match_operand:DF 0 "memory_operand" "")
+ (match_operand:DF 1 "register_operand" ""))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))]
+ "GET_CODE (operands[1]) == REG && REGNO (operands[1]) < 15"
+ [(parallel [(set (match_dup 2) (match_dup 3))
+ (clobber (match_dup 6))])
+ (parallel [(set (match_dup 4) (match_dup 5))
+ (clobber (match_dup 7))])]
+ "
+{ operands[2] = operand_subword (operands[0], 0, 0, DFmode);
+ operands[3] = operand_subword (operands[1], 0, 0, DFmode);
+ operands[4] = operand_subword (operands[0], 1, 0, DFmode);
+ operands[5] = operand_subword (operands[1], 1, 0, DFmode);
+
+ if (operands[2] == 0 || operands[3] == 0
+ || operands[4] == 0 || operands[5] == 0)
+ FAIL;
+
+ if (reload_completed)
+ operands[6] = operands[7] = gen_rtx (REG, SImode, 15);
+ else
+ {
+ operands[6] = gen_rtx (SCRATCH, SImode);
+ operands[7] = gen_rtx (SCRATCH, SImode);
+ }
+}")
+
+(define_split
+ [(set (match_operand:DF 0 "nonmemory_operand" "")
+ (match_operand:DF 1 "general_operand" ""))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))]
+ "! symbolic_memory_operand (operands[1], DFmode)
+ && GET_CODE (operands[1]) != CONST_DOUBLE
+ && (GET_CODE (operands[0]) != REG || REGNO (operands[0]) < 15)
+ && (GET_CODE (operands[1]) != REG || REGNO (operands[1]) < 15)
+ && (GET_CODE (operands[0]) == REG || GET_CODE (operands[1]) == REG)"
+ [(set (match_dup 2) (match_dup 3))
+ (set (match_dup 4) (match_dup 5))]
+ "
+{ if (GET_CODE (operands[0]) != REG
+ || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
+ operands[1], 0))
+ {
+ operands[2] = operand_subword (operands[0], 0, 0, DFmode);
+ operands[3] = operand_subword (operands[1], 0, 0, DFmode);
+ operands[4] = operand_subword (operands[0], 1, 0, DFmode);
+ operands[5] = operand_subword (operands[1], 1, 0, DFmode);
+ }
+ else
+ {
+ operands[2] = operand_subword (operands[0], 1, 0, DFmode);
+ operands[3] = operand_subword (operands[1], 1, 0, DFmode);
+ operands[4] = operand_subword (operands[0], 0, 0, DFmode);
+ operands[5] = operand_subword (operands[1], 0, 0, DFmode);
+ }
+
+ if (operands[2] == 0 || operands[3] == 0
+ || operands[4] == 0 || operands[5] == 0)
+ FAIL;
+}")
+
+;; Conversions from one integer mode to another.
+;; It is possible sometimes to sign- or zero-extend while fetching from memory.
+;;
+;; First, sign-extensions:
+(define_expand "extendhisi2"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (sign_extend:SI (match_operand:HI 1 "register_operand" "")))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=b")
+ (sign_extend:SI (match_operand:HI 1 "symbolic_memory_operand" "m")))]
+ ""
+ "loadha %0,%1"
+ [(set_attr "type" "load")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r,r,b")
+ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "r,Q,m")))]
+ ""
+ "@
+ exts %0,%1
+ lha%M1 %0,%1
+ loadha %0,%1"
+ [(set_attr "type" "arith,load,load")
+ (set_attr "length" "2,*,*")])
+
+(define_expand "extendqisi2"
+ [(set (match_dup 2)
+ (ashift:SI (match_operand:QI 1 "register_operand" "")
+ (const_int 24)))
+ (set (match_operand:SI 0 "register_operand" "")
+ (ashiftrt:SI (match_dup 2)
+ (const_int 24)))]
+ ""
+ "
+{ operands[1] = gen_lowpart (SImode, operands[1]);
+ operands[2] = gen_reg_rtx (SImode); }")
+
+(define_expand "extendqihi2"
+ [(set (match_dup 2)
+ (ashift:SI (match_operand:QI 1 "register_operand" "")
+ (const_int 24)))
+ (set (match_operand:HI 0 "register_operand" "")
+ (ashiftrt:SI (match_dup 2)
+ (const_int 24)))]
+ ""
+ "
+{ operands[0] = gen_lowpart (SImode, operands[0]);
+ operands[1] = gen_lowpart (SImode, operands[1]);
+ operands[2] = gen_reg_rtx (SImode); }")
+
+;; Define peepholes to eliminate an instruction when we are doing a sign
+;; extension but cannot clobber the input.
+;;
+;; In this case we will shift left 24 bits, but need a copy first. The shift
+;; can be replaced by a "mc03" instruction, but this can only be done if
+;; followed by the right shift of 24 or more bits.
+(define_peephole
+ [(set (match_operand:SI 0 "register_operand" "")
+ (subreg:SI (match_operand:QI 1 "register_operand" "") 0))
+ (set (match_dup 0)
+ (ashift:SI (match_dup 0)
+ (const_int 24)))
+ (set (match_dup 0)
+ (ashiftrt:SI (match_dup 0)
+ (match_operand:SI 2 "const_int_operand" "")))]
+ "INTVAL (operands[2]) >= 24"
+ "mc03 %0,%1\;sari16 %0,%S2"
+ [(set_attr "type" "multi")
+ (set_attr "length" "4")
+ (set_attr "cc" "sets")])
+
+;; Now zero extensions:
+(define_expand "zero_extendhisi2"
+ [(set (match_operand:SI 0 "register_operand" "b")
+ (zero_extend:SI (match_operand:HI 1 "register_operand" "")))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=b")
+ (zero_extend:SI (match_operand:HI 1 "symbolic_memory_operand" "m")))]
+ ""
+ "loadh %0,%1"
+ [(set_attr "type" "load")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r,r,b")
+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "r,Q,m")))]
+ ""
+ "@
+ nilz %0,%1,65535
+ lh%N1 %0,%1
+ loadh %0,%1"
+ [(set_attr "type" "arith,loadz,load")])
+
+(define_expand "zero_extendqisi2"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (zero_extend:SI (match_operand:QI 1 "register_operand" "")))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=b")
+ (zero_extend:SI (match_operand:QI 1 "symbolic_memory_operand" "m")))]
+ ""
+ "loadc %0,%1"
+ [(set_attr "type" "load")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r,r,b")
+ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "r,Q,m")))]
+ ""
+ "@
+ nilz %0,%1,255
+ lc%M1 %0,%1
+ loadc %0,%1"
+ [(set_attr "type" "arith,load,load")])
+
+(define_expand "zero_extendqihi2"
+ [(set (match_operand:HI 0 "register_operand" "")
+ (zero_extend:HI (match_operand:QI 1 "register_operand" "")))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:HI 0 "register_operand" "=b")
+ (zero_extend:HI (match_operand:QI 1 "symbolic_memory_operand" "m")))]
+ ""
+ "loadc %0,%1"
+ [(set_attr "type" "load")])
+
+(define_insn ""
+ [(set (match_operand:HI 0 "register_operand" "=r,r,b")
+ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "r,Q,m")))]
+ ""
+ "@
+ nilz %0,%1,255
+ lc%M1 %0,%1
+ loadc %0,%1"
+ [(set_attr "type" "arith,load,load")])
+
+;; Various extract and insertion operations.
+(define_expand "extzv"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "")
+ (match_operand:SI 2 "const_int_operand" "")
+ (match_operand:SI 3 "const_int_operand" "")))]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != 8)
+ FAIL;
+
+ if (GET_CODE (operands[3]) != CONST_INT)
+ FAIL;
+
+ if (INTVAL (operands[3]) != 0 && INTVAL (operands[3]) != 8
+ && INTVAL (operands[3]) != 16 && INTVAL (operands[3]) != 24)
+ FAIL;
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=&r")
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "r")
+ (const_int 8)
+ (match_operand:SI 2 "const_int_operand" "n")))]
+ "(INTVAL (operands[2]) & 7) == 0"
+ "lis %0,0\;mc3%B2 %0,%1"
+ [(set_attr "type" "multi")
+ (set_attr "cc" "change0")])
+
+(define_split
+ [(set (match_operand:SI 0 "register_operand" "=&r")
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "r")
+ (const_int 8)
+ (match_operand:SI 2 "const_int_operand" "n")))]
+ "(INTVAL (operands[2]) & 7) == 0"
+ [(set (match_dup 0) (const_int 0))
+ (set (zero_extract:SI (match_dup 0) (const_int 8) (const_int 24))
+ (zero_extract:SI (match_dup 1) (const_int 8) (match_dup 2)))]
+ "")
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r")
+ (const_int 8)
+ (const_int 24))
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "r")
+ (const_int 8)
+ (match_operand:SI 2 "const_int_operand" "n")))]
+ "(INTVAL (operands[2]) & 7) == 0"
+ "mc3%B2 %0,%1"
+ [(set_attr "type" "address")
+ (set_attr "length" "2")])
+
+(define_expand "insv"
+ [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "const_int_operand" "")
+ (match_operand:SI 2 "const_int_operand" ""))
+ (match_operand:SI 3 "register_operand" ""))]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) != CONST_INT)
+ FAIL;
+
+ if (GET_CODE (operands[1]) != CONST_INT)
+ FAIL;
+
+ if (INTVAL (operands[1]) == 1)
+ {
+ emit_insn (gen_bit_insv (operands[0], operands[1], operands[2],
+ operands[3]));
+ DONE;
+ }
+ else if (INTVAL (operands[1]) == 8
+ && (INTVAL (operands[2]) % 8 == 0))
+ ; /* Accept aligned byte-wide field. */
+ else
+ FAIL;
+}")
+
+;; For a single-bit insert, it is better to explicitly generate references
+;; to the T bit. We will call the T bit "CC0" because it can be clobbered
+;; by some CC0 sets (single-bit tests).
+
+(define_expand "bit_insv"
+ [(set (cc0)
+ (zero_extract:SI (match_operand:SI 3 "register_operand" "")
+ (const_int 1)
+ (const_int 31)))
+ (set (zero_extract:SI (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "const_int_operand" "")
+ (match_operand:SI 2 "const_int_operand" ""))
+ (ne (cc0) (const_int 0)))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r")
+ (const_int 8)
+ (match_operand:SI 1 "const_int_operand" "n"))
+ (match_operand:SI 2 "register_operand" "r"))]
+ "(INTVAL (operands[1]) & 7) == 0"
+ "mc%B1%.3 %0,%2"
+ [(set_attr "type" "address")
+ (set_attr "length" "2")])
+
+;; This pattern cannot have any input reloads since if references CC0.
+;; So we have to add code to support memory, which is the only other
+;; thing that a "register_operand" can become. There is still a problem
+;; if the address isn't valid and *it* needs a reload, but there is no
+;; way to solve that problem, so let's hope it never happens.
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r,m")
+ (const_int 1)
+ (match_operand:SI 1 "const_int_operand" "n,m"))
+ (ne (cc0) (const_int 0)))
+ (match_scratch 2 "=X,b")]
+ ""
+ "@
+ mftbi%t1 %0,%S1
+ l%M0 %2,%0\;mftb%t1 %2,%S1\;st%M0 %2,%0"
+ [(set_attr "type" "*,multi")
+ (set_attr "cc" "none,none")
+ (set_attr "length" "2,10")])
+
+;; Arithmetic instructions. First, add and subtract.
+;;
+;; It may be that the second input is either large or small enough that
+;; the operation cannot be done in a single insn. In that case, emit two.
+(define_expand "addsi3"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (plus:SI (match_operand:SI 1 "register_operand" "")
+ (match_operand:SI 2 "nonmemory_operand" "")))]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) == CONST_INT
+ && (unsigned) (INTVAL (operands[2]) + 0x8000) >= 0x10000
+ && (INTVAL (operands[2]) & 0xffff) != 0)
+ {
+ int low = INTVAL (operands[2]) & 0xffff;
+ int high = (unsigned) INTVAL (operands[2]) >> 16;
+
+ if (low & 0x8000)
+ high++, low |= 0xffff0000;
+
+ emit_insn (gen_addsi3 (operands[0], operands[1],
+ gen_rtx (CONST_INT, VOIDmode, high << 16)));
+ operands[1] = operands[0];
+ operands[2] = gen_rtx (CONST_INT, VOIDmode, low);
+ }
+}")
+
+;; Put the insn to add a symbolic constant to a register separately to
+;; improve register allocation since it has different register requirements.
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=b")
+ (plus:SI (match_operand:SI 1 "register_operand" "%b")
+ (match_operand:SI 2 "romp_symbolic_operand" "s")))]
+ ""
+ "get %0,$%2(%1)"
+ [(set_attr "type" "address")
+ (set_attr "length" "8")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r,r,r,b")
+ (plus:SI (match_operand:SI 1 "reg_or_add_operand" "%0,0,r,b,0,r,b")
+ (match_operand:SI 2 "reg_or_add_operand" "I,J,K,M,r,b,s")))]
+ "register_operand (operands[1], SImode)
+ || register_operand (operands[2], SImode)"
+ "@
+ ais %0,%2
+ sis %0,%n2
+ ail %0,%1,%2
+ cau %0,%H2(%1)
+ a %0,%2
+ cas %0,%1,%2
+ get %0,$%2(%1)"
+ [(set_attr "type" "arith,arith,arith,address,arith,address,misc")
+ (set_attr "length" "2,2,4,4,2,2,8")])
+
+;; Now subtract.
+;;
+;; 1. If third operand is constant integer, convert it to add of the negative
+;; of that integer.
+;; 2. If the second operand is not a valid constant integer, force it into a
+;; register.
+(define_expand "subsi3"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (minus:SI (match_operand:SI 1 "reg_or_any_cint_operand" "")
+ (match_operand:SI 2 "reg_or_any_cint_operand" "")))]
+ ""
+ "
+{
+ if (GET_CODE (operands [2]) == CONST_INT)
+ {
+ emit_insn (gen_addsi3 (operands[0], operands[1],
+ gen_rtx (CONST_INT,
+ VOIDmode, - INTVAL (operands[2]))));
+ DONE;
+ }
+ else
+ operands[2] = force_reg (SImode, operands[2]);
+
+ if (GET_CODE (operands[1]) != CONST_INT
+ || (unsigned) (INTVAL (operands[1]) + 0x8000) >= 0x10000)
+ operands[1] = force_reg (SImode, operands[1]);
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
+ (minus:SI (match_operand:SI 1 "reg_or_D_operand" "K,0,r")
+ (match_operand:SI 2 "register_operand" "r,r,0")))]
+ ""
+ "@
+ sfi %0,%2,%1
+ s %0,%2
+ sf %0,%1"
+ [(set_attr "length" "4,2,2")])
+
+;; Multiply either calls a special RT routine or is done in-line, depending
+;; on the value of a -m flag.
+;;
+;; First define the way we call the subroutine.
+(define_expand "mulsi3_subr"
+ [(set (reg:SI 2) (match_operand:SI 1 "register_operand" ""))
+ (set (reg:SI 3) (match_operand:SI 2 "register_operand" ""))
+ (parallel [(set (reg:SI 2) (mult:SI (reg:SI 2) (reg:SI 3)))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])
+ (set (match_operand:SI 0 "register_operand" "")
+ (reg:SI 2))]
+ ""
+ "")
+
+(define_expand "mulsi3"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (mult:SI (match_operand:SI 1 "register_operand" "")
+ (match_operand:SI 2 "register_operand" "")))]
+ ""
+ "
+{
+ if (! TARGET_IN_LINE_MUL)
+ {
+ emit_insn (gen_mulsi3_subr (operands[0], operands[1], operands[2]));
+ DONE;
+ }
+}")
+
+;; Define the patterns to match.
+;; We would like to provide a delay slot for the insns that call internal
+;; routines, but doing so is risky since reorg will think that the use of
+;; r2 and r3 is completed in the insn needing the delay slot. Also, it
+;; won't know that the cc will be clobbered. So take the safe approach
+;; and don't give them delay slots.
+(define_insn ""
+ [(set (reg:SI 2)
+ (mult:SI (reg:SI 2) (reg:SI 3)))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))]
+ "! TARGET_IN_LINE_MUL"
+ "bali%# r15,lmul$$"
+ [(set_attr "type" "misc")
+ (set_attr "in_delay_slot" "no")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=&r")
+ (mult:SI (match_operand:SI 1 "register_operand" "%r")
+ (match_operand:SI 2 "register_operand" "r")))]
+ "TARGET_IN_LINE_MUL"
+ "*
+{ return output_in_line_mul (); }"
+ [(set_attr "length" "38")
+ (set_attr "type" "multi")])
+
+;; Handle divide and modulus. The same function returns both values,
+;; so use divmodsi4. This divides arg 1 by arg 2 with quotient to go
+;; into arg 0 and remainder in arg 3.
+;;
+;; We want to put REG_EQUAL notes for the two outputs. So we need a
+;; function to do everything else.
+(define_expand "divmodsi4_doit"
+ [(set (reg:SI 2)
+ (match_operand:SI 0 "register_operand" ""))
+ (set (reg:SI 3)
+ (match_operand:SI 1 "register_operand" ""))
+ (parallel [(set (reg:SI 2) (div:SI (reg:SI 2) (reg:SI 3)))
+ (set (reg:SI 3) (mod:SI (reg:SI 2) (reg:SI 3)))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "divmodsi4"
+ [(parallel [(set (match_operand:SI 0 "register_operand" "")
+ (div:SI (match_operand:SI 1 "register_operand" "")
+ (match_operand:SI 2 "register_operand" "")))
+ (set (match_operand:SI 3 "register_operand" "")
+ (mod:SI (match_dup 1) (match_dup 2)))])]
+ ""
+ "
+{
+ rtx insn;
+
+ emit_insn (gen_divmodsi4_doit (operands[1], operands[2]));
+ insn = emit_move_insn (operands[0], gen_rtx (REG, SImode, 2));
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
+ gen_rtx (DIV, SImode, operands[1],
+ operands[2]),
+ REG_NOTES (insn));
+ insn = emit_move_insn (operands[3], gen_rtx (REG, SImode, 3));
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
+ gen_rtx (MOD, SImode, operands[1],
+ operands[2]),
+ REG_NOTES (insn));
+ DONE;
+}")
+
+(define_insn ""
+ [(set (reg:SI 2)
+ (div:SI (reg:SI 2) (reg:SI 3)))
+ (set (reg:SI 3)
+ (mod:SI (reg:SI 2) (reg:SI 3)))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))]
+ ""
+ "bali%# r15,ldiv$$"
+ [(set_attr "type" "misc")
+ (set_attr "in_delay_slot" "no")])
+
+;; Similarly for unsigned divide.
+(define_expand "udivmodsi4_doit"
+ [(set (reg:SI 2)
+ (match_operand:SI 0 "register_operand" ""))
+ (set (reg:SI 3)
+ (match_operand:SI 1 "register_operand" ""))
+ (parallel [(set (reg:SI 2) (udiv:SI (reg:SI 2) (reg:SI 3)))
+ (set (reg:SI 3) (umod:SI (reg:SI 2) (reg:SI 3)))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "udivmodsi4"
+ [(parallel [(set (match_operand:SI 0 "register_operand" "")
+ (udiv:SI (match_operand:SI 1 "register_operand" "")
+ (match_operand:SI 2 "register_operand" "")))
+ (set (match_operand:SI 3 "register_operand" "")
+ (umod:SI (match_dup 1) (match_dup 2)))])]
+ ""
+ "
+{
+ rtx insn;
+
+ emit_insn (gen_udivmodsi4_doit (operands[1], operands[2]));
+ insn = emit_move_insn (operands[0], gen_rtx (REG, SImode, 2));
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
+ gen_rtx (UDIV, SImode, operands[1],
+ operands[2]),
+ REG_NOTES (insn));
+ insn = emit_move_insn (operands[3], gen_rtx (REG, SImode, 3));
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
+ gen_rtx (UMOD, SImode, operands[1],
+ operands[2]),
+ REG_NOTES (insn));
+ DONE;
+}")
+
+(define_insn ""
+ [(set (reg:SI 2)
+ (udiv:SI (reg:SI 2) (reg:SI 3)))
+ (set (reg:SI 3)
+ (umod:SI (reg:SI 2) (reg:SI 3)))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))]
+ ""
+ "bali%# r15,uldiv$$"
+ [(set_attr "type" "misc")
+ (set_attr "in_delay_slot" "no")])
+
+;; Define DImode arithmetic operations.
+;;
+;; It is possible to do certain adds and subtracts with constants in a single
+;; insn, but it doesn't seem worth the trouble.
+;;
+;; Don't use DEFINE_SPLIT on these because the dependency on CC can't be
+;; easily tracked in that case!
+(define_insn "adddi3"
+ [(set (match_operand:DI 0 "register_operand" "=r")
+ (plus:DI (match_operand:DI 1 "register_operand" "%0")
+ (match_operand:DI 2 "register_operand" "r")))]
+ ""
+ "a %O0,%O2\;ae %0,%2"
+ [(set_attr "type" "multi")])
+
+(define_insn "subdi3"
+ [(set (match_operand:DI 0 "register_operand" "=r")
+ (minus:DI (match_operand:DI 1 "register_operand" "0")
+ (match_operand:DI 2 "register_operand" "r")))]
+ ""
+ "s %O0,%O2\;se %0,%2"
+ [(set_attr "type" "multi")])
+
+(define_insn "negdi2"
+ [(set (match_operand:DI 0 "register_operand" "=r,&r")
+ (neg:DI (match_operand:DI 1 "register_operand" "0,r")))]
+ ""
+ "twoc %O0,%O1\;onec %0,%1\;aei %0,%0,0"
+ [(set_attr "type" "multi")
+ (set_attr "length" "8")])
+
+;; Unary arithmetic operations.
+(define_insn "abssi2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (abs:SI (match_operand:SI 1 "register_operand" "r")))]
+ ""
+ "abs %0,%1"
+ [(set_attr "length" "2")])
+
+(define_insn "negsi2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (neg:SI (match_operand:SI 1 "register_operand" "r")))]
+ ""
+ "twoc %0,%1"
+ [(set_attr "length" "2")])
+
+(define_insn "one_cmplsi2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (not:SI (match_operand:SI 1 "register_operand" "r")))]
+ ""
+ "onec %0,%1"
+ [(set_attr "length" "2")])
+
+
+;; Logical insns: AND, IOR, and XOR
+;;
+;; If the operation is being performed on a 32-bit constant such that
+;; it cannot be done in one insn, do it in two. We may lose a bit on
+;; CSE in pathological cases, but it seems better doing it this way.
+(define_expand "andsi3"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (and:SI (match_operand:SI 1 "register_operand" "")
+ (match_operand:SI 2 "reg_or_any_cint_operand" "")))]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int top = (unsigned) INTVAL (operands[2]) >> 16;
+ int bottom = INTVAL (operands[2]) & 0xffff;
+
+ if (top != 0 && top != 0xffff && bottom != 0 && bottom != 0xffff)
+ {
+ emit_insn (gen_andsi3 (operands[0], operands[1],
+ gen_rtx (CONST_INT, VOIDmode,
+ (top << 16) | 0xffff)));
+ operands[1] = operands[0];
+ operands[2] = gen_rtx (CONST_INT, VOIDmode, 0xffff0000 | bottom);
+ }
+ }
+}");
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
+ (and:SI (match_operand:SI 1 "reg_or_and_operand" "%0,r,0")
+ (match_operand:SI 2 "reg_or_and_operand" "P,LMO,r")))]
+ "register_operand (operands[1], SImode)
+ || register_operand (operands[2], SImode)"
+ "@
+ clrb%k2 %0,%b2
+ ni%z2 %0,%1,%Z2
+ n %0,%2"
+ [(set_attr "length" "2,4,2")])
+
+;; logical OR (IOR)
+(define_expand "iorsi3"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (ior:SI (match_operand:SI 1 "register_operand" "")
+ (match_operand:SI 2 "reg_or_any_cint_operand" "")))]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int top = (unsigned) INTVAL (operands[2]) >> 16;
+ int bottom = INTVAL (operands[2]) & 0xffff;
+
+ if (top != 0 && bottom != 0)
+ {
+ emit_insn (gen_iorsi3 (operands[0], operands[1],
+ gen_rtx (CONST_INT, VOIDmode, (top << 16))));
+ operands[1] = operands[0];
+ operands[2] = gen_rtx (CONST_INT, VOIDmode, bottom);
+ }
+ }
+}");
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
+ (ior:SI (match_operand:SI 1 "reg_or_cint_operand" "%0,r,0")
+ (match_operand:SI 2 "reg_or_cint_operand" "N,LM,r")))]
+ "register_operand (operands[1], SImode)
+ || register_operand (operands[2], SImode)"
+ "@
+ setb%h2 %0,%b2
+ oi%h2 %0,%1,%H2
+ o %0,%2"
+ [(set_attr "length" "2,4,2")])
+
+;; exclusive-or (XOR)
+(define_expand "xorsi3"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (xor:SI (match_operand:SI 1 "register_operand" "")
+ (match_operand:SI 2 "reg_or_any_cint_operand" "")))]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int top = (unsigned) INTVAL (operands[2]) >> 16;
+ int bottom = INTVAL (operands[2]) & 0xffff;
+
+ if (top == 0xffff && bottom == 0xffff)
+ {
+ emit_insn (gen_one_cmplsi2 (operands[0], operands[1]));
+ DONE;
+ }
+ else if (top != 0 && bottom != 0)
+ {
+ emit_insn (gen_xorsi3 (operands[0], operands[1],
+ gen_rtx (CONST_INT, VOIDmode, (top << 16))));
+ operands[1] = operands[0];
+ operands[2] = gen_rtx (CONST_INT, VOIDmode, bottom);
+ }
+ }
+}");
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r,r")
+ (xor:SI (match_operand:SI 1 "reg_or_cint_operand" "%r,0")
+ (match_operand:SI 2 "reg_or_cint_operand" "LM,r")))]
+ "register_operand (operands[1], SImode)
+ || register_operand (operands[2], SImode)"
+ "@
+ xi%h2 %0,%1,%H2
+ x %0,%2"
+ [(set_attr "length" "4,2")])
+
+;; Various shift insns
+(define_insn "ashrsi3"
+ [(set (match_operand:SI 0 "register_operand" "=r,r")
+ (ashiftrt:SI (match_operand:SI 1 "register_operand" "0,0")
+ (match_operand:QI 2 "reg_or_cint_operand" "r,n")))]
+ ""
+ "@
+ sar %0,%2
+ sari%s2 %0,%S2"
+ [(set_attr "length" "2")])
+
+(define_insn "lshrsi3"
+ [(set (match_operand:SI 0 "register_operand" "=r,r")
+ (lshiftrt:SI (match_operand:SI 1 "register_operand" "0,0")
+ (match_operand:QI 2 "reg_or_cint_operand" "r,n")))]
+ ""
+ "@
+ sr %0,%2
+ sri%s2 %0,%S2"
+ [(set_attr "length" "2")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (ashift:SI (match_operand:SI 1 "register_operand" "b")
+ (const_int 1)))]
+ ""
+ "cas %0,%1,%1"
+ [(set_attr "length" "2")
+ (set_attr "type" "address")])
+
+(define_insn "ashlsi3"
+ [(set (match_operand:SI 0 "register_operand" "=r,r")
+ (ashift:SI (match_operand:SI 1 "register_operand" "0,0")
+ (match_operand:QI 2 "reg_or_cint_operand" "r,n")))]
+ ""
+ "@
+ sl %0,%2
+ sli%s2 %0,%S2"
+ [(set_attr "length" "2")])
+
+;; Function call insns:
+;;
+;; On the ROMP, &fcn is actually a pointer to the data area, which is passed
+;; to the function in r0. &.fcn is the actual starting address of the
+;; function. Also, the word at &fcn contains &.fcn.
+;;
+;; For both functions that do and don't return values, there are two cases:
+;; where the function's address is a constant, and where it isn't.
+;;
+;; Operand 1 (2 for `call_value') is the number of arguments and is not used.
+(define_expand "call"
+ [(use (reg:SI 0))
+ (parallel [(call (mem:SI (match_operand:SI 0 "address_operand" ""))
+ (match_operand 1 "" ""))
+ (clobber (reg:SI 15))])]
+ ""
+ "
+{
+ if (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != CONST_INT)
+ abort();
+
+ operands[0] = XEXP (operands[0], 0);
+ if (GET_CODE (operands[0]) == SYMBOL_REF)
+ {
+ extern rtx get_symref ();
+ char *real_fcnname =
+ (char *) alloca (strlen (XSTR (operands[0], 0)) + 2);
+
+ /* Copy the data area address to r0. */
+ emit_move_insn (gen_rtx (REG, SImode, 0),
+ force_reg (SImode, operands[0]));
+ strcpy (real_fcnname, \".\");
+ strcat (real_fcnname, XSTR (operands[0], 0));
+ operands[0] = get_symref (real_fcnname);
+ }
+ else
+ {
+ rtx data_access;
+
+ emit_move_insn (gen_rtx (REG, SImode, 0),
+ force_reg (SImode, operands[0]));
+ data_access = gen_rtx (MEM, SImode, operands[0]);
+ RTX_UNCHANGING_P (data_access) = 1;
+ operands[0] = copy_to_reg (data_access);
+ }
+}")
+
+(define_insn ""
+ [(call (mem:SI (match_operand:SI 0 "register_operand" "b"))
+ (match_operand 1 "" "g"))
+ (clobber (reg:SI 15))]
+ ""
+ "balr%# r15,%0"
+ [(set_attr "type" "call")
+ (set_attr "length" "2")])
+
+(define_insn ""
+ [(call (mem:SI (match_operand:SI 0 "romp_symbolic_operand" "i"))
+ (match_operand 1 "" "g"))
+ (clobber (reg:SI 15))]
+ "GET_CODE (operands[0]) == SYMBOL_REF"
+ "bali%# r15,%0"
+ [(set_attr "type" "call")])
+
+;; Call a function and return a value.
+(define_expand "call_value"
+ [(use (reg:SI 0))
+ (parallel [(set (match_operand 0 "" "=fg")
+ (call (mem:SI (match_operand:SI 1 "address_operand" ""))
+ (match_operand 2 "" "")))
+ (clobber (reg:SI 15))])]
+ ""
+ "
+{
+ if (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != CONST_INT)
+ abort();
+
+ operands[1] = XEXP (operands[1], 0);
+ if (GET_CODE (operands[1]) == SYMBOL_REF)
+ {
+ extern rtx get_symref ();
+ char *real_fcnname =
+ (char *) alloca (strlen (XSTR (operands[1], 0)) + 2);
+
+ /* Copy the data area address to r0. */
+ emit_move_insn (gen_rtx (REG, SImode, 0),
+ force_reg (SImode, operands[1]));
+ strcpy (real_fcnname, \".\");
+ strcat (real_fcnname, XSTR (operands[1], 0));
+ operands[1] = get_symref (real_fcnname);
+ }
+ else
+ {
+ rtx data_access;
+
+ emit_move_insn (gen_rtx (REG, SImode, 0),
+ force_reg (SImode, operands[1]));
+ data_access = gen_rtx (MEM, SImode, operands[1]);
+ RTX_UNCHANGING_P (data_access) = 1;
+ operands[1] = copy_to_reg (data_access);
+ }
+}")
+
+(define_insn ""
+ [(set (match_operand 0 "" "=fg")
+ (call (mem:SI (match_operand:SI 1 "register_operand" "b"))
+ (match_operand 2 "" "g")))
+ (clobber (reg:SI 15))]
+ ""
+ "balr%# r15,%1"
+ [(set_attr "length" "2")
+ (set_attr "type" "call")])
+
+(define_insn ""
+ [(set (match_operand 0 "" "=fg")
+ (call (mem:SI (match_operand:SI 1 "romp_symbolic_operand" "i"))
+ (match_operand 2 "" "g")))
+ (clobber (reg:SI 15))]
+ "GET_CODE (operands[1]) == SYMBOL_REF"
+ "bali%# r15,%1"
+ [(set_attr "type" "call")])
+
+;; No operation insn.
+(define_insn "nop"
+ [(const_int 0)]
+ ""
+ "nopr r0"
+ [(set_attr "type" "address")
+ (set_attr "length" "2")
+ (set_attr "cc" "none")])
+
+;; Here are the floating-point operations.
+;;
+;; Start by providing DEFINE_EXPAND for each operation.
+;; The insns will be handled with MATCH_OPERATOR; the methodology will be
+;; discussed below.
+
+;; First the conversion operations.
+
+(define_expand "truncdfsf2"
+ [(parallel [(set (match_operand:SF 0 "general_operand" "")
+ (float_truncate:SF (match_operand:DF 1 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "extendsfdf2"
+ [(parallel [(set (match_operand:DF 0 "general_operand" "")
+ (float_extend:DF (match_operand:SF 1 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "floatsisf2"
+ [(parallel [(set (match_operand:SF 0 "general_operand" "")
+ (float:SF (match_operand:SI 1 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "floatsidf2"
+ [(parallel [(set (match_operand:DF 0 "general_operand" "")
+ (float:DF (match_operand:SI 1 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "fix_truncsfsi2"
+ [(parallel [(set (match_operand:SI 0 "general_operand" "")
+ (fix:SI (match_operand:SF 1 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "fix_truncdfsi2"
+ [(parallel [(set (match_operand:SI 0 "general_operand" "")
+ (fix:SI (match_operand:DF 1 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+;; Now the binary operations.
+
+(define_expand "addsf3"
+ [(parallel [(set (match_operand:SF 0 "general_operand" "")
+ (plus:SF (match_operand:SF 1 "general_operand" "")
+ (match_operand:SF 2 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "adddf3"
+ [(parallel [(set (match_operand:DF 0 "general_operand" "")
+ (plus:DF (match_operand:DF 1 "general_operand" "")
+ (match_operand:DF 2 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "subsf3"
+ [(parallel [(set (match_operand:SF 0 "general_operand" "")
+ (minus:SF (match_operand:SF 1 "general_operand" "")
+ (match_operand:SF 2 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "subdf3"
+ [(parallel [(set (match_operand:DF 0 "general_operand" "")
+ (minus:DF (match_operand:DF 1 "general_operand" "")
+ (match_operand:DF 2 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "mulsf3"
+ [(parallel [(set (match_operand:SF 0 "general_operand" "")
+ (mult:SF (match_operand:SF 1 "general_operand" "")
+ (match_operand:SF 2 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "muldf3"
+ [(parallel [(set (match_operand:DF 0 "general_operand" "")
+ (mult:DF (match_operand:DF 1 "general_operand" "")
+ (match_operand:DF 2 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "divsf3"
+ [(parallel [(set (match_operand:SF 0 "general_operand" "")
+ (div:SF (match_operand:SF 1 "general_operand" "")
+ (match_operand:SF 2 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "divdf3"
+ [(parallel [(set (match_operand:DF 0 "general_operand" "")
+ (div:DF (match_operand:DF 1 "general_operand" "")
+ (match_operand:DF 2 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+;; Unary floating-point operations.
+;;
+;; Negations can be done without floating-point, since this is IEEE.
+;; But we cannot do this if an operand is a hard FP register, since
+;; the SUBREG we create would not be valid.
+(define_expand "negsf2"
+ [(set (match_operand:SF 0 "register_operand" "")
+ (neg:SF (match_operand:SF 1 "register_operand" "")))]
+ ""
+ "
+{
+ if (! (GET_CODE (operands[0]) == REG
+ && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER
+ && FP_REGNO_P (REGNO (operands[0])))
+ && ! (GET_CODE (operands[1]) == REG
+ && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER
+ && FP_REGNO_P (REGNO (operands[1]))))
+ {
+ rtx result;
+ rtx target = operand_subword (operands[0], 0, 1, SFmode);
+
+ result = expand_binop (SImode, xor_optab,
+ operand_subword_force (operands[1], 0, SFmode),
+ gen_rtx (CONST_INT, VOIDmode, 0x80000000),
+ target, 0, OPTAB_WIDEN);
+ if (result == 0)
+ abort ();
+
+ if (result != target)
+ emit_move_insn (result, target);
+
+ /* Make a place for REG_EQUAL. */
+ emit_move_insn (operands[0], operands[0]);
+ DONE;
+ }
+}")
+
+(define_expand "negdf2"
+ [(set (match_operand:DF 0 "register_operand" "")
+ (neg:DF (match_operand:DF 1 "register_operand" "")))]
+ ""
+ "
+{
+ if (! (GET_CODE (operands[0]) == REG
+ && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER
+ && FP_REGNO_P (REGNO (operands[0])))
+ && ! (GET_CODE (operands[1]) == REG
+ && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER
+ && FP_REGNO_P (REGNO (operands[1]))))
+ {
+ rtx result;
+ rtx target = operand_subword (operands[0], 0, 1, DFmode);
+ rtx insns;
+
+ start_sequence ();
+ result = expand_binop (SImode, xor_optab,
+ operand_subword_force (operands[1], 0, DFmode),
+ gen_rtx (CONST_INT, VOIDmode, 0x80000000),
+ target, 0, OPTAB_WIDEN);
+ if (result == 0)
+ abort ();
+
+ if (result != target)
+ emit_move_insn (result, target);
+
+ emit_move_insn (operand_subword (operands[0], 1, 1, DFmode),
+ operand_subword_force (operands[1], 1, DFmode));
+
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_no_conflict_block (insns, operands[0], operands[1], 0, 0);
+ DONE;
+ }
+}")
+
+(define_expand "abssf2"
+ [(parallel [(set (match_operand:SF 0 "general_operand" "")
+ (abs:SF (match_operand:SF 1 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "absdf2"
+ [(parallel [(set (match_operand:DF 0 "general_operand" "")
+ (abs:DF (match_operand:DF 1 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+;; Any floating-point operation can be either SFmode or DFmode, and each
+;; operand (including the output) can be either a normal operand or a
+;; conversion from a normal operand.
+;;
+;; We use MATCH_OPERATOR to match a floating-point binary or unary operator
+;; and input and output conversions. So we need 2^N patterns for each type
+;; of operation, where N is the number of operands, including the output.
+;; There are thus a total of 14 patterns, 8 for binary operations, 4 for
+;; unary operations and two for conversion/move operations (only one
+;; operand can have a conversion for move operations). In addition, we have
+;; to be careful that a floating-point reload register doesn't get allocated
+;; for an integer. We take care of this for inputs with PREFERRED_RELOAD_CLASS
+;; but need to have two different constraints for outputs. This means that
+;; we have to duplicate each pattern where the output could be an integer.
+;; This adds another 7 patterns, for a total of 21.
+
+;; Start with conversion operations (moves are done above).
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=g")
+ (match_operator 1 "float_conversion"
+ [(match_operand 2 "general_operand" "frg")]))
+ (clobber (match_operand:SI 3 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))]
+ ""
+ "*
+{ return output_fpop (SET, operands[0], operands[2], 0, insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_conversion"
+ [(match_operand 2 "general_operand" "frg")]))
+ (clobber (match_operand:SI 3 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))]
+ ""
+ "*
+{ return output_fpop (SET, operands[0], operands[2], 0, insn);
+}"
+ [(set_attr "type" "fp")])
+
+;; Next, binary floating-point operations.
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_binary"
+ [(match_operand 2 "general_operand" "frg")
+ (match_operand 3 "general_operand" "frg")]))
+ (clobber (match_operand:SI 4 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[1]), operands[2], operands[3])"
+ "*
+{ return output_fpop (GET_CODE (operands[1]), operands[0],
+ operands[2], operands[3], insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_binary"
+ [(match_operand 2 "general_operand" "frg")
+ (match_operator 3 "float_conversion"
+ [(match_operand 4 "general_operand" "frg")])]))
+ (clobber (match_operand:SI 5 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[1]), operands[2], operands[4])"
+ "*
+{ return output_fpop (GET_CODE (operands[1]), operands[0],
+ operands[2], operands[4], insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_binary"
+ [(match_operator 2 "float_conversion"
+ [(match_operand 3 "general_operand" "frg")])
+ (match_operand 4 "general_operand" "frg")]))
+ (clobber (match_operand:SI 5 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[1]), operands[3], operands[4])"
+ "*
+{ return output_fpop (GET_CODE (operands[1]), operands[0],
+ operands[3], operands[4], insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_binary"
+ [(match_operator 2 "float_conversion"
+ [(match_operand 3 "general_operand" "frg")])
+ (match_operator 4 "float_conversion"
+ [(match_operand 5 "general_operand" "frg")])]))
+ (clobber (match_operand:SI 6 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[1]), operands[3], operands[5])"
+ "*
+{ return output_fpop (GET_CODE (operands[1]), operands[0],
+ operands[3], operands[5], insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=g")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_binary"
+ [(match_operand 3 "general_operand" "frg")
+ (match_operand 4 "general_operand" "frg")])]))
+ (clobber (match_operand:SI 5 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[3], operands[4])"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0],
+ operands[3], operands[4], insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_binary"
+ [(match_operand 3 "general_operand" "frg")
+ (match_operand 4 "general_operand" "frg")])]))
+ (clobber (match_operand:SI 5 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[3], operands[4])"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0],
+ operands[3], operands[4], insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=g")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_binary"
+ [(match_operand 3 "general_operand" "frg")
+ (match_operator 4 "float_conversion"
+ [(match_operand 5 "general_operand" "frg")])])]))
+ (clobber (match_operand:SI 6 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[3], operands[4])"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0],
+ operands[3], operands[5], insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_binary"
+ [(match_operand 3 "general_operand" "frg")
+ (match_operator 4 "float_conversion"
+ [(match_operand 5 "general_operand" "frg")])])]))
+ (clobber (match_operand:SI 6 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[3], operands[4])"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0],
+ operands[3], operands[5], insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=g")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_binary"
+ [(match_operator 3 "float_conversion"
+ [(match_operand 4 "general_operand" "frg")])
+ (match_operand 5 "general_operand" "frg")])]))
+ (clobber (match_operand:SI 6 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[4], operands[5])"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0],
+ operands[4], operands[5], insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_binary"
+ [(match_operator 3 "float_conversion"
+ [(match_operand 4 "general_operand" "frg")])
+ (match_operand 5 "general_operand" "frg")])]))
+ (clobber (match_operand:SI 6 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[4], operands[5])"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0],
+ operands[4], operands[5], insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=g")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_binary"
+ [(match_operator 3 "float_conversion"
+ [(match_operand 4 "general_operand" "frg")])
+ (match_operator 5 "float_conversion"
+ [(match_operand 6 "general_operand" "frg")])])]))
+ (clobber (match_operand:SI 7 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 8 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[4], operands[6])"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0],
+ operands[4], operands[6], insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_binary"
+ [(match_operator 3 "float_conversion"
+ [(match_operand 4 "general_operand" "frg")])
+ (match_operator 5 "float_conversion"
+ [(match_operand 6 "general_operand" "frg")])])]))
+ (clobber (match_operand:SI 7 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 8 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[4], operands[6])"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0],
+ operands[4], operands[6], insn);
+}"
+ [(set_attr "type" "fp")])
+
+;; Unary floating-point operations.
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_unary"
+ [(match_operand 2 "general_operand" "frg")]))
+ (clobber (match_operand:SI 3 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[1]), operands[2], 0)"
+ "*
+{ return output_fpop (GET_CODE (operands[1]), operands[0], operands[2],
+ 0, insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_unary"
+ [(match_operator 2 "float_conversion"
+ [(match_operand 3 "general_operand" "frg")])]))
+ (clobber (match_operand:SI 4 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[1]), operands[3], 0)"
+ "*
+{ return output_fpop (GET_CODE (operands[1]), operands[0], operands[3],
+ 0, insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=g")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_unary"
+ [(match_operand 3 "general_operand" "frg")])]))
+ (clobber (match_operand:SI 4 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[3], 0)"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[3],
+ 0, insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_unary"
+ [(match_operand 3 "general_operand" "frg")])]))
+ (clobber (match_operand:SI 4 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[3], 0)"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[3],
+ 0, insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=g")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_unary"
+ [(match_operator 3 "float_conversion"
+ [(match_operand 4 "general_operand" "frg")])])]))
+ (clobber (match_operand:SI 5 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[4], 0)"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[4],
+ 0, insn);
+}"
+ [(set_attr "type" "fp")])
+
+(define_insn ""
+ [(set (match_operand 0 "general_operand" "=frg")
+ (match_operator 1 "float_conversion"
+ [(match_operator 2 "float_unary"
+ [(match_operator 3 "float_conversion"
+ [(match_operand 4 "general_operand" "frg")])])]))
+ (clobber (match_operand:SI 5 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))]
+ "check_precision (GET_MODE (operands[2]), operands[4], 0)"
+ "*
+{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[4],
+ 0, insn);
+}"
+ [(set_attr "type" "fp")])
+
+;; Compare insns are next. Note that the ROMP has two types of compares,
+;; signed & unsigned, and one type of branch. Use the routine
+;; `next_insn_tests_no_unsigned' to see which type to use.
+(define_expand "tstsi"
+ [(set (cc0)
+ (match_operand:SI 0 "register_operand" "r"))]
+ ""
+ "")
+
+(define_expand "cmpsi"
+ [(set (cc0)
+ (compare (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "reg_or_cint_operand" "")))]
+ ""
+ "")
+
+;; Signed compare, `test' first.
+
+(define_insn ""
+ [(set (cc0)
+ (match_operand:SI 0 "register_operand" "r"))]
+ "next_insn_tests_no_unsigned (insn)"
+ "cis %0,0"
+ [(set_attr "length" "2")
+ (set_attr "type" "compare")])
+
+(define_insn ""
+ [(set (cc0) (match_operand:SI 0 "register_operand" "r,r,r"))
+ (set (match_operand:SI 1 "reg_or_nonsymb_mem_operand" "=0,r,Q")
+ (match_dup 0))]
+ "next_insn_tests_no_unsigned (insn)"
+ "@
+ cis %1,0
+ nilo %1,%0,65535
+ st%M1 %0,%1\;cis %0,0"
+ [(set_attr "type" "compare,compare,store")
+ (set_attr "length" "2,4,6")
+ (set_attr "cc" "compare")])
+
+(define_insn ""
+ [(set (cc0)
+ (compare (match_operand:SI 0 "register_operand" "r,r,r")
+ (match_operand:SI 1 "reg_or_cint_operand" "I,K,r")))]
+ "next_insn_tests_no_unsigned (insn)"
+ "@
+ cis %0,%1
+ cil %0,%1
+ c %0,%1"
+ [(set_attr "length" "2,4,2")
+ (set_attr "type" "compare")])
+
+;; Unsigned comparisons, `test' first, again.
+(define_insn ""
+ [(set (cc0)
+ (match_operand:SI 0 "register_operand" "r"))]
+ "! next_insn_tests_no_unsigned (insn)"
+ "clil %0,0"
+ [(set_attr "type" "compare")])
+
+(define_insn ""
+ [(set (cc0)
+ (compare (match_operand:SI 0 "register_operand" "r,r")
+ (match_operand:SI 1 "reg_or_cint_operand" "K,r")))]
+ "! next_insn_tests_no_unsigned (insn)"
+ "@
+ clil %0,%1
+ cl %0,%1"
+ [(set_attr "length" "4,2")
+ (set_attr "type" "compare")])
+
+;; Bit test insn. Many cases are converted into this by combine. This
+;; uses the ROMP test bit.
+
+(define_insn ""
+ [(set (cc0)
+ (zero_extract (match_operand:SI 0 "register_operand" "r,r")
+ (const_int 1)
+ (match_operand:SI 1 "reg_or_any_cint_operand" "r,n")))]
+ "next_insn_tests_no_inequality (insn)"
+ "@
+ mttb %0,%1
+ mttbi%t1 %0,%S1"
+ [(set_attr "length" "2")
+ (set_attr "type" "compare")
+ (set_attr "cc" "tbit")])
+
+;; Floating-point comparisons. There are two, equality and order.
+;; The difference will be that a trap for NaN will be given on the orderr
+;; comparisons only.
+
+(define_expand "cmpsf"
+ [(parallel [(set (cc0) (compare (match_operand:SF 0 "general_operand" "")
+ (match_operand:SF 1 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "cmpdf"
+ [(parallel [(set (cc0) (compare (match_operand:DF 0 "general_operand" "")
+ (match_operand:DF 1 "general_operand" "")))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "tstsf"
+ [(parallel [(set (cc0) (match_operand:SF 0 "general_operand" ""))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+(define_expand "tstdf"
+ [(parallel [(set (cc0) (match_operand:DF 0 "general_operand" ""))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 15))])]
+ ""
+ "")
+
+;; There are four cases for compare and two for test. These correspond
+;; to each input having a floating-point conversion or not.
+
+(define_insn ""
+ [(set (cc0) (compare (match_operand 0 "general_operand" "frg")
+ (match_operand 1 "general_operand" "frg")))
+ (clobber (match_operand:SI 2 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 3 "reg_15_operand" "=&t"))]
+ "GET_MODE (operands[1]) == SFmode || GET_MODE (operands[1]) == DFmode"
+ "*
+{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE,
+ operands[0], operands[1], 0, insn);
+}"
+ [(set_attr "type" "fp")
+ (set_attr "cc" "compare")])
+
+(define_insn ""
+ [(set (cc0) (compare (match_operand 0 "general_operand" "frg")
+ (match_operator 1 "float_conversion"
+ [(match_operand 2 "general_operand" "frg")])))
+ (clobber (match_operand:SI 3 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))]
+ ""
+ "*
+{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE,
+ operands[0], operands[2], 0, insn);
+}"
+ [(set_attr "type" "fp")
+ (set_attr "cc" "compare")])
+
+(define_insn ""
+ [(set (cc0) (compare (match_operator 0 "float_conversion"
+ [(match_operand 1 "general_operand" "frg")])
+ (match_operand 2 "general_operand" "frg")))
+ (clobber (match_operand:SI 3 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))]
+ ""
+ "*
+{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE,
+ operands[1], operands[2], 0, insn);
+}"
+ [(set_attr "type" "fp")
+ (set_attr "cc" "compare")])
+
+(define_insn ""
+ [(set (cc0) (compare (match_operator 0 "float_conversion"
+ [(match_operand 1 "general_operand" "frg")])
+ (match_operator 2 "float_conversion"
+ [(match_operand 3 "general_operand" "frg")])))
+ (clobber (match_operand:SI 4 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))]
+ ""
+ "*
+{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE,
+ operands[1], operands[3], 0, insn);
+}"
+ [(set_attr "type" "fp")
+ (set_attr "cc" "compare")])
+
+(define_insn ""
+ [(set (cc0) (match_operand 0 "general_operand" "frg"))
+ (clobber (match_operand:SI 1 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 2 "reg_15_operand" "=&t"))]
+ "GET_MODE (operands[0]) == SFmode || GET_MODE (operands[0]) == DFmode"
+ "*
+{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE,
+ operands[0], immed_real_const_1 (0, 0,
+ GET_MODE (operands[0])),
+ 0, insn);
+}"
+ [(set_attr "type" "fp")
+ (set_attr "cc" "compare")])
+
+(define_insn ""
+ [(set (cc0) (match_operator 0 "float_conversion"
+ [(match_operand 1 "general_operand" "frg")]))
+ (clobber (match_operand:SI 2 "reg_0_operand" "=&z"))
+ (clobber (match_operand:SI 3 "reg_15_operand" "=&t"))]
+ ""
+ "*
+{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE,
+ operands[1], immed_real_const_1 (0, 0,
+ GET_MODE (operands[1])),
+ 0, insn);
+}"
+ [(set_attr "type" "fp")
+ (set_attr "cc" "compare")])
+
+;; Branch insns. Unsigned vs. signed have already
+;; been taken care of. The only insns that need to be concerned about the
+;; test bit are beq and bne because the rest are either always true,
+;; always false, or converted to EQ or NE.
+
+;; For conditional branches, we use `define_expand' and just have two patterns
+;; that match them. Operand printing does most of the work.
+
+(define_expand "beq"
+ [(set (pc)
+ (if_then_else (eq (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "")
+
+(define_expand "bne"
+ [(set (pc)
+ (if_then_else (ne (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "")
+
+(define_expand "bgt"
+ [(set (pc)
+ (if_then_else (gt (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "")
+
+(define_expand "bgtu"
+ [(set (pc)
+ (if_then_else (gtu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "")
+
+(define_expand "blt"
+ [(set (pc)
+ (if_then_else (lt (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "")
+
+(define_expand "bltu"
+ [(set (pc)
+ (if_then_else (ltu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "")
+
+(define_expand "bge"
+ [(set (pc)
+ (if_then_else (ge (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "")
+
+(define_expand "bgeu"
+ [(set (pc)
+ (if_then_else (geu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "")
+
+(define_expand "ble"
+ [(set (pc)
+ (if_then_else (le (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "")
+
+(define_expand "bleu"
+ [(set (pc)
+ (if_then_else (leu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "")
+
+;; Define both directions of branch and return.
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (match_operator 1 "comparison_operator"
+ [(cc0) (const_int 0)])
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+{
+ if (restore_compare_p (operands[1]))
+ return 0;
+ else if (get_attr_length (insn) == 2)
+ return \"j%j1 %l0\";
+ else
+ return \"b%j1%# %l0\";
+}"
+ [(set_attr "type" "branch")])
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (match_operator 0 "comparison_operator"
+ [(cc0) (const_int 0)])
+ (return)
+ (pc)))]
+ "null_epilogue ()"
+ "*
+{
+ if (restore_compare_p (operands[0]))
+ return 0;
+ else
+ return \"b%j0r%# r15\";
+}"
+ [(set_attr "type" "return")])
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (match_operator 1 "comparison_operator"
+ [(cc0) (const_int 0)])
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "*
+{
+ if (restore_compare_p (operands[1]))
+ return 0;
+ else if (get_attr_length (insn) == 2)
+ return \"j%J1 %l0\";
+ else
+ return \"b%J1%# %l0\";
+}"
+ [(set_attr "type" "branch")])
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (match_operator 0 "comparison_operator"
+ [(cc0) (const_int 0)])
+ (pc)
+ (return)))]
+ "null_epilogue ()"
+ "*
+{
+ if (restore_compare_p (operands[0]))
+ return 0;
+ else
+ return \"b%J0r%# r15\";
+}"
+ [(set_attr "type" "return")])
+
+;; Unconditional branch and return.
+
+(define_insn "jump"
+ [(set (pc)
+ (label_ref (match_operand 0 "" "")))]
+ ""
+ "*
+{
+ if (get_attr_length (insn) == 2)
+ return \"j %l0\";
+ else
+ return \"b%# %l0\";
+}"
+ [(set_attr "type" "branch")])
+
+(define_insn "return"
+ [(return)]
+ "null_epilogue ()"
+ "br%# r15"
+ [(set_attr "type" "return")])
+
+(define_insn "indirect_jump"
+ [(set (pc) (match_operand:SI 0 "register_operand" "r"))]
+ ""
+ "br%# %0"
+ [(set_attr "type" "branch")
+ (set_attr "length" "2")])
+
+;; Table jump for switch statements:
+(define_insn "tablejump"
+ [(set (pc)
+ (match_operand:SI 0 "register_operand" "r"))
+ (use (label_ref (match_operand 1 "" "")))]
+ ""
+ "br%# %0"
+ [(set_attr "type" "branch")
+ (set_attr "length" "2")])
+
+;;- Local variables:
+;;- mode:emacs-lisp
+;;- comment-start: ";;- "
+;;- eval: (set-syntax-table (copy-sequence (syntax-table)))
+;;- eval: (modify-syntax-entry ?[ "(]")
+;;- eval: (modify-syntax-entry ?] ")[")
+;;- eval: (modify-syntax-entry ?{ "(}")
+;;- eval: (modify-syntax-entry ?} "){")
+;;- End: