diff options
author | Richard Kenner <kenner@gcc.gnu.org> | 1992-01-18 08:39:29 -0500 |
---|---|---|
committer | Richard Kenner <kenner@gcc.gnu.org> | 1992-01-18 08:39:29 -0500 |
commit | b124ac047273369cc07052260cdd163677e09de3 (patch) | |
tree | 596116dd0ea01decf4a46ef63457e0d61191aa6e /gcc/config/romp | |
parent | ee1456320273bf7761b81c4daa2c6acc3187d446 (diff) | |
download | gcc-b124ac047273369cc07052260cdd163677e09de3.zip gcc-b124ac047273369cc07052260cdd163677e09de3.tar.gz gcc-b124ac047273369cc07052260cdd163677e09de3.tar.bz2 |
Initial revision
From-SVN: r214
Diffstat (limited to 'gcc/config/romp')
-rw-r--r-- | gcc/config/romp/romp.h | 1595 | ||||
-rw-r--r-- | gcc/config/romp/romp.md | 2728 |
2 files changed, 4323 insertions, 0 deletions
diff --git a/gcc/config/romp/romp.h b/gcc/config/romp/romp.h new file mode 100644 index 0000000..6904cc5 --- /dev/null +++ b/gcc/config/romp/romp.h @@ -0,0 +1,1595 @@ +/* Definitions of target machine for GNU compiler, for ROMP chip. + Copyright (C) 1989, 1991 Free Software Foundation, Inc. + Contributed by Richard Kenner (kenner@nyu.edu) + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ + + +/* Names to predefine in the preprocessor for this target machine. */ + +#define CPP_PREDEFINES "-Dibm032 -Dunix" + +/* Print subsidiary information on the compiler version in use. */ +#define TARGET_VERSION ; + +/* Add -lfp_p when running with -p or -pg. */ +#define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}" + +/* Run-time compilation parameters selecting different hardware subsets. */ + +/* Flag to generate all multiplies as an in-line sequence of multiply-step + insns instead of calling a library routine. */ +#define TARGET_IN_LINE_MUL (target_flags & 1) + +/* Flag to generate padded floating-point data blocks. Otherwise, we generate + them the minimum size. This trades off execution speed against size. */ +#define TARGET_FULL_FP_BLOCKS (target_flags & 2) + +/* Flag to pass and return floating point values in floating point registers. + Since this violates the linkage convention, we feel free to destroy fr2 + and fr3 on function calls. + fr1-fr3 are used to pass the arguments. */ +#define TARGET_FP_REGS (target_flags & 4) + +/* Flag to return structures of more than one word in memory. This is for + compatibility with the MetaWare HighC (hc) compiler. */ +#define TARGET_HC_STRUCT_RETURN (target_flags & 010) + +extern int target_flags; + +/* Macro to define tables used to set the flags. + This is a list in braces of pairs in braces, + each pair being { "NAME", VALUE } + where VALUE is the bits to set or minus the bits to clear. + An empty string NAME is used to identify the default VALUE. */ + +#define TARGET_SWITCHES \ + { {"in-line-mul", 1}, \ + {"call-lib-mul", -1}, \ + {"full-fp-blocks", 2}, \ + {"minimum-fp-blocks", -2}, \ + {"fp-arg-in-fpregs", 4}, \ + {"fp-arg-in-gregs", -4}, \ + {"hc-struct-return", 010}, \ + {"nohc-struct-return", - 010}, \ + { "", TARGET_DEFAULT}} + +#define TARGET_DEFAULT 3 + +/* Define this to change the optimizations peformed by default. */ + +#define OPTIMIZATION_OPTIONS(LEVEL) + +/* Define this to modify the options specified by the user. + + On the ROMP, we turn on various flags if optimization is selected. + More get turned on if debugging is off. */ + +#define OVERRIDE_OPTIONS \ +{ \ + if (optimize) \ + { \ + flag_force_addr = 1; \ + flag_force_mem = 1; \ + if (write_symbols == NO_DEBUG) \ + flag_omit_frame_pointer = 1; \ + } \ +} + +/* target machine storage layout */ + +/* Define this if most significant bit is lowest numbered + in instructions that operate on numbered bit-fields. */ +/* That is true on ROMP. */ +#define BITS_BIG_ENDIAN 1 + +/* Define this if most significant byte of a word is the lowest numbered. */ +/* That is true on ROMP. */ +#define BYTES_BIG_ENDIAN 1 + +/* Define this if most significant word of a multiword number is lowest + numbered. + + For ROMP we can decide arbitrarily since there are no machine instructions + for them. Might as well be consistent with bits and bytes. */ +#define WORDS_BIG_ENDIAN 1 + +/* number of bits in an addressible storage unit */ +#define BITS_PER_UNIT 8 + +/* Width in bits of a "word", which is the contents of a machine register. + Note that this is not necessarily the width of data type `int'; + if using 16-bit ints on a 68000, this would still be 32. + But on a machine with 16-bit registers, this would be 16. */ +#define BITS_PER_WORD 32 + +/* Width of a word, in units (bytes). */ +#define UNITS_PER_WORD 4 + +/* Width in bits of a pointer. + See also the macro `Pmode' defined below. */ +#define POINTER_SIZE 32 + +/* Allocation boundary (in *bits*) for storing arguments in argument list. */ +#define PARM_BOUNDARY 32 + +/* Boundary (in *bits*) on which stack pointer should be aligned. */ +#define STACK_BOUNDARY 32 + +/* Allocation boundary (in *bits*) for the code of a function. */ +#define FUNCTION_BOUNDARY 16 + +/* No data type wants to be aligned rounder than this. */ +#define BIGGEST_ALIGNMENT 32 + +/* Alignment of field after `int : 0' in a structure. */ +#define EMPTY_FIELD_BOUNDARY 32 + +/* Every structure's size must be a multiple of this. */ +#define STRUCTURE_SIZE_BOUNDARY 8 + +/* A bitfield declared as `int' forces `int' alignment for the struct. */ +#define PCC_BITFIELD_TYPE_MATTERS 1 + +/* Make strings word-aligned so strcpy from constants will be faster. */ +#define CONSTANT_ALIGNMENT(EXP, ALIGN) \ + (TREE_CODE (EXP) == STRING_CST \ + && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) + +/* Make arrays of chars word-aligned for the same reasons. */ +#define DATA_ALIGNMENT(TYPE, ALIGN) \ + (TREE_CODE (TYPE) == ARRAY_TYPE \ + && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ + && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) + +/* Define this if move instructions will actually fail to work + when given unaligned data. */ +#define STRICT_ALIGNMENT + +/* Standard register usage. */ + +/* Number of actual hardware registers. + The hardware registers are assigned numbers for the compiler + from 0 to just below FIRST_PSEUDO_REGISTER. + All registers that the compiler knows about must be given numbers, + even those that are not normally considered general registers. + + ROMP has 16 fullword registers and 8 floating point registers. + + In addition, the difference between the frame and argument pointers is + a function of the number of registers saved, so we need to have a register + to use for AP that will later be eliminated in favor of sp or fp. This is + a normal register, but it is fixed. */ + +#define FIRST_PSEUDO_REGISTER 25 + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. + + On ROMP, r1 is used for the stack and r14 is used for a + data area pointer. + + HACK WARNING: On the RT, there is a bug in code generation for + the MC68881 when the first and third operands are the same floating-point + register. See the definition of the FINAL_PRESCAN_INSN macro for details. + Here we need to reserve fr0 for this purpose. */ +#define FIXED_REGISTERS \ + {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, \ + 1, 0, 0, 0, 0, 0, 0, 0} + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you like. */ +#define CALL_USED_REGISTERS \ + {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, \ + 1, 1, 0, 0, 0, 0, 0, 0} + +/* List the order in which to allocate registers. Each register must be + listed once, even those in FIXED_REGISTERS. + + We allocate in the following order: + fr0, fr1 (not saved) + fr2 ... fr6 + fr7 (more expensive for some FPA's) + r0 (not saved and won't conflict with parameter register) + r4, r3, r2 (not saved, highest used first to make less conflict) + r5 (not saved, but forces r6 to be saved if DI/DFmode) + r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save) + r1, ap */ + +#define REG_ALLOC_ORDER \ + {17, 18, \ + 19, 20, 21, 22, 23, \ + 24, \ + 0, \ + 4, 3, 2, \ + 5, \ + 15, 14, 13, 12, 11, 10, \ + 9, 8, 7, 6, \ + 1, 16} + +/* True if register is floating-point. */ +#define FP_REGNO_P(N) ((N) >= 17) + +/* Return number of consecutive hard regs needed starting at reg REGNO + to hold something of mode MODE. + This is ordinarily the length in words of a value of mode MODE + but can be less for certain modes in special long registers. + + On ROMP, ordinary registers hold 32 bits worth; + a single floating point register is always enough for + anything that can be stored in them at all. */ +#define HARD_REGNO_NREGS(REGNO, MODE) \ + (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. + On ROMP, the cpu registers can hold any mode but the float registers + can hold only floating point. */ +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ + (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) + +/* Value is 1 if it is a good idea to tie two pseudo registers + when one has mode MODE1 and one has mode MODE2. + If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, + for any hard reg, then this must be 0 for correct output. */ +#define MODES_TIEABLE_P(MODE1, MODE2) \ + ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \ + == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)) + +/* A C expression returning the cost of moving data from a register of class + CLASS1 to one of CLASS2. + + On the ROMP, access to floating-point registers is expensive (even between + two FP regs.) */ +#define REGISTER_MOVE_COST(CLASS1, CLASS2) \ + (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS)) + +/* Specify the registers used for certain standard purposes. + The values of these macros are register numbers. */ + +/* ROMP pc isn't overloaded on a register that the compiler knows about. */ +/* #define PC_REGNUM */ + +/* Register to use for pushing function arguments. */ +#define STACK_POINTER_REGNUM 1 + +/* Base register for access to local variables of the function. */ +#define FRAME_POINTER_REGNUM 13 + +/* Value should be nonzero if functions must have frame pointers. + Zero means the frame pointer need not be set up (and parms + may be accessed via the stack pointer) in functions that seem suitable. + This is computed in `reload', in reload1.c. */ +#define FRAME_POINTER_REQUIRED 0 + +/* Base register for access to arguments of the function. */ +#define ARG_POINTER_REGNUM 16 + +/* Place to put static chain when calling a function that requires it. */ +#define STATIC_CHAIN \ + gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, stack_pointer_rtx, \ + gen_rtx (CONST_INT, VOIDmode, -36))) + +/* Place where static chain is found upon entry to routine. */ +#define STATIC_CHAIN_INCOMING \ + gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, arg_pointer_rtx, \ + gen_rtx (CONST_INT, VOIDmode, -20))) + +/* Place that structure value return address is placed. + + On the ROMP, it is passed as an extra parameter. */ +#define STRUCT_VALUE 0 + +/* Define the classes of registers for register constraints in the + machine description. Also define ranges of constants. + + One of the classes must always be named ALL_REGS and include all hard regs. + If there is more than one class, another class must be named NO_REGS + and contain no registers. + + The name GENERAL_REGS must be the name of a class (or an alias for + another name such as ALL_REGS). This is the class of registers + that is allowed by "g" or "r" in a register constraint. + Also, registers outside this class are allocated only when + instructions express preferences for them. + + The classes must be numbered in nondecreasing order; that is, + a larger-numbered class must never be contained completely + in a smaller-numbered class. + + For any two classes, it is very desirable that there be another + class that represents their union. */ + +/* The ROMP has two types of registers, general and floating-point. + + However, r0 is special in that it cannot be used as a base register. + So make a class for registers valid as base registers. + + For floating-point support, add classes that just consist of r0 and + r15, respectively. */ + +enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS, + FP_REGS, ALL_REGS, LIM_REG_CLASSES }; + +#define N_REG_CLASSES (int) LIM_REG_CLASSES + +/* Give names of register classes as strings for dump file. */ + +#define REG_CLASS_NAMES \ + {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \ + "FP_REGS", "ALL_REGS" } + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS {0, 0x00001, 0x08000, 0x1fffe, 0x1ffff, \ + 0x1fe0000, 0x1ffffff } + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ + +#define REGNO_REG_CLASS(REGNO) \ + ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS) + +/* The class value for index registers, and the one for base regs. */ +#define INDEX_REG_CLASS BASE_REGS +#define BASE_REG_CLASS BASE_REGS + +/* Get reg_class from a letter such as appears in the machine description. */ + +#define REG_CLASS_FROM_LETTER(C) \ + ((C) == 'f' ? FP_REGS \ + : (C) == 'b' ? BASE_REGS \ + : (C) == 'z' ? R0_REGS \ + : (C) == 't' ? R15_REGS \ + : NO_REGS) + +/* The letters I, J, K, L, M, N, and P in a register constraint string + can be used to stand for particular ranges of immediate operands. + This macro defines what the ranges are. + C is the letter, and VALUE is a constant value. + Return 1 if VALUE is in the range specified by C. + + `I' is constants less than 16 + `J' is negative constants greater than -16 + `K' is the range for a normal D insn. + `L' is a constant with only the low-order 16 bits set + `M' is a constant with only the high-order 16 bits set + `N' is a single-bit constant + `O' is a constant with either the high-order or low-order 16 bits all ones + `P' is the complement of a single-bit constant + */ + +#define CONST_OK_FOR_LETTER_P(VALUE, C) \ + ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \ + : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \ + : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \ + : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \ + : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \ + : (C) == 'N' ? exact_log2 (VALUE) >= 0 \ + : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \ + || ((VALUE) & 0xffff0000) == 0xffff0000 \ + : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \ + : 0) + +/* Similar, but for floating constants, and defining letters G and H. + Here VALUE is the CONST_DOUBLE rtx itself. + No floating-point constants on ROMP. */ + +#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0 + +/* Optional extra constraints for this machine. + + For the ROMP, `Q' means that this is a memory operand but not a symbolic + memory operand. Note that an unassigned pseudo register is such a + memory operand. If register allocation has not been done, we reject + pseudos, since we assume (hope) that they will get hard registers. + + `R' means that this is a constant pool reference to the current function. + This is just r14 and so can be treated as a register. We bother with this + just in move insns as that is the only place it is likely to occur. + + `S' means that this is the address of a constant pool location. This is + equal to r14 plus a constant. We also only check for this in move insns. */ + +#define EXTRA_CONSTRAINT(OP, C) \ + ((C) == 'Q' ? \ + ((GET_CODE (OP) == REG \ + && REGNO (OP) >= FIRST_PSEUDO_REGISTER \ + && reg_renumber != 0 \ + && reg_renumber[REGNO (OP)] < 0) \ + || (memory_operand (OP, VOIDmode) \ + && ! symbolic_memory_operand (OP, VOIDmode))) \ + : (C) == 'R' ? current_function_operand (OP, VOIDmode) \ + : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \ + : 0) + +/* Given an rtx X being reloaded into a reg required to be + in class CLASS, return the class of reg to actually use. + In general this is just CLASS; but on some machines + in some cases it is preferable to use a more restrictive class. + + For the ROMP, if X is a memory reference that involves a symbol, + we must use a BASE_REGS register instead of GENERAL_REGS + to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF + to be valid, so we assume that this is the case. + + Also, if X is an integer class, ensure that floating-point registers + aren't used. */ + +#define PREFERRED_RELOAD_CLASS(X,CLASS) \ + ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \ + ? GENERAL_REGS : \ + (CLASS) != GENERAL_REGS ? (CLASS) : \ + GET_CODE (X) != MEM ? GENERAL_REGS : \ + GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \ + GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \ + GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \ + GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \ + GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \ + GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \ + GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \ + GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS) + +/* Return the register class of a scratch register needed to store into + OUT from a register of class CLASS in MODE. + + On the ROMP, we cannot store into a symbolic memory address from an + integer register; we need a BASE_REGS register as a scratch to do it. */ + +#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \ + (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \ + ? BASE_REGS : NO_REGS) + +/* Return the maximum number of consecutive registers + needed to represent mode MODE in a register of class CLASS. + + On ROMP, this is the size of MODE in words, + except in the FP regs, where a single reg is always enough. */ +#define CLASS_MAX_NREGS(CLASS, MODE) \ + ((CLASS) == FP_REGS ? 1 \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +/* Stack layout; function entry, exit and calling. */ + +/* Define this if pushing a word on the stack + makes the stack pointer a smaller address. */ +#define STACK_GROWS_DOWNWARD + +/* Define this if the nominal address of the stack frame + is at the high-address end of the local variables; + that is, each additional local variable allocated + goes at a more negative offset in the frame. */ +#define FRAME_GROWS_DOWNWARD + +/* Offset within stack frame to start allocating local variables at. + If FRAME_GROWS_DOWNWARD, this is the offset to the END of the + first local allocated. Otherwise, it is the offset to the BEGINNING + of the first local allocated. + On the ROMP, if we set the frame pointer to 15 words below the highest + address of the highest local variable, the first 16 words will be + addressable via D-short insns. */ +#define STARTING_FRAME_OFFSET 64 + +/* If we generate an insn to push BYTES bytes, + this says how many the stack pointer really advances by. + On ROMP, don't define this because there are no push insns. */ +/* #define PUSH_ROUNDING(BYTES) */ + +/* Offset of first parameter from the argument pointer register value. + On the ROMP, we define the argument pointer to the start of the argument + area. */ +#define FIRST_PARM_OFFSET(FNDECL) 0 + +/* Define this if stack space is still allocated for a parameter passed + in a register. The value is the number of bytes. */ +#define REG_PARM_STACK_SPACE(FNDECL) 16 + +/* This is the difference between the logical top of stack and the actual sp. + + For the ROMP, sp points past the words allocated for the first four outgoing + arguments (they are part of the callee's frame). */ +#define STACK_POINTER_OFFSET -16 + +/* Define this if the maximum size of all the outgoing args is to be + accumulated and pushed during the prologue. The amount can be + found in the variable current_function_outgoing_args_size. */ +#define ACCUMULATE_OUTGOING_ARGS + +/* Value is the number of bytes of arguments automatically + popped when returning from a subroutine call. + FUNTYPE is the data type of the function (as a tree), + or for a library call it is an identifier node for the subroutine name. + SIZE is the number of bytes of arguments passed on the stack. */ + +#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0 + +/* Define how to find the value returned by a function. + VALTYPE is the data type of the value (as a tree). + If the precise function being called is known, FUNC is its FUNCTION_DECL; + otherwise, FUNC is 0. + + On ROMP the value is found in r2, unless the machine specific option + fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */ + +#define FUNCTION_VALUE(VALTYPE, FUNC) \ + gen_rtx (REG, TYPE_MODE (VALTYPE), \ + (TARGET_FP_REGS && \ + GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) ? 18 : 2) + +/* Define how to find the value returned by a library function + assuming the value has mode MODE. */ + +#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 2) + +/* The definition of this macro implies that there are cases where + a scalar value cannot be returned in registers. + + For the ROMP, if compatibility with HC is required, anything of + type DImode is returned in memory. */ + +#define RETURN_IN_MEMORY(type) \ + (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode) + +/* 1 if N is a possible register number for a function value + as seen by the caller. + + On ROMP, r2 is the only register thus used unless fp values are to be + returned in fp regs, in which case fr1 is also used. */ + +#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS)) + +/* 1 if N is a possible register number for function argument passing. + On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */ + +#define FUNCTION_ARG_REGNO_P(N) \ + (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21)) + +/* Define a data type for recording info about an argument list + during the scan of that argument list. This data type should + hold all necessary information about the function itself + and about the args processed so far, enough to enable macros + such as FUNCTION_ARG to determine where the next arg should go. + + On the ROMP, this is a structure. The first word is the number of + words of (integer only if -mfp-arg-in-fpregs is specified) arguments + scanned so far (including the invisible argument, if any, which holds + the structure-value-address). The second word hold the corresponding + value for floating-point arguments, except that both single and double + count as one register. */ + +struct rt_cargs {int gregs, fregs; }; +#define CUMULATIVE_ARGS struct rt_cargs + +#define USE_FP_REG(MODE,CUM) \ + (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \ + && (CUM).fregs < 3) + +/* Define intermediate macro to compute the size (in registers) of an argument + for the ROMP. */ + +#define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \ +(! (NAMED) ? 0 \ + : (MODE) != BLKmode \ + ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \ + : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. + + On ROMP, the offset normally starts at 0, but starts at 4 bytes + when the function gets a structure-value-address as an + invisible first argument. */ + +#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \ + (CUM).gregs = 0, \ + (CUM).fregs = 0 + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be available.) */ + +#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ +{ if (NAMED) \ + { \ + if (USE_FP_REG(MODE, CUM)) \ + (CUM).fregs++; \ + else \ + (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \ + } \ +} + +/* Determine where to put an argument to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + + On ROMP the first four words of args are normally in registers + and the rest are pushed. */ + +#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ + (! (NAMED) ? 0 \ + : USE_FP_REG(MODE,CUM) ? gen_rtx(REG, (MODE),(CUM.fregs) + 17) \ + : (CUM).gregs < 4 ? gen_rtx(REG, (MODE), 2 + (CUM).gregs) : 0) + +/* For an arg passed partly in registers and partly in memory, + this is the number of registers used. + For args passed entirely in registers or entirely in memory, zero. */ + +#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ + (! (NAMED) ? 0 \ + : USE_FP_REG(MODE,CUM) ? 0 \ + : (((CUM).gregs < 4 \ + && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \ + ? 4 - (CUM).gregs : 0)) + +/* Perform any needed actions needed for a function that is receiving a + variable number of arguments. + + CUM is as above. + + MODE and TYPE are the mode and type of the current parameter. + + PRETEND_SIZE is a variable that should be set to the amount of stack + that must be pushed by the prolog to pretend that our caller pushed + it. + + Normally, this macro will push all remaining incoming registers on the + stack and set PRETEND_SIZE to the length of the registers pushed. */ + +#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \ +{ if (TARGET_FP_REGS) \ + error ("can't have varargs with -mfp-arg-in-fp-regs"); \ + else if ((CUM).gregs < 4) \ + { \ + int first_reg_offset = (CUM).gregs; \ + \ + if (MUST_PASS_IN_STACK (MODE, TYPE)) \ + first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \ + \ + if (first_reg_offset > 4) \ + first_reg_offset = 4; \ + \ + if (! NO_RTL && first_reg_offset != 4) \ + move_block_from_reg \ + (2 + first_reg_offset, \ + gen_rtx (MEM, BLKmode, \ + plus_constant (virtual_incoming_args_rtx, \ + first_reg_offset * 4)), \ + 4 - first_reg_offset); \ + PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \ + } \ +} + +/* This macro produces the initial definition of a function name. + On the ROMP, we need to place an extra '.' in the function name. */ + +#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \ +{ if (TREE_PUBLIC(DECL)) \ + fprintf (FILE, "\t.globl _.%s\n", NAME); \ + fprintf (FILE, "_.%s:\n", NAME); \ +} + +/* This macro is used to output the start of the data area. + + On the ROMP, the _name is a pointer to the data area. At that + location is the address of _.name, which is really the name of + the function. We need to set all this up here. + + The global declaration of the data area, if needed, is done in + `assemble_function', where it thinks it is globalizing the function + itself. */ + +#define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \ +{ extern int data_offset; \ + data_section (); \ + fprintf (FILE, "\t.align 2\n"); \ + ASM_OUTPUT_LABEL (FILE, NAME); \ + fprintf (FILE, "\t.long _.%s, 0, ", NAME); \ + if (current_function_calls_alloca) \ + fprintf (FILE, "0x%x\n", \ + 0xf6900000 + current_function_outgoing_args_size); \ + else \ + fprintf (FILE, "0\n"); \ + data_offset = ((SIZE) + 12 + 3) / 4; \ +} + +/* Select section for constant in constant pool. + + On ROMP, all constants are in the data area. */ + +#define SELECT_RTX_SECTION(MODE, X) data_section () + +/* This macro generates the assembly code for function entry. + FILE is a stdio stream to output the code to. + SIZE is an int: how many units of temporary storage to allocate. + Refer to the array `regs_ever_live' to determine which registers + to save; `regs_ever_live[I]' is nonzero if register number I + is ever used in the function. This macro is responsible for + knowing which registers should not be saved even if used. */ + +#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE) + +/* Output assembler code to FILE to increment profiler label # LABELNO + for profiling a function entry. */ + +#define FUNCTION_PROFILER(FILE, LABELNO) \ + fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n"); + +/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, + the stack pointer does not matter. The value is tested only in + functions that have frame pointers. + No definition is equivalent to always zero. */ +/* #define EXIT_IGNORE_STACK 1 */ + +/* This macro generates the assembly code for function exit, + on machines that need it. If FUNCTION_EPILOGUE is not defined + then individual return instructions are generated for each + return statement. Args are same as for FUNCTION_PROLOGUE. + + The function epilogue should not depend on the current stack pointer! + It should use the frame pointer only. This is mandatory because + of alloca; we also take advantage of it to omit stack adjustments + before returning. */ + +#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE) + +/* Output assembler code for a block containing the constant parts + of a trampoline, leaving space for the variable parts. + + The trampoline should set the static chain pointer to value placed + into the trampoline and should branch to the specified routine. + + On the ROMP, we have a problem. There are no free registers to use + to construct the static chain and function addresses. Hence we use + the following kludge: r15 (the return address) is first saved in mq. + Then we use r15 to form the function address. We then branch to the + function and restore r15 in the delay slot. This makes it appear that + the function was called directly from the caller. + + (Note that the function address built is actually that of the data block. + This is passed in r0 and the actual routine address is loaded into r15.) + + In addition, note that the address of the "called function", in this case + the trampoline, is actually the address of the data area. So we need to + make a fake data area that will contain the address of the trampoline. + Note that this must be defined as two half-words, since the trampoline + template (as opposed to the trampoline on the stack) is only half-word + aligned. */ + +#define TRAMPOLINE_TEMPLATE(FILE) \ +{ \ + fprintf (FILE, "\t.short 0,0\n"); \ + fprintf (FILE, "\tcau r0,0(r0)\n"); \ + fprintf (FILE, "\toil r0,r0,0\n"); \ + fprintf (FILE, "\tmts r10,r15\n"); \ + fprintf (FILE, "\tst r0,-36(r1)\n"); \ + fprintf (FILE, "\tcau r15,0(r0)\n"); \ + fprintf (FILE, "\toil r15,r15,0\n"); \ + fprintf (FILE, "\tcas r0,r15,r0\n"); \ + fprintf (FILE, "\tls r15,0(r15)\n"); \ + fprintf (FILE, "\tbrx r15\n"); \ + fprintf (FILE, "\tmfs r10,r15\n"); \ +} + +/* Length in units of the trampoline for entering a nested function. */ + +#define TRAMPOLINE_SIZE 36 + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. + + On the RT, the static chain and function addresses are written in + two 16-bit sections. + + We also need to write the address of the first instruction in + the trampoline into the first word of the trampoline to simulate a + data area. */ + +#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \ +{ \ + rtx _addr, _temp; \ + rtx _val; \ + \ + _temp = expand_binop (SImode, add_optab, ADDR, \ + gen_rtx (CONST_INT, VOIDmode, 4), \ + 0, 1, OPTAB_LIB_WIDEN); \ + emit_move_insn (gen_rtx (MEM, SImode, \ + memory_address (SImode, ADDR)), _temp); \ + \ + _val = force_reg (SImode, CXT); \ + _addr = memory_address (HImode, plus_constant (ADDR, 10)); \ + emit_move_insn (gen_rtx (MEM, HImode, _addr), \ + gen_lowpart (HImode, _val)); \ + _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \ + build_int_2 (16, 0), 0, 1); \ + _addr = memory_address (HImode, plus_constant (ADDR, 6)); \ + emit_move_insn (gen_rtx (MEM, HImode, _addr), \ + gen_lowpart (HImode, _temp)); \ + \ + _val = force_reg (SImode, FNADDR); \ + _addr = memory_address (HImode, plus_constant (ADDR, 24)); \ + emit_move_insn (gen_rtx (MEM, HImode, _addr), \ + gen_lowpart (HImode, _val)); \ + _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \ + build_int_2 (16, 0), 0, 1); \ + _addr = memory_address (HImode, plus_constant (ADDR, 20)); \ + emit_move_insn (gen_rtx (MEM, HImode, _addr), \ + gen_lowpart (HImode, _temp)); \ + \ +} + +/* Definitions for register eliminations. + + We have two registers that can be eliminated on the ROMP. First, the + frame pointer register can often be eliminated in favor of the stack + pointer register. Secondly, the argument pointer register can always be + eliminated; it is replaced with either the stack or frame pointer. + + In addition, we use the elimination mechanism to see if r14 is needed. + Initially we assume that it isn't. If it is, we spill it. This is done + by making it an eliminable register. It doesn't matter what we replace + it with, since it will never occur in the rtl at this point. */ + +/* This is an array of structures. Each structure initializes one pair + of eliminable registers. The "from" register number is given first, + followed by "to". Eliminations of the same "from" register are listed + in order of preference. */ +#define ELIMINABLE_REGS \ +{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ + { 14, 0}} + +/* Given FROM and TO register numbers, say whether this elimination is allowed. + Frame pointer elimination is automatically handled. + + For the ROMP, if frame pointer elimination is being done, we would like to + convert ap into fp, not sp. + + We need r14 if various conditions (tested in romp_using_r14) are true. + + All other eliminations are valid. */ +#define CAN_ELIMINATE(FROM, TO) \ + ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \ + ? ! frame_pointer_needed \ + : (FROM) == 14 ? ! romp_using_r14 () \ + : 1) + +/* Define the offset between two registers, one to be eliminated, and the other + its replacement, at the start of a routine. */ +#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ +{ if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ + { \ + if (romp_pushes_stack ()) \ + (OFFSET) = ((get_frame_size () - 64) \ + + current_function_outgoing_args_size); \ + else \ + (OFFSET) = - (romp_sa_size () + 64); \ + } \ + else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \ + (OFFSET) = romp_sa_size () - 16 + 64; \ + else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ + { \ + if (romp_pushes_stack ()) \ + (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \ + + current_function_outgoing_args_size); \ + else \ + (OFFSET) = -16; \ + } \ + else if ((FROM) == 14) \ + (OFFSET) = 0; \ + else \ + abort (); \ +} + +/* Addressing modes, and classification of registers for them. */ + +/* #define HAVE_POST_INCREMENT */ +/* #define HAVE_POST_DECREMENT */ + +/* #define HAVE_PRE_DECREMENT */ +/* #define HAVE_PRE_INCREMENT */ + +/* Macros to check register numbers against specific register classes. */ + +/* These assume that REGNO is a hard or pseudo reg number. + They give nonzero only if REGNO is a hard reg of the suitable class + or a pseudo reg currently allocated to a suitable hard reg. + Since they use reg_renumber, they are safe only once reg_renumber + has been allocated, which happens in local-alloc.c. */ + +#define REGNO_OK_FOR_INDEX_P(REGNO) 0 +#define REGNO_OK_FOR_BASE_P(REGNO) \ +((REGNO) < FIRST_PSEUDO_REGISTER \ + ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \ + : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \ + && reg_renumber[REGNO] != 16)) + +/* Maximum number of registers that can appear in a valid memory address. */ + +#define MAX_REGS_PER_ADDRESS 1 + +/* Recognize any constant value that is a valid address. */ + +#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X) + +/* Nonzero if the constant value X is a legitimate general operand. + It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. + + On the ROMP, there is a bit of a hack here. Basically, we wish to + only issue instructions that are not `as' macros. However, in the + case of `get', `load', and `store', if the operand is a relocatable + symbol (possibly +/- an integer), there is no way to express the + resulting split-relocation except with the macro. Therefore, allow + either a constant valid in a normal (sign-extended) D-format insn or + a relocatable expression. + + Also, for DFmode and DImode, we must ensure that both words are + addressable. + + We define two macros: The first is given an offset (0 or 4) and indicates + that the operand is a CONST_INT that is valid for that offset. The second + indicates a valid non-CONST_INT constant. */ + +#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \ + (GET_CODE (X) == CONST_INT \ + && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000) + +#define LEGITIMATE_ADDRESS_CONSTANT_P(X) \ + (GET_CODE (X) == SYMBOL_REF \ + || GET_CODE (X) == LABEL_REF \ + || (GET_CODE (X) == CONST \ + && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \ + || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \ + && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT)) + +/* Include all constant integers and constant double, but exclude + SYMBOL_REFs that are to be obtained from the data area (see below). */ +#define LEGITIMATE_CONSTANT_P(X) \ + ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \ + || GET_CODE (X) == CONST_INT \ + || GET_CODE (X) == CONST_DOUBLE) \ + && ! (GET_CODE (X) == SYMBOL_REF && (X)->integrated)) + +/* For no good reason, we do the same as the other RT compilers and load + the addresses of data areas for a function from our data area. That means + that we need to mark such SYMBOL_REFs. We do so here. */ +#define ENCODE_SEGMENT_INFO(DECL) \ + if (TREE_CODE (TREE_TYPE (DECL)) == FUNCTION_TYPE) \ + XEXP (DECL_RTL (DECL), 0)->integrated = 1; + +/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx + and check its validity for a certain class. + We have two alternate definitions for each of them. + The usual definition accepts all pseudo regs; the other rejects + them unless they have been allocated suitable hard regs. + The symbol REG_OK_STRICT causes the latter definition to be used. + + Most source files want to accept pseudo regs in the hope that + they will get allocated to the class that the insn wants them to be in. + Source files for reload pass need to be strict. + After reload, it makes no difference, since pseudo regs have + been eliminated by then. */ + +#ifndef REG_OK_STRICT + +/* Nonzero if X is a hard reg that can be used as an index + or if it is a pseudo reg. */ +#define REG_OK_FOR_INDEX_P(X) 0 +/* Nonzero if X is a hard reg that can be used as a base reg + or if it is a pseudo reg. */ +#define REG_OK_FOR_BASE_P(X) \ + (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) + +#else + +/* Nonzero if X is a hard reg that can be used as an index. */ +#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) +/* Nonzero if X is a hard reg that can be used as a base reg. */ +#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) + +#endif + +/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression + that is a valid memory address for an instruction. + The MODE argument is the machine mode for the MEM expression + that wants to use this address. + + On the ROMP, a legitimate address is either a legitimate constant, + a register plus a legitimate constant, or a register. See the + discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */ +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ +{ if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ + goto ADDR; \ + if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \ + goto ADDR; \ + if (GET_CODE (X) == PLUS \ + && GET_CODE (XEXP (X, 0)) == REG \ + && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ + && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \ + goto ADDR; \ + if (GET_CODE (X) == PLUS \ + && GET_CODE (XEXP (X, 0)) == REG \ + && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ + && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \ + && (((MODE) != DFmode && (MODE) != DImode) \ + || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \ + goto ADDR; \ +} + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. + This macro is used in only one place: `memory_address' in explow.c. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE and WIN are passed so that this macro can use + GO_IF_LEGITIMATE_ADDRESS. + + It is always safe for this macro to do nothing. It exists to recognize + opportunities to optimize the output. + + On ROMP, check for the sum of a register with a constant + integer that is out of range. If so, generate code to add the + constant with the low-order 16 bits masked to the register and force + this result into another register (this can be done with `cau'). + Then generate an address of REG+(CONST&0xffff), allowing for the + possibility of bit 16 being a one. + + If the register is not OK for a base register, abort. */ + +#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ +{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \ + && GET_CODE (XEXP (X, 1)) == CONST_INT \ + && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \ + { int high_int, low_int; \ + if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \ + abort (); \ + high_int = INTVAL (XEXP (X, 1)) >> 16; \ + low_int = INTVAL (XEXP (X, 1)) & 0xffff; \ + if (low_int & 0x8000) \ + high_int += 1, low_int |= 0xffff0000; \ + (X) = gen_rtx (PLUS, SImode, \ + force_operand \ + (gen_rtx (PLUS, SImode, XEXP (X, 0), \ + gen_rtx (CONST_INT, VOIDmode, \ + high_int << 16)), 0),\ + gen_rtx (CONST_INT, VOIDmode, low_int)); \ + } \ +} + +/* Go to LABEL if ADDR (a legitimate address expression) + has an effect that depends on the machine mode it is used for. + + On the ROMP this is true only if the address is valid with a zero offset + but not with an offset of four (this means it cannot be used as an + address for DImode or DFmode). Since we know it is valid, we just check + for an address that is not valid with an offset of four. */ + +#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ +{ if (GET_CODE (ADDR) == PLUS \ + && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \ + && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \ + goto LABEL; \ +} + +/* Define this if some processing needs to be done immediately before + emitting code for an insn. + + This is used on the ROMP, to compensate for a bug in the floating-point + code. When a floating-point operation is done with the first and third + operands both the same floating-point register, it will generate bad code + for the MC68881. So we must detect this. If it occurs, we patch the + first operand to be fr0 and insert a move insn to move it to the desired + destination. */ +#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \ + { rtx op0, op1, op2, operation, tem; \ + if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \ + { \ + op0 = OPERANDS[0]; \ + operation = OPERANDS[1]; \ + if (float_conversion (operation, VOIDmode)) \ + operation = XEXP (operation, 0); \ + if (float_binary (operation, VOIDmode)) \ + { \ + op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \ + if (float_conversion (op1, VOIDmode)) \ + op1 = XEXP (op1, 0); \ + if (float_conversion (op2, VOIDmode)) \ + op2 = XEXP (op2, 0); \ + if (rtx_equal_p (op0, op2) \ + && (GET_CODE (operation) == PLUS \ + || GET_CODE (operation) == MULT)) \ + tem = op1, op1 = op2, op2 = tem; \ + if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \ + && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \ + && REGNO (op0) == REGNO (op2)) \ + { \ + tem = gen_rtx (REG, GET_MODE (op0), 17); \ + emit_insn_after (gen_move_insn (op0, tem), INSN); \ + SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \ + OPERANDS[0] = tem; \ + } \ + } \ + } \ + } + +/* Specify the machine mode that this machine uses + for the index in the tablejump instruction. */ +#define CASE_VECTOR_MODE SImode + +/* Define this if the tablejump instruction expects the table + to contain offsets from the address of the table. + Do not define this if the table should contain absolute addresses. */ +/* #define CASE_VECTOR_PC_RELATIVE */ + +/* Specify the tree operation to be used to convert reals to integers. */ +#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR + +/* This is the kind of divide that is easiest to do in the general case. */ +#define EASY_DIV_EXPR TRUNC_DIV_EXPR + +/* Define this as 1 if `char' should by default be signed; else as 0. */ +#define DEFAULT_SIGNED_CHAR 0 + +/* This flag, if defined, says the same insns that convert to a signed fixnum + also convert validly to an unsigned one. + + We actually lie a bit here as overflow conditions are different. But + they aren't being checked anyway. */ + +#define FIXUNS_TRUNC_LIKE_FIX_TRUNC + +/* Max number of bytes we can move from memory to memory + in one reasonably fast instruction. */ +#define MOVE_MAX 4 + +/* Nonzero if access to memory by bytes is no faster than for words. + Also non-zero if doing byte operations (specifically shifts) in registers + is undesirable. */ +#define SLOW_BYTE_ACCESS 1 + +/* Define if normal loads of shorter-than-word items from memory clears + the rest of the bigs in the register. */ +#define BYTE_LOADS_ZERO_EXTEND + +/* This is BSD, so it wants DBX format. */ +#define DBX_DEBUGGING_INFO + +/* We don't have GAS for the RT yet, so don't write out special + .stabs in cc1plus. */ + +#define FASCIST_ASSEMBLER + +/* Do not break .stabs pseudos into continuations. */ +#define DBX_CONTIN_LENGTH 0 + +/* Don't try to use the `x' type-cross-reference character in DBX data. + Also has the consequence of putting each struct, union or enum + into a separate .stabs, containing only cross-refs to the others. */ +#define DBX_NO_XREFS + +/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits + is done just by pretending it is already truncated. */ +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 + +/* Specify the machine mode that pointers have. + After generation of rtl, the compiler makes no further distinction + between pointers and any other objects of this machine mode. */ +#define Pmode SImode + +/* Mode of a function address in a call instruction (for indexing purposes). + + Doesn't matter on ROMP. */ +#define FUNCTION_MODE SImode + +/* Define this if addresses of constant functions + shouldn't be put through pseudo regs where they can be cse'd. + Desirable on machines where ordinary constants are expensive + but a CALL with constant address is cheap. */ +#define NO_FUNCTION_CSE + +/* Define this if shift instructions ignore all but the low-order + few bits. */ +#define SHIFT_COUNT_TRUNCATED + +/* Compute the cost of computing a constant rtl expression RTX + whose rtx-code is CODE. The body of this macro is a portion + of a switch statement. If the code is computed here, + return it with a return statement. Otherwise, break from the switch. */ + +#define CONST_COSTS(RTX,CODE) \ + case CONST_INT: \ + return 0; \ + case CONST: \ + case LABEL_REF: \ + case SYMBOL_REF: \ + case CONST_DOUBLE: \ + return COSTS_N_INSNS (2); + +/* Provide the costs of a rtl expression. This is in the body of a + switch on CODE. + + References to our own data area are really references to r14, so they + are very cheap. Multiples and divides are very expensive. */ + +#define RTX_COSTS(X,CODE) \ + case MEM: \ + return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2); \ + case MULT: \ + return TARGET_IN_LINE_MUL ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25); \ + case DIV: \ + case UDIV: \ + case MOD: \ + case UMOD: \ + return COSTS_N_INSNS (45); + +/* Compute the cost of an address. This is meant to approximate the size + and/or execution delay of an insn using that address. If the cost is + approximated by the RTL complexity, including CONST_COSTS above, as + is usually the case for CISC machines, this macro should not be defined. + For aggressively RISCy machines, only one insn format is allowed, so + this macro should be a constant. The value of this macro only matters + for valid addresses. + + For the ROMP, everything is cost 0 except for addresses involving + symbolic constants, which are cost 1. */ + +#define ADDRESS_COST(RTX) \ + ((GET_CODE (RTX) == SYMBOL_REF \ + && ! CONSTANT_POOL_ADDRESS_P (RTX)) \ + || GET_CODE (RTX) == LABEL_REF \ + || (GET_CODE (RTX) == CONST \ + && ! constant_pool_address_operand (RTX, Pmode)) \ + || (GET_CODE (RTX) == PLUS \ + && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF \ + && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \ + || GET_CODE (XEXP (RTX, 1)) == LABEL_REF \ + || GET_CODE (XEXP (RTX, 1)) == CONST))) + +/* Adjust the length of an INSN. LENGTH is the currently-computed length and + should be adjusted to reflect any required changes. This macro is used when + there is some systematic length adjustment required that would be difficult + to express in the length attribute. + + On the ROMP, there are two adjustments: First, a 2-byte insn in the delay + slot of a CALL (including floating-point operations) actually takes four + bytes. Second, we have to make the worst-case alignment assumption for + address vectors. */ + +#define ADJUST_INSN_LENGTH(X,LENGTH) \ + if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \ + && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \ + && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \ + (LENGTH) += 2; \ + else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \ + (LENGTH) += 2; + +/* Tell final.c how to eliminate redundant test instructions. */ + +/* Here we define machine-dependent flags and fields in cc_status + (see `conditions.h'). */ + +/* Set if condition code (really not-Z) is stored in `test bit'. */ +#define CC_IN_TB 01000 + +/* Set if condition code is set by an unsigned compare. */ +#define CC_UNSIGNED 02000 + +/* Store in cc_status the expressions + that the condition codes will describe + after execution of an instruction whose pattern is EXP. + Do not alter them if the instruction would not alter the cc's. */ + +#define NOTICE_UPDATE_CC(BODY,INSN) \ + update_cc (BODY, INSN) + +/* Control the assembler format that we output. */ + +/* Output at beginning of assembler file. */ + +#define ASM_FILE_START(FILE) \ +{ extern char *version_string; \ + fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \ + fprintf (FILE, "\t.globl .oVgcc%s\n\t.set .oVgcc%s,0\n", \ + version_string, version_string); \ +} + +/* Output to assembler file text saying following lines + may contain character constants, extra white space, comments, etc. */ + +#define ASM_APP_ON "" + +/* Output to assembler file text saying following lines + no longer contain unusual constructs. */ + +#define ASM_APP_OFF "" + +/* Output before instructions and read-only data. */ + +#define TEXT_SECTION_ASM_OP "\t.text" + +/* Output before writable data. */ + +#define DATA_SECTION_ASM_OP "\t.data" + +/* How to refer to registers in assembler output. + This sequence is indexed by compiler's hard-register-number (see above). */ + +#define REGISTER_NAMES \ +{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \ + "r10", "r11", "r12", "r13", "r14", "r15", "ap", \ + "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" } + +/* How to renumber registers for dbx and gdb. */ + +#define DBX_REGISTER_NUMBER(REGNO) (REGNO) + +/* This is how to output the definition of a user-level label named NAME, + such as the label on a static function or variable NAME. */ + +#define ASM_OUTPUT_LABEL(FILE,NAME) \ + do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) + +/* This is how to output a command to make the user-level label named NAME + defined for reference from other files. */ + +#define ASM_GLOBALIZE_LABEL(FILE,NAME) \ + do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) + +/* This is how to output a reference to a user-level label named NAME. + `assemble_name' uses this. */ + +#define ASM_OUTPUT_LABELREF(FILE,NAME) \ + fprintf (FILE, "_%s", NAME) + +/* This is how to output an internal numbered label where + PREFIX is the class of label and NUM is the number within the class. */ + +#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ + fprintf (FILE, "%s%d:\n", PREFIX, NUM) + +/* This is how to output a label for a jump table. Arguments are the same as + for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is + passed. */ + +#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \ +{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); } + +/* This is how to store into the string LABEL + the symbol_ref name of an internal numbered label where + PREFIX is the class of label and NUM is the number within the class. + This is suitable for output with `assemble_name'. */ + +#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ + sprintf (LABEL, "*%s%d", PREFIX, NUM) + +/* This is how to output an assembler line defining a `double' constant. */ + +#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ + fprintf (FILE, "\t.double 0d%.20e\n", (VALUE)) + +/* This is how to output an assembler line defining a `float' constant. + + WARNING: Believe it or not, the ROMP assembler has a bug in its + handling of single-precision floating-point values making it impossible + to output such values in the expected way. Therefore, it must be output + in hex. THIS WILL NOT WORK IF CROSS-COMPILING FROM A MACHINE THAT DOES + NOT USE IEEE-FORMAT FLOATING-POINT, but there is nothing that can be done + about it short of fixing the assembler. */ + +#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ + do { union { int i; float f; } u_i_f; \ + u_i_f.f = (VALUE); \ + fprintf (FILE, "\t.long 0x%x\n", u_i_f.i);\ + } while (0) + +/* This is how to output an assembler line defining an `int' constant. */ + +#define ASM_OUTPUT_INT(FILE,VALUE) \ +( fprintf (FILE, "\t.long "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +/* Likewise for `char' and `short' constants. */ + +#define ASM_OUTPUT_SHORT(FILE,VALUE) \ +( fprintf (FILE, "\t.short "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +#define ASM_OUTPUT_CHAR(FILE,VALUE) \ +( fprintf (FILE, "\t.byte "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +/* This is how to output an assembler line for a numeric constant byte. */ + +#define ASM_OUTPUT_BYTE(FILE,VALUE) \ + fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) + +/* This is how to output code to push a register on the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ + fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO]) + +/* This is how to output an insn to pop a register from the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_POP(FILE,REGNO) \ + fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO]) + +/* This is how to output an element of a case-vector that is absolute. */ + +#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ + fprintf (FILE, "\t.long L%d\n", VALUE) + +/* This is how to output an element of a case-vector that is relative. + (ROMP does not use such vectors, + but we must define this macro anyway.) */ + +#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort () + +/* This is how to output an assembler line + that says to advance the location counter + to a multiple of 2**LOG bytes. */ + +#define ASM_OUTPUT_ALIGN(FILE,LOG) \ + if ((LOG) != 0) \ + fprintf (FILE, "\t.align %d\n", (LOG)) + +#define ASM_OUTPUT_SKIP(FILE,SIZE) \ + fprintf (FILE, "\t.space %d\n", (SIZE)) + +/* This says how to output an assembler line + to define a global common symbol. */ + +#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ +( fputs (".comm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%d\n", (SIZE))) + +/* This says how to output an assembler line + to define a local common symbol. */ + +#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \ +( fputs (".lcomm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%d\n", (SIZE))) + +/* Store in OUTPUT a string (made with alloca) containing + an assembler-name for a local static variable named NAME. + LABELNO is an integer which is different for each call. */ + +#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ +( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ + sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) + +/* Define the parentheses used to group arithmetic operations + in assembler code. */ + +#define ASM_OPEN_PAREN "(" +#define ASM_CLOSE_PAREN ")" + +/* Define results of standard character escape sequences. */ +#define TARGET_BELL 007 +#define TARGET_BS 010 +#define TARGET_TAB 011 +#define TARGET_NEWLINE 012 +#define TARGET_VT 013 +#define TARGET_FF 014 +#define TARGET_CR 015 + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + For `%' followed by punctuation, CODE is the punctuation and X is null. */ + +#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) + +/* Define which CODE values are valid. */ + +#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ + ((CODE) == '.' || (CODE) == '#') + +/* Print a memory address as an operand to reference that memory location. */ + +#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ +{ register rtx addr = ADDR; \ + register rtx base = 0, offset = addr; \ + if (GET_CODE (addr) == REG) \ + base = addr, offset = const0_rtx; \ + else if (GET_CODE (addr) == PLUS \ + && GET_CODE (XEXP (addr, 0)) == REG) \ + base = XEXP (addr, 0), offset = XEXP (addr, 1); \ + else if (GET_CODE (addr) == SYMBOL_REF \ + && CONSTANT_POOL_ADDRESS_P (addr)) \ + { \ + offset = gen_rtx (CONST_INT, VOIDmode, get_pool_offset (addr) + 12); \ + base = gen_rtx (REG, SImode, 14); \ + } \ + else if (GET_CODE (addr) == CONST \ + && GET_CODE (XEXP (addr, 0)) == PLUS \ + && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \ + && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \ + && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \ + { \ + offset = plus_constant (XEXP (XEXP (addr, 0), 1), \ + (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \ + + 12)); \ + base = gen_rtx (REG, SImode, 14); \ + } \ + output_addr_const (FILE, offset); \ + if (base) \ + fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \ +} + +/* Define the codes that are matched by predicates in aux-output.c. */ + +#define PREDICATE_CODES \ + {"zero_memory_operand", {SUBREG, MEM}}, \ + {"short_memory_operand", {SUBREG, MEM}}, \ + {"symbolic_memory_operand", {SUBREG, MEM}}, \ + {"current_function_operand", {MEM}}, \ + {"constant_pool_address_operand", {SUBREG, CONST}}, \ + {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \ + {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \ + {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \ + {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \ + {"short_cint_operand", {CONST_INT}}, \ + {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \ + {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \ + PLUS, CONST, CONST_INT}}, \ + {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \ + {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \ + {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \ + {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \ + SYMBOL_REF, CONST_DOUBLE}}, \ + {"reg_0_operand", {REG}}, \ + {"reg_15_operand", {REG}}, \ + {"float_binary", {PLUS, MINUS, MULT, DIV}}, \ + {"float_unary", {NEG, ABS}}, \ + {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}}, + +/* Define functions defined in aux-output.c and used in templates. */ + +extern char *output_in_line_mul (); +extern char *output_fpop (); diff --git a/gcc/config/romp/romp.md b/gcc/config/romp/romp.md new file mode 100644 index 0000000..6d732fe --- /dev/null +++ b/gcc/config/romp/romp.md @@ -0,0 +1,2728 @@ +;;- Machine description for ROMP chip for GNU C compiler +;; Copyright (C) 1988, 1991 Free Software Foundation, Inc. +;; Contributed by Richard Kenner (kenner@nyu.edu) + +;; This file is part of GNU CC. + +;; GNU CC is free software; you can redistribute it and/or modify +;; it under the terms of the GNU General Public License as published by +;; the Free Software Foundation; either version 2, or (at your option) +;; any later version. + +;; GNU CC is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY; without even the implied warranty of +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +;; GNU General Public License for more details. + +;; You should have received a copy of the GNU General Public License +;; along with GNU CC; see the file COPYING. If not, write to +;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. + + +;;- See file "rtl.def" for documentation on define_insn, match_*, et. al. + +;; Define the attributes for the ROMP. + +;; Insn type. Used to default other attribute values. + +(define_attr "type" + "branch,return,fp,load,loadz,store,call,address,arith,compare,multi,misc" + (const_string "arith")) + +;; Length in bytes. + +(define_attr "length" "" + (cond [(eq_attr "type" "branch") + (if_then_else (and (ge (minus (pc) (match_dup 0)) + (const_int -256)) + (le (minus (pc) (match_dup 0)) + (const_int 254))) + (const_int 2) + (const_int 4)) + (eq_attr "type" "return") (const_int 2) + (eq_attr "type" "fp") (const_int 10) + (eq_attr "type" "call") (const_int 4) + (eq_attr "type" "load") + (cond [(match_operand 1 "short_memory_operand" "") (const_int 2) + (match_operand 1 "symbolic_memory_operand" "") (const_int 8)] + (const_int 4)) + (eq_attr "type" "loadz") + (cond [(match_operand 1 "zero_memory_operand" "") (const_int 2) + (match_operand 1 "symbolic_memory_operand" "") (const_int 8)] + (const_string "4")) + (eq_attr "type" "store") + (cond [(match_operand 0 "short_memory_operand" "") (const_int 2) + (match_operand 0 "symbolic_memory_operand" "") (const_int 8)] + (const_int 4))] + (const_int 4))) + +;; Whether insn can be placed in a delay slot. + +(define_attr "in_delay_slot" "yes,no" + (cond [(eq_attr "length" "8,10,38") (const_string "no") + (eq_attr "type" "branch,return,call,multi") (const_string "no")] + (const_string "yes"))) + +;; Whether insn needs a delay slot. +(define_attr "needs_delay_slot" "yes,no" + (if_then_else (eq_attr "type" "branch,return,call") + (const_string "yes") (const_string "no"))) + +;; What insn does to the condition code. + +(define_attr "cc" + "clobber,none,sets,change0,copy1to0,compare,tbit" + (cond [(eq_attr "type" "load,loadz") (const_string "change0") + (eq_attr "type" "store") (const_string "none") + (eq_attr "type" "fp,call") (const_string "clobber") + (eq_attr "type" "branch,return") (const_string "none") + (eq_attr "type" "address") (const_string "change0") + (eq_attr "type" "compare") (const_string "compare") + (eq_attr "type" "arith") (const_string "sets")] + (const_string "clobber"))) + +;; Define attributes for `asm' insns. + +(define_asm_attributes [(set_attr "type" "misc") + (set_attr "length" "8") + (set_attr "in_delay_slot" "no") + (set_attr "cc" "clobber")]) + +;; Define the delay slot requirements for branches and calls. We don't have +;; any annulled insns. +;; +(define_delay (eq_attr "needs_delay_slot" "yes") + [(eq_attr "in_delay_slot" "yes") (nil) (nil)]) + +;; We cannot give a floating-point comparison a delay slot, even though it +;; could make use of it. This is because it would confuse next_cc0_user +;; to do so. Other fp insns can't get a delay slow because they set their +;; result and use their input after the delay slot insn is executed. This +;; isn't what reorg.c expects. + +;; Define load & store delays. These were obtained by measurements done by +;; jfc@athena.mit.edu. +;; +;; In general, the memory unit can support at most two simultaneous operations. +;; +;; Loads take 5 cycles to return the data and can be pipelined up to the +;; limit of two simultaneous operations. +(define_function_unit "memory" 1 2 (eq_attr "type" "load,loadz") 5 0) + +;; Stores do not return data, but tie up the memory unit for 2 cycles if the +;; next insn is also a store. +(define_function_unit "memory" 1 2 (eq_attr "type" "store") 1 2 + [(eq_attr "type" "store")]) + +;; Move word instructions. +;; +;; If destination is memory but source is not register, force source to +;; register. +;; +;; If source is a constant that is too large to load in a single insn, build +;; it in two pieces. +;; +;; If destination is memory and source is a register, a temporary register +;; will be needed. In that case, make a PARALLEL of the SET and a +;; CLOBBER of a SCRATCH to allocate the required temporary. +;; +;; This temporary is ACTUALLY only needed when the destination is a +;; relocatable expression. For generating RTL, however, we always +;; place the CLOBBER. In insns where it is not needed, the SCRATCH will +;; not be allocated to a register. +;; +;; Also, avoid creating pseudo-registers or SCRATCH rtx's during reload as +;; they will not be correctly handled. We never need pseudos for that +;; case anyway. +;; +;; We do not use DEFINE_SPLIT for loading constants because the number +;; of cases in the resulting unsplit insn would be too high to deal +;; with practically. +(define_expand "movsi" + [(set (match_operand:SI 0 "general_operand" "") + (match_operand:SI 1 "general_operand" ""))] + "" + " +{ rtx op0 = operands[0]; + rtx op1 = operands[1]; + + if (GET_CODE (op1) == REG && REGNO (op1) == 16) + DONE; + + if (GET_CODE (op0) == REG && REGNO (op0) == 16) + DONE; + + if (GET_CODE (op0) == MEM && ! reload_in_progress) + { + emit_insn (gen_storesi (operands[0], force_reg (SImode, operands[1]))); + DONE; + } + else if (GET_CODE (op1) == CONST_INT) + { + int const_val = INTVAL (op1); + + /* Try a number of cases to see how to best load the constant. */ + if ((const_val & 0xffff) == 0 + || (const_val & 0xffff0000) == 0 + || (unsigned) (const_val + 0x8000) < 0x10000) + /* Can do this in one insn, so generate it. */ + ; + else if (((- const_val) & 0xffff) == 0 + || ((- const_val) & 0xffff0000) == 0 + || (unsigned) ((- const_val) + 0x8000) < 0x10000) + { + /* Can do this by loading the negative constant and then negating. */ + emit_move_insn (operands[0], + gen_rtx (CONST_INT, VOIDmode, - const_val)); + emit_insn (gen_negsi2 (operands[0], operands[0])); + DONE; + } + else + /* Do this the long way. */ + { + unsigned int high_part = const_val & 0xffff0000; + unsigned int low_part = const_val & 0xffff; + int i; + + if (low_part >= 0x10 && exact_log2 (low_part) >= 0) + i = high_part, high_part = low_part, low_part = i; + + emit_move_insn (operands[0], + gen_rtx (CONST_INT, VOIDmode, low_part)); + emit_insn (gen_iorsi3 (operands[0], operands[0], + gen_rtx (CONST_INT, VOIDmode, high_part))); + DONE; + } + } +}") + +;; Move from a symbolic memory location to a register is special. In this +;; case, we know in advance that the register cannot be r0, so we can improve +;; register allocation by treating it separately. + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=b") + (match_operand:SI 1 "symbolic_memory_operand" "m"))] + "" + "load %0,%1" + [(set_attr "type" "load")]) + +;; Generic single-word move insn. We avoid the case where the destination is +;; a symbolic address, as that needs a temporary register. + +(define_insn "" + [(set (match_operand:SI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,r,r,r,r,r,b,Q") + (match_operand:SI 1 "romp_operand" "rR,I,K,L,M,S,s,Q,m,r"))] + "register_operand (operands[0], SImode) + || register_operand (operands[1], SImode)" + "@ + cas %0,%1,r0 + lis %0,%1 + cal %0,%1(r0) + cal16 %0,%1(r0) + cau %0,%H1(r0) + ail %0,r14,%C1 + get %0,$%1 + l%M1 %0,%1 + load %0,%1 + st%M0 %1,%0" + [(set_attr "type" "address,address,address,address,address,arith,misc,load,load,store") + (set_attr "length" "2,2,4,4,4,4,8,*,*,*")]) + +(define_insn "storesi" + [(set (match_operand:SI 0 "memory_operand" "=Q,m") + (match_operand:SI 1 "register_operand" "r,r")) + (clobber (match_scratch:SI 2 "=X,&b"))] + "" + "@ + st%M0 %1,%0 + store %1,%0,%2" + [(set_attr "type" "store")]) + +;; This pattern is used by reload when we store into a symbolic address. It +;; provides the temporary register required. This pattern is only used +;; when SECONDARY_OUTPUT_RELOAD_CLASS returns something other than +;; NO_REGS, so we need not have any predicates here. + +(define_expand "reload_outsi" + [(set (match_operand:SI 0 "symbolic_memory_operand" "=m") + (match_operand:SI 1 "" "r")) + (match_operand:SI 2 "" "=&b")] + "" + "") + +;; Now do the same for the QI move instructions. +(define_expand "movqi" + [(set (match_operand:QI 0 "general_operand" "") + (match_operand:QI 1 "general_operand" ""))] + "" + " +{ rtx op0 = operands[0]; + + if (GET_CODE (op0) == MEM && ! reload_in_progress) + { + emit_insn (gen_storeqi (operands[0], force_reg (QImode, operands[1]))); + DONE; + } +}") + +(define_insn "" + [(set (match_operand:QI 0 "register_operand" "=b") + (match_operand:QI 1 "symbolic_memory_operand" "m"))] + "" + "loadc %0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:QI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,r,r,b,Q") + (match_operand:QI 1 "romp_operand" "r,I,n,s,Q,m,r"))] + "register_operand (operands[0], QImode) + || register_operand (operands[1], QImode)" + "@ + cas %0,%1,r0 + lis %0,%1 + cal %0,%L1(r0) + get %0,$%1 + lc%M1 %0,%1 + loadc %0,%1 + stc%M0 %1,%0" + [(set_attr "type" "address,address,address,misc,load,load,store") + (set_attr "length" "2,2,4,8,*,*,*")]) + +(define_insn "storeqi" + [(set (match_operand:QI 0 "memory_operand" "=Q,m") + (match_operand:QI 1 "register_operand" "r,r")) + (clobber (match_scratch:SI 2 "=X,&b"))] + "" + "@ + stc%M0 %1,%0 + storec %1,%0,%2" + [(set_attr "type" "store")]) + +(define_expand "reload_outqi" + [(set (match_operand:QI 0 "symbolic_memory_operand" "=m") + (match_operand:QI 1 "" "r")) + (match_operand:SI 2 "" "=&b")] + "" + "") + +;; Finally, the HI instructions. +(define_expand "movhi" + [(set (match_operand:HI 0 "general_operand" "") + (match_operand:HI 1 "general_operand" ""))] + "" + " +{ rtx op0 = operands[0]; + + if (GET_CODE (op0) == MEM && ! reload_in_progress) + { + emit_insn (gen_storehi (operands[0], force_reg (HImode, operands[1]))); + DONE; + } +}") + +(define_insn "" + [(set (match_operand:HI 0 "register_operand" "=b") + (match_operand:HI 1 "symbolic_memory_operand" "m"))] + "" + "loadha %0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:HI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,r,r,b,Q") + (match_operand:HI 1 "romp_operand" "r,I,n,s,Q,m,r"))] + "register_operand (operands[0], HImode) + || register_operand (operands[1], HImode)" + "@ + cas %0,%1,r0 + lis %0,%1 + cal %0,%L1(r0) + get %0,$%1 + lh%N1 %0,%1 + loadh %0,%1 + sth%M0 %1,%0" + [(set_attr "type" "address,address,address,misc,loadz,loadz,store") + (set_attr "length" "2,2,4,8,*,*,*")]) + +(define_insn "storehi" + [(set (match_operand:HI 0 "memory_operand" "=Q,m") + (match_operand:HI 1 "register_operand" "r,r")) + (clobber (match_scratch:SI 2 "=X,&b"))] + "" + "@ + sth%M0 %1,%0 + storeh %1,%0,%2" + [(set_attr "type" "store")]) + +(define_expand "reload_outhi" + [(set (match_operand:HI 0 "symbolic_memory_operand" "=m") + (match_operand:HI 1 "" "r")) + (match_operand:SI 2 "" "=&b")] + "" + "") + +;; For DI move, if we have a constant, break the operation apart into +;; two SImode moves because the optimizer may be able to do a better job +;; with the resulting code. +;; +;; For memory stores, make the required pseudo for a temporary in case we +;; are storing into an absolute address. +;; +;; We need to be careful about the cases where the output is a register that is +;; the second register of the input. + +(define_expand "movdi" + [(set (match_operand:DI 0 "general_operand" "") + (match_operand:DI 1 "general_operand" ""))] + "" + " +{ rtx op0 = operands[0]; + rtx op1 = operands[1]; + + if (CONSTANT_P (op1)) + { + rtx insns; + + start_sequence (); + emit_move_insn (operand_subword (op0, 0, 1, DImode), + operand_subword (op1, 0, 1, DImode)); + emit_move_insn (operand_subword (op0, 1, 1, DImode), + operand_subword (op1, 1, 1, DImode)); + insns = get_insns (); + end_sequence (); + + emit_no_conflict_block (insns, op0, op1, 0, op1); + DONE; + } + + if (GET_CODE (op0) == MEM && ! reload_in_progress) + { + emit_insn (gen_storedi (operands[0], force_reg (DImode, operands[1]))); + DONE; + } +}") + +(define_insn "" + [(set (match_operand:DI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,Q") + (match_operand:DI 1 "reg_or_mem_operand" "r,Q,m,r"))] + "register_operand (operands[0], DImode) + || register_operand (operands[1], DImode)" + "* +{ + switch (which_alternative) + { + case 0: + if (REGNO (operands[0]) == REGNO (operands[1]) + 1) + return \"cas %O0,%O1,r0\;cas %0,%1,r0\"; + else + return \"cas %0,%1,r0\;cas %O0,%O1,r0\"; + case 1: + /* Here we must see which word to load first. We default to the + low-order word unless it occurs in the address. */ + if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1], 0)) + return \"l%M1 %O0,%O1\;l%M1 %0,%1\"; + else + return \"l%M1 %0,%1\;l%M1 %O0,%O1\"; + case 2: + return \"get %O0,$%1\;ls %0,0(%O0)\;ls %O0,4(%O0)\"; + case 3: + return \"st%M0 %1,%0\;st%M0 %O1,%O0\"; + } +}" + [(set_attr "type" "multi") + (set_attr "cc" "change0,change0,change0,none") + (set_attr "length" "4,12,8,8")]) + +(define_insn "storedi" + [(set (match_operand:DI 0 "memory_operand" "=Q,m") + (match_operand:DI 1 "register_operand" "r,r")) + (clobber (match_scratch:SI 2 "=X,&b"))] + "" + "@ + st%M0 %1,%0\;st%M0 %O1,%O0 + get %2,$%0\;sts %1,0(%2)\;sts %O1,4(%2)" + [(set_attr "type" "multi,multi") + (set_attr "cc" "none,none") + (set_attr "length" "8,12")]) + +(define_expand "reload_outdi" + [(set (match_operand:DI 0 "symbolic_memory_operand" "=m") + (match_operand:DI 1 "" "r")) + (match_operand:SI 2 "" "=&b")] + "" + "") + +;; Split symbolic memory operands differently. We first load the address +;; into a register and then do the two loads or stores. We can only do +;; this if operand_subword won't produce a SUBREG, which is only when +;; operands[0] is a hard register. Thus, these won't be used during the +;; first insn scheduling pass. +(define_split + [(set (match_operand:DI 0 "register_operand" "") + (match_operand:DI 1 "symbolic_memory_operand" ""))] + "GET_CODE (operands[0]) == REG + && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER" + [(set (match_dup 2) (match_dup 3)) + (set (match_dup 4) (match_dup 5)) + (set (match_dup 6) (match_dup 7))] + " +{ operands[2] = operand_subword (operands[0], 1, 0, DImode); + operands[3] = XEXP (operands[1], 0); + operands[4] = operand_subword (operands[0], 0, 0, DImode); + operands[5] = gen_rtx (MEM, SImode, operands[2]); + operands[6] = operands[2]; + operands[7] = gen_rtx (MEM, SImode, + gen_rtx (PLUS, SImode, operands[2], + gen_rtx (CONST_INT, VOIDmode, 4))); + + if (operands[2] == 0 || operands[4] == 0) + FAIL; +}") + +(define_split + [(set (match_operand:DI 0 "symbolic_memory_operand" "") + (match_operand:DI 1 "register_operand" "")) + (clobber (match_operand:SI 2 "register_operand" ""))] + "GET_CODE (operands[0]) == REG + && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER" + [(set (match_dup 2) (match_dup 3)) + (set (match_dup 4) (match_dup 5)) + (set (match_dup 6) (match_dup 7))] + " +{ operands[3] = XEXP (operands[0], 0); + operands[4] = gen_rtx (MEM, SImode, operands[2]); + operands[5] = operand_subword (operands[1], 0, 0, DImode); + operands[6] = gen_rtx (MEM, SImode, + gen_rtx (PLUS, SImode, operands[2], + gen_rtx (CONST_INT, VOIDmode, 4))); + operands[7] = operand_subword (operands[1], 1, 0, DImode); + + if (operands[5] == 0 || operands[7] == 0) + FAIL; +}") + +;; If the output is a register and the input is memory, we have to be careful +;; and see which word needs to be loaded first. +;; +;; Note that this case doesn't have a CLOBBER. Therefore, we must either +;; be after reload or operand[0] must not be a MEM. So we don't need a +;; CLOBBER on the new insns either. +;; +;; Due to a bug in sched.c, we do not want to split this insn if both +;; operands are registers and they overlap unless reload has completed. +(define_split + [(set (match_operand:DI 0 "general_operand" "") + (match_operand:DI 1 "general_operand" ""))] + "! symbolic_memory_operand (operands[0], DImode) + && ! symbolic_memory_operand (operands[1], DImode) + && ! (GET_CODE (operands[0]) == REG + && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER) + && ! (GET_CODE (operands[1]) == REG + && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER) + && ! (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG + && ! reload_completed + && reg_overlap_mentioned_p (operands[0], operands[1]))" + [(set (match_dup 2) (match_dup 3)) + (set (match_dup 4) (match_dup 5))] + " +{ if (GET_CODE (operands[0]) != REG + || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1], 0)) + { + operands[2] = operand_subword (operands[0], 0, 0, DImode); + operands[3] = operand_subword (operands[1], 0, 0, DImode); + operands[4] = operand_subword (operands[0], 1, 0, DImode); + operands[5] = operand_subword (operands[1], 1, 0, DImode); + } + else + { + operands[2] = operand_subword (operands[0], 1, 0, DImode); + operands[3] = operand_subword (operands[1], 1, 0, DImode); + operands[4] = operand_subword (operands[0], 0, 0, DImode); + operands[5] = operand_subword (operands[1], 0, 0, DImode); + } + + if (operands[2] == 0 || operands[3] == 0 + || operands[4] == 0 || operands[5] == 0) + FAIL; +}") + +(define_split + [(set (match_operand:DI 0 "general_operand" "") + (match_operand:DI 1 "general_operand" "")) + (clobber (match_operand:SI 6 "register_operand" ""))] + "! symbolic_memory_operand (operands[0], DImode) + && ! symbolic_memory_operand (operands[1], DImode) + && ! (GET_CODE (operands[0]) == REG + && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER) + && ! (GET_CODE (operands[1]) == REG + && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)" + [(parallel [(set (match_dup 2) (match_dup 3)) + (clobber (match_dup 7))]) + (parallel [(set (match_dup 4) (match_dup 5)) + (clobber (match_dup 8))])] + " +{ if (GET_CODE (operands[0]) != REG + || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1], 0)) + { + operands[2] = operand_subword (operands[0], 0, 0, DImode); + operands[3] = operand_subword (operands[1], 0, 0, DImode); + operands[4] = operand_subword (operands[0], 1, 0, DImode); + operands[5] = operand_subword (operands[1], 1, 0, DImode); + } + else + { + operands[2] = operand_subword (operands[0], 1, 0, DImode); + operands[3] = operand_subword (operands[1], 1, 0, DImode); + operands[4] = operand_subword (operands[0], 0, 0, DImode); + operands[5] = operand_subword (operands[1], 0, 0, DImode); + } + + if (operands[2] == 0 || operands[3] == 0 + || operands[4] == 0 || operands[5] == 0) + FAIL; + + /* We must be sure to make two different SCRATCH operands, since they + are not allowed to be shared. After reload, however, we only have + a SCRATCH if we won't use the operand, so it is allowed to share it + then. */ + if (reload_completed || GET_CODE (operands[6]) != SCRATCH) + operands[7] = operands[8] = operands[6]; + else + { + operands[7] = gen_rtx (SCRATCH, SImode); + operands[8] = gen_rtx (SCRATCH, SImode); + } +}") + +;; Define move insns for SF, and DF. +;; +;; For register-register copies or a copy of something to itself, emit a +;; single SET insn since it will likely be optimized away. +;; +;; Otherwise, emit a floating-point move operation unless both input and +;; output are either constant, memory, or a non-floating-point hard register. +(define_expand "movdf" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (match_operand:DF 1 "general_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + " +{ rtx op0 = operands[0]; + rtx op1 = operands[1]; + + if (op0 == op1) + { + emit_insn (gen_rtx (SET, VOIDmode, op0, op1)); + DONE; + } + + if ((GET_CODE (op0) == MEM + || (GET_CODE (op0) == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER + && ! FP_REGNO_P (REGNO (op0)))) + && (GET_CODE (op1) == MEM + || GET_CODE (op1) == CONST_DOUBLE + || (GET_CODE (op1) == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER + && ! FP_REGNO_P (REGNO (op1)) && ! rtx_equal_p (op0, op1)))) + { + rtx insns; + + if (GET_CODE (op1) == CONST_DOUBLE) + op1 = force_const_mem (DFmode, op1); + + start_sequence (); + if (GET_CODE (operands[0]) != REG + || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1]), 0) + { + emit_move_insn (operand_subword (op0, 0, 1, DFmode), + operand_subword_force (op1, 0, DFmode)); + emit_move_insn (operand_subword (op0, 1, 1, DFmode), + operand_subword_force (op1, 1, DFmode)); + } + else + { + emit_move_insn (operand_subword (op0, 1, 1, DFmode), + operand_subword_force (op1, 1, DFmode)); + emit_move_insn (operand_subword (op0, 0, 1, DFmode), + operand_subword_force (op1, 0, DFmode)); + } + + insns = get_insns (); + end_sequence (); + + emit_no_conflict_block (insns, op0, op1, 0, op1); + DONE; + } +}") + +(define_expand "movsf" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (match_operand:SF 1 "general_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + " +{ rtx op0 = operands[0]; + rtx op1 = operands[1]; + + if (op0 == op1) + { + emit_insn (gen_rtx (SET, VOIDmode, op0, op1)); + DONE; + } + + if ((GET_CODE (op0) == MEM + || (GET_CODE (op0) == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER + && ! FP_REGNO_P (REGNO (op0)))) + && (GET_CODE (op1) == MEM + || GET_CODE (op1) == CONST_DOUBLE + || (GET_CODE (op1) == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER + && ! FP_REGNO_P (REGNO (op1))))) + { + rtx last; + + if (GET_CODE (op1) == CONST_DOUBLE) + op1 = force_const_mem (SFmode, op1); + + last = emit_move_insn (operand_subword (op0, 0, 1, SFmode), + operand_subword_force (op1, 0, SFmode)); + + REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, op1, REG_NOTES (last)); + DONE; + } +}") + +;; Define the move insns for SF and DF. Check for all general regs +;; in the FP insns and make them non-FP if so. Do the same if the input and +;; output are the same (the insn will be deleted in this case and we don't +;; want to think there are FP insns when there might not be). +(define_insn "" + [(set (match_operand:SF 0 "general_operand" "=*frg") + (match_dup 0))] + "" + "nopr r0" + [(set_attr "type" "address") + (set_attr "length" "2")]) + +(define_insn "" + [(set (match_operand:SF 0 "general_operand" "=r,*fr,r,r,Q,m,frg") + (match_operand:SF 1 "general_operand" "r,0,Q,m,r,r,frg")) + (clobber (match_operand:SI 2 "reg_0_operand" "=&z,z,z,z,z,z,z")) + (clobber (match_operand:SI 3 "reg_15_operand" "=&t,t,t,t,t,t,t"))] + "" + "* +{ switch (which_alternative) + { + case 0: + return \"cas %0,%1,r0\"; + case 1: + return \"nopr r0\"; + case 2: + return \"l%M1 %0,%1\"; + case 3: + return \"load %0,%1\"; + case 4: + return \"st%M0 %1,%0\"; + case 5: + return \"store %1,%0,%3\"; + default: + return output_fpop (SET, operands[0], operands[1], 0, insn); + } +}" + [(set_attr "type" "address,address,load,load,store,store,fp") + (set_attr "length" "2,2,*,*,*,*,*")]) + +(define_insn "" + [(set (match_operand:DF 0 "general_operand" "=*frg") + (match_dup 0))] + "" + "nopr r0" + [(set_attr "type" "address") + (set_attr "length" "2")]) + +(define_insn "" + [(set (match_operand:DF 0 "general_operand" "=r,*fr,r,r,Q,m,frg") + (match_operand:DF 1 "general_operand" "r,0,Q,m,r,r,*frg")) + (clobber (match_operand:SI 2 "reg_0_operand" "=&z,z,z,z,z,z,z")) + (clobber (match_operand:SI 3 "reg_15_operand" "=&t,t,t,t,t,t,t"))] + "" + "* +{ switch (which_alternative) + { + case 0: + if (REGNO (operands[0]) == REGNO (operands[1]) + 1) + return \"cas %O0,%O1,r0\;cas %0,%1,r0\"; + else + return \"cas %0,%1,r0\;cas %O0,%O1,r0\"; + case 1: + return \"nopr r0\"; + case 2: + /* Here we must see which word to load first. We default to the + low-order word unless it occurs in the address. */ + if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1], 0)) + return \"l%M1 %O0,%O1\;l%M1 %0,%1\"; + else + return \"l%M1 %0,%1\;l%M1 %O0,%O1\"; + case 3: + return \"get %3,$%1\;ls %0,0(%3)\;ls %O0,4(%3)\"; + case 4: + return \"st%M0 %1,%0\;st%M0 %O1,%O0\"; + case 5: + return \"get %3,$%0\;sts %1,0(%3)\;sts %O1,4(%3)\"; + default: + return output_fpop (SET, operands[0], operands[1], 0, insn); + } +}" + [(set_attr "type" "address,multi,multi,multi,multi,multi,fp") + (set_attr "length" "2,4,*,*,*,*,*")]) + +;; Split all the above cases that involve multiple insns and no floating-point +;; data block. If before reload, we can make a SCRATCH. Otherwise, use +;; register 15. + +(define_split + [(set (match_operand:DF 0 "register_operand" "") + (match_operand:DF 1 "symbolic_memory_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 16" + [(set (reg:SI 15) (match_dup 2)) + (set (match_dup 3) (match_dup 4)) + (set (match_dup 5) (match_dup 6))] + " +{ operands[2] = XEXP (operands[1], 0); + operands[3] = operand_subword (operands[0], 0, 0, DFmode); + operands[4] = gen_rtx (MEM, SImode, gen_rtx (REG, SImode, 15)); + operands[5] = operand_subword (operands[0], 0, 1, DFmode); + operands[6] = gen_rtx (MEM, SImode, + gen_rtx (PLUS, SImode, gen_rtx (REG, SImode, 15), + gen_rtx (CONST_INT, VOIDmode, 4))); + + if (operands[3] == 0 || operands[5] == 0) + FAIL; +}") + +(define_split + [(set (match_operand:DF 0 "symbolic_memory_operand" "") + (match_operand:DF 1 "register_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "GET_CODE (operands[1]) == REG && REGNO (operands[1]) < 16" + [(set (reg:SI 15) (match_dup 2)) + (set (match_dup 3) (match_dup 4)) + (set (match_dup 5) (match_dup 6))] + " +{ operands[2] = XEXP (operands[0], 0); + operands[3] = gen_rtx (MEM, SImode, gen_rtx (REG, SImode, 15)); + operands[4] = operand_subword (operands[1], 0, 0, DFmode); + operands[5] = gen_rtx (MEM, SImode, + gen_rtx (PLUS, SImode, gen_rtx (REG, SImode, 15), + gen_rtx (CONST_INT, VOIDmode, 4))); + operands[6] = operand_subword (operands[1], 1, 0, DFmode); + + if (operands[4] == 0 || operands[6] == 0) + FAIL; +}") + +;; If the output is a register and the input is memory, we have to be careful +;; and see which word needs to be loaded first. We also cannot to the +;; split if the input is a constant because it would result in invalid +;; insns. When the output is a MEM, we must put a CLOBBER on each of the +;; resulting insn, when it is not a MEM, we must not. +(define_split + [(set (match_operand:DF 0 "memory_operand" "") + (match_operand:DF 1 "register_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "GET_CODE (operands[1]) == REG && REGNO (operands[1]) < 15" + [(parallel [(set (match_dup 2) (match_dup 3)) + (clobber (match_dup 6))]) + (parallel [(set (match_dup 4) (match_dup 5)) + (clobber (match_dup 7))])] + " +{ operands[2] = operand_subword (operands[0], 0, 0, DFmode); + operands[3] = operand_subword (operands[1], 0, 0, DFmode); + operands[4] = operand_subword (operands[0], 1, 0, DFmode); + operands[5] = operand_subword (operands[1], 1, 0, DFmode); + + if (operands[2] == 0 || operands[3] == 0 + || operands[4] == 0 || operands[5] == 0) + FAIL; + + if (reload_completed) + operands[6] = operands[7] = gen_rtx (REG, SImode, 15); + else + { + operands[6] = gen_rtx (SCRATCH, SImode); + operands[7] = gen_rtx (SCRATCH, SImode); + } +}") + +(define_split + [(set (match_operand:DF 0 "nonmemory_operand" "") + (match_operand:DF 1 "general_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "! symbolic_memory_operand (operands[1], DFmode) + && GET_CODE (operands[1]) != CONST_DOUBLE + && (GET_CODE (operands[0]) != REG || REGNO (operands[0]) < 15) + && (GET_CODE (operands[1]) != REG || REGNO (operands[1]) < 15) + && (GET_CODE (operands[0]) == REG || GET_CODE (operands[1]) == REG)" + [(set (match_dup 2) (match_dup 3)) + (set (match_dup 4) (match_dup 5))] + " +{ if (GET_CODE (operands[0]) != REG + || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1], 0)) + { + operands[2] = operand_subword (operands[0], 0, 0, DFmode); + operands[3] = operand_subword (operands[1], 0, 0, DFmode); + operands[4] = operand_subword (operands[0], 1, 0, DFmode); + operands[5] = operand_subword (operands[1], 1, 0, DFmode); + } + else + { + operands[2] = operand_subword (operands[0], 1, 0, DFmode); + operands[3] = operand_subword (operands[1], 1, 0, DFmode); + operands[4] = operand_subword (operands[0], 0, 0, DFmode); + operands[5] = operand_subword (operands[1], 0, 0, DFmode); + } + + if (operands[2] == 0 || operands[3] == 0 + || operands[4] == 0 || operands[5] == 0) + FAIL; +}") + +;; Conversions from one integer mode to another. +;; It is possible sometimes to sign- or zero-extend while fetching from memory. +;; +;; First, sign-extensions: +(define_expand "extendhisi2" + [(set (match_operand:SI 0 "register_operand" "") + (sign_extend:SI (match_operand:HI 1 "register_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=b") + (sign_extend:SI (match_operand:HI 1 "symbolic_memory_operand" "m")))] + "" + "loadha %0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,b") + (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "r,Q,m")))] + "" + "@ + exts %0,%1 + lha%M1 %0,%1 + loadha %0,%1" + [(set_attr "type" "arith,load,load") + (set_attr "length" "2,*,*")]) + +(define_expand "extendqisi2" + [(set (match_dup 2) + (ashift:SI (match_operand:QI 1 "register_operand" "") + (const_int 24))) + (set (match_operand:SI 0 "register_operand" "") + (ashiftrt:SI (match_dup 2) + (const_int 24)))] + "" + " +{ operands[1] = gen_lowpart (SImode, operands[1]); + operands[2] = gen_reg_rtx (SImode); }") + +(define_expand "extendqihi2" + [(set (match_dup 2) + (ashift:SI (match_operand:QI 1 "register_operand" "") + (const_int 24))) + (set (match_operand:HI 0 "register_operand" "") + (ashiftrt:SI (match_dup 2) + (const_int 24)))] + "" + " +{ operands[0] = gen_lowpart (SImode, operands[0]); + operands[1] = gen_lowpart (SImode, operands[1]); + operands[2] = gen_reg_rtx (SImode); }") + +;; Define peepholes to eliminate an instruction when we are doing a sign +;; extension but cannot clobber the input. +;; +;; In this case we will shift left 24 bits, but need a copy first. The shift +;; can be replaced by a "mc03" instruction, but this can only be done if +;; followed by the right shift of 24 or more bits. +(define_peephole + [(set (match_operand:SI 0 "register_operand" "") + (subreg:SI (match_operand:QI 1 "register_operand" "") 0)) + (set (match_dup 0) + (ashift:SI (match_dup 0) + (const_int 24))) + (set (match_dup 0) + (ashiftrt:SI (match_dup 0) + (match_operand:SI 2 "const_int_operand" "")))] + "INTVAL (operands[2]) >= 24" + "mc03 %0,%1\;sari16 %0,%S2" + [(set_attr "type" "multi") + (set_attr "length" "4") + (set_attr "cc" "sets")]) + +;; Now zero extensions: +(define_expand "zero_extendhisi2" + [(set (match_operand:SI 0 "register_operand" "b") + (zero_extend:SI (match_operand:HI 1 "register_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=b") + (zero_extend:SI (match_operand:HI 1 "symbolic_memory_operand" "m")))] + "" + "loadh %0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,b") + (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "r,Q,m")))] + "" + "@ + nilz %0,%1,65535 + lh%N1 %0,%1 + loadh %0,%1" + [(set_attr "type" "arith,loadz,load")]) + +(define_expand "zero_extendqisi2" + [(set (match_operand:SI 0 "register_operand" "") + (zero_extend:SI (match_operand:QI 1 "register_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=b") + (zero_extend:SI (match_operand:QI 1 "symbolic_memory_operand" "m")))] + "" + "loadc %0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,b") + (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "r,Q,m")))] + "" + "@ + nilz %0,%1,255 + lc%M1 %0,%1 + loadc %0,%1" + [(set_attr "type" "arith,load,load")]) + +(define_expand "zero_extendqihi2" + [(set (match_operand:HI 0 "register_operand" "") + (zero_extend:HI (match_operand:QI 1 "register_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:HI 0 "register_operand" "=b") + (zero_extend:HI (match_operand:QI 1 "symbolic_memory_operand" "m")))] + "" + "loadc %0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:HI 0 "register_operand" "=r,r,b") + (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "r,Q,m")))] + "" + "@ + nilz %0,%1,255 + lc%M1 %0,%1 + loadc %0,%1" + [(set_attr "type" "arith,load,load")]) + +;; Various extract and insertion operations. +(define_expand "extzv" + [(set (match_operand:SI 0 "register_operand" "") + (zero_extract:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "const_int_operand" "") + (match_operand:SI 3 "const_int_operand" "")))] + "" + " +{ + if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != 8) + FAIL; + + if (GET_CODE (operands[3]) != CONST_INT) + FAIL; + + if (INTVAL (operands[3]) != 0 && INTVAL (operands[3]) != 8 + && INTVAL (operands[3]) != 16 && INTVAL (operands[3]) != 24) + FAIL; +}") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=&r") + (zero_extract:SI (match_operand:SI 1 "register_operand" "r") + (const_int 8) + (match_operand:SI 2 "const_int_operand" "n")))] + "(INTVAL (operands[2]) & 7) == 0" + "lis %0,0\;mc3%B2 %0,%1" + [(set_attr "type" "multi") + (set_attr "cc" "change0")]) + +(define_split + [(set (match_operand:SI 0 "register_operand" "=&r") + (zero_extract:SI (match_operand:SI 1 "register_operand" "r") + (const_int 8) + (match_operand:SI 2 "const_int_operand" "n")))] + "(INTVAL (operands[2]) & 7) == 0" + [(set (match_dup 0) (const_int 0)) + (set (zero_extract:SI (match_dup 0) (const_int 8) (const_int 24)) + (zero_extract:SI (match_dup 1) (const_int 8) (match_dup 2)))] + "") + +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r") + (const_int 8) + (const_int 24)) + (zero_extract:SI (match_operand:SI 1 "register_operand" "r") + (const_int 8) + (match_operand:SI 2 "const_int_operand" "n")))] + "(INTVAL (operands[2]) & 7) == 0" + "mc3%B2 %0,%1" + [(set_attr "type" "address") + (set_attr "length" "2")]) + +(define_expand "insv" + [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "") + (match_operand:SI 1 "const_int_operand" "") + (match_operand:SI 2 "const_int_operand" "")) + (match_operand:SI 3 "register_operand" ""))] + "" + " +{ + if (GET_CODE (operands[2]) != CONST_INT) + FAIL; + + if (GET_CODE (operands[1]) != CONST_INT) + FAIL; + + if (INTVAL (operands[1]) == 1) + { + emit_insn (gen_bit_insv (operands[0], operands[1], operands[2], + operands[3])); + DONE; + } + else if (INTVAL (operands[1]) == 8 + && (INTVAL (operands[2]) % 8 == 0)) + ; /* Accept aligned byte-wide field. */ + else + FAIL; +}") + +;; For a single-bit insert, it is better to explicitly generate references +;; to the T bit. We will call the T bit "CC0" because it can be clobbered +;; by some CC0 sets (single-bit tests). + +(define_expand "bit_insv" + [(set (cc0) + (zero_extract:SI (match_operand:SI 3 "register_operand" "") + (const_int 1) + (const_int 31))) + (set (zero_extract:SI (match_operand:SI 0 "register_operand" "") + (match_operand:SI 1 "const_int_operand" "") + (match_operand:SI 2 "const_int_operand" "")) + (ne (cc0) (const_int 0)))] + "" + "") + +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r") + (const_int 8) + (match_operand:SI 1 "const_int_operand" "n")) + (match_operand:SI 2 "register_operand" "r"))] + "(INTVAL (operands[1]) & 7) == 0" + "mc%B1%.3 %0,%2" + [(set_attr "type" "address") + (set_attr "length" "2")]) + +;; This pattern cannot have any input reloads since if references CC0. +;; So we have to add code to support memory, which is the only other +;; thing that a "register_operand" can become. There is still a problem +;; if the address isn't valid and *it* needs a reload, but there is no +;; way to solve that problem, so let's hope it never happens. + +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r,m") + (const_int 1) + (match_operand:SI 1 "const_int_operand" "n,m")) + (ne (cc0) (const_int 0))) + (match_scratch 2 "=X,b")] + "" + "@ + mftbi%t1 %0,%S1 + l%M0 %2,%0\;mftb%t1 %2,%S1\;st%M0 %2,%0" + [(set_attr "type" "*,multi") + (set_attr "cc" "none,none") + (set_attr "length" "2,10")]) + +;; Arithmetic instructions. First, add and subtract. +;; +;; It may be that the second input is either large or small enough that +;; the operation cannot be done in a single insn. In that case, emit two. +(define_expand "addsi3" + [(set (match_operand:SI 0 "register_operand" "") + (plus:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "nonmemory_operand" "")))] + "" + " +{ + if (GET_CODE (operands[2]) == CONST_INT + && (unsigned) (INTVAL (operands[2]) + 0x8000) >= 0x10000 + && (INTVAL (operands[2]) & 0xffff) != 0) + { + int low = INTVAL (operands[2]) & 0xffff; + int high = (unsigned) INTVAL (operands[2]) >> 16; + + if (low & 0x8000) + high++, low |= 0xffff0000; + + emit_insn (gen_addsi3 (operands[0], operands[1], + gen_rtx (CONST_INT, VOIDmode, high << 16))); + operands[1] = operands[0]; + operands[2] = gen_rtx (CONST_INT, VOIDmode, low); + } +}") + +;; Put the insn to add a symbolic constant to a register separately to +;; improve register allocation since it has different register requirements. +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=b") + (plus:SI (match_operand:SI 1 "register_operand" "%b") + (match_operand:SI 2 "romp_symbolic_operand" "s")))] + "" + "get %0,$%2(%1)" + [(set_attr "type" "address") + (set_attr "length" "8")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,r,r,r,r,b") + (plus:SI (match_operand:SI 1 "reg_or_add_operand" "%0,0,r,b,0,r,b") + (match_operand:SI 2 "reg_or_add_operand" "I,J,K,M,r,b,s")))] + "register_operand (operands[1], SImode) + || register_operand (operands[2], SImode)" + "@ + ais %0,%2 + sis %0,%n2 + ail %0,%1,%2 + cau %0,%H2(%1) + a %0,%2 + cas %0,%1,%2 + get %0,$%2(%1)" + [(set_attr "type" "arith,arith,arith,address,arith,address,misc") + (set_attr "length" "2,2,4,4,2,2,8")]) + +;; Now subtract. +;; +;; 1. If third operand is constant integer, convert it to add of the negative +;; of that integer. +;; 2. If the second operand is not a valid constant integer, force it into a +;; register. +(define_expand "subsi3" + [(set (match_operand:SI 0 "register_operand" "") + (minus:SI (match_operand:SI 1 "reg_or_any_cint_operand" "") + (match_operand:SI 2 "reg_or_any_cint_operand" "")))] + "" + " +{ + if (GET_CODE (operands [2]) == CONST_INT) + { + emit_insn (gen_addsi3 (operands[0], operands[1], + gen_rtx (CONST_INT, + VOIDmode, - INTVAL (operands[2])))); + DONE; + } + else + operands[2] = force_reg (SImode, operands[2]); + + if (GET_CODE (operands[1]) != CONST_INT + || (unsigned) (INTVAL (operands[1]) + 0x8000) >= 0x10000) + operands[1] = force_reg (SImode, operands[1]); +}") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,r") + (minus:SI (match_operand:SI 1 "reg_or_D_operand" "K,0,r") + (match_operand:SI 2 "register_operand" "r,r,0")))] + "" + "@ + sfi %0,%2,%1 + s %0,%2 + sf %0,%1" + [(set_attr "length" "4,2,2")]) + +;; Multiply either calls a special RT routine or is done in-line, depending +;; on the value of a -m flag. +;; +;; First define the way we call the subroutine. +(define_expand "mulsi3_subr" + [(set (reg:SI 2) (match_operand:SI 1 "register_operand" "")) + (set (reg:SI 3) (match_operand:SI 2 "register_operand" "")) + (parallel [(set (reg:SI 2) (mult:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))]) + (set (match_operand:SI 0 "register_operand" "") + (reg:SI 2))] + "" + "") + +(define_expand "mulsi3" + [(set (match_operand:SI 0 "register_operand" "") + (mult:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "register_operand" "")))] + "" + " +{ + if (! TARGET_IN_LINE_MUL) + { + emit_insn (gen_mulsi3_subr (operands[0], operands[1], operands[2])); + DONE; + } +}") + +;; Define the patterns to match. +;; We would like to provide a delay slot for the insns that call internal +;; routines, but doing so is risky since reorg will think that the use of +;; r2 and r3 is completed in the insn needing the delay slot. Also, it +;; won't know that the cc will be clobbered. So take the safe approach +;; and don't give them delay slots. +(define_insn "" + [(set (reg:SI 2) + (mult:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "! TARGET_IN_LINE_MUL" + "bali%# r15,lmul$$" + [(set_attr "type" "misc") + (set_attr "in_delay_slot" "no")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=&r") + (mult:SI (match_operand:SI 1 "register_operand" "%r") + (match_operand:SI 2 "register_operand" "r")))] + "TARGET_IN_LINE_MUL" + "* +{ return output_in_line_mul (); }" + [(set_attr "length" "38") + (set_attr "type" "multi")]) + +;; Handle divide and modulus. The same function returns both values, +;; so use divmodsi4. This divides arg 1 by arg 2 with quotient to go +;; into arg 0 and remainder in arg 3. +;; +;; We want to put REG_EQUAL notes for the two outputs. So we need a +;; function to do everything else. +(define_expand "divmodsi4_doit" + [(set (reg:SI 2) + (match_operand:SI 0 "register_operand" "")) + (set (reg:SI 3) + (match_operand:SI 1 "register_operand" "")) + (parallel [(set (reg:SI 2) (div:SI (reg:SI 2) (reg:SI 3))) + (set (reg:SI 3) (mod:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "divmodsi4" + [(parallel [(set (match_operand:SI 0 "register_operand" "") + (div:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "register_operand" ""))) + (set (match_operand:SI 3 "register_operand" "") + (mod:SI (match_dup 1) (match_dup 2)))])] + "" + " +{ + rtx insn; + + emit_insn (gen_divmodsi4_doit (operands[1], operands[2])); + insn = emit_move_insn (operands[0], gen_rtx (REG, SImode, 2)); + REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, + gen_rtx (DIV, SImode, operands[1], + operands[2]), + REG_NOTES (insn)); + insn = emit_move_insn (operands[3], gen_rtx (REG, SImode, 3)); + REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, + gen_rtx (MOD, SImode, operands[1], + operands[2]), + REG_NOTES (insn)); + DONE; +}") + +(define_insn "" + [(set (reg:SI 2) + (div:SI (reg:SI 2) (reg:SI 3))) + (set (reg:SI 3) + (mod:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "" + "bali%# r15,ldiv$$" + [(set_attr "type" "misc") + (set_attr "in_delay_slot" "no")]) + +;; Similarly for unsigned divide. +(define_expand "udivmodsi4_doit" + [(set (reg:SI 2) + (match_operand:SI 0 "register_operand" "")) + (set (reg:SI 3) + (match_operand:SI 1 "register_operand" "")) + (parallel [(set (reg:SI 2) (udiv:SI (reg:SI 2) (reg:SI 3))) + (set (reg:SI 3) (umod:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "udivmodsi4" + [(parallel [(set (match_operand:SI 0 "register_operand" "") + (udiv:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "register_operand" ""))) + (set (match_operand:SI 3 "register_operand" "") + (umod:SI (match_dup 1) (match_dup 2)))])] + "" + " +{ + rtx insn; + + emit_insn (gen_udivmodsi4_doit (operands[1], operands[2])); + insn = emit_move_insn (operands[0], gen_rtx (REG, SImode, 2)); + REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, + gen_rtx (UDIV, SImode, operands[1], + operands[2]), + REG_NOTES (insn)); + insn = emit_move_insn (operands[3], gen_rtx (REG, SImode, 3)); + REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, + gen_rtx (UMOD, SImode, operands[1], + operands[2]), + REG_NOTES (insn)); + DONE; +}") + +(define_insn "" + [(set (reg:SI 2) + (udiv:SI (reg:SI 2) (reg:SI 3))) + (set (reg:SI 3) + (umod:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "" + "bali%# r15,uldiv$$" + [(set_attr "type" "misc") + (set_attr "in_delay_slot" "no")]) + +;; Define DImode arithmetic operations. +;; +;; It is possible to do certain adds and subtracts with constants in a single +;; insn, but it doesn't seem worth the trouble. +;; +;; Don't use DEFINE_SPLIT on these because the dependency on CC can't be +;; easily tracked in that case! +(define_insn "adddi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (plus:DI (match_operand:DI 1 "register_operand" "%0") + (match_operand:DI 2 "register_operand" "r")))] + "" + "a %O0,%O2\;ae %0,%2" + [(set_attr "type" "multi")]) + +(define_insn "subdi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (minus:DI (match_operand:DI 1 "register_operand" "0") + (match_operand:DI 2 "register_operand" "r")))] + "" + "s %O0,%O2\;se %0,%2" + [(set_attr "type" "multi")]) + +(define_insn "negdi2" + [(set (match_operand:DI 0 "register_operand" "=r,&r") + (neg:DI (match_operand:DI 1 "register_operand" "0,r")))] + "" + "twoc %O0,%O1\;onec %0,%1\;aei %0,%0,0" + [(set_attr "type" "multi") + (set_attr "length" "8")]) + +;; Unary arithmetic operations. +(define_insn "abssi2" + [(set (match_operand:SI 0 "register_operand" "=r") + (abs:SI (match_operand:SI 1 "register_operand" "r")))] + "" + "abs %0,%1" + [(set_attr "length" "2")]) + +(define_insn "negsi2" + [(set (match_operand:SI 0 "register_operand" "=r") + (neg:SI (match_operand:SI 1 "register_operand" "r")))] + "" + "twoc %0,%1" + [(set_attr "length" "2")]) + +(define_insn "one_cmplsi2" + [(set (match_operand:SI 0 "register_operand" "=r") + (not:SI (match_operand:SI 1 "register_operand" "r")))] + "" + "onec %0,%1" + [(set_attr "length" "2")]) + + +;; Logical insns: AND, IOR, and XOR +;; +;; If the operation is being performed on a 32-bit constant such that +;; it cannot be done in one insn, do it in two. We may lose a bit on +;; CSE in pathological cases, but it seems better doing it this way. +(define_expand "andsi3" + [(set (match_operand:SI 0 "register_operand" "") + (and:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "reg_or_any_cint_operand" "")))] + "" + " +{ + if (GET_CODE (operands[2]) == CONST_INT) + { + int top = (unsigned) INTVAL (operands[2]) >> 16; + int bottom = INTVAL (operands[2]) & 0xffff; + + if (top != 0 && top != 0xffff && bottom != 0 && bottom != 0xffff) + { + emit_insn (gen_andsi3 (operands[0], operands[1], + gen_rtx (CONST_INT, VOIDmode, + (top << 16) | 0xffff))); + operands[1] = operands[0]; + operands[2] = gen_rtx (CONST_INT, VOIDmode, 0xffff0000 | bottom); + } + } +}"); + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,r") + (and:SI (match_operand:SI 1 "reg_or_and_operand" "%0,r,0") + (match_operand:SI 2 "reg_or_and_operand" "P,LMO,r")))] + "register_operand (operands[1], SImode) + || register_operand (operands[2], SImode)" + "@ + clrb%k2 %0,%b2 + ni%z2 %0,%1,%Z2 + n %0,%2" + [(set_attr "length" "2,4,2")]) + +;; logical OR (IOR) +(define_expand "iorsi3" + [(set (match_operand:SI 0 "register_operand" "") + (ior:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "reg_or_any_cint_operand" "")))] + "" + " +{ + if (GET_CODE (operands[2]) == CONST_INT) + { + int top = (unsigned) INTVAL (operands[2]) >> 16; + int bottom = INTVAL (operands[2]) & 0xffff; + + if (top != 0 && bottom != 0) + { + emit_insn (gen_iorsi3 (operands[0], operands[1], + gen_rtx (CONST_INT, VOIDmode, (top << 16)))); + operands[1] = operands[0]; + operands[2] = gen_rtx (CONST_INT, VOIDmode, bottom); + } + } +}"); + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,r") + (ior:SI (match_operand:SI 1 "reg_or_cint_operand" "%0,r,0") + (match_operand:SI 2 "reg_or_cint_operand" "N,LM,r")))] + "register_operand (operands[1], SImode) + || register_operand (operands[2], SImode)" + "@ + setb%h2 %0,%b2 + oi%h2 %0,%1,%H2 + o %0,%2" + [(set_attr "length" "2,4,2")]) + +;; exclusive-or (XOR) +(define_expand "xorsi3" + [(set (match_operand:SI 0 "register_operand" "") + (xor:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "reg_or_any_cint_operand" "")))] + "" + " +{ + if (GET_CODE (operands[2]) == CONST_INT) + { + int top = (unsigned) INTVAL (operands[2]) >> 16; + int bottom = INTVAL (operands[2]) & 0xffff; + + if (top == 0xffff && bottom == 0xffff) + { + emit_insn (gen_one_cmplsi2 (operands[0], operands[1])); + DONE; + } + else if (top != 0 && bottom != 0) + { + emit_insn (gen_xorsi3 (operands[0], operands[1], + gen_rtx (CONST_INT, VOIDmode, (top << 16)))); + operands[1] = operands[0]; + operands[2] = gen_rtx (CONST_INT, VOIDmode, bottom); + } + } +}"); + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r") + (xor:SI (match_operand:SI 1 "reg_or_cint_operand" "%r,0") + (match_operand:SI 2 "reg_or_cint_operand" "LM,r")))] + "register_operand (operands[1], SImode) + || register_operand (operands[2], SImode)" + "@ + xi%h2 %0,%1,%H2 + x %0,%2" + [(set_attr "length" "4,2")]) + +;; Various shift insns +(define_insn "ashrsi3" + [(set (match_operand:SI 0 "register_operand" "=r,r") + (ashiftrt:SI (match_operand:SI 1 "register_operand" "0,0") + (match_operand:QI 2 "reg_or_cint_operand" "r,n")))] + "" + "@ + sar %0,%2 + sari%s2 %0,%S2" + [(set_attr "length" "2")]) + +(define_insn "lshrsi3" + [(set (match_operand:SI 0 "register_operand" "=r,r") + (lshiftrt:SI (match_operand:SI 1 "register_operand" "0,0") + (match_operand:QI 2 "reg_or_cint_operand" "r,n")))] + "" + "@ + sr %0,%2 + sri%s2 %0,%S2" + [(set_attr "length" "2")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r") + (ashift:SI (match_operand:SI 1 "register_operand" "b") + (const_int 1)))] + "" + "cas %0,%1,%1" + [(set_attr "length" "2") + (set_attr "type" "address")]) + +(define_insn "ashlsi3" + [(set (match_operand:SI 0 "register_operand" "=r,r") + (ashift:SI (match_operand:SI 1 "register_operand" "0,0") + (match_operand:QI 2 "reg_or_cint_operand" "r,n")))] + "" + "@ + sl %0,%2 + sli%s2 %0,%S2" + [(set_attr "length" "2")]) + +;; Function call insns: +;; +;; On the ROMP, &fcn is actually a pointer to the data area, which is passed +;; to the function in r0. &.fcn is the actual starting address of the +;; function. Also, the word at &fcn contains &.fcn. +;; +;; For both functions that do and don't return values, there are two cases: +;; where the function's address is a constant, and where it isn't. +;; +;; Operand 1 (2 for `call_value') is the number of arguments and is not used. +(define_expand "call" + [(use (reg:SI 0)) + (parallel [(call (mem:SI (match_operand:SI 0 "address_operand" "")) + (match_operand 1 "" "")) + (clobber (reg:SI 15))])] + "" + " +{ + if (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != CONST_INT) + abort(); + + operands[0] = XEXP (operands[0], 0); + if (GET_CODE (operands[0]) == SYMBOL_REF) + { + extern rtx get_symref (); + char *real_fcnname = + (char *) alloca (strlen (XSTR (operands[0], 0)) + 2); + + /* Copy the data area address to r0. */ + emit_move_insn (gen_rtx (REG, SImode, 0), + force_reg (SImode, operands[0])); + strcpy (real_fcnname, \".\"); + strcat (real_fcnname, XSTR (operands[0], 0)); + operands[0] = get_symref (real_fcnname); + } + else + { + rtx data_access; + + emit_move_insn (gen_rtx (REG, SImode, 0), + force_reg (SImode, operands[0])); + data_access = gen_rtx (MEM, SImode, operands[0]); + RTX_UNCHANGING_P (data_access) = 1; + operands[0] = copy_to_reg (data_access); + } +}") + +(define_insn "" + [(call (mem:SI (match_operand:SI 0 "register_operand" "b")) + (match_operand 1 "" "g")) + (clobber (reg:SI 15))] + "" + "balr%# r15,%0" + [(set_attr "type" "call") + (set_attr "length" "2")]) + +(define_insn "" + [(call (mem:SI (match_operand:SI 0 "romp_symbolic_operand" "i")) + (match_operand 1 "" "g")) + (clobber (reg:SI 15))] + "GET_CODE (operands[0]) == SYMBOL_REF" + "bali%# r15,%0" + [(set_attr "type" "call")]) + +;; Call a function and return a value. +(define_expand "call_value" + [(use (reg:SI 0)) + (parallel [(set (match_operand 0 "" "=fg") + (call (mem:SI (match_operand:SI 1 "address_operand" "")) + (match_operand 2 "" ""))) + (clobber (reg:SI 15))])] + "" + " +{ + if (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != CONST_INT) + abort(); + + operands[1] = XEXP (operands[1], 0); + if (GET_CODE (operands[1]) == SYMBOL_REF) + { + extern rtx get_symref (); + char *real_fcnname = + (char *) alloca (strlen (XSTR (operands[1], 0)) + 2); + + /* Copy the data area address to r0. */ + emit_move_insn (gen_rtx (REG, SImode, 0), + force_reg (SImode, operands[1])); + strcpy (real_fcnname, \".\"); + strcat (real_fcnname, XSTR (operands[1], 0)); + operands[1] = get_symref (real_fcnname); + } + else + { + rtx data_access; + + emit_move_insn (gen_rtx (REG, SImode, 0), + force_reg (SImode, operands[1])); + data_access = gen_rtx (MEM, SImode, operands[1]); + RTX_UNCHANGING_P (data_access) = 1; + operands[1] = copy_to_reg (data_access); + } +}") + +(define_insn "" + [(set (match_operand 0 "" "=fg") + (call (mem:SI (match_operand:SI 1 "register_operand" "b")) + (match_operand 2 "" "g"))) + (clobber (reg:SI 15))] + "" + "balr%# r15,%1" + [(set_attr "length" "2") + (set_attr "type" "call")]) + +(define_insn "" + [(set (match_operand 0 "" "=fg") + (call (mem:SI (match_operand:SI 1 "romp_symbolic_operand" "i")) + (match_operand 2 "" "g"))) + (clobber (reg:SI 15))] + "GET_CODE (operands[1]) == SYMBOL_REF" + "bali%# r15,%1" + [(set_attr "type" "call")]) + +;; No operation insn. +(define_insn "nop" + [(const_int 0)] + "" + "nopr r0" + [(set_attr "type" "address") + (set_attr "length" "2") + (set_attr "cc" "none")]) + +;; Here are the floating-point operations. +;; +;; Start by providing DEFINE_EXPAND for each operation. +;; The insns will be handled with MATCH_OPERATOR; the methodology will be +;; discussed below. + +;; First the conversion operations. + +(define_expand "truncdfsf2" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (float_truncate:SF (match_operand:DF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "extendsfdf2" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (float_extend:DF (match_operand:SF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "floatsisf2" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (float:SF (match_operand:SI 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "floatsidf2" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (float:DF (match_operand:SI 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "fix_truncsfsi2" + [(parallel [(set (match_operand:SI 0 "general_operand" "") + (fix:SI (match_operand:SF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "fix_truncdfsi2" + [(parallel [(set (match_operand:SI 0 "general_operand" "") + (fix:SI (match_operand:DF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +;; Now the binary operations. + +(define_expand "addsf3" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (plus:SF (match_operand:SF 1 "general_operand" "") + (match_operand:SF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "adddf3" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (plus:DF (match_operand:DF 1 "general_operand" "") + (match_operand:DF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "subsf3" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (minus:SF (match_operand:SF 1 "general_operand" "") + (match_operand:SF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "subdf3" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (minus:DF (match_operand:DF 1 "general_operand" "") + (match_operand:DF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "mulsf3" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (mult:SF (match_operand:SF 1 "general_operand" "") + (match_operand:SF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "muldf3" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (mult:DF (match_operand:DF 1 "general_operand" "") + (match_operand:DF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "divsf3" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (div:SF (match_operand:SF 1 "general_operand" "") + (match_operand:SF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "divdf3" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (div:DF (match_operand:DF 1 "general_operand" "") + (match_operand:DF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +;; Unary floating-point operations. +;; +;; Negations can be done without floating-point, since this is IEEE. +;; But we cannot do this if an operand is a hard FP register, since +;; the SUBREG we create would not be valid. +(define_expand "negsf2" + [(set (match_operand:SF 0 "register_operand" "") + (neg:SF (match_operand:SF 1 "register_operand" "")))] + "" + " +{ + if (! (GET_CODE (operands[0]) == REG + && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER + && FP_REGNO_P (REGNO (operands[0]))) + && ! (GET_CODE (operands[1]) == REG + && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER + && FP_REGNO_P (REGNO (operands[1])))) + { + rtx result; + rtx target = operand_subword (operands[0], 0, 1, SFmode); + + result = expand_binop (SImode, xor_optab, + operand_subword_force (operands[1], 0, SFmode), + gen_rtx (CONST_INT, VOIDmode, 0x80000000), + target, 0, OPTAB_WIDEN); + if (result == 0) + abort (); + + if (result != target) + emit_move_insn (result, target); + + /* Make a place for REG_EQUAL. */ + emit_move_insn (operands[0], operands[0]); + DONE; + } +}") + +(define_expand "negdf2" + [(set (match_operand:DF 0 "register_operand" "") + (neg:DF (match_operand:DF 1 "register_operand" "")))] + "" + " +{ + if (! (GET_CODE (operands[0]) == REG + && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER + && FP_REGNO_P (REGNO (operands[0]))) + && ! (GET_CODE (operands[1]) == REG + && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER + && FP_REGNO_P (REGNO (operands[1])))) + { + rtx result; + rtx target = operand_subword (operands[0], 0, 1, DFmode); + rtx insns; + + start_sequence (); + result = expand_binop (SImode, xor_optab, + operand_subword_force (operands[1], 0, DFmode), + gen_rtx (CONST_INT, VOIDmode, 0x80000000), + target, 0, OPTAB_WIDEN); + if (result == 0) + abort (); + + if (result != target) + emit_move_insn (result, target); + + emit_move_insn (operand_subword (operands[0], 1, 1, DFmode), + operand_subword_force (operands[1], 1, DFmode)); + + insns = get_insns (); + end_sequence (); + + emit_no_conflict_block (insns, operands[0], operands[1], 0, 0); + DONE; + } +}") + +(define_expand "abssf2" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (abs:SF (match_operand:SF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "absdf2" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (abs:DF (match_operand:DF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +;; Any floating-point operation can be either SFmode or DFmode, and each +;; operand (including the output) can be either a normal operand or a +;; conversion from a normal operand. +;; +;; We use MATCH_OPERATOR to match a floating-point binary or unary operator +;; and input and output conversions. So we need 2^N patterns for each type +;; of operation, where N is the number of operands, including the output. +;; There are thus a total of 14 patterns, 8 for binary operations, 4 for +;; unary operations and two for conversion/move operations (only one +;; operand can have a conversion for move operations). In addition, we have +;; to be careful that a floating-point reload register doesn't get allocated +;; for an integer. We take care of this for inputs with PREFERRED_RELOAD_CLASS +;; but need to have two different constraints for outputs. This means that +;; we have to duplicate each pattern where the output could be an integer. +;; This adds another 7 patterns, for a total of 21. + +;; Start with conversion operations (moves are done above). + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operand 2 "general_operand" "frg")])) + (clobber (match_operand:SI 3 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (SET, operands[0], operands[2], 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operand 2 "general_operand" "frg")])) + (clobber (match_operand:SI 3 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (SET, operands[0], operands[2], 0, insn); +}" + [(set_attr "type" "fp")]) + +;; Next, binary floating-point operations. + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_binary" + [(match_operand 2 "general_operand" "frg") + (match_operand 3 "general_operand" "frg")])) + (clobber (match_operand:SI 4 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[2], operands[3])" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], + operands[2], operands[3], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_binary" + [(match_operand 2 "general_operand" "frg") + (match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")])])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[2], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], + operands[2], operands[4], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_binary" + [(match_operator 2 "float_conversion" + [(match_operand 3 "general_operand" "frg")]) + (match_operand 4 "general_operand" "frg")])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[3], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], + operands[3], operands[4], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_binary" + [(match_operator 2 "float_conversion" + [(match_operand 3 "general_operand" "frg")]) + (match_operator 4 "float_conversion" + [(match_operand 5 "general_operand" "frg")])])) + (clobber (match_operand:SI 6 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[3], operands[5])" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], + operands[3], operands[5], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operand 3 "general_operand" "frg") + (match_operand 4 "general_operand" "frg")])])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[3], operands[4], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operand 3 "general_operand" "frg") + (match_operand 4 "general_operand" "frg")])])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[3], operands[4], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operand 3 "general_operand" "frg") + (match_operator 4 "float_conversion" + [(match_operand 5 "general_operand" "frg")])])])) + (clobber (match_operand:SI 6 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[3], operands[5], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operand 3 "general_operand" "frg") + (match_operator 4 "float_conversion" + [(match_operand 5 "general_operand" "frg")])])])) + (clobber (match_operand:SI 6 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[3], operands[5], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")]) + (match_operand 5 "general_operand" "frg")])])) + (clobber (match_operand:SI 6 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], operands[5])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[4], operands[5], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")]) + (match_operand 5 "general_operand" "frg")])])) + (clobber (match_operand:SI 6 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], operands[5])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[4], operands[5], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")]) + (match_operator 5 "float_conversion" + [(match_operand 6 "general_operand" "frg")])])])) + (clobber (match_operand:SI 7 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 8 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], operands[6])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[4], operands[6], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")]) + (match_operator 5 "float_conversion" + [(match_operand 6 "general_operand" "frg")])])])) + (clobber (match_operand:SI 7 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 8 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], operands[6])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[4], operands[6], insn); +}" + [(set_attr "type" "fp")]) + +;; Unary floating-point operations. + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_unary" + [(match_operand 2 "general_operand" "frg")])) + (clobber (match_operand:SI 3 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[2], 0)" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], operands[2], + 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_unary" + [(match_operator 2 "float_conversion" + [(match_operand 3 "general_operand" "frg")])])) + (clobber (match_operand:SI 4 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[3], 0)" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], operands[3], + 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_unary" + [(match_operand 3 "general_operand" "frg")])])) + (clobber (match_operand:SI 4 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], 0)" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[3], + 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_unary" + [(match_operand 3 "general_operand" "frg")])])) + (clobber (match_operand:SI 4 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], 0)" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[3], + 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_unary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")])])])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], 0)" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[4], + 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_unary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")])])])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], 0)" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[4], + 0, insn); +}" + [(set_attr "type" "fp")]) + +;; Compare insns are next. Note that the ROMP has two types of compares, +;; signed & unsigned, and one type of branch. Use the routine +;; `next_insn_tests_no_unsigned' to see which type to use. +(define_expand "tstsi" + [(set (cc0) + (match_operand:SI 0 "register_operand" "r"))] + "" + "") + +(define_expand "cmpsi" + [(set (cc0) + (compare (match_operand:SI 0 "register_operand" "") + (match_operand:SI 1 "reg_or_cint_operand" "")))] + "" + "") + +;; Signed compare, `test' first. + +(define_insn "" + [(set (cc0) + (match_operand:SI 0 "register_operand" "r"))] + "next_insn_tests_no_unsigned (insn)" + "cis %0,0" + [(set_attr "length" "2") + (set_attr "type" "compare")]) + +(define_insn "" + [(set (cc0) (match_operand:SI 0 "register_operand" "r,r,r")) + (set (match_operand:SI 1 "reg_or_nonsymb_mem_operand" "=0,r,Q") + (match_dup 0))] + "next_insn_tests_no_unsigned (insn)" + "@ + cis %1,0 + nilo %1,%0,65535 + st%M1 %0,%1\;cis %0,0" + [(set_attr "type" "compare,compare,store") + (set_attr "length" "2,4,6") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) + (compare (match_operand:SI 0 "register_operand" "r,r,r") + (match_operand:SI 1 "reg_or_cint_operand" "I,K,r")))] + "next_insn_tests_no_unsigned (insn)" + "@ + cis %0,%1 + cil %0,%1 + c %0,%1" + [(set_attr "length" "2,4,2") + (set_attr "type" "compare")]) + +;; Unsigned comparisons, `test' first, again. +(define_insn "" + [(set (cc0) + (match_operand:SI 0 "register_operand" "r"))] + "! next_insn_tests_no_unsigned (insn)" + "clil %0,0" + [(set_attr "type" "compare")]) + +(define_insn "" + [(set (cc0) + (compare (match_operand:SI 0 "register_operand" "r,r") + (match_operand:SI 1 "reg_or_cint_operand" "K,r")))] + "! next_insn_tests_no_unsigned (insn)" + "@ + clil %0,%1 + cl %0,%1" + [(set_attr "length" "4,2") + (set_attr "type" "compare")]) + +;; Bit test insn. Many cases are converted into this by combine. This +;; uses the ROMP test bit. + +(define_insn "" + [(set (cc0) + (zero_extract (match_operand:SI 0 "register_operand" "r,r") + (const_int 1) + (match_operand:SI 1 "reg_or_any_cint_operand" "r,n")))] + "next_insn_tests_no_inequality (insn)" + "@ + mttb %0,%1 + mttbi%t1 %0,%S1" + [(set_attr "length" "2") + (set_attr "type" "compare") + (set_attr "cc" "tbit")]) + +;; Floating-point comparisons. There are two, equality and order. +;; The difference will be that a trap for NaN will be given on the orderr +;; comparisons only. + +(define_expand "cmpsf" + [(parallel [(set (cc0) (compare (match_operand:SF 0 "general_operand" "") + (match_operand:SF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "cmpdf" + [(parallel [(set (cc0) (compare (match_operand:DF 0 "general_operand" "") + (match_operand:DF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "tstsf" + [(parallel [(set (cc0) (match_operand:SF 0 "general_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "tstdf" + [(parallel [(set (cc0) (match_operand:DF 0 "general_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +;; There are four cases for compare and two for test. These correspond +;; to each input having a floating-point conversion or not. + +(define_insn "" + [(set (cc0) (compare (match_operand 0 "general_operand" "frg") + (match_operand 1 "general_operand" "frg"))) + (clobber (match_operand:SI 2 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 3 "reg_15_operand" "=&t"))] + "GET_MODE (operands[1]) == SFmode || GET_MODE (operands[1]) == DFmode" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[0], operands[1], 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) (compare (match_operand 0 "general_operand" "frg") + (match_operator 1 "float_conversion" + [(match_operand 2 "general_operand" "frg")]))) + (clobber (match_operand:SI 3 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[0], operands[2], 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) (compare (match_operator 0 "float_conversion" + [(match_operand 1 "general_operand" "frg")]) + (match_operand 2 "general_operand" "frg"))) + (clobber (match_operand:SI 3 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[1], operands[2], 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) (compare (match_operator 0 "float_conversion" + [(match_operand 1 "general_operand" "frg")]) + (match_operator 2 "float_conversion" + [(match_operand 3 "general_operand" "frg")]))) + (clobber (match_operand:SI 4 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[1], operands[3], 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) (match_operand 0 "general_operand" "frg")) + (clobber (match_operand:SI 1 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 2 "reg_15_operand" "=&t"))] + "GET_MODE (operands[0]) == SFmode || GET_MODE (operands[0]) == DFmode" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[0], immed_real_const_1 (0, 0, + GET_MODE (operands[0])), + 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) (match_operator 0 "float_conversion" + [(match_operand 1 "general_operand" "frg")])) + (clobber (match_operand:SI 2 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 3 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[1], immed_real_const_1 (0, 0, + GET_MODE (operands[1])), + 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +;; Branch insns. Unsigned vs. signed have already +;; been taken care of. The only insns that need to be concerned about the +;; test bit are beq and bne because the rest are either always true, +;; always false, or converted to EQ or NE. + +;; For conditional branches, we use `define_expand' and just have two patterns +;; that match them. Operand printing does most of the work. + +(define_expand "beq" + [(set (pc) + (if_then_else (eq (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bne" + [(set (pc) + (if_then_else (ne (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bgt" + [(set (pc) + (if_then_else (gt (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bgtu" + [(set (pc) + (if_then_else (gtu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "blt" + [(set (pc) + (if_then_else (lt (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bltu" + [(set (pc) + (if_then_else (ltu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bge" + [(set (pc) + (if_then_else (ge (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bgeu" + [(set (pc) + (if_then_else (geu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "ble" + [(set (pc) + (if_then_else (le (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bleu" + [(set (pc) + (if_then_else (leu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +;; Define both directions of branch and return. + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 1 "comparison_operator" + [(cc0) (const_int 0)]) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "* +{ + if (restore_compare_p (operands[1])) + return 0; + else if (get_attr_length (insn) == 2) + return \"j%j1 %l0\"; + else + return \"b%j1%# %l0\"; +}" + [(set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 0 "comparison_operator" + [(cc0) (const_int 0)]) + (return) + (pc)))] + "null_epilogue ()" + "* +{ + if (restore_compare_p (operands[0])) + return 0; + else + return \"b%j0r%# r15\"; +}" + [(set_attr "type" "return")]) + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 1 "comparison_operator" + [(cc0) (const_int 0)]) + (pc) + (label_ref (match_operand 0 "" ""))))] + "" + "* +{ + if (restore_compare_p (operands[1])) + return 0; + else if (get_attr_length (insn) == 2) + return \"j%J1 %l0\"; + else + return \"b%J1%# %l0\"; +}" + [(set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 0 "comparison_operator" + [(cc0) (const_int 0)]) + (pc) + (return)))] + "null_epilogue ()" + "* +{ + if (restore_compare_p (operands[0])) + return 0; + else + return \"b%J0r%# r15\"; +}" + [(set_attr "type" "return")]) + +;; Unconditional branch and return. + +(define_insn "jump" + [(set (pc) + (label_ref (match_operand 0 "" "")))] + "" + "* +{ + if (get_attr_length (insn) == 2) + return \"j %l0\"; + else + return \"b%# %l0\"; +}" + [(set_attr "type" "branch")]) + +(define_insn "return" + [(return)] + "null_epilogue ()" + "br%# r15" + [(set_attr "type" "return")]) + +(define_insn "indirect_jump" + [(set (pc) (match_operand:SI 0 "register_operand" "r"))] + "" + "br%# %0" + [(set_attr "type" "branch") + (set_attr "length" "2")]) + +;; Table jump for switch statements: +(define_insn "tablejump" + [(set (pc) + (match_operand:SI 0 "register_operand" "r")) + (use (label_ref (match_operand 1 "" "")))] + "" + "br%# %0" + [(set_attr "type" "branch") + (set_attr "length" "2")]) + +;;- Local variables: +;;- mode:emacs-lisp +;;- comment-start: ";;- " +;;- eval: (set-syntax-table (copy-sequence (syntax-table))) +;;- eval: (modify-syntax-entry ?[ "(]") +;;- eval: (modify-syntax-entry ?] ")[") +;;- eval: (modify-syntax-entry ?{ "(}") +;;- eval: (modify-syntax-entry ?} "){") +;;- End: |